WO2013114464A1 - 電子線干渉装置および電子線干渉法 - Google Patents

電子線干渉装置および電子線干渉法 Download PDF

Info

Publication number
WO2013114464A1
WO2013114464A1 PCT/JP2012/000724 JP2012000724W WO2013114464A1 WO 2013114464 A1 WO2013114464 A1 WO 2013114464A1 JP 2012000724 W JP2012000724 W JP 2012000724W WO 2013114464 A1 WO2013114464 A1 WO 2013114464A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
image
interference
phase distribution
region
Prior art date
Application number
PCT/JP2012/000724
Other languages
English (en)
French (fr)
Inventor
研 原田
裕人 葛西
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US13/810,934 priority Critical patent/US8946628B2/en
Priority to DE112012000116T priority patent/DE112012000116T5/de
Priority to PCT/JP2012/000724 priority patent/WO2013114464A1/ja
Priority to JP2013556034A priority patent/JP5648136B2/ja
Priority to CN201280002178.9A priority patent/CN103348440B/zh
Publication of WO2013114464A1 publication Critical patent/WO2013114464A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/226Image reconstruction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application

Definitions

  • the present invention relates to an electron beam interferometer and an electron beam interferometry that perform wide-range interference measurement using an electron beam.
  • An electron biprism is a device in an electron optical system that has the same effect as a Fresnel double prism in optics, and there are two types: an electric field type and a magnetic field type.
  • the one that is widely used is an electric field type electron biprism having a shape as shown in FIG. That is, it is composed of the ultrafine wire electrode 9 in the center and the parallel plate type ground electrode 99 held so as to sandwich the electrode.
  • the central fine wire electrode 9 when a positive voltage is applied to the central fine wire electrode 9, as shown in FIG. 10, the electron beams passing through the vicinity of the central fine wire electrode 9 are deflected in a direction facing each other by the potential of the central fine wire electrode. (See electron beam trajectory 27).
  • a plane 25 is drawn perpendicular to the electron trajectory 27 in FIG. 10. This is an equiphase surface when expressing an electron beam as a wave, and is generally a plane perpendicular to the electron orbit. Called the wavefront.
  • kVf using the voltage Vf applied to the central fine wire electrode and the deflection coefficient k.
  • the fact that the deflection angle ⁇ of the electron beam does not depend on the incident position is an important feature for an electron optical device, and the plane wave is a plane wave and only the propagation direction is deflected and emitted from the electron biprism. This is called an electron biprism because it corresponds to the effect of a double prism in which two prisms are combined.
  • a device that uses a potential to deflect an electron beam is called a field-type electron biprism, and a device that uses the Lorentz force between a magnetic field and an electron beam is called a magnetic-field electron biprism.
  • description will be made using an electric field type electron biprism.
  • the present invention can be configured regardless of the electric field type or the magnetic field type as long as the electron beam biprism is an apparatus that can interfere with the electron beam, and is not limited to the electric field type biprism used in the description.
  • electron biprism means the whole electron biprism as an electron beam deflecting device in a broad sense including the central ultrafine electrode, When referring to the exact position in the optical system, in principle, it is described as “the center fine wire electrode of the electron biprism”.
  • An electron biprism is an indispensable device for producing electron beam interference in an electron beam without a beam splitter like an optical half mirror. The reason is the function of separating the wavefront 25 of one electron beam into two waves and deflecting them in directions facing each other. As a result, the electron beam that has passed through the electron biprism and separated into two waves is superimposed behind the electron biprism to generate interference fringes 8.
  • Such an electron optical system is generically called an electron beam interference optical system.
  • the most common electron beam interferometer represented by electron beam holography includes a single stage electron biprism (9 and 99), an objective lens 5 and an image plane 71 of the sample 3 formed by the objective lens 5.
  • a positive voltage is applied to the central fine wire electrode 9, whereby an electron beam that has passed through the sample 3 (object wave 21: in FIG. 11 passes the right side of the central fine wire electrode 9.
  • Electron beam) and an electron beam transmitted through the side without the sample are superimposed to form an interference microscope image (31 and 8: sample image 31).
  • the image on which the interference fringes 8 are superimposed is obtained.
  • the range in which the object wave 21 and the reference wave 23 overlap is an interference microscope image, and is formed with a width W on the image plane 71 of the sample 3 behind the central thin wire electrode 9. This is called the interference area width.
  • the phase change that the sample 3 gives to the wavefront of the object wave 21 is recorded as modulation of the superimposed interference fringes 8.
  • Fresnel fringes due to diffracted waves generated at the end of the ultrafine wire electrode 9 are included on the left and right in the interference microscope image. This is generally the cause of the most problematic artifact for the interference microscope images (31 and 8) because the contrast is generally strong and the fringe spacing is distributed over a wide spatial frequency band from wide to narrow. For this reason, it is desirable that the phase information of the interference image is removed at the time of image processing, or the electron optical system is devised so as not to be generated.
  • the interferometer devised for this purpose is a two-stage electron biprism interferometer (Patent Document 1).
  • Patent Document 1 By using two electron biprisms, not only the generation of Fresnel fringes but also the interference region width W and the interference fringes.
  • An optical system is configured in which the interval can be controlled almost arbitrarily.
  • description will be made using the one-stage electron biprism interferometer optical system shown in FIG. ⁇ Coherence distance> Unlike the photon wave, which is a Bose particle, the wave of an electron, which is a Fermi particle, cannot be degenerated into one state.
  • the angle distribution of electron motion (electron beam opening angle: ⁇ ) is pressed down to expand the wavefront as an electron wave (wavelength: ⁇ ).
  • the range in which this electron wave can interfere is represented by a coherence distance R and a nominal number 1. This distance depends on the electron optical system, but in the case of a magnetic field observation optical system, a typical value is about 1 ⁇ m on the sample surface.
  • FIG. 11 described above is an example of an optical system for electron beam holography that represents electron beam interferometry, but the coherence distance R on the sample surface (object surface) and the hologram on the image 71 are shown.
  • There is a general relationship of 2 with the interference area width W in consideration of the magnification (M obj b / a) by the objective lens 5 (both a and b are shown in the figure).
  • the thickness of the central fine wire electrode 9 of the electron biprism is ignored. That is, the presence of the center fine wire electrode 9 narrows the interference region width W.
  • the observation area 3-1 of the sample is the reference wave area (ref: (Space region without sample) and interference can be recorded, and holographic observation is possible, but the region farther from the optical axis 2 than the observation region 3-1 (observation region 3-2 to observation region 3-5), that is, The inner part of the sample was outside the range of the coherence distance, and holographic observation was not possible.
  • ⁇ Two-wave interference> Consider the interference of two wave fields ( ⁇ A, ⁇ B) within the coherent distance range. Strictly speaking, partial coherent handling is required, but it is handled as complete coherent for convenience of display.
  • Equation 3 The intensity distribution I (x, y) created by the above is expressed by Equations 5 and 6.
  • the cosine term of the third term of Equation 5 is related to the wave phase distribution and forms an interference fringe. That is, in interference, a difference ⁇ (x, y) between two wave phase distributions is observed as interference fringes. This indicates that even if the phase distribution is reproduced by the interferometric method, only the phase distribution difference is observed, not the phase distribution of each wave.
  • Electron holography is also generally a measurement technique using two-wave interference. Of the two waves, one is an object wave ⁇ Obj (x, y) exp [i ⁇ Obj (x, y)] and the other is a known plane wave It is characterized by the reference wave exp [i ⁇ Ref (x, y)].
  • holography is generally a method for measuring an object wave based on a known reference wave.
  • the reference wave can be considered as a plane wave inclined with respect to the optical axis.
  • the object wave propagates in parallel with the optical axis, and the reference wave only is propagated at an angle ⁇ in the x-axis direction.
  • the object wave, reference wave, and interference as a hologram (interference microscope image)
  • the intensity distribution is expressed by the following equations 7, 8, and 9. Note that R 0x in Equation 8 is a carrier spatial frequency.
  • the hologram has an object image
  • This interference fringe distribution characterizes electron holography.
  • the amplitude distribution ⁇ Obj (x, y) and the phase distribution ⁇ Obj (x, y) of the object wave can be individually reproduced by image processing using numerical operations such as Fourier transform.
  • Non-Patent Document 1 a technique is used in which the observation areas are divided and the reproduced areas are connected later as image processing (Non-Patent Document 1). Even in this case, the observable region is within the range where the reference wave can be obtained, and only the peripheral portion of the sample.
  • the development of a high-intensity electron source for (1) was fundamental, and the development of a field emission electron gun for a transmission electron microscope was for this purpose.
  • the brightness of the electron source determines the basic performance of the electron microscope, and it is almost impossible to change it after the development of the electron microscope. For this reason, the performance depends on the apparatus, and the range that can be devised by the optical system for the coherent distance directly derived from the brightness is quite limited.
  • the observation area is expanded to the limit of the coherent area, that is, a hologram with a deteriorated SN ratio is acquired, and at the time of reproduction or after image reproduction A device has been devised to extract only the necessary information.
  • the observation region exceeds the coherence distance, interference measurement is impossible in principle.
  • a technique is used in which the observation areas are divided and the respective reproduced areas are connected later as image processing (Non-Patent Document 1). Even in this case, the observable region is limited to the range in which the reference wave can be obtained, and is only the peripheral portion of the sample.
  • an electron beam interference device includes a light source for an electron beam, an irradiation optical system for irradiating the sample with an electron beam emitted from the light source, and an object for forming an image of the sample.
  • An imaging lens system having a lens, an electron biprism arranged on the optical axis of the electron beam, an image recording device for recording a plurality of phase distribution images on the sample, and calculating the phase distribution image of the sample
  • a first observation region where an electron beam that interferes with an electron beam that passes through a reference wave region by the electron beam biprism is transmitted by the electron beam biprism;
  • An electron beam transmitted through the first observation region and a second observation region through which the interfered electron beam is transmitted, and the image recording apparatus includes the electron beam transmitted through the reference wave region and the first observation.
  • the processing device includes: an electron beam transmitted through the reference wave region based on the second interference image recorded on the image recording device and the first interference image recorded on the image recording device;
  • a phase distribution image with an electron beam transmitted through the observation region is calculated.
  • the electron beam interferometry of the present application is an image forming apparatus including an electron beam light source, an irradiation optical system for irradiating the sample with an electron beam emitted from the light source, and an objective lens for forming an image of the sample.
  • the electron beam interferometry of the present application is an image forming apparatus including an electron beam light source, an irradiation optical system for irradiating the sample with an electron beam emitted from the light source, and an objective lens for forming an image of the sample.
  • a first step of recording an interference image an electron beam transmitted through a second observation region through which an electron beam that has interfered with an electron beam transmitted through the second observation region by the electron biprism; Electron beam transmitted through the observation area of And a first step of recording a second interference image based on the first interference image and an electron beam transmitted through the reference wave region and an electron beam transmitted through the first observation region based on the first interference image.
  • a third step of calculating a phase distribution image, and a second phase distribution of an electron beam transmitted through the first observation region and an electron beam transmitted through the second observation region based on the second interference image A fourth step of calculating an image; and a fifth step of arranging and displaying the calculated first and second phase distribution images in the order in which the interference images based on the calculated phase distribution image are recorded. And a step.
  • FIG. 3 is a schematic diagram for explaining that a continuous interference image is created by moving a sample to the right as compared with FIG. It is a figure which shows the experimental result which moved the sample and recorded the continuous interference image. It is a wide-range magnetic force line distribution image obtained by arranging phase distribution images reproduced from continuous interference images after a predetermined integration process. It is a schematic diagram explaining moving an electron biprism and creating a continuous interference image.
  • FIG. 5 is a schematic diagram for explaining that a continuous interference image is created by moving the electron biprism to the right as compared with FIG.
  • FIG. 6 is a schematic diagram for explaining that a continuous interference image is created by deflecting the electron beam irradiation angle in the right direction as compared with FIG.
  • FIG. 6 is a schematic diagram which shows the example of the apparatus which implements this application.
  • It is a schematic diagram which shows the spatial positional relationship at the time of the subtraction of a phase distribution (wavefront) in the case of ignoring the projection width
  • FIG. 5 is a schematic diagram for explaining a method of creating a continuous interference image for each adjacent region when the interference region width W and the projection width df of the center fine wire electrode are matched. It is a schematic diagram explaining the relationship between the electric field type
  • the inventor records an interference image obtained by shifting the region for each interference region width from the interference image between the reference wave region and the observation region adjacent to the reference wave, and reproducing the interference images individually.
  • a method has been devised in which a difference image of the phase distribution between a predetermined observation region and a predetermined reference wave is obtained by calculating the integrated distribution. This is because the phase distribution reproduced and observed by interference microscopy is the difference between the phase distributions of the two waves used for interference (see Equation 5).
  • the present invention records the interference images in order while shifting the interference wave width W to be recorded as the interference image (hologram) without distinguishing the object wave and the reference wave in the direction in which the coherence distance is restricted, After reconstructing the phase distribution image from the interference image, the phase distribution image is integrated and the interference image between the predetermined observation area and the reference wave, that is, a method for realizing normal holographic observation, or an apparatus for that purpose is there.
  • the present invention even if the distance between the final observation region and the reference wave exceeds the coherence distance, if each phase image is obtained, the phase distribution exceeding the coherence distance is obtained.
  • a phase distribution image using a predetermined reference wave can be obtained. Further, by performing this operation for each phase distribution and arranging the obtained phase distribution images in a predetermined order, it is possible to obtain a wide range of interference images exceeding the coherent distance.
  • phase distribution reproduced from the hologram of the observation area (n) and the reference wave area (Ref) phase distribution: ⁇ Ref (x, y)). That is, the observation area (n) not near the reference wave area (Ref) is reproduced by the interference image (hologram) using the reference wave area (Ref).
  • phase distribution images obtained by the procedure (6) are arranged in the order of these operations, the entire region from the observation region 3-1 to (n) is observed as a phase distribution image over a wide range. Become. That is, wide-field holography that does not depend on the coherent distance is realized. It is also possible to reproduce only the phase distribution image corresponding to the observation region to be observed, instead of arranging all the obtained images.
  • each observation region from (n ⁇ 1),..., 3-3, 3-2, 3-1) from the observation region (n) to the reference wave region (Ref) It is assumed that the phase distribution is canceled out.
  • the spatial positions of the respective phase distributions to be canceled must match. Therefore, operations such as adjusting the position of each phase distribution image or adjusting the positional relationship of each image during observation recording are included as necessary.
  • the moving direction of the observation region is perpendicular to the longitudinal direction of the projection image on the sample of the central microwire electrode of the electron biprism that is observed as a band or a line. It is reasonable to move to However, the present application is not limited to this moving direction.
  • a suitable interference microscope apparatus and method for carrying out the present invention will be described.
  • FIG. 2 (a) and 2 (b) show an optical system apparatus and method for shifting the region of the interference image (8 + 31) by sequentially moving the position of the sample 3.
  • FIG. FIG. 2 (a) shows how an interference image (8 + 31) is created by the reference wave region (Ref) and the observation region 3-1, and during normal electron beam interference (electron beam holography) observation. This is the state of the optical system.
  • FIG. 2B shows the state of the optical system after the sample 3 is moved rightward in the drawing by the observation region width W.
  • An interference image (8 + 31) between the observation area 3-1 and the observation area 3-2 is recorded on the image plane 71.
  • FIG. 2A the sample region and the vacuum region are arranged with the optical axis 2 interposed therebetween, but FIG.
  • the optical axis 2 is located in the sample region. After recording the interference image in the state of FIG. 2B, the sample is further moved in the same direction by the same observation region width W, and an interference image by the observation region 3-2 and the observation region 3-3 is recorded. This operation is sequentially repeated, and an observation region in a predetermined range is recorded as an interference image.
  • the thickness of the sample tends to increase as the distance from the boundary region (sample edge) with the vacuum increases, it is difficult to obtain a good interference fringe contrast in the interference image between the observation region and the observation region.
  • this problem can be improved by a sample preparation method using a focused ion beam apparatus (FIB).
  • FIB focused ion beam apparatus
  • the development of an electron beam source having high transmission power in a sample while maintaining the coherence of an electron beam such as the development of a 1 MV interference electron microscope, has been carried out, and an interference image between an observation region and another observation region has been developed. There is no problem in principle in the observation record.
  • the description regarding the sample thickness is the same in the following examples, and the subsequent description is omitted.
  • the optical system since the optical system is not operated during a series of interference image recording operations, if optical conditions such as the interference area width, the interference fringe interval, and the observation recording magnification are set first, the optical during the operation is set. System readjustment is not necessary. Further, since the magnification and the like are recorded under the same conditions, the image arrangement can be performed as it is after the reproduction image is acquired or the phase distribution integration process is performed to obtain a wide range of phase distribution images.
  • FIG. 3 shows an experimental example performed by the method shown in FIG.
  • the sample was a probe of a magnetic force microscope (MFM), and the distribution of magnetic field lines leaking into the space from the periphery of the probe was observed.
  • FIG. 3 (a) is an image obtained by superimposing a whole image taken while moving the sample on one image.
  • the sample probe (Tip) is in the state of 3-7 in order from the state of the upper side 3-1 in the figure.
  • the interference area displayed as a white band was recorded while moving downward in the figure.
  • a number indicating the region is attached to the probe position.
  • a white band-like space region observed in the state 3-1 is the farthest from the probe in this experimental example. It is in a state of observing the space.
  • FIG. 3B shows a reproduction phase distribution of each observation region shown in FIG. 3A, and then integration processing is performed for each predetermined phase distribution. Thereafter, a wide range of phases are matched to a predetermined spatial position. This is a distribution image. It can be seen that the lines of magnetic force generated from the probe and its surroundings change into a broader distribution as they move away from the probe.
  • the numbers given in FIG. 3 (b) are observation region numbers.
  • the projected width of the center fine wire electrode of the electron biprism is drawn neglecting its influence. The handling of the projection width of the center fine wire electrode will be described later.
  • Patent Document 1 a two-stage electron biprism interferometer (Patent Document 1) was used in the series of experiments in FIG. Since the two-stage electron biprism interferometer strictly determines the width of the interference region, it can be said to be more suitable for the present method for recording the interference image continuously by moving each interference region. However, it is naturally possible to use a one-stage electron biprism interferometer.
  • the region of the interference image (8 + 31) is shifted by sequentially moving the central microwire electrode 9 of the electron biprism in the longitudinal direction (that is, the extending direction) and the vertical direction of the projection image of the electron biprism.
  • the optical system apparatus and method are shown. Since the center ultrafine wire electrode 9 of the electron biprism has a primary shape, there is no change in the longitudinal direction (that is, the extending direction) of the fine wire. Therefore, the moving direction of the electron biprism does not necessarily need to be in the direction perpendicular to the longitudinal direction of the fine line, and as a result, it may be moved in the direction perpendicular to the longitudinal direction of the fine line.
  • FIG. 4 (a) is the same as FIG. 2 (a), and the ultrafine wire electrode 9 of the electron biprism is disposed on the optical axis 2, and the sample region and the vacuum region are disposed across the optical axis 2.
  • FIG. 4B shows the state of the optical system after the central fine wire electrode 9 of the electron biprism has been moved in the right direction in the figure.
  • the amount of movement of the central microwire electrode 9 is an amount necessary for the interference image (8 + 31) between the observation region 3-1 and the observation region 3-2 to be recorded on the image plane 71, and is shown in FIG. Although it depends on the magnification of the optical system and the position (height on the optical axis) of the central ultrafine wire electrode 9 of the electron biprism in the optical system, it is usually on the order of several microns and is a sufficiently adjustable range. .
  • the second embodiment after recording the interference image in the state of FIG.
  • the central fine wire electrode 9 of the electron biprism is further moved in the same direction, and the observation region 3-2 and the observation region 3 are moved.
  • the operation of recording the interference image according to -3 is sequentially repeated, and an observation region in a predetermined range is recorded as an interference image.
  • the central microwire electrode 9 of the electron biprism moves, the position on the image plane 71 where the interference image is formed also moves.
  • the amount of movement of the electron biprism is generally larger than the sample by the magnification of the optical system, and the accuracy in fine movement control of the electron biprism is smaller than that of the sample fine movement. It's okay. Therefore, this method has an advantage for improving the resolution.
  • the third embodiment is implemented using a two-stage electron biprism interferometer (Patent Document 1), the two electron biprisms must be linked with a predetermined correlation. This increases the complexity of the work, but this complexity is not a problem with a computer-controlled system (Patent Document 2). *
  • the optical system is not operated during a series of interference image recording operations, if the optical conditions such as the interference area width, the interference fringe interval, and the observation recording magnification are set first, the above-described interference image is set. There is no need for readjustment of the optical system during the work, except for alignment on the image plane. According to the above, since the magnification and the like are recorded under the same conditions, it is possible to obtain a wide range of phase distribution images by performing the image arrangement as it is after the reproduction image calculation or the phase distribution integration processing.
  • FIG. 5 shows an optical system apparatus and method for shifting the area of the interference image (8 + 31) by sequentially moving the propagation angle of the electron beam.
  • 5A is the same as FIG. 2A, and the electron beam propagates symmetrically on the optical axis, and the sample region and the vacuum region arranged symmetrically across the optical axis 2 are uniformly electron beams.
  • It shows a state in which an interference image (8 + 31) is created by irradiation and the reference wave region (Ref) and the observation region 3-1. That is, it is the state of the optical system during normal electron beam interference (electron beam holography) observation.
  • FIG. 5B shows the deflection of the irradiation angle to the sample 3 by moving the light source 1 on the sample or the image 11 (crossover) of the light source by the irradiation optical system from the optical axis 2 to the right space in the figure. It shows the state of the optical system after the operation. Even when the irradiation electron beam is deflected, the position of the sample 3 and the sample image 31 does not move due to the imaging relationship, but the interference region is formed as a projection of the central microwire electrode 9, so that the irradiation electron beam Move with deflection. The amount of movement is an amount necessary to record the interference image (8 + 31) between the observation region 3-1 and the observation region 3-2 on the image plane 71.
  • the magnification and optical ratio of the optical system shown in FIG. Although it depends on the position (height on the optical axis) of the electron biprism in the system, it is usually on the order of submilliradians and is a sufficiently adjustable range.
  • the electron beam is further deflected in the same direction, so that an interference image between the observation region 3-2 and the observation region 3-3 is obtained.
  • the recording operation is sequentially repeated, and an observation area in a predetermined range is recorded as an interference image.
  • the position on the image plane 71 where the interference image is formed also moves. For this movement, although drawing is omitted in FIG. Correction is performed using a magnifying lens system and a deflection system in the magnifying lens system (see FIG. 6).
  • the method shown in the fourth embodiment can be carried out only by a deflection action to an electromagnetic electron beam without mechanical movement of the devices. Therefore, it is easy to obtain a mechanical stable state, and there is an advantage in improving the resolution in this method.
  • Patent Document 1 since the interference region coincides with the sample position, it is difficult to realize Example 4.
  • the operation of the optical system is accompanied during a series of interference image recording operations, but the deflection operation is the main and there is no change operation to the magnification. If optical conditions such as the observation recording magnification are set, it is not necessary to readjust the optical system during the work in the range where the deflection angle is within the paraxial approximation range. According to the above, since the magnification and the like are recorded under the same conditions, it is possible to obtain a wide range of phase distribution images by performing the image arrangement as it is after the reproduction image calculation or the phase distribution integration processing.
  • the irradiation angle of the electron beam to the sample is deflected.
  • the present invention is not limited to this.
  • a deflection system may be inserted to deflect the propagation angle of the electron beam (see FIG. 6). In this case, since there is no change to the irradiation conditions for the sample, it is suitable for higher resolution than the above-described method.
  • FIG. 6 shows an example of an electron beam interference apparatus that can implement the optical system shown in FIGS. 2, 4, and 5 and the method of FIG. That is, an electron biprism 90 is disposed below the objective lens 5, and an interference image obtained on the image plane of the objective lens is converted into a four-stage magnifying lens system (61, 62, 63, 64). Thus, it is an electron beam interferometer for magnifying and observing.
  • the interference image 32 formed on the observation recording surface 89 is recorded by an image observation / recording medium 81 (for example, a TV camera or a CCD camera), and a phase distribution image reproduction process, a phase distribution image integration process, etc.
  • the calculation result (arranged phase distribution image) 34 is displayed using the display device 88 or the like.
  • the interference image 32 formed on the observation recording surface 89 is converted into an image observation / recording medium 81 (for example, a TV).
  • the interference area width obtained at that time is analyzed by the control computer 51 to obtain an existing value.
  • the deflection device 94 above the sample is controlled by the deflection system. This shows that the device deflects the electron beam through the device 44.
  • the deflecting device 95 below the magnifying lens 64 is used to align the position of the interference image with the appropriate position of the observation / recording medium 81.
  • the fine movement control mechanism that creates and records the interference image in which the observation area relating to the present application is shifted can achieve the purpose as long as any one of the fine movement control mechanisms is installed, but does not exclude the state of being provided side by side.
  • FIG. 6 depicts an electron beam biprism 90 and enlarged imaging system lenses (61, 62, 63, 64), assuming a conventional 100 kV to 300 kV type electron microscope.
  • the components of the electron microscope optical system are not limited to this figure.
  • the actual apparatus includes a deflection system that changes the traveling direction of the electron beam, a diaphragm mechanism that limits the transmission region of the electron beam, and the like.
  • devices other than those that have been drawn are omitted in this figure because they are not directly related to the present invention.
  • the electron optical system is assembled in the vacuum vessel 18 and continuously exhausted by a vacuum pump, the vacuum exhaust system is also omitted because it is not directly related to the present invention. Such omission is the same in the following figures.
  • the integration processing of the phase distribution image and its meaning in the present application have been described with reference to FIG.
  • the basis of the idea is that, in interference image recording by two-wave interference, one of the recorded wavefronts (for example, the left wavefront in FIG. 2) is the other wavefront in the next interference image recording (for example, in FIG. 2).
  • the wavefront on the right side which is canceled out during integration after the reproduction phase distribution is obtained as a difference.
  • a description will be given below of a technique that more suitably exhibits the effect of the present invention when the projection width df of the central fine wire electrode onto the sample surface cannot be ignored.
  • FIG. 7 depicts two wavefronts during two-wave interference. Wavefronts that have a relationship of interference are drawn vertically (in the vertical direction), and they are drawn right and left (in the horizontal direction) as if they were arranged according to the sample position.
  • FIG. 7A shows a case where the size of the central fine wire electrode of the electron biprism can be ignored.
  • the observation region 3-2 when performing measurement with the observation region 3-2 as the left wavefront and the observation region 3-1 as the right wavefront, the observation region 3-2 has the observation region 3-3 as the left wavefront, This shows that the wavefront is the same as that of the observation region 3-2 when performing measurement with 3-2 as the right wavefront.
  • the phase distribution shifted for each width W of the interference area is integrated by the number of times corresponding to the order of each observation area. Then, a phase distribution image over a wide range can be obtained. That is, the order of integration processing and reproduction phase distribution image arrangement work is different from the first embodiment. However, the results obtained are the same.
  • FIG. 7B illustrates two wavefronts in the case of two-wave interference when the size of the central ultrafine wire electrode of the electron biprism cannot be ignored.
  • the relationship between the upper and lower wavefronts is the same as in FIG. 7A, but shows a state in which the position of the wavefront drawn on the lower side is shifted by the projection width df of the central wire electrode. Even if adjacent observation regions are arranged, this shift is not eliminated, indicating that the shift continues over the entire wavefront.
  • This wavefront relationship is expressed by a mathematical expression where the x-axis is taken to the left as in FIG.
  • Equation 20 The phase distribution function ⁇ (x) of the difference is expressed by Equation 20.
  • Equation 22 the same handling as in Equation 19 is possible with W + df as one unit, taking into account the projection width df of the center fine wire electrode, not the interference region width W. This is expressed in Equation 22.
  • phase distribution image over a wide range can be obtained. That is, the order of integration processing and reproduction phase distribution image arrangement work is different from that of the first embodiment. However, the point that a reproduction phase distribution image is obtained as a result is the same.
  • the primary reproduction phase distribution obtained at this time is the difference between the phase distributions of adjacent regions across the center microwire electrode, and the phase distribution image of a wide field of view is obtained by arranging these phase distributions.
  • This is an image representing the spatial variation of the phase distribution.
  • the magnetic field line distribution shown in FIG. 3B the magnetic field line distribution excluding the average magnetic field line distribution around the MFM probe is displayed.
  • Example 1 and FIG. 1 or FIG. 7A corresponds to the case where the projected width df of the central fine wire electrode is zero. Therefore, if the projected width df of the center wire electrode is negligibly small compared to the interference region, or if the phase distribution changes slowly and does not change sharply within the width df, it is approximate.
  • the phase distribution can be reproduced by the method shown in the first embodiment and FIG. 1 or FIG.
  • FIG. 8 shows a state in which when creating an interference image of adjacent observation regions, an interference image is created by adding the projection width df of the central fine wire electrode instead of the interference region width W and moving it by W + df. .
  • one of the recorded wavefronts for example, the left wavefront in FIG. 11
  • the other wavefront for example, the right wavefront in FIG. 11
  • a missing region of information is generated between the wavefronts obtained from the interference images by the projection width df of the central wire electrode.
  • the reproduction accuracy is deteriorated as compared with the previous embodiment 6, the burden on the image processing after the experiment is small, and the projection width df of the center fine wire electrode affects the entire image information as compared with the interference region width W.
  • This is an effective technique when the phase distribution is so small that the phase distribution is not given, or when the phase distribution changes slowly and does not change sharply within the range of the width df. Also in this case, the relationship of coherent distance R> W + df must be satisfied.
  • Example 7 As in Example 7, another method for handling when the projection width df of the central fine wire electrode on the sample surface cannot be ignored will be described with reference to FIG.
  • FIG. 9 shows an adjustment of the voltage applied to the central fine wire electrode so that the projection width df of the central fine wire electrode and the interference region width W coincide when creating an interference image of adjacent observation regions.
  • a state in which an interference image is created by shifting the observation region by the interference region width W is shown.
  • recording was performed between a certain observation region and a phase distribution from a region separated by one region (for example, observation region 3-1 and observation region 3-3).
  • one of the wavefronts for example, the left wavefront in FIG. 11
  • the other wavefront for example, the right wavefront in FIG. 11
  • the projection width df of the center fine wire electrode coincides with the interference region width W
  • the projection width df of the center fine wire electrode is an integral multiple (N times) of the interference region width W. Can be easily extended to the same handling, simply by increasing the number of areas jumped between the recorded areas.
  • the condition that must be satisfied in this case is coherence distance R> NW.
  • ⁇ ch is the phase distribution due to the charge-up generated at the center wire electrode of the electron biprism. This is a phase distribution that does not depend on the object wave and the reference wave and always occurs in the same manner when an interference image is recorded and reproduced. Strictly speaking, depending on whether the charge-up occurrence position on the center wire electrode is the object wave side or the reference wave side, the term on the subtracted side or the term on the subtracting side of the phase distribution of the difference differs as a result. Since only the distribution after the difference is detected, the phase distribution after the difference is ⁇ ch. Then, for example, the phase distribution of the nth observation region (n) and the n ⁇ 1th observation region (n ⁇ 1) is expressed by Equation 30, and the phase distribution of the reference hologram is expressed by Equation 31.
  • Equation 14 This is the same as equation 14. In other words, if ⁇ ′n in Equation 32 is replaced with ⁇ n in Equation 13, all of the techniques of the present application described so far can be implemented. Note that the experimental example shown in FIG. 3 was performed using a reference hologram.
  • the phase distribution image reproduced from the interference image is integrated to enable holographic observation of a predetermined portion of the sample. Therefore, the electron beam interferometry is released from the condition that the observation region is limited to the vicinity of the reference wave, which is the most important and fundamental restriction of the electron beam interferometry in the prior art.
  • Electron source or electron gun 11 ... Crossover, 18 ... Vacuum container, 19 ... Electron source control unit, 2 ... Optical axis, 21 ... Object wave, 23 ... Reference wave, 25 ... Wave front, 27 ... Electron beam Orbit, 3 ... sample, 31 ... sample image formed by objective lens, 32 ... sample image formed on observation / recording system, 34 ... arranged phase distribution image, 40 ... accelerator tube, 41 ... First irradiation lens 42... Second irradiation lens 44. Deflection device control unit installed in the irradiation system 45. Deflection device control unit installed in the imaging system 47. Second irradiation lens control unit 48 ...
  • Control unit for first irradiation lens 49 ... Control unit for acceleration tube, 5 ... Objective lens, 51 ... Control system computer, 52 ... Monitor for control system computer, 53 ... Interface for control system computer, 59 ... Objective 61 ... first imaging lens, 62 ... second imaging lens, 63 ... third imaging lens, 64 ... fourth imaging lens, 66 ... fourth imaging lens control unit, 67 ... Control unit for third imaging lens, 68 ... Control unit for second imaging lens, 69 ... Control unit for first imaging lens, 7 ... Image plane, 71 ... Image plane of sample by objective lens, 8 ... Interference fringes 81 ... Image observation / recording medium, 82 ... Image observation / recording medium control unit, 885 ...
  • Image arithmetic processing device 86 ... Image arithmetic processing device monitor, 87 ... Image arithmetic processing device interface, 88 ... Display device, 89 ... Observation / recording surface, 9 ... Electron biprism central fine wire electrode, 90 ... Electron biprism, 94 ... Deflection device installed in the irradiation system, 95 ... Deflection device installed in the imaging system, 99 ... Parallel plate grounding 3-1: First observation area, 3-2: Second observation area, 3-3: Third observation area, 3-4: Fourth observation area, 3-5: First 5th observation area, (n) ... nth observation area, (Ref) ... reference wave area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Microscoopes, Condenser (AREA)
  • Holo Graphy (AREA)

Abstract

電子線が干渉可能な範囲、距離には限界があり、この可干渉距離の範囲内でしか、電子線干渉は実現されない。そこで、干渉顕微鏡法により再生、観察される位相分布は、干渉に用いた2つの波のそれぞれの位相分布の差分であることに着目し、参照波と参照波と隣接する観察領域との干渉像から、干渉領域幅ごとに連続的に干渉像を記録し、それら干渉像を個別に再生して得られた位相分布の積算を求めることによって、所定の観察領域と所定の参照波との位相分布の差分像を得る。この作業を各々の位相分布に実施し、得られた位相分布像を所定の順に配列することにより、可干渉距離を越えた広範囲の干渉像を得ることを可能とする。

Description

電子線干渉装置および電子線干渉法
 電子線により広範囲の干渉計測を行う電子線干渉装置および電子線干渉法に関する。
<電子線バイプリズム>
 電子線バイプリズムは光学におけるフレネルの複プリズムと同じ作用をする電子光学系における装置で、電界型と磁界型の二種類がある。このうち、広く普及しているものは電界型電子線バイプリズムで、図10に示すような形状をしている。すなわち、中央部の極細線電極9とその電極を挟む形で保持される平行平板型接地電極99から構成される。例えば、中央極細線電極9に正電圧を印加すると、図10中に示したごとく、中央極細線電極9の近傍を通過する電子線は、中央極細線電極の電位により互いに向き合う方向に偏向される(電子線の軌道27参照)。図10中の電子軌道27に垂直に平面25が描かれているが、これは電子線を波として表現するときの等位相面であり、通常は電子軌道と垂直を成す面で一般的には波面と呼ばれる。
 中央極細線電極から離れるほど電子線に作用する電位は小さくなるが作用している空間範囲が長くなるため、結果的に電子線の偏向角度は入射位置に依らず極細線電極への印加電圧に比例する。すなわち、αを電子線バイプリズムによる電子線の偏向角度とすると、中央極細線電極への印加電圧Vfと偏向係数kを用いてα=kVfで表わされる簡単な関係を持つ。電子線の偏向角度αが入射位置に依らないことは電子光学装置としては重要な特徴で、平面波は平面波のまま伝播方向のみが偏向されて、電子線バイプリズムを射出することになる。これは光学ではちょうど2つのプリズムを合わせた複プリズムの効果に対応することから、電子線バイプリズムと呼ばれている。
 電子線を偏向させるために電位を用いるものを電界型電子線バイプリズム、磁界と電子線とのローレンツ力を用いるものを磁界型電子線バイプリズムと呼ぶ。本願では、電界型電子線バイプリズムを用いて説明を行う。しかし、本発明は電子線バイプリズムとして電子線が干渉させられる装置であれば電界型、磁界型に依らず構成可能であり、説明で用いる電界型電子線バイプリズムに限定するものではない。また、本願明細書(ただしクレームを除く)において「電子線バイプリズム」と記載する場合には、中央極細線電極を含んで広義に電子線偏向装置としての電子線バイプリズム全体を意味し、電子光学系に置ける厳密な位置に言及する場合は原則として「電子線バイプリズムの中央極細線電極」と記載する。
 電子線バイプリズムは光学におけるハーフミラーの様なビームスプリッターが無い電子線においては、電子線干渉を作り出すのに必須の装置である。その理由は、1つの電子線の波面25を二波に分離するとともに互いに向き合う方向に偏向させる機能にある。この結果、電子線バイプリズムを通過し二波に分離された電子線は、電子線バイプリズムの後方で重畳され干渉縞8を生じさせる。このような電子光学系を総称して、電子線干渉光学系と呼ぶ。
<干渉顕微鏡像の作成>
 電子線ホログラフィに代表される最も一般的な電子線干渉計は、図11に示すごとく1段の電子線バイプリズム(9と99)を対物レンズ5と対物レンズ5による試料3の像面71との間に配置する1段電子線バイプリズム干渉計である。1段電子線バイプリズム干渉計では、中央極細線電極9に正の電圧を印加することによって、試料3を透過した電子線(物体波21:図11では中央極細線電極9の右側を通過する電子線)と試料の無い側を透過した電子線(参照波23:図11では中央極細線電極9の左側を通過する電子線)とを重畳させて干渉顕微鏡像(31と8:試料像31に干渉縞8の重畳された画像)を得ている。この物体波21と参照波23の重畳する範囲が干渉顕微鏡像であり、中央僕細線電極9の後方で、試料3の像面71上に幅Wで形成される。これを干渉領域幅と呼ぶ。
 すなわち、試料3が物体波21の波面に与える位相変化は、重畳された干渉縞8の変調として記録される。1段電子線バイプリズム干渉計では、干渉顕微鏡像中の左右に極細線電極9の端で発生した回折波によるフレネル縞が含まれている。これは一般にコントラストが強く、縞間隔は広いものから狭いものまで幅広い空間周波数帯域に分布するため、干渉顕微鏡像(31と8)にとっては最も問題となるアーティファクトの原因である。そのため、干渉像の位相情報を抽出する画像処理の時に除去する、もしくは電子光学系に工夫を施し発生させないことが望ましい。
 そのために考案された干渉計が2段電子線バイプリズム干渉計(特許文献1)であり、2つの電子線バイプリズムを用いることにより、フレネル縞の発生だけでなく、干渉領域幅Wと干渉縞間隔をほぼ任意に制御可能とできる光学系を構成している。特に断らない限り、本願では、簡単のため図11に示した1段電子線バイプリズム干渉光学系を用いて説明を行うが、1段電子線バイプリズム干渉計に限定するものではない。
<可干渉距離>
 フェルミ粒子である電子の波動は、ボーズ粒子である光子の波動と異なり、1つの状態に縮退させることができない。そのため、厳密な意味でのレーザーのような完全に可干渉(コヒーレント)な状態は作り出すことができず、加速電圧の安定性を高めてエネルギー分布幅を小さくするとともに光源サイズをできるだけ小さくして電子の運動の角度分布(電子線の開き角:β)を小さく押えて電子波(波長:λ)としての波面を広げる工夫をしている。この電子波が干渉可能な範囲を可干渉距離Rと呼び数1で表される。この距離は電子光学系に依存するが、磁場観察光学系の場合には、試料面上では1μm程度が一般的な値である。
Figure JPOXMLDOC01-appb-M000001
 前述の図11に示すのは、電子線干渉計測法を代表する電子線ホログラフィの光学系の1例であるが、試料面(物面)上での可干渉距離Rと像71でのホログラムの干渉領域幅Wとの間には、対物レンズ5による倍率(Mobj = b/a)を考慮して一般的に数2の関係がある(a、bはともに図中に記載)。但し、簡単のため電子線バイプリズムの中央極細線電極9の太さを無視している。すなわち、中央極細線電極9の存在は干渉領域幅Wを狭めることとなる。
Figure JPOXMLDOC01-appb-M000002
 例えば、図11の干渉領域幅Wが対物レンズ5による倍率考慮後の可干渉距離である(b/a)R程度だった場合、試料の観察領域3-1は、参照波の領域(ref:試料のない空間領域)と干渉を記録可能であり、ホログラフィ観察が可能であるが、観察領域3-1よりも光軸2から遠い領域(観察領域3-2~観察領域3-5)、すなわち試料の奥部は、可干渉距離の範囲外であり、ホログラフィ観察はできなかった。
<二波干渉>
 可干渉距離の範囲内にある2つの波動場(ΦA、ΦB)の干渉について考える。厳密には部分可干渉な取り扱いを要するが、表示の便宜上、完全可干渉として取り扱う。振幅分布をそれぞれφA(x,y)、φB(x,y)、位相分布をηA(x,y)、ηB(x,y)とするとき、数3、数4で表される波動が干渉によって作り出す強度分布I(x,y)は、数5、数6で表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 数5の第3項の余弦項が波動の位相分布に関係し、干渉縞を形成する項である。すなわち、干渉では2つの波動の位相分布の差分Δη(x,y)が干渉縞として観察される。これは干渉計測法によって位相分布を再生しても、各波動の各々の位相分布ではなく、位相分布の差分のみが観測されることを示している。
<電子線ホログラフィ>
 電子線ホログラフィも一般的に二波干渉による計測手法であり、上記二波の内、片方が物体波φObj(x,y)exp[iηObj(x,y)]、他方が平面波など既知の参照波exp[iηRef(x,y)]であるところに特徴がある。すなわち、ホログラフィとは一般的に、既知の参照波を基準として物体波を計測する手法である。電子線ホログラフィの場合、図10に示したように電子線バイプリズムを用いて干渉させるため、参照波は光軸に対して傾斜した平面波と考えることができる。簡単のため、物体波は光軸と平行に伝播し、参照波のみx軸方向に角度αだけ傾斜して伝播するとして表式すると、物体波、参照波、ホログラム(干渉顕微鏡像)としての干渉強度分布は、以下の数7、数8、数9で表される。なお、数8におけるR0xは搬送空間周波数である。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 数9より、ホログラムは物体の像|φObj(x,y)|2に物体を透過した波の位相分布ηObj(x,y)で変調を受けた間隔1/R0xの干渉縞が重畳されたものであることを示しており、この干渉縞分布が電子線ホログラフィを特徴付けている。
 ここでは省略するが、フーリエ変換法などの数値演算を用いた画像処理により物体波の振幅分布φObj(x,y)、位相分布ηObj(x,y)は個別に再生可能である。但し、先述のとおり、物体波の位相分布ηObj(x,y)と平面波の位相分布(Const:定数)との位相分布の差分としてΔη(x,y)=ηObj(x,y)-Constが得られているのであり、位相分布のオフセットとしてConstを考慮して(この場合はゼロとして)、物体波の位相分布ηObj(x,y)が得られている。
 また、観察領域を分割し再生された各々の領域を画像処理として後からつなぎ合わせる手法が用いられている(非特許文献1)。この場合でも、観察可能な領域は参照波が得られる範囲内であり、試料の周辺部のみであった。
特開2005-197165 特開2006-318734
R. E. Dunin-Borkowski et al., Science 282, (1998) 1868. K. Harada et al., J. Electron Microsc. 54, (2003) 369.
 従来、電子線ホログラフィに代表される電子線干渉法を実現するためには、(1)電子源の輝度を高め、可干渉距離が観察対象に対して十分に大きな電子波を作成する、(2)観察対象に対して適切な位置に参照波の領域を確保する様に試料形状を工夫する、といった手段が採られていた。
 (1)のための高輝度電子源の開発は基本的なものであり、透過型電子顕微鏡用の電界放出形電子銃の開発はこの目的のためであった。しかし、先述の通り、電子がフェルミ粒子であることは原理的なものであり、コヒーレンス度はレーザーには比肩できない。また、電子源の輝度は電子顕微鏡の基本性能を決めるものであり、電子顕微鏡開発の後に変更することはほぼ不可能である。そのため、装置に依存する性能であり、輝度から直接的に導かれる可干渉距離については、光学系により工夫できる範囲はかなり限られたものであった。
 また、現実的な手法として、近年のデジタル画像処理の発展に伴い、可干渉領域ギリギリまで観察領域を広げて、すなわちSN比の劣化したホログラムを取得し、再生時、或いは再生後の画像処理で必要な情報のみを抽出するような工夫が成されている。しかし、観察領域が可干渉距離を上まわる場合には、干渉計測は原理的に不可能だった。あるいは、観察領域を分割し再生された各々の領域を画像処理として後からつなぎ合わせる手法が用いられている(非特許文献1)。この場合でも、観察可能な領域は参照波が得られる範囲に制限されており、試料の周辺部のみであった。
 (2)収束イオンビーム装置(FIB)による透過型電子顕微鏡用の試料作成法を用いて、観察対象の近傍を狙って参照波のための空間を作ることが可能となる。半導体素子のホログラフィ観察などは、ほとんどこの手法によって試料が作成されている。しかし、可干渉距離を越えるサイズの素子(SiC素子)や、積層構造を伴い広い範囲に渡る試料の場合などには、干渉計測は大きな制約を受け、事実上不可能であるのが現状である。
 以上のように、電子線干渉法における観察可能領域のサイズ制限の問題は原理的なものであり、基本的な対策は無いのが実情であった。
 上記課題を解決するため、本願の電子線干渉装置は、電子線の光源と、前記光源から放出される電子線を試料に照射するための照射光学系と、前記試料の像を結像する対物レンズを有する結像レンズ系と、前記電子線の光軸上に配置された電子線バイプリズムと、前記試料における複数の位相分布像を記録する画像記録装置と、前記試料の位相分布像を演算する画像演算処理装置と、を有し、前記試料は前記電子線バイプリズムにより参照波領域を透過する電子線と干渉した電子線が透過する第1の観察領域と、前記電子線バイプリズムにより前記第1の観察領域を透過する電子線と干渉した電子線が透過する第2の観察領域と、を有し、前記画像記録装置は、前記参照波領域を透過した電子線と前記第1の観察領域を透過した電子線とに基づき第1の干渉像を記録し、かつ、前記第1の観察領域を透過した電子線と前記第2の観察領域を透過した電子線とに基づき第2の干渉像を記録し、前記画像演算処理装置は、前記画像記録装置に記録された前記第2の干渉像と前記画像記録装置に記録された前記第1の干渉像とに基づき、前記参照波領域を透過した電子線と前記第2の観察領域を透過した電子線との位相分布像を演算することを特徴とする。
 また、本願の電子線干渉法は、電子線の光源と、前記光源から放出される電子線を試料に照射するための照射光学系と、前記試料の像を結像する対物レンズを有する結像レンズ系と、前記電子線の光軸上に配置された電子線バイプリズムと、前記試料における複数の干渉像を記録する画像記録装置と、前記試料の位相分布像を演算する画像演算処理装置と、を有し、前記電子線バイプリズムにより参照波領域を透過する電子線と干渉した電子線が透過した第1の観察領域と、前記参照波領域を透過した電子線と、に基づき第1の干渉像を記録する第1ステップと、前記電子線バイプリズムにより前記第2の観察領域を透過する電子線と干渉した電子線が透過した第2の観察領域と、前記第1の観察領域を透過した電子線と、に基づき第2の干渉像を記録する第2ステップと、前記第2の干渉像と前記第1の干渉像とに基づき、前記参照波領域を透過した電子線と前記第2の観察領域を透過した電子線との位相分布像を演算する第3ステップと、を有することを特徴とする。
 また、本願の電子線干渉法は、電子線の光源と、前記光源から放出される電子線を試料に照射するための照射光学系と、前記試料の像を結像する対物レンズを有する結像レンズ系と、前記電子線の光軸上に配置された電子線バイプリズムと、前記試料における複数の干渉像を記録する画像記録装置と、前記試料の位相分布像を演算する画像演算処理装置と、を有し、前記電子線バイプリズムにより参照波領域を透過する電子線と干渉した電子線が透過する第1の観察領域と、前記参照波領域を透過した電子線と、に基づき第1の干渉像を記録する第1ステップと、前記電子線バイプリズムにより前記第2の観察領域を透過する電子線と干渉した電子線が透過する第2の観察領域を透過した電子線と、前記第1の観察領域を透過した電子線と、に基づき第2の干渉像を記録する第2ステップと、前記第1の干渉像に基づき、前記参照波領域を透過した電子線と前記第1の観察領域を透過した電子線との第1の位相分布像を演算する第3ステップと、前記第2の干渉像に基づき、前記第1の観察領域を透過した電子線と前記第2の観察領域を透過した電子線との第2の位相分布像を演算する第4ステップと、前記演算された第1及び第2の位相分布像を、前記演算された位相分布像の元となった干渉像が記録された順に配列して表示する第5ステップと、を有することを特徴とする。
 本願発明を適用することにより、従来よりも広範囲の部分の試料をホログラフィ観察可能とすることができる。
隣接した領域ごとに連続した干渉像を作成する方法を説明する模式図である。 試料を移動させて連続した干渉像を作成することを説明する模式図である。 図2(a)よりも試料を右方向へ移動させて連続した干渉像を作成することを説明する模式図である。 試料を移動させて連続した干渉像を記録した実験結果を示す図である。 連続した干渉像から再生した位相分布像を所定の積算処理後に配列して得られた広範囲の磁力線分布像である。 電子線バイプリズムを移動させて連続した干渉像を作成することを説明する模式図である。 図4(a)よりも電子線バイプリズムを右方向へ移動させて連続した干渉像を作成することを説明する模式図である。 電子線の照射角度を偏向させて連続した干渉像を作成することを説明する模式図である。 図5(a)よりも電子線の照射角度を右方向へ偏向させて連続した干渉像を作成することを説明する模式図である。 本願を実施する装置の例を示す模式図である。 中央極細線電極の投影幅dfを無視する場合の位相分布(波面)の減算時の空間的位置関係を示す模式図である。 中央極細線電極の投影幅dfを考慮する場合の位相分布(波面)の減算時の空間的位置関係を示す模式図である。 干渉領域幅Wと中央極細線電極の投影幅dfの和を合わせて移動させる場合を説明する模式図である。 干渉領域幅Wと中央極細線電極の投影幅dfを一致させた場合に、隣接した領域ごとに連続した干渉像を作成する方法を説明する模式図である。 電界型電子線バイプリズムと電子線の軌道、波面との関係を説明する模式図である。 電子線干渉法を説明する光学系の模式図である。
 本発明者は、参照波領域と参照波と隣接する観察領域との干渉像から、干渉領域幅ごとに領域をずらした干渉像を記録し、それら干渉像を個別に再生して得られた位相分布の積算を求めることによって、所定の観察領域と所定の参照波との位相分布の差分像を得る方法を考案した。これは、干渉顕微鏡法により再生、観察される位相分布は、干渉に用いた2つの波のそれぞれの位相分布の差分(数5参照)であることに着目したことによる。
 すなわち、本願発明は可干渉距離の制約のある方向に、物体波、参照波を区別することなく、干渉像(ホログラム)として記録する干渉領域幅Wだけずらしながら、順に干渉像を記録し、各々の干渉像から位相分布像を再生の後、各々の位相分布像を積算することで、所定の観察領域と参照波との干渉像、すなわち通常のホログラフィ観察を実現する手法、或いはそのための装置である。
 そして、本発明によれば、最終的な観察領域と参照波との距離が可干渉距離を越えていても、各々の位相像が得られていれば、可干渉距離を越えた位相分布に対しても、所定の参照波を用いた位相分布像が得られる。また、この作業を各々の位相分布に実施し、得られた位相分布像を所定の順に配列することにより、可干渉距離を越えた広範囲の干渉像を得ることが可能となる。
 まず、最も簡単な場合に関して、図1(a)及び(b)を用いて説明する。
(1)参照波の領域(Ref)(位相分布:ηRef(x,y))と試料中の観察領域3-1(位相分布:η1(x,y))との干渉像(ホログラム)を記録し、ホログラフィ技術により再生(演算処理)する。このとき、再生の手法は問わない、例えば、フーリエ変換法でもよいし位相シフト法でもよい。得られる再生位相分布像は、数10で表される2つの波動の位相分布の差分Δη1(x,y)である。
Figure JPOXMLDOC01-appb-M000010
 例えば、参照波として平面波を用いれば、参照波の位相の影響は前述のとおり観察領域3-1の位相分布のオフセットとしての影響のみであり、結果として観察領域3-1の位相分布η1(x,y)を得ることができる(数11)。
Figure JPOXMLDOC01-appb-M000011
 (2)次に、観察領域3-1(位相分布:η1(x,y))と試料中の観察領域3-2(位相分布:η2(x,y))との干渉像(ホログラム)を記録し、ホログラフィ技術により再生する。得られる再生位相分布像は、数12で表される2つの波動の位相分布の差分Δη2(x,y)である。
Figure JPOXMLDOC01-appb-M000012
 (3)観察領域3-2(位相分布:η2(x,y))と試料中の観察領域3-3(位相分布:η3(x,y))との干渉像(ホログラム)を記録し、ホログラフィ技術により再生する。得られる再生位相分布像はΔη3(x,y)である(数13)。さらに先の観察領域(3-4など)についても同様に繰り返す。
Figure JPOXMLDOC01-appb-M000013
 (4)上記手順を所定の観察領域(n) (位相分布:ηn(x,y))まで繰り返すと、得られる再生位相分布像は、Δηn(x,y)である(数14)。
Figure JPOXMLDOC01-appb-M000014
 (5)観察領域3-1から観察領域(n)までの位相分布像の和を求めると上記各数式の減算項が相殺され、結果として観察領域(n)の位相分布:ηn(x,y)のみが残る(数15)。
Figure JPOXMLDOC01-appb-M000015
 これは観察領域(n)と参照波の領域(Ref)(位相分布:ηRef(x,y))とのホログラムから再生された位相分布に他ならない。すなわち、参照波領域(Ref)の近傍にない観察領域(n)が、参照波領域(Ref)を用いた干渉像(ホログラム)により再生されたことを表す。
 (6)上記手順(5)を観察領域(n-1)、(n-2)、…3-3、3-2、3-1について繰り返せば、作業を行った全領域について、同一の参照波領域(Ref)を用いたホログラムとして再生されたことになる。
 (7)手順(6)により得られた各位相分布像を、それら作業の順に並べて配置すれば、観察領域3-1から(n)までの全領域を広範囲に位相分布像として観察したことになる。すなわち、可干渉距離に依存しない広視野ホログラフィが実現される。また、得られた全ての像を配列するのではなく、観察したい観察領域に対応する位相分布像のみを再生することも当然のごとく可能である。
 (8)なお、観察記録を行なう干渉像の領域を順次ずらしていく方法として、
(i)試料を移動する、(ii)電子線バイプリズムを移動する、(iii)電子線の伝播角度を傾斜する、といった3つの方法がある。それぞれ特徴があるが、最も簡便にて効果を発揮する方法は(i)の試料を移動する方法である。
 本手法では、数15に記載したごとく、観察領域(n)から参照波領域(Ref)までの各観察領域((n-1)、…3-3、3-2、3-1まで)の位相分布が相殺されることを前提としている。そのためには、相殺されるそれぞれの位相分布の空間位置が一致している必要がある。そのため、必要に応じて、各々の位相分布像の位置を調整する、或いは、観察記録時にそれぞれの像の位置関係を調整しておく、などの作業が含まれる。
 なお、これら調整作業を最も簡便化するためには、観察領域の移動方向を帯状または線状に観察される電子線バイプリズムの中央極細線電極の試料上への投影像の長手方向と垂直方向に移動させるのが合理的である。ただし、本願は、この移動方向に限定するものではない。以下、本発明を実施するための好適な干渉顕微鏡装置、および方法について説明する。
 図2(a)及び(b)は、試料3の位置を順次移動させることによって干渉像(8+31)の領域をずらしていく光学系装置、および方法を示している。図2(a)は、参照波領域(Ref)と観察領域3-1とによる干渉像(8+31)が作成される様子を示したもので、通常行われる電子線干渉(電子線ホログラフィ)観察時の光学系の状態である。そして、図2(b)は、試料3を観察領域幅Wだけ図中右方向へ移動させた後の光学系の状態を示している。観察領域3-1と観察領域3-2とによる干渉像(8+31)が像面71に記録される。図2(a)では、光軸2を挟んで試料領域と真空領域が配置されているが、図2(b)では、試料領域中に光軸2が位置している点に特徴がある。図2(b)の状態での干渉像記録の後、さらに同方向に試料を同観察領域幅Wだけ移動させて、観察領域3-2と観察領域3-3とによる干渉像を記録する。この作業を、順次繰り返し、所定の範囲の観察領域を干渉像として記録していく。
 一般に、試料は真空との境界領域(試料エッジ)から離れるほど、厚さが厚くなる傾向があるため、観察領域と観察領域との干渉像は、良好な干渉縞のコントラストが得られ難くなる。しかし、収束イオンビーム装置(FIB)を用いた試料作製手法により、この問題は改善することができる。さらに、1MV干渉型電子顕微鏡の開発など、電子線の可干渉性を保ったまま試料中の透過能の高い電子線源の開発も行なわれており、観察領域と他の観察領域との干渉像の観察記録に原理的な問題はない。試料厚さに関する記述は、以降の実施例においても同様であり、以降の記述を省略する。
 この実施例2に示す方法では、一連の干渉像記録作業中に光学系を操作しないので、はじめに干渉領域幅、干渉縞間隔、観察記録倍率などの光学条件を設定すれば、作業の間における光学系の再調整は必要ない。さらに倍率等が同一条件で記録されているので、再生像取得後、或いは位相分布の積算処理後、そのまま画像配列を実施して、広範囲の位相分布像を得ることができる。
 図3に、図2に示した方法で行った実験例を示す。試料は磁気力顕微鏡(MFM)の探針で、探針周辺から空間に漏れ出た磁力線分布を観察したものである。図3(a)は、試料を移動させながら撮影した全体像を1枚の画像に重ね合わせたもので、試料探針(Tip)を図中上側3-1の状態から順に3-7の状態まで図中下向に移動させながら、白い帯状に表示されている干渉領域の記録を実施したものである。表示の便宜上、探針位置に領域を示す番号を付したが、例えば3-1の状態で観察されているのは、白い帯状の空間領域で、この実験例の場合には探針から最も離れた空間の観察を実施している状態にあたる。この状態が図1における、参照波と最も隣接した領域を観察していることに該当するので、同じ番号3-1を付している。他の観察領域も同様に、図1の(3-1)から(n)までと対応をつけた番号を付している。なお、図3の場合はn=7であるが、この数値に限定されるものではない。
 図3(b)は、図3(a)の各々の観察領域の再生位相分布を求めた後、それぞれ所定の位相分布だけ積算処理を実施し、その後、所定の空間位置に合わせて広範囲の位相分布像としたものである。探針とその周辺から発生した磁力線が、探針から離れるに従って広がった分布に変化していく様子がわかる。図3(b)中に付した番号は、観察領域の番号である。なお図3では、電子線バイプリズムの中央極細線電極の投影幅はその影響を無視して描画している。中央極細線電極の投影幅の取り扱いについては後述する。
 なお、図3の一連の実験には、2段電子線バイプリズム干渉計(特許文献1)を使用した。2段電子線バイプリズム干渉計は干渉領域の幅が厳密に定まるので、干渉領域ごとに移動させて連続して干渉像を記録する本手法にはより好適といえる。ただし、1段電子線バイプリズム干渉計での実施も当然に可能である。
 図4は、電子線バイプリズムの中央極細線電極9を電子線バイプリズムの投影像の長手方向(すなわち延在方向)と垂直方向へ順次移動させることによって干渉像(8+31)の領域をずらしていく光学系装置、および方法を示している。電子線バイプリズムの中央極細線電極9は1次形状であるため、細線の長手方向(すなわち延在方向)には変化がない。そのため、電子線バイプリズムの移動方向は、必ずしも細線の長手方向と垂直方向である必要はなく、結果として細線の長手方向と垂直方向に移動していればよい。
 図4(a)は図2(a)と同じもので、電子線バイプリズムの極細線電極9は光軸2上に配置され、光軸2を挟んで試料領域と真空領域が配置されることにより、参照波領域(Ref)と観察領域3-1とによる干渉像(8+31)が作成される様子を示したものである。すなわち、通常の電子線干渉(電子線ホログラフィ)観察時の光学系の状態である。
 図4(b)は、電子線バイプリズムの中央極細線電極9を図中右方向へ移動させた後の光学系の状態を示している。中央極細線電極9の移動量は、観察領域3-1と観察領域3-2とによる干渉像(8+31)が像面71に記録されるのに必要な量であり、図4に示された光学系の倍率や光学系中の電子線バイプリズムの中央極細線電極9の位置(光軸上の高さ)に依存するが、通常は数ミクロンの程度であり十分に調整可能な範囲である。実施例2と同様に、図4(b)の状態での干渉像記録の後、さらに同方向に電子線バイプリズムの中央極細線電極9を移動させて、観察領域3-2と観察領域3-3とによる干渉像を記録する作業を順次繰り返し、所定の範囲の観察領域を干渉像として記録していく。電子線バイプリズムの中央極細線電極9の移動に伴い、干渉像が形成される像面71上の位置も移動していくが、この移動については、図4中には描画を省略するが、対物レンズ5下部の結像レンズ系、および拡大レンズ系中の偏向系などを用いて補正する(図6参照)。
 この実施例3に示す方法では、電子線バイプリズムの移動量は、試料よりも光学系の倍率分だけ大きいのが一般的であり、電子線バイプリズムの微動制御における精度は試料微動よりも小さくてよい。そのため、本手法において分解能向上への利点がある。但し、2段電子線バイプリズム干渉計(特許文献1)で、実施例3を実施する場合には、2つの電子線バイプリズムをそれぞれ所定の相関関係を持って連動させなければならない。これにより作業の煩雑さが増すが、コンピュータ制御されたシステムであれば、この煩雑さは問題にならない(特許文献2)。 
 この実施例3に示す方法においても、一連の干渉像記録作業中に光学系を操作しないので、はじめに干渉領域幅、干渉縞間隔、観察記録倍率などの光学条件を設定すれば、上述の干渉像の像面上での位置合わせを除いて、作業の間に光学系の再調整は必要ない。以上によれば倍率等が同一条件で記録されているので、再生像演算後、或いは位相分布の積算処理後、そのまま画像配列を実施して、広範囲の位相分布像を得ることができる。
 図5は、電子線の伝播角度を順次移動させることによって干渉像(8+31)の領域をずらしていく光学系装置、および方法を示している。図5(a)は図2(a)と同じもので、光軸上を左右対称に電子線が伝播し、光軸2を挟んで対称に配置された試料領域と真空領域が均一に電子線照射され、参照波領域(Ref)と観察領域3-1とによる干渉像(8+31)が作成される様子を示したものである。すなわち、通常の電子線干渉(電子線ホログラフィ)観察時の光学系の状態である。
 図5(b)は、試料上部の光源1、あるいは照射光学系による光源の像11(クロスオーバー)を光軸2から図中右側の空間に移動させることによって、試料3への照射角度を偏向させた後の光学系の状態を示している。照射電子線の偏向によっても、試料3と試料の像31は結像関係によりその位置の移動は発生しないが、干渉領域は中央極細線電極9の投影として形成されているので、照射電子線の偏向に伴い移動する。その移動量は、観察領域3-1と観察領域3-2とによる干渉像(8+31)が像面71に記録されるに必要な量であり、図5に示された光学系の倍率や光学系中の電子線バイプリズムの位置(光軸上の高さ)に依存するが、通常はサブミリラジアンの程度であり十分に調整可能な範囲である。
 実施例2と同様に、図5(b)の状態での干渉像記録の後、さらに同方向に電子線を偏向させることによって、観察領域3-2と観察領域3-3とによる干渉像を記録する作業を順次繰り返し、所定の範囲の観察領域を干渉像として記録していく。電子線の伝播角度の偏向に伴い、干渉像が形成される像面71上の位置も移動していくが、この移動については、図5中には描画を省略するが、対物レンズ5下部の拡大レンズ系、および拡大レンズ系中の偏向系などを用いて補正する(図6参照)。
 この実施例4に示す方法は、装置類の機械的な移動を伴わずに、電磁気的な電子線への偏向作用のみで実施可能である。そのため、機械的な安定状態を得やすく、本手法における分解能向上への利点がある。但し、2段電子線バイプリズム干渉計(特許文献1)においては、干渉領域は試料位置と一致するため、実施例4の実現は困難である。
 この実施例4に示す方法においては、一連の干渉像記録作業中に光学系の操作が伴うが、偏向操作が主であり、倍率への変更操作はないので、はじめに干渉領域幅、干渉縞間隔、観察記録倍率などの光学条件を設定すれば、偏向角度が近軸近似の範囲内に収まっている範囲においては、作業の間に光学系の再調整は必要ない。以上によれば倍率等が同一条件で記録されているので、再生像演算後、或いは位相分布の積算処理後、そのまま画像配列を実施して、広範囲の位相分布像を得ることができる。
 また、図5を用いて説明した実施例4では、試料への電子線の照射角度を偏向する例であったが、これに限るものではなく、図は省略するが、例えば対物レンズ5下部に偏向系を挿入して電子線の伝播角度を偏向してもよい(図6参照)。この場合、試料への照射条件への変更は伴わないので、上述した方法よりもさらに高分解能化に適している。
 図2、図4、および図5に示した光学系、および図1の方法を実施可能な電子線干渉装置の例を図6に示す。すなわち、対物レンズ5の下部に電子線バイプリズム90が配置され、対物レンズの像面に得られた干渉像を、対物レンズ後段の4段からなる拡大レンズ系(61、62、63、64)で、拡大して観察する電子線干渉装置である。観察記録面89に結像された干渉像32を画像観察・記録媒体81(例えばTVカメラやCCDカメラ)で記録し、位相分布像の再生処理や位相分布像の積算処理などは、例えば画像処理装置85などで行い、演算結果(配列された位相分布像)34は表示装置88などを用いて表示されることを示している。
 本願を実施するに当り、順次観察領域をずらした干渉像を作成、記録する必要があるが、そのために、観察記録面89に結像された干渉像32を画像観察・記録媒体81(例えばTVカメラやCCDカメラ)で記録し、その際に得られた干渉領域幅を制御コンピュータ51により解析して既値を得る。そして、実施例2に示したように試料位置を移動させる場合には試料制御装置39を通じて試料位置の微動を行い、実施例3に示したように電子線バイプリズムの位置を移動させる場合には電子線バイプリズムの制御装置96を通じて電子線バイプリズムの微動を行い、実施例4に示したように電子線の照射角度を偏向する場合には、例えば試料上部の偏向装置94を偏向系の制御装置44を通じて電子線の偏向を行なう装置であることを示している。拡大レンズ64下部の偏向装置95は、干渉像の位置を観察・記録媒体81の適正な位置に合わせるために使用する。これら本願に関する観察領域をずらした干渉像を作成、記録する微動制御機構は、いずれか1つが設置されていれば目的を達することができるが、併設されている状態を排除するものではない。
 また、図6は、従来型の100kVから300kVタイプの電子顕微鏡を想定して、電子線バイプリズム90や、拡大結像系のレンズ(61、62、63、64)を描いているが、これらの電子顕微鏡光学系の構成要素は、この図に限られるものではない。さらに、実際の装置ではこの図6に示した構成要素以外にも、電子線の進行方向を変化させる偏向系、電子線の透過領域を制限する絞り機構などが存在する。ただし、描画した以外の装置は、本発明には直接的な関係が無いので、この図では省略している。さらに、電子光学系は真空容器18中に組み立てられ、真空ポンプにて継続的に排気されているが、真空排気系についても、本発明とは直接の関係が無いため省略する。以下の図においても、このような省略は同様である。
 実施例1において本願における位相分布像の積算処理とその意味を、図1と数10から15を用いて説明した。考え方の基本は、二波干渉での干渉像記録において、記録されたどちらかの波面(例えば図2中の左側の波面)が次の干渉像記録の際の他方の波面(例えば図2中の右側の波面)となり、差分として再生位相分布が得られた後の積算処理時に相殺されるというところである。相殺が好適に行なわれるためには、左右の2つの波面が干渉する際に、干渉領域を空間的に一致させることが重要である。そのための条件は、電子線バイプリズムの中央極細線電極の試料面上への投影幅dfが狭く、その幅dfが無視できる場合である。そこで、以下に中央極細線電極の試料面上への投影幅dfが無視できない場合において、より好適に本願発明の効果を発揮する手法を説明する。
 まず、中央極細線電極の試料面上への投影幅dfが無視できない場合への説明に先立ち、再生位相分布像の積算処理と各再生位相分布像配列の手順の入れ替えを図7を用いて説明する。図7は二波干渉の際の2つの波面を描いたものである。干渉させる関係にある波面を上下に(縦方向に)分けて描画し、試料位置に合わせて配列させた様を左右に(水平方向に)描画している。図7(a)は、電子線バイプリズムの中央極細線電極の大きさが無視できる場合である。すなわち、例えば観察領域3-2を左側の波面とし、観察領域3-1を右側の波面とする測定を行う際における観察領域3-2は、観察領域3-3を左側の波面とし、観察領域3-2を右側の波面とする測定を行う際における観察領域3-2と同一の波面であることを示している。
 そして、隣接する観察領域を空間的に左右に配列することで、このような関係が参照波領域(Ref)から試料の図中左側に継続的に実現されていることを示している。この状態は、図1および数10から15を用いた説明の場合に該当する。この場合には、可干渉距離R>W+dfの関係が満たされている。
 次に、図7(a)に示した干渉させる際の波面関数(位相分布関数)を1次元の連続関数として表示する。x軸を左向きに取り、参照波領域(Ref)と観察領域3-1との境界を座標軸の原点x=0とすると、干渉領域幅、すなわち波面関数を空間的にずらす距離をWとして、左側の波面関数はηleft(x)、右側の波面関数はηright(x-W)と表される。よって、差分の位相分布関数Δη(x)は、数16で表される。これが1回の再生処理により得られる観察領域全体の位相分布である。
Figure JPOXMLDOC01-appb-M000016
 ここで、差分の位相分布関数Δη(x)の変数を-Wだけずらした位相分布関数Δη(x-W)を数17に表すと、
Figure JPOXMLDOC01-appb-M000017
 となる。数16と数17を積算すると数18を得る。
Figure JPOXMLDOC01-appb-M000018
 これは観察領域が1領域分だけ離れた領域との干渉を表している。これを片側の位相分布が参照波領域の位相分布に至るまでn回繰り返すと、数19の様に表示される。
Figure JPOXMLDOC01-appb-M000019
 すなわち、観察領域順に第1次の再生位相分布として各々の再生された位相分布を配列したのち、干渉領域の幅Wごとにずらした位相分布を、各々の観察領域の順序に応じた回数だけ積算すれば、広範囲に渡る位相分布像を得ることができる。すなわち、実施例1とは、積算処理と再生位相分布像配列作業の順序が異なっている。しかし、得られる結果は同じである。
 次に、中央極細線電極の試料面上への投影幅dfが無視できない場合への拡張について説明する。図7(b)は、電子線バイプリズムの中央極細線電極の大きさが無視できない場合の二波干渉の際の2つの波面を描いたものである。上下の波面の関係は図7(a)と同じであるが、中央極細線電極の投影幅dfの分だけ下側に描かれた波面の位置がずれている様子を表している。隣接する観察領域を配列してもこのずれは解消されず、波面全域に渡ってずれが継続することを示している。この波面の関係を、図7(a)と同様にx軸を左向きに取り、参照波領域(Ref)と観察領域3-1との境界を座標軸の原点x=0として数式で表すと、左側の波面分布関数はηleft(x)、右側の波面関数(位相分布関数)はηright(x-W-df)となる。差分の位相分布関数Δη(x)は、数20で表される。
Figure JPOXMLDOC01-appb-M000020
 ここで、前回と同様に差分の位相分布関数Δη(x)の変数を-W-dfだけずらした位相分布関数Δη(x-W-df)を数21に表す。
Figure JPOXMLDOC01-appb-M000021
 すなわち、干渉領域幅Wではなく、中央極細線電極の投影幅dfを考慮したW+dfを1単位として数19と同様の取り扱いが可能であることがわかる。これを数22に表す。
Figure JPOXMLDOC01-appb-M000022
 すなわち、観察領域順に第1次の再生位相分布として各々の再生された位相分布を配列したのち、中央極細線電極の投影幅dfを考慮の上、W+dfごとにずらした位相分布(補正位相分布)を各々の観察領域の順序に応じた回数だけ積算すれば、広範囲に渡る位相分布像を得ることができる。すなわち、実施例1とは、積算処理と再生位相分布像配列作業の順序が異なっている。しかし、結果として再生位相分布像が得られる点は同じである。
 なお、この際に得られる第1次の再生位相分布は中央極細線電極を挟んで隣り合う領域の位相分布の差分となっており、これらの位相分布を配列しが広視野の位相分布像は、位相分布の空間的な変化分を表す像となる。例えば、図3(b)に示した磁力線分布などについていえば、MFM探針周囲の平均的な磁力線分布を除いた磁力線分布を表示したものとなる。
 結論として、実施例1、および図1もしくは図7(a)に示した方法は、中央極細線電極の投影幅dfがゼロの場合に該当する。従って、中央極細線電極の投影幅dfが干渉領域と比較して無視できる程度に小さいか、位相分布の変化が緩やかで幅dfの範囲内で位相分布が急峻に変化しない場合には、近似的に実施例1、および図1もしくは図7(a)に示した手法により位相分布を再生することが可能となる。
 中央極細線電極の試料面上への投影幅dfが無視できない場合の取り扱いに関して、先の実施例6とは別なる方法に関して図8を基に説明する。
 図8は、隣接する観察領域の干渉像を作成する際に、干渉領域幅Wではなく、中央極細線電極の投影幅dfを加えてW+dfだけ移動させて干渉像を作成する様子を示している。この方法によれば、記録されたどちらかの波面(例えば図11中の左側の波面)が次の干渉像記録の際の他方の波面(例えば図11中の右側の波面)でなければならない条件が満たされている。ただし、各干渉像から得られる各波面の間には、中央極細線電極の投影幅dfだけ情報の欠落領域が生じる。先の実施例6と比較して再生精度は劣化するが、実験後の画像処理への負担が少なく、中央極細線電極の投影幅dfが干渉領域幅Wと比較して全体の画像情報に影響を与えないほどに小さいか、位相分布の変化が緩やかで幅dfの範囲内で位相分布が急峻に変化しない場合には有効な手法となる。この際にも、可干渉距離R>W+dfの関係が満たされなければならない。
 実施例7と同様に中央極細線電極の試料面上への投影幅dfが無視できない場合の取り扱いに関する別なる方法に関して図9を基に説明する。
 図9は、隣接する観察領域の干渉像を作成する際に、中央極細線電極の投影幅dfと干渉領域幅Wが一致するように、中央極細線電極への印加電圧を調整した上で、実施例1と同様に干渉領域幅Wずつ観察領域をずらして干渉像を作成する様子を示している。図9から明らかな様に、この方法によれば、ある観察領域と1領域分離れた領域(例えば観察領域3-1と観察領域3-3)からの位相分布との間に、記録されたどちらかの波面(例えば図11中の左側の波面)が別の干渉像記録の際の他方の波面(例えば図11中の右側の波面)でなければならない条件が満たされている。
 すなわち、奇数領域ごと、偶数領域ごとに、実施例1と同様の取り扱いが可能となる。ただし、参照波領域は2領域分が必要となるが、通常の干渉実験に於いては、これは問題のない条件である。念のため、以下に観察領域3-5までについて、各差分の位相分布像、および、それらの積算により得られる参照波を基準とした位相分布像について数式を列挙する。この方法は実験後の画像処理への負担が少なく、実用的な手法である。この場合に満たされなければならない条件は、可干渉距離R>2Wである。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 なお、本実施例では中央極細線電極の投影幅dfと干渉領域幅Wが一致する場合に関して説明したが、中央極細線電極の投影幅dfが干渉領域幅Wの整数倍(N倍)の場合には、記録される領域間で跳ばされる領域の数が増すだけで、容易に同様の取り扱いに拡張することができる。この場合に満たされなければならない条件は、可干渉距離R>NWである。
 近年のCCDカメラを用いた電子線干渉実験では、観察対象であるホログラム以外に、観察対象から離れた参照波同士の干渉像を参照ホログラムとして記録し、参照ホログラムから再生される位相分布像を、観察対象のホログラムから再生された位相分布像減算処理することによって、例えば、電子線バイプリズムの中央極細線電極に発生したチャージアップの影響を相殺する演算処理が実施されことが多い(非特許文献2)。本願は、この従来からの方法と反するものではなく、全く両立可能な手法である。数式を用いて説明する。
 電子線バイプリズムの中央極細線電極に発生したチャージアップに起因した位相分布をηchとする。これは物体波、参照波に依存せず、干渉像を記録、再生した際にいつも同様に発生してしまう位相分布である。厳密には中央極細線電極上のチャージアップの発生位置が、物体波側か参照波側かによって、差分の位相分布の減算される側の項か減算する側の項かが異なるが、結果として差分後の分布しか検出されないので、差分後の位相分布としてηchとする。すると、例えばn番目の観察領域(n)とn-1番目の観察領域(n-1)との位相分布は数30、参照ホログラムの位相分布は数31で表される。
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
 ここで、改めて数30から数31の減算を行えば、数32を得る。
Figure JPOXMLDOC01-appb-M000032
 これは数14と同じものである。すなわち数32のΔη’nを改めて数13のΔηnとおけば、これまで説明してきた本願の手法が全て実施可能であることがわかる。なお、図3に示した実験例は、参照ホログラムを用いて実施したものである。
 すなわち、本願は試料を透過した電子波同士の干渉が記録される限り、その干渉像から再生される位相分布像を積算させることによって、試料における所定の部分をホログラフィ観察可能とするものである。そのため、観察領域が参照波近傍に限られるという、従来技術において電子線干渉法の最も重要かつ原理的な制約であった条件から、電子線干渉法を解放するものである。
1…電子源もしくは電子銃、11…クロスオーバー、18…真空容器、19…電子源の制御ユニット、2…光軸、21…物体波、23…参照波、25…波面、27…電子線の軌道、3…試料、31…対物レンズにより結像された試料の像、32…観察・記録系に結像された試料の像、34…配列された位相分布像、40…加速管、41…第1照射レンズ、42…第2照射レンズ、44…照射系に設置された偏向装置の制御ユニット、45…結像系に設置された偏向装置の制御ユニット、47…第2照射レンズの制御ユニット、48…第1照射レンズの制御ユニット、49…加速管の制御ユニット、5…対物レンズ、51…制御系コンピュータ、52…制御系コンピュータのモニタ、53…制御系コンピュータのインターフェース、59…対物レンズの制御ユニット、61…第1結像レンズ、62…第2結像レンズ、63…第3結像レンズ、64…第4結像レンズ、66…第4結像レンズの制御ユニット、67…第3結像レンズの制御ユニット、68…第2結像レンズの制御ユニット、69…第1結像レンズの制御ユニット、7…像面、71…対物レンズによる試料の像面、8…干渉縞、81…画像観察・記録媒体、82…画像観察・記録媒体の制御ユニット、885…画像演算処理装置、86…画像演算処理装置のモニタ、87…画像演算処理装置のインターフェース、88…表示装置、89…観察・記録面、9…電子線バイプリズムの中央極細線電極、90…電子線バイプリズム、94…照射系に設置された偏向装置、95…結像系に設置された偏向装置、99…平行平板接地電極、3-1…第1番目の観察領域、3-2…第2番目の観察領域、3-3…第3番目の観察領域、3-4…第4番目の観察領域、3-5…第5番目の観察領域、(n)…第n番目の観察領域、(Ref) …参照波領域

Claims (14)

  1.  電子線の光源と、
     前記光源から放出される電子線を試料に照射するための照射光学系と、
     前記試料の像を結像する対物レンズを有する結像レンズ系と、
     前記電子線の光軸上に配置された電子線バイプリズムと、
     前記試料における複数の位相分布像を記録する画像記録装置と、
     前記試料の位相分布像を演算する画像演算処理装置と、を有し、
     前記試料は前記電子線バイプリズムにより参照波領域を透過する電子線と干渉した電子線が透過する第1の観察領域と、前記電子線バイプリズムにより前記第1の観察領域を透過する電子線と干渉した電子線が透過する第2の観察領域と、を有し、
     前記画像記録装置は、前記参照波領域を透過した電子線と前記第1の観察領域を透過した電子線とに基づき第1の干渉像を記録し、かつ、前記第1の観察領域を透過した電子線と前記第2の観察領域を透過した電子線とに基づき第2の干渉像を記録し、
     前記画像演算処理装置は、前記画像記録装置に記録された前記第2の干渉像と前記画像記録装置に記録された前記第1の干渉像とに基づき、前記参照波領域を透過した電子線と前記第2の観察領域を透過した電子線との位相分布像を演算する
     ことを特徴とする電子線干渉装置。
  2.  請求項1において、前記画像演算処理装置は、
     前記参照波領域を透過した電子線と前記第1の観察領域を透過した電子線とに基づき、前記第1の干渉像から第1の位相分布像を演算し、
     前記第1の観察領域を透過した電子線と前記第2の観察領域を透過した電子線とに基づき、前記第2の干渉像から第2の位相分布像を演算し、
     前記第1の位相分布像と前記第2の位相分布像との和を求めることで、前記参照波領域を透過した電子線と前記第2の観察領域を透過した電子線との位相分布像を演算する
     ことを特徴とする電子線干渉装置。
  3.  請求項1において、
     前記電子線が照射する試料を保持するための試料保持装置をさらに有し、
     前記第1の干渉像及び前記第2の干渉像を記録する際に、前記試料保持装置は、前記光軸に対して垂直方向でかつ、前記前記電子線バイプリズムの投影像の長手方向と垂直方向へ前記試料を移動させる
     ことを特徴とする電子線干渉装置。
  4.  請求項1において、
     前記電子線バイプリズムの位置を移動するバイプリズム移動手段をさらに有し、
     前記第1の干渉像及び前記第2の干渉像を記録する際に、前記バイプリズム移動手段は、前記光軸に対して垂直な方向へ前記電子線バイプリズムを移動させる
     ことを特徴とする電子線干渉装置。
  5.  請求項1において、
     前記第1の干渉像及び前記第2の干渉像を記録する際に、前記照射光学系は、前記電子線が前記光軸となす伝播角度を変更する
     ことを特徴とする電子線干渉装置。
  6.  請求項1から5のいずれかにおいて、
    前記演算された位相分布像を、前記演算された位相分布像の元となった干渉像が記録された順に配列させて表示する画像表示装置をさらに有する
     ことを特徴とする電子線干渉装置。
  7.  電子線の光源と、
     前記光源から放出される電子線を試料に照射するための照射光学系と、
     前記試料の像を結像する対物レンズを有する結像レンズ系と、
     前記電子線の光軸上に配置された電子線バイプリズムと、
     前記試料における複数の干渉像を記録する画像記録装置と、
     前記試料の位相分布像を演算する画像演算処理装置と、を有し、
     前記電子線バイプリズムにより参照波領域を透過する電子線と干渉した電子線が透過した第1の観察領域と、前記参照波領域を透過した電子線と、に基づき第1の干渉像を記録する第1ステップと、
     前記電子線バイプリズムにより前記第2の観察領域を透過する電子線と干渉した電子線が透過した第2の観察領域と、前記第1の観察領域を透過した電子線と、に基づき第2の干渉像を記録する第2ステップと、
     前記第2の干渉像と前記第1の干渉像とに基づき、前記参照波領域を透過した電子線と前記第2の観察領域を透過した電子線との位相分布像を演算する第3ステップとを有する電子線干渉法。
  8.  請求項7において、
     前記第3ステップは、前記第1の干渉像に基づき、前記参照波領域を透過した電子線と前記第1の観察領域を透過した電子線との第1の位相分布像を演算する第4ステップと、前記第2の干渉像に基づき、前記第1の観察領域を透過した電子線と前記第2の観察領域を透過した電子線との第2の位相分布像を演算する第5ステップと、前記第1の位相分布像と前記第2の位相分布像とを加算することで、前記参照波領域を透過した電子線と前記第2の観察領域を透過した電子線との位相分布像を演算する第6ステップと、を有する電子線干渉法。
  9.  請求項7において、
    前記演算された位相分布像を、前記演算された位相分布像の元となった干渉像が記録された順に配列して表示する第7ステップとを有する電子線干渉法。
  10.  電子線の光源と、
     前記光源から放出される電子線を試料に照射するための照射光学系と、
     前記試料の像を結像する対物レンズを有する結像レンズ系と、
     前記電子線の光軸上に配置された電子線バイプリズムと、
     前記試料における複数の干渉像を記録する画像記録装置と、
     前記試料の位相分布像を演算する画像演算処理装置と、を有し、
     前記電子線バイプリズムにより参照波領域を透過する電子線と干渉した電子線が透過する第1の観察領域と、前記参照波領域を透過した電子線と、に基づき第1の干渉像を記録する第1ステップと、
     前記電子線バイプリズムにより前記第2の観察領域を透過する電子線と干渉した電子線が透過する第2の観察領域を透過した電子線と、前記第1の観察領域を透過した電子線と、に基づき第2の干渉像を記録する第2ステップと、
     前記第1の干渉像に基づき、前記参照波領域を透過した電子線と前記第1の観察領域を透過した電子線との第1の位相分布像を演算する第3ステップと、
     前記第2の干渉像に基づき、前記第1の観察領域を透過した電子線と前記第2の観察領域を透過した電子線との第2の位相分布像を演算する第4ステップと、
     前記演算された第1及び第2の位相分布像を、前記演算された位相分布像の元となった干渉像が記録された順に配列して表示する第5ステップと、
     を有する電子線干渉法。
  11.  請求項10において、
     前記配列された位相分布像を、前記電子線バイプリズムの投影像の長手方向と垂直方向に所定の量移動させ第1の補正位相分布像とする第6ステップと、
     前記配列された位相分布像と前記第1の補正位相分布像とを加算することで、前記参照波領域を透過した電子線と前記第2の観察領域を透過した電子線との位相分布像を演算する第7ステップと、
     を有する電子線干渉法。
  12.  請求項11において、
     前記所定の量は干渉領域幅であることを特徴とする電子線干渉法。
  13.  請求項11において、
     前記所定の量は干渉領域幅と前記電子線バイプリズムの中央極細線電極の投影幅の和であることを特徴とする電子線干渉法。
  14.  請求項11において、
     前記所定の量は干渉領域幅の整数倍であることを特徴とする電子線干渉法。
PCT/JP2012/000724 2012-02-03 2012-02-03 電子線干渉装置および電子線干渉法 WO2013114464A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/810,934 US8946628B2 (en) 2012-02-03 2012-02-03 Electron beam interference device and electron beam interferometry
DE112012000116T DE112012000116T5 (de) 2012-02-03 2012-02-03 Elektronenstrahl-Interferenzvorrichtung und Elektronenstrahl-Interferometrie
PCT/JP2012/000724 WO2013114464A1 (ja) 2012-02-03 2012-02-03 電子線干渉装置および電子線干渉法
JP2013556034A JP5648136B2 (ja) 2012-02-03 2012-02-03 電子線干渉装置および電子線干渉法
CN201280002178.9A CN103348440B (zh) 2012-02-03 2012-02-03 电子射线干涉装置和电子射线干涉法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000724 WO2013114464A1 (ja) 2012-02-03 2012-02-03 電子線干渉装置および電子線干渉法

Publications (1)

Publication Number Publication Date
WO2013114464A1 true WO2013114464A1 (ja) 2013-08-08

Family

ID=48904554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000724 WO2013114464A1 (ja) 2012-02-03 2012-02-03 電子線干渉装置および電子線干渉法

Country Status (5)

Country Link
US (1) US8946628B2 (ja)
JP (1) JP5648136B2 (ja)
CN (1) CN103348440B (ja)
DE (1) DE112012000116T5 (ja)
WO (1) WO2013114464A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022093A1 (ja) * 2015-08-05 2017-02-09 株式会社日立製作所 電子線干渉装置および電子線干渉方法
WO2021256212A1 (ja) * 2020-06-18 2021-12-23 国立研究開発法人理化学研究所 電子顕微鏡解析システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433550B1 (ja) * 2017-07-19 2018-12-05 株式会社日立製作所 試料保持機構、及び荷電粒子線装置
US11340293B2 (en) 2019-10-01 2022-05-24 Pdf Solutions, Inc. Methods for performing a non-contact electrical measurement on a cell, chip, wafer, die, or logic block
US11328899B2 (en) 2019-10-01 2022-05-10 Pdf Solutions, Inc. Methods for aligning a particle beam and performing a non-contact electrical measurement on a cell using a registration cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298983A (ja) * 1989-05-12 1990-12-11 Res Dev Corp Of Japan 電子線または荷電粒子線を用いた2光束イメージホログラムの実時間再生装置
JP2005294085A (ja) * 2004-04-01 2005-10-20 Hitachi Ltd 走査電子線干渉装置
JP2006318734A (ja) * 2005-05-12 2006-11-24 Institute Of Physical & Chemical Research 荷電粒子線装置
JP2006331652A (ja) * 2005-05-23 2006-12-07 Hitachi Ltd 透過型干渉電子顕微鏡
JP2010198985A (ja) * 2009-02-26 2010-09-09 Hitachi Ltd 電子線干渉装置、および電子線干渉顕微方法
WO2011071015A1 (ja) * 2009-12-11 2011-06-16 株式会社日立製作所 電子線バイプリズム装置および電子線装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428610A (zh) * 2002-12-20 2003-07-09 中国科学院上海光学精密机械研究所 极弱微电场及其荷电量的测试方法
JP4512180B2 (ja) 2004-01-09 2010-07-28 独立行政法人理化学研究所 干渉装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298983A (ja) * 1989-05-12 1990-12-11 Res Dev Corp Of Japan 電子線または荷電粒子線を用いた2光束イメージホログラムの実時間再生装置
JP2005294085A (ja) * 2004-04-01 2005-10-20 Hitachi Ltd 走査電子線干渉装置
JP2006318734A (ja) * 2005-05-12 2006-11-24 Institute Of Physical & Chemical Research 荷電粒子線装置
JP2006331652A (ja) * 2005-05-23 2006-12-07 Hitachi Ltd 透過型干渉電子顕微鏡
JP2010198985A (ja) * 2009-02-26 2010-09-09 Hitachi Ltd 電子線干渉装置、および電子線干渉顕微方法
WO2011071015A1 (ja) * 2009-12-11 2011-06-16 株式会社日立製作所 電子線バイプリズム装置および電子線装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022093A1 (ja) * 2015-08-05 2017-02-09 株式会社日立製作所 電子線干渉装置および電子線干渉方法
JPWO2017022093A1 (ja) * 2015-08-05 2018-05-10 株式会社日立製作所 電子線干渉装置および電子線干渉方法
DE112015006775T5 (de) 2015-08-05 2018-05-24 Hitachi, Ltd. Elektroneninterferenzvorrichtung und Elektroneninterferenzverfahren
DE112015006775B4 (de) 2015-08-05 2022-03-31 Hitachi, Ltd. Elektroneninterferenzvorrichtung und Elektroneninterferenzverfahren
WO2021256212A1 (ja) * 2020-06-18 2021-12-23 国立研究開発法人理化学研究所 電子顕微鏡解析システム

Also Published As

Publication number Publication date
US8946628B2 (en) 2015-02-03
CN103348440B (zh) 2016-01-20
JPWO2013114464A1 (ja) 2015-05-11
CN103348440A (zh) 2013-10-09
JP5648136B2 (ja) 2015-01-07
DE112012000116T5 (de) 2013-12-24
US20140332684A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
US7538323B2 (en) Interferometer
JP5648136B2 (ja) 電子線干渉装置および電子線干渉法
JP5420678B2 (ja) 電子線バイプリズム装置および電子線装置
JP4523448B2 (ja) 荷電粒子線装置および干渉装置
US20080302965A1 (en) Electron Interferometer or Electron Microscope
JP5736461B2 (ja) 電子顕微鏡および試料観察方法
JP5934965B2 (ja) 電子線装置
JP4852249B2 (ja) 荷電粒子線装置および干渉装置
JP5382695B2 (ja) 電子線干渉装置、および電子線干渉顕微方法
US20230003672A1 (en) Electron diffraction holography
JP6051596B2 (ja) 干渉電子顕微鏡
JP7244829B2 (ja) 干渉電子顕微鏡
JP2011249191A (ja) 透過型干渉顕微鏡
JP5970648B2 (ja) 透過型電子顕微鏡及び電子線干渉法
JP6487556B2 (ja) 電子線干渉装置および電子線干渉方法
US10770264B2 (en) Interference optical system unit, charged particle beam interference apparatus, and method for observing charged particle beam interference image
Völkl et al. Principles and theory of electron holography
JP4797072B2 (ja) 電子線バイプリズムを用いた電子線装置および電子線バイプリズムを用いた電子線装置における浮遊磁場測定方法
Reu et al. Doppler Electron Holography for Nanoscale Dynamics.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13810934

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012000116

Country of ref document: DE

Ref document number: 1120120001168

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556034

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12867262

Country of ref document: EP

Kind code of ref document: A1