WO2013114807A1 - 能動騒音制御装置 - Google Patents

能動騒音制御装置 Download PDF

Info

Publication number
WO2013114807A1
WO2013114807A1 PCT/JP2013/000244 JP2013000244W WO2013114807A1 WO 2013114807 A1 WO2013114807 A1 WO 2013114807A1 JP 2013000244 W JP2013000244 W JP 2013000244W WO 2013114807 A1 WO2013114807 A1 WO 2013114807A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
air passage
control device
resonance
detection microphone
Prior art date
Application number
PCT/JP2013/000244
Other languages
English (en)
French (fr)
Inventor
昌鷹 馬場
敦仁 矢野
田崎 裕久
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2013114807A1 publication Critical patent/WO2013114807A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17861Methods, e.g. algorithms; Devices using additional means for damping sound, e.g. using sound absorbing panels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/101One dimensional
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/109Compressors, e.g. fans
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/112Ducts
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3219Geometry of the configuration
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/509Hybrid, i.e. combining different technologies, e.g. passive and active

Definitions

  • the present invention relates to an active noise control device for reducing noise propagating along an air flow along an air passage.
  • Patent Document 1 provides a detailed description of an active noise control device.
  • a noise detection microphone, error detection microphone, and control sound source are placed in the duct.
  • the active noise control algorithm is driven using signals detected by the noise detection microphone and the error detection microphone. Specifically, a canceling sound is radiated from the control sound source based on the signal control so that the detection signal from the error detection microphone becomes small. As a result, the noise propagating through the duct and the noise radiated from the control sound source are canceled at the same sound pressure and opposite phase at the position of the error detection microphone, and the sound pressure at the error detection microphone is reduced.
  • the detection signals of the noise detection microphone and the error detection microphone have substantially the same frequency characteristics without driving the active noise control. This is because the detection signal from the noise detection microphone is amplified and transmitted from the control sound source, but if the frequency characteristics of the error detection microphone are different, the noise is not successfully canceled at the position of the error detection microphone.
  • the correlation between the frequency characteristics of signals at two detection points is called “coherence”. A state where the coherence value is 1 represents a state where the frequency characteristics of the signals at the two detection points completely coincide.
  • Patent Document 1 a device for rectifying the fluid is provided on the upstream side of the active noise control configuration so as to bring the fluid close to a laminar flow state. Thereby, the coherence is improved, and a sufficient noise reduction effect can be obtained with respect to the noise in the duct by the active noise control.
  • the conventional active noise control device rectifies the fluid flowing in the duct, it is considered that there is a certain effect on coherence reduction due to fluid turbulence and vortices.
  • resonance of sound waves occurs in the inside due to the shape of the tube. Due to the influence of the standing wave due to this resonance, depending on the positional relationship between the noise detection microphone and the error detection microphone, a decrease in coherence occurs at a specific frequency derived from tube resonance. As a result, there arises a problem that a sufficient noise reduction effect cannot be obtained.
  • the noise detection microphone, the error detection microphone, and the control sound source in the duct it takes time until the signal is amplified and transmitted by the control sound source after the noise is detected by the noise detection microphone. Therefore, it is necessary to take at least a certain distance in order to ensure the calculation delay time required for active noise control. Further, there is a distribution of fluid properties in the duct, and there is an intention to arrange a noise detection microphone and an error detection microphone so that coherence is as high as possible. Therefore, it is also an object of the present invention to dispose the noise detection microphone, the error detection microphone, and the control sound source at a position where the silencing effect of the active noise control device is easily exhibited.
  • the present invention has an object to solve the above-described problems and prevents a decrease in coherence at a specific frequency associated with duct resonance of a duct.
  • the object is to sufficiently maintain the silencing effect of active noise control by preventing the reduction of coherence.
  • the active noise control device includes a noise detection microphone, an error detection microphone, and an active noise control device based on a control sound source, and further, a Helmholtz that resonates in the air passage at a frequency derived from tube resonance of the air passage. It is provided with a resonator. By reducing resonance in the tube by the Helmholtz resonator, the silencing effect of the active noise control device can be improved and the above-mentioned object can be achieved.
  • the Helmholtz resonator is arranged in the air passage near the antinode of the standing wave generated by the tube resonance.
  • the Helmholtz resonator can effectively realize the silencing effect of the active noise control device.
  • the noise detection microphone and the error detection microphone are arranged in the vicinity of an antinode of a standing wave generated by the tube resonance in the air passage.
  • the Helmholtz resonator can effectively realize the silencing effect of the active noise control device.
  • a fur material is attached in the vicinity of or inside the port opening of the air passage surface in the Helmholtz resonator.
  • the active noise control device it is possible to improve the situation where the coherence is reduced between the noise detection microphone and the error detection microphone due to the influence of resonance generated in the duct (or the air duct).
  • the resonator at the closed end or the “antinode” of the standing wave accompanying the tube resonance, the influence of the tube resonance can be reduced, and the decrease in coherence can be prevented.
  • the influence of resonance can be effectively reduced. it can.
  • the cross-sectional area, port length, and internal volume of the resonator variable, it is easy to match the resonance frequency with the standing wave that occurs due to the closed tube resonance of the duct (or air passage). .
  • the design flexibility of the resonator can be improved.
  • FIG. 1 is a basic configuration of an active noise control apparatus according to the first embodiment.
  • the basic structure of the active noise control apparatus which showed the calculating means in the 1st step of this Embodiment 1.
  • FIG. The basic structure of the active noise control apparatus which showed the calculation means in the 2nd step of this Embodiment 1.
  • FIG. The basic structure of the active noise control apparatus which showed the calculating means in the 3rd step of this Embodiment 1.
  • the state of the tube resonance and the resonance frequency when the duct (or the air passage) is regarded as a one-side closed tube structure.
  • Example 2 of actual measurement of sound pressure characteristics and coherence characteristics in the noise detection microphone 3 and the error detection microphone 4 in the first embodiment An example of the structure of the resonator 13 according to the first embodiment and a resonance relational expression.
  • a basic configuration of an active noise control apparatus according to the second embodiment The situation of the single closed tube resonance when the resonator 14 is used in the second embodiment.
  • 4 is a basic configuration of an active noise control device according to the fourth embodiment.
  • the active noise control apparatus at the time of installing a fur material in a port inner wall.
  • an example of the structure of a resonator capable of making the port length Lx variable and the resonance relational expression an example of the structure of the resonator which can make the internal volume Vx of a resonator variable, and a resonance relational expression.
  • FIG. 1 shows the basic configuration of an active noise control apparatus according to the first embodiment of the present invention.
  • the active noise control device is sometimes called a silencer.
  • reference numeral 1 denotes a duct (or an air passage) through which noise and air flow propagates
  • reference numeral 2 denotes a fan noise source that sends the air flow to the duct (or air passage) 1.
  • 3 is a noise detection microphone that detects noise in the duct (or air passage)
  • 4 is an error detection microphone that similarly detects noise in the duct (or air passage) 1.
  • the noise detection microphone 3 is located closer to the fan noise source 2 than the error detection microphone.
  • Reference numeral 5 denotes a control sound source, which is suppressed so that noise propagating from the fan noise source 2 is canceled out at the position of the error detection microphone 4 by sound radiated from the control sound source 5.
  • Reference numerals 6 and 8 denote microphone amplifiers that amplify the detection signal
  • reference numerals 7 and 9 denote A / D converters
  • reference numeral 11 denotes a D / A converter.
  • Reference numeral 10 denotes calculation means for deriving a control sound to be radiated from the control sound source 5 based on the detection signal from the noise detection microphone 3 and the detection signal from the error detection microphone 4.
  • Reference numeral 12 denotes a power amplifier that drives the control sound source 5
  • 13 denotes a Helmholtz resonator that opens a port toward the inner surface of the duct (or air passage) 1 and resonates.
  • the direction of the air flow by the fan noise source 2 is not limited to the direction of sending out to the duct (or air passage) 1, but may be the direction of sucking out from the duct (or air passage) 1. Further, in other embodiments including this embodiment, the noise propagating through the duct (or the air flow path) 1 may be noise without airflow.
  • FIGS. 2 to 4 are diagrams for explaining the operation of the computing means 10, and sequentially explaining the transition of the operation of the computing means 10 in FIG.
  • the calculation means 10 of FIG. 1 stores all the functions shown in FIGS. 2 to 4, and only some functions of the calculation means 10 are shown in FIGS. 2 to 4.
  • FIG. 2 shows the state of the arithmetic means 10 in the first stage, and the internal arithmetic configuration used in this state is expressed as arithmetic means 10a.
  • Reference numeral 10a1 denotes white noise generating means
  • 10a2 denotes first NLMS (Normalized LMS) algorithm means
  • 10a3 denotes second NLMS algorithm means.
  • Reference numeral 101 denotes a transfer characteristic “H” from the control sound source 5 to the noise detection microphone 3
  • reference numeral 102 denotes a transfer characteristic “C” from the control sound source 5 to the error detection microphone 4.
  • the transfer characteristic is a parameter representing a transmission state in which a physical quantity such as electricity, heat, vibration, etc. of the object to be measured is transmitted, and is an important parameter for knowing the behavior and behavior of the object to be measured.
  • the fan noise source 2 is stopped, and noise and airflow are not generated in the delivery path 1.
  • a white noise signal is output from the white noise generating means 10a1 and radiated from the control sound source 5 into the duct (or the air duct) 1 through the D / A converter 11 and the power amplifier 12.
  • This white noise is captured by the noise detection microphone 3 and the error detection microphone 4 and input to the first NLMS algorithm means 10a2 and the second NLMS algorithm means 10a3, respectively.
  • the first NLMS algorithm means 10a2 the reference signal from the white noise generating means 10a1 and the detection signal from the noise detection microphone 3 are input, and the transfer characteristic “H” 101 in the duct (or air duct) 1 is identified. .
  • the transfer characteristic “C” 102 in the duct (or air duct) 1 is identified.
  • the LMS algorithm is a technique for determining a filter coefficient so as to minimize the mean square error between an input signal and a reference signal, and is widely used due to the advantage that the calculation amount is small.
  • the NLMS (Normalized Least Mean Square) algorithm has a feature that the amount of calculation is larger than that of the LMS algorithm, but the convergence speed does not depend on the input signal amplitude. Both are used as general methods in active noise control.
  • FIG. 3 shows the state of the second stage of the calculation means 10, and the internal calculation configuration in this state is expressed as the calculation means 10b.
  • the control sound source 5 is stopped, the fan noise source 2 is steadily operated, and noise and airflow are propagated in the duct (or air duct) 1.
  • Noise propagating through the duct (or air passage) 1 is captured by the noise detection microphone 3 and the error detection microphone 4. Further, the transfer characteristic until the noise detected at the noise detection microphone 3 point reaches the error detection microphone 4 point is identified as “R” 103.
  • FIG. 4 shows a third stage state of the computing means 10. This stage represents the steady operating state of active noise control. Noise propagating through the duct (or air passage) 1 is detected by a noise detection microphone 3. Thereafter, the transfer characteristic “R” is convoluted with the detection signal by the transfer characteristic R filter 10 c 3, and after passing through the inverter 10 c 4, is output as the operation means 10 c. The output of the computing means 10 c is sent to the control sound source 5, and the control sound is radiated into the duct (or air passage) 1. Further, the transfer characteristic H is convolved with the output of the computing means 10c, and the output of the transfer characteristic H is subtracted from the detection signal in the subtractor 10c1.
  • the computing unit 10c3 converts the detection signal from the noise detection microphone 3 into a signal at the position of the error detection microphone by convolving the transfer characteristic “R”.
  • the noise and phase at the four points of the error detection microphone are aligned as they are, the phase relationship between the sound emitted from the control sound source 5 and the noise is reversed via the inverter 10c4, and the duct.
  • the active noise control state which cancels the noise which leaves (or the ventilation path) 1 is created.
  • the reason for subtracting the output of the transfer characteristic H filter 10c2 in the subtractor 10c1 is to prevent howling. That is, the influence of the signal transmitted from the control sound source 5 to the noise detection microphone 3 is removed. With such a configuration, the noise transmitted from the fan noise source is canceled at the position of the error detection microphone 4 by the sound from the control sound source.
  • the correlation between the frequency characteristics of the sound at the two detection points is represented by a parameter called “coherence”, and a state where the coherence value is 1 represents a state where the frequency characteristics of the sound at the two detection points completely match.
  • coherence a parameter that the coherence value should be 0.8 or more in order to obtain the maximum reduction amount of ⁇ 15 dB.
  • FIG. 5 shows the state of tube resonance and the resonance frequency when the duct (or air passage) is regarded as a one-side closed tube structure. As shown in the figure, the noise transmitted from the noise source is reflected at the open end and the closed end, causing a resonance phenomenon.
  • the resonance frequency is calculated with the duct (or air passage) length L being 1.9 m and the sound velocity v being 340 m / sec.
  • 6 and 7 show actual measurement examples of sound pressure characteristics and coherence characteristics of the noise detection microphone 3 and the error detection microphone 4.
  • the position of the error detection microphone 4 is fixed in the vicinity of the opening end of the duct (or air passage) 1.
  • the interval between the noise detection microphone 3 and the error detection microphone 4 is set wider than that in FIG.
  • the dip of the detection signal in the noise detection microphone 3 is about 310 Hz corresponding to 7 times vibration, and the dip is shallow (about 5 dB).
  • the dip of the detection signal in the noise detection microphone 3 is seen in the vicinity of 220 Hz corresponding to 5 times vibration, and the dip is deep (about 10 dB).
  • the coherence changes depending on the position of the noise detection microphone 3. 6 and 7, no significant dip is observed in the signal on the error detection microphone 4 side.
  • the dip of the detection signal in the noise detection microphone 3 is about 310 Hz, which is close to the 7-fold vibration.
  • the error detection microphone 3 is placed at a position deviated from the “antinode” of the standing wave, and a dip occurs in the sound pressure characteristics at the three points of the noise detection microphone.
  • the dip is about 220 Hz, which is close to the above-mentioned 5 times vibration.
  • An error detection microphone 4 is placed in the vicinity of the “antinode” of the standing wave at the opening of the tube, and a noise detection microphone 3 is placed in the vicinity of the “antinode” that has an opposite phase relationship to that.
  • This resonator is a silencer that applies Helmholtz's resonance principle to reduce a predetermined frequency component of a propagation sound propagating in the intake pipe.
  • FIG. 8 shows an example of the structure of the resonator 13 and a resonance relational expression.
  • FIG. 9 illustrates the state of one-side closed tube resonance when the resonator 13 is used, taking the case of 5 times vibration as an example.
  • the amplitude in the amplitude direction indicates the intensity of the tube resonance frequency.
  • the sound absorption effect of the resonator 13 suppresses reflection in the single closed tube and suppresses the strength of the standing wave.
  • the degree of cancellation of the standing wave in the error detection microphone 4 is weakened, and the detection signal dip in the error detection microphone 4 becomes shallow.
  • tube resonance is suppressed, and deterioration of coherence between the noise detection microphone 3 and the error detection microphone 4 is reduced.
  • the error detection microphone 4 is arranged at the position of the “antinode” of the resonance frequency, and the noise detection microphone 3 is located near the antinode of the standing wave whose phase is reversed from that of the antinode where the first noise detection means is arranged.
  • the resonance amplitude is generally larger when the resonance frequency is smaller. Therefore, with respect to resonance having a relatively low resonance frequency such as 3 times, 5 times, and 7 times vibration, the phase of the error detection microphone 4 is inverted from that of the error detection microphone 4 and the phase of the noise detection microphone 3 is inverted from that of the error detection microphone 4.
  • a large silencing effect can be obtained by using the resonator simultaneously. In this way, a large silencing effect can be obtained by using a resonator together with the characteristic arrangement of the noise detection microphone 3 and the error detection microphone 4.
  • FIG. FIG. 10 shows a basic configuration of an active noise control apparatus according to the second embodiment of the present invention.
  • a difference from FIG. 1 is that a resonator 14 is attached instead of the resonator 13.
  • the other constituent elements are the same as those in FIGS. 1 to 4, and the description related to active noise control and the description related to tube resonance are the same as those in the first embodiment, and will be omitted.
  • FIG. 11 illustrates the attachment position of the resonator 14 in the example of 5 times vibration, and the resonator is arranged on the “antinode” of the standing wave of the tube resonance 5 times vibration. Also in this case, by making the resonance frequency F0 of the resonator coincide with the frequency of the tube resonance, the tube resonance can be suppressed by the sound absorption effect. As a result, the occurrence of dip causing deterioration of coherence is suppressed. Thereby, the effect of the active noise control device can be maintained high.
  • FIG. 12 shows a basic configuration of an active noise control apparatus according to the third embodiment of the present invention.
  • a plurality of resonators specifically, a resonator 14, a resonator 15, and a resonator 16 are attached in addition to the resonator 13.
  • the other components are the same as those in FIGS. 1 to 4, and the description related to active noise control and the description related to tube resonance are the same as those in the first embodiment, and will be omitted.
  • the resonators are installed at the top and bottom of the drawing, but they may be installed on the near side and the far side in the duct (or air passage) 1 as long as they are standing waves “belly”.
  • the number of installed resonators is not limited to four, and may be any number.
  • FIG. 13 shows a state of 5 times vibration when the resonators 13 to 16 are attached.
  • the resonators 14 to 16 are arranged at the position of the “antinode” of the standing wave of the tube resonance 5 times vibration.
  • the resonance frequency F0 of the resonator is made to coincide with the frequency of the tube resonance, and a plurality of resonators are incorporated in the duct (or the air passage) 1.
  • FIG. 14 shows a basic configuration of an active noise control apparatus according to the fourth embodiment of the present invention.
  • a fur material 17 is installed around the port opening of the resonator 14.
  • the fur material represents a material covered with soft hair.
  • an air current hits the edge of the port opening, and a Karman vortex may be generated to become a new sound source.
  • the Karman vortex may have a great influence on the resonance frequency of the resonator.
  • the fur material 17 is installed around the port opening, but as shown in FIG. 15, the fur material 18 may be installed on the inner wall of the port of the resonator 14.
  • the frictional resistance of the air vibration generated between the air column of the port portion and the internal volume is increased, and the sound absorption effect can be further improved.
  • FIG. FIGS. 16 to 18 show an example of a cross-sectional structure of a resonator of an active noise control apparatus according to the sixth embodiment of the present invention.
  • FIG. 16 shows the variability of the port cross-sectional area Sx and the port radius Rx of the resonator.
  • the resonance frequency F0 can be increased by increasing the port cross-sectional area Sx, and F0 can be decreased by decreasing Sx.
  • Adjustment of the port cross-sectional area Sx and the port radius Rx can be performed by using a plastic member or a movable mechanism.
  • FIG. 17 shows the variability of the port length Lx of the resonator. In FIG. 17, if the port length Lx is increased, the resonance frequency F0 is decreased, and if Lx is decreased, F0 can be increased.
  • the port length Lx can be adjusted by using a plastic member or a movable mechanism.
  • FIG. 18 shows the variability of the internal volume Vx of the resonator.
  • the resonance frequency F0 is decreased, and if Vx is decreased, F0 is increased.
  • the internal volume Vx can be adjusted by moving the wall surface constituting the resonator.
  • a desired resonance state can be formed by the variation of the configuration shown in FIGS. 16 to 18 alone or the combination of these variations.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Duct Arrangements (AREA)

Abstract

送風路の管共振に由来する周波数で共鳴するヘルムホルツレゾネータを備えた構成とすることで管共振の影響を低減する。特に、誤差検出マイク4を定在波の腹付近、騒音検出マイク3を誤差検出マイク4が配置された腹とは位相が反転した前記定在波の腹付近から隣接する節付近の範囲に配置する構成により、高い消音効果を実現する。また、送風路において管共振により生じる定在波の腹付近にヘルムホルツレゾネーを配置することで、さらに高い消音効果を実現する。

Description

能動騒音制御装置
本発明は送風路内を気流とともに伝播する騒音を低減するための能動騒音制御装置に関するものである。
 従来より、ダクト(または送風路)内を気流とともに伝播する騒音を低減する手段として、ダクト内壁に吸音材を貼付したり、ダクトの屈曲と組み合わせて低減を行う手法がとられてきた。しかし、1kHz以下の騒音を十分に低減する事は困難であった。その対応策として、ダクト内の低周波数帯域の騒音を能動騒音制御技術により低減する手法がとられてきた。特許文献1では、能動騒音制御装置について詳しい説明がなされている。
 能動騒音制御では、ダクト内に騒音検出マイク、誤差検出マイク、制御音源を配置する。また、騒音検出マイクと誤差検出マイクで検出される信号を用いて、能動騒音制御アルゴリズムが駆動される。具体的には、誤差検出マイクでの検出信号が小さくなるよう信号制御に基づき制御音源から打消し音が放射される。結果として、誤差検出マイクの位置で、ダクトを伝播してきた騒音と制御音源から放射された騒音が同音圧且つ逆位相で打ち消され、誤差検出マイクでの音圧は低減される。
 実環境において十分な騒音低減効果を得るためには、能動騒音制御を駆動しない状態で騒音検出マイクと誤差検出マイクでの検出信号がほぼ同じ周波数特性を有する必要がある。これは制御音源からは騒音検出マイクでの検出信号が増幅されて送信されるが、誤差検出マイクでの周波数特性が異なると、誤差検出マイクの位置において騒音がうまく打ち消されないためである。一般に、2つの検出地点における信号の周波数特性の相関性を「コヒーレンス」と呼んでいる。コヒーレンス値が1である状態は、2つの検出地点における信号の周波数特性が完全に一致する状態を表す。
実環境では、ダクトを流れる流体の乱れや渦に影響によって騒音の線形性が失われ、騒音検出マイクと誤差検出マイクでの信号のコヒーレンスが低下する問題がある。そこで、特許文献1では能動騒音制御構成の上流側に流体を整流する手段を設けて、流体を層流状態に近付ける工夫がなされている。これによりコヒーレンスは改善され、能動騒音制御によるダクト内騒音に対して十分な騒音低減効果を得ることができる。
特開2000-352986号公報
 従来の能動騒音制御装置ではダクトを流れる流体を整流するため、流体の乱れや渦に起因するコヒーレンス低下に対しては一定の効果が有ると考えられる。しかし、ダクトでは、管の形状に起因してその内部で音波の共振が生じる。この共振に伴う定在波の影響によって、騒音検出マイクと誤差検出マイクの位置関係によっては、管共振に由来する特定の周波数でコヒーレンスの低下が発生する。その結果、十分な騒音低減効果が得られなくなる課題が発生する。
 一方、ダクト内における騒音検出マイク、誤差検出マイク、及び制御音源の配置については、騒音検出マイクにおいて騒音を検出してから制御音源において信号を増幅送信するまでに時間を要する。従って、能動騒音制御に要する計算遅延時間を確保するために少なくとも一定の距離をとる必要がある。また、ダクト内には流体性質の分布があり、可能な限りコヒーレンスが高くなるよう騒音検出マイク、誤差検出マイクを配置したいという意図がある。従って、能動騒音制御装置の消音効果が発揮されやすい位置に騒音検出マイク、誤差検出マイク、及び制御音源を配置することも本発明の課題である。
本発明では、上記のような課題を解決する目的を有し、ダクトの管共振に伴う特定の周波数におけるコヒーレンス低下を防ぐ。コヒーレンスの低下を防ぐことにより、能動騒音制御の消音効果を十分維持することを目的としている。
本発明の能動騒音制御装置は、騒音検出マイク、誤差検出マイク、及び制御音源に基づく
能動騒音制御装置に加えて、さらに前記送風路内に前記送風路の管共振に由来する周波数で共鳴するヘルムホルツレゾネータを備えることを特徴とする。前記ヘルムホルツレゾネータによって管内での共振を低減することにより、能動騒音制御装置の消音効果を改善することができ前述の目的を達成することができる。
さらに、本発明の他の能動騒音制御装置では、前記ヘルムホルツレゾネータを前記送風路において、前記管共振により生じる定在波の腹付近に配置することを特徴とする。前記ヘルムホルツレゾネータによって、能動騒音制御装置の消音効果を効果的に実現することができる。
さらに、本発明の他の能動騒音制御装置では、前記騒音検出マイク及び前記誤差検出マイクを前記送風路において、前記管共振により生じる定在波の腹付近に配置することを特徴とする。前記ヘルムホルツレゾネータによって、能動騒音制御装置の消音効果を効果的に実現することができる。
さらに、本発明の他の能動騒音制御装置では、前記ヘルムホルツレゾネータにおいて、前記送風路面のポート開口部付近または内部に柔毛材を装着することを特徴とする。本特徴によって、ポート開口部が気流に直接曝されない状況を構築でき、新たな音源によってレゾネータの共鳴周波数に影響が及ぶ状況を軽減できる。
 本発明にかかる能動騒音制御装置では、ダクト(又は送風路)内で生じる共鳴の影響によって、騒音検出マイクと誤差検出マイクの間でコヒーレンスが低下する状況を改善できる。特に、レゾネータを閉路端或いは管共振に伴う定在波の「腹」に設置することにより当該管共振の影響を低減でき、コヒーレンス低下を防止できる。また、騒音検出マイクと誤差検出マイクの一方が管共振に伴う定在波の「腹」に設置され、他方が「節」に設置される環境において、効果的に共振の影響を低下させることができる。騒音検出マイク3と誤差検出マイク4の特徴的な配置に対してレゾネータを併用することで大きな消音効果が得られる。
 また、当該レゾネータのポート開口部周辺に柔毛材を設置することにより、ダクト(又は送風路)を流れる気流によって当該ポート開口部が直接さらされない状況が構築され、カルマン渦の発生が抑制される。また、新たな音源が生じてレゾネータの共鳴周波数に影響を及ぼす状況を軽減できる。
 また、当該レゾネータのポート開口部周辺及びポート内壁に柔毛材を設置することで、当該ポート開口部が気流に直接曝されない状況を構築できる。その結果、カルマン渦の発生が抑制され、新たな音源によってレゾネータの共鳴周波数に影響が及ぶ状況を軽減できる。また、ポート部分の気柱と内部容積との間で生じる空気振動の摩擦抵抗の増加により、振動エネルギーの熱への変換が効率的に行なわれる。その結果、吸音効果を向上できる。
 また、当該レゾネータのポート断面積、ポート長、内部容積に可変性を持たせることにより、ダクト(又は送風路)の閉管共振に伴って生じる定在波との共振周波数の合わせ込みが容易となる。その結果、当該レゾネータの設計自由度の向上が図ることができる。また、騒音検出マイクと誤差検出マイク間のコヒーレンス低下を改善することも容易となり、消音効果を有効に機能させることができる。
本実施の形態1に係わる能動騒音制御装置の基本構成。 本実施の形態1の第1段階における演算手段を示した能動騒音制御装置の基本構成。 本実施の形態1の第2段階における演算手段を示した能動騒音制御装置の基本構成。 本実施の形態1の第3段階における演算手段を示した能動騒音制御装置の基本構成。 本実施の形態1において、ダクト(又は送風路)を片閉管構造とみなした場合の管共振の様子とその共振周波数。 本実施の形態1における騒音検出マイク3と誤差検出マイク4での音圧特性及びコヒーレンス特性の実測例1。 本実施の形態1における騒音検出マイク3と誤差検出マイク4での音圧特性及びコヒーレンス特性の実測例2。 本実施の形態1にかかわるレゾネータ13の構造の一例と共鳴関係式。 本実施の形態1においてレゾネータ13を用いた場合の片閉管共振の状況。 本実施の形態2にかかわる能動騒音制御装置の基本構成。 本実施の形態2においてレゾネータ14を用いた場合の片閉管共振の状況。 本実施の形態3にかかわる能動騒音制御装置の基本構成。 本実施の形態3においてレゾネータ13、14、15、16を用いた場合の片閉管共振の状況。 本実施の形態4にかかわる能動騒音制御装置の基本構成。 本実施の形態4において、ポート内壁に柔毛材を設置した場合の能動騒音制御装置。 本実施の形態5において、ポート断面積Sx及びポート半径Rxを可変とすることのできるレゾネータの構造の一例と共鳴関係式。 本実施の形態5において、ポート長Lxを可変とすることのできるレゾネータの構造の一例と共鳴関係式。 本実施の形態5において、レゾネータの内部容積Vxを可変とすることのできるレゾネータの構造の一例と共鳴関係式。
実施の形態1.
 図1は本発明の第1の実施形態に係わる能動騒音制御装置の基本構成を示している。なお、能動騒音制御装置は消音装置と呼ばれることもある。図中、1は騒音及び気流が伝播するダクト(又は送風路)、2は気流をダクト(又は送風路)1へ送り出すファン騒音源である。3はダクト(又は送風路)1内の騒音を検出する騒音検出マイク、4は同じくダクト(又は送風路)1内の騒音を検出する誤差検出マイクである。騒音検出マイク3は誤差検出マイクよりもファン騒音源2に近い位置にある。5は制御音源であり、制御音源5から放射される音によってファン騒音源2から伝搬する騒音が誤差検出マイク4の位置で打ち消されるように抑制される。6、8は検出信号を増幅するマイクアンプ、7、9はA/Dコンバータ、11はD/Aコンバータである。10は騒音検出マイク3からの検出信号と、誤差検出マイク4からの検出信号に基づいて、制御音源5から放射されるべき制御音を導出する演算手段である。12は制御音源5を駆動するパワーアンプ、13はダクト(又は送風路)1の内面に向けてポートを開き共鳴するヘルムホルツレゾネータである。なお、ファン騒音源2による気流の向きはダクト(又は送風路)1に送り出す方向に限らず、ダクト(又は送風路)1から吸い出す方向であってもよい。また、本実施の形態を含め他の形態においても、ダクト(又は送風路)1を伝播するものは気流を伴わない騒音であっても構わない。
 図2から図4は演算手段10の動作を説明するための図であり、図1の演算手段10の動作の変遷を順次説明している。図1の演算手段10には図2から図4に示す機能が全て格納されており、演算手段10の一部の機能のみが図2から図4では図示されている。
 図2は演算手段10の第1段階における状態を示しており、この状態で用いられる内部演算構成を演算手段10aと表記している。10a1はホワイトノイズ発生手段、10a2は第1のNLMS(Normalized LMS)アルゴリズム手段、10a3は第2のNLMSアルゴリズム手段を示している。101は制御音源5から騒音検出マイク3までの伝達特性「H」、102は制御音源5から誤差検出マイク4までの伝達特性「C」を示している。ここで、伝達特性は、被測定物の電気・熱・振動等の物理量が伝わる伝達状態を表すパラメータであり、被測定物の振る舞い・挙動を知るための重要なパラメータである。この段階ではファン騒音源2は停止されており、送付路1内で騒音及び気流は発生しない。
 動作としてはまず最初に、ホワイトノイズ発生手段10a1からホワイトノイズ信号が出力され、D/Aコンバータ11、パワーアンプ12を経て、制御音源5からダクト(又は送風路)1内に放射される。このホワイトノイズは騒音検出マイク3及び誤差検出マイク4により捉えられ、それぞれ第1のNLMSアルゴリズム手段10a2、第2のNLMSアルゴリズム手段10a3へ入力される。第1のNLMSアルゴリズム手段10a2ではホワイトノイズ発生手段10a1からの参照信号と、騒音検出マイク3からの検出信号が入力され、ダクト(又は送風路)1内の伝達特性「H」101が同定される。同様に、第2のNLMSアルゴリズム手段10a3では、ダクト(又は送風路)1内の伝達特性「C」102が同定される。
 ここで、LMS(Least Mean Square)アルゴリズムについて簡単に説明しておく。LMSアルゴリズムは、入力信号と参照信号の二乗平均誤差を最小化するようフィルタ係数を決定する手法であり、演算量が少ない利点から広く利用されている。また、NLMS(Normalized Least Mean Square)アルゴリズムではLMSアルゴリズムよりも演算量が増えるが、収束速度が入力信号振幅に依存しない特徴を有している。能動騒音制御では共に一般的な手法として使われている。
 図3は演算手段10の第2段階の状態を示しており、この状態での内部演算構成を演算手段10bとして表記している。この段階では、制御音源5を停止し、ファン騒音源2を定常動作させてダクト(又は送風路)1内に騒音及び気流を伝播させる。ダクト(又は送風路)1を伝播する騒音は騒音検出マイク3及び誤差検出マイク4により捉えられる。さらに、騒音検出マイク3地点で検出された騒音が誤差検出マイク4地点に到達するまでの伝達特性が「R」103として同定される。
 図4は演算手段10の第3段階の状態を示している。この段階は能動騒音制御の定常動作状態を表している。ダクト(又は送風路)1を伝播する騒音は騒音検出マイク3によって検出される。その後、検出信号に対して伝達特性Rフィルタ10c3によって伝達特性「R」が畳み込まれ、反転器10c4を通した後に演算手段10cの出力とされる。演算手段10cの出力は制御音源5に送られ、制御音がダクト(又は送風路)1内に放射される。また、演算手段10cの出力に対して伝達特性Hが畳みこまれ、減算器10c1において検出信号から伝達特性Hの出力が引き去られる。
演算器10c3では伝達特性「R」を畳み込むことにより、騒音検出マイク3での検出信号を誤差検出マイクの位置での信号に変換する。また、そのままでは誤差検出マイク4地点でもとの騒音と位相が揃ってしまうことから、反転器10c4を介することで制御音源5から放射される音ともとの騒音との位相関係を反転させ、ダクト(又は送風路)1を出て行く騒音を打ち消す能動騒音制御状態を創出している。減算器10c1において伝達特性Hフィルタ10c2の出力を引き去る理由はハウリングを防止するためである。すなわち、制御音源5から騒音検出マイク3へ送信される信号の影響を取り除いている。このような構成により、ファン騒音源から送出された騒音は制御音源からの音によって誤差検出マイク4の位置で打ち消される。
能動騒音制御が高度に機能するためには、騒音検出マイク3と誤差検出マイク4で検出される騒音の周波数特性の類似性を高く保つ必要がある。これは、周波数特性の類似性が高くないと、ファン騒音源から送出された騒音は制御音源からの音と互いにうまく打ち消されないためである。ここで、2つの検出地点における音の周波数特性の相関性は「コヒーレンス」というパラメータで表され、コヒーレンス値が1である状態は2つの検出地点における音の周波数特性が完全に一致する状態を表す。引用文献1によると、例えば最大低減量-15dBを得るためにはコヒーレンス値を0.8以上にすべき関係性が示されている。
 しかし、実際にはダクト(又は送風路)1を流れる流体の乱れや渦に加えて管共振などの影響により、コヒーレンス値が低下する場合がある。図5に、ダクト(又は送風路)を片閉管構造とみなした場合の管共振の様子とその共振周波数を示す。図に示すように、騒音源から送出された騒音は開口端と閉口端で反射し、共鳴現象を生じる。図5では、ダクト(又は送風路)長Lは1.9m、音速vは340m/秒として共振周波数を計算している。1倍振動では44.7Hz、3倍振動では134.2Hz、5倍振動では223.7Hz、7倍振動では313.2Hzとなる。共鳴現象の生じる環境では、管内の位置によって音の振幅が異なるため、共振によって腹と節が生じる。このように特定の周波数において共振が生じるため、マイクの配置によっては2つのマイク間での周波数特性に差が生じる。その結果、コヒーレンスが低下する状態が発生することが推測される。
 図6および図7に騒音検出マイク3と誤差検出マイク4での音圧特性及びコヒーレンス特性の実測例を示す。図6、7では、誤差検出マイク4の位置はダクト(又は送風路)1の開口端付近で固定としている。また、図7では図6よりも騒音検出マイク3と誤差検出マイク4との間隔を広く設定している。図6では騒音検出マイク3での検出信号のディップは7倍振動に相当する約310Hzにあり、そのディップは浅い(5dB程度)。一方、図7では騒音検出マイク3での検出信号のディップは5倍振動に相当する220Hz付近で見られ、そのディップは深い(10dB程度)。このように、騒音検出マイク3の位置に応じて、コヒーレンスは変化している。なお、図6、7において、誤差検出マイク4側の信号では顕著なディップは見られない。
 図6では騒音検出マイク3における検出信号のディップは約310Hzにあり、前記7倍振動に近い。誤差検出マイク3は定在波の「腹」からずれた位置に置かれており、騒音検出マイク3地点の音圧特性にディップが生じている。図7では、同ディップは約220Hzにあり前記5倍振動に近い結果となっている。管の開口部における定在波の「腹」付近に誤差検出マイク4が置かれ、それと逆位相関係となる「腹」付近に騒音検出マイク3が置かれている。
 図6、7において、音圧特性のディップの発生と管共振及びマイクの配置には強い因果関係がみられる。特に、騒音検出マイク3と誤差検出マイク4が、共振周波数の逆位相関係となる「腹」付近にある場合、または一方が「腹」付近で他方が逆位相関係となる「腹」から「節」付近に置かれる場合には、共振の影響を受けやすくコヒーレンスが低下しやすい。従って、このような環境において、共振の影響を低下し、コヒーレンスを維持するためのマイクの配置が重要となる。
 図1から図4のレゾネータ13では管共振のエネルギーを抑え、ディップの発生を軽減しようとする。このレゾネータは、ヘルムホルツの共鳴原理を応用して吸気管内を伝播する伝播音の所定周波数成分を低減させる消音器である。図8はレゾネータ13の構造の一例と共鳴関係式を示している。開口部に相当するポートの半径R、ポートの断面積S、ポートの長さL、内部容積Vとした時に、図8下部に記載した関係式に基づく周波数F0で、ポート部分の気柱と内部容積との間で共鳴現象を生じる。その結果、空気の激しい動きに伴って摩擦熱としてエネルギーが消費され、共振周波数F0に対する吸音効果が得られる。
 図9はレゾネータ13を用いた場合の片閉管共振の状況を5倍振動を例にとって図示している。振幅方向の振れ幅は管共振周波数の強度を示している。図9では、レゾネータ13の吸音効果により片閉管内での反射が抑えられ、定在波の強度が抑制される。結果として、図1から図4において誤差検出マイク4における定在波の打ち消しの程度が弱まり、誤差検出マイク4における検出信号のディップが浅くなる。これにより、管共振が抑えられ、騒音検出マイク3と誤差検出マイク4との間のコヒーレンスの悪化が軽減される。
 以上により、ダクト(又は送風路)の管共振に伴う特定の周波数におけるコヒーレンス低下を緩和できる。ダクト(又は送風路)の管共振のうち、能動騒音制御に影響する周波数を選択的かつ効果的に吸音するレゾネータ13を設置することにより、消音効果を高く維持できる。
 特に、誤差検出マイク4が共振周波数の「腹」の位置に配置され、騒音検出マイク3が
前記第1の騒音検出手段が配置された腹とは位相が反転した前記定在波の腹付近から隣接する節付近の範囲に配置される場合には、共振の影響を受けやすくコヒーレンスが低下しやすい。また、共振周波数が小さい方が一般に共振の振幅が大きい。従って、3倍、5倍、7倍振動といった比較的共振周波数の小さい共振に対して、誤差検出マイク4を共振周波数の「腹」、騒音検出マイク3を誤差検出マイク4と位相が反転した「腹」から「節」の範囲に置いた場合に、レゾネータを同時に用いることによる大きな消音効果を得ることができる。このように騒音検出マイク3と誤差検出マイク4の特徴的な配置に対してレゾネータを併用することで大きな消音効果が得られる。
実施の形態2.
 図10は本発明の第2の実施形態に係わる能動騒音制御装置の基本構成を示している。図1と異なる部分はレゾネータ13の代わりにレゾネータ14を取り付けている点である。その他の構成要素は図1から図4と共通であり、能動騒音制御に関わる説明、及び管共振に関わる説明は実施の形態1と共通しているので省略する。
 図11はレゾネータ14の取付け位置を5倍振動の例にあてはめて説明したものであり、レゾネータを管共振の5倍振動の定在波の「腹」に配置している。この場合もレゾネータの共振周波数F0を管共振の周波数と一致させることで、吸音効果によって管共振を抑えることができる。その結果、コヒーレンス悪化の原因となるディップの発生が抑制される。これにより能動騒音制御装置の効果を高く維持できる。
実施の形態3.
 図12は本発明の第3の実施形態にかかわる能動騒音制御装置の基本構成を示している。図1と異なる部分はレゾネータ13に追加して複数のレゾネータ、具体的にはレゾネータ14、レゾネータ15、レゾネータ16を取り付けている点である。その他の構成要素は図1から4と共通であり、能動騒音制御に関わる説明、及び管共振に関わる説明は実施の形態1と共通しているので省略する。図12では図面の上下にレゾネータを設置しているが、定在波の「腹」であれば、ダクト(又は送風路)1内の手前側及び奥側に設置しても構わない。レゾネータの設置個数は4個に限定されず、いかなる個数であっても構わない。
 図13はレゾネータ13から16を取付けた場合の5倍振動の様子を表している。レゾネータ14から16は管共振の5倍振動の定在波の「腹」の位置に配置されている。この場合もレゾネータの共振周波数F0を管共振の周波数と一致させ、複数のレゾネータをダクト(又は送風路)1に組み込む。本構成により、吸音効果によって管共振が抑えられ、コヒーレンスの低下を防ぐことができる。これにより能動騒音制御装置の消音効果を高く維持できる。
実施の形態4.
 図14は本発明の第4の実施形態にかかわる能動騒音制御装置の基本構成を示している。図10と異なる部分はレゾネータ14のポート開口部周辺に柔毛材17を設置した点である。ここで、柔毛材とは柔らかい毛でおおわれた材質を表す。通常のレゾネータではポート開口部のエッジに気流が当り、カルマン渦が発生して新たな音源となる場合がある。また、カルマン渦はレゾネータの共鳴周波数に大きな影響を及ぼす可能性が考えられる。
 図14ではレゾネータ14の開口部付近に柔毛材17を設けることで、ダクト(又は送風路)内部を流れる気流を減速できる。その結果、ポート開口部のエッジが気流に直接さらされないので、カルマン渦の発生が抑制される。また、レゾネータ14の共鳴周波数への影響が軽減される。
 図14ではポート開口部周辺に柔毛材17を設置したが、図15に示すようにレゾネータ14のポート内壁に柔毛材18を設置しても構わない。図15の構成を用いた場合には、ポート部分の気柱と内部容積との間で生じる空気振動の摩擦抵抗が増加し、吸音効果をさらに向上させることができる。
実施の形態5.
 図16から図18は本発明の第6の実施形態に係わる能動騒音制御装置のレゾネータについての断面構造の一例を示している。図16はレゾネータのポート断面積Sx及びポート半径Rxの可変性を示している。図16において、面積可変性のレゾネータを用いて、ポート断面積Sxを大きくすれば共振周波数F0は高く、Sxを小さくすればF0は低くできる。ポート断面積Sx及びポート半径Rxの調整は、可塑性の部材の使用や可動式の機構の使用により行うことができる。図17はレゾネータのポート長Lxの可変性を示している。図17において、ポート長Lxを長くすれば共振周波数F0は低くなり、Lxを短くすればF0は高くすることができる。ポート長Lxの調整は、可塑性の部材の使用や可動式の機構により行うことができる。
 図18はレゾネータの内部容積Vxの可変性を示している。図18において、内部容積Vxを大きくすれば共振周波数F0は低くなり、Vxを小さくすればF0は高くなる。内部容積Vxの調整は、レゾネータを構成する壁面の移動により行うことができる。
図16から18に示した構成単独での変動、或いはこれらの組み合わせ変動により、所望の共振状態を形成することができる。
1 ダクト(又は送風路)
2 ファン騒音源
3 騒音検出マイク
4 誤差検出マイク
5 制御音源
6、8 マイク増幅器
7、9 A/D変換器 
10  演算手段
10a1  ホワイトノイズ発生手段
10a2 第1のNLMSアルゴリズム
10a3 弟2のNLMSアルゴリズム
10b  演算手段
10b1  伝達特性Cフィルタ
10b2 第3のNLMSアルゴリズム
10c  演算手段
10c1  加算回路
10c2 伝達特性Hフィルタ
10c3 伝達特性Rフィルタ
10c4 インバータ
11  D/A変換器
12  電力増幅器
13、14、15、16 レゾネータ
17、18  柔毛材

Claims (9)

  1. ファンからの騒音が伝搬する送風路に設けられた能動騒音制御装置おいて、
    前記騒音を検出する第1の騒音検出手段と、
    前記第1の騒音検出手段よりも前記ファンから遠い位置に配置された第2の騒音検出手段と、
    制御音を送信する制御音送信手段と、
    前記第1の騒音検出手段と前記第2の騒音検出手段で検出された信号に基づき、前記第2騒音検出手段における検出信号の振幅が低減されるように前記制御音を制御する演算手段と、
    前記送風路内に前記送風路の管共振に由来する周波数で共鳴するヘルムホルツレゾネータを備えることを特徴とする能動騒音制御装置。
  2. 前記ファンは前記送風路の端部に設けられ、
    前記ヘルムホルツレゾネータは
    前記送風路において前記ファンのある端部に配置されることを
    特徴とする請求項1に記載の能動騒音制御装置。
  3. 前記ヘルムホルツレゾネータは
    前記送風路において前記管共振により生じる定在波の腹付近に配置されることを
    特徴とする請求項1に記載の能動騒音制御装置。
  4. 前記第1の騒音検出手段は
    前記送風路において、前記管共振により生じる定在波の腹付近に配置され、
    前記第2の騒音検出手段は
    前記送風路において、前記第1の騒音検出手段が配置された腹とは位相が反転した前記定在波の腹付近から隣接する節付近の範囲に配置されることを
    特徴とする請求項1乃至請求項3のいずれか1項に記載の能動騒音制御装置。
  5. 前記第1の騒音検出手段は
    前記送風路において、前記管共振により生じる定在波の腹付近に配置され、
    前記第2の騒音検出手段は
    前記送風路において、前記管共振により生じる定在波の節付近に配置されることを
    特徴とする請求項1乃至請求項3のいずれか1項に記載の能動騒音制御装置。
  6. 前記ヘルムホルツレゾネータは
    ポート長を変更して共鳴周波数を調整できるように構成されたことを
    特徴とする請求項1乃至請求項4のいずれか1項に記載の能動騒音制御装置。
  7. 前記ヘルムホルツレゾネータは
    内部容積を変更して共鳴周波数を調整できるように装着されたことを
    特徴とする請求項1乃至請求項4のいずれか1項に記載の能動騒音制御装置。
  8. 前記ヘルムホルツレゾネータは
    前記送風路面のポート開口部付近に柔毛材を装着したことを
    特徴とする請求項1乃至請求項6のいずれか1項に記載の能動騒音制御装置。
  9. 前記ヘルムホルツレゾネータは
    前記ポート内面に柔毛材を装着したことを
    特徴とする請求項1乃至請求項7のいずれか1項に記載の能動騒音制御装置。
PCT/JP2013/000244 2012-02-03 2013-01-21 能動騒音制御装置 WO2013114807A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-021555 2012-02-03
JP2012021555A JP2015079028A (ja) 2012-02-03 2012-02-03 能動騒音制御装置

Publications (1)

Publication Number Publication Date
WO2013114807A1 true WO2013114807A1 (ja) 2013-08-08

Family

ID=48904859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000244 WO2013114807A1 (ja) 2012-02-03 2013-01-21 能動騒音制御装置

Country Status (2)

Country Link
JP (1) JP2015079028A (ja)
WO (1) WO2013114807A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3038102A1 (en) * 2014-12-24 2016-06-29 Magneti Marelli S.p.A. Method for performing an active profiling of a sound emitted by an engine and corresponding profiling system
CN107680576A (zh) * 2017-09-07 2018-02-09 国家电网公司 有源频点跟随声子晶体及其降噪方法
WO2018173638A1 (ja) * 2017-03-22 2018-09-27 ヤマハ株式会社 音響共鳴体
CN110010101A (zh) * 2017-11-16 2019-07-12 雅马哈株式会社 立式钢琴
CN110322868A (zh) * 2019-06-06 2019-10-11 江苏科技大学 一种主动变频赫姆霍兹共振器及其调频降噪方法
CN112912953A (zh) * 2018-10-19 2021-06-04 富士胶片株式会社 隔音***
US20230032254A1 (en) * 2021-07-23 2023-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. Asymmetry sound absorbing system via shunted speakers
US11713904B2 (en) * 2019-10-01 2023-08-01 Johnson Controls Tyco IP Holdings LLP Tunable sound attenuating modules

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717595B2 (ja) * 2015-12-18 2020-07-01 東日本高速道路株式会社 高架構造物の消音方法および消音構造
JPWO2022215109A1 (ja) * 2021-04-05 2022-10-13

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561479A (ja) * 1991-08-30 1993-03-12 Nissan Motor Co Ltd 能動型騒音制御装置
JPH05188976A (ja) * 1992-01-16 1993-07-30 Toshiba Corp 能動騒音制御装置
JPH10102621A (ja) * 1996-09-25 1998-04-21 Bridgestone Corp 共鳴吸音機構
JP2002132265A (ja) * 2000-10-19 2002-05-09 Fuji Xerox Co Ltd 能動消音装置
JP2002186085A (ja) * 2000-12-15 2002-06-28 Matsushita Electric Ind Co Ltd 能動騒音制御装置
JP2006163131A (ja) * 2004-12-09 2006-06-22 Tottori Univ 流力発生音低減装置の製造方法
JP2007127245A (ja) * 2005-11-07 2007-05-24 Canon Inc 騒音抑制装置および画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561479A (ja) * 1991-08-30 1993-03-12 Nissan Motor Co Ltd 能動型騒音制御装置
JPH05188976A (ja) * 1992-01-16 1993-07-30 Toshiba Corp 能動騒音制御装置
JPH10102621A (ja) * 1996-09-25 1998-04-21 Bridgestone Corp 共鳴吸音機構
JP2002132265A (ja) * 2000-10-19 2002-05-09 Fuji Xerox Co Ltd 能動消音装置
JP2002186085A (ja) * 2000-12-15 2002-06-28 Matsushita Electric Ind Co Ltd 能動騒音制御装置
JP2006163131A (ja) * 2004-12-09 2006-06-22 Tottori Univ 流力発生音低減装置の製造方法
JP2007127245A (ja) * 2005-11-07 2007-05-24 Canon Inc 騒音抑制装置および画像形成装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3038102A1 (en) * 2014-12-24 2016-06-29 Magneti Marelli S.p.A. Method for performing an active profiling of a sound emitted by an engine and corresponding profiling system
US10356539B2 (en) 2014-12-24 2019-07-16 MAGNETI MARELLI S.p.A. Method for performing an active profiling of a sound emitted by an engine and corresponding profiling system
WO2018173638A1 (ja) * 2017-03-22 2018-09-27 ヤマハ株式会社 音響共鳴体
CN107680576A (zh) * 2017-09-07 2018-02-09 国家电网公司 有源频点跟随声子晶体及其降噪方法
CN110010101A (zh) * 2017-11-16 2019-07-12 雅马哈株式会社 立式钢琴
CN112912953A (zh) * 2018-10-19 2021-06-04 富士胶片株式会社 隔音***
US20210233507A1 (en) * 2018-10-19 2021-07-29 Fujifilm Corporation Soundproof system
EP3869496A4 (en) * 2018-10-19 2021-12-22 FUJIFILM Corporation SOUND PROTECTION SYSTEM
CN112912953B (zh) * 2018-10-19 2023-11-10 富士胶片株式会社 隔音***
CN110322868A (zh) * 2019-06-06 2019-10-11 江苏科技大学 一种主动变频赫姆霍兹共振器及其调频降噪方法
US11713904B2 (en) * 2019-10-01 2023-08-01 Johnson Controls Tyco IP Holdings LLP Tunable sound attenuating modules
US20230032254A1 (en) * 2021-07-23 2023-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. Asymmetry sound absorbing system via shunted speakers
US11812219B2 (en) * 2021-07-23 2023-11-07 Toyota Motor Engineering & Manufacturing North America, Inc. Asymmetry sound absorbing system via shunted speakers

Also Published As

Publication number Publication date
JP2015079028A (ja) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2013114807A1 (ja) 能動騒音制御装置
US9228477B2 (en) Exhaust system having a system for removing condensate
WO2011052088A1 (ja) 騒音制御システム、並びに、それを搭載したファン構造体及び空気調和機の室外機
JP2006348915A (ja) 増音装置
US11682374B2 (en) Soundproof structure body
JP5923690B2 (ja) レンジフード
JPH07162979A (ja) マイクロホン取付け構造
JP2014043991A (ja) レンジフード
JP2007212124A (ja) 空気処理システムのノイズを消去する際の空気指向性バルブ及び空気処理表面の励振
JPH05119784A (ja) アクテイブ消音装置
JP2008218745A (ja) 変圧器消音装置
JP2006118422A (ja) 電子機器内のファン音低減装置
JP6248285B2 (ja) レンジフード
JP6221051B2 (ja) 能動型消音装置
JP4078368B2 (ja) 消音装置及び画像形成装置
JP6236628B2 (ja) 能動消音装置
JPH09146562A (ja) 消音装置
JP3446242B2 (ja) アクティブ消音装置
JPH07281497A (ja) オフィスオートメーション機器の消音装置
JP3634406B2 (ja) 能動消音装置
KR101647750B1 (ko) 디젤엔진 배기소음 감쇠를 위한 능동형 소음기
JPH01236800A (ja) 能動的消音装置
Larsson et al. Microphone windscreens for turbulent noise suppression when applying active noise control to ducts
JP2019039954A (ja) 騒音低減装置及び建設機械
JP2002328681A (ja) 能動的騒音制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP