WO2013114451A1 - Construction machine - Google Patents

Construction machine Download PDF

Info

Publication number
WO2013114451A1
WO2013114451A1 PCT/JP2012/000649 JP2012000649W WO2013114451A1 WO 2013114451 A1 WO2013114451 A1 WO 2013114451A1 JP 2012000649 W JP2012000649 W JP 2012000649W WO 2013114451 A1 WO2013114451 A1 WO 2013114451A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed screw
construction machine
nut
linear motion
electric motor
Prior art date
Application number
PCT/JP2012/000649
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 正貴
早瀬 功
弘幸 山田
金子 悟
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2012/000649 priority Critical patent/WO2013114451A1/en
Publication of WO2013114451A1 publication Critical patent/WO2013114451A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/427Drives for dippers, buckets, dipper-arms or bucket-arms with mechanical drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa

Definitions

  • the present invention relates to a construction machine using an electric linear actuator as a linear drive part.
  • Patent Document 1 Conventionally, a construction machine using an electric linear actuator as a direct drive part is described in Patent Document 1.
  • Patent Document 1 describes that in a construction apparatus having an excavating function such as a power shovel whose driving source is a hydraulic cylinder, the hydraulic cylinder is replaced with an electric linear actuator that is driven by an electric motor.
  • Patent Document 2 discloses an electric linear actuator in which two feed screw devices are driven using one electric motor.
  • Patent Document 1 does not describe whether the electric linear actuator can obtain a sufficient driving force as a construction machine.
  • Patent Document 2 relates to an electric table lift device, and of course, there is no description as to whether or not the electric linear actuator can be installed on the boom or arm of a power shovel.
  • the present invention provides a construction machine equipped with an electric linear actuator that can be mounted on a construction machine and has a sufficient propulsive force.
  • An embodiment of the present invention is a construction machine having a boom, an arm, and a bucket, and drives at least one of the boom, arm, and bucket using an electric linear actuator.
  • the electric linear actuator drives a feed screw device having a feed screw shaft and a linear motion nut, a piston that reciprocates as the linear motion nut of the feed screw device moves, a feed screw device, and a rotational shaft. Having an electric motor.
  • the electric linear actuator When such an electric linear actuator is mounted on a construction machine, the electric linear actuator is installed facing the boom or / and the arm, and the rotating shaft of the electric motor is a feed screw device with respect to the facing boom or / and arm. It is installed at a position away from the feed screw shaft. By doing so, it is possible to clear the restriction on the installation width especially in terms of the structure and mount it on the boom or arm of the power shovel.
  • the rotating shaft of the electric motor is formed in parallel with the feed screw shaft of the feed screw device.
  • the electric linear actuator comprises two feed screw devices each having a feed screw shaft and a linear motion nut in parallel, and reciprocating motion as the linear motion nuts of the two feed screw devices move. And a single electric motor that drives two feed screw devices and has a rotating shaft. By doing so, that is, by reciprocating one piston with two feed screw devices, sufficient propulsive force can be obtained to drive the boom, arm, or bucket of the power shovel.
  • a power shovel will be described as an example of a construction machine that uses an electric linear actuator for a linear motion drive portion.
  • FIG. 1 is an external configuration diagram of a power shovel.
  • the moving parts of the excavator 10 are mainly a boom 101, an arm 102, a bucket 103, a crawler 104, and a swinging body 105.
  • the boom 101, the arm 102, and the bucket 103 are driven by electric linear actuators 20a, 20b, and 20c that are linearly driven.
  • the electric linear actuator 20 a is installed on the side of the boom 101, the electric linear actuator 20 b is installed on the upper surface of the boom 101, and the electric linear actuator 20 c is installed on the upper surface of the arm 102.
  • the electric linear actuator 20a is installed facing the side surface of the boom 101. However, depending on the type of the power shovel, the electric linear actuator 20a is installed facing the back surface (lower surface) of the boom 101. Sometimes it is done.
  • a feed screw device 20ba is installed at a position close to the upper surface of the boom 101, and an electric motor 20bc is installed at a remote position.
  • a feed screw device 20ca is installed at a position close to the upper surface of the arm 102, and an electric motor 20cc is installed at a remote position.
  • a feed screw device is installed at a position close to the side of the arm 102 (back of the sheet), and an electric motor is installed at a remote position (front of the sheet). Yes.
  • the electric motor is installed at a position away from the feed screw device with respect to the opposing boom or / and arm.
  • the electric linear actuator 20a that drives the boom 101 is connected to the swing body 105 and the boom 101, and the boom 101 moves up and down when the electric linear actuator 20a is driven.
  • the electric linear actuator 20b that drives the arm 102 is connected to the boom 101 and the arm 102, and the arm 102 moves when the electric linear actuator 20b is driven.
  • the electric linear actuator 20c that drives the bucket 103 is connected to the arm 102 and the bucket drive joint 1031. When the electric linear actuator 20c is driven, the bucket 103 moves.
  • the boom 101 operates when the piston 20aa of the electric linear actuator 20a connected to the swing body 105 and the boom 101 is linearly driven.
  • the arm 102 operates when the piston 20bb of the electric linear actuator 20b connected to the boom 101 and the arm 102 is linearly driven.
  • the bucket 103 operates when the piston 20cc of the electric linear actuator 20c connected to the arm 102 and the bucket 103 is linearly driven.
  • the crawler 104 and the swing body 105 are driven by an electric motor not shown in FIG. 1 and / or by a hydraulic motor not shown in FIG.
  • Fig. 2 is a schematic diagram of a power shovel system.
  • the crawler 104 and the rotating body 105 are driven by electric motors 30a and 30b.
  • a case where the crawler 104 and the swing body 105 are driven not by the hydraulic motor but by the electric motors 30a and 30b is shown.
  • the electric linear actuators 20a, 20b, and 20c and the electric motors 30a and 30b include electric power generated by rotating the generator 50 by the prime mover 40, and inverters 51a, 51b, 51c that drive the electric linear actuators and the electric motors, respectively. It drives by supplying to 51d and 51e.
  • a line connecting the generator 50 and each inverter is a power line.
  • control device 70 controls the inverters.
  • the control device 70 transmits a torque command to each electric linear actuator and each electric motor via each inverter from the lever operation amount and pedal operation amount of the operator.
  • a line connecting the control device 70 and each inverter is a signal line.
  • FIG. 3 is a configuration diagram of the electric linear actuator.
  • FIG. 3A is a schematic top view of the electric linear actuator 20
  • FIG. 3B is a schematic bottom view of the electric linear actuator 20
  • FIG. 3C is a schematic side view of the electric linear actuator 20.
  • the electric linear actuator 20 forms two feed screw devices having a feed screw shaft 21 and a linear motion nut 22 that linearly drives the feed screw shaft 21 in parallel.
  • the direct acting nut 22 includes, for example, a ball, a roll, etc., and reciprocates on the feed screw shaft 21 in which a groove is formed in a spiral shape. For example, when the feed screw shaft 21 rotates to the right, the linear motion nut 22 moves forward, and when the feed screw shaft 21 rotates to the left, the linear motion nut 22 moves backward.
  • the piston 23 reciprocates as the two linear nuts 22 move.
  • the piston 23 is, for example, a piston (20ab, 20bb, 20cb in FIG. 1) that drives the boom 101, the arm 102, and the bucket 103 of the excavator 10.
  • the electric linear actuator 20 described in the present embodiment can generate a large thrust by arranging a plurality of feed screw shafts 21 (two in the description).
  • the electric motor 24 is formed in parallel with the two feed screw shafts 21.
  • Parallel means that the gear 26 that connects the rotary shaft 25 of the electric motor 24 and the two feed screw shafts 21 is formed in the same direction as the two feed screw shafts 21.
  • the excavator 10 can be mounted.
  • the axial length of the rotating shaft 25 of the electric motor 24 is preferably equal to or less than the axial length of the two feed screw shafts 21.
  • the piston 23 is formed with an impact mitigation device 27 for mitigating the impact force applied to the piston 23.
  • the impact relaxation device 27 is formed of an elastic body such as a spring, for example.
  • the excavator 10 generally performs excavation work. During this excavation work, the bucket 103 of the excavator 10 collides with the object to be excavated, and the piston 23 and further the linear motion nut 22 connected to the piston 23. Impact force is applied. The impact mitigating device 27 will mitigate this impact force.
  • the piston 23 may be loaded not only when the piston 23 extends (when the linear motion nut 22 moves forward) but also when the piston 23 contracts (when the linear motion nut 22 moves backward). In any of these cases, the impact reducing device 27 can reduce the impact force applied to the piston 23.
  • the rotating shaft 25 of the electric motor 24 is formed on the central normal line between the two feed screw shafts 21 in order to transmit the motor torque of the electric motor 24 to the two feed screw shafts 21 as evenly as possible.
  • the rotating shaft 25 of the electric motor 24 is formed so as to be shifted from a straight line connecting the two feed screw shafts 21.
  • the rotating shaft 25 of the electric motor 24 is formed so as to be shifted to the left on the paper surface from the straight line connecting the two feed screw shafts 21.
  • the installation point of the feed screw shaft 21 and the installation point of the rotary shaft 25 are isosceles triangles with the installation point of the feed screw shaft 21 as the points on both sides of the base and the installation point of the rotary shaft 25 as the vertex. It is in.
  • the boom 101 or the arm 102 is formed on the right side on the paper surface. That is, the rotating shaft 25 of the electric motor 24 is installed (shifted) at a position away from the straight line connecting the two feed screw shafts 21 with respect to the opposing boom 101 and arm 102.
  • the excavator 10 can be mounted.
  • the two feed screw shafts 21 and the rotating shaft 25 of the electric motor 24 are connected by a gear 26.
  • the gear 26 transmits the motor torque of the motor 24 to the feed screw shaft 21 as drive torque.
  • an intermediate gear 29 is formed between the gear 26 formed on the rotary shaft 25 and the gear 26 formed on the two feed screw shafts 21. That is, the motor torque of the motor 24 is transmitted to the feed screw shaft 21 via the gear 26 formed on the rotating shaft 25, the intermediate gear 29, and the gear 26 formed on the two feed screw shafts 21.
  • the gear 26 is a reduction gear. That is, the rotational speed of the feed screw shaft 21 is made smaller than the rotational speed of the rotary shaft 25. The rotational speed of the rotary shaft 25 is reduced in the process through the gear 26 formed on the rotary shaft 25, the intermediate gear 29, and the gear 26 formed on the two feed screw shafts 21, and becomes the rotational speed of the feed screw shaft 21. .
  • one piston 23 and the two linear motion nuts 22 are coupled by a member 28.
  • the member 28 can be rotatably coupled to one piston 23, the member 28, and the two direct acting nuts 22 by bolts or the like. Since the member 28 is rotatably coupled to the one piston 23 and the two linear nuts 22, the movement of the two linear nuts 22 should be non-uniform on the feed screw shafts 21. This is because the piston 23 can be reciprocated in a balanced manner even in the case of becoming.
  • the boom 101 and the arm 102 are formed on the paper surface and the lower side with respect to the electric linear actuator 20.
  • the rotating shaft 25 of the electric motor 24 is installed at a position away from the feed screw shaft 21 with respect to the facing boom 101 and arm 102. That is, the rotating shaft 25 of the electric motor 24 is formed with a deviation from a straight line connecting the two feed screw shafts 21 (this straight line exists in a direction perpendicular to the paper surface).
  • control device 70 mounted on the power shovel 10
  • the function of the control device 70 described here is for reducing the impact force applied to the piston 23. That is, the control device 70 includes impact relaxation control that reduces the load applied to the linear nut 22 when the feed screw device is operating.
  • FIG. 4 is a schematic block diagram of the control device 70 mounted on the power shovel.
  • the torque command of the electric linear actuator 20 is controlled based on these conditions.
  • the electric linear actuator 20 is used to drive the boom 101, the arm 102, and the bucket 103, but here, the torque command of the electric linear actuator 20 for driving the arm 102 is representatively shown. The control method will be described.
  • the control device 70 detects the collision state of the piston 23 from the torque command conversion unit 70a that calculates the torque command 1 of the electric linear actuator 20 for driving the arm 102 from the operation amount of the operation lever, and the speed vn of the linear motion nut 22.
  • the final torque command 2 (torque for the inverter 51b) is controlled to control the load on the linear motion nut 22 within the limit value. Command), an impact mitigation control unit 70c.
  • control device 70 By using the control device 70 having such a configuration, it is possible to reduce the impact force on the linear nut 22 when the electric linear actuator 20 is operated.
  • the speed vn of the linear motion nut 22 is calculated based on the rotational speed of the rotary shaft 25 of the electric motor 24.
  • the number of rotations is the number of rotations per unit time, and can also be called a rotation speed. This rotational speed is proportional to the speed at which the linear nut 22 moves linearly.
  • the collision detection unit 70b receives the speed vn of the linear motion nut 22 and linear motion obtained by differentiating the speed vn of the linear motion nut 22 from the speed vn of the linear motion nut 22 (hereinafter referred to as nut speed vn).
  • nut speed vn An acceleration an of the nut 22 (hereinafter referred to as a nut acceleration an) is calculated.
  • the nut acceleration an is calculated by sampling the nut speed vn for each control cycle, for example, and dividing the difference between the current speed value and the previous speed value by the control period (cycle time).
  • the collision detection unit 70b inputs the torque command 1.
  • FIG. 5 is a schematic block diagram of the impact mitigation control unit. The signal processing of the impact relaxation control unit 70c will be described with reference to FIG.
  • the brake torque command calculation unit 70c1 calculates a brake torque command from the collision signal, the nut speed vn, and the nut acceleration an.
  • the determination unit 70c2 determines whether there is a brake torque command or a collision signal, and outputs the result to the switching unit 70c3.
  • the switching unit 70c3 outputs the brake torque command or the torque command 1 as the torque command 2 based on the determination of the determination unit 70c2.
  • the brake torque command is output as the torque command 2 instead of the torque command 1.
  • torque command 1 is set to torque command 2 Output as.
  • This impact mitigation control is performed so that the load on the direct acting nut 22 is maximized within a range that does not exceed the impact limit of the direct acting nut 22, and the load on the direct acting nut 22 is maximized for excavation. It is what you use.
  • the torque command 2 generated by the control device 70 is converted into a voltage command via the current command by the inverter 51b connected to the control device 70, and is given to the electric motor 24 of the electric linear actuator 20.
  • FIG. 6 is an explanatory diagram of the operation of the impact relaxation control.
  • a brake torque command calculation method in the brake torque command calculation unit 70c1 illustrated in FIG. 5 will be described with reference to FIG. FIG. 6 schematically shows the nut speed vn, the nut acceleration an, and the nut load Fn.
  • the bucket 103 collides with the object to be excavated, the nut acceleration an starts to decrease, and the nut load Fn starts to increase.
  • a collision signal is input and calculation of a brake torque command is started.
  • the interval between the time t1 and the time t2 is not particularly related, and the time when the bucket 103 collides with the excavation target is the time t1 as the operation, and the time when the collision detection unit 70b of the control device 70 recognizes the collision is the time t2. is there.
  • the fixed time is a control period ⁇ t of the control device 70 or a preset time, and is about several milliseconds.
  • the collision time ⁇ ti is the nut when the nut speed at time t2 is v2 and time t4.
  • the speed can be calculated from 0 (zero).
  • the collision time ⁇ ti is calculated based on the speed and acceleration of the linear motion nut 22, and the load of the linear motion nut 22 is calculated from the collision time ⁇ ti and the nut speed v2 at the time of the collision.
  • Equation (3) M is the mass of the colliding object, and here is the moving body mass including the moment of inertia of the electric linear actuator 20.
  • the nut load Fn is an estimated value at time t4 when the nut speed vn becomes 0 (zero).
  • the necessary braking force Fb can be expressed by the difference between the load limit value Fnmax and the nut load Fn.
  • This impact mitigation control calculates the necessary braking force Fb when the bucket 103 collides with the object to be excavated based on the speed and acceleration of the linear motion nut 22 and determines the load of the linear motion nut 22 as the load of the linear motion nut. It suppresses within the limit value.
  • Tb Fb ⁇ (L / 2 ⁇ ) (5)
  • the brake torque command Tb at the time of collision can be calculated.
  • FIG. 7 is an operation comparison diagram with and without impact mitigation control. The effect of the impact relaxation control will be described with reference to FIG.
  • the torque command Tn is a torque command obtained based on the lever operation amount, that is, the torque command 1T1.
  • the nut load Fn is obtained based on the moving body mass (M) ⁇ the collision speed (v2) ⁇ the collision time ( ⁇ ti), the nut load Fn can be reduced by shortening the collision time.
  • the impact relaxation control is canceled, and the torque command obtained based on the lever operation amount, that is, the torque command 1 is returned.
  • the nut load Fn at the time of collision can be reduced, so that the impact mitigation device 27 can be miniaturized and the electric linear actuator 20 can be miniaturized. .
  • the reduction gear 26 even if the moment of inertia of the electric linear actuator 20 increases and the nut load Fn at the time of collision increases, the nut load Fn can be reduced.
  • the present invention can be used for a construction machine such as a power shovel having a boom, an arm, and a bucket.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Transmission Devices (AREA)

Abstract

The present invention provides a construction machine in which an electric linear actuator that is able to be mounted in the construction machine and has sufficient thrust is mounted. This construction machine is characterized in that an electric linear actuator that drives at least one among a boom, an arm, and a bucket is installed to face the boom or/and the arm, and comprises a feed screw device that has a feed screw shaft and a linear motion nut, a piston that reciprocates with the movement of the linear motion nut of the feed screw device, and an electric motor that drives the feed screw device and has a rotating shaft, and the rotating shaft of the electric motor is installed at a position more distant from the facing boom or/and arm than the feed screw shaft of the feed screw device.

Description

建設機械Construction machinery
 本発明は、電動リニアアクチュエータを直動駆動部分に用いた建設機械に関する。 The present invention relates to a construction machine using an electric linear actuator as a linear drive part.
 従来、電動リニアアクチュエータを直動駆動部分に用いた建設機械が、特許文献1に記載されている。 Conventionally, a construction machine using an electric linear actuator as a direct drive part is described in Patent Document 1.
 特許文献1には、駆動源を油圧シリンダで構成するパワーショベル等の掘削機能を有する建設装置において、油圧シリンダを電動機で駆動する電動リニアアクチュエータに置き換えることが記載されている。 Patent Document 1 describes that in a construction apparatus having an excavating function such as a power shovel whose driving source is a hydraulic cylinder, the hydraulic cylinder is replaced with an electric linear actuator that is driven by an electric motor.
 また、建設機械に関するものではないが、一つの電動機を用いて二つの送りねじ装置を駆動した電動リニアアクチュエータが、特許文献2に記載されている。 Further, although not related to construction machinery, Patent Document 2 discloses an electric linear actuator in which two feed screw devices are driven using one electric motor.
特開昭63-300131号公報JP-A-63-300131 特開2002-302388号公報JP 2002-302388 A
 電動リニアアクチュエータをパワーショベルのような建設機械の直動駆動部分に用いる場合、直動駆動部分の推進力を得るため、大きな電動機トルクが必要となる。 When using an electric linear actuator for a linear drive part of a construction machine such as a power shovel, a large motor torque is required to obtain a propulsive force of the linear drive part.
 電動機の電動機トルクを大きくするために、電動機の尺方向(軸方向)を大きくすると、パワーショベルのブームやアームに搭載することが難しくなる。構造上、パワーショベルのブームやアーム上ではその設置長さに制限があるため、必要な軸長が確保できないためである。 If the scale direction (axial direction) of the motor is increased in order to increase the motor torque of the motor, it becomes difficult to mount it on the boom or arm of the power shovel. This is because the installation length is limited on the boom or arm of the power shovel due to the structure, and thus the required shaft length cannot be secured.
 また、電動機の電動機トルクを大きくするために、電動機の径方向を大きくしても、やはり、パワーショベルのブームやアームに搭載することが難しい。構造上、パワーショベルのブームやアーム上ではその設置幅にも制限があるため、必要な径方向の大きさが確保できないためである。 Also, even if the motor radial direction is increased in order to increase the motor torque of the motor, it is still difficult to mount it on the boom or arm of the power shovel. This is because the installation width is limited on the boom and arm of the power shovel due to the structure, and the necessary radial size cannot be secured.
 特許文献1には、電動リニアアクチュエータが建設機械として十分な推進力が得られるか否か、の記載はない。 Patent Document 1 does not describe whether the electric linear actuator can obtain a sufficient driving force as a construction machine.
 また、特許文献2は電動式テーブルリフト装置に関するものであり、当然ながら、電動リニアアクチュエータがパワーショベルのブームやアーム上に設置できるか否か、の記載はない。 Patent Document 2 relates to an electric table lift device, and of course, there is no description as to whether or not the electric linear actuator can be installed on the boom or arm of a power shovel.
 そこで、本発明は、建設機械に搭載可能であり、十分な推進力を有する電動リニアアクチュエータを搭載した建設機械を提供するものである。 Therefore, the present invention provides a construction machine equipped with an electric linear actuator that can be mounted on a construction machine and has a sufficient propulsive force.
 本発明の一実施態様は、ブーム、アーム、バケットを有する建設機械であって、これらブーム、アーム、バケットのうち少なくとも一つを、電動リニアアクチュエータを用いて駆動するものである。 An embodiment of the present invention is a construction machine having a boom, an arm, and a bucket, and drives at least one of the boom, arm, and bucket using an electric linear actuator.
 そして、電動リニアアクチュエータは、送りねじ軸と直動ナットとを有する送りねじ装置と、送りねじ装置の直動ナットの移動に伴って往復運動するピストンと、送りねじ装置を駆動し、回転軸を有する電動機と、を有する。 The electric linear actuator drives a feed screw device having a feed screw shaft and a linear motion nut, a piston that reciprocates as the linear motion nut of the feed screw device moves, a feed screw device, and a rotational shaft. Having an electric motor.
 こうした電動リニアアクチュエータを建設機械に搭載する場合には、電動リニアアクチュエータはブームまたは/およびアームに対向して設置され、電動機の回転軸は、対向するブームまたは/およびアームに対して、送りねじ装置の送りねじ軸より離れた位置に設置される。こうすることにより、構造上、特に設置幅の制限をクリアし、パワーショベルのブームやアームに搭載可能となる。 When such an electric linear actuator is mounted on a construction machine, the electric linear actuator is installed facing the boom or / and the arm, and the rotating shaft of the electric motor is a feed screw device with respect to the facing boom or / and arm. It is installed at a position away from the feed screw shaft. By doing so, it is possible to clear the restriction on the installation width especially in terms of the structure and mount it on the boom or arm of the power shovel.
 また、電動機の回転軸を送りねじ装置の送りねじ軸に並列に形成する。こうすることにより、構造上、特に設置長さの制限をクリアし、パワーショベルのブームやアームに搭載可能となる。 Also, the rotating shaft of the electric motor is formed in parallel with the feed screw shaft of the feed screw device. By doing so, it is possible to clear the restriction on the installation length, especially in terms of structure, and mount it on the boom or arm of a power shovel.
 さらに好ましい本発明の一実施態様は、電動リニアアクチュエータが、送りねじ軸と直動ナットとを有する送りねじ装置を並列に二つと、二つの送りねじ装置の直動ナットの移動に伴って往復運動する一つのピストンと、二つの送りねじ装置を駆動し、回転軸を有する一つの電動機と、を有するものである。こうすることにより、つまり、一つのピストンを二つの送りねじ装置で往復運動させることにより、パワーショベルのブームやアームやバッケットを駆動するために十分な推進力を得ることができる。 In a further preferred embodiment of the present invention, the electric linear actuator comprises two feed screw devices each having a feed screw shaft and a linear motion nut in parallel, and reciprocating motion as the linear motion nuts of the two feed screw devices move. And a single electric motor that drives two feed screw devices and has a rotating shaft. By doing so, that is, by reciprocating one piston with two feed screw devices, sufficient propulsive force can be obtained to drive the boom, arm, or bucket of the power shovel.
 本発明により、パワーショベル等の建設機械における直動駆動部分に搭載することができ、十分な推進力を有する電動リニアアクチュエータを搭載した建設機械を提供することができる。 According to the present invention, it is possible to provide a construction machine equipped with an electric linear actuator that can be mounted on a linear drive portion of a construction machine such as a power shovel and has a sufficient propulsive force.
パワーショベルの外観構成図である。It is an external appearance block diagram of a power shovel. パワーショベルのシステムの概略図である。It is the schematic of the system of a power shovel. 電動リニアアクチュエータの構成図である。It is a block diagram of an electric linear actuator. パワーショベルに搭載される制御装置の概略ブロック図である。It is a schematic block diagram of the control apparatus mounted in a power shovel. 衝撃緩和制御部の概略ブロック図である。It is a schematic block diagram of an impact relaxation control part. 衝撃緩和制御の動作説明図である。It is operation | movement explanatory drawing of impact relaxation control. 衝撃緩和制御の有無における動作比較図である。It is an operation | movement comparison figure in the presence or absence of impact relaxation control.
 以下、図面を用いて実施例を説明する。 Hereinafter, examples will be described with reference to the drawings.
 本実施例では、電動リニアアクチュエータを直動駆動部分に用いる建設機械の例として、パワーショベルを説明する。 In this embodiment, a power shovel will be described as an example of a construction machine that uses an electric linear actuator for a linear motion drive portion.
 図1は、パワーショベルの外観構成図である。 FIG. 1 is an external configuration diagram of a power shovel.
 パワーショベル10の移動部分は、主に、ブーム101、アーム102、バケット103、クローラ104、旋回体105である。 The moving parts of the excavator 10 are mainly a boom 101, an arm 102, a bucket 103, a crawler 104, and a swinging body 105.
 ブーム101、アーム102、バケット103は、直動駆動する電動リニアアクチュエータ20a、20b、20cによってそれぞれ駆動する。 The boom 101, the arm 102, and the bucket 103 are driven by electric linear actuators 20a, 20b, and 20c that are linearly driven.
 電動リニアアクチュエータ20aはブーム101の側面に、電動リニアアクチュエータ20bはブーム101の上面に、電動リニアアクチュエータ20cはアーム102の上面にそれぞれ対向して設置されている。 The electric linear actuator 20 a is installed on the side of the boom 101, the electric linear actuator 20 b is installed on the upper surface of the boom 101, and the electric linear actuator 20 c is installed on the upper surface of the arm 102.
 なお、本実施例では、電動リニアアクチュエータ20aはブーム101の側面に対向して設置されているが、パワーショベルの機種によっては、電動リニアアクチュエータ20aがブーム101の裏面(下面)に対向して設置される場合もある。 In this embodiment, the electric linear actuator 20a is installed facing the side surface of the boom 101. However, depending on the type of the power shovel, the electric linear actuator 20a is installed facing the back surface (lower surface) of the boom 101. Sometimes it is done.
 また、電動リニアアクチュエータ20bにおいて、ブーム101の上面に対して、近い位置に送りねじ装置20baが設置され、離れた位置に電動機20bcが設置されている。同様に、電動リニアアクチュエータ20cにおいて、アーム102の上面に対して、近い位置に送りねじ装置20caが設置され、離れた位置に電動機20ccが設置されている。なお、電動リニアアクチュエータ20aにおいては、図示されていないが、アーム102の側面に対して、近い位置(紙面奥)に送りねじ装置が設置され、離れた位置(紙面手前)に電動機が設置されている。 Further, in the electric linear actuator 20b, a feed screw device 20ba is installed at a position close to the upper surface of the boom 101, and an electric motor 20bc is installed at a remote position. Similarly, in the electric linear actuator 20c, a feed screw device 20ca is installed at a position close to the upper surface of the arm 102, and an electric motor 20cc is installed at a remote position. In the electric linear actuator 20a, although not shown, a feed screw device is installed at a position close to the side of the arm 102 (back of the sheet), and an electric motor is installed at a remote position (front of the sheet). Yes.
 つまり、電動機は、対向するブームまたは/およびアームに対して、送りねじ装置よりも離れた位置に設置されている。 That is, the electric motor is installed at a position away from the feed screw device with respect to the opposing boom or / and arm.
 なお、ブーム101を駆動する電動リニアアクチュエータ20aは、旋回体105とブーム101とに接続され、電動リニアアクチュエータ20aが駆動することにより、ブーム101は上下に運動する。 The electric linear actuator 20a that drives the boom 101 is connected to the swing body 105 and the boom 101, and the boom 101 moves up and down when the electric linear actuator 20a is driven.
 また、アーム102を駆動する電動リニアアクチュエータ20bは、ブーム101とアーム102とに接続され、電動リニアアクチュエータ20bが駆動することにより、アーム102が運動する。 The electric linear actuator 20b that drives the arm 102 is connected to the boom 101 and the arm 102, and the arm 102 moves when the electric linear actuator 20b is driven.
 また、バケット103を駆動する電動リニアアクチュエータ20cは、アーム102とバケット駆動関節1031とに接続され、電動リニアアクチュエータ20cが駆動することにより、バケット103が運動する。 Also, the electric linear actuator 20c that drives the bucket 103 is connected to the arm 102 and the bucket drive joint 1031. When the electric linear actuator 20c is driven, the bucket 103 moves.
 すなわち、ブーム101は、旋回体105とブーム101とに接続された電動リニアアクチュエータ20aのピストン20aaが直動駆動することにより動作する。同様に、アーム102は、ブーム101とアーム102とに接続された電動リニアアクチュエータ20bのピストン20bbが直動駆動することにより動作する。同様に、バケット103は、アーム102とバケット103とに接続された電動リニアアクチュエータ20cのピストン20ccが直動駆動することにより動作する。 That is, the boom 101 operates when the piston 20aa of the electric linear actuator 20a connected to the swing body 105 and the boom 101 is linearly driven. Similarly, the arm 102 operates when the piston 20bb of the electric linear actuator 20b connected to the boom 101 and the arm 102 is linearly driven. Similarly, the bucket 103 operates when the piston 20cc of the electric linear actuator 20c connected to the arm 102 and the bucket 103 is linearly driven.
 なお、クローラ104、旋回体105は、図1には図示していない電動モータによって、または/および、図1には図示していない油圧モータによって駆動する。 The crawler 104 and the swing body 105 are driven by an electric motor not shown in FIG. 1 and / or by a hydraulic motor not shown in FIG.
 図2は、パワーショベルのシステムの概略図である。 Fig. 2 is a schematic diagram of a power shovel system.
 クローラ104、旋回体105は、電動モータ30a、30bで駆動する。ここでは、クローラ104、旋回体105が、油圧モータではなく、電動モータ30a、30bで駆動する場合を示している。 The crawler 104 and the rotating body 105 are driven by electric motors 30a and 30b. Here, a case where the crawler 104 and the swing body 105 are driven not by the hydraulic motor but by the electric motors 30a and 30b is shown.
 電動リニアアクチュエータ20a、20b、20cと電動モータ30a、30bとは、原動機40によって発電機50を回転させて発電した電力を、各電動リニアアクチュエータおよび各電動モータを駆動するインバータ51a、51b、51c、51d、51eへ供給することにより駆動する。なお、発電機50と各インバータとを接続する線は電力線である。 The electric linear actuators 20a, 20b, and 20c and the electric motors 30a and 30b include electric power generated by rotating the generator 50 by the prime mover 40, and inverters 51a, 51b, 51c that drive the electric linear actuators and the electric motors, respectively. It drives by supplying to 51d and 51e. A line connecting the generator 50 and each inverter is a power line.
 また、各インバータに対する制御は、制御装置70が司る。制御装置70は、オペレータのレバー操作量やペダル操作量から、各インバータを介して、各電動リニアアクチュエータおよび各電動モータへ、トルク指令を伝達する。なお、制御装置70と各インバータとを接続する線は信号線である。 Also, the control device 70 controls the inverters. The control device 70 transmits a torque command to each electric linear actuator and each electric motor via each inverter from the lever operation amount and pedal operation amount of the operator. A line connecting the control device 70 and each inverter is a signal line.
 図3は、電動リニアアクチュエータの構成図である。 FIG. 3 is a configuration diagram of the electric linear actuator.
 なお、図3(A)は電動リニアアクチュエータ20の上面概略図であり、図3(B)は電動リニアアクチュエータ20の底面概略図であり、図3(C)は電動リニアアクチュエータ20の横面概略図である。 3A is a schematic top view of the electric linear actuator 20, FIG. 3B is a schematic bottom view of the electric linear actuator 20, and FIG. 3C is a schematic side view of the electric linear actuator 20. FIG.
 以下、図3(A)の電動リニアアクチュエータ20の上面概略図を用いて説明する。 Hereinafter, description will be made using the schematic top view of the electric linear actuator 20 in FIG.
 電動リニアアクチュエータ20は、送りねじ軸21と送りねじ軸21上を直動駆動する直動ナット22とを有する送りねじ装置を並列に二つ形成する。 The electric linear actuator 20 forms two feed screw devices having a feed screw shaft 21 and a linear motion nut 22 that linearly drives the feed screw shaft 21 in parallel.
 つまり、送りねじ軸21を2本並行に配置し、送りねじ軸21の1本ずつに、送りねじ軸21の回転運動を直線運動に変換する直動ナット22を螺合して備える。直動ナット22は、例えばボールやロール等を備え、螺旋状に溝が形成された送りねじ軸21上を往復運動する。例えば、送りねじ軸21が右回転した場合、直動ナット22が前進し、送りねじ軸21が左回転した場合、直動ナット22が後進する。 That is, two feed screw shafts 21 are arranged in parallel, and a linear motion nut 22 that converts the rotational motion of the feed screw shaft 21 into linear motion is screwed into each one of the feed screw shafts 21. The direct acting nut 22 includes, for example, a ball, a roll, etc., and reciprocates on the feed screw shaft 21 in which a groove is formed in a spiral shape. For example, when the feed screw shaft 21 rotates to the right, the linear motion nut 22 moves forward, and when the feed screw shaft 21 rotates to the left, the linear motion nut 22 moves backward.
 そして、一つのピストン23は、二つの直動ナット22の移動に伴って往復運動する。ピストン23は、例えば、パワーショベル10のブーム101やアーム102やバケット103を駆動するピストン(図1上の20ab、20bb、20cb)となる。 Then, one piston 23 reciprocates as the two linear nuts 22 move. The piston 23 is, for example, a piston (20ab, 20bb, 20cb in FIG. 1) that drives the boom 101, the arm 102, and the bucket 103 of the excavator 10.
 本実施例で説明する電動リニアアクチュエータ20は、送りねじ軸21を複数本(説明上は2本)配置することにより、大きい推力を発生することができる。 The electric linear actuator 20 described in the present embodiment can generate a large thrust by arranging a plurality of feed screw shafts 21 (two in the description).
 また、電動機24は、二つの送りねじ軸21に並列に形成される。並列とは、電動機24の回転軸25と二つの送りねじ軸21とを接続する歯車26の設置位置に対して、二つの送りねじ軸21と同方向に形成するとの意味である。 The electric motor 24 is formed in parallel with the two feed screw shafts 21. Parallel means that the gear 26 that connects the rotary shaft 25 of the electric motor 24 and the two feed screw shafts 21 is formed in the same direction as the two feed screw shafts 21.
 これにより、電動機24の尺方向を大きくすることができるため、電動機24の電動機トルクを大きくすることもできる。また、パワーショベル10のブーム101やアーム102の長さを有効に利用することができるため、搭載も可能になる。 Thereby, since the direction of the scale of the motor 24 can be increased, the motor torque of the motor 24 can be increased. Further, since the lengths of the boom 101 and the arm 102 of the excavator 10 can be used effectively, the excavator 10 can be mounted.
 なお、ピストン23との関係を考慮すると、電動機24の回転軸25の軸方向の長さは、二つの送りねじ軸21の軸長以下とすることが好ましい。 In consideration of the relationship with the piston 23, the axial length of the rotating shaft 25 of the electric motor 24 is preferably equal to or less than the axial length of the two feed screw shafts 21.
 また、ピストン23には、ピストン23にかかる衝撃力を緩和する衝撃緩和装置27が形成される。この衝撃緩和装置27は、例えば、ばね等の弾性体で形成される。パワーショベル10は、一般的に掘削作業をするが、この掘削作業の際にパワーショベル10のバケット103は掘削対象に衝突し、ピストン23、さらにはピストン23と接続されている直動ナット22に衝撃力がかかる。この衝撃力を衝撃緩和装置27が緩和することになる。 Also, the piston 23 is formed with an impact mitigation device 27 for mitigating the impact force applied to the piston 23. The impact relaxation device 27 is formed of an elastic body such as a spring, for example. The excavator 10 generally performs excavation work. During this excavation work, the bucket 103 of the excavator 10 collides with the object to be excavated, and the piston 23 and further the linear motion nut 22 connected to the piston 23. Impact force is applied. The impact mitigating device 27 will mitigate this impact force.
 なお、ピストン23は、ピストン23が伸びる場合(直動ナット22が前進する場合)のみならず、ピストン23が縮む場合(直動ナット22が後進する場合)にも、負荷がかかる場合がある。こうしたいずれの場合にも、この衝撃緩和装置27はピストン23にかかる衝撃力を緩和することができる。 Note that the piston 23 may be loaded not only when the piston 23 extends (when the linear motion nut 22 moves forward) but also when the piston 23 contracts (when the linear motion nut 22 moves backward). In any of these cases, the impact reducing device 27 can reduce the impact force applied to the piston 23.
 以下、図3(B)の電動リニアアクチュエータ20の底面概略図を用いて説明する。 Hereinafter, description will be made with reference to the schematic bottom view of the electric linear actuator 20 in FIG.
 電動機24の回転軸25は、電動機24の電動機トルクを、できる限り均等に、二つの送りねじ軸21に伝達するため、二つの送りねじ軸21の間の中央法線上に形成される。 The rotating shaft 25 of the electric motor 24 is formed on the central normal line between the two feed screw shafts 21 in order to transmit the motor torque of the electric motor 24 to the two feed screw shafts 21 as evenly as possible.
 そして、電動機24の回転軸25は、二つの送りねじ軸21を結ぶ直線よりずれて形成される。なお、本実施例では、電動機24の回転軸25は、二つの送りねじ軸21を結ぶ直線より、紙面上、左側にずれて形成されている。 The rotating shaft 25 of the electric motor 24 is formed so as to be shifted from a straight line connecting the two feed screw shafts 21. In this embodiment, the rotating shaft 25 of the electric motor 24 is formed so as to be shifted to the left on the paper surface from the straight line connecting the two feed screw shafts 21.
 言い換えると、送りねじ軸21の設置点と回転軸25の設置点とは、送りねじ軸21の設置点を底辺の両側の点とし、回転軸25の設置点を頂点とした2等辺三角形の関係にある。 In other words, the installation point of the feed screw shaft 21 and the installation point of the rotary shaft 25 are isosceles triangles with the installation point of the feed screw shaft 21 as the points on both sides of the base and the installation point of the rotary shaft 25 as the vertex. It is in.
 電動リニアアクチュエータ20を、パワーショベル10のブーム101やアーム102に搭載する場合には、紙面上、右側にブーム101やアーム102が形成されることになる。つまり、電動機24の回転軸25は、対向するブーム101やアーム102に対して、二つの送りねじ軸21を結ぶ直線より離れた位置に(ずれて)設置されることになる。 When the electric linear actuator 20 is mounted on the boom 101 or the arm 102 of the excavator 10, the boom 101 or the arm 102 is formed on the right side on the paper surface. That is, the rotating shaft 25 of the electric motor 24 is installed (shifted) at a position away from the straight line connecting the two feed screw shafts 21 with respect to the opposing boom 101 and arm 102.
 これにより、電動機24の径方向を大きくすることができるため、電動機24の電動機トルクを大きくすることもできる。また、パワーショベル10のブーム101やアーム102の幅を有効に利用することができるため、搭載も可能になる。 Thereby, since the radial direction of the motor 24 can be increased, the motor torque of the motor 24 can also be increased. Further, since the width of the boom 101 and the arm 102 of the excavator 10 can be used effectively, the excavator 10 can be mounted.
 さらに、二つの送りねじ軸21と電動機24の回転軸25とは、歯車26によって接続される。歯車26は、電動機24の電動機トルクを送りねじ軸21に駆動トルクとして伝達するものである。 Furthermore, the two feed screw shafts 21 and the rotating shaft 25 of the electric motor 24 are connected by a gear 26. The gear 26 transmits the motor torque of the motor 24 to the feed screw shaft 21 as drive torque.
 なお、本実施例では、回転軸25に形成された歯車26と二つの送りねじ軸21に形成された歯車26との間には、中間歯車29が形成される。つまり、電動機24の電動機トルクは、回転軸25に形成された歯車26、中間歯車29、二つの送りねじ軸21に形成された歯車26を介して、送りねじ軸21に伝達される。 In this embodiment, an intermediate gear 29 is formed between the gear 26 formed on the rotary shaft 25 and the gear 26 formed on the two feed screw shafts 21. That is, the motor torque of the motor 24 is transmitted to the feed screw shaft 21 via the gear 26 formed on the rotating shaft 25, the intermediate gear 29, and the gear 26 formed on the two feed screw shafts 21.
 そして、電動機24のサイズ(尺方向及び径方向の大きさ)を縮小化し、より一層、駆動トルクを増加させるためには、歯車26を減速歯車とすることが好ましい。つまり、回転軸25の回転数よりも送りねじ軸21の回転数を小さくする。回転軸25の回転数は、回転軸25に形成された歯車26、中間歯車29、二つの送りねじ軸21に形成された歯車26を介する過程で減速され、送りねじ軸21の回転数となる。 Further, in order to reduce the size (size in the scale direction and the radial direction) of the electric motor 24 and further increase the driving torque, it is preferable that the gear 26 is a reduction gear. That is, the rotational speed of the feed screw shaft 21 is made smaller than the rotational speed of the rotary shaft 25. The rotational speed of the rotary shaft 25 is reduced in the process through the gear 26 formed on the rotary shaft 25, the intermediate gear 29, and the gear 26 formed on the two feed screw shafts 21, and becomes the rotational speed of the feed screw shaft 21. .
 また、一つのピストン23と二つの直動ナット22とは、部材28により、結合される。 Further, the one piston 23 and the two linear motion nuts 22 are coupled by a member 28.
 なお、図示はないが、この部材28を、一つのピストン23と、部材28と二つの直動ナット22とに、それぞれボルト等により回転可能に結合することもできる。部材28が、一つのピストン23や二つの直動ナット22と回転可能に結合されることにより、二つの直動ナット22の移動が、それぞれの送りねじ軸21上で、万一、不均一になった場合にも、ピストン23をバランスよく往復運動させることができるためである。 Although not shown, the member 28 can be rotatably coupled to one piston 23, the member 28, and the two direct acting nuts 22 by bolts or the like. Since the member 28 is rotatably coupled to the one piston 23 and the two linear nuts 22, the movement of the two linear nuts 22 should be non-uniform on the feed screw shafts 21. This is because the piston 23 can be reciprocated in a balanced manner even in the case of becoming.
 以下、図3(C)の電動リニアアクチュエータ20の底面概略図を用いて説明する。 Hereinafter, description will be made with reference to the schematic bottom view of the electric linear actuator 20 in FIG.
 ブーム101やアーム102は、電動リニアアクチュエータ20に対して、紙面上、下側に形成される。そして、電動機24の回転軸25は、対向するブーム101やアーム102に対して、送りねじ軸21より離れた位置に設置される。つまり、電動機24の回転軸25は、二つの送りねじ軸21を結ぶ直線(この直線は紙面に対して垂直方向に存在する)よりずれて形成される。 The boom 101 and the arm 102 are formed on the paper surface and the lower side with respect to the electric linear actuator 20. The rotating shaft 25 of the electric motor 24 is installed at a position away from the feed screw shaft 21 with respect to the facing boom 101 and arm 102. That is, the rotating shaft 25 of the electric motor 24 is formed with a deviation from a straight line connecting the two feed screw shafts 21 (this straight line exists in a direction perpendicular to the paper surface).
 なお、二つの送りねじ軸21と電動機24の回転軸25とは、本方向から俯瞰した場合にも、並列に形成される。 Note that the two feed screw shafts 21 and the rotary shaft 25 of the electric motor 24 are formed in parallel even when viewed from this direction.
 次に、パワーショベル10に搭載される制御装置70の機能について説明する。特に、ここで説明する制御装置70の機能は、ピストン23にかかる衝撃力を緩和するためのものである。つまり、制御装置70は、送りねじ装置が稼動している時に、直動ナット22への荷重を緩和する衝撃緩和制御を備えるものである。 Next, functions of the control device 70 mounted on the power shovel 10 will be described. In particular, the function of the control device 70 described here is for reducing the impact force applied to the piston 23. That is, the control device 70 includes impact relaxation control that reduces the load applied to the linear nut 22 when the feed screw device is operating.
 図4はパワーショベルに搭載される制御装置70の概略ブロック図である。 FIG. 4 is a schematic block diagram of the control device 70 mounted on the power shovel.
 なお、回転軸25と一方の送りねじ軸21との間に形成する歯車26と回転軸25と他方の送りねじ軸21との間に形成する歯車26との慣性モーメントを等しくすることにより、二つの送りねじ軸21の間の総合慣性モーメントを等しくすることができ、制御上、一つの送りねじ軸とみなすことができる。 Note that by equalizing the moments of inertia of the gear 26 formed between the rotary shaft 25 and one feed screw shaft 21 and the gear 26 formed between the rotary shaft 25 and the other feed screw shaft 21, two The total moment of inertia between the two feed screw shafts 21 can be made equal, and can be regarded as one feed screw shaft for control purposes.
 本実施例では、こうした条件に基づいて、電動リニアアクチュエータ20のトルク指令を制御する。 In this embodiment, the torque command of the electric linear actuator 20 is controlled based on these conditions.
 本実施例におけるパワーショベル10は、ブーム101やアーム102やバケット103の駆動に電動リニアアクチュエータ20が使用されているが、ここでは、代表してアーム102の駆動用の電動リニアアクチュエータ20のトルク指令の制御方法について説明する。 In the power shovel 10 in this embodiment, the electric linear actuator 20 is used to drive the boom 101, the arm 102, and the bucket 103, but here, the torque command of the electric linear actuator 20 for driving the arm 102 is representatively shown. The control method will be described.
 制御装置70は、操作レバーの操作量から、アーム102の駆動用の電動リニアアクチュエータ20のトルク指令1を演算するトルク指令変換部70aと、直動ナット22の速度vnから、ピストン23の衝突状態を判定し、衝突信号を演算する衝突検知部70bと、ピストン23が衝突状態であるとき、直動ナット22への荷重を限界値以内に制御するため最終的なトルク指令2(インバータ51bに対するトルク指令)を演算する衝撃緩和制御部70cと、を備えている。 The control device 70 detects the collision state of the piston 23 from the torque command conversion unit 70a that calculates the torque command 1 of the electric linear actuator 20 for driving the arm 102 from the operation amount of the operation lever, and the speed vn of the linear motion nut 22. When the piston 23 is in a collision state, the final torque command 2 (torque for the inverter 51b) is controlled to control the load on the linear motion nut 22 within the limit value. Command), an impact mitigation control unit 70c.
 こうした構成を有する制御装置70を用いることにより、電動リニアアクチュエータ20の動作時の直動ナット22への衝撃力を緩和することができる。 By using the control device 70 having such a configuration, it is possible to reduce the impact force on the linear nut 22 when the electric linear actuator 20 is operated.
 ここでは、直動ナット22およびピストン23を前方に追い出したときの衝撃緩和制御について説明する。 Here, the impact mitigation control when the linear motion nut 22 and the piston 23 are driven forward will be described.
 ここで、直動ナット22の速度vnは、電動機24の回転軸25の回転数に基づいて演算されるものである。回転数とは、単位時間あたりの回転数であり、回転速度と言い換えることもできる。この回転速度と直動ナット22が直動する速度とは比例する。 Here, the speed vn of the linear motion nut 22 is calculated based on the rotational speed of the rotary shaft 25 of the electric motor 24. The number of rotations is the number of rotations per unit time, and can also be called a rotation speed. This rotational speed is proportional to the speed at which the linear nut 22 moves linearly.
 衝突検知部70bは、直動ナット22の速度vnを入力し、直動ナット22の速度vn(以下、ナット速度vnと称する)から、直動ナット22の速度vnを微分して得られる直動ナット22の加速度an(以下、ナット加速度anと称する)を算出する。 The collision detection unit 70b receives the speed vn of the linear motion nut 22 and linear motion obtained by differentiating the speed vn of the linear motion nut 22 from the speed vn of the linear motion nut 22 (hereinafter referred to as nut speed vn). An acceleration an of the nut 22 (hereinafter referred to as a nut acceleration an) is calculated.
 ナット加速度anは、ナット速度vnを、例えば制御周期ごとにサンプリングし、速度の現在値と速度の前回値との差分を、制御周期(周期時間)で除算し、算出する。 The nut acceleration an is calculated by sampling the nut speed vn for each control cycle, for example, and dividing the difference between the current speed value and the previous speed value by the control period (cycle time).
 制御周期をΔt、現在のナット速度をvn、前回のナット速度をvn-1とすると、ナット加速度anは次式で算出される。
  an=(vn-(vn-1))/Δt
Assuming that the control cycle is Δt, the current nut speed is vn, and the previous nut speed is vn−1, the nut acceleration an is calculated by the following equation.
an = (vn− (vn−1)) / Δt
 また、衝突検知部70bは、トルク指令1を入力する。 Also, the collision detection unit 70b inputs the torque command 1.
 そして、算出されたナット加速度anがトルク指令1に反して低下したときには、バケット103が掘削対象に衝突したと判定して、衝突の有無を示す衝突信号を出力する。なお、この際、直動ナット22の速度vnがゼロになるまで、衝突信号は解除しないものとする。 When the calculated nut acceleration an decreases against the torque command 1, it is determined that the bucket 103 has collided with the object to be excavated, and a collision signal indicating the presence or absence of the collision is output. At this time, the collision signal is not canceled until the speed vn of the linear motion nut 22 becomes zero.
 図5は、衝撃緩和制御部の概略ブロック図である。図5を用いて衝撃緩和制御部70cの信号処理を説明する。 FIG. 5 is a schematic block diagram of the impact mitigation control unit. The signal processing of the impact relaxation control unit 70c will be described with reference to FIG.
 衝撃緩和制御部70cでは、衝突信号、ナット速度vn、および、ナット加速度anから、ブレーキトルク指令演算部70c1において、ブレーキトルク指令を演算する。 In the shock relaxation control unit 70c, the brake torque command calculation unit 70c1 calculates a brake torque command from the collision signal, the nut speed vn, and the nut acceleration an.
 判断部70c2では、ブレーキトルク指令があるかないか、衝突信号があるかないかを判断し、その結果を切替部70c3に出力する。 The determination unit 70c2 determines whether there is a brake torque command or a collision signal, and outputs the result to the switching unit 70c3.
 切替部70c3では、判断部70c2の判断に基づいて、ブレーキトルク指令またはトルク指令1をトルク指令2として出力する。 The switching unit 70c3 outputs the brake torque command or the torque command 1 as the torque command 2 based on the determination of the determination unit 70c2.
 つまり、ブレーキトルク指令がゼロではなく、正または負の指令が出力されており、衝突信号がある場合には、トルク指令1に代えて、ブレーキトルク指令をトルク指令2として出力する。 That is, if the brake torque command is not zero but a positive or negative command is output and there is a collision signal, the brake torque command is output as the torque command 2 instead of the torque command 1.
 ブレーキトルク指令がゼロではなく、正または負の指令が出力されており、衝突信号がない場合、または、ブレーキトルク指令がゼロであり、衝突信号がある場合には、トルク指令1をトルク指令2として出力する。 If the brake torque command is not zero and a positive or negative command is output and there is no collision signal, or if the brake torque command is zero and there is a collision signal, torque command 1 is set to torque command 2 Output as.
 この衝撃緩和制御は、直動ナット22への荷重が、直動ナット22の衝撃限定を超えない範囲で最大となるように制御するものであり、直動ナット22への荷重を最大限掘削に利用するものである。 This impact mitigation control is performed so that the load on the direct acting nut 22 is maximized within a range that does not exceed the impact limit of the direct acting nut 22, and the load on the direct acting nut 22 is maximized for excavation. It is what you use.
 このように、制御装置70によって生成されたトルク指令2は、制御装置70に接続されるインバータ51bによって、電流指令を介して電圧指令に変換され、電動リニアアクチュエータ20の電動機24に付与される。 Thus, the torque command 2 generated by the control device 70 is converted into a voltage command via the current command by the inverter 51b connected to the control device 70, and is given to the electric motor 24 of the electric linear actuator 20.
 図6は、衝撃緩和制御の動作説明図である。図6を用いて、図5に記載されるブレーキトルク指令演算部70c1におけるブレーキトルク指令の演算方法を説明する。図6は、ナット速度vn、ナット加速度an、ナット荷重Fnを模式的に示したものである。 FIG. 6 is an explanatory diagram of the operation of the impact relaxation control. A brake torque command calculation method in the brake torque command calculation unit 70c1 illustrated in FIG. 5 will be described with reference to FIG. FIG. 6 schematically shows the nut speed vn, the nut acceleration an, and the nut load Fn.
 時間t1で、バケット103が掘削対象に衝突し、ナット加速度anが減少し始め、ナット荷重Fnが上昇し始める。 At time t1, the bucket 103 collides with the object to be excavated, the nut acceleration an starts to decrease, and the nut load Fn starts to increase.
 時間t2で、衝突信号が入力され、ブレーキトルク指令の演算を始める。時間t1と時間t2との間隔に特に関連性は無く、動作としてバケット103が掘削対象に衝突した時間が時間t1であり、制御装置70の衝突検知部70bが衝突と認識した時間が時間t2である。 At time t2, a collision signal is input and calculation of a brake torque command is started. The interval between the time t1 and the time t2 is not particularly related, and the time when the bucket 103 collides with the excavation target is the time t1 as the operation, and the time when the collision detection unit 70b of the control device 70 recognizes the collision is the time t2. is there.
 時間t2のときのナット速度v2から、ナット加速度a2を演算し、さらに、時間t2より一定時間が経過した時間t3におけるナット加速度a3を演算する。ここで、一定時間は、制御装置70の制御周期Δtまたは予め設定された時間であり、数ミリ秒程度である。 From the nut speed v2 at time t2, the nut acceleration a2 is calculated, and further, the nut acceleration a3 at time t3 when a certain time has elapsed from time t2 is calculated. Here, the fixed time is a control period Δt of the control device 70 or a preset time, and is about several milliseconds.
 そして、ナット加速度a2とナット加速度a3とを用いて、衝突時のナット加速度の近似式a(t)を、式(1)を用いて求める。
  a(t)=(Δa/Δt)t+a2
     =(a3-a2)/(t3-t2)×t+a2     …式(1)
Then, using the nut acceleration a2 and the nut acceleration a3, an approximate expression a (t) of the nut acceleration at the time of collision is obtained using the expression (1).
a (t) = (Δa / Δt) t + a2
= (A3-a2) / (t3-t2) × t + a2 Formula (1)
 次に、ナット加速度の近似式a(t)からナット速度の近似式v(t)を、式(2)を用いて求める。
  v(t)=v2+∫a(t)dt
     =v2+(1/2)×(Δa/Δt)t2+a2t   …式(2)
Next, an approximate expression v (t) of the nut speed is obtained from the approximate expression a (t) of the nut acceleration using the expression (2).
v (t) = v2 + ∫a (t) dt
= V2 + (1/2) × (Δa / Δt) t 2 + a2t Equation (2)
 衝突信号が入力される時間t2からナット速度vnがゼロとなる時間t4までの時間を、衝突時間Δtiとすると、衝突時間Δtiは、時間t2のときのナット速度がv2、時間t4のときのナット速度が0(ゼロ)であることから演算することができる。 If the time from the time t2 when the collision signal is input to the time t4 when the nut speed vn becomes zero is defined as the collision time Δti, the collision time Δti is the nut when the nut speed at time t2 is v2 and time t4. The speed can be calculated from 0 (zero).
 つまり、衝突時間Δtiは、次式で算出される。
  Δti=[-a2-√((a2)2-2(Δa/Δt)v2)]/(Δa/Δt)
That is, the collision time Δti is calculated by the following equation.
Δti = [− a2−√ ((a2) 2 −2 (Δa / Δt) v2)] / (Δa / Δt)
 この衝撃緩和制御は、直動ナット22の速度および加速度に基づいて、衝突時間Δtiを演算し、衝突時間Δtiおよび衝突時のナット速度v2から直動ナット22の荷重を演算するものである。 In this impact mitigation control, the collision time Δti is calculated based on the speed and acceleration of the linear motion nut 22, and the load of the linear motion nut 22 is calculated from the collision time Δti and the nut speed v2 at the time of the collision.
 一方、衝撃緩和制御無しのときに推定される衝突時のナット荷重(衝突時に直動ナット22にかかる荷重)Fnを、式(3)を用いて求める。
  Fn≒M×v2×Δti                …式(3)
On the other hand, a nut load at the time of collision (load applied to the linear motion nut 22 at the time of collision) Fn estimated when there is no impact mitigation control is obtained using Expression (3).
Fn≈M × v2 × Δti (3)
 式(3)において、Mは、衝突する物体の質量であり、ここでは電動リニアアクチュエータ20の慣性モーメントを含めた動体質量である。 In Equation (3), M is the mass of the colliding object, and here is the moving body mass including the moment of inertia of the electric linear actuator 20.
 なお、ナット荷重Fnは、ナット速度vnが0(ゼロ)となる時間t4の時の値を推定したものである。 The nut load Fn is an estimated value at time t4 when the nut speed vn becomes 0 (zero).
 直動ナット22の荷重限界値Fnmaxを予め設定すると、必要なブレーキ力Fbは、荷重限界値Fnmaxとナット荷重Fnとの差で表現することができる。 If the load limit value Fnmax of the direct acting nut 22 is set in advance, the necessary braking force Fb can be expressed by the difference between the load limit value Fnmax and the nut load Fn.
 つまり、必要なブレーキ力Fbは、式(4)で算出される。
  Fb=-(Fn-Fnmax)               …式(4)
That is, the necessary braking force Fb is calculated by the equation (4).
Fb = − (Fn−Fnmax) Equation (4)
 この衝撃緩和制御は、直動ナット22の速度および加速度に基づいて、バケット103が掘削対象に衝突する際に、必要なブレーキ力Fbを算出し、直動ナット22の荷重を直動ナットの荷重限界値以内に抑制するものである。 This impact mitigation control calculates the necessary braking force Fb when the bucket 103 collides with the object to be excavated based on the speed and acceleration of the linear motion nut 22 and determines the load of the linear motion nut 22 as the load of the linear motion nut. It suppresses within the limit value.
 そして、ブレーキ力Fbと送りねじ軸21のねじ軸ピッチLとから、ブレークトルク指令Tbを、式(5)を用いて求める。
  Tb=Fb×(L/2π)                …式(5)
Then, a break torque command Tb is obtained from the brake force Fb and the screw shaft pitch L of the feed screw shaft 21 using the equation (5).
Tb = Fb × (L / 2π) (5)
 以上のように、衝突時のブレーキトルク指令Tbを演算することができる。 As described above, the brake torque command Tb at the time of collision can be calculated.
 こうしたブレーキトルク指令Tbを、電動リニアアクチュエータ20に対するトルク指令として用いることにより、直動ナット22にかかる荷重を直動ナット22の荷重限界値以内に抑えることができる。 By using such a brake torque command Tb as a torque command for the electric linear actuator 20, the load applied to the linear nut 22 can be suppressed within the load limit value of the linear nut 22.
 図7は、衝撃緩和制御の有無における動作比較図である。図7を用いて、衝撃緩和制御の効果について説明する。 FIG. 7 is an operation comparison diagram with and without impact mitigation control. The effect of the impact relaxation control will be described with reference to FIG.
 衝突があった時間t1から衝撃緩和制御部におけるブレーキトルク指令が演算される時間t3までは、トルク指令Tnは、レバー操作量に基づいて求められるトルク指令、つまりトルク指令1T1である。 From the time t1 when there is a collision to the time t3 when the brake torque command in the impact mitigation control unit is calculated, the torque command Tn is a torque command obtained based on the lever operation amount, that is, the torque command 1T1.
 時間t3からブレーキトルクTbが指令されると、つまり「制御あり」の場合は、ナット速度vnの減速度(負の加速度)が「制御なし」の場合より増加する。そして、「制御なし」におけるナット速度がゼロになる時間t4より前の時間でナット速度がゼロになる。 When the brake torque Tb is commanded from time t3, that is, in the case of “with control”, the deceleration (negative acceleration) of the nut speed vn increases from the case of “without control”. Then, the nut speed becomes zero before the time t4 when the nut speed becomes zero in “no control”.
 ナット荷重Fnは、動体質量(M)×衝突時速度(v2)×衝突時間(Δti)に基づいて求められるため、衝突時間を短縮することにより、ナット荷重Fnを小さくすることができる。 Since the nut load Fn is obtained based on the moving body mass (M) × the collision speed (v2) × the collision time (Δti), the nut load Fn can be reduced by shortening the collision time.
 なお、ナット速度vnが0(ゼロ)になった後は、衝撃緩和制御が解除され、レバー操作量に基づいて求められるトルク指令、つまり、トルク指令1に戻る。 In addition, after the nut speed vn becomes 0 (zero), the impact relaxation control is canceled, and the torque command obtained based on the lever operation amount, that is, the torque command 1 is returned.
 このような衝撃緩和制御を採用することにより、衝突時のナット荷重Fnを小さくすることができるため、衝撃緩和装置27を小型化することができると共に、電動リニアアクチュエータ20を小型化することができる。 By adopting such impact mitigation control, the nut load Fn at the time of collision can be reduced, so that the impact mitigation device 27 can be miniaturized and the electric linear actuator 20 can be miniaturized. .
 たとえ、減速歯車26を用いることにより、電動リニアアクチュエータ20の慣性モーメントが増大し、衝突時のナット荷重Fnが増大してしまう場合であっても、ナット荷重Fnを小さくすることができる。 For example, by using the reduction gear 26, even if the moment of inertia of the electric linear actuator 20 increases and the nut load Fn at the time of collision increases, the nut load Fn can be reduced.
 本発明は、ブーム、アーム、バケットを有するパワーショベル等の建設機械に利用できる。 The present invention can be used for a construction machine such as a power shovel having a boom, an arm, and a bucket.
10 パワーショベル
20 電動リニアアクチュエータ
70 制御装置
10 power shovel 20 electric linear actuator 70 control device

Claims (10)

  1.  ブーム、アーム、バケットの少なくとも一つを駆動する電動リニアアクチュエータを有し、
     前記電動リニアアクチュエータは、前記ブームまたは/および前記アームに対向して設置され、送りねじ軸と直動ナットとを有する送りねじ装置と、前記送りねじ装置の直動ナットの移動に伴って往復運動するピストンと、前記送りねじ装置を駆動し、回転軸を有する電動機と、を有し、
     前記電動機の回転軸は、対向する前記ブームまたは/および前記アームに対して、前記送りねじ装置の送りねじ軸より離れた位置に設置されることを特徴とする建設機械。
    An electric linear actuator that drives at least one of a boom, an arm, and a bucket;
    The electric linear actuator is installed to face the boom or / and the arm, and has a feed screw device having a feed screw shaft and a linear motion nut, and reciprocating motion as the linear motion nut of the feed screw device moves. And a motor that drives the feed screw device and has a rotating shaft,
    The construction machine characterized in that the rotating shaft of the electric motor is installed at a position away from the feed screw shaft of the feed screw device with respect to the opposed boom or / and the arm.
  2.  請求項1に記載の建設機械において、
     前記電動リニアアクチュエータは、送りねじ軸と直動ナットとを有する送りねじ装置を並列に二つと、二つの前記送りねじ装置の直動ナットの移動に伴って往復運動する一つのピストンと、二つの前記送りねじ装置を駆動し、回転軸を有する一つの電動機と、を有すること特徴とする建設機械。
    The construction machine according to claim 1,
    The electric linear actuator includes two feed screw devices each having a feed screw shaft and a linear motion nut in parallel, one piston that reciprocates as the linear motion nuts of the two feed screw devices move, and two A construction machine comprising: an electric motor that drives the feed screw device and has a rotating shaft.
  3.  請求項2に記載の建設機械において、
     前記電動機の回転軸は、二つの前記送りねじ装置の送りねじ軸に並列に形成されることを特徴とする建設機械。
    The construction machine according to claim 2,
    The construction machine according to claim 1, wherein the rotating shaft of the electric motor is formed in parallel to the feed screw shafts of the two feed screw devices.
  4.  請求項2に記載の建設機械において、
     前記電動機の回転軸は、二つの前記送りねじ装置の送りねじ軸の間の中央法線上に形成されること特徴とする建設機械。
    The construction machine according to claim 2,
    The construction machine according to claim 1, wherein the rotating shaft of the electric motor is formed on a central normal line between the feed screw shafts of the two feed screw devices.
  5.  請求項2に記載の建設機械において、
     二つの前記送りねじ装置の送りねじ軸と一つの前記電動機の回転軸とを接続する歯車を有することを特徴とする建設機械。
    The construction machine according to claim 2,
    A construction machine comprising a gear for connecting two feed screw shafts of the feed screw device and one rotary shaft of the electric motor.
  6.  請求項5に記載の建設機械において、
     前記歯車は、前記電動機の回転軸の回転数を減速して前記送りねじ装置の送りねじ軸の回転数とする減速歯車であることを特徴とする建設機械。
    The construction machine according to claim 5,
    The construction machine according to claim 1, wherein the gear is a reduction gear that reduces the rotational speed of the rotary shaft of the electric motor to obtain the rotational speed of the feed screw shaft of the feed screw device.
  7.  請求項2に記載の建設機械において、
     前記送りねじ装置の稼動時に前記直動ナットへの荷重を緩和する衝撃緩和制御を備える制御装置を有することを特徴とする建設機械。
    The construction machine according to claim 2,
    A construction machine comprising a control device including an impact mitigation control for mitigating a load on the linear motion nut during operation of the feed screw device.
  8.  請求項7に記載の建設機械において、
     前記衝撃緩和制御は、前記直動ナットの速度および加速度に基づいて、前記バケットが掘削対象に衝突する際に必要なブレーキ力を算出し、前記直動ナットの荷重を前記直動ナットの荷重限界値以内に抑制する制御であることを特徴とする建設機械。
    The construction machine according to claim 7,
    The impact relaxation control calculates a braking force required when the bucket collides with an object to be excavated based on the speed and acceleration of the linear motion nut, and the load of the linear motion nut is a load limit of the linear motion nut. Construction machinery characterized by control that is controlled within a value.
  9.  請求項8に記載の建設機械において、
     前記衝撃緩和制御は、前記直動ナットの速度および加速度に基づいて、衝突時間を演算し、前記衝突時間および衝突時速度から前記直動ナットの荷重を演算することを特徴とする建設機械。
    The construction machine according to claim 8,
    The impact relaxation control calculates a collision time based on a speed and acceleration of the linear motion nut, and calculates a load of the linear motion nut from the collision time and the speed at the time of the collision.
  10.  送りねじ軸と直動ナットとを有する送りねじ装置を並列に二つと、二つの前記送りねじ装置の直動ナットの移動に伴って往復運動する一つのピストンと、二つの前記送りねじ装置を駆動し、回転軸を有する一つの電動機と、を有し、
     前記電動機の回転軸は、二つの前記送りねじ装置の送りねじ軸の間の中央法線上であって二つの前記送りねじ装置の送りねじ軸を結ぶ直線よりずれて形成されると共に、二つの前記送りねじ装置の送りねじ軸に並列に形成される電動リニアアクチュエータを搭載した建設機械。
    Two feed screw devices having a feed screw shaft and a linear motion nut are arranged in parallel, one piston that reciprocates as the linear motion nuts of the two feed screw devices move, and the two feed screw devices are driven. And a single electric motor having a rotating shaft,
    The rotating shaft of the electric motor is formed on a central normal line between the feed screw shafts of the two feed screw devices and deviated from a straight line connecting the feed screw shafts of the two feed screw devices. A construction machine equipped with an electric linear actuator formed in parallel with the feed screw shaft of the feed screw device.
PCT/JP2012/000649 2012-02-01 2012-02-01 Construction machine WO2013114451A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000649 WO2013114451A1 (en) 2012-02-01 2012-02-01 Construction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000649 WO2013114451A1 (en) 2012-02-01 2012-02-01 Construction machine

Publications (1)

Publication Number Publication Date
WO2013114451A1 true WO2013114451A1 (en) 2013-08-08

Family

ID=48904542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000649 WO2013114451A1 (en) 2012-02-01 2012-02-01 Construction machine

Country Status (1)

Country Link
WO (1) WO2013114451A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016097784A1 (en) 2014-12-16 2016-06-23 Volvo Construction Equipment Ab Excavator arm, excavator cantilever member including such an excavator arm and excavator including such an excavator cantilever member
WO2016110726A1 (en) 2015-01-07 2016-07-14 Volvo Construction Equipment Ab Control method for controlling an excavator and excavator comprising a control unit implementing such a control method
WO2016156910A1 (en) 2015-04-03 2016-10-06 Volvo Construction Equipment Ab Control method for controlling a movable member of an excavator and excavator comprising a control unit implementing such a control method
WO2021021637A1 (en) * 2019-07-26 2021-02-04 Ox Industries, Inc. Electric rotary actuator for aerial work platform
WO2021178441A3 (en) * 2020-03-02 2021-11-04 Clark Equipment Company Electrically powered power machine
EP4036316A1 (en) * 2021-02-02 2022-08-03 Volvo Construction Equipment AB Construction equipment with at least one electric actuator
EP4311885A1 (en) * 2022-06-07 2024-01-31 Volvo Construction Equipment AB Construction machine with damped electric actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300131A (en) * 1987-05-30 1988-12-07 Shin Caterpillar Mitsubishi Ltd Electric power shovel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300131A (en) * 1987-05-30 1988-12-07 Shin Caterpillar Mitsubishi Ltd Electric power shovel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016097784A1 (en) 2014-12-16 2016-06-23 Volvo Construction Equipment Ab Excavator arm, excavator cantilever member including such an excavator arm and excavator including such an excavator cantilever member
US10519622B2 (en) 2014-12-16 2019-12-31 Volvo Construction Equipment Ab Excavator arm, excavator cantilever member including such an excavator arm and excavator including such an excavator cantilever member
CN107002382B (en) * 2014-12-16 2019-12-06 沃尔沃建筑设备公司 Excavator arm, excavator boom member comprising such excavator arm and excavator comprising such excavator boom member
CN107002382A (en) * 2014-12-16 2017-08-01 沃尔沃建筑设备公司 The excavator boom component of digger arm including this digger arm and include the excavator of this excavator boom component
US20170335541A1 (en) * 2014-12-16 2017-11-23 Volvo Construction Equipment Ab Excavator arm, excavator cantilever member including such an excavator arm and excavator including such an excavator cantilever member
US10458095B2 (en) 2015-01-07 2019-10-29 Volvo Construction Equipment Ab Control method for controlling an excavator and excavator comprising a control unit implementing such a control method
US20170356157A1 (en) * 2015-01-07 2017-12-14 Volvo Construction Equipment Ab Control method for controlling an excavator and excavator comprising a control unit implementing such a control method
WO2016110726A1 (en) 2015-01-07 2016-07-14 Volvo Construction Equipment Ab Control method for controlling an excavator and excavator comprising a control unit implementing such a control method
WO2016156910A1 (en) 2015-04-03 2016-10-06 Volvo Construction Equipment Ab Control method for controlling a movable member of an excavator and excavator comprising a control unit implementing such a control method
WO2021021637A1 (en) * 2019-07-26 2021-02-04 Ox Industries, Inc. Electric rotary actuator for aerial work platform
WO2021178441A3 (en) * 2020-03-02 2021-11-04 Clark Equipment Company Electrically powered power machine
EP4036316A1 (en) * 2021-02-02 2022-08-03 Volvo Construction Equipment AB Construction equipment with at least one electric actuator
EP4036317A1 (en) * 2021-02-02 2022-08-03 Volvo Construction Equipment AB Construction equipment with at least one electric actuator
EP4311885A1 (en) * 2022-06-07 2024-01-31 Volvo Construction Equipment AB Construction machine with damped electric actuator

Similar Documents

Publication Publication Date Title
WO2013114451A1 (en) Construction machine
JP5090527B2 (en) Swivel drive control device and construction machine including the same
US7345441B2 (en) Rotation-type working machine
JP4167289B2 (en) Swivel control device and construction machine
JP4515369B2 (en) Drive control device for construction machinery
CN102105271A (en) Pneumatic-spring percussion mechanism with a variable rotatory drive
EP3128086B1 (en) Shovel
JP5844377B2 (en) Construction machine and control method for turning electric motor
JP5095361B2 (en) Swivel drive control device and construction machine including the same
JP5274978B2 (en) Hybrid construction machine
JP4949308B2 (en) Swivel drive control device and construction machine including the same
CN105829615A (en) Construction Machine, Hybrid Hydraulic Shovel, And Method For Controlling Output Torque Of Motor Generator
JP4594981B2 (en) Swivel drive control device and construction machine including the same
JPWO2013114451A1 (en) Construction machinery
JP5101405B2 (en) Swivel drive control device and construction machine including the same
JP5367783B2 (en) Excavator with turning motor generator
JP5139257B2 (en) Swivel drive control device and construction machine including the same
JP5367784B2 (en) Electric excavator and excavator monitoring device
JP2016166511A (en) Shovel
JP5367782B2 (en) Excavator with charging function and excavator with motor power generation function
JP6486664B2 (en) Excavator
JP7063835B2 (en) Work machine
JP5207232B2 (en) Swivel drive control device and construction machine including the same
CN202368548U (en) Engineering machinery and flexible start device of supporting leg thereof
JP2011163106A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556023

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867372

Country of ref document: EP

Kind code of ref document: A1