WO2013111273A1 - 内燃機関の排気環流装置 - Google Patents

内燃機関の排気環流装置 Download PDF

Info

Publication number
WO2013111273A1
WO2013111273A1 PCT/JP2012/051466 JP2012051466W WO2013111273A1 WO 2013111273 A1 WO2013111273 A1 WO 2013111273A1 JP 2012051466 W JP2012051466 W JP 2012051466W WO 2013111273 A1 WO2013111273 A1 WO 2013111273A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
internal combustion
combustion engine
combustion
homogeneous
Prior art date
Application number
PCT/JP2012/051466
Other languages
English (en)
French (fr)
Inventor
真一郎 能川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP12866650.0A priority Critical patent/EP2808518B1/en
Priority to US14/364,534 priority patent/US9567945B2/en
Priority to PCT/JP2012/051466 priority patent/WO2013111273A1/ja
Priority to CN201280067694.XA priority patent/CN104066955B/zh
Priority to JP2013555036A priority patent/JP5817846B2/ja
Publication of WO2013111273A1 publication Critical patent/WO2013111273A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas recirculation device for an internal combustion engine capable of performing EGR (Exhaust Gas Recirculation) for recirculating a part of exhaust gas to an intake system.
  • EGR Exhaust Gas Recirculation
  • Japanese Patent Laid-Open No. 2003-129874 discloses an exhaust gas recirculation device for an engine with a supercharger that performs EGR to recirculate a part of exhaust gas to an intake system.
  • EGR is performed.
  • the combustion temperature can be lowered, so that NOx emission is suppressed.
  • FIG. 16 is a diagram comparing changes in the NOx emission amount with respect to the air-fuel ratio A / F for each combustion mode. As shown in this figure, in the stratified combustion, the NOx emission amount decreases as the air-fuel ratio becomes lean in the lean burn region, but the degree of decrease is not so great. This is because, in stratified combustion, the temperature around the spark plug is always high even in the case of lean burn. For this reason, EGR is generally performed in stratified lean combustion, but some NOx emissions are still unavoidable.
  • homogeneous combustion in which a mixture of fuel and air is uniformly mixed in a cylinder and then burned.
  • FIG. 16 according to the homogeneous combustion, it becomes possible to suppress the NOx emission amount in the lean burn region as compared with the case of stratified combustion. This is due to the fact that the temperature of the combustion chamber generally decreases as the air-fuel ratio becomes leaner in the lean burn region.
  • homogeneous lean combustion has a problem in its narrow operating range. That is, in the homogeneous lean combustion, the exhaust temperature is lowered because combustion is performed with a lot of fresh air gas.
  • the present invention has been made to solve the above-described problems.
  • an internal combustion engine that performs homogeneous combustion the operating range in which homogeneous lean combustion can be performed is expanded to improve fuel consumption and suppress NOx emissions.
  • An object of the present invention is to provide an exhaust gas recirculation device for an internal combustion engine that can be realized.
  • a first invention is an exhaust gas recirculation device for an internal combustion engine, Homogeneous lean combustion means for performing homogeneous lean combustion in a predetermined lean burn region; An EGR device for performing EGR to recirculate part of the gas flowing through the exhaust system of the internal combustion engine to the intake system; Control means for controlling the EGR device based on operating conditions of the internal combustion engine, The control means controls the EGR device to perform EGR when performing the homogeneous lean combustion.
  • the internal combustion engine includes a turbocharger having a turbine installed in an exhaust passage and a compressor installed in an intake passage,
  • the EGR device A low-pressure side EGR device that recirculates the gas flowing in the exhaust passage downstream of the turbine to the intake passage upstream of the compressor;
  • the control means controls the low pressure side EGR device to perform EGR when performing the homogeneous lean combustion.
  • the EGR device has means for adjusting an EGR rate representing a ratio of a gas amount recirculated by the EGR to a total gas amount sucked into the internal combustion engine
  • the homogeneous lean combustion means performs homogeneous lean combustion so that an air-fuel ratio representing a ratio of a fresh air gas amount sucked to an in-cylinder fuel amount of the internal combustion engine becomes 22
  • the control means controls the EGR device so that an EGR rate during the homogeneous lean combustion becomes 10 to 20%.
  • 4th invention is 2nd or 3rd invention
  • Stoichiometric combustion means for performing stoichiometric combustion in which the combustion air-fuel ratio of the internal combustion engine becomes a stoichiometric air-fuel ratio in a stoichiometric burn region on a higher load side than the lean burn region
  • the EGR device A high-pressure EGR device that recirculates the gas flowing in the exhaust passage upstream of the turbine to the intake passage downstream of the compressor;
  • the control means controls both the high pressure side EGR device and the low pressure side EGR device to perform EGR.
  • a fifth invention is the fourth invention,
  • the EGR device has means for adjusting an EGR rate representing a ratio of a gas amount recirculated by the EGR to a total gas amount sucked into the internal combustion engine,
  • the control means when performing the stoichiometric combustion, the low pressure side EGR device and the high pressure side EGR so that the EGR rate by the low pressure side EGR device is 15% and the EGR rate by the high pressure side EGR device is 10%. It is characterized by controlling the device.
  • the first invention since EGR is performed in homogeneous lean combustion, knocking on the high load side, which becomes a problem during homogeneous lean combustion, can be effectively suppressed. Further, CO and HC contained in the EGR gas contribute to the oxidation reaction in the catalyst. For this reason, the fall of the catalyst bed temperature of the low load side which becomes a problem at the time of homogeneous lean combustion can be suppressed effectively. For this reason, according to the present invention, it is possible to effectively expand the lean burn region in which homogeneous lean combustion is possible and to improve fuel efficiency.
  • the EGR by the low pressure side EGR device is executed.
  • EGR by the low-pressure side EGR device is stable against the rotational load of the internal combustion engine. Therefore, according to the present invention, stable EGR can be realized even during transient operation of the internal combustion engine, and misfires can be prevented.
  • the air-fuel ratio is controlled to 22 and the EGR rate is controlled to 10 to 20%.
  • the higher the EGR rate the lower the fuel consumption, but the operating range in which homogeneous lean combustion can be performed is expanded. Therefore, according to the present invention, by controlling the air-fuel ratio to 22 and the EGR rate to 10 to 20% in homogeneous lean combustion, the fuel efficiency can be improved to the maximum.
  • the fourth invention when the stoichiometric combustion is performed in the stoichiometric burn region on the higher load side than the lean burn region, EGR using both the low pressure side EGR device and the high pressure side EGR device is performed. There is a limit to the amount of EGR that can be introduced while avoiding misfire in each EGR device. According to the present invention, by using these EGR devices in combination, a large amount of EGR gas can be introduced in high-load stoichiometric combustion, so that NOx emission is suppressed while securing torque at high load. be able to.
  • the EGR rate of the low pressure side EGR device is controlled to 15% and the EGR rate of the high pressure side EGR device is controlled to 10%. If the EGR rate exceeds 25%, the turbulent combustion speed becomes 0 and flame propagation does not occur. Further, if an EGR rate of 25% is realized with only one EGR device, deceleration misfire during transition, deterioration of responsiveness, and the like become problems. Therefore, according to the present invention, in stoichiometric combustion, a high-pressure side and a low-pressure side EGR device are used in combination to achieve an EGR rate of 25%, thereby suppressing NOx and the deterioration of responsiveness during transition. Can be suppressed to the maximum.
  • FIG. 1 shows schematic structure of the system by which the internal combustion engine with which the control apparatus as Embodiment 1 of this invention is applied is mounted. It is a figure which shows the engine thermal efficiency with respect to intake pressure. It is a figure which shows the engine thermal efficiency with respect to gas fuel ratio G / F for every EGR rate. It is a figure which shows (A) NOx discharge
  • FIG. 1 It is a figure which shows the operation area
  • 6 is a timing chart when an EGR rate of 25% is realized in LPL-EGR. 6 is a timing chart when LPL-EGR with an EGR rate of 15% and HPL-EGR with an EGR rate of 10% are used in combination. It is a figure which shows the structure of LPL-EGR in detail. It is the figure which compared the change of the NOx discharge
  • FIG. 1 is a diagram showing a schematic configuration of a system in which an internal combustion engine (hereinafter simply referred to as an engine) to which a control device as Embodiment 1 of the present invention is applied is mounted.
  • An engine 10 shown in FIG. 1 is a spark ignition type four-stroke reciprocating engine, and is configured to allow lean burn operation by homogeneous combustion.
  • the engine 10 includes an intake system for supplying air into the combustion chamber of each cylinder, an exhaust system for discharging exhaust gas, an EGR system that recirculates part of the exhaust gas in the exhaust system to the intake system, and the engine 10 It has a configuration of a control system for controlling operation.
  • an intake system for supplying air into the combustion chamber of each cylinder
  • an exhaust system for discharging exhaust gas an EGR system that recirculates part of the exhaust gas in the exhaust system to the intake system
  • the engine 10 It has a configuration of a control system for controlling operation.
  • each of these configurations will be described in detail.
  • the intake system of the engine 10 includes an intake passage 12.
  • An air cleaner 14 is attached to the inlet side of the intake passage 12.
  • An air flow meter 16 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 12 is attached to the intake passage 12 downstream of the air cleaner 14.
  • the outlet side of the intake passage 12 is connected to the combustion chamber of each cylinder via a surge tank 18 and an intake manifold 20.
  • the compressor 22a of the turbocharger 22 is disposed downstream of the air flow meter 16 in the intake passage 12.
  • An intercooler 24 for cooling the intake air compressed by the compressor 22a is disposed in the intake passage 12 on the downstream side of the compressor 22a.
  • a throttle valve 26 for adjusting the amount of air supplied into the engine 10 is disposed in the intake passage on the downstream side of the intercooler 24.
  • the exhaust system of the engine 10 includes an exhaust passage 30.
  • One end side of the exhaust passage 30 is connected to the combustion chamber of each cylinder via an exhaust manifold 28.
  • a turbine 22 b of the turbocharger 22 is disposed in the middle of the exhaust passage 30, a turbine 22 b of the turbocharger 22 is disposed.
  • a start catalyst (hereinafter referred to as “S / C”) 32 and a lean NOx catalyst 34 are arranged in this order in the exhaust passage 30 on the downstream side of the turbine 22b.
  • S / C 32 is a so-called three-way catalyst that efficiently purifies the three components of HC, CO, and NOx contained in the exhaust gas in the vicinity of the theoretical air-fuel ratio.
  • the lean NOx catalyst 34 is a so-called storage-reduction type NOx catalyst that absorbs and releases NOx when the air-fuel ratio of the exhaust gas is in a predetermined lean region and releases NOx when it is in the rich region. Has an effect.
  • a NOx sensor 36 for detecting the NOx concentration in the exhaust gas is disposed in the exhaust passage 30 between the S / C 32 and the lean NOx catalyst 34.
  • the EGR system of the engine 10 includes a low pressure side EGR passage (LPL-EGR passage) 38.
  • LPL-EGR passage 38 One end of the LPL-EGR passage 38 is connected to the exhaust passage 30 between the S / C 32 and the lean NOx catalyst 34, and the other end is connected to the intake passage 12 between the air flow meter 16 and the compressor 22a.
  • An LPL-EGR valve 40 for opening and closing the passage 38 is provided in the middle of the LPL-EGR passage 38.
  • the EGR system of the engine 10 includes a high pressure side EGR passage (HPL-EGR passage) 42.
  • HPL-EGR passage 42 One end of the HPL-EGR passage 42 is connected to the exhaust passage 30 upstream of the turbine 22 b and the other end is connected to the intake manifold 20 via the EGR delivery 44.
  • an HPL-EGR valve 46 for opening and closing the passage 42
  • an EGR cooler 48 for cooling the EGR gas, and unburned HC and particulate matter in the EGR gas are purified.
  • EGR catalyst 50 is provided in order from the EGR delivery 44 side.
  • the engine 10 of this embodiment includes an ECU (Electronic Control Unit) 60 as its control system.
  • Various actuators such as the aforementioned LPL-EGR valve 40, HPL-EGR valve 46, throttle valve 26, and ignition plug (not shown) are connected to the output side of the ECU 60.
  • a crank angle sensor and an air-fuel ratio sensor both not shown for outputting a signal corresponding to the rotation angle of a crankshaft (not shown).
  • Various sensors such as are connected.
  • the ECU 60 operates each actuator provided in the engine according to a predetermined control program based on the output of each sensor provided in the engine.
  • the engine 10 of the present embodiment is configured to allow lean burn operation by homogeneous combustion. For this reason, for example, in the example shown in FIG. 16, by performing homogeneous lean combustion with an air-fuel ratio A / F of 26 to 28, it is possible to suppress the NOx emission amount more than stratified lean combustion with EGR.
  • homogeneous lean combustion has a problem in its narrow operating range. That is, homogeneous lean combustion can suppress NOx emissions, but the exhaust gas temperature may decrease more than necessary in the light load operation region. In such an operation region, NOx purification performance deterioration due to a decrease in the bed temperature of S / C 32 becomes a problem, so that it is required to perform a stoichiometric burn operation.
  • homogeneous lean combustion has low resistance to knocking, it is required to perform stoichiometric burn operation in a high load operation region. As described above, in an engine that performs homogeneous combustion, how the lean burn operation region can be expanded greatly affects fuel efficiency improvement and NOx emission suppression.
  • FIG. 2 is a graph showing engine thermal efficiency with respect to intake pressure. As shown in this figure, it can be seen that when EGR is performed in homogeneous lean combustion, the engine thermal efficiency in the high-load operation region is higher than when EGR is not performed. This is because CO 2 in the EGR gas acts as an inert gas and knocking is suppressed in the high load operation region.
  • FIG. 3 is a graph showing the engine thermal efficiency with respect to the gas fuel ratio G / F for each EGR rate.
  • the gas fuel ratio G / F can be expressed by the following equation (1).
  • a / F is the air-fuel ratio, that is, the ratio of fresh air gas to fuel amount
  • EGR is the EGR rate [%].
  • Ga is a fresh gas amount [g / s]
  • Gegr is an EGR gas amount [g / s]
  • Gf is a fuel consumption amount [g / s].
  • the engine thermal efficiency is higher when EGR is implemented than when it is not introduced (when the EGR rate is 0%).
  • the engine thermal efficiency is the highest when the EGR rate is 15%.
  • FIG. 4 is a diagram showing (A) NOx emissions, (B) CO emissions, (C) THC emissions, and (D) S / C bed temperature with respect to the gas fuel ratio G / F.
  • NOx emissions are smaller when EGR is implemented than when not implemented.
  • CO and HC emissions are large. CO and HC are subjected to an oxidation reaction in the S / C 32.
  • (D) in the figure when the EGR is performed in the homogeneous combustion, it is possible to effectively suppress the decrease in the bed temperature of the S / C 32 in the lean burn operation region.
  • FIG. 5 is a diagram showing changes in (A) thermal efficiency, (B) NOx emission amount, and (C) S / C temperature rise with respect to intake air pressure for each execution of EGR in homogeneous lean combustion.
  • (C) of this figure when EGR is not performed in homogeneous lean combustion, the lean burn operation is performed because the bed temperature of S / C32 does not reach the predetermined target bed temperature in the light load region. I can't.
  • the S / C32 floor temperature can be effectively raised in the light load region, so the region where lean burn operation is possible is effective on the low load side. It is possible to expand to.
  • FIG. 6 is a diagram showing the S / C bed temperature with respect to the NOx emission amount for each execution of EGR in homogeneous lean combustion. As shown in this figure, it can be seen that when the EGR is performed in the homogeneous lean combustion, the bed temperature efficiency of the S / C 32 with respect to the NOx emission amount is good. Therefore, by implementing EGR in homogeneous lean combustion, it is possible to achieve both high levels of suppression of NOx emission and improved fuel efficiency by expanding the lean burn operation region.
  • FIG. 7 is a diagram showing a lean burn operation region in homogeneous combustion. As shown in this figure, when EGR is performed in homogeneous combustion, the lean burn operation can be expanded to the high load side and the low load side. As a result, it is possible to achieve both high levels of suppression of NOx emission due to homogeneous lean combustion and improvement of fuel consumption due to expansion of the lean burn operation region.
  • the inventor of the present application has conducted extensive research on the air-fuel ratio and EGR rate of homogeneous lean combustion, and as a result, found a suitable combination of air-fuel ratio and EGR rate from the viewpoint of NOx emission suppression and fuel efficiency improvement. Specifically, it has been found that when the EGR rate is 10 to 20% (preferably 15%) and the A / F is 22, the fuel efficiency is maximized while suppressing the NOx emission amount.
  • this basis will be described from the viewpoint of S / C bed temperature and from the viewpoint of knocking.
  • FIG. 8 is a diagram showing the relationship between the NOx emission amount and the A / F for each EGR rate. As shown in FIG. 8, the A / F for satisfying the target value of NOx emission (for example, 1 g / kWh) varies depending on the EGR rate.
  • FIG. 9 shows (A) A / F at which the NOx emission amount becomes a predetermined target amount with respect to the EGR rate, (B) Fuel consumption effect due to lean combustion, and (C) Degree of deterioration of fuel consumption due to reduction of the lean burn region. And (D) are diagrams showing overall fuel efficiency effects.
  • the relationship shown in FIG. 9A is derived from the relationship shown in FIG.
  • the A / F when the NOx emission amount satisfies the target amount becomes the richer air-fuel ratio as the EGR rate is higher.
  • FIG. 9B the fuel efficiency effect due to lean combustion when the NOx emission amount satisfies the target amount becomes higher as the EGR rate is lower. This is because normal lean combustion has better fuel efficiency than combustion with EGR gas. For this reason, from the viewpoint of engine combustion, lowering the EGR rate is preferable for improving fuel efficiency.
  • (D) in FIG. 9 is a diagram that comprehensively considers the fuel consumption effect shown in (B) and (C) in the figure. As shown in (D) in the figure, it is understood that the fuel efficiency is high when the EGR rate is 10 to 20% (particularly 15%) and the A / F is around 22.
  • FIG. 10 shows (A) A / F at which the NOx emission amount becomes a predetermined target amount with respect to the EGR rate, (B) fuel efficiency effect by lean combustion, (C) fuel efficiency effect by knocking improvement, and (D) total fuel efficiency. It is a figure which shows an effect, respectively.
  • the relationship shown in (A) and (B) in FIG. 10 is the same as the relationship shown in (A) and (B) in FIG. 9 described above.
  • the fuel-consumption effect by the improvement of knocking in the case where the NOx emission amount satisfies the target amount is directed toward the improvement of the fuel consumption as the EGR rate is higher. This is because the higher the EGR rate, the higher the proportion of CO 2 in the combustion chamber and the higher the knocking resistance. For this reason, from the viewpoint of knocking, it is preferable to increase the EGR rate to improve fuel efficiency.
  • (D) in FIG. 10 is a diagram that comprehensively considers the fuel efficiency effect shown in (B) and (C) in the figure. As shown in (D) in the figure, it is understood that the fuel efficiency is high when the EGR rate is 10 to 20% (particularly 15%) and the A / F is around 22.
  • the NOx emission amount is reduced by operating the engine so that the EGR rate is 10 to 20% (more preferably the EGR rate is 15%) and the A / F is 22. It is possible to maximize the fuel efficiency while suppressing the target amount.
  • the system according to the present embodiment is configured to be able to perform LPL-EGR via the LPL-EGR passage 38 and HPL-EGR via the HPL-EGR passage 42.
  • the LPL-EGR is an HPL-EGR system. Compared to EGR, the amount of EGR gas introduced is less likely to change with respect to the rotational load of the engine 10. Further, during lean combustion, rich spike control is executed at a predetermined timing. Therefore, stable HPL-EGR cannot be performed in an engine in which exhaust pressure is disturbed by rich spike control.
  • EGR gas is introduced by LPL-EGR during the homogeneous lean combustion of the present embodiment.
  • the warm-up condition of the engine 10 is not specified as the EGR condition at the time of homogeneous lean combustion, but EGR cannot be performed during warm-up with a low water temperature.
  • EGR gas exhaust gas
  • the condition that the water temperature is 70 ° C. or higher may be set as the EGR condition during homogeneous lean combustion.
  • EGR can be performed while protecting the components of the engine 10.
  • the air-fuel ratio is set to 22 and the EGR rate is set to 10 to 20%.
  • the air-fuel ratio and the EGR rate are not limited to this ratio. That is, the optimum air-fuel ratio and EGR rate may be set as appropriate from the relationship between the fuel efficiency effect and the NOx emission amount.
  • Embodiment 2 FIG. [Features of Embodiment 2]
  • EGR is performed at the time of homogeneous lean combustion, thereby suppressing knocking at high load and suppressing lowering of the bed temperature of S / C 32 at low load.
  • region which can perform lean burn operation can each be expanded to the high load side and the low load side, a fuel consumption can be improved, suppressing NOx emission amount.
  • FIG. 11 is a diagram showing an operation region in homogeneous combustion. As shown in this figure, it is assumed that homogeneous stoichiometric combustion with EGR is performed in a predetermined high load region.
  • the EGR rate is better from the viewpoint of suppressing NOx emissions, but if the EGR rate is 25% or more, the turbulent combustion speed becomes 0 and flame propagation does not occur, so it may be set to about 25%. preferable. Thereby, it becomes possible to suppress the NOx emission amount while ensuring the torque at the time of high load by homogeneous stoichiometric combustion.
  • FIG. 12 is a timing chart when an EGR rate of 25% is realized in HPL-EGR.
  • EGR rate In order to introduce a large amount of EGR gas in HPL-EGR, it is necessary to increase the pipe diameter of the EGR passage and the valve diameter of the EGR valve. Therefore, when such a hardware configuration is used, when a deceleration request as shown in this figure is issued, the response of the EGR valve cannot catch up with the change in the air amount, and the EGR rate is combusted. Misfires beyond the limit.
  • FIG. 13 is a timing chart when an EGR rate of 25% is realized in LPL-EGR.
  • LPL-EGR in order to introduce a large amount of EGR gas, it is necessary to increase the pipe diameter of the EGR passage and the valve diameter of the EGR valve as in the case of the HPL-EGR described above.
  • LPL-EGR has a feature that the amount of EGR gas introduced is less likely to change with respect to the rotational load of the engine 10 than HPL-EGR. For this reason, when such a hardware configuration is used, when a deceleration request as shown in this figure is issued, the response of the EGR valve does not catch up with the change in the rotational speed, and the EGR rate is combusted. Misfires beyond the limit.
  • LPL-EGR and HPL-EGR are used in combination when an EGR rate of 25% is achieved in homogeneous stoichiometric combustion. More specifically, an EGR rate of 15% is realized in LPL-EGR, and the remaining 10% is realized in HPL-EGR.
  • FIG. 14 is a timing chart when LPL-EGR with an EGR rate of 15% and HPL-EGR with an EGR rate of 10% are used in combination. According to such a configuration, as shown in this figure, even when a deceleration request is issued, it is possible to avoid misfire without exceeding the combustion limit.
  • HPL-EGR is preferably configured with the smallest possible pipe diameter and valve diameter as long as an EGR rate of 10% can be achieved. As a result, the transient response of HPL-EGR can be improved, and the occurrence of misfire can be effectively suppressed.
  • an EGR rate of 25% is achieved in homogeneous stoichiometric combustion, but the EGR rate is not limited to this ratio. That is, an optimal EGR rate may be set as appropriate from the relationship between the turbulent combustion speed and the NOx emission amount. Further, the ratio between LPL-EGR and HPL-EGR is not limited to the above-described ratio, and an optimal ratio may be set as appropriate in relation to the hardware configuration within a range not exceeding the combustion limit.
  • FIG. 15 is a diagram showing in detail the configuration of LPL-EGR.
  • the LPL-EGR passage 38 has a protruding portion 38 a that protrudes into the exhaust passage 30 at the connection portion with the exhaust passage 30.
  • the projecting portion 38a has a shape that is cut obliquely so that its end surface opens toward the upstream side of the exhaust passage 30, that is, toward the turbine 22b side.
  • the LPL-EGR passage 38 has a protruding portion 38 b that protrudes into the intake passage 12 at a connection portion with the intake passage 12.
  • the protruding portion 38b has a shape that is cut obliquely so that its end surface opens toward the downstream side of the intake passage 12, that is, toward the compressor 22a side.
  • the LPL-EGR passage 38 is configured such that the protruding portion 38b is vertically above the protruding portion 38a.
  • Reservoir portions 62 and 64 for accumulating condensed water in the passage are provided on the downstream side of the compressor 22a in the intake passage 12 and on the downstream side of the LPL-EGR valve 40 in the LPL-EGR passage 38, respectively. .
  • the exhaust gas flowing through the exhaust passage 30 is guided to the LPL-EGR passage 38 by the protruding portion 38a.
  • introduction of EGR gas can be facilitated.
  • the EGR gas flowing through the LPL-EGR passage 38 is introduced toward the downstream side of the intake passage 12 from the protruding portion 38b, the introduction of the EGR gas can be facilitated.
  • the protrusion part 38a is located below the protrusion part 38b in the vertical direction, it is possible to effectively avoid a situation in which condensed water flows through the housing of the compressor 22a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 均質燃焼を行う内燃機関において、均質リーン燃焼が可能な運転領域を拡大することにより、燃費の向上およびNOx排出量抑制を実現することのできる内燃機関の排気環流装置を提供することを目的とする。 所定のリーンバーン領域において均質リーン燃焼を行う均質リーン燃焼手段と、内燃機関の排気系を流れるガスの一部を吸気系へ還流させるEGRを行うためのEGR装置と、を備え、均質リーン燃焼を行う場合に、EGR装置を制御してEGRを行う。EGR装置としては、タービンより下流側の排気通路を流れるガスをコンプレッサより上流側の吸気通路へ還流させるLPL-EGR装置を用いる。好ましくは、空燃比が22、EGR率が10~20%となるように制御する。

Description

内燃機関の排気環流装置
 この発明は、排気ガスの一部を吸気系へ還流させるEGR(Exhaust Gas Recirculation)を実施可能な内燃機関の排気環流装置に関する。
 従来、例えば、日本特開2003-129874号公報には、排気ガスの一部を吸気系へ還流させるEGRを行う過給機付きエンジンの排気環流装置が開示されている。この装置では、燃料と空気との混合気を成層化して点火プラグ付近の比較的濃い混合気に着火させ、着火した火種により燃焼室内の希薄な混合気に火炎伝播させる成層リーン燃焼を行う際にEGRが行われる。これにより、燃焼温度を低下させることができるので、NOxの排出量が抑制される。
日本特開2003-129874号公報 日本特開2005-214063号公報
 しかしながら、成層リーン燃焼によるNOx排出量の抑制には限界がある。図16は、空燃比A/Fに対するNOx排出量の変化を燃焼形態別に比較した図である。この図に示すとおり、成層燃焼はリーンバーン領域において空燃比がリーンであるほどNOx排出量が低下しているが、その低下度合はさほど大きくない。これは、成層燃焼ではリーンバーンであっても点火プラグ周りの温度は常に高温であることに起因する。このため、成層リーン燃焼では一般的にEGRが行われるが、それでもある程度のNOx排出は避けられない。
 そこで、近年注目されている技術が、燃料と空気との混合気を筒内で均一に混合した後に燃焼させる均質燃焼である。図16に示すとおり、均質燃焼によれば、リーンバーン領域においてNOx排出量を成層燃焼の場合に比して抑制することが可能となる。これは、リーンバーン領域において空燃比がリーンであるほど燃焼室の温度が全体的に低下することに起因する。但し、均質リーン燃焼はその運転領域の狭さに課題がある。すなわち、均質リーン燃焼は、多くの新気ガスで燃焼を行うため排気温度が低下する。したがって、軽負荷運転時においては排気浄化触媒の床温が低下するため均質リーン燃焼を行うことができない。また、高負荷運転時においてはノッキングの発生により効率が低下してしまう。このように、均質燃焼を行う従来のエンジンでは、均質リーン燃焼を実行することができない運転領域ではストイキ燃焼を行わざるを得ず、燃費向上およびNOx排出量抑制の観点から更なる改善が望まれていた。
 この発明は、上述のような課題を解決するためになされたもので、均質燃焼を行う内燃機関において、均質リーン燃焼が可能な運転領域を拡大することにより、燃費の向上およびNOx排出量抑制を実現することのできる内燃機関の排気環流装置を提供することを目的とする。
 第1の発明は、上記の目的を達成するため、内燃機関の排気環流装置であって、
 所定のリーンバーン領域において均質リーン燃焼を行う均質リーン燃焼手段と、
 内燃機関の排気系を流れるガスの一部を吸気系へ還流させるEGRを行うためのEGR装置と、
 前記内燃機関の運転条件に基づいて前記EGR装置を制御する制御手段と、を備え、
 前記制御手段は、前記均質リーン燃焼を行う場合に、前記EGR装置を制御してEGRを行うことを特徴としている。
 第2の発明は、第1の発明において、
 前記内燃機関は、排気通路に設置されたタービンと吸気通路に設置されたコンプレッサとを有するターボ過給機を備えており、
 前記EGR装置は、
 前記タービンより下流側の排気通路を流れるガスを前記コンプレッサより上流側の吸気通路へ還流させる低圧側EGR装置を有し、
 前記制御手段は、前記均質リーン燃焼を行う場合に、前記低圧側EGR装置を制御してEGRを行うことを特徴としている。
 第3の発明は、第1または第2の発明において、
 前記EGR装置は、前記内燃機関に吸入される総ガス量に対するEGRにより還流されるガス量の比率を表すEGR率を調整する手段を有し、
 前記均質リーン燃焼手段は、前記内燃機関の筒内燃料量に対する吸入される新気ガス量の比率を表す空燃比が22となるように均質リーン燃焼を行い、
 前記制御手段は、前記均質リーン燃焼中のEGR率が10~20%となるように前記EGR装置を制御することを特徴としている。
 第4の発明は、第2または第3の発明において、
 前記リーンバーン領域よりも高負荷側のストイキバーン領域において、前記内燃機関の燃焼空燃比が理論空燃比となるストイキ燃焼を行うストイキ燃焼手段を更に備え、
 前記EGR装置は、
 前記タービンより上流側の排気通路を流れるガスを前記コンプレッサより下流側の吸気通路へ還流させる高圧側EGR装置を更に有し、
 前記制御手段は、前記ストイキ燃焼を行う場合に、前記高圧側EGR装置および前記低圧側EGR装置の双方を制御してEGRを行うことを特徴としている。
 第5の発明は、第4の発明において、
 前記EGR装置は、前記内燃機関に吸入される総ガス量に対するEGRにより還流されるガス量の比率を表すEGR率を調整する手段を有し、
 前記制御手段は、前記ストイキ燃焼を行う場合に、前記低圧側EGR装置によるEGR率が15%、前記高圧側EGR装置によるEGR率が10%となるように前記低圧側EGR装置および前記高圧側EGR装置を制御することを特徴としている。
 第1の発明によれば、均質リーン燃焼においてEGRが行われるので、均質リーン燃焼時に問題となる高負荷側でのノッキングを有効に抑制することができる。また、EGRガスに含まれているCOやHCは触媒における酸化反応に寄与する。このため、均質リーン燃焼時に問題となる低負荷側の触媒床温の低下を有効に抑制することができる。このため、本発明によれば、均質リーン燃焼が可能なリーンバーン領域を有効に拡大して燃費を向上させることが可能となる。
 第2の発明によれば、均質リーン燃焼において、低圧側EGR装置によるEGRが実行される。低圧側EGR装置によるEGRは、内燃機関の回転負荷に対して安定している。このため、本発明によれば、内燃機関の過渡運転時においても、安定したEGRを実現することができるので、失火等を防止することができる。
 第3の発明によれば、均質リーン燃焼中にEGRを行う際に、空燃比が22、EGR率が10~20%に制御される。EGR率が高いほど燃費は低下するが、均質リーン燃焼を実施可能な運転領域は拡大する。このため、本発明によれば、均質リーン燃焼において空燃比が22、EGR率が10~20%に制御することで、燃費を最大限に向上させることができる。
 第4の発明によれば、リーンバーン領域よりも高負荷側のストイキバーン領域において、ストイキ燃焼を行う場合に、低圧側EGR装置と高圧側EGR装置との双方を用いたEGRが行われる。それぞれのEGR装置において失火を回避しつつ導入可能なEGR量には限界がある。本発明によれば、これらのEGR装置を併用することで、高負荷のストイキ燃焼において大量のEGRガスを導入することができるので、高負荷時のトルクを確保しつつNOxの排出量を抑制することができる。
 第5の発明によれば、ストイキ燃焼中にEGR動作を行う際に、低圧側EGR装置のEGR率が15%、高圧側EGR装置のEGR率が10%に制御される。25%を超えるEGR率とすると、乱流燃焼速度が0になり火炎伝播しなくなる。また、一方のEGR装置のみで25%のEGR率を実現すると過渡時の減速失火や応答性の悪化等が問題となる。このため、本発明によれば、ストイキ燃焼において、高圧側および低圧側EGR装置を併用して25%のEGR率を実現することで、過渡時の減速失火や応答性の悪化を抑制しつつNOxの排出量を最大限に抑制することができる。
本発明の実施の形態1としての制御装置が適用される内燃機関が搭載されたシステムの概略構成を示す図である。 吸気圧力に対するエンジン熱効率を示す図である。 ガス燃料比G/Fに対するエンジン熱効率をEGR率毎に示す図である。 ガス燃料比G/Fに対する(A)NOx排出量、(B)CO排出量、(C)THC排出量、および(D)S/C床温を示す図である。 吸気圧力に対する(A)熱効率、(B)NOx排出量、および(C)S/C昇温の変化を、均質リーン燃焼におけるEGRの実施有無毎にそれぞれ示す図である。 NOx排出量に対するS/C床温を、均質リーン燃焼におけるEGRの実施有無毎にそれぞれ示す図である。 均質燃焼におけるリーンバーン運転領域を示す図である。 NOx排出量とA/Fとの関係をEGR率毎に示した図である。 EGR率に対する(A)NOx排出量が所定の目標量となるA/F、(B)リーン燃焼による燃費効果、(C)リーンバーン運転の領域が縮小することによる燃費の悪化度、および(D)総合的な燃費効果をそれぞれ示す図である。 EGR率に対する(A)NOx排出量が所定の目標量となるA/F、(B)リーン燃焼による燃費効果、(C)ノッキング改善による燃費効果、および(D)総合的な燃費効果をそれぞれ示す図である。 均質燃焼における運転領域を示す図である。 HPL-EGRにおいて25%のEGR率を実現した場合のタイミングチャートである。 LPL-EGRにおいて25%のEGR率を実現した場合のタイミングチャートである。 15%のEGR率によるLPL-EGRと、10%のEGR率によるHPL-EGRとを併用した場合のタイミングチャートである。 LPL-EGRの構成を詳細に示す図である。 空燃比A/Fに対するNOx排出量の変化を燃焼形態別に比較した図である。
 以下、図面に基づいてこの発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。
実施の形態1.
[実施の形態1の構成]
 図1は、本発明の実施の形態1としての制御装置が適用される内燃機関(以下、単にエンジンという)が搭載されたシステムの概略構成を示す図である。図1に示すエンジン10は、火花点火式の4ストロークレシプロエンジンであって、均質燃焼によるリーンバーン運転が可能に構成されている。エンジン10は、各気筒の燃焼室内に空気を供給するための吸気系、排気ガスを排出するための排気系、排気系の排気ガスの一部を吸気系へ還流させるEGR系、およびエンジン10の運転を制御するための制御系の構成を有している。以下、これらの構成についてそれぞれ詳細に説明する。
 エンジン10の吸気系は吸気通路12を備えている。吸気通路12の入口側にはエアクリーナ14が取り付けられている。吸気通路12におけるエアクリーナ14の下流側には、吸気通路12に吸入される空気の流量に応じた信号を出力するエアフローメータ16が取り付けられている。吸気通路12の出口側は、サージタンク18および吸気マニホールド20を介して各気筒の燃焼室に接続されている。
 吸気通路12におけるエアフローメータ16の下流側にはターボ過給機22のコンプレッサ22aが配置されている。コンプレッサ22aの下流側の吸気通路12には、コンプレッサ22aによって圧縮された吸気を冷却するためのインタークーラ24が配置されている。インタークーラ24の下流側の吸気通路には、エンジン10内に供給される空気量を調整するためのスロットルバルブ26が配置されている。
 エンジン10の排気系は排気通路30を備えている。排気通路30の一端側は排気マニホールド28を介して各気筒の燃焼室に接続されている。排気通路30の途中には、ターボ過給機22のタービン22bが配置されている。タービン22bの下流側の排気通路30には、スタート触媒(以下、「S/C」と称する)32およびリーンNOx触媒34がこの順に配置されている。S/C32は所謂三元触媒であって、理論空燃比近傍において排気ガスに含まれるHC,CO,NOxの3成分を効率的に浄化する。一方、リーンNOx触媒34は、所謂吸蔵還元型のNOx触媒であって、排気ガスの空燃比が所定のリーン域にある場合にNOxを吸蔵しリッチ域にある場合にNOxを放出するという吸放出作用を有している。また、S/C32とリーンNOx触媒34との間の排気通路30には、排気ガス中のNOx濃度を検出するためのNOxセンサ36が配置されている。
 また、エンジン10のEGR系は、低圧側EGR通路(LPL-EGR通路)38を備えている。LPL-EGR通路38は、その一端がS/C32とリーンNOx触媒34との間の排気通路30に接続され、他端がエアフローメータ16とコンプレッサ22aとの間の吸気通路12に接続されている。LPL-EGR通路38の途中には、当該通路38を開閉するためのLPL-EGRバルブ40が設けられている。
 また、エンジン10のEGR系は、高圧側EGR通路(HPL-EGR通路)42を備えている。HPL-EGR通路42は、その一端がタービン22bの上流側の排気通路30に接続され、他端がEGRデリバリ44を介して吸気マニホールド20に接続されている。HPL-EGR通路42の途中には、当該通路42を開閉するためのHPL-EGRバルブ46、EGRガスを冷却するためのEGRクーラ48、およびEGRガス中の未燃HCや粒子状物質を浄化するためのEGR触媒50が、EGRデリバリ44側から順に設けられている。
 本実施形態のエンジン10は、その制御系としてECU(Electronic Control Unit)60を備えている。ECU60の出力側には、前述のLPL-EGRバルブ40、HPL-EGRバルブ46、スロットルバルブ26や、点火プラグ(図示せず)等の種々のアクチュエータが接続されている。ECU60の入力側には、前述のエアフローメータ16、NOxセンサ36の他、クランク軸(図示せず)の回転角度に応じた信号を出力するクランク角センサや空燃比センサ(何れも図示せず)等の種々のセンサ類が接続されている。ECU60は、エンジンが備える各センサの出力に基づき、所定の制御プログラムにしたがってエンジンが備える各アクチュエータを動作させるようになっている。
[実施の形態1の動作]
 次に、図面を参照して、本実施の形態1のシステムの動作について説明する。上述したとおり、本実施の形態のエンジン10は、均質燃焼によるリーンバーン運転が可能に構成されている。このため、例えば図16に示す例では、空燃比A/Fを26~28とする均質リーン燃焼を行うことにより、EGRを伴った成層リーン燃焼よりもNOx排出量を抑制することができる。
 しかしながら、上述したとおり、均質リーン燃焼はその運転領域の狭さに課題がある。すなわち、均質リーン燃焼はNOx排出量を抑制できる一方で、軽負荷運転領域において必要以上に排気ガス温度が低下するおそれがある。このような運転領域では、S/C32の床温低下によるNOx浄化性能低下が問題となるため、ストイキバーン運転を行うことが要求される。また、均質リーン燃焼はノッキングに対する耐性が低いため、高負荷運転領域ではストイキバーン運転を行うことが要求される。このように、均質燃焼を行うエンジンでは、リーンバーン運転領域を如何に拡大することができるかが燃費向上およびNOx排出量抑制に大きな影響を与えることとなる。
 そこで、本実施の形態のシステムでは、エンジン10の均質リーン燃焼時にEGRを実施することとする。図2は、吸気圧力に対するエンジン熱効率を示す図である。この図に示すとおり、均質リーン燃焼においてEGRを実施すると、EGRを実施しない場合に比して高負荷運転領域におけるエンジン熱効率が高まることが分かる。これは、EGRガス中のCOが不活性ガスとして作用し、高負荷運転領域においてノッキングの発生が抑制されることに起因する。
 また、図3は、ガス燃料比G/Fに対するエンジン熱効率をEGR率毎に示す図である。尚、ガス燃料比G/Fは、次式(1)によって表すことができる。
 G/F=(Ga+Gegr)/Gf
    =A/F×(1/(1-EGR/100))   ・・・(1)
 上式(1)において、A/Fは空燃比、即ち新気ガスと燃料量との比であり、EGRはEGR率[%]である。また、Gaは新気ガス量[g/s]であり、GegrはEGRガス量[g/s]であり、Gfは燃料消費量[g/s]である。
 この図に示すとおり、エンジン熱効率は、EGRを実施した場合のほうが導入しない場合(EGR率が0%である場合)よりも高いことが分かる。特に、G/Fが26~28となるリーンバーン領域では、EGR率が15%の場合のエンジン熱効率が最も高い値になっていることが分かる。このように、本実施の形態のシステムによれば、均質燃焼においてEGRを実施することにより、リーンバーン領域を高負荷側に有効に拡大することが可能となる。
 次に、図4は、ガス燃料比G/Fに対する(A)NOx排出量、(B)CO排出量、(C)THC排出量、および(D)S/C床温を示す図である。図中(A)~(C)に示すとおり、均質燃焼において等G/FにおけるNOx排出量を比較すると、EGRを実施した場合のほうが実施しない場合に比してNOx排出量が少なく、逆にCOやHCの排出量が多いことが分かる。COやHCはS/C32内で酸化反応に供される。このため、図中(D)に示すとおり、均質燃焼においてEGRを実施すると、リーンバーン運転領域においてS/C32の床温低下を有効に抑制することが可能となる。
 図5は、吸気圧力に対する(A)熱効率、(B)NOx排出量、および(C)S/C昇温の変化を、均質リーン燃焼におけるEGRの実施有無毎にそれぞれ示す図である。この図中(C)に示すとおり、均質リーン燃焼においてEGRを実施しない場合には、軽負荷の領域においてS/C32の床温が所定の目標床温まで到達しないため、リーンバーン運転を行うことができない。この点、均質リーン燃焼においてEGRを実施した場合には、軽負荷の領域においてS/C32の床温を有効に昇温させることができるので、リーンバーン運転が可能な領域を低負荷側に有効に拡大することが可能となる。
 また、図6は、NOx排出量に対するS/C床温を、均質リーン燃焼におけるEGRの実施有無毎にそれぞれ示す図である。この図に示すように、均質リーン燃焼においてEGRを実施すると、NOxの排出量に対するS/C32の床温効率がよいことが分かる。したがって、均質リーン燃焼においてEGRを実施することにより、NOxの排出量抑制とリーンバーン運転領域拡大による燃費向上とを高い次元で両立することが可能となる。
 以上説明したとおり、均質リーン燃焼においてEGRを実施すると、リーンバーン運転が可能な運転領域を有効に拡大することができる。図7は、均質燃焼におけるリーンバーン運転領域を示す図である。この図に示すとおり、均質燃焼においてEGRを実施すると、高負荷側および低負荷側にリーンバーン運転を拡大することができる。これにより、均質リーン燃焼によるNOx排出量の抑制とリーンバーン運転領域の拡大による燃費向上とを高い次元で両立することが可能となる。
 本出願の発明者は、均質リーン燃焼の空燃比およびEGR率に関して鋭意研究を重ねた結果、NOx排出量抑制および燃費向上の観点から好適な空燃比およびEGR率の組み合わせを見出した。具体的には、EGR率が10~20%(好ましくは15%)、A/Fが22のときに、NOx排出量を抑制しつつ燃費が最大となることを見出した。以下、この根拠をS/C床温の観点およびノッキングの観点からそれぞれ説明する。
 先ず、S/C床温の観点から均質リーン燃焼におけるEGRの燃費効果を考察する。図8は、NOx排出量とA/Fとの関係をEGR率毎に示した図である。図8に示すとおり、NOx排出量の目標値(例えば、1g/kWh)を満たすためのA/FはEGR率によって変化する。
 図9は、EGR率に対する(A)NOx排出量が所定の目標量となるA/F、(B)リーン燃焼による燃費効果、(C)リーンバーン運転の領域が縮小することによる燃費の悪化度、および(D)総合的な燃費効果をそれぞれ示す図である。先ず、図9中の(A)に示す関係は、上述した図8に示す関係から導き出したものである。図9中の(A)に示すとおり、NOx排出量が目標量を満たしている場合のA/Fは、EGR率が高いほどリッチ側の空燃比となる。ここで、図9中の(B)に示すとおり、NOx排出量が目標量を満たしている場合のリーン燃焼による燃費効果は、EGR率が低いほど高いものとなる。これは、通常のリーン燃焼のほうがEGRガスを伴う燃焼よりも燃費がよいためである。このため、機関燃焼の観点からは、EGR率を低くしたほうが燃費の向上にとって好ましい。
 一方、図9中の(C)に示すとおり、NOx排出量が目標量を満たしている場合の、リーンバーン運転の領域が縮小することによる燃費の悪化度は、EGR率が高いほど改善方向に向かう。これは、EGR率が高くなるほどS/C32の床温の低下を抑制することができるので、リーンバーン運転の軽負荷側の運転領域を拡大することができるためである。このため、軽負荷側の運転領域の制限の観点からは、EGR率を高くしたほうが燃費の向上にとって好ましい。
 図9中の(D)は、図中(B)および(C)に示す燃費影響を総合的に勘案した図である。図中(D)に示すとおり、EGR率が10~20%(特に15%)、A/Fが22前後のときに燃費効果が高いことが分かる。
 次に、ノッキングの観点から均質リーン燃焼におけるEGRの燃費効果を考察する。図10は、EGR率に対する(A)NOx排出量が所定の目標量となるA/F、(B)リーン燃焼による燃費効果、(C)ノッキング改善による燃費効果、および(D)総合的な燃費効果をそれぞれ示す図である。
 先ず、図10中の(A)および(B)に示す関係は、上述した図9中の(A)および(B)に示す関係と同様である。そして、図10中の(C)に示すとおり、NOx排出量が目標量を満たしている場合の、ノッキングが改善されることによる燃費効果は、EGR率が高いほど燃費向上の方向に向かう。これは、EGR率が高くなるほど燃焼室内のCOの割合が相対的に上昇し、ノッキングの耐性が上がるためである。このため、ノッキングの観点からは、EGR率を高くしたほうが燃費の向上にとって好ましい。
 図10中の(D)は、図中(B)および(C)に示す燃費影響を総合的に勘案した図である。図中(D)に示すとおり、EGR率が10~20%(特に15%)、A/Fが22前後のときに燃費効果が高いことが分かる。
 したがって、エンジン10において均質リーン燃焼を行う場合には、EGR率が10~20%(更に好ましくはEGR率が15%)、A/Fが22となるように運転することにより、NOx排出量を目標量に抑制しつつ、燃費を最大限に向上させることが可能となる。
 次に、本実施の形態のシステムにおけるEGR動作について説明する。本実施の形態のシステムは、LPL-EGR通路38を介したLPL-EGRと、HPL―EGR通路42を介したHPL-EGRとを実施可能に構成されているが、LPL―EGRは、HPL-EGRに比してエンジン10の回転負荷に対してEGRガスの導入量が変化しにくいという特徴を有している。また、リーン燃焼時においては、所定のタイミングでリッチスパイク制御が実行される。このため、リッチスパイク制御によって排気圧力が乱れている機関においては、安定したHPL-EGRを行うことができない。
 そこで、本実施の形態の均質リーン燃焼時においては、LPL-EGRによってEGRガスを導入することとする。これにより、所望のEGR率(例えば、15%)を安定して実現することができるので、NOx排出量の抑制と燃費向上とを確実に実現することが可能となる。
 ところで、上述した実施の形態においては、均質リーン燃焼時のEGRの条件として特にエンジン10の暖機条件を明記していないが、水温が低い暖機中にはEGRを実施することができない。これは、機関暖機前においてはEGRガス(排気ガス)から凝縮水が発生し、これがコンプレッサ22a等を傷める可能性があるからである。そこで、本実施の形態では、凝縮水による危険性が回避される状態として、例えば水温が70℃以上となったことを均質リーン燃焼時のEGRの条件としてもよい。これにより、エンジン10の構成部品を保護しつつEGRを実施することが可能となる。
 また、上述した実施の形態においては、均質リーン燃焼において、空燃比を22、EGR率を10~20%にすることとしているが、空燃比およびEGR率はこの比率に限られない。すなわち、燃費効果とNOx排出量との関係から適宜最適な空燃比およびEGR率を設定すればよい。
実施の形態2.
[実施の形態2の特徴]
 次に、図11乃至図14を参照して、本発明の実施の形態2について説明する。上述した実施の形態1のシステムでは、均質リーン燃焼時にEGRを行うことにより、高負荷時のノッキングを抑制するとともに、低負荷時のS/C32の床温低下を抑制することとしている。これにより、リーンバーン運転が可能な運転領域を高負荷側および低負荷側にそれぞれ拡大することができるので、NOx排出量を抑制しつつ燃費を向上させることができる。
 しかしながら、運転領域の拡大には限界がある。すなわち、本実施の形態のシステムのように、ターボ過給機22を備えるエンジン10では、高過給による高負荷領域も存在する。このような運転領域では、トルク確保の観点から空気量の多いリーンバーン運転は適していない。そこで、高負荷の運転領域では、空燃比を理論空燃比近傍に制御するストイキバーン運転が行われる。但し、均質燃焼におけるストイキバーン運転では、上述した図16に示すように、NOxの排出量が増えてしまう。
 そこで、本実施の形態では、高負荷のストイキバーン運転領域において、EGRを行うこととする。図11は、均質燃焼における運転領域を示す図である。この図に示すとおり、所定の高負荷の領域において、EGRを伴う均質ストイキ燃焼を行うこととする。尚、EGR率はNOx排出量の抑制の観点からは高いほうがよいが、EGR率を25%以上にすると乱流燃焼速度が0になって火炎伝播しなくなるため、25%程度に設定することが好ましい。これにより、均質ストイキ燃焼によって高負荷時のトルクを確保しつつ、NOx排出量を抑制することが可能となる。
 尚、本実施の形態のシステムは、LPL-EGR通路38を介したLPL-EGRと、HPL―EGR通路42を介したHPL-EGRとを実施可能に構成されているが、何れかのEGRのみで25%程度のEGR率を達成することは難しい。図12は、HPL-EGRにおいて25%のEGR率を実現した場合のタイミングチャートである。HPL-EGRにおいて大量のEGRガスを導入するためには、EGR通路の配管径やEGRバルブのバルブ径を大きくする必要がある。このため、このようなハードウェア構成を用いた場合においては、この図に示すような減速要求が出された場合に、空気量の変化に対してEGRバルブの応答が追いつかず、EGR率が燃焼限界を超えて失火してしまう。
 一方、図13は、LPL-EGRにおいて25%のEGR率を実現した場合のタイミングチャートである。LPL-EGRにおいも、大量のEGRガスを導入するためには、上述したHPL-EGRの場合と同様にEGR通路の配管径やEGRバルブのバルブ径を大きくする必要がある。更に、LPL―EGRは、HPL-EGRに比してエンジン10の回転負荷に対してEGRガスの導入量が変化しにくいという特徴を有している。このため、このようなハードウェア構成を用いた場合においては、この図に示すような減速要求が出された場合に、回転数の変化に対してEGRバルブの応答が追いつかず、EGR率が燃焼限界を超えて失火してしまう。
 そこで、本実施の形態では、均質ストイキ燃焼において25%のEGR率を実現する場合に、LPL-EGRとHPL-EGRとを併用することとする。より具体的には、LPL-EGRにおいてEGR率15%を実現し、HPL-EGRにおいて残りの10%を実現することとする。図14は、15%のEGR率によるLPL-EGRと、10%のEGR率によるHPL-EGRとを併用した場合のタイミングチャートである。このような構成によれば、この図に示すとおり、減速要求が出された場合であっても、燃焼限界を超えることなく失火を回避することが可能となる。尚、HPL-EGRについては、EGR率10%を実現可能な範囲で、できるだけ小さい配管径およびバルブ径によって構成することが好ましい。これにより、HPL-EGRの過渡応答性を向上ことができるので、失火の発生を有効に抑制することが可能となる。
 ところで、上述した実施の形態においては、均質ストイキ燃焼において25%のEGR率を実現することとしているが、EGR率はこの比率に限られない。すなわち、乱流燃焼速度とNOx排出量との関係から適宜最適なEGR率を設定すればよい。また、LPL-EGRとHPL-EGRとの比率についても、上述した比率に限られず、燃焼限界を超えない範囲内でハードウェア構成との関係で適宜最適な比率を設定すればよい。
実施の形態3.
[実施の形態3の特徴]
 次に、図15を参照して、本発明の実施の形態3について説明する。図15は、LPL-EGRの構成を詳細に示す図である。この図に示すように、LPL-EGR通路38は、排気通路30との接続部において、当該排気通路30内に突出する突出部38aを有している。突出部38aは、その端面が排気通路30の上流側、すなわちタービン22b側に向かって開口するように斜めに切断された形状を有している。また、LPL-EGR通路38は、吸気通路12との接続部において、当該吸気通路12内に突出する突出部38bを有している。突出部38bは、その端面が吸気通路12の下流側、すなわちコンプレッサ22a側に向かって開口するように斜めに切断された形状を有している。尚、LPL-EGR通路38は、突出部38bが突出部38aよりも鉛直方向上方となるように構成されている。
 また、吸気通路12におけるコンプレッサ22aの下流側、およびLPL-EGR通路38におけるLPL-EGRバルブ40の下流側には、通路内の凝縮水を溜めるための貯留部62,64がそれぞれ設けられている。
 このような構成によれば、排気通路30を流れる排気ガスが突出部38aによってLPL-EGR通路38へ導かれる。これにより、EGRガスの導入を容易にすることが可能となる。また、LPL-EGR通路38を流れるEGRガスは、突出部38bから吸気通路12の下流方向へ向かって導入されるので、EGRガスの導入を容易にすることが可能となる。更に、突出部38aは突出部38bよりも鉛直方向下側に位置しているので、コンプレッサ22aのハウジングに凝縮水が流れる事態を有効に回避することができる。
 また、図15に示す構成によれば、LPL-EGR通路38内の凝縮水が貯留部64に貯留されるので、凝縮水がコンプレッサ22aのハウジングに導入される事態を有効に回避することができる。また、図15に示すように、コンプレッサ22aの吐出口は鉛直下方側に設けられているため、吐出側の吸気通路12からコンプレッサ22aのハウジングに向かって凝縮水が逆流することはなく、貯留部62に有効に貯留される。これにより、コンプレッサ22aを損傷から有効に保護することが可能となる。
10 内燃機関(エンジン)
12 吸気通路
22 ターボ過給機
22a コンプレッサ
22b タービン
30 排気通路
32 スタート触媒(S/C)
38 LPL-EGR通路
38a,38b 突出部
40 LPL-EGRバルブ
42 HPL-EGR通路
46 HPL-EGRバルブ
60 ECU(Electronic Control Unit)
62,64 貯留部

Claims (5)

  1.  所定のリーンバーン領域において均質リーン燃焼を行う均質リーン燃焼手段と、
     内燃機関の排気系を流れるガスの一部を吸気系へ還流させるEGRを行うためのEGR装置と、
     前記内燃機関の運転条件に基づいて前記EGR装置を制御する制御手段と、を備え、
     前記制御手段は、前記均質リーン燃焼を行う場合に、前記EGR装置を制御してEGRを行うことを特徴とする内燃機関の排気環流装置。
  2.  前記内燃機関は、排気通路に設置されたタービンと吸気通路に設置されたコンプレッサとを有するターボ過給機を備えており、
     前記EGR装置は、
     前記タービンより下流側の排気通路を流れるガスを前記コンプレッサより上流側の吸気通路へ還流させる低圧側EGR装置を有し、
     前記制御手段は、前記均質リーン燃焼を行う場合に、前記低圧側EGR装置を制御してEGRを行うことを特徴とする請求項1記載の内燃機関の排気環流装置。
  3.  前記EGR装置は、前記内燃機関に吸入される総ガス量に対するEGRにより還流されるガス量の比率を表すEGR率を調整する手段を有し、
     前記均質リーン燃焼手段は、前記内燃機関の筒内燃料量に対する吸入される新気ガス量の比率を表す空燃比が22となるように均質リーン燃焼を行い、
     前記制御手段は、前記均質リーン燃焼中のEGR率が10~20%となるように前記EGR装置を制御することを特徴とする請求項1または2記載の内燃機関の排気環流装置。
  4.  前記リーンバーン領域よりも高負荷側のストイキバーン領域において、前記内燃機関の燃焼空燃比が理論空燃比となるストイキ燃焼を行うストイキ燃焼手段を更に備え、
     前記EGR装置は、
     前記タービンより上流側の排気通路を流れるガスを前記コンプレッサより下流側の吸気通路へ還流させる高圧側EGR装置を更に有し、
     前記制御手段は、前記ストイキ燃焼を行う場合に、前記高圧側EGR装置および前記低圧側EGR装置の双方を制御してEGRを行うことを特徴とする請求項2または3記載の内燃機関の排気環流装置。
  5.  前記EGR装置は、前記内燃機関に吸入される総ガス量に対するEGRにより還流されるガス量の比率を表すEGR率を調整する手段を有し、
     前記制御手段は、前記ストイキ燃焼を行う場合に、前記低圧側EGR装置によるEGR率が15%、前記高圧側EGR装置によるEGR率が10%となるように前記低圧側EGR装置および前記高圧側EGR装置を制御することを特徴とする請求項4記載の内燃機関の排気環流装置。
PCT/JP2012/051466 2012-01-24 2012-01-24 内燃機関の排気環流装置 WO2013111273A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12866650.0A EP2808518B1 (en) 2012-01-24 2012-01-24 Exhaust circulation apparatus for internal combustion engine
US14/364,534 US9567945B2 (en) 2012-01-24 2012-01-24 Exhaust circulation apparatus for internal combustion engine
PCT/JP2012/051466 WO2013111273A1 (ja) 2012-01-24 2012-01-24 内燃機関の排気環流装置
CN201280067694.XA CN104066955B (zh) 2012-01-24 2012-01-24 内燃机的排气回流装置
JP2013555036A JP5817846B2 (ja) 2012-01-24 2012-01-24 内燃機関の排気環流装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/051466 WO2013111273A1 (ja) 2012-01-24 2012-01-24 内燃機関の排気環流装置

Publications (1)

Publication Number Publication Date
WO2013111273A1 true WO2013111273A1 (ja) 2013-08-01

Family

ID=48873045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051466 WO2013111273A1 (ja) 2012-01-24 2012-01-24 内燃機関の排気環流装置

Country Status (5)

Country Link
US (1) US9567945B2 (ja)
EP (1) EP2808518B1 (ja)
JP (1) JP5817846B2 (ja)
CN (1) CN104066955B (ja)
WO (1) WO2013111273A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071723A3 (en) * 2013-11-12 2015-11-26 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine preventing condensation of intake gas in an intercooler
EP3085933A4 (en) * 2013-12-20 2016-12-21 Toyota Motor Co Ltd EXHAUST GAS PURIFYING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2016217344A (ja) * 2015-05-25 2016-12-22 トヨタ自動車株式会社 内燃機関の制御装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6090089B2 (ja) * 2013-09-30 2017-03-08 マツダ株式会社 エンジンの排気ガス還流制御装置
US10480460B2 (en) 2014-12-17 2019-11-19 Tenneco Gmbh EGR system with particle filter for a gasoline engine
DE102014118813A1 (de) * 2014-12-17 2016-06-23 Tenneco Gmbh AGR-System mit Partikelfilter für Ottomotor
US9995265B2 (en) * 2015-05-25 2018-06-12 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN105422327B (zh) * 2015-12-11 2018-04-24 吉林大学 复合喷射双燃料内燃机可变egr进气***及方法
CN105508087B (zh) * 2015-12-30 2018-05-11 联合汽车电子有限公司 混联式废气再循环***及其使用方法
JP6134041B1 (ja) * 2016-09-14 2017-05-24 三菱重工業株式会社 エンジン及びエンジン制御方法
JP6601371B2 (ja) * 2016-11-22 2019-11-06 マツダ株式会社 圧縮自己着火式エンジンの制御装置
JP6428827B2 (ja) * 2017-03-30 2018-11-28 マツダ株式会社 エンジンの吸気通路構造
KR20200111523A (ko) * 2019-03-19 2020-09-29 현대자동차주식회사 배기 매니폴드

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296111A (ja) * 1992-04-17 1993-11-09 Mitsubishi Motors Corp 希薄燃焼内燃機関及びその制御方法
JPH05302548A (ja) * 1992-04-27 1993-11-16 Honda Motor Co Ltd 内燃機関の制御装置
JPH09250376A (ja) * 1996-03-19 1997-09-22 Hitachi Ltd 内燃機関の制御装置
JPH11117785A (ja) * 1997-10-17 1999-04-27 Nissan Motor Co Ltd 過給機付エンジンの制御装置
JPH11324817A (ja) * 1998-05-14 1999-11-26 Fuji Heavy Ind Ltd エンジンのegr制御装置
JP2003129874A (ja) 2001-10-23 2003-05-08 Fuji Heavy Ind Ltd 過給機付筒内噴射エンジンの排気還流装置
JP2005214063A (ja) 2004-01-29 2005-08-11 Toyota Motor Corp 内燃機関及び内燃機関の運転制御装置
JP2008267247A (ja) * 2007-04-19 2008-11-06 Denso Corp 内燃機関の制御装置
JP2010190150A (ja) * 2009-02-19 2010-09-02 Isuzu Motors Ltd Egr装置
JP2011241746A (ja) * 2010-05-18 2011-12-01 Hino Motors Ltd 排気浄化装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3387257B2 (ja) * 1995-03-06 2003-03-17 三菱自動車工業株式会社 排気ガス還流制御装置付き過給式内燃機関
EP1688601B1 (en) * 1996-08-23 2011-03-09 Cummins Inc. Premixed charge compression ignition engine with optimal combustion control
AU4158097A (en) 1996-08-23 1998-03-06 Cummins Engine Company Inc. Premixed charge compression ignition engine with optimal combustion control
JP3680500B2 (ja) * 1997-07-02 2005-08-10 日産自動車株式会社 内燃機関の制御装置
US7398762B2 (en) * 2001-12-18 2008-07-15 Ford Global Technologies, Llc Vehicle control system
JP2002188522A (ja) * 2000-12-15 2002-07-05 Mitsubishi Motors Corp ターボチャージャ付きエンジンのegr制御装置
US6863058B2 (en) * 2003-02-03 2005-03-08 Ford Global Technologies, Llc System and method for reducing NOx emissions during transient conditions in a diesel fueled vehicle
EP1681455A1 (en) * 2003-10-23 2006-07-19 Hitachi, Ltd. Exhaust gas recirculation device for internal combustion engine
US7275514B2 (en) * 2005-04-28 2007-10-02 Gm Global Technology Operations, Inc. Method of HCCI and SI combustion control for a direct injection internal combustion engine
JP4737644B2 (ja) 2007-06-20 2011-08-03 株式会社デンソー 内燃機関の排気浄化装置
US7512479B1 (en) * 2007-11-19 2009-03-31 Southwest Research Institute Air fraction estimation for internal combustion engines with dual-loop EGR systems
JP2010180804A (ja) * 2009-02-06 2010-08-19 Honda Motor Co Ltd 内燃機関の排気浄化装置
US8210158B2 (en) * 2009-12-18 2012-07-03 GM Global Technology Operations LLC EGR control in HCCI engines
US8616182B2 (en) 2010-05-24 2013-12-31 GM Global Technology Operations LLC Method and apparatus for controlling an internal combustion engine coupled to a passive selective catalytic reduction aftertreatment system
DE102010047795A1 (de) * 2010-10-07 2012-04-12 Daimler Ag Betriebsverfahren für eine Brennkraftmaschine
EP2871350B1 (en) * 2012-07-05 2017-12-20 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US9002623B2 (en) * 2012-08-02 2015-04-07 GM Global Technology Operations LLC Fully flexible exhaust valve actuator control systems and methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296111A (ja) * 1992-04-17 1993-11-09 Mitsubishi Motors Corp 希薄燃焼内燃機関及びその制御方法
JPH05302548A (ja) * 1992-04-27 1993-11-16 Honda Motor Co Ltd 内燃機関の制御装置
JPH09250376A (ja) * 1996-03-19 1997-09-22 Hitachi Ltd 内燃機関の制御装置
JPH11117785A (ja) * 1997-10-17 1999-04-27 Nissan Motor Co Ltd 過給機付エンジンの制御装置
JPH11324817A (ja) * 1998-05-14 1999-11-26 Fuji Heavy Ind Ltd エンジンのegr制御装置
JP2003129874A (ja) 2001-10-23 2003-05-08 Fuji Heavy Ind Ltd 過給機付筒内噴射エンジンの排気還流装置
JP2005214063A (ja) 2004-01-29 2005-08-11 Toyota Motor Corp 内燃機関及び内燃機関の運転制御装置
JP2008267247A (ja) * 2007-04-19 2008-11-06 Denso Corp 内燃機関の制御装置
JP2010190150A (ja) * 2009-02-19 2010-09-02 Isuzu Motors Ltd Egr装置
JP2011241746A (ja) * 2010-05-18 2011-12-01 Hino Motors Ltd 排気浄化装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071723A3 (en) * 2013-11-12 2015-11-26 Toyota Jidosha Kabushiki Kaisha Control device for an internal combustion engine preventing condensation of intake gas in an intercooler
EP3085933A4 (en) * 2013-12-20 2016-12-21 Toyota Motor Co Ltd EXHAUST GAS PURIFYING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2016217344A (ja) * 2015-05-25 2016-12-22 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
CN104066955B (zh) 2016-10-19
US20140352298A1 (en) 2014-12-04
JP5817846B2 (ja) 2015-11-18
CN104066955A (zh) 2014-09-24
JPWO2013111273A1 (ja) 2015-05-11
EP2808518A4 (en) 2015-04-01
US9567945B2 (en) 2017-02-14
EP2808518A1 (en) 2014-12-03
EP2808518B1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP5817846B2 (ja) 内燃機関の排気環流装置
JP2006233898A (ja) Egr装置
JP2010096049A (ja) 内燃機関の制御装置
JP4802879B2 (ja) 内燃機関の制御装置
US20160047339A1 (en) Control apparatus for internal combustion engine
JP2012512988A (ja) 内燃エンジン、制御システム、この内燃エンジンの寸法を決定する方法、およびこの内燃エンジンを搭載した自動車
JP5221645B2 (ja) 内燃機関の排気再循環装置
JP4776566B2 (ja) 内燃機関の燃料制御装置
JP4591403B2 (ja) 内燃機関の制御装置
JP2009047014A (ja) ディーゼルエンジンの制御装置。
JP4905327B2 (ja) 内燃機関の排気浄化システム
JP4736969B2 (ja) ディーゼルエンジンの制御装置
JP4888297B2 (ja) ディーゼルエンジンの排気還流制御装置
JP2006336466A (ja) ディーゼル機関
JP6054766B2 (ja) 内燃機関の制御装置
JP6005543B2 (ja) 過給機付きエンジンの制御装置
JP4924280B2 (ja) ディーゼルエンジンの制御装置。
JP2007309147A (ja) ディーゼルエンジンの排気浄化装置
JP2004124744A (ja) ターボ過給機付エンジン
JP2008121494A (ja) 内燃機関の制御装置
JP5823842B2 (ja) ターボチャージャ付多気筒内燃機関の排気還流装置
JP5689316B2 (ja) 低圧排ガス再循環回路を備えるガソリンエンジン
JP4626774B2 (ja) ディーゼル機関
JP2009052504A (ja) 内燃機関の制御装置
JP5098945B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555036

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14364534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012866650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012866650

Country of ref document: EP