WO2013108689A1 - 画像処理装置および方法 - Google Patents

画像処理装置および方法 Download PDF

Info

Publication number
WO2013108689A1
WO2013108689A1 PCT/JP2013/050212 JP2013050212W WO2013108689A1 WO 2013108689 A1 WO2013108689 A1 WO 2013108689A1 JP 2013050212 W JP2013050212 W JP 2013050212W WO 2013108689 A1 WO2013108689 A1 WO 2013108689A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
prediction
adjacent
motion vector
unit
Prior art date
Application number
PCT/JP2013/050212
Other languages
English (en)
French (fr)
Inventor
佐藤 数史
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP13738156.2A priority Critical patent/EP2806636A1/en
Priority to US14/363,503 priority patent/US9667995B2/en
Priority to MX2014008479A priority patent/MX2014008479A/es
Priority to CN201380005256.5A priority patent/CN104054346A/zh
Publication of WO2013108689A1 publication Critical patent/WO2013108689A1/ja
Priority to IN5807DEN2014 priority patent/IN2014DN05807A/en
Priority to US15/465,132 priority patent/US10110920B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/436Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation using parallelised computational arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/58Motion compensation with long-term prediction, i.e. the reference frame for a current frame not being the temporally closest one
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present disclosure relates to an image processing apparatus and method, and more particularly, to an image processing apparatus and method capable of improving processing efficiency by parallel processing in encoding or decoding of a motion vector.
  • MPEG2 (ISO / IEC 13818-2) is defined as a general-purpose image encoding system, and is a standard that covers both interlaced scanning images and progressive scanning images, as well as standard resolution images and high-definition images.
  • MPEG2 is currently widely used in a wide range of applications for professional and consumer applications.
  • a code amount (bit rate) of 4 to 8 Mbps is assigned to an interlaced scanned image having a standard resolution of 720 ⁇ 480 pixels.
  • a high resolution interlaced scanned image having 1920 ⁇ 1088 pixels is assigned a code amount (bit rate) of 18 to 22 Mbps.
  • bit rate code amount
  • MPEG2 was mainly intended for high-quality encoding suitable for broadcasting, but it did not support encoding methods with a lower code amount (bit rate) than MPEG1, that is, a higher compression rate. With the widespread use of mobile terminals, the need for such an encoding system is expected to increase in the future, and the MPEG4 encoding system has been standardized accordingly. Regarding the image coding system, the standard was approved as an international standard in December 1998 as ISO / IEC 14496-2.
  • the standardization schedule is H.03 in March 2003. H.264 and MPEG-4 Part 10 (Advanced Video Coding, hereinafter referred to as AVC format).
  • this AVC format extension includes RGB, 4: 2: 2, 4: 4: 4 coding tools required for business use, 8x8DCT and quantization matrix defined by MPEG-2.
  • FRExt Full State Image Coding
  • the cost function value based on the High Complexity Mode or Low Complexity Mode implemented in the reference software of the AVC method called JM (Joint Model) is used. Yes.
  • the cost function value when the predicted motion vector information is used is calculated, and the optimal predicted motion vector information is selected.
  • flag information indicating information regarding which predicted motion vector information is used is transmitted to each block.
  • the macroblock size of 16 pixels ⁇ 16 pixels is optimal for large image frames such as UHD (Ultra High Definition: 4000 pixels ⁇ 2000 pixels) that are the targets of the next generation encoding method. There was no fear.
  • HEVC High Efficiency Video Video Coding
  • JCTVC Joint Collaboration Team Video Video Coding
  • ISO / IEC Joint Collaboration Team Video Video Coding
  • a coding unit (Coding Unit) is defined as a processing unit similar to the macroblock in the AVC system.
  • the CU is not fixed to a size of 16 ⁇ 16 pixels like the AVC macroblock, and is specified in the image compression information in each sequence.
  • Motion Partition Merging (hereinafter also referred to as merge mode) has been proposed (for example, see Non-Patent Document 3).
  • merge mode a method called Motion Partition Merging
  • this method when the motion information of the block is the same as the motion information of the neighboring blocks, only the flag information is transmitted, and when decoding, the motion information of the block is used using the motion information of the neighboring blocks. Is rebuilt.
  • Spatial Predictor spatial prediction motion vector
  • Temporal Predictor temporary prediction motion vector
  • the Spatial predicor of the PU that is the processing target is obtained.
  • the motion vectors of the PUs adjacent to each other in a predetermined positional relationship are candidates for Spatial predicor of the PU.
  • a motion vector of A 0 that is a PU adjacent to the lower left of the PU and a motion vector of A 1 that is a PU located above A 0 among the PUs adjacent to the left of the PU are: It is a candidate.
  • a motion vector of B 2 is a PU adjacent to the upper left of the PU
  • the motion vector of the B 0 is a PU adjacent to the upper right of the PU, among PU adjacent to the upper side of the PU
  • the B 0 and a motion vector of B 1 is a PU located on the left side there is a candidate.
  • scanning is performed in the order of A 0 , A 1 and in the order of B 0 , B 1 , B 2 , and scanning is performed when motion vector information having the same reference frame as the motion vector information of the PU is detected. Is terminated.
  • the present disclosure has been made in view of such a situation, and improves processing efficiency by parallel processing in motion vector encoding or decoding.
  • the image processing device generates the spatial prediction motion vector among the prediction motion vectors used for decoding the motion vectors of the plurality of prediction regions constituting the coding region of the image.
  • An adjacent region setting unit that sets a spatial adjacent region according to the position of the prediction region in the coding region and a space set by the adjacent region setting unit so that the spatial motion vectors of the prediction region are generated in parallel
  • a prediction motion vector generation unit that generates a spatial prediction vector of the prediction region using a motion vector of an adjacent region, and a motion vector decoding unit that decodes a motion vector of the prediction region using a prediction motion vector of the prediction region With.
  • the adjacent region setting unit is located on the left or above in the coding region among the adjacent regions of the first prediction region.
  • the first adjacent area of the second prediction area can be set instead of the first adjacent area that becomes the second prediction area.
  • the adjacent region setting unit includes a second region adjacent to the first adjacent region among the adjacent regions of the first prediction region. Instead of the adjacent region, the second adjacent region of the second prediction region can be set.
  • the first prediction region is a prediction region located below the coding region
  • the second prediction region is the coding region.
  • a prediction region located above the region, the first adjacent region is an adjacent region adjacent to the prediction region, and the second adjacent region is an adjacent region adjacent to the upper right of the prediction region .
  • the first prediction region is a prediction region located to the right of the coding region
  • the second prediction region is the coding region.
  • a prediction region located on the left of the region, the first adjacent region is an adjacent region adjacent to the left of the prediction region, and the second adjacent region is an adjacent region adjacent to the lower left of the prediction region .
  • the adjacent region setting unit is configured to contact a second region adjacent to the upper left in the coding region among the adjacent regions of the first prediction region.
  • the first adjacent area of the second prediction area can be set instead of the first adjacent area serving as the prediction area.
  • the first prediction region is a prediction region located in the upper right of the coding region
  • the second prediction region is the coding region.
  • the first adjacent region is an adjacent region adjacent to the left of the prediction region
  • the second adjacent region is an adjacent region adjacent to the lower left of the prediction region.
  • the adjacent region is an adjacent region adjacent to the prediction region
  • the second adjacent region is an adjacent region adjacent to the upper right of the prediction region
  • the first prediction region is the encoding region.
  • Prediction area located in the lower right There, the second prediction region when a prediction region located on the upper left in the encoding region, the first adjacent regions are adjacent region adjacent to the upper left of the prediction region.
  • the coding area is divided into a plurality of prediction areas by Asymmetric Motion partition.
  • a receiving unit that receives an encoded stream, a flag indicating whether or not to set the space adjacent region, and a decoding unit that decodes the encoded stream received by the receiving unit and generates the image
  • the adjacent region setting unit can set the spatial adjacent region based on the flag received by the receiving unit.
  • the flag is set for each coding region or each prediction region.
  • the adjacent area setting unit sets the space adjacent area based on the sequence profile or level. Can do.
  • an image processing apparatus generates a spatial prediction motion vector among prediction motion vectors used for decoding motion vectors of a plurality of prediction regions that form an encoding region of an image.
  • a spatial adjacent region is set according to the position of the prediction region in the coding region so that the spatial motion vectors of the plurality of prediction regions are generated in parallel, and the motion vector of the set spatial adjacent region is determined.
  • the adjacent region setting unit that sets a spatial adjacent region and the adjacent region setting unit are set according to the position of the prediction region in the coding region so that the spatial motion vectors of a plurality of prediction regions are generated in parallel.
  • a motion vector encoding unit that generates a spatial prediction vector of the prediction region using the motion vector of the spatial adjacent region, and a motion that encodes the motion vector of the prediction region using the prediction motion vector of the prediction region A vector encoding unit.
  • the adjacent region setting unit is located on the left or above in the coding region among the adjacent regions of the first prediction region.
  • the first adjacent area of the second prediction area can be set instead of the first adjacent area that becomes the second prediction area.
  • the adjacent region setting unit includes a second region adjacent to the first adjacent region among the adjacent regions of the first prediction region. Instead of the adjacent region, the second adjacent region of the second prediction region can be set.
  • the first prediction region is a prediction region located below the coding region
  • the second prediction region is the coding region.
  • a prediction region located above the region, the first adjacent region is an adjacent region adjacent to the prediction region, and the second adjacent region is an adjacent region adjacent to the upper right of the prediction region .
  • the first prediction region is a prediction region located to the right of the coding region
  • the second prediction region is the coding region.
  • a prediction region located on the left of the region, the first adjacent region is an adjacent region adjacent to the left of the prediction region, and the second adjacent region is an adjacent region adjacent to the lower left of the prediction region .
  • the adjacent region setting unit when the first prediction region is located at the lower right in the coding region, the second prediction located at the upper left in the coding region among the adjacent regions of the first prediction region. Instead of the first adjacent region serving as the region, the first adjacent region of the second prediction region can be set.
  • the first prediction region is a prediction region located in the upper right of the coding region
  • the second prediction region is the coding region.
  • the first adjacent region is an adjacent region adjacent to the left of the prediction region
  • the second adjacent region is an adjacent region adjacent to the lower left of the prediction region.
  • the adjacent region is an adjacent region adjacent to the prediction region
  • the second adjacent region is an adjacent region adjacent to the upper right of the prediction region
  • the first prediction region is the encoding region.
  • Prediction area located in the lower right There, the second prediction region when a prediction region located on the upper left in the encoding region, the first adjacent regions are adjacent region adjacent to the upper left of the prediction region.
  • the coding area is divided into a plurality of prediction areas by Asymmetric Motion partition.
  • a setting unit that sets a flag indicating whether or not to set the space adjacent region, an encoding unit that encodes the image and generates an encoded stream, and a motion encoded by the motion vector encoding unit
  • a transmission unit that transmits a vector, an encoded stream generated by the encoding unit, and a flag set by the setting unit, wherein the adjacent region setting unit is based on the flag set by the setting unit
  • the setting unit can set the flag for each of the encoding region or the prediction region.
  • the adjacent area setting unit sets the space adjacent area based on the sequence profile or level. Can do.
  • an image processing method in which an image processing device generates a spatial prediction motion vector among prediction motion vectors used for encoding motion vectors of a plurality of prediction regions constituting an image encoding region.
  • the spatial adjacent region is set according to the position of the prediction region in the coding region so that the spatial motion vectors of the plurality of prediction regions are generated in parallel, and the motion of the set spatial adjacent region A spatial prediction vector of the prediction region is generated using the vector, and a motion vector of the target region is encoded using the prediction motion vector of the prediction region.
  • the plurality of prediction regions Spatial adjacent regions are set according to the position of the prediction region in the coding region so that spatial motion vectors are generated in parallel. Then, a spatial prediction vector of the prediction region is generated using the set motion vector of the spatial adjacent region, and the motion vector of the prediction region is decoded using the prediction motion vector of the prediction region.
  • the plurality of predictions when generating a spatial prediction motion vector among prediction motion vectors used for encoding motion vectors of a plurality of prediction regions constituting an image encoding region, the plurality of predictions are generated. Spatial adjacent regions are set according to the position of the prediction region in the coding region so that the spatial motion vectors of the regions are generated in parallel. Then, a spatial prediction vector of the prediction region is generated using the set motion vector of the spatial adjacent region, and the motion vector of the target region is encoded using the prediction motion vector of the prediction region.
  • the above-described image processing apparatus may be an independent apparatus, or may be an internal block constituting one image encoding apparatus or image decoding apparatus.
  • an image can be decoded.
  • processing efficiency can be improved by parallel processing in motion vector encoding or decoding.
  • an image can be encoded.
  • processing efficiency can be improved by parallel processing in motion vector encoding or decoding.
  • FIG. 20 is a block diagram illustrating a main configuration example of a computer. It is a block diagram which shows an example of a schematic structure of a television apparatus. It is a block diagram which shows an example of a schematic structure of a mobile telephone. It is a block diagram which shows an example of a schematic structure of a recording / reproducing apparatus. It is a block diagram which shows an example of a schematic structure of an imaging device. It is a block diagram which shows an example of scalable encoding utilization. It is a block diagram which shows the other example of scalable encoding utilization. It is a block diagram which shows the further another example of scalable encoding utilization.
  • FIG. 1 is a block diagram illustrating a main configuration example of an image encoding device.
  • the image encoding device 100 shown in FIG. 1 encodes image data using a prediction process based on, for example, HEVC (High Efficiency Video Coding).
  • HEVC High Efficiency Video Coding
  • encoding is performed using a CU (referred to as an encoding region) as a processing unit.
  • the image encoding device 100 includes an A / D conversion unit 101, a screen rearrangement buffer 102, a calculation unit 103, an orthogonal transformation unit 104, a quantization unit 105, a lossless encoding unit 106, and a storage buffer 107. , An inverse quantization unit 108, and an inverse orthogonal transform unit 109.
  • the image coding apparatus 100 includes a calculation unit 110, a deblock filter 111, a frame memory 112, a selection unit 113, an intra prediction unit 114, a motion prediction / compensation unit 115, a predicted image selection unit 116, and a rate control unit 117. Have.
  • the image encoding device 100 further includes a motion vector encoding unit 121 and a parallel processing control unit 122.
  • the A / D conversion unit 101 performs A / D conversion on the input image data, and supplies the converted image data (digital data) to the screen rearrangement buffer 102 for storage.
  • the screen rearrangement buffer 102 rearranges the images of the frames in the stored display order in the order of frames for encoding in accordance with GOP (Group Of Picture), and the images in which the order of the frames is rearranged. This is supplied to the calculation unit 103.
  • the screen rearrangement buffer 102 also supplies the image in which the order of the frames is rearranged to the intra prediction unit 114 and the motion prediction / compensation unit 115.
  • the calculation unit 103 subtracts the prediction image supplied from the intra prediction unit 114 or the motion prediction / compensation unit 115 via the prediction image selection unit 116 from the image read from the screen rearrangement buffer 102, and the difference information Is output to the orthogonal transform unit 104.
  • the calculation unit 103 subtracts the predicted image supplied from the motion prediction / compensation unit 115 from the image read from the screen rearrangement buffer 102.
  • the orthogonal transform unit 104 performs orthogonal transform such as discrete cosine transform and Karhunen-Loeve transform on the difference information supplied from the computation unit 103. Note that this orthogonal transformation method is arbitrary.
  • the orthogonal transform unit 104 supplies the transform coefficient to the quantization unit 105.
  • the quantization unit 105 quantizes the transform coefficient supplied from the orthogonal transform unit 104.
  • the quantization unit 105 sets a quantization parameter based on the information regarding the target value of the code amount supplied from the rate control unit 117, and performs the quantization. Note that this quantization method is arbitrary.
  • the quantization unit 105 supplies the quantized transform coefficient to the lossless encoding unit 106.
  • the lossless encoding unit 106 encodes the transform coefficient quantized by the quantization unit 105 using an arbitrary encoding method. Since the coefficient data is quantized under the control of the rate control unit 117, the code amount becomes a target value set by the rate control unit 117 (or approximates the target value).
  • the lossless encoding unit 106 acquires information indicating the mode of intra prediction from the intra prediction unit 114, and acquires information indicating the mode of inter prediction, differential motion vector information, and the like from the motion prediction / compensation unit 115.
  • the lossless encoding unit 106 encodes these various types of information by an arbitrary encoding method, and uses (multiplexes) the information as a part of header information of encoded data (also referred to as an encoded stream).
  • the lossless encoding unit 106 supplies the encoded data obtained by encoding to the accumulation buffer 107 for accumulation.
  • Examples of the encoding method of the lossless encoding unit 106 include variable length encoding or arithmetic encoding.
  • Examples of the variable length coding include CAVLC (Context-Adaptive Variable Length Coding) defined by the AVC method.
  • Examples of arithmetic coding include CABAC (Context-Adaptive Binary Arithmetic Coding).
  • the accumulation buffer 107 temporarily holds the encoded data supplied from the lossless encoding unit 106.
  • the accumulation buffer 107 outputs the stored encoded data to, for example, a recording device (recording medium) (not shown) or a transmission path (not shown) at a predetermined timing at a predetermined timing. That is, the accumulation buffer 107 is also a transmission unit that transmits encoded data.
  • the transform coefficient quantized by the quantization unit 105 is also supplied to the inverse quantization unit 108.
  • the inverse quantization unit 108 inversely quantizes the quantized transform coefficient by a method corresponding to the quantization by the quantization unit 105.
  • the inverse quantization method may be any method as long as it is a method corresponding to the quantization processing by the quantization unit 105.
  • the inverse quantization unit 108 supplies the obtained transform coefficient to the inverse orthogonal transform unit 109.
  • the inverse orthogonal transform unit 109 performs inverse orthogonal transform on the transform coefficient supplied from the inverse quantization unit 108 by a method corresponding to the orthogonal transform process by the orthogonal transform unit 104.
  • the inverse orthogonal transform method may be any method as long as it corresponds to the orthogonal transform processing by the orthogonal transform unit 104.
  • the inversely orthogonal transformed output (restored difference information) is supplied to the calculation unit 110.
  • the computing unit 110 adds the restored difference information, which is the inverse orthogonal transformation result supplied from the inverse orthogonal transformation unit 109, to the prediction from the intra prediction unit 114 or the motion prediction / compensation unit 115 via the prediction image selection unit 116.
  • the images are added to obtain a locally decoded image (decoded image).
  • the decoded image is supplied to the deblock filter 111 or the frame memory 112.
  • the deblock filter 111 appropriately performs a deblock filter process on the decoded image supplied from the calculation unit 110.
  • the deblocking filter 111 removes block distortion of the decoded image by performing a deblocking filter process on the decoded image.
  • the deblock filter 111 supplies the filter processing result (decoded image after the filter processing) to the frame memory 112. As described above, the decoded image output from the calculation unit 110 can be supplied to the frame memory 112 without passing through the deblocking filter 111. That is, the filtering process by the deblocking filter 111 can be omitted.
  • the frame memory 112 stores the supplied decoded image, and supplies the stored decoded image as a reference image to the selection unit 113 at a predetermined timing.
  • the selection unit 113 selects a supply destination of the reference image supplied from the frame memory 112. For example, in the case of inter prediction, the selection unit 113 supplies the reference image supplied from the frame memory 112 to the motion prediction / compensation unit 115.
  • the intra prediction unit 114 basically uses the pixel value in the processing target picture, which is a reference image supplied from the frame memory 112 via the selection unit 113, to generate a prediction image using a prediction unit (PU) as a processing unit. Perform intra prediction (intra-screen prediction) to be generated. The intra prediction unit 114 performs this intra prediction in a plurality of intra prediction modes prepared in advance.
  • the intra prediction unit 114 generates predicted images in all candidate intra prediction modes, evaluates the cost function value of each predicted image using the input image supplied from the screen rearrangement buffer 102, and selects the optimum mode. select. When the intra prediction unit 114 selects the optimal intra prediction mode, the intra prediction unit 114 supplies the predicted image generated in the optimal mode to the predicted image selection unit 116.
  • the intra prediction unit 114 appropriately supplies the intra prediction mode information indicating the adopted intra prediction mode to the lossless encoding unit 106 and causes the encoding to be performed.
  • the motion prediction / compensation unit 115 basically uses the input image supplied from the screen rearrangement buffer 102 and the reference image supplied from the frame memory 112 via the selection unit 113 as a processing unit. Perform motion prediction (inter prediction).
  • PU Prediction Unit
  • the motion prediction / compensation unit 115 supplies the detected motion vector to the motion vector encoding unit 121 and performs motion compensation processing according to the detected motion vector to generate a prediction image (inter prediction image information). .
  • the motion prediction / compensation unit 115 performs such inter prediction in a plurality of inter prediction modes prepared in advance.
  • the motion prediction / compensation unit 115 supplies the motion vector information of the target prediction region obtained by the inter prediction to the motion vector encoding unit 121.
  • the motion prediction / compensation unit 115 supplies PU (prediction region) size information to the parallel processing control unit 122.
  • the PU size information is, for example, information indicating how a PU constitutes a CU, that is, information indicating a PU partition size.
  • the motion prediction / compensation unit 115 generates a differential motion vector that is a difference between the motion vector of the target prediction region and the prediction motion vector of the target prediction region from the motion vector encoding unit 121.
  • the motion prediction / compensation unit 115 evaluates the cost function value of each predicted image using the input image supplied from the screen rearrangement buffer 102, information on the generated difference motion vector, and the like, and selects an optimum mode. select.
  • the motion prediction / compensation unit 115 supplies the predicted image generated in the optimal mode to the predicted image selection unit 116.
  • the motion prediction / compensation unit 115 supplies information indicating the employed inter prediction mode, information necessary for performing processing in the inter prediction mode, and the like to the lossless encoding unit 106 when decoding the encoded data. And encoding.
  • the necessary information includes, for example, information on the generated differential motion vector and predicted motion vector information including a flag indicating the index of the predicted motion vector.
  • the predicted image selection unit 116 selects a supply source of a predicted image to be supplied to the calculation unit 103 or the calculation unit 110. For example, in the case of inter coding, the prediction image selection unit 116 selects the motion prediction / compensation unit 115 as a supply source of the prediction image, and calculates the prediction image supplied from the motion prediction / compensation unit 115 as the calculation unit 103 or the calculation unit. To the unit 110.
  • the rate control unit 117 controls the quantization operation rate of the quantization unit 105 based on the code amount of the encoded data stored in the storage buffer 107 so that overflow or underflow does not occur.
  • the motion vector encoding unit 121 stores the motion vector obtained by the motion prediction / compensation unit 115.
  • the motion vector encoding unit 121 predicts a motion vector in the target prediction area. That is, the motion vector encoding unit 121 generates a predicted motion vector (predictor) used for encoding or decoding a motion vector.
  • the types of predicted motion vectors include temporally predicted motion vectors (temporal predictors) and spatially predicted motion vectors (spacial predictors).
  • the temporal motion vector predictor is a motion vector predictor generated using a motion vector of a temporally adjacent region temporally adjacent to the target prediction region.
  • the spatial prediction motion vector is a prediction motion vector generated using a motion vector of a spatially adjacent region that is spatially adjacent to the target prediction region.
  • the motion vector encoding unit 121 generates a temporal prediction motion vector using a motion vector of a temporally adjacent region temporally adjacent to the target prediction region.
  • the motion vector encoding unit 121 generates a spatial prediction motion vector using a motion vector of a spatial adjacent region that is spatially adjacent to the target prediction region.
  • a spatial prediction motion vector is generated using an adjacent region specified by a control signal from the parallel processing control unit 122.
  • the motion vector encoding unit 121 supplies the optimal prediction motion vector, which is optimal among the generated prediction motion vectors, to the motion prediction / compensation unit 115.
  • the parallel processing control unit 122 sets the space adjacent PU of the target PU.
  • the parallel processing control unit 122 especially when the coding region (CU) is composed of a plurality of prediction regions (PUs), performs spatial adjacent processing of the target PU so as to perform the prediction motion vector generation processing of the target prediction region in parallel.
  • Set the PU Note that setting the spatially adjacent PU of the target PU is synonymous with setting the motion vector of the spatially adjacent PU of the target PU that is used to generate a predicted motion vector.
  • the parallel processing control unit 122 refers to the PU size information from the motion prediction / compensation unit 115, and sets the spatially adjacent PU of the target PU according to the position of the prediction region in the coding region.
  • a signal (such as an address) is supplied to the motion vector encoding unit 121.
  • motion vector prediction represents processing for generating a predicted motion vector
  • motion vector encoding refers to generating a predicted motion vector and using the generated predicted motion vector
  • motion vector encoding processing includes motion vector prediction processing
  • motion vector decoding is described as representing a process of generating a motion vector predictor and reconstructing the motion vector using the generated motion vector predictor. That is, the motion vector decoding process includes a motion vector prediction process.
  • the adjacent region adjacent to the target prediction region described above is also a peripheral region located around the target region, and hereinafter, both terms will be described as meaning the same region.
  • FIG. 2 is a diagram illustrating an example of a state of motion prediction / compensation processing with 1/4 pixel accuracy defined in the AVC method.
  • each square represents a pixel.
  • A indicates the position of integer precision pixels stored in the frame memory 112
  • b, c, d indicate positions of 1/2 pixel precision
  • e1, e2, e3 indicate 1/4 pixel precision. Indicates the position.
  • the pixel values at the positions b and d are generated as shown in the following equations (2) and (3) using a 6 tap FIR filter.
  • the pixel value at the position of c is generated as shown in the following formulas (4) to (6) by applying a 6 tap FIR filter in the horizontal direction and the vertical direction.
  • Clip processing is performed only once at the end after performing both horizontal and vertical product-sum processing.
  • E1 to e3 are generated by linear interpolation as shown in the following equations (7) to (9).
  • FIG. 3 is a diagram illustrating an example of a macroblock in the AVC method.
  • the motion prediction / compensation process is performed in units of 16 ⁇ 16 pixels in the frame motion compensation mode.
  • motion prediction / compensation processing is performed for each of the first field and the second field in units of 16 ⁇ 8 pixels.
  • one macroblock composed of 16 ⁇ 16 pixels is converted into one of 16 ⁇ 16, 16 ⁇ 8, 8 ⁇ 16, or 8 ⁇ 8. It can be divided into partitions. Further, it is possible to have motion vector information independent of each other for each sub macroblock. Further, as shown in FIG. 3, the 8 ⁇ 8 partition is divided into 8 ⁇ 8, 8 ⁇ 4, 4 ⁇ 8, and 4 ⁇ 4 sub-macroblocks and has independent motion vector information. It is possible.
  • Each straight line shown in FIG. 4 indicates the boundary of the motion compensation block.
  • E indicates the motion compensation block that is about to be encoded
  • a through D indicate motion compensation blocks that are already encoded and that are adjacent to E.
  • predicted motion vector information pmvE for the motion compensation block E is generated by the median operation as shown in the following equation (10).
  • the information about the motion compensation block C is unavailable due to the end of the image frame or the like, the information about the motion compensation block D is substituted.
  • the data mvdE encoded as the motion vector information for the motion compensation block E in the image compression information is generated as shown in the following equation (11) using pmvE.
  • Multi-reference frame In the AVC method, a method called Multi-Reference Frame (multi-reference frame), such as MPEG2 and H.263, which is not specified in the conventional image encoding method is specified.
  • Direct mode Next, the direct mode will be described. Although the amount of information in motion vector information in a B picture is enormous, a mode called Direct Mode is provided in the AVC method.
  • motion vector information is not stored in the image compression information.
  • the motion vector information of the block is calculated from the motion vector information of the peripheral block or the motion vector information of the Co-Located block that is a block at the same position as the processing target block in the reference frame.
  • Direct Mode There are two types of direct mode (Direct Mode): Spatial Direct Mode (spatial direct mode) and Temporal Direct Mode (temporal direct mode), which can be switched for each slice.
  • Spatial Direct Mode spatial direct mode
  • Temporal Direct Mode temporary direct mode
  • motion vector information mvE of the motion compensation block E to be processed is calculated as shown in the following equation (12).
  • motion vector information generated by Median prediction is applied to the block.
  • temporal direct mode Tempooral Direct Mode
  • a block at the same space address as the current block in the L0 reference picture is a Co-Located block, and the motion vector information in the Co-Located block is mvcol. Also, the distance on the time axis between the current picture and the L0 reference picture is TDB, and the distance on the time axis between the L0 reference picture and the L1 reference picture is TDD. *
  • the motion vector information mvL0 of L0 and the motion vector information mvL1 of L1 in the picture are calculated as the following equations (13) and (14).
  • the direct mode can be defined in units of 16 ⁇ 16 pixel macroblocks or in units of 8 ⁇ 8 pixel blocks.
  • JM Job Model
  • the following two mode determination methods can be selected: High Complexity Mode and Low Complexity Mode.
  • the cost function value for each prediction mode is calculated, and the prediction mode that minimizes the cost function value is selected as the sub macroblock or the optimum mode for the macroblock.
  • is the entire set of candidate modes for encoding the block or macroblock
  • D is the difference energy between the decoded image and the input image when encoded in the prediction mode.
  • is a Lagrange undetermined multiplier given as a function of the quantization parameter.
  • R is the total code amount when encoding is performed in this mode, including orthogonal transform coefficients.
  • D is the difference energy between the predicted image and the input image, unlike the case of High Complexity Mode.
  • QP2Quant QP
  • HeaderBit is a code amount related to information belonging to Header, such as a motion vector and mode, which does not include an orthogonal transform coefficient.
  • Non-Patent Document 1 proposes a method as described below.
  • This proposed method is called MV competition in the AVC system.
  • AMVP Advanced Motion Vector Prediction
  • this proposed method will be described as AMVP.
  • mvcol is the motion vector information for the Co-Located block for the block.
  • each predicted motion vector information (Predictor) is defined by the following equations (17) to (19).
  • the Co-Located block for the block is a block having the same xy coordinate as the block in the reference picture to which the picture refers.
  • the cost function value when each predicted motion vector information is used is calculated for each block, and the optimum predicted motion vector information is selected.
  • a flag indicating information (index) regarding which predicted motion vector information is used is transmitted to each block.
  • the hierarchical structure of macroblocks and sub-macroblocks is defined.
  • a coding unit (CU ( Coding Unit)
  • CU Coding Unit
  • CU is also called Coding Tree Block (CTB) and is a partial area of a picture unit image that plays the same role as a macroblock in the AVC method.
  • CTB Coding Tree Block
  • the latter is fixed to a size of 16 ⁇ 16 pixels, whereas the size of the former is not fixed, and is specified in the image compression information in each sequence.
  • SPS Sequence Coding Unit
  • LCU Large Coding Unit
  • SCU Smallest Coding Unit
  • the size of the LCU is 128 and the maximum hierarchical depth is 5.
  • split_flag the value of split_flag is “1”
  • the 2N ⁇ 2N size CU is divided into N ⁇ N size CUs that are one level below.
  • the CU is divided into prediction units (Prediction Unit (PU)) that are regions (partial regions of images in units of pictures) that are processing units for intra or inter prediction.
  • the PU is divided into transform units (Transform Unit (TU)), which are regions (partial regions of images in units of pictures) that are processing units of orthogonal transform.
  • PU Prediction Unit
  • TU Transform Unit
  • inter _4 ⁇ 4_enable_flag is defined, and by setting this value to 0, it is possible to prohibit the use of an inter CU having a 4 ⁇ 4 block size.
  • a macroblock in the AVC method corresponds to an LCU
  • a block (subblock) corresponds to a CU. Then you can think.
  • a motion compensation block in the AVC method can be considered to correspond to a PU.
  • the size of the LCU of the highest hierarchy is generally set larger than that of the AVC macroblock, for example, 128 ⁇ 128 pixels.
  • the LCU also includes a macro block in the AVC system, and the CU also includes a block (sub-block) in the AVC system.
  • merge motion partition Next, the merge mode in the HEVC method will be described. As one of the motion vector encoding methods described above with reference to FIG. 7, a technique called “Motion Partition Merging” (merge mode) as shown in FIG. 9 has been proposed. In this method, two flags, MergeFlag and MergeLeftFlag, are transmitted as merge information that is information related to the merge mode.
  • a spatial prediction motion vector and a temporal prediction motion vector are obtained from surrounding blocks, and an optimal prediction motion vector is determined from these.
  • the flag information is transmitted when the determined predicted motion vector and the motion information of the block are the same.
  • A is the PU located at the bottom of the PUs adjacent to the left of the PU.
  • B is a PU located on the leftmost side among PUs adjacent to the PU.
  • C is a PU adjacent to the upper right of the PU, and is a PU adjacent to the left of B.
  • D is a PU adjacent to the lower left of the PU, and is a PU adjacent to the bottom of A.
  • E is a PU adjacent to the upper left of the PU.
  • the spatial prediction motion vector candidate of the PU As the spatial prediction motion vector candidate of the PU, the following scan processing is performed in the order of C, D, A, B, E on the adjacent PUs of A to E, and the spatial prediction motion vector for the PU is obtained. The decision is made.
  • a scan is performed for searching whether there is a motion vector information of the relevant PU and the List that are the same, but different reference frame information.
  • a scan for searching whether there is a different motion vector information, List, and reference frame information of the PU is performed.
  • the above first to fourth scans are finished when two pieces of motion vector information equivalent to the PU are detected. That is, if two are detected in the first scan, the second and subsequent scans are not performed. The optimum one of the two detected in this way is determined as a spatial prediction motion vector for the PU.
  • a CU that is a single coding area is configured by PUs that are two prediction areas, that is, a CU is divided into 2N ⁇ N. is there.
  • a PU as shown in FIG. 11 is referred to as a 2N ⁇ N PU.
  • the spatial prediction motion vector is determined as described above. Therefore, if motion vector information related to PU 0 positioned above in the CU is not determined, a motion vector encoding / decoding process (ie, generation of a predicted motion vector) related to PU 1 positioned below in the CU is performed. I could not. For this reason, the motion vector information regarding PU 0 and PU 1 cannot be processed in parallel. The same applies to the case where the CU is divided into N ⁇ 2N (that is, N ⁇ 2N PU).
  • FIG. 12A is a diagram illustrating an adjacent region that is referred to in generating a spatial prediction vector of PU 0 that is the first PU located above in the CU when PU is 2N ⁇ N.
  • PU 0 the spatial prediction motion vector generation method described above with reference to FIG. 10 is applied. That is, motion vector information of A 0 to E 0 that are adjacent PUs with the following positional relationship with respect to the PU 0 is set as a candidate, and the predicted motion vector of the PU 0 is determined.
  • a 0 is a PU located at the bottom of the PUs adjacent to the left of the corresponding PU 0 .
  • B 0 is a PU located on the leftmost side among PUs adjacent on the PU 0 .
  • C 0 is a PU adjacent to the upper right of the PU, and is a PU adjacent to the left of B 0 .
  • D 0 is a PU adjacent to the lower left of the corresponding PU 0 and is adjacent to the lower side of A 0 .
  • E 0 is a PU adjacent to the upper left of the corresponding PU 0 .
  • B of FIG. 12 is a diagram illustrating an adjacent region that is referred to in generating a spatial prediction vector of PU 1 that is the second PU located below in the CU when PU is 2N ⁇ N.
  • a 1, D 1 is a PU adjacent to each other in the following positional relationship with respect to the PU 1
  • the E 1 follows for PU 0 overlaying the PU 1 in CU
  • the motion vector information of B 0 and C 0 that are adjacent in the positional relationship is used.
  • a 1 is a PU located at the bottom of the PUs adjacent to the left of the PU 1 .
  • B 0 is a PU located on the leftmost side among PUs adjacent on PU 0 located on the PU 1 .
  • C 0 is a PU adjacent to the upper right of the PU 0 located on the PU 1 and a PU adjacent to the left of the B 0 .
  • D 1 is a PU adjacent to the lower left of the corresponding PU 1 and is a PU adjacent to the lower side of A 1 .
  • E 1 is a PU adjacent to the upper left of the PU 1 .
  • B 0 is set instead of B 1 as the adjacent area of the PU 1 concerned.
  • C 0 adjacent to B 0 may be set instead of C 1 adjacent to B 1 as the adjacent region of the PU 1 .
  • FIG. 13A is a diagram illustrating an adjacent region that is referred to in generating a spatial prediction vector of PU 0 that is the first PU located on the left side in the CU when the PU is N ⁇ 2N.
  • the spatial prediction motion vector generation method described above with reference to FIG. 10 is applied. That is, motion vector information of A 0 to E 0 that are adjacent PUs with the following positional relationship with respect to the PU 0 is set as a candidate, and the predicted motion vector of the PU 0 is determined.
  • a 0 is a PU located at the bottom of the PUs adjacent to the left of the corresponding PU 0 .
  • B 0 is a PU located on the leftmost side among PUs adjacent on the PU 0 .
  • C 0 is a PU adjacent to the upper right of the PU, and is a PU adjacent to the left of B 0 .
  • D 0 is a PU adjacent to the lower left of the corresponding PU 0 and is adjacent to the lower side of A 0 .
  • E 0 is a PU adjacent to the upper left of the corresponding PU 0 .
  • FIG. 13B is a diagram illustrating an adjacent region referred to in generating a spatial prediction vector of PU 1 that is the second PU located on the right side in the CU when PU is 2N ⁇ N.
  • B 1, C 1 is a PU adjacent to each other in the following positional relationship with respect to the PU 1
  • the E 1 follows for PU 0 overlaying the PU 1 in CU
  • the motion vector information of A 0 and D 0 that are adjacent in the positional relationship is used.
  • a 0 is the PU located at the bottom of the PUs adjacent to the left of PU 0 located above the PU 1 .
  • B 1 is a PU located on the leftmost among PUs adjacent on the PU 1 .
  • C 1 is a PU adjacent to the upper right of the PU 1 and a PU adjacent to the left of B 1 .
  • D 0 is a PU adjacent to the lower left of PU 0 located above PU 1 and is adjacent to the lower side of A 0 .
  • E 1 is a PU adjacent to the upper left of the PU 1 .
  • a 0 is set instead of A 1 as the adjacent area of the PU 1 .
  • D 0 adjacent to A 0 may be set instead of D 1 adjacent to A 1 as the adjacent region of the PU 1 .
  • parallel processing using motion vectors in a plurality of PUs in a CU is performed by setting adjacent regions according to the PU size (2N ⁇ N, N ⁇ 2N, 2N ⁇ 2N). And the processing efficiency can be improved.
  • the generation of the spatial prediction motion vector in this case is performed as shown in FIG. 14 according to the position in the CU.
  • FIG. 14A is a diagram illustrating an adjacent region that is referred to when generating a spatial prediction vector of PU 0 that is the first PU located at the upper left in the CU when PU is N ⁇ N.
  • PU 0 the spatial prediction motion vector generation method described above with reference to FIG. 10 is applied. That is, motion vector information of A 0 to E 0 that are adjacent PUs with the following positional relationship with respect to the PU 0 is set as a candidate, and the predicted motion vector of the PU 0 is determined.
  • a 0 is a PU located at the bottom of the PUs adjacent to the left of the corresponding PU 0 .
  • B 0 is a PU located on the leftmost side among PUs adjacent on the PU 0 .
  • C 0 is a PU adjacent to the upper right of the PU, and is a PU adjacent to the left of B 0 .
  • D 0 is a PU adjacent to the lower left of the corresponding PU 0 and is adjacent to the lower side of A 0 .
  • E 0 is a PU adjacent to the upper left of the corresponding PU 0 .
  • FIG. 14B is a diagram illustrating an adjacent region that is referred to when generating a spatial prediction vector of PU 1 that is the second PU located at the upper right in the CU when PU is N ⁇ N.
  • B 1, C 1 is a PU adjacent to each other in the following positional relationship with respect to the PU 1
  • the E 1 follows for PU 0 overlaying the PU 1 in CU
  • the motion vector information of A 0 and D 0 that are adjacent in the positional relationship is used.
  • a 0 is the PU located at the bottom of the PUs adjacent to the left of PU 0 located above the PU 1 .
  • B 1 is a PU located on the leftmost among PUs adjacent on the PU 1 .
  • C 1 is a PU adjacent to the upper right of the PU 1 and a PU adjacent to the left of B 1 .
  • D 0 is a PU adjacent to the lower left of PU 0 located above PU 1 and is adjacent to the lower side of A 0 .
  • E 1 is a PU adjacent to the upper left of the PU 1 .
  • the example of B in FIG. 14 is the same as the example of B in FIG. 13, and for the PU 1 , the PU corresponding to A 1 is PU 0 , so the processing of the PU 1 is performed. At this time, it is necessary to wait for the processing of PU 0 to end, which hinders parallel processing. Therefore, A 0 is set instead of A 1 as the adjacent area of the PU 1 . Further, D 0 adjacent to A 0 may be set instead of D 1 adjacent to A 1 as the adjacent region of the PU 1 .
  • FIG. 14C is a diagram illustrating an adjacent region that is referred to in generating a spatial prediction vector of PU 2 that is the second PU located in the lower left in the CU when the PU is N ⁇ N.
  • a 2 is a PU adjacent to each other in the following positional relationship with respect to the PU 2
  • the E 2 follows for PU 0 overlaying the PU 2 in CU
  • the motion vector information of B 0 and C 0 that are adjacent in the positional relationship is used.
  • a 2 is a PU located at the bottom of the PUs adjacent to the left side of the PU 2 .
  • B 0 is a PU located on the leftmost side among PUs adjacent to PU 0 located on the PU 2 .
  • C 0 is a PU adjacent to the upper right of the PU 0 located on the PU 2 and is a PU adjacent to the left of the B 0 .
  • D 2 is a PU adjacent to the lower left of the PU 2 , and is a PU adjacent to the lower side of A 2 .
  • E 2 is a PU adjacent to the upper left of the PU 2 .
  • examples of C of FIG. 14 are the same as the examples of B of FIG. 12, for the PU 2 is PU corresponding to B 2, since it comes to PU 0, performs the processing of the PU 2 At this time, it is necessary to wait for the processing of PU 0 to end, which hinders parallel processing. Therefore, B 0 is set instead of B 2 as the adjacent region of the PU 2 . Furthermore, C 0 adjacent to B 0 may be set instead of C 2 adjacent to B 2 as the adjacent region of the PU 2 .
  • FIG. 14D is a diagram illustrating an adjacent region referred to in generating a spatial prediction vector of PU 3 that is the second PU located at the lower right in the CU when PU is N ⁇ N.
  • a 2 is a PU adjacent to each other in positional relationship follows for PU 2 located to the left of the PU 3
  • D 2 are used in CU.
  • motion vector information of B 1 and C 1 that are adjacent to PU 1 located above the PU 3 in the CU in the following positional relationship is used.
  • motion vector information of E 0 adjacent to PU 0 located at the upper left of PU 3 in the CU in the following positional relationship is used.
  • a 2 is a PU located at the bottom of the PUs adjacent to the left of PU 2 located to the left of the PU 3 .
  • B 1 is a PU located on the leftmost side among PUs adjacent on PU 1 located on the corresponding PU 3 .
  • C 1 is a PU adjacent to the upper right of PU 1 located on the PU 3 , and is a PU adjacent to the left of B 1 .
  • D 2 is a PU adjacent to the lower left of PU 2 located to the left of the PU 3 , and is a PU adjacent to the lower side of A 2 .
  • E 2 is a PU adjacent to the upper left of PU 0 located at the upper left of the PU 3 .
  • the example of D in FIG. 14 is an example including the example of B in FIG. 12 and the example of B in FIG. 13, and for the PU 3 , the PU corresponding to B 3 is PU 1 , PU corresponding to a 3 is made to the fact that PU 2, corresponding to E 3 PU would that PU 0. For this reason, when the processing of the PU 3 is performed, it is necessary to wait for the processing of PU 0 , PU 1 , and PU 2 to end, which hinders parallel processing.
  • the present technology can also be applied when the PU is N ⁇ N.
  • AMPs Asymmetric Motion Partitions having different sizes of a plurality of PUs constituting a CU are defined.
  • the present technology can also be applied to this AMP.
  • FIG. 16 is a block diagram illustrating a main configuration example of the motion vector encoding unit 121.
  • the motion vector encoding unit 121 in the example of FIG. 16 includes a spatial adjacent motion vector buffer 151, a temporal adjacent motion vector buffer 152, a candidate prediction motion vector generation unit 153, a cost function value calculation unit 154, and an optimal prediction motion vector determination unit 155. It is comprised so that it may contain.
  • the motion prediction / compensation unit 115 supplies information on the determined motion vector in the optimal prediction mode to the spatially adjacent motion vector buffer 151 and the temporally adjacent motion vector buffer 152. Also, the motion vector information of each prediction mode searched by the motion prediction / compensation unit 115 is supplied to the cost function value calculation unit 154.
  • the parallel processing control unit 122 refers to the PU size information from the motion prediction / compensation unit 115, and sets a spatial adjacent PU of the target PU according to the position of the prediction region in the coding region ( Address etc.) is supplied to the spatial adjacent motion vector buffer 151.
  • each part which comprises the motion vector encoding part 121 performs the prediction motion vector production
  • the spatial adjacent motion vector buffer 151 is composed of a line buffer.
  • the spatially adjacent motion vector buffer 151 accumulates the motion vector information from the motion prediction / compensation unit 115 as motion vector information of spatially adjacent regions that are spatially adjacent.
  • the spatially adjacent motion vector buffer 151 reads information indicating a motion vector obtained for a spatially adjacent PU spatially adjacent to the PU.
  • the spatial adjacent motion vector buffer 151 reads information indicating the motion vector of the PU indicated by the control signal (address) from the parallel processing control unit 122.
  • the spatial adjacent motion vector buffer 151 supplies the read information (spatial adjacent motion vector information) to the candidate prediction motion vector generation unit 153.
  • the temporally adjacent motion vector buffer 152 is composed of a memory.
  • the temporally adjacent motion vector buffer 152 stores the motion vector information from the motion prediction / compensation unit 115 as motion vector information of temporally adjacent regions that are temporally adjacent.
  • the temporally adjacent areas are areas (that is, Co-located) PUs) at addresses in the same space as the area (the PU) in the pictures that are different on the time axis.
  • the temporally adjacent motion vector buffer 152 reads information indicating the motion vector obtained for the temporally adjacent PU temporally adjacent to the PU, and generates the predicted information (temporal adjacent motion vector information) as a candidate prediction motion vector To the unit 153.
  • the candidate predicted motion vector generation unit 153 refers to the spatial adjacent motion vector information from the spatial adjacent motion vector buffer 151 based on the AMVP or merge mode method described above with reference to FIG. A candidate spatial prediction motion vector is generated.
  • the candidate prediction motion vector generation unit 153 supplies information indicating the generated spatial prediction motion vector to the cost function value calculation unit 154 as candidate prediction motion vector information.
  • the candidate predicted motion vector generation unit 153 refers to the temporal adjacent motion vector information from the temporal adjacent motion vector buffer 152 and generates a temporal prediction motion vector that is a candidate for the PU. .
  • the candidate predicted motion vector generation unit 153 supplies information on the generated temporal prediction motion vector to the cost function value calculation unit 154 as candidate predicted motion vector information.
  • the cost function value calculation unit 154 calculates a cost function value related to each candidate prediction motion vector, and supplies the calculated cost function value to the optimal prediction motion vector determination unit 155 together with the candidate prediction motion vector information.
  • the optimal prediction motion vector determination unit 155 assumes that the candidate prediction motion vector that minimizes the cost function value from the cost function value calculation unit 154 is the optimal prediction motion vector for the PU, and uses the information as the motion prediction / compensation unit. 115.
  • the motion prediction / compensation unit 115 uses the information of the optimal prediction motion vector from the optimal prediction motion vector determination unit 155 to generate a differential motion vector that is a difference from the motion vector, and the cost function value for each prediction mode. Is calculated. The motion prediction / compensation unit 115 determines the prediction mode that minimizes the cost function value as the inter optimal prediction mode.
  • the motion prediction / compensation unit 115 supplies the predicted image in the inter-optimal prediction mode to the predicted image selection unit 116.
  • the motion prediction / compensation unit 115 supplies the motion vector in the inter optimal prediction mode to the spatial adjacent motion vector buffer 151 and the temporal adjacent motion vector buffer 152.
  • the motion prediction / compensation unit 115 supplies the generated differential motion vector information to the lossless encoding unit 106 to be encoded.
  • step S101 the A / D converter 101 performs A / D conversion on the input image.
  • step S102 the screen rearrangement buffer 102 stores the A / D converted image, and rearranges the picture from the display order to the encoding order.
  • step S103 the intra prediction unit 114 performs intra prediction processing in the intra prediction mode.
  • step S104 the motion prediction / compensation unit 115, the motion vector encoding unit 121, and the parallel processing control unit 122 perform inter motion prediction processing for performing motion prediction and motion compensation in the inter prediction mode. Details of the inter motion prediction process will be described later with reference to FIG.
  • step S104 the motion vector of the PU is searched, and each predicted motion vector of the PU is generated.
  • a spatial motion vector predictor when a CU is composed of a plurality of PUs, motion vector information of spatially adjacent PUs set according to the PU position in the CU is used as a candidate, and spatial prediction is performed. A motion vector is generated. Then, an optimal prediction motion vector for the PU is determined from the generated temporal prediction motion vector and spatial prediction motion vector, an optimal inter prediction mode is determined, and a prediction image of the optimal inter prediction mode is generated.
  • the predicted image and cost function value of the determined optimal inter prediction mode are supplied from the motion prediction / compensation unit 115 to the predicted image selection unit 116.
  • information on the determined optimal inter prediction mode, information on the predicted motion vector determined to be optimal, and information indicating the difference between the predicted motion vector and the motion vector are also supplied to the lossless encoding unit 106, and in step S114 described later, Losslessly encoded.
  • step S105 the predicted image selecting unit 116 determines an optimal mode based on the cost function values output from the intra prediction unit 114 and the motion prediction / compensation unit 115. That is, the predicted image selection unit 116 selects one of the predicted image generated by the intra prediction unit 114 and the predicted image generated by the motion prediction / compensation unit 115.
  • step S106 the calculation unit 103 calculates a difference between the image rearranged by the process of step S102 and the predicted image selected by the process of step S105.
  • the data amount of the difference data is reduced compared to the original image data. Therefore, the data amount can be compressed as compared with the case where the image is encoded as it is.
  • step S107 the orthogonal transform unit 104 orthogonally transforms the difference information generated by the process in step S106. Specifically, orthogonal transformation such as discrete cosine transformation and Karhunen-Loeve transformation is performed, and transformation coefficients are output.
  • orthogonal transformation such as discrete cosine transformation and Karhunen-Loeve transformation is performed, and transformation coefficients are output.
  • step S108 the quantization unit 105 quantizes the orthogonal transform coefficient obtained by the processing in step S107, using the quantization parameter from the rate control unit 117.
  • step S109 the inverse quantization unit 108 inversely quantizes the quantized orthogonal transform coefficient (also referred to as a quantization coefficient) generated by the process in step S108 with characteristics corresponding to the characteristics of the quantization unit 105.
  • step S ⁇ b> 110 the inverse orthogonal transform unit 109 performs inverse orthogonal transform on the orthogonal transform coefficient obtained by the process of step S ⁇ b> 109 with characteristics corresponding to the characteristics of the orthogonal transform unit 104.
  • step S111 the calculation unit 110 adds the predicted image to the locally decoded difference information, and generates a locally decoded image (an image corresponding to an input to the calculation unit 103).
  • step S112 the deblock filter 111 appropriately performs a deblock filter process on the locally decoded image obtained by the process of step S111.
  • step S113 the frame memory 112 stores the decoded image that has been subjected to the deblocking filter process by the process of step S112. It should be noted that an image that has not been filtered by the deblocking filter 111 is also supplied from the computing unit 110 and stored in the frame memory 112.
  • step S114 the lossless encoding unit 106 encodes the transform coefficient quantized by the process in step S108. That is, lossless encoding such as variable length encoding or arithmetic encoding is performed on the difference image.
  • the lossless encoding unit 106 encodes information regarding the prediction mode of the prediction image selected by the process of step S105, and adds the encoded information to the encoded data obtained by encoding the difference image. That is, the lossless encoding unit 106 also encodes and encodes the optimal intra prediction mode information supplied from the intra prediction unit 114 or information according to the optimal inter prediction mode supplied from the motion prediction / compensation unit 115, and the like. Append to data.
  • the flag which shows the difference motion vector information calculated in step S105 and the index of the prediction motion vector is also encoded.
  • step S115 the accumulation buffer 107 accumulates the encoded data obtained by the process in step S114.
  • the encoded data stored in the storage buffer 107 is appropriately read and transmitted to the decoding side via a transmission path or a recording medium.
  • step S116 the rate control unit 117 causes the quantization unit 105 to prevent overflow or underflow based on the code amount (generated code amount) of the encoded data accumulated in the accumulation buffer 107 by the process of step S115. Controls the rate of quantization operation.
  • step S116 When the process of step S116 is finished, the encoding process is finished.
  • step S151 the motion prediction / compensation unit 115 performs a motion search for each inter prediction mode.
  • the motion vector information searched by the motion prediction / compensation unit 115 is supplied to the cost function value calculation unit 154.
  • step S152 the candidate motion vector predictor generating unit 153 generates a motion vector predictor that is a candidate for the PU based on the AMVP or merge mode method described above with reference to FIG. Detailed description of the predicted motion vector generation processing will be described later with reference to FIG.
  • a spatial prediction motion vector that is a candidate for the PU is generated with reference to the spatial adjacent motion vector information from the spatial adjacent motion vector buffer 151.
  • the motion vector information of the spatially adjacent PU set according to the position of the PU in the CU is used as a candidate, and a spatial prediction motion vector is generated.
  • a temporal prediction motion vector that is a candidate for the PU is generated.
  • the optimum one is determined as the optimal prediction motion vector and supplied to the motion prediction / compensation unit 115.
  • step S153 the motion prediction / compensation unit 115 calculates a cost function value for each inter prediction mode.
  • the motion prediction / compensation unit 115 generates a differential motion vector that is a difference between the optimal prediction motion vector from the optimal prediction motion vector determination unit 155 and the motion vector. Then, the motion prediction / compensation unit 115 uses the generated difference motion vector information, the input image from the screen rearrangement buffer 102, and the like according to the above-described equation (15) or equation (16) and relates to each inter prediction mode. Calculate the cost function value. In the merge mode, a difference motion vector is not generated.
  • step S154 the motion prediction / compensation unit 115 determines the prediction mode that minimizes the cost function value among the prediction modes as the optimal inter prediction mode.
  • step S ⁇ b> 155 the motion prediction / compensation unit 115 generates a predicted image in the optimal inter prediction mode and supplies the predicted image to the predicted image selection unit 116.
  • step S156 the motion prediction / compensation unit 115 supplies information related to the optimal inter prediction mode to the lossless encoding unit 106, and encodes information related to the optimal inter prediction mode.
  • the information on the optimal inter prediction mode includes, for example, information on the optimal inter prediction mode, differential motion vector information in the optimal inter prediction mode, reference picture information in the optimal inter prediction mode, and information on a predicted motion vector.
  • the information on the predicted motion vector includes, for example, a flag indicating an index of the predicted motion vector.
  • step S156 the supplied information is encoded in step S114 in FIG.
  • step S171 the parallel processing control unit 122 sets an adjacent region to which motion vector information is referenced for 2N ⁇ 2N PU.
  • the parallel processing control unit 122 sets A, B, C, D, and E shown in FIG. 10 as adjacent areas, and supplies the addresses to the spatial adjacent motion vector buffer 151 as control signals.
  • the spatial adjacent motion vector buffer 151 reads information indicating the motion vector of the PU indicated by the control signal (address) from the parallel processing control unit 122, and supplies the information indicating the read motion vector to the candidate prediction motion vector generation unit 153. To do.
  • step S172 the candidate prediction motion vector generation unit 153 generates and determines a spatial prediction motion vector for the 2N ⁇ 2N PU.
  • the candidate predicted motion vector generation unit 153 performs a scan process with reference to the spatial adjacent motion vector information of A, B, C, D, and E in FIG. 10 to perform spatial prediction motion that is a candidate of 2N ⁇ 2N PU. Generate and determine a vector.
  • the candidate prediction motion vector generation unit 153 supplies the determined spatial prediction motion vector information to the cost function value calculation unit 154 as candidate prediction motion vector information.
  • step S173 the cost function value calculation unit 154 calculates a cost function value related to a 2N ⁇ 2N PU candidate prediction motion vector, and the calculated cost function value together with information on the candidate prediction motion vector, the optimal prediction motion vector determination unit 155. To supply.
  • step S174 the parallel processing control unit 122 sets an adjacent region in which motion vector information is referred to for 2N ⁇ N / N ⁇ 2N PU in parallel processing.
  • the parallel processing control unit 122 performs, for example, A 0 , B 0 , C 0 , D 0 , E 0 shown in A of FIG. 12 on PU 0 that is the first PU.
  • the adjacent area is set, and the address is supplied to the spatial adjacent motion vector buffer 151 as a control signal.
  • the parallel-processing control unit 122 for example, adjacent to A 1, B 0, C 0 , D 1, E 1 shown in B of FIG. 12 The area is set, and the address is supplied to the space adjacent motion vector buffer 151 as a control signal.
  • the parallel-processing control unit 122 For N ⁇ 2N PU, relative PU 0 which is the first PU, the parallel-processing control unit 122, for example, the A 0, B 0, C 0 , D 0, E 0 shown in A of FIG. 13 The adjacent area is set, and the address is supplied to the spatial adjacent motion vector buffer 151 as a control signal.
  • the parallel-processing control unit 122 for example, adjacent the A 0, B 1, C 1 , D 0, E 1 shown in B of FIG. 13 The area is set, and the address is supplied to the space adjacent motion vector buffer 151 as a control signal.
  • the spatial adjacent motion vector buffer 151 reads information indicating the motion vector of the PU indicated by the control signal (address) from the parallel processing control unit 122, and supplies the information indicating the read motion vector to the candidate prediction motion vector generation unit 153. To do.
  • step S175 the candidate motion vector predictor generating unit 153 generates and determines a spatial motion vector predictor for 2N ⁇ N / N ⁇ 2N PU by parallel processing.
  • the candidate motion vector predictor generating unit 153 refers to the spatial adjacent motion vector information of A 0 , B 0 , C 0 , D 0 , E 0 in FIG. To generate and determine a spatial prediction motion vector that is a candidate of 2N ⁇ N PU 0 .
  • the candidate motion vector predictor 153 refers to the spatial adjacent motion vector information of A 1 , B 0 , C 0 , D 1 , E 1 in B of FIG.
  • a spatial prediction motion vector that is a candidate of 2N ⁇ N PU 1 is generated and determined.
  • the candidate motion vector predictor generator 153 refers to the spatial adjacent motion vector information of A 0 , B 0 , C 0 , D 0 , E 0 in FIG. , N ⁇ 2N PU 0 candidate spatial prediction motion vectors are generated and determined.
  • the candidate motion vector predictor generating unit 153 refers to the spatial adjacent motion vector information of A 0 , B 1 , C 1 , D 0 , E 1 in B of FIG.
  • a spatial prediction motion vector that is a candidate for N ⁇ 2N PU 1 is generated and determined.
  • the candidate prediction motion vector generation unit 153 supplies information on the determined spatial prediction motion vector to the cost function value calculation unit 154 as candidate prediction motion vector information.
  • step S176 the cost function value calculation unit 154 calculates a cost function value related to the candidate prediction motion vector of 2N ⁇ N / N ⁇ 2N PU, and the calculated cost function value together with the information of the candidate prediction motion vector is the optimal prediction motion. This is supplied to the vector determination unit 155.
  • the optimal prediction motion vector determination unit 155 determines an optimal prediction motion vector from the candidate prediction motion vectors. That is, the optimal prediction motion vector determination unit 155 determines the candidate prediction motion vector that minimizes the cost function value from the cost function value calculation unit 154 as the optimal prediction motion vector for the PU, and uses the information as motion prediction / This is supplied to the compensation unit 115.
  • the motion vector is referred to according to the position of the prediction region in the coding region.
  • An adjacent area is set.
  • FIG. 20 is a block diagram illustrating a main configuration example of an image decoding apparatus corresponding to the image encoding apparatus 100 of FIG.
  • the image decoding apparatus 200 shown in FIG. 20 decodes the encoded data generated by the image encoding apparatus 100 by a decoding method corresponding to the encoding method. Note that, similarly to the image encoding device 100, the image decoding device 200 performs inter prediction for each prediction unit (PU).
  • PU prediction unit
  • the image decoding apparatus 200 includes a storage buffer 201, a lossless decoding unit 202, an inverse quantization unit 203, an inverse orthogonal transform unit 204, a calculation unit 205, a deblock filter 206, a screen rearrangement buffer 207, and A D / A converter 208 is included.
  • the image decoding apparatus 200 includes a frame memory 209, a selection unit 210, an intra prediction unit 211, a motion prediction / compensation unit 212, and a selection unit 213.
  • the image decoding device 200 includes a motion vector decoding unit 221 and a parallel processing control unit 222.
  • the accumulation buffer 201 is also a receiving unit that receives transmitted encoded data.
  • the accumulation buffer 201 receives and accumulates the transmitted encoded data, and supplies the encoded data to the lossless decoding unit 202 at a predetermined timing.
  • Information necessary for decoding such as prediction mode information, motion vector difference information, and prediction motion vector information is added to the encoded data.
  • the lossless decoding unit 202 decodes the information supplied from the accumulation buffer 201 and encoded by the lossless encoding unit 106 in FIG. 1 by a method corresponding to the encoding method of the lossless encoding unit 106.
  • the lossless decoding unit 202 supplies the quantized coefficient data of the difference image obtained by decoding to the inverse quantization unit 203.
  • the lossless decoding unit 202 determines whether the intra prediction mode or the inter prediction mode is selected as the optimal prediction mode.
  • the lossless decoding unit 202 supplies information regarding the optimal prediction mode to the mode determined to be selected from the intra prediction unit 211 and the motion prediction / compensation unit 212. That is, for example, when the inter prediction mode is selected as the optimal prediction mode in the image encoding device 100, information regarding the optimal prediction mode is supplied to the motion prediction / compensation unit 212.
  • the lossless decoding unit 202 supplies information necessary for decoding motion vectors such as motion vector difference information and predicted motion vector information to the motion vector decoding unit 221.
  • PU partition size information from the lossless decoding unit 202 is supplied to the parallel processing control unit 222.
  • the inverse quantization unit 203 inversely quantizes the quantized coefficient data obtained by decoding by the lossless decoding unit 202 using a method corresponding to the quantization method of the quantization unit 105 in FIG. Data is supplied to the inverse orthogonal transform unit 204.
  • the inverse orthogonal transform unit 204 performs inverse orthogonal transform on the coefficient data supplied from the inverse quantization unit 203 in a method corresponding to the orthogonal transform method of the orthogonal transform unit 104 in FIG.
  • the inverse orthogonal transform unit 204 obtains decoded residual data corresponding to the residual data before being orthogonally transformed in the image coding apparatus 100 by the inverse orthogonal transform process.
  • Decoded residual data obtained by the inverse orthogonal transform is supplied to the calculation unit 205.
  • a prediction image is supplied to the calculation unit 205 from the intra prediction unit 211 or the motion prediction / compensation unit 212 via the selection unit 213.
  • the calculation unit 205 adds the decoded residual data and the prediction image, and obtains decoded image data corresponding to the image data before the prediction image is subtracted by the calculation unit 103 of the image encoding device 100.
  • the arithmetic unit 205 supplies the decoded image data to the deblock filter 206.
  • the deblock filter 206 performs deblock filter processing on the supplied decoded image as appropriate, and supplies it to the screen rearrangement buffer 207.
  • the deblocking filter 206 removes block distortion of the decoded image by performing a deblocking filter process on the decoded image.
  • the deblock filter 206 supplies the filter processing result (the decoded image after the filter processing) to the screen rearrangement buffer 207 and the frame memory 209. Note that the decoded image output from the calculation unit 205 can be supplied to the screen rearrangement buffer 207 and the frame memory 209 without going through the deblocking filter 206. That is, the filtering process by the deblocking filter 206 can be omitted.
  • the screen rearrangement buffer 207 rearranges images. That is, the order of frames rearranged for the encoding order by the screen rearrangement buffer 102 in FIG. 1 is rearranged in the original display order.
  • the D / A conversion unit 208 D / A converts the image supplied from the screen rearrangement buffer 207, outputs it to a display (not shown), and displays it.
  • the frame memory 209 stores the supplied decoded image, and the stored decoded image is referred to as a reference image at a predetermined timing or based on an external request such as the intra prediction unit 211 or the motion prediction / compensation unit 212. To the selection unit 210.
  • the selection unit 210 selects the supply destination of the reference image supplied from the frame memory 209.
  • the selection unit 210 supplies the reference image supplied from the frame memory 209 to the intra prediction unit 211 when decoding an intra-coded image.
  • the selection unit 210 also supplies the reference image supplied from the frame memory 209 to the motion prediction / compensation unit 212 when decoding an inter-coded image.
  • the intra prediction unit 211 is appropriately supplied from the lossless decoding unit 202 with information indicating the intra prediction mode obtained by decoding the header information.
  • the intra prediction unit 211 performs intra prediction using the reference image acquired from the frame memory 209 in the intra prediction mode used in the intra prediction unit 114 in FIG. 1, and generates a predicted image.
  • the intra prediction unit 211 supplies the generated predicted image to the selection unit 213.
  • the motion prediction / compensation unit 212 acquires information (optimum prediction mode information, reference image information, etc.) obtained by decoding the header information from the lossless decoding unit 202.
  • the motion prediction / compensation unit 212 performs inter prediction using the reference image acquired from the frame memory 209 in the inter prediction mode indicated by the optimal prediction mode information acquired from the lossless decoding unit 202, and generates a predicted image. At this time, the motion prediction / compensation unit 212 performs inter prediction using the motion vector information reconstructed by the motion vector decoding unit 221.
  • the selection unit 213 supplies the prediction image from the intra prediction unit 211 or the prediction image from the motion prediction / compensation unit 212 to the calculation unit 205.
  • the arithmetic unit 205 adds the predicted image generated using the motion vector and the decoded residual data (difference image information) from the inverse orthogonal transform unit 204 to decode the original image. That is, the motion prediction / compensation unit 212, the lossless decoding unit 202, the inverse quantization unit 203, the inverse orthogonal transform unit 204, and the calculation unit 205 decode the encoded data using the motion vector to generate the original image. It is also a decryption unit.
  • the motion vector decoding unit 221 obtains, from the lossless decoding unit 202, information on the index of the predicted motion vector and information on the difference motion vector among the information obtained by decoding the header information.
  • the prediction motion vector index means that motion vector prediction processing (generation of a prediction motion vector) is performed for each PU by using the motion vector of any adjacent region among adjacent regions adjacent to the space-time. It is information indicating whether or not The information regarding the difference motion vector is information indicating the value of the difference motion vector.
  • the motion vector decoding unit 221 reconstructs the predicted motion vector using the motion vector of the adjacent PU indicated by the index of the predicted motion vector.
  • the motion vector decoding unit 221 uses the motion vector of the adjacent PU indicated by the index of the predicted motion vector among the adjacent PUs specified by the control signal from the parallel processing control unit 122. To reconstruct the predicted motion vector.
  • the motion vector decoding unit 221 reconstructs a motion vector by adding the reconstructed predicted motion vector and the differential motion vector from the lossless decoding unit 202.
  • the parallel processing control unit 222 is basically configured in the same manner as the parallel processing control unit 122 of FIG. 1 and sets a spatially adjacent PU of the target PU.
  • the parallel processing control unit 222 especially when the coding region (CU) is composed of a plurality of prediction regions (PUs), performs spatial adjacent processing of the target PU so as to perform the prediction motion vector generation processing of the target prediction region in parallel.
  • Set the PU Note that setting the spatially adjacent PU of the target PU is synonymous with setting the motion vector of the spatially adjacent PU of the target PU that is used to generate a predicted motion vector.
  • the parallel processing control unit 222 refers to the PU size information from the motion prediction / compensation unit 212, and sets the spatially adjacent PU of the target PU according to the position of the prediction region in the coding region.
  • a signal (such as an address) is supplied to the motion vector decoding unit 221.
  • the basic operation principle related to the present technology in the motion vector decoding unit 221 and the parallel processing control unit 222 is the same as that of the motion vector encoding unit 121 and the parallel processing control unit 122 in FIG.
  • the image encoding device 100 in FIG. 1 there are 2N ⁇ N and N ⁇ 2N as candidate PUs, and the method according to the present technology is applied when generating the spatial prediction motion vector.
  • the image decoding apparatus 200 in FIG. 20 information regarding what prediction motion vector has been determined is transmitted from the encoding side to the PU.
  • the method according to the present technology is applied.
  • FIG. 21 is a block diagram illustrating a main configuration example of the motion vector decoding unit 221.
  • the motion vector decoding unit 221 is configured to include a predicted motion vector information buffer 251, a difference motion vector information buffer 252, a predicted motion vector reconstruction unit 253, and a motion vector reconstruction unit 254.
  • the motion vector decoding unit 221 is further configured to include a spatial adjacent motion vector buffer 255 and a temporal adjacent motion vector buffer 256.
  • the predicted motion vector information buffer 251 stores information including the index of the predicted motion vector of the target area (PU) decoded by the lossless decoding unit 202 (hereinafter referred to as predicted motion vector information).
  • the motion vector predictor information buffer 251 reads the motion vector predictor information of the PU, and supplies the read information to the motion vector predictor reconstruction unit 253.
  • the difference motion vector information buffer 252 stores information on the difference motion vector of the target area (PU) decoded by the lossless decoding unit 202.
  • the difference motion vector information buffer 252 reads the information on the difference motion vector of the target PU, and supplies the read information to the motion vector reconstruction unit 254.
  • the prediction motion vector reconstruction unit 253 determines whether the prediction motion vector of the PU indicated by the information from the prediction motion vector information buffer 251 is a spatial prediction motion vector or a temporal prediction motion vector.
  • the predicted motion vector reconstruction unit 253 When the predicted motion vector of the relevant PU is a temporally predicted motion vector, the predicted motion vector reconstruction unit 253 indicates the motion vector information of the relevant PU indicated by the information from the predicted motion vector information buffer 251 in the temporally adjacent motion vector buffer 256. Is read. Then, the motion vector predictor reconstructing unit 253 generates the motion vector predictor for the PU based on the AMVP or merge mode method using the read motion vector information and reconstructs the motion vector. The predicted motion vector reconstruction unit 253 supplies information of the reconstructed predicted motion vector to the motion vector reconstruction unit 254.
  • the predicted motion vector reconstruction unit 253 stores the motion vector information of the PU indicated by the index from the predicted motion vector information buffer 251 in the spatial adjacent motion vector buffer 255. Is read. Then, the motion vector predictor reconstructing unit 253 generates the motion vector predictor for the PU based on the AMVP or merge mode method using the read motion vector information and reconstructs the motion vector. The predicted motion vector reconstruction unit 253 supplies information of the reconstructed predicted motion vector to the motion vector reconstruction unit 254.
  • the motion vector reconstruction unit 254 adds the difference motion vector of the corresponding PU indicated by the information from the difference motion vector information buffer 252 and the predicted motion vector of the corresponding PU from the predicted motion vector reconstruction unit 253, thereby adding motion. Reconstruct the vector.
  • the motion vector reconstruction unit 254 supplies information on the reconstructed motion vector to the motion prediction / compensation unit 212, the spatial adjacent motion vector buffer 255, and the temporal adjacent motion vector buffer 256.
  • the motion prediction / compensation unit 212 uses the motion vector reconstructed by the motion vector reconstructing unit 254 and uses the motion vector reconstructed by the motion vector reconstructing unit 254 in the inter prediction mode indicated by the optimal prediction mode information acquired from the lossless decoding unit 202. Inter prediction is performed to generate a predicted image.
  • the parallel processing control unit 222 refers to the PU partition size information from the lossless decoding unit 202, and sets a spatial adjacent PU of the target PU according to the position of the prediction region in the coding region ( Address etc.) is supplied to the spatial adjacent motion vector buffer 255.
  • each part which comprises the motion vector decoding part 221 performs the prediction motion vector production
  • the spatial adjacent motion vector buffer 255 is composed of a line buffer, like the spatial adjacent motion vector buffer 151 of FIG.
  • the spatial adjacent motion vector buffer 255 stores the motion vector information reconstructed by the motion vector reconstruction unit 254 as spatial adjacent motion vector information for predicted motion vector information of subsequent PUs in the same picture.
  • the spatial adjacent motion vector buffer 255 reads the motion vector information of the PU corresponding to the index from the predicted motion vector reconstruction unit 253 among the PUs indicated by the control signal (address) from the parallel processing control unit 122.
  • the temporally adjacent motion vector buffer 256 is configured by a memory, like the temporally adjacent motion vector buffer 152 of FIG.
  • the temporally adjacent motion vector buffer 256 stores the motion vector information reconstructed by the motion vector reconstruction unit 254 as temporally adjacent motion vector information for predicted motion vector information of PUs of different pictures.
  • the temporally adjacent motion vector buffer 256 reads the motion vector information of the PU to which the index from the predicted motion vector reconstruction unit 253 corresponds.
  • step S201 the accumulation buffer 201 accumulates the transmitted encoded stream.
  • step S202 the lossless decoding unit 202 decodes the encoded stream (encoded difference image information) supplied from the accumulation buffer 201. That is, the I picture, P picture, and B picture encoded by the lossless encoding unit 106 in FIG. 1 are decoded.
  • the lossless decoding unit 202 acquires, for example, prediction mode information, differential motion vector information, and information including a prediction motion vector index.
  • the lossless decoding unit 202 supplies the acquired information to the corresponding unit.
  • step S203 the inverse quantization unit 203 inversely quantizes the quantized orthogonal transform coefficient obtained by the process in step S202.
  • the quantization parameter obtained by the process of step S208 mentioned later is used for this inverse quantization process.
  • step S204 the inverse orthogonal transform unit 204 performs inverse orthogonal transform on the orthogonal transform coefficient inversely quantized in step S203.
  • step S205 the lossless decoding unit 202 determines whether or not the encoded data to be processed is intra-encoded based on the information regarding the optimal prediction mode decoded in step S202. If it is determined that intra coding has been performed, the process proceeds to step S206.
  • step S206 the intra prediction unit 211 acquires intra prediction mode information.
  • step S207 the intra prediction unit 211 performs intra prediction using the intra prediction mode information acquired in step S206, and generates a predicted image.
  • step S206 if it is determined that the encoded data to be processed is not intra-encoded, that is, is inter-encoded, the process proceeds to step S208.
  • step S208 the motion vector decoding unit 2212 performs a motion vector reconstruction process. Details of this motion vector reconstruction process will be described later with reference to FIG.
  • step S208 the information on the decoded prediction motion vector is referred to, and the prediction motion vector of the PU is reconstructed.
  • the predicted motion vector of the relevant PU is a spatial predicted motion vector
  • the motion vector information of the spatially adjacent PU set according to the position of the PU in the CU is used.
  • the predicted motion vector is reconstructed.
  • the reconstructed predicted motion vector of the PU is used to reconstruct the motion vector, and the reconstructed motion vector is supplied to the motion prediction / compensation unit 212.
  • step S209 the motion prediction / compensation unit 212 performs an inter motion prediction process using the motion vector reconstructed by the process in step S208, and generates a predicted image.
  • the generated predicted image is supplied to the selection unit 213.
  • step S210 the selection unit 213 selects the predicted image generated in step S207 or step S209.
  • step S211 the calculation unit 205 adds the predicted image selected in step S210 to the difference image information obtained by the inverse orthogonal transform in step S204.
  • the original image is decoded. That is, a motion vector is used to generate a predicted image, and the generated predicted image and the difference image information from the inverse orthogonal transform unit 204 are added to decode the original image.
  • step S212 the deblock filter 206 appropriately performs a deblock filter process on the decoded image obtained in step S211.
  • step S213 the screen rearrangement buffer 207 rearranges the images filtered in step S212. That is, the order of frames rearranged for encoding by the screen rearrangement buffer 102 of the image encoding device 100 is rearranged to the original display order.
  • step S214 the D / A converter 208 D / A converts the image in which the frame order is rearranged in step S213. This image is output to a display (not shown), and the image is displayed.
  • step S215 the frame memory 209 stores the image filtered in step S212.
  • step S215 ends, the decryption process ends.
  • This motion vector reconstruction process is a process of decoding a motion vector using information transmitted from the encoding side and decoded by the lossless decoding unit 202.
  • step S202 in FIG. 22 the lossless decoding unit 202 acquires information on the decoded parameters and the like, and supplies the acquired information to the corresponding unit.
  • step S251 the differential motion vector information buffer 252 acquires the differential motion vector information from the lossless decoding unit 202, and supplies the acquired information to the motion vector reconstruction unit 254.
  • step S252 the motion vector predictor information buffer 251 acquires motion vector predictor information from the lossless decoding unit 202, and supplies the acquired information to the motion vector predictor reconstructing unit 253.
  • the parallel processing control unit 222 acquires information indicating the PU size (partition size) from the lossless decoding unit 202.
  • step S253 the parallel processing control unit 222 refers to the acquired PU size and determines whether the PU is a 2N ⁇ 2N PU. If it is determined in step S253 that it is a 2N ⁇ 2N PU, the process proceeds to step S254.
  • step S254 the parallel processing control unit 222 sets an adjacent region to which the motion vector information is referenced for the 2N ⁇ 2N PU.
  • the parallel processing control unit 222 sets A, B, C, D, and E shown in FIG. 10 as adjacent regions, and supplies the addresses to the spatial adjacent motion vector buffer 255 as control signals.
  • step S255 the motion vector predictor reconstruction unit 253 reconstructs the motion vector predictor.
  • the predicted motion vector reconstruction unit 253 supplies the predicted motion vector information (index) from the predicted motion vector information buffer 251 to the spatial adjacent motion vector buffer 255.
  • the spatial adjacent motion vector buffer 255 reads the motion vector information of the adjacent region indicated by the index from the predicted motion vector reconstructing unit 253 among the adjacent regions set by the parallel processing control unit 222, and the predicted motion vector reconstructing unit 253.
  • the motion vector predictor reconstructing unit 253 generates the motion vector predictive motion vector for the PU based on the AMVP or merge mode method using the motion vector information read from the spatial adjacent motion vector buffer 255 and reconstructs the motion vector information. To do.
  • the reconstructed motion vector predictor information is supplied to the motion vector reconstruction unit 254.
  • step S253 determines whether it is a 2N ⁇ 2N PU, that is, a 2N ⁇ N or N ⁇ 2N PU. If it is determined in step S253 that it is not a 2N ⁇ 2N PU, that is, a 2N ⁇ N or N ⁇ 2N PU, the process proceeds to step S256.
  • step S256 the parallel processing control unit 222 sets, for the 2N ⁇ N or N ⁇ 2N PU, an adjacent region to which motion vector information is referred in the parallel processing of the first PU and the second PU.
  • the parallel processing control unit 222 applies, for example, A 0 , B 0 , C 0 , D 0 , E 0 shown in A of FIG. 12 to PU 0 that is the first PU.
  • the adjacent area is set, and its address is supplied as a control signal to the spatial adjacent motion vector buffer 255.
  • the parallel processing control unit 222 adjacent to PU 1 as the second PU adjoins A 1 , B 0 , C 0 , D 1 , E 1 shown in B of FIG.
  • the area is set, and the address is supplied as a control signal to the spatial adjacent motion vector buffer 255.
  • the parallel-processing control unit 222 For N ⁇ 2N PU, relative PU 0 which is the first PU, the parallel-processing control unit 222, for example, the A 0, B 0, C 0 , D 0, E 0 shown in A of FIG. 13
  • the adjacent area is set, and its address is supplied as a control signal to the spatial adjacent motion vector buffer 255.
  • the parallel processing control unit 222 adjacent to PU 1 as the second PU is adjacent to A 0 , B 1 , C 1 , D 0 , E 1 shown in B of FIG.
  • the area is set, and the address is supplied as a control signal to the spatial adjacent motion vector buffer 255.
  • step S255 the motion vector predictor reconstruction unit 253 reconstructs the motion vector predictor by parallel processing of the first PU and the second PU.
  • the predicted motion vector reconstruction unit 253 supplies the predicted motion vector information (index) from the predicted motion vector information buffer 251 to the spatial adjacent motion vector buffer 255.
  • the spatial adjacent motion vector buffer 255 reads the motion vector information of the adjacent region indicated by the index from the predicted motion vector reconstructing unit 253 among the adjacent regions set by the parallel processing control unit 222, and the predicted motion vector reconstructing unit 253.
  • the motion vector predictor reconstructing unit 253 generates the motion vector predictive motion vector for the PU based on the AMVP or merge mode method using the motion vector information read from the spatial adjacent motion vector buffer 255 and reconstructs the motion vector information.
  • the reconstructed motion vector predictor information is supplied to the motion vector reconstruction unit 254. Since this processing is performed in parallel processing on the first PU and the second PU, the prediction motion vector information of the first PU and the second PU is supplied to the motion vector reconstruction unit 253 at a time. .
  • step S257 the motion vector reconstruction unit 254 reconstructs the motion vector of the PU.
  • the motion vector reconstruction unit 254 adds the differential motion vector of the PU indicated by the information from the differential motion vector information buffer 252 and the predicted motion vector of the PU from the predicted motion vector reconstruction unit 253. , Reconstruct the motion vector.
  • the motion vector reconstruction unit 254 supplies information indicating the reconstructed motion vector to the motion prediction / compensation unit 212, the spatial adjacent motion vector buffer 255, and the temporal adjacent motion vector buffer 256.
  • FIG. 23 shows the case of the method using AMVP.
  • step S251 since the difference motion vector information is not sent from the encoding side, step S251 is skipped.
  • step S257 the predicted motion vector of the PU from the predicted motion vector reconstruction unit 253 becomes the motion vector of the PU.
  • the spatial prediction motion vector generation process is described, but actually, it is determined whether the prediction motion vector information indicates a temporal prediction motion vector or a spatial prediction motion vector.
  • the prediction motion vector information indicates a temporal prediction motion vector
  • the temporal prediction motion vector information is reconstructed and the motion vector is reconstructed.
  • the description about N ⁇ N PU is omitted.
  • the image decoding apparatus 200 can correctly decode the encoded data encoded by the image encoding apparatus 100, and can realize improvement in processing efficiency.
  • the coding region (CU) is configured by a plurality of prediction regions (PU)
  • an adjacent region that refers to a motion vector is set according to the position of the prediction region in the coding region. Is done.
  • the prediction motion vector reconstruction process of PU can be performed in parallel, and processing efficiency can be improved.
  • parallel processing control unit 122 and the parallel processing control unit 222 always operate has been described.
  • parallel processing control adjacent region setting
  • On / off may be set, and parallel processing control (adjacent area setting) may operate only when on.
  • the setting on the encoding side is set as an on / off flag in a syntax element such as a sequence parameter set of an encoded stream by the lossless encoding unit 106 and transmitted from the accumulation buffer 107 to the decoding side.
  • the ON / OFF flag is received by the accumulation buffer 201 on the decoding side, acquired by the lossless decoding unit 202, and supplied to each parallel processing control unit 222.
  • ON / OFF is set based on the supplied flag, and parallel processing control (adjacent area setting) is operated only when ON.
  • this on / off flag may be set according to the size of the CU or PU.
  • CU and PU are divided into smaller parts, it is necessary to process motion vector information for more blocks, and realizing this by parallel processing is necessary to construct a circuit capable of real-time processing. There are great benefits.
  • the motion vector information at a distant place is used as adjacent information, and there is a possibility that the correlation with the motion information for the PU becomes low. This may lead to a decrease in encoding efficiency.
  • the need for parallel processing is higher for larger size sequences. Therefore, instead of transmitting the flag as described above, the flag may be set according to the profile or level of the sequence of the encoded stream.
  • the present technology is not limited to other encoding schemes as long as it is a device that performs motion vector information encoding processing and decoding processing using AMVP or merge mode.
  • the present invention can also be applied to an apparatus that uses the
  • this technology is, for example, MPEG, H.264.
  • image information bitstream
  • orthogonal transform such as discrete cosine transform and motion compensation, such as 26x
  • network media such as satellite broadcasting, cable television, the Internet, or mobile phones.
  • the present invention can be applied to an image encoding device and an image decoding device used in the above.
  • the present technology can be applied to an image encoding device and an image decoding device that are used when processing is performed on a storage medium such as an optical disk, a magnetic disk, and a flash memory.
  • the present technology can also be applied to motion prediction / compensation devices included in such image encoding devices and image decoding devices.
  • FIG. 24 shows an example of a multi-view image encoding method.
  • the multi-viewpoint image includes images of a plurality of viewpoints, and a predetermined one viewpoint image among the plurality of viewpoints is designated as the base view image.
  • Each viewpoint image other than the base view image is treated as a non-base view image.
  • the ON / OFF flag of the parallel processing control (adjacent area setting) described above can be set in each view (same view).
  • each view (different view) can share the ON / OFF flag of the parallel processing control set in another view.
  • the parallel processing control ON / OFF flag set in the base view is used in at least one non-base view.
  • FIG. 25 is a diagram illustrating a multi-view image encoding apparatus that performs the above-described multi-view image encoding.
  • the multi-view image encoding apparatus 600 includes an encoding unit 601, an encoding unit 602, and a multiplexing unit 603.
  • the encoding unit 601 encodes the base view image and generates a base view image encoded stream.
  • the encoding unit 602 encodes the non-base view image and generates a non-base view image encoded stream.
  • the multiplexing unit 603 multiplexes the base view image encoded stream generated by the encoding unit 601 and the non-base view image encoded stream generated by the encoding unit 602 to generate a multi-view image encoded stream. To do.
  • the image encoding device 100 (FIG. 1) can be applied to the encoding unit 601 and the encoding unit 602 of the multi-view image encoding device 600.
  • the multi-view image encoding apparatus 600 sets and transmits the parallel processing control on / off flag set by the encoding unit 601 and the parallel processing control on / off flag set by the encoding unit 602.
  • the parallel processing control ON / OFF flag set by the encoding unit 601 as described above may be set and transmitted so as to be shared by the encoding unit 601 and the encoding unit 602.
  • the parallel processing control on / off flag set collectively by the encoding unit 602 may be set and transmitted so as to be shared by the encoding unit 601 and the encoding unit 602.
  • FIG. 26 is a diagram illustrating a multi-view image decoding apparatus that performs the above-described multi-view image decoding.
  • the multi-view image decoding apparatus 610 includes a demultiplexing unit 611, a decoding unit 612, and a decoding unit 613.
  • the demultiplexing unit 611 demultiplexes the multi-view image encoded stream in which the base view image encoded stream and the non-base view image encoded stream are multiplexed, and the base view image encoded stream and the non-base view image The encoded stream is extracted.
  • the decoding unit 612 decodes the base view image encoded stream extracted by the demultiplexing unit 611 to obtain a base view image.
  • the decoding unit 613 decodes the non-base view image encoded stream extracted by the demultiplexing unit 611 to obtain a non-base view image.
  • the image decoding device 200 (FIG. 20) can be applied to the decoding unit 612 and the decoding unit 613 of the multi-view image decoding device 610.
  • the multi-view image decoding apparatus 610 includes the parallel processing control ON / OFF flag set by the encoding unit 601 and decoded by the decoding unit 612, and the parallel processing set by the encoding unit 602 and decoded by the decoding unit 613. Processing is performed using a control on / off flag.
  • the ON / OFF flag of the parallel processing control set by the encoding unit 601 (or the encoding unit 602) as described above is set so as to be shared and used by the encoding unit 601 and the encoding unit 602, and then transmitted. May have been.
  • the parallel processing control ON / OFF flag set by the encoding unit 601 (or the encoding unit 602) and decoded by the decoding unit 612 (or the decoding unit 613) is used. Processing is performed.
  • FIG. 27 shows an example of a multi-view image encoding method.
  • a hierarchical image includes images of a plurality of layers (resolutions), and a predetermined one layer image of the plurality of resolutions is designated as a base layer image. Images in each layer other than the base layer image are treated as non-base layer images.
  • the ON / OFF flag of the above-described parallel processing control can be set in each layer (same layer).
  • each layer can share the ON / OFF flag of the parallel processing control set in the other layer.
  • the parallel processing control ON / OFF flag set in the base layer is used in at least one non-base layer.
  • FIG. 28 is a diagram illustrating a hierarchical image encoding apparatus that performs the hierarchical image encoding described above.
  • the hierarchical image encoding device 620 includes an encoding unit 621, an encoding unit 622, and a multiplexing unit 623.
  • the encoding unit 621 encodes the base layer image and generates a base layer image encoded stream.
  • the encoding unit 622 encodes the non-base layer image and generates a non-base layer image encoded stream.
  • the multiplexing unit 623 multiplexes the base layer image encoded stream generated by the encoding unit 621 and the non-base layer image encoded stream generated by the encoding unit 622 to generate a hierarchical image encoded stream. .
  • the image encoding device 100 (FIG. 1) can be applied to the encoding unit 621 and the encoding unit 622 of the hierarchical image encoding device 620.
  • the hierarchical image encoding device 620 sets and transmits the parallel processing control on / off flag set by the encoding unit 621 and the parallel processing control on / off flag set by the encoding unit 602.
  • the parallel processing control ON / OFF flag set by the encoding unit 621 as described above may be set and transmitted so as to be shared by the encoding unit 621 and the encoding unit 622.
  • the parallel processing control ON / OFF flag set by the encoding unit 622 may be set to be shared by the encoding unit 621 and the encoding unit 622 and transmitted.
  • FIG. 29 is a diagram illustrating a hierarchical image decoding apparatus that performs the hierarchical image decoding described above.
  • the hierarchical image decoding device 630 includes a demultiplexing unit 631, a decoding unit 632, and a decoding unit 633.
  • the demultiplexing unit 631 demultiplexes the hierarchical image encoded stream in which the base layer image encoded stream and the non-base layer image encoded stream are multiplexed, and the base layer image encoded stream and the non-base layer image code Stream.
  • the decoding unit 632 decodes the base layer image encoded stream extracted by the demultiplexing unit 631 to obtain a base layer image.
  • the decoding unit 633 decodes the non-base layer image encoded stream extracted by the demultiplexing unit 631 to obtain a non-base layer image.
  • the image decoding device 200 (FIG. 20) can be applied to the decoding unit 632 and the decoding unit 633 of the hierarchical image decoding device 630.
  • the hierarchical image decoding apparatus 630 has the parallel processing control ON / OFF flag set by the encoding unit 621 and decoded by the decoding unit 632, and the parallel processing control set by the encoding unit 622 and decoded by the decoding unit 633. Processing is performed using the on / off flag.
  • the ON / OFF flag for the parallel processing control set by the encoding unit 621 is set to be shared by the encoding unit 621 and the encoding unit 622 and transmitted. May have been.
  • the parallel processing control ON / OFF flag set by the encoding unit 621 (or encoding unit 622) and decoded by the decoding unit 632 (or decoding unit 633) is used. Processing is performed.
  • the series of processes described above can be executed by hardware or can be executed by software.
  • a program constituting the software is installed in the computer.
  • the computer includes a computer incorporated in dedicated hardware, a general-purpose personal computer capable of executing various functions by installing various programs, and the like.
  • FIG. 30 is a block diagram illustrating a configuration example of hardware of a computer that executes the above-described series of processes by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • an input / output interface 805 is connected to the bus 804.
  • An input unit 806, an output unit 807, a storage unit 508, a communication unit 509, and a drive 810 are connected to the input / output interface 805.
  • the input unit 806 includes a keyboard, a mouse, a microphone, and the like.
  • the output unit 807 includes a display, a speaker, and the like.
  • the storage unit 808 includes a hard disk, a nonvolatile memory, and the like.
  • the communication unit 809 includes a network interface or the like.
  • the drive 810 drives a removable medium 811 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 801 loads the program stored in the storage unit 808 to the RAM 803 via the input / output interface 805 and the bus 804 and executes the program, for example. Is performed.
  • the program executed by the computer 800 can be provided by being recorded in, for example, a removable medium 811 as a package medium or the like.
  • the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 808 via the input / output interface 805 by attaching the removable medium 811 to the drive 810.
  • the program can be received by the communication unit 809 via a wired or wireless transmission medium and installed in the storage unit 808.
  • the program can be installed in the ROM 802 or the storage unit 808 in advance.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
  • system represents the entire apparatus composed of a plurality of devices (apparatuses).
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). . That is, the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present technology.
  • An image encoding device and an image decoding device include a transmitter or a receiver in optical broadcasting, satellite broadcasting, cable broadcasting such as cable TV, distribution on the Internet, and distribution to terminals by cellular communication, etc.
  • the present invention can be applied to various electronic devices such as a recording device that records an image on a medium such as a magnetic disk and a flash memory, or a playback device that reproduces an image from these storage media.
  • a recording device that records an image on a medium such as a magnetic disk and a flash memory
  • a playback device that reproduces an image from these storage media.
  • FIG. 31 illustrates an example of a schematic configuration of a television device to which the above-described embodiment is applied.
  • the television apparatus 900 includes an antenna 901, a tuner 902, a demultiplexer 903, a decoder 904, a video signal processing unit 905, a display unit 906, an audio signal processing unit 907, a speaker 908, an external interface 909, a control unit 910, a user interface 911, And a bus 912.
  • Tuner 902 extracts a signal of a desired channel from a broadcast signal received via antenna 901, and demodulates the extracted signal. Then, the tuner 902 outputs the encoded bit stream obtained by the demodulation to the demultiplexer 903. In other words, the tuner 902 serves as a transmission unit in the television apparatus 900 that receives an encoded stream in which an image is encoded.
  • the demultiplexer 903 separates the video stream and audio stream of the viewing target program from the encoded bit stream, and outputs each separated stream to the decoder 904. Further, the demultiplexer 903 extracts auxiliary data such as EPG (Electronic Program Guide) from the encoded bit stream, and supplies the extracted data to the control unit 910. Note that the demultiplexer 903 may perform descrambling when the encoded bit stream is scrambled.
  • EPG Electronic Program Guide
  • the decoder 904 decodes the video stream and audio stream input from the demultiplexer 903. Then, the decoder 904 outputs the video data generated by the decoding process to the video signal processing unit 905. In addition, the decoder 904 outputs audio data generated by the decoding process to the audio signal processing unit 907.
  • the video signal processing unit 905 reproduces the video data input from the decoder 904 and causes the display unit 906 to display the video.
  • the video signal processing unit 905 may cause the display unit 906 to display an application screen supplied via a network.
  • the video signal processing unit 905 may perform additional processing such as noise removal on the video data according to the setting.
  • the video signal processing unit 905 may generate a GUI (Graphical User Interface) image such as a menu, a button, or a cursor, and superimpose the generated image on the output image.
  • GUI Graphic User Interface
  • the display unit 906 is driven by a drive signal supplied from the video signal processing unit 905, and displays an image on a video screen of a display device (for example, a liquid crystal display, a plasma display, or an OELD (Organic ElectroLuminescence Display) (organic EL display)). Or an image is displayed.
  • a display device for example, a liquid crystal display, a plasma display, or an OELD (Organic ElectroLuminescence Display) (organic EL display)). Or an image is displayed.
  • the audio signal processing unit 907 performs reproduction processing such as D / A conversion and amplification on the audio data input from the decoder 904, and outputs audio from the speaker 908.
  • the audio signal processing unit 907 may perform additional processing such as noise removal on the audio data.
  • the external interface 909 is an interface for connecting the television apparatus 900 to an external device or a network.
  • a video stream or an audio stream received via the external interface 909 may be decoded by the decoder 904. That is, the external interface 909 also has a role as a transmission unit in the television apparatus 900 that receives an encoded stream in which an image is encoded.
  • the control unit 910 includes a processor such as a CPU and memories such as a RAM and a ROM.
  • the memory stores a program executed by the CPU, program data, EPG data, data acquired via a network, and the like.
  • the program stored in the memory is read and executed by the CPU when the television apparatus 900 is activated.
  • the CPU executes the program to control the operation of the television device 900 according to an operation signal input from the user interface 911, for example.
  • the user interface 911 is connected to the control unit 910.
  • the user interface 911 includes, for example, buttons and switches for the user to operate the television device 900, a remote control signal receiving unit, and the like.
  • the user interface 911 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 910.
  • the bus 912 connects the tuner 902, the demultiplexer 903, the decoder 904, the video signal processing unit 905, the audio signal processing unit 907, the external interface 909, and the control unit 910 to each other.
  • the decoder 904 has the function of the image decoding apparatus according to the above-described embodiment. Accordingly, when decoding an image on the television device 900, the processing efficiency can be improved by parallel processing in the decoding of the motion vector.
  • FIG. 32 shows an example of a schematic configuration of a mobile phone to which the above-described embodiment is applied.
  • a mobile phone 920 includes an antenna 921, a communication unit 922, an audio codec 923, a speaker 924, a microphone 925, a camera unit 926, an image processing unit 927, a demultiplexing unit 928, a recording / reproducing unit 929, a display unit 930, a control unit 931, an operation A portion 932 and a bus 933.
  • the antenna 921 is connected to the communication unit 922.
  • the speaker 924 and the microphone 925 are connected to the audio codec 923.
  • the operation unit 932 is connected to the control unit 931.
  • the bus 933 connects the communication unit 922, the audio codec 923, the camera unit 926, the image processing unit 927, the demultiplexing unit 928, the recording / reproducing unit 929, the display unit 930, and the control unit 931 to each other.
  • the mobile phone 920 has various operation modes including a voice call mode, a data communication mode, a shooting mode, and a videophone mode, and is used for sending and receiving voice signals, sending and receiving e-mail or image data, taking images, and recording data. Perform the action.
  • the analog voice signal generated by the microphone 925 is supplied to the voice codec 923.
  • the audio codec 923 converts an analog audio signal into audio data, A / D converts the compressed audio data, and compresses it. Then, the audio codec 923 outputs the compressed audio data to the communication unit 922.
  • the communication unit 922 encodes and modulates the audio data and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921. In addition, the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal.
  • the communication unit 922 demodulates and decodes the received signal to generate audio data, and outputs the generated audio data to the audio codec 923.
  • the audio codec 923 decompresses the audio data and performs D / A conversion to generate an analog audio signal. Then, the audio codec 923 supplies the generated audio signal to the speaker 924 to output audio.
  • the control unit 931 generates character data constituting the e-mail in response to an operation by the user via the operation unit 932.
  • the control unit 931 causes the display unit 930 to display characters.
  • the control unit 931 generates e-mail data in response to a transmission instruction from the user via the operation unit 932, and outputs the generated e-mail data to the communication unit 922.
  • the communication unit 922 encodes and modulates email data and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921.
  • the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal.
  • the communication unit 922 demodulates and decodes the received signal to restore the email data, and outputs the restored email data to the control unit 931.
  • the control unit 931 displays the content of the electronic mail on the display unit 930 and stores the electronic mail data in the storage medium of the recording / reproducing unit 929.
  • the recording / reproducing unit 929 has an arbitrary readable / writable storage medium.
  • the storage medium may be a built-in storage medium such as RAM or flash memory, and is externally mounted such as a hard disk, magnetic disk, magneto-optical disk, optical disk, USB (Unallocated Space Space Bitmap) memory, or memory card. It may be a storage medium.
  • the camera unit 926 images a subject to generate image data, and outputs the generated image data to the image processing unit 927.
  • the image processing unit 927 encodes the image data input from the camera unit 926 and stores the encoded stream in the storage medium of the storage / playback unit 929.
  • the demultiplexing unit 928 multiplexes the video stream encoded by the image processing unit 927 and the audio stream input from the audio codec 923, and the multiplexed stream is the communication unit 922. Output to.
  • the communication unit 922 encodes and modulates the stream and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921.
  • the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal.
  • These transmission signal and reception signal may include an encoded bit stream.
  • the communication unit 922 demodulates and decodes the received signal to restore the stream, and outputs the restored stream to the demultiplexing unit 928.
  • the demultiplexing unit 928 separates the video stream and the audio stream from the input stream, and outputs the video stream to the image processing unit 927 and the audio stream to the audio codec 923.
  • the image processing unit 927 decodes the video stream and generates video data.
  • the video data is supplied to the display unit 930, and a series of images is displayed on the display unit 930.
  • the audio codec 923 decompresses the audio stream and performs D / A conversion to generate an analog audio signal. Then, the audio codec 923 supplies the generated audio signal to the speaker 924 to output audio.
  • the image processing unit 927 has the functions of the image encoding device and the image decoding device according to the above-described embodiment. Accordingly, when encoding and decoding an image with the mobile phone 920, the processing efficiency can be improved by parallel processing in encoding or decoding of a motion vector.
  • FIG. 33 shows an example of a schematic configuration of a recording / reproducing apparatus to which the above-described embodiment is applied.
  • the recording / reproducing device 940 encodes audio data and video data of a received broadcast program and records the encoded data on a recording medium.
  • the recording / reproducing device 940 may encode audio data and video data acquired from another device and record them on a recording medium, for example.
  • the recording / reproducing device 940 reproduces data recorded on the recording medium on a monitor and a speaker, for example, in accordance with a user instruction. At this time, the recording / reproducing device 940 decodes the audio data and the video data.
  • the recording / reproducing apparatus 940 includes a tuner 941, an external interface 942, an encoder 943, an HDD (Hard Disk Drive) 944, a disk drive 945, a selector 946, a decoder 947, an OSD (On-Screen Display) 948, a control unit 949, and a user interface. 950.
  • Tuner 941 extracts a signal of a desired channel from a broadcast signal received via an antenna (not shown), and demodulates the extracted signal. Then, the tuner 941 outputs the encoded bit stream obtained by the demodulation to the selector 946. That is, the tuner 941 has a role as a transmission unit in the recording / reproducing apparatus 940.
  • the external interface 942 is an interface for connecting the recording / reproducing apparatus 940 to an external device or a network.
  • the external interface 942 may be, for example, an IEEE1394 interface, a network interface, a USB interface, or a flash memory interface.
  • video data and audio data received via the external interface 942 are input to the encoder 943. That is, the external interface 942 serves as a transmission unit in the recording / reproducing device 940.
  • the encoder 943 encodes video data and audio data when the video data and audio data input from the external interface 942 are not encoded. Then, the encoder 943 outputs the encoded bit stream to the selector 946.
  • the HDD 944 records an encoded bit stream in which content data such as video and audio is compressed, various programs, and other data on an internal hard disk. Further, the HDD 944 reads out these data from the hard disk when reproducing video and audio.
  • the disk drive 945 performs recording and reading of data to and from the mounted recording medium.
  • the recording medium mounted on the disk drive 945 is, for example, a DVD disk (DVD-Video, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, etc.) or a Blu-ray (registered trademark) disk. It may be.
  • the selector 946 selects an encoded bit stream input from the tuner 941 or the encoder 943 when recording video and audio, and outputs the selected encoded bit stream to the HDD 944 or the disk drive 945. In addition, the selector 946 outputs the encoded bit stream input from the HDD 944 or the disk drive 945 to the decoder 947 during video and audio reproduction.
  • the decoder 947 decodes the encoded bit stream and generates video data and audio data. Then, the decoder 947 outputs the generated video data to the OSD 948. The decoder 904 outputs the generated audio data to an external speaker.
  • OSD 948 reproduces the video data input from the decoder 947 and displays the video. Further, the OSD 948 may superimpose a GUI image such as a menu, a button, or a cursor on the video to be displayed.
  • the control unit 949 includes a processor such as a CPU and memories such as a RAM and a ROM.
  • the memory stores a program executed by the CPU, program data, and the like.
  • the program stored in the memory is read and executed by the CPU when the recording / reproducing apparatus 940 is activated, for example.
  • the CPU controls the operation of the recording / reproducing apparatus 940 in accordance with an operation signal input from the user interface 950, for example, by executing the program.
  • the user interface 950 is connected to the control unit 949.
  • the user interface 950 includes, for example, buttons and switches for the user to operate the recording / reproducing device 940, a remote control signal receiving unit, and the like.
  • the user interface 950 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 949.
  • the encoder 943 has the function of the image encoding apparatus according to the above-described embodiment.
  • the decoder 947 has the function of the image decoding apparatus according to the above-described embodiment.
  • FIG. 34 shows an example of a schematic configuration of an imaging apparatus to which the above-described embodiment is applied.
  • the imaging device 960 images a subject to generate an image, encodes the image data, and records it on a recording medium.
  • the imaging device 960 includes an optical block 961, an imaging unit 962, a signal processing unit 963, an image processing unit 964, a display unit 965, an external interface 966, a memory 967, a media drive 968, an OSD 969, a control unit 970, a user interface 971, and a bus. 972.
  • the optical block 961 is connected to the imaging unit 962.
  • the imaging unit 962 is connected to the signal processing unit 963.
  • the display unit 965 is connected to the image processing unit 964.
  • the user interface 971 is connected to the control unit 970.
  • the bus 972 connects the image processing unit 964, the external interface 966, the memory 967, the media drive 968, the OSD 969, and the control unit 970 to each other.
  • the optical block 961 includes a focus lens and a diaphragm mechanism.
  • the optical block 961 forms an optical image of the subject on the imaging surface of the imaging unit 962.
  • the imaging unit 962 includes an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor), and converts an optical image formed on the imaging surface into an image signal as an electrical signal by photoelectric conversion. Then, the imaging unit 962 outputs the image signal to the signal processing unit 963.
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the signal processing unit 963 performs various camera signal processing such as knee correction, gamma correction, and color correction on the image signal input from the imaging unit 962.
  • the signal processing unit 963 outputs the image data after the camera signal processing to the image processing unit 964.
  • the image processing unit 964 encodes the image data input from the signal processing unit 963 and generates encoded data. Then, the image processing unit 964 outputs the generated encoded data to the external interface 966 or the media drive 968. The image processing unit 964 also decodes encoded data input from the external interface 966 or the media drive 968 to generate image data. Then, the image processing unit 964 outputs the generated image data to the display unit 965. In addition, the image processing unit 964 may display the image by outputting the image data input from the signal processing unit 963 to the display unit 965. Further, the image processing unit 964 may superimpose display data acquired from the OSD 969 on an image output to the display unit 965.
  • the OSD 969 generates a GUI image such as a menu, a button, or a cursor, and outputs the generated image to the image processing unit 964.
  • the external interface 966 is configured as a USB input / output terminal, for example.
  • the external interface 966 connects the imaging device 960 and a printer, for example, when printing an image.
  • a drive is connected to the external interface 966 as necessary.
  • a removable medium such as a magnetic disk or an optical disk is attached to the drive, and a program read from the removable medium can be installed in the imaging device 960.
  • the external interface 966 may be configured as a network interface connected to a network such as a LAN or the Internet. That is, the external interface 966 has a role as a transmission unit in the imaging device 960.
  • the recording medium mounted on the media drive 968 may be any readable / writable removable medium such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory.
  • a recording medium may be fixedly mounted on the media drive 968, and a non-portable storage unit such as an internal hard disk drive or an SSD (Solid State Drive) may be configured.
  • the control unit 970 includes a processor such as a CPU and memories such as a RAM and a ROM.
  • the memory stores a program executed by the CPU, program data, and the like.
  • the program stored in the memory is read and executed by the CPU when the imaging device 960 is activated, for example.
  • the CPU controls the operation of the imaging device 960 according to an operation signal input from the user interface 971 by executing the program.
  • the user interface 971 is connected to the control unit 970.
  • the user interface 971 includes, for example, buttons and switches for the user to operate the imaging device 960.
  • the user interface 971 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 970.
  • the image processing unit 964 has the functions of the image encoding device and the image decoding device according to the above-described embodiment. Thereby, when encoding and decoding an image in the imaging device 960, the processing efficiency can be improved by parallel processing in encoding or decoding of a motion vector.
  • the distribution server 1002 reads the scalable encoded data stored in the scalable encoded data storage unit 1001, and via the network 1003, the personal computer 1004, the AV device 1005, the tablet It is distributed to the terminal device such as the device 1006 and the mobile phone 1007.
  • the distribution server 1002 selects and transmits encoded data of appropriate quality according to the capability of the terminal device, the communication environment, and the like. Even if the distribution server 1002 transmits high-quality data unnecessarily, a high-quality image is not always obtained in the terminal device, which may cause a delay or an overflow. Moreover, there is a possibility that the communication band is unnecessarily occupied or the load on the terminal device is unnecessarily increased. On the other hand, even if the distribution server 1002 transmits unnecessarily low quality data, there is a possibility that an image with sufficient image quality cannot be obtained in the terminal device. Therefore, the distribution server 1002 appropriately reads and transmits the scalable encoded data stored in the scalable encoded data storage unit 1001 as encoded data having an appropriate quality with respect to the capability and communication environment of the terminal device. .
  • the scalable encoded data storage unit 1001 stores scalable encoded data (BL + EL) 1011 encoded in a scalable manner.
  • the scalable encoded data (BL + EL) 1011 is encoded data including both a base layer and an enhancement layer, and is a data that can be decoded to obtain both a base layer image and an enhancement layer image. It is.
  • the distribution server 1002 selects an appropriate layer according to the capability of the terminal device that transmits data, the communication environment, and the like, and reads the data of the layer. For example, the distribution server 1002 reads high-quality scalable encoded data (BL + EL) 1011 from the scalable encoded data storage unit 1001 and transmits it to the personal computer 1004 and the tablet device 1006 with high processing capability as they are. . On the other hand, for example, the distribution server 1002 extracts base layer data from the scalable encoded data (BL + EL) 1011 for the AV device 1005 and the cellular phone 1007 having a low processing capability, and performs scalable encoding. Although it is data of the same content as the data (BL + EL) 1011, it is transmitted as scalable encoded data (BL) 1012 having a lower quality than the scalable encoded data (BL + EL) 1011.
  • BL scalable encoded data
  • scalable encoded data By using scalable encoded data in this way, the amount of data can be easily adjusted, so that the occurrence of delays and overflows can be suppressed, and unnecessary increases in the load on terminal devices and communication media can be suppressed. be able to.
  • scalable encoded data (BL + EL) 1011 since scalable encoded data (BL + EL) 1011 has reduced redundancy between layers, the amount of data can be reduced as compared with the case where encoded data of each layer is used as individual data. . Therefore, the storage area of the scalable encoded data storage unit 1001 can be used more efficiently.
  • the hardware performance of the terminal device varies depending on the device.
  • the application which a terminal device performs is also various, the capability of the software is also various.
  • the network 1003 serving as a communication medium can be applied to any communication network including wired, wireless, or both, such as the Internet and a LAN (Local Area Network), and has various data transmission capabilities. Furthermore, there is a risk of change due to other communications.
  • the distribution server 1002 communicates with the terminal device that is the data transmission destination before starting data transmission, and the hardware performance of the terminal device, the performance of the application (software) executed by the terminal device, etc. Information regarding the capability of the terminal device and information regarding the communication environment such as the available bandwidth of the network 1003 may be obtained. The distribution server 1002 may select an appropriate layer based on the information obtained here.
  • the layer extraction may be performed by the terminal device.
  • the personal computer 1004 may decode the transmitted scalable encoded data (BL + EL) 1011 and display a base layer image or an enhancement layer image. Further, for example, the personal computer 1004 extracts the base layer scalable encoded data (BL) 1012 from the transmitted scalable encoded data (BL + EL) 1011 and stores it or transfers it to another device. The base layer image may be displayed after decoding.
  • the numbers of the scalable encoded data storage unit 1001, the distribution server 1002, the network 1003, and the terminal devices are arbitrary.
  • the example in which the distribution server 1002 transmits data to the terminal device has been described, but the usage example is not limited to this.
  • the data transmission system 1000 may be any system as long as it transmits a scalable encoded data to a terminal device by selecting an appropriate layer according to the capability of the terminal device or a communication environment. Can be applied to the system.
  • the present technology is applied in the same manner as the application to the hierarchical encoding / decoding described above with reference to FIGS.
  • the same effects as described above with reference to FIGS. 27 to 29 can be obtained.
  • scalable coding is used for transmission via a plurality of communication media, for example, as in the example shown in FIG.
  • a broadcasting station 1101 transmits base layer scalable encoded data (BL) 1121 by terrestrial broadcasting 1111.
  • the broadcast station 1101 transmits enhancement layer scalable encoded data (EL) 1122 via an arbitrary network 1112 including a wired or wireless communication network or both (for example, packetized transmission).
  • BL base layer scalable encoded data
  • EL enhancement layer scalable encoded data
  • the terminal apparatus 1102 has a reception function of the terrestrial broadcast 1111 broadcast by the broadcast station 1101 and receives base layer scalable encoded data (BL) 1121 transmitted via the terrestrial broadcast 1111.
  • the terminal apparatus 1102 further has a communication function for performing communication via the network 1112, and receives enhancement layer scalable encoded data (EL) 1122 transmitted via the network 1112.
  • BL base layer scalable encoded data
  • EL enhancement layer scalable encoded data
  • the terminal device 1102 decodes the base layer scalable encoded data (BL) 1121 acquired via the terrestrial broadcast 1111 according to, for example, a user instruction, and obtains or stores a base layer image. Or transmit to other devices.
  • BL base layer scalable encoded data
  • the terminal device 1102 for example, in response to a user instruction, the base layer scalable encoded data (BL) 1121 acquired via the terrestrial broadcast 1111 and the enhancement layer scalable encoded acquired via the network 1112 Data (EL) 1122 is combined to obtain scalable encoded data (BL + EL), or decoded to obtain an enhancement layer image, stored, or transmitted to another device.
  • BL base layer scalable encoded data
  • EL enhancement layer scalable encoded acquired via the network 1112 Data
  • the scalable encoded data can be transmitted via a communication medium that is different for each layer, for example. Therefore, the load can be distributed, and the occurrence of delay and overflow can be suppressed.
  • the communication medium used for transmission may be selected for each layer. For example, scalable encoded data (BL) 1121 of a base layer having a relatively large amount of data is transmitted via a communication medium having a wide bandwidth, and scalable encoded data (EL) 1122 having a relatively small amount of data is transmitted. You may make it transmit via a communication medium with a narrow bandwidth. Further, for example, the communication medium for transmitting the enhancement layer scalable encoded data (EL) 1122 is switched between the network 1112 and the terrestrial broadcast 1111 according to the available bandwidth of the network 1112. May be. Of course, the same applies to data of an arbitrary layer.
  • the number of layers is arbitrary, and the number of communication media used for transmission is also arbitrary.
  • the number of terminal devices 1102 serving as data distribution destinations is also arbitrary.
  • broadcasting from the broadcasting station 1101 has been described as an example, but the usage example is not limited to this.
  • the data transmission system 1100 can be applied to any system as long as it is a system that divides scalable encoded data into a plurality of layers and transmits them through a plurality of lines.
  • the present technology is applied in the same manner as the application to the hierarchical encoding / decoding described above with reference to FIGS.
  • the same effect as described above with reference to FIG. 29 can be obtained.
  • scalable coding is used for storing coded data, for example, as in the example shown in FIG.
  • the imaging device 1201 performs scalable coding on image data obtained by imaging the subject 1211, and as scalable coded data (BL + EL) 1221, a scalable coded data storage device 1202. To supply.
  • the scalable encoded data storage device 1202 stores the scalable encoded data (BL + EL) 1221 supplied from the imaging device 1201 with quality according to the situation. For example, in the normal case, the scalable encoded data storage device 1202 extracts base layer data from the scalable encoded data (BL + EL) 1221, and the base layer scalable encoded data ( BL) 1222. On the other hand, for example, in the case of attention, the scalable encoded data storage device 1202 stores scalable encoded data (BL + EL) 1221 with high quality and a large amount of data.
  • the scalable encoded data storage device 1202 can store an image with high image quality only when necessary, so that an increase in the amount of data can be achieved while suppressing a reduction in the value of the image due to image quality degradation. And the use efficiency of the storage area can be improved.
  • the imaging device 1201 is a surveillance camera.
  • the monitoring target for example, an intruder
  • the content of the captured image is likely to be unimportant. Data
  • the image quality is given priority and the image data (scalable) (Encoded data) is stored with high quality.
  • whether it is normal time or attention time may be determined by the scalable encoded data storage device 1202 analyzing an image, for example.
  • the imaging apparatus 1201 may make a determination, and the determination result may be transmitted to the scalable encoded data storage device 1202.
  • the criterion for determining whether the time is normal or noting is arbitrary, and the content of the image as the criterion is arbitrary. Of course, conditions other than the contents of the image can also be used as the criterion. For example, it may be switched according to the volume or waveform of the recorded sound, may be switched at every predetermined time, or may be switched by an external instruction such as a user instruction.
  • the number of states is arbitrary, for example, normal, slightly attention, attention, very attention, etc.
  • three or more states may be switched.
  • the upper limit number of states to be switched depends on the number of layers of scalable encoded data.
  • the imaging apparatus 1201 may determine the number of scalable coding layers according to the state. For example, in a normal case, the imaging apparatus 1201 may generate base layer scalable encoded data (BL) 1222 with low quality and a small amount of data, and supply the scalable encoded data storage apparatus 1202 to the scalable encoded data storage apparatus 1202. Further, for example, when attention is paid, the imaging device 1201 generates scalable encoded data (BL + EL) 1221 having a high quality and a large amount of data, and supplies the scalable encoded data storage device 1202 to the scalable encoded data storage device 1202. May be.
  • BL base layer scalable encoded data
  • BL + EL scalable encoded data
  • the monitoring camera has been described as an example.
  • the use of the imaging system 1200 is arbitrary and is not limited to the monitoring camera.
  • the present technology is applied in the same manner as the application to the hierarchical encoding / decoding described above with reference to FIGS. 29, the same effects as described above can be obtained.
  • various types of information such as the code number of the motion vector predictor, the difference motion vector information, the motion vector predictor information, and the on / off flag of the parallel processing control are multiplexed into the encoded stream to be encoded.
  • the example transmitted from the decoding side to the decoding side has been described.
  • the method for transmitting such information is not limited to such an example.
  • these pieces of information may be transmitted or recorded as separate data associated with the encoded bitstream without being multiplexed into the encoded bitstream.
  • the term “associate” means that an image (which may be a part of an image such as a slice or a block) included in the bitstream and information corresponding to the image can be linked at the time of decoding. Means.
  • information may be transmitted on a transmission path different from that of the image (or bit stream).
  • Information may be recorded on a recording medium (or another recording area of the same recording medium) different from the image (or bit stream).
  • the information and the image (or bit stream) may be associated with each other in an arbitrary unit such as a plurality of frames, one frame, or a part of the frame.
  • this technique can also take the following structures.
  • the adjacent region setting unit for setting the spatial adjacent region according to the position of the prediction region in the coding region,
  • a predicted motion vector generation unit that generates a spatial prediction vector of the prediction region using a motion vector of a spatial adjacent region set by the adjacent region setting unit;
  • An image processing apparatus comprising: a motion vector decoding unit that decodes a motion vector of the prediction region using a prediction motion vector of the prediction region.
  • the adjacent region setting unit may be located on the left or above in the coding region among the adjacent regions of the first prediction region.
  • the image processing apparatus according to (1) wherein the first adjacent area of the second prediction area is set instead of the first adjacent area that is the second prediction area that is positioned.
  • the adjacent region setting unit is adjacent to the first adjacent region among the adjacent regions of the first prediction region when the first prediction region is located on the right or below in the coding region.
  • the first prediction region is a prediction region located below the coding region
  • the second prediction region is A prediction region located above the coding region
  • the first adjacent region is an adjacent region adjacent to the prediction region
  • the second adjacent region is adjacent to the upper right of the prediction region
  • the first prediction region is a prediction region located to the right in the coding region
  • the second prediction region is A prediction region located to the left in the coding region
  • the first adjacent region is an adjacent region adjacent to the left of the prediction region
  • the second adjacent region is adjacent to the lower left of the prediction region
  • the image processing apparatus is an area.
  • the first prediction region is a prediction region located in the upper right in the coding region
  • the second prediction region is When the prediction region is located at the upper left in the coding region
  • the first adjacent region is an adjacent region adjacent to the left of the prediction region
  • the second adjacent region is adjacent to the lower left of the prediction region.
  • the first adjacent region is an adjacent region adjacent to the prediction region
  • the second adjacent region is an adjacent region adjacent to the upper right of the prediction region
  • the first prediction region is a prediction region located at the lower right in the coding region
  • the second prediction region is a prediction region located at the upper left in the coding region
  • the first prediction region The image processing device according to (6), wherein the adjacent region is an adjacent region adjacent to the upper left of the prediction region.
  • the image processing apparatus When generating a spatial motion vector predictor among prediction motion vectors used for decoding motion vectors of a plurality of prediction regions constituting an image coding region, the generation of spatial motion vectors of the plurality of prediction regions is performed in parallel. In accordance with the position of the prediction region in the coding region, to set the spatial adjacent region, A spatial prediction vector of the prediction region is generated using the set motion vector of the spatial adjacent region, An image processing method for decoding a motion vector of the prediction region using a prediction motion vector of the prediction region.
  • the spatial motion vectors of the plurality of prediction regions An adjacent region setting unit that sets a spatial adjacent region according to the position of the prediction region in the coding region so that the generation is performed in parallel;
  • a predicted motion vector generation unit that generates a spatial prediction vector of the prediction region using a motion vector of a spatial adjacent region set by the adjacent region setting unit;
  • An image processing apparatus comprising: a motion vector encoding unit that encodes a motion vector of the prediction region using a prediction motion vector of the prediction region.
  • the adjacent region setting unit may be located on the left or above in the encoding region among the adjacent regions of the first prediction region.
  • the adjacent region setting unit is adjacent to the first adjacent region among the adjacent regions of the first prediction region when the first prediction region is located on the right or below in the coding region.
  • the first prediction region is a prediction region located below the coding region
  • the second prediction region is A prediction region located above the coding region
  • the first adjacent region is an adjacent region adjacent to the prediction region
  • the second adjacent region is adjacent to the upper right of the prediction region
  • the first prediction region is a prediction region located to the right in the coding region
  • the second prediction region is A prediction region located to the left in the coding region
  • the first adjacent region is an adjacent region adjacent to the left of the prediction region
  • the second adjacent region is adjacent to the lower left of the prediction region
  • the image processing apparatus is an area.
  • the adjacent region setting unit is located at the upper left in the encoding region among the adjacent regions of the first prediction region.
  • the image processing apparatus according to (15), wherein the first adjacent area of the second prediction area is set instead of the first adjacent area that is the second prediction area.
  • the first prediction region is a prediction region located in the upper right in the coding region
  • the second prediction region is When the prediction region is located at the upper left in the coding region
  • the first adjacent region is an adjacent region adjacent to the left of the prediction region
  • the second adjacent region is adjacent to the lower left of the prediction region.
  • the first adjacent region is an adjacent region adjacent to the prediction region
  • the second adjacent region is an adjacent region adjacent to the upper right of the prediction region
  • the first prediction region is a prediction region located at the lower right in the coding region
  • the second prediction region is a prediction region located at the upper left in the coding region
  • the first prediction region is an adjacent region adjacent to the upper left of the prediction region.
  • a setting unit that sets a flag indicating whether to set the space adjacent region;
  • An encoding unit that encodes the image and generates an encoded stream;
  • a transmission unit that transmits a motion vector encoded by the motion vector encoding unit, an encoded stream generated by the encoding unit, and a flag set by the setting unit;
  • the image processing apparatus according to any one of (13) to (20), wherein the adjacent area setting unit sets the space adjacent area based on a flag set by the setting unit.
  • the setting unit sets the flag for each of the encoding region or the prediction region.
  • the image processing apparatus When generating a spatial prediction motion vector among prediction motion vectors used for encoding motion vectors of a plurality of prediction regions constituting an image encoding region, generation of spatial motion vectors of the plurality of prediction regions is performed in parallel. In accordance with the position of the prediction region in the coding region, as in A spatial prediction vector of the prediction region is generated using the set motion vector of the spatial adjacent region, An image processing method for encoding a motion vector of the target area using a predicted motion vector of the prediction area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本開示は、動きベクトルの符号化または復号において、並列処理により処理効率を向上させることができるようにする画像処理装置および方法に関する。 当該PUの場合、当該PUに対して以下の位置関係で隣接するPUであるB、C、およびEと、CUにおいて当該PUの上に位置するPUに対して以下の位置関係で隣接するAおよびDの動きベクトル情報が用いられる。すなわち、当該PUについては、Aに相当するPUは、PUということになるので、当該PUの隣接領域として、Aの代わりに、Aが設定される。本開示は、例えば、画像処理装置に適用することができる。

Description

画像処理装置および方法
 本開示は画像処理装置および方法に関し、特に、動きベクトルの符号化または復号において、並列処理により処理効率を向上させることができるようにした画像処理装置および方法に関する。
 近年、画像情報をデジタルとして取り扱い、その際、効率の高い情報の伝送、蓄積を目的とし、画像情報特有の冗長性を利用して、離散コサイン変換等の直交変換と動き補償により圧縮する符号化方式を採用して画像を圧縮符号する装置が普及しつつある。この符号化方式には、例えば、MPEG(Moving Picture Experts Group)などがある。
 特に、MPEG2(ISO/IEC 13818-2)は、汎用画像符号化方式として定義されており、飛び越し走査画像及び順次走査画像の双方、並びに標準解像度画像及び高精細画像を網羅する標準である。例えば、MPEG2は、プロフェッショナル用途及びコンシューマ用途の広範なアプリケーションに現在広く用いられている。MPEG2圧縮方式を用いることにより、例えば720×480画素を持つ標準解像度の飛び越し走査画像であれば4乃至8Mbpsの符号量(ビットレート)が割り当てられる。また、MPEG2圧縮方式を用いることにより、例えば1920×1088画素を持つ高解像度の飛び越し走査画像であれば18乃至22 Mbpsの符号量(ビットレート)が割り当てられる。これにより、高い圧縮率と良好な画質の実現が可能である。
 MPEG2は主として放送用に適合する高画質符号化を対象としていたが、MPEG1より低い符号量(ビットレート)、つまりより高い圧縮率の符号化方式には対応していなかった。携帯端末の普及により、今後そのような符号化方式のニーズは高まると思われ、これに対応してMPEG4符号化方式の標準化が行われた。画像符号化方式に関しては、1998年12月にISO/IEC 14496-2としてその規格が国際標準に承認された。
 標準化のスケジュールとしては、2003年3月にはH.264及びMPEG-4 Part10 (Advanced Video Coding、以下AVC方式と称する)という国際標準となっている。
 さらに、このAVC方式の拡張として、RGBや4:2:2、4:4:4といった、業務用に必要な符号化ツールや、MPEG-2で規定されていた8x8DCTや量子化マトリクスをも含んだFRExt (Fidelity Range Extension) の標準化が2005年2月に完了した。これにより、AVC方式を用いて、映画に含まれるフィルムノイズをも良好に表現することが可能な符号化方式となって、Blu-Ray Disc(商標)等の幅広いアプリケーションに用いられる運びとなった。
 しかしながら、昨今、ハイビジョン画像の4倍の、4000×2000画素程度の画像を圧縮したい、あるいは、インターネットのような、限られた伝送容量の環境において、ハイビジョン画像を配信したいといった、更なる高圧縮率符号化に対するニーズが高まっている。このため、先述の、ITU-T傘下のVCEG (=Video Coding Expert Group) において、符号化効率の改善に関する検討が継続され行なわれている。
 かかる符号化効率改善の1つとして、AVC方式におけるメディアン予測を用いた動きベクトルの符号化を改善するため、AVC方式において定義されている、メディアン予測により求められる”Spatial Predictor”に加え、”Temporal Predictor”及び”Spatio-Temporal Predictor”のどれかを、予測動きベクトル情報として、適応的に用いること(以下、MVコンペティション(MVCompetition)とも称する)が提案されている(例えば、非特許文献1参照)。
 なお、AVC方式において、予測動きベクトル情報を選択する際には、JM(Joint Model)と呼ばれるAVC方式の参照ソフトウエアに実装されているHigh Complexity ModeまたはLow Complexity Modeによるコスト関数値が用いられている。
 すなわち、予測動きベクトル情報を用いた場合のコスト関数値が算出され、最適な予測動きベクトル情報の選択が行われる。画像圧縮情報においては、それぞれのブロックに対し、どの予測動きベクトル情報が用いられたかに関する情報を示すフラグ情報が伝送される。
 ところで、マクロブロックサイズを16画素×16画素とするのは、次世代符号化方式の対象となるような、UHD(Ultra High Definition;4000画素×2000画素)といった大きな画枠に対しては、最適ではない恐れがあった。
 そこで、現在、AVCより更なる符号化効率の向上を目的として、ITU-Tと、ISO/IECの共同の標準化団体であるJCTVC(Joint Collaboration Team - Video Coding)により、HEVC(High Efficiency Video Coding)と呼ばれる符号化方式の標準化が進められている(例えば、非特許文献2参照)。
 このHEVC方式においては、AVC方式におけるマクロブロックと同様の処理単位としてコーディングユニット(CU(Coding Unit))が定義されている。このCUは、AVC方式のマクロブロックのようにサイズが16×16画素に固定されず、それぞれのシーケンスにおいて、画像圧縮情報中において指定される。また、それぞれのシーケンスにおいては、CUの最大サイズ(LCU=Largest Coding Unit)と最小サイズ(SCU=Smallest Coding Unit)も規定されている。
 また、動き情報の符号化方式の1つとして、Motion Partition Mergingと呼ばれる手法(以下、マージモード(Merge mode)とも称する)が提案されている(例えば、非特許文献3参照)。この手法においては、当該ブロックの動き情報が周辺のブロックの動き情報と同一である場合、フラグ情報のみが伝送され、復号の際には、その周辺ブロックの動き情報を用いて当該ブロックの動き情報が再構築される。
 すなわち、Merge modeにおいても、周辺のブロックから、Spatial Predictor(空間予測動きベクトル)と、Temporal Predictor(時間予測動きベクトル)が求められ、それらの中から最適な予測動きベクトルが決定される。そして、Merge modeにおいては、決定された予測動きベクトルと当該ブロックの動き情報とが同一である場合にフラグ情報のみが伝送される。
 ところで、上述のMVCompetitionもしくはMerge modeによる動きベクトル符号化または復号処理において、処理対象である当該PU のSpatial predicorが求められる。このとき、当該PUに隣接するPUのうち、所定の位置関係で隣接するPUの動きベクトルを、当該PU のSpatial predicorの候補とすることが提案されている。
 具体的には、当該PUの左下に隣接するPUであるAの動きベクトルと、当該PUの左に隣接するPUのうち、Aの上に位置するPUであるAの動きベクトルとが候補とされている。また、当該PUの左上に隣接するPUであるBの動きベクトルと、当該PUの右上に隣接するPUであるBの動きベクトルと、当該PUの上に隣接するPUのうち、Bの左隣に位置するPUであるBの動きベクトルとが候補とされている。
 そして、A、Aの順、並びに、B、B、Bの順にスキャンが行われ、当該PUの動きベクトル情報と、同等の参照フレームを持つ動きベクトル情報を検出した時点でスキャンが終了される。
Joel Jung,Guillaume Laroche,"Competition-Based Scheme for Motion Vector Selection and Coding", VCEG-AC06,ITU - Telecommunications Standardization SectorSTUDY GROUP 16 Question 6Video Coding Experts Group (VCEG)29th Meeting: Klagenfurt, Austria, 17-18 July, 2006 Thomas Wiegand, Woo-Jin Han, Benjamin Bross, Jens-Rainer Ohm, Gary J. Sullivan, "Working Draft 4 of High-Efficiency Video Coding ", JCTVC-F803, Joint Collaborative Team on Video Coding (JCT-VC)of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 6th Meeting: Torino, IT, 14-22 July, 2011 Martin Winken, Sebastian Bosse, Benjamin Bross, Philipp Helle, Tobias Hinz, Heiner Kirchhoffer, Haricharan Lakshman, Detlev Marpe, Simon Oudin, Matthias Preiss, Heiko Schwarz, Mischa Siekmann, Karsten Suehring, and Thomas Wiegand,"Description of video coding technology proposed by Fraunhofer HHI",JCTVC-A116,April,2010
 しかしながら、単一のCUが、例えば、2N×Nに分割されている場合、CUの上部に位置するPU0に関する動きベクトル情報が確定しないと、CUの下部に位置するPU1に関する、上述した動きベクトルの符号化または復号を行うことができない。このため、PU0とPU1に関する動きベクトル情報を並列に処理できなかった。
 なお、これは、単一のCUが、N×2Nに分割されている場合のPUについても言えることである。
 本開示は、このような状況に鑑みてなされたものであり、動きベクトルの符号化または復号において、並列処理により処理効率を向上させるものである。
 本開示の一側面の画像処理装置は、画像の符号化領域を構成する複数の予測領域の動きベクトルの復号に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定する隣接領域設定部と、前記隣接領域設定部により設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成する予測動きベクトル生成部と、前記予測領域の予測動きベクトルを用いて、前記予測領域の動きベクトルを復号する動きベクトル復号部とを備える。
 前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左または上に位置する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定することができる。
 前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記第1の隣接領域に隣接する第2の隣接領域の代わりに、前記第2の予測領域の前記第2の隣接領域を設定することができる。
 前記符号化領域が2N×Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における上に位置する予測領域であり、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域である。
 前記符号化領域がN×2Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における右に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左に位置する予測領域であり、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域である。
 前記隣接領域設定部は、前記第1の予測領域が前記符号化領域における右および下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左上に接する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定することができる。
 前記符号化領域が4×4の予測領域に分割される場合、前記第1の予測領域が、前記符号化領域における右上に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域であり、前記第1の予測領域が、前記符号化領域における左下に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域であり、前記第1の予測領域が、前記符号化領域における右下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左上に隣接する隣接領域である。
 前記符号化領域は、Asymmetric Motion Partitionにより複数の予測領域に分割されている。
 符号化ストリームと、前記空間隣接領域の設定を行うか否かを示すフラグを受け取る受け取り部と、前記受け取り部により受け取られた符号化ストリームを復号し、前記画像を生成する復号部とをさらに備え、前記隣接領域設定部は、前記受け取り部により受け取られたフラグに基づいて、前記空間隣接領域の設定を行うことができる。
 前記フラグは、前記符号化領域または前記予測領域毎に設定されている。
 前記空間隣接領域の設定を行うか否かは、シーケンスプロファイルまたはレベルに応じて設定されており、前記隣接領域設定部は、前記シーケンスプロファイルまたはレベルに基づいて、前記空間隣接領域の設定を行うことができる。
 本開示の一側面の画像処理方法は、画像処理装置が、画像の符号化領域を構成する複数の予測領域の動きベクトルの復号に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定し、設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成し、前記予測領域の予測動きベクトルを用いて、前記予測領域の動きベクトルを復号する。
 本開示の他の側面の画像処理装置は、画像の符号化領域を構成する複数の予測領域の動きベクトルの符号化に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定する隣接領域設定部と、前記隣接領域設定部により設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成する予測動きベクトル生成部と、前記予測領域の予測動きベクトルを用いて、前記予測領域の動きベクトルを符号化する動きベクトル符号化部とを備える。
 前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左または上に位置する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定することができる。
 前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記第1の隣接領域に隣接する第2の隣接領域の代わりに、前記第2の予測領域の前記第2の隣接領域を設定することができる。
 前記符号化領域が2N×Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における上に位置する予測領域であり、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域である。
 前記符号化領域がN×2Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における右に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左に位置する予測領域であり、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域である。
 前記隣接領域設定部は、第1の予測領域が前記符号化領域における右下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左上に位置する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定することができる。
 前記符号化領域が4×4の予測領域に分割される場合、前記第1の予測領域が、前記符号化領域における右上に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域であり、前記第1の予測領域が、前記符号化領域における左下に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域であり、前記第1の予測領域が、前記符号化領域における右下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左上に隣接する隣接領域である。
 前記符号化領域は、Asymmetric Motion Partitionにより複数の予測領域に分割されている。
 前記空間隣接領域の設定を行うか否かを示すフラグを設定する設定部と、前記画像を符号化し、符号化ストリームを生成する符号化部と、前記動きベクトル符号化部により符号化された動きベクトル、前記符号化部により生成された符号化ストリーム、および前記設定部により設定されたフラグを伝送する伝送部とをさらに備え、前記隣接領域設定部は、前記設定部により設定されたフラグに基づいて、前記空間隣接領域の設定を行うことができる。
 前記設定部は、前記符号化領域または前記予測領域毎に前記フラグを設定することができる。
 前記空間隣接領域の設定を行うか否かは、シーケンスプロファイルまたはレベルに応じて設定されており、前記隣接領域設定部は、前記シーケンスプロファイルまたはレベルに基づいて、前記空間隣接領域の設定を行うことができる。
 本開示の他の側面の画像処理方法は、画像処理装置が、画像の符号化領域を構成する複数の予測領域の動きベクトルの符号化に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定し、設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成し、前記予測領域の予測動きベクトルを用いて、前記対象領域の動きベクトルを符号化する。
 本開示の一側面においては、画像の符号化領域を構成する複数の予測領域の動きベクトルの復号に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域が設定される。そして、設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルが生成され、前記予測領域の予測動きベクトルを用いて、前記予測領域の動きベクトルが復号される。
 本開示の他の側面においては、画像の符号化領域を構成する複数の予測領域の動きベクトルの符号化に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域が設定される。そして、設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルが生成され、前記予測領域の予測動きベクトルを用いて、前記対象領域の動きベクトルが符号化される。
 なお、上述の画像処理装置は、独立した装置であっても良いし、1つの画像符号化装置または画像復号装置を構成している内部ブロックであってもよい。
 本開示の一側面によれば、画像を復号することができる。特に、動きベクトルの符号化または復号において、並列処理により処理効率を向上させることができる。
 本開示の他の側面によれば、画像を符号化することができる。特に、動きベクトルの符号化または復号において、並列処理により処理効率を向上させることができる。
画像符号化装置の主な構成例を示すブロック図である。 小数点画素精度の動き予測・補償処理の例を示す図である。 マクロブロックの例を示す図である。 メディアンオペレーションについて説明する図である。 マルチ参照フレームについて説明する図である。 テンポラルダイレクトモードについて説明する図である。 動きベクトル符号化方法について説明する図である。 コーディングユニットの構成例を説明する図である。 Motion Partition Mergingについて説明する図である。 HEVC方式の空間予測動きベクトルの生成方法について説明する図である。 HEVC方式の空間予測動きベクトルの生成方法について説明する図である。 2N×N PUにおける本技術の空間予測動きベクトルの生成方法について説明する図である。 N×2N PUにおける本技術の空間予測動きベクトルの生成方法について説明する図である。 2N×2N PUにおける本技術の空間予測動きベクトルの生成方法について説明する図である。 HEVC方式のAsymmetric Motion Partitionを説明する図である。 動きベクトル符号化部の主な構成例を示すブロック図である。 符号化処理の流れの例を説明するフローチャートである。 インター動き予測処理の流れの例を説明するフローチャートである。 予測動きベクトル生成処理の流れの例を説明するフローチャートである。 画像復号装置の主な構成例を示すブロック図である。 動きベクトル復号部の主な構成例を示すブロック図である。 復号処理の流れの例を説明するフローチャートである。 動きベクトル再構築処理の流れの例を説明するフローチャートである。 多視点画像符号化方式の例を示す図である。 本技術を適用した多視点画像符号化装置の主な構成例を示す図である。 本技術を適用した多視点画像復号装置の主な構成例を示す図である。 階層画像符号化方式の例を示す図である。 本技術を適用した階層画像符号化装置の主な構成例を示す図である。 本技術を適用した階層画像復号装置の主な構成例を示す図である。 コンピュータの主な構成例を示すブロック図である。 テレビジョン装置の概略的な構成の一例を示すブロック図である。 携帯電話機の概略的な構成の一例を示すブロック図である。 記録再生装置の概略的な構成の一例を示すブロック図である。 撮像装置の概略的な構成の一例を示すブロック図である。 スケーラブル符号化利用の一例を示すブロック図である。 スケーラブル符号化利用の他の例を示すブロック図である。 スケーラブル符号化利用のさらに他の例を示すブロック図である。
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(画像符号化装置)
2.第2の実施の形態(画像復号装置)
3.第3の実施の形態(多視点画像符号化・多視点画像復号装置)
4.第4の実施の形態(階層画像符号化・階層画像復号装置)
5.第5の実施の形態(コンピュータ)
6.応用例
7.スケーラブル符号化の応用例
<1.第1の実施の形態>
[画像符号化装置]
 図1は、画像符号化装置の主な構成例を示すブロック図である。
 図1に示される画像符号化装置100は、例えば、HEVC(High Efficiency Video Coding)に準ずる方式の予測処理を用いて画像データを符号化する。画像符号化装置100においては、CU(符号化領域と称する)を処理単位として符号化が行われる。
 図1に示されるように画像符号化装置100は、A/D変換部101、画面並べ替えバッファ102、演算部103、直交変換部104、量子化部105、可逆符号化部106、蓄積バッファ107、逆量子化部108、および逆直交変換部109を有する。また、画像符号化装置100は、演算部110、デブロックフィルタ111、フレームメモリ112、選択部113、イントラ予測部114、動き予測・補償部115、予測画像選択部116、およびレート制御部117を有する。
 画像符号化装置100は、さらに、動きベクトル符号化部121および並列処理制御部122を有する。
 A/D変換部101は、入力された画像データをA/D変換し、変換後の画像データ(デジタルデータ)を、画面並べ替えバッファ102に供給し、記憶させる。画面並べ替えバッファ102は、記憶した表示の順番のフレームの画像を、GOP(Group Of Picture)に応じて、符号化のためのフレームの順番に並べ替え、フレームの順番を並び替えた画像を、演算部103に供給する。また、画面並べ替えバッファ102は、フレームの順番を並び替えた画像を、イントラ予測部114および動き予測・補償部115にも供給する。
 演算部103は、画面並べ替えバッファ102から読み出された画像から、予測画像選択部116を介してイントラ予測部114若しくは動き予測・補償部115から供給される予測画像を減算し、その差分情報を直交変換部104に出力する。
 例えば、インター符号化が行われる画像の場合、演算部103は、画面並べ替えバッファ102から読み出された画像から、動き予測・補償部115から供給される予測画像を減算する。
 直交変換部104は、演算部103から供給される差分情報に対して、離散コサイン変換やカルーネン・レーベ変換等の直交変換を施す。なお、この直交変換の方法は任意である。直交変換部104は、その変換係数を量子化部105に供給する。
 量子化部105は、直交変換部104から供給される変換係数を量子化する。量子化部105は、レート制御部117から供給される符号量の目標値に関する情報に基づいて量子化パラメータを設定し、その量子化を行う。なお、この量子化の方法は任意である。量子化部105は、量子化された変換係数を可逆符号化部106に供給する。
 可逆符号化部106は、量子化部105において量子化された変換係数を任意の符号化方式で符号化する。係数データは、レート制御部117の制御の下で量子化されているので、この符号量は、レート制御部117が設定した目標値となる(若しくは目標値に近似する)。
 また、可逆符号化部106は、イントラ予測のモードを示す情報などをイントラ予測部114から取得し、インター予測のモードを示す情報や差分動きベクトル情報などを動き予測・補償部115から取得する。
 可逆符号化部106は、これらの各種情報を任意の符号化方式で符号化し、符号化データ(符号化ストリームとも称する)のヘッダ情報の一部とする(多重化する)。可逆符号化部106は、符号化して得られた符号化データを蓄積バッファ107に供給して蓄積させる。
 可逆符号化部106の符号化方式としては、例えば、可変長符号化または算術符号化等が挙げられる。可変長符号化としては、例えば、AVC方式で定められているCAVLC(Context-Adaptive Variable Length Coding)などが挙げられる。算術符号化としては、例えば、CABAC(Context-Adaptive Binary Arithmetic Coding)などが挙げられる。
 蓄積バッファ107は、可逆符号化部106から供給された符号化データを、一時的に保持する。蓄積バッファ107は、所定のタイミングにおいて、保持している符号化データを、例えば、後段の図示せぬ記録装置(記録媒体)や伝送路などに出力する。すなわち、蓄積バッファ107は、符号化データを伝送する伝送部でもある。
 また、量子化部105において量子化された変換係数は、逆量子化部108にも供給される。逆量子化部108は、その量子化された変換係数を、量子化部105による量子化に対応する方法で逆量子化する。この逆量子化の方法は、量子化部105による量子化処理に対応する方法であればどのような方法であってもよい。逆量子化部108は、得られた変換係数を、逆直交変換部109に供給する。
 逆直交変換部109は、逆量子化部108から供給された変換係数を、直交変換部104による直交変換処理に対応する方法で逆直交変換する。この逆直交変換の方法は、直交変換部104による直交変換処理に対応する方法であればどのようなものであってもよい。逆直交変換された出力(復元された差分情報)は、演算部110に供給される。
 演算部110は、逆直交変換部109から供給された逆直交変換結果である、復元された差分情報に、予測画像選択部116を介してイントラ予測部114若しくは動き予測・補償部115からの予測画像を加算し、局部的に復号された画像(復号画像)を得る。その復号画像は、デブロックフィルタ111またはフレームメモリ112に供給される。
 デブロックフィルタ111は、演算部110から供給される復号画像に対して適宜デブロックフィルタ処理を行う。例えば、デブロックフィルタ111は、復号画像に対してデブロックフィルタ処理を行うことにより復号画像のブロック歪を除去する。
 デブロックフィルタ111は、フィルタ処理結果(フィルタ処理後の復号画像)をフレームメモリ112に供給する。なお、上述したように、演算部110から出力される復号画像は、デブロックフィルタ111を介さずにフレームメモリ112に供給することができる。つまり、デブロックフィルタ111によるフィルタ処理は省略することができる。
 フレームメモリ112は、供給される復号画像を記憶し、所定のタイミングにおいて、記憶している復号画像を参照画像として、選択部113に供給する。
 選択部113は、フレームメモリ112から供給される参照画像の供給先を選択する。例えば、インター予測の場合、選択部113は、フレームメモリ112から供給される参照画像を動き予測・補償部115に供給する。
 イントラ予測部114は、選択部113を介してフレームメモリ112から供給される参照画像である処理対象ピクチャ内の画素値を用いて、基本的にプレディクションユニット(PU)を処理単位として予測画像を生成するイントラ予測(画面内予測)を行う。イントラ予測部114は、予め用意された複数のイントラ予測モードでこのイントラ予測を行う。
 イントラ予測部114は、候補となる全てのイントラ予測モードで予測画像を生成し、画面並べ替えバッファ102から供給される入力画像を用いて各予測画像のコスト関数値を評価し、最適なモードを選択する。イントラ予測部114は、最適なイントラ予測モードを選択すると、その最適なモードで生成された予測画像を、予測画像選択部116に供給する。
 また、上述したように、イントラ予測部114は、採用されたイントラ予測モードを示すイントラ予測モード情報等を、適宜可逆符号化部106に供給し、符号化させる。
 動き予測・補償部115は、画面並べ替えバッファ102から供給される入力画像と、選択部113を介してフレームメモリ112から供給される参照画像とを用いて、基本的にPUを処理単位として、動き予測(インター予測)を行う。以下、PU(プレディクションユニット:Prediction Unit)を予測領域とも称する。動き予測・補償部115は、検出された動きベクトルを動きベクトル符号化部121に供給するとともに、検出された動きベクトルに応じて動き補償処理を行い、予測画像(インター予測画像情報)を生成する。動き予測・補償部115は、予め用意された複数のインター予測モードでこのようなインター予測を行う。
 動き予測・補償部115は、インター予測により求められた対象予測領域の動きベクトル情報を、動きベクトル符号化部121に供給する。また、動き予測・補償部115は、PU(予測領域)のサイズ情報を、並列処理制御部122に供給する。PUのサイズ情報とは、例えば、CUをどのように構成しているPUであるかを示す情報、すなわち、PUのパーティションサイズを示す情報である。
 動き予測・補償部115は、対象予測領域の動きベクトルと、動きベクトル符号化部121からの対象予測領域の予測動きベクトルとの差分である差分動きベクトルを生成する。また、動き予測・補償部115は、画面並べ替えバッファ102から供給される入力画像と、生成した差分動きベクトルの情報などを用いて、各予測画像のコスト関数値を評価し、最適なモードを選択する。動き予測・補償部115は、最適なインター予測モードを選択すると、その最適なモードで生成された予測画像を、予測画像選択部116に供給する。
 動き予測・補償部115は、採用されたインター予測モードを示す情報や、符号化データを復号する際に、そのインター予測モードで処理を行うために必要な情報等を可逆符号化部106に供給し、符号化させる。必要な情報としては、例えば、生成された差分動きベクトルの情報や予測動きベクトルのインデックスを示すフラグを含む予測動きベクトル情報などがある。
 予測画像選択部116は、演算部103や演算部110に供給する予測画像の供給元を選択する。例えば、インター符号化の場合、予測画像選択部116は、予測画像の供給元として動き予測・補償部115を選択し、その動き予測・補償部115から供給される予測画像を演算部103や演算部110に供給する。
 レート制御部117は、蓄積バッファ107に蓄積された符号化データの符号量に基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部105の量子化動作のレートを制御する。
 動きベクトル符号化部121は、動き予測・補償部115により求められた動きベクトルを記憶している。動きベクトル符号化部121は、対象予測領域の動きベクトルを予測する。すなわち、動きベクトル符号化部121は、動きベクトルの符号化または復号のために用いられる予測動きベクトル(predictor)を生成する。
 ここで、予測動きベクトルの種類としては、時間予測動きベクトル(temporal predictor)と、空間予測動きベクトル(spacial predictor)とがある。時間予測動きベクトルは、対象予測領域に時間的に隣接する時間隣接領域の動きベクトルを用いて生成される予測動きベクトルである。空間予測動きベクトルは、対象予測領域に空間的に隣接する空間隣接領域の動きベクトルを用いて生成される予測動きベクトルである。
 具体的には、動きベクトル符号化部121は、対象予測領域に時間的に隣接する時間隣接領域の動きベクトルを用いて、時間予測動きベクトルを生成する。また、動きベクトル符号化部121は、対象予測領域に空間的に隣接する空間隣接領域の動きベクトルを用いて、空間予測動きベクトルを生成する。その際、並列処理制御部122からの制御信号が指定する隣接領域が用いられて、空間予測動きベクトルが生成される。動きベクトル符号化部121は、生成した予測動きベクトルのうち最適とされる最適予測動きベクトルを、動き予測・補償部115に供給する。
 並列処理制御部122は、対象PUの空間隣接PUを設定する。並列処理制御部122は、特に、符号化領域(CU)が複数の予測領域(PU)で構成される場合、対象予測領域の予測動きベクトル生成処理を並列で行うように、対象PUの空間隣接PUを設定する。なお、対象PUの空間隣接PUを設定することは、予測動きベクトルの生成に用いられる、対象PUの空間隣接PUの動きベクトルを設定することと同義である。
 具体的には、並列処理制御部122は、動き予測・補償部115からのPUサイズの情報を参照し、符号化領域における予測領域の位置に応じて、対象PUの空間隣接PUを設定する制御信号(アドレスなど)を、動きベクトル符号化部121に供給する。
 なお、本実施の形態において、動きベクトルの予測とは、予測動きベクトルを生成する処理を表し、動きベクトルの符号化とは、予測動きベクトルを生成して、生成した予測動きベクトルを用いて、差分動きベクトルを求める処理を表すものとして説明する。すなわち、動きベクトルの符号化処理に、動きベクトルの予測処理が含まれている。同様に、動きベクトルの復号とは、予測動きベクトルを生成して、生成した予測動きベクトルを用いて、動きベクトルを再構築する処理を表すものとして説明する。すなわち、動きベクトルの復号処理に、動きベクトルの予測処理が含まれている。
 また、上述した対象予測領域に隣接する隣接領域は、対象領域の周辺に位置する周辺領域でもあり、以下、両者の文言は、同じ領域を意味するものとして説明していく。
[1/4画素精度動き予測]
 図2は、AVC方式において規定されている、1/4画素精度の動き予測・補償処理の様子の例を説明する図である。図2において、各四角は、画素を示している。その内、Aはフレームメモリ112に格納されている整数精度画素の位置を示し、b,c,dは、1/2画素精度の位置を示し、e1,e2,e3は1/4画素精度の位置を示している。
 以下においては、関数Clip1()を以下の式(1)のように定義する。
Figure JPOXMLDOC01-appb-M000001

 ・・・(1)
 例えば、入力画像が8ビット精度である場合、式(1)のmax_pixの値は255となる。
 b及びdの位置における画素値は、6tapのFIRフィルタを用いて、以下の式(2)および式(3)のように生成される。
Figure JPOXMLDOC01-appb-M000002

 ・・・(2)
Figure JPOXMLDOC01-appb-M000003

 ・・・(3)
 cの位置における画素値は、水平方向及び垂直方向に6tapのFIRフィルタを適用し、以下の式(4)乃至式(6)のように生成される。
Figure JPOXMLDOC01-appb-M000004

 ・・・(4)
 もしくは、
Figure JPOXMLDOC01-appb-M000005

 ・・・(5)
Figure JPOXMLDOC01-appb-M000006

 ・・・(6)
 なお、Clip処理は、水平方向及び垂直方向の積和処理の両方を行った後、最後に1度のみ行われる。
 e1乃至e3は、以下の式(7)乃至式(9)のように、線形内挿により生成される。
Figure JPOXMLDOC01-appb-M000007

 ・・・(7)
Figure JPOXMLDOC01-appb-M000008

 ・・・(8)
Figure JPOXMLDOC01-appb-M000009

 ・・・(9)
[マクロブロック]
 図3は、AVC方式におけるマクロブロックの例を示す図である。
 MPEG2においては、動き予測・補償処理の単位は、フレーム動き補償モードの場合には16×16画素を単位として動き予測・補償処理が行なわれる。また、フィールド動き補償モードの場合には第1フィールド、第2フィールドのそれぞれに対し、16×8画素を単位として動き予測・補償処理が行なわれる。
 これに対し、AVC方式においては、図3に示されるように、16×16画素により構成される1つのマクロブロックを、16×16、16×8、8×16若しくは8×8のいずれかのパーティションに分割することが可能である。また、サブマクロブロック毎に、互いに独立した動きベクトル情報を持つことが可能である。更に、8×8パーティションに関しては、図3に示されるとおり、8×8、8×4、4×8、4×4のいずれかのサブマクロブロックに分割し、それぞれ独立した動きベクトル情報を持つことが可能である。
 しかしながら、AVC方式において、MPEG2の場合と同様に、かかるような動き予測・補償処理が行なわれるようにすると、膨大な動きベクトル情報が生成されてしまう恐れがあった。そして、その生成された動きベクトル情報をこのまま符号化することは、符号化効率の低下を招く恐れがあった。
[動きベクトルのメディアン予測]
 かかる問題を解決する手法として、AVC方式においては、以下のような手法により、動きベクトルの符号化情報の低減が実現されている。
 図4に示される各直線は、動き補償ブロックの境界を示している。また、図4において、Eはこれから符号化されようとしている当該動き補償ブロックを示し、A乃至Dは、それぞれ、既に符号化済の、Eに隣接する動き補償ブロックを示す。
 今、X=A,B,C,D,Eとして、Xに対する動きベクトル情報を、mvxとする。
 まず、動き補償ブロックA,B、およびCに関する動きベクトル情報を用い、動き補償ブロックEに対する予測動きベクトル情報pmvEを、メディアンオペレーションにより、以下の式(10)のように生成する。
Figure JPOXMLDOC01-appb-M000010

 ・・・(10)
 動き補償ブロックCに関する情報が、画枠の端である等の理由により利用不可能(unavailable)である場合、動き補償ブロックDに関する情報で代用される。
 画像圧縮情報に、動き補償ブロックEに対する動きベクトル情報として符号化されるデータmvdEは、pmvEを用いて、以下の式(11)のように生成される。
Figure JPOXMLDOC01-appb-M000011

 ・・・(11)
 なお、実際の処理は、動きベクトル情報の水平方向および垂直方向のそれぞれの成分に対して、独立に処理が行なわれる。
[マルチ参照フレーム]
 AVC方式においては、Multi-Reference Frame(マルチ(複数)参照フレーム)という、MPEG2やH.263等、従来の画像符号化方式では規定されていなかった方式が規定されている。
 図5を用いて、AVC方式において規定されている、マルチ参照フレーム(Multi-Reference Frame)を説明する。
 すなわち、MPEG-2やH.263においては、Pピクチャの場合、フレームメモリに格納された参照フレーム1枚のみを参照することにより動き予測・補償処理が行われていた。これに対して、AVC方式においては、図5に示されるように、複数の参照フレームがメモリに格納され、マクロブロック毎に、異なるメモリを参照することが可能である。
[ダイレクトモード]
 次に、ダイレクトモードについて説明する。Bピクチャにおける動きベクトル情報における情報量は膨大であるが、AVC方式においては、Direct Mode(ダイレクトモード)と称されるモードが用意されている。
 このダイレクトモードにおいて、動きベクトル情報は、画像圧縮情報中には格納されない。画像復号装置においては、周辺ブロックの動きベクトル情報、若しくは、参照フレームにおける処理対象ブロックと同じ位置のブロックであるCo-Locatedブロックの動きベクトル情報から、当該ブロックの動きベクトル情報が算出される。
 ダイレクトモード(Direct Mode)には、Spatial Direct Mode(空間ダイレクトモード)と、Temporal Direct Mode(時間ダイレクトモード)の2種類が存在し、スライス毎に切り替えることが可能である。
 空間ダイレクトモード(Spatial Direct Mode)においては、以下の式(12)に示されるように、処理対象の動き補償ブロックEの動きベクトル情報mvEが算出される。
 mvE = pmvE ・・・(12)
 すなわち、Median(メディアン)予測により生成された動きベクトル情報が、当該ブロックに適用される。
 以下においては、図6を用いて、時間ダイレクトモード(Temporal Direct Mode)を説明する。
 図6において、L0参照ピクチャにおける、当該ブロックと同じ空間上のアドレスにあるブロックを、Co-Locatedブロックとし、Co-Locatedブロックにおける動きベクトル情報を、mvcolとする。また、当該ピクチャとL0参照ピクチャの時間軸上の距離をTDBとし、L0参照ピクチャとL1参照ピクチャの時間軸上の距離をTDDとする。 
 この時、当該ピクチャにおける、L0の動きベクトル情報mvL0及びL1の動きベクトル情報mvL1は、以下の式(13)および式(14)のように算出される。
Figure JPOXMLDOC01-appb-M000012

 ・・・(13)
Figure JPOXMLDOC01-appb-M000013

 ・・・(14)
 なお、AVC画像圧縮情報においては、時間軸上の距離を表す情報TDが存在しないため、POC(Picture Order Count)を用いて、上述した式(12)および式(13)の演算が行われるものとする。
 また、AVC画像圧縮情報においては、ダイレクトモード(Direct Mode)は、16×16画素マクロブロック単位、若しくは、8×8画素ブロック単位で定義することが可能である。
[予測モードの選択]
 次に、AVC方式における予測モードの選択について説明する。AVC方式において、より高い符号化効率を達成するには、適切な予測モードの選択が重要である。
 かかる選択方式の例として、JM(Joint Model)と呼ばれるAVC方式の参照ソフトウエア(http://iphome.hhi.de/suehring/tml/index.htm において公開されている)に実装されている方法を挙げることが出来る。
 JMにおいては、以下に述べる、High Complexity Modeと、Low Complexity Modeの2通りのモード判定方法を選択することができる。どちらも、それぞれの予測モードに関するコスト関数値を算出し、これを最小にする予測モードを当該サブマクロブロック、または、当該マクロブロックに対する最適モードとして選択する。
 High Complexity Modeにおけるコスト関数は、以下の式(15)のように示される。
 Cost(Mode∈Ω) = D + λ*R ・・・(15)
 ここで、Ωは、当該ブロック乃至マクロブロックを符号化するための候補モードの全体集合、Dは、当該予測モードで符号化した場合の、復号画像と入力画像の差分エネルギーである。λは、量子化パラメータの関数として与えられるLagrange未定乗数である。Rは、直交変換係数を含んだ、当該モードで符号化した場合の総符号量である。
 つまり、High Complexity Modeでの符号化を行うには、上記パラメータD及びRを算出するため、全ての候補モードにより、一度、仮エンコード処理を行う必要があり、より高い演算量を要する。
 Low Complexity Modeにおけるコスト関数は、以下の式(16)のように示される。
 Cost(Mode∈Ω) = D + QP2Quant(QP) * HeaderBit ・・・(16)
 ここで、Dは、High Complexity Modeの場合と異なり、予測画像と入力画像の差分エネルギーとなる。QP2Quant(QP)は、量子化パラメータQPの関数として与えられ、HeaderBitは、直交変換係数を含まない、動きベクトルや、モードといった、Headerに属する情報に関する符号量である。
 すなわち、Low Complexity Modeにおいては、それぞれの候補モードに関して、予測処理を行う必要があるが、復号画像までは必要ないため、符号化処理まで行う必要はない。このため、High Complexity Modeより低い演算量での実現が可能である。
[動きベクトルのMVコンペティション]
 次に、動きベクトルの符号化について説明する。図4を参照して上述したような、メディアン予測を用いた動きベクトルの符号化を改善するため、非特許文献1では、以下に述べるような方法が提案されている。
 すなわち、AVC方式において定義されている、メディアン予測により求められる”Spatial Predictor(空間予測動きベクトル)”に加え、以下に述べる”Temporal Predictor(時間予測動きベクトル)”及び”Spatio-Temporal Predictor(時間と空間の予測動きベクトル)”のどれかを、予測動きベクトル情報として、適応的に用いることが可能にするものである。この提案の方法は、AVC方式においてMVコンペティション(MVCompetition)と呼ばれている。これに対して、HEVC方式においては、Advanced Motion Vector Prediction(AMVP)と呼ばれており、以下、この提案の方法を、AMVPと称して説明する。
 図7において、”mvcol”を、当該ブロックに対するCo-Locatedブロックに対する動きベクトル情報とする。また、mvtk(k=0乃至8)をその周辺ブロックの動きベクトル情報であるとして、それぞれの予測動きベクトル情報(Predictor)は、以下の式(17)乃至(19)により定義される。なお、当該ブロックに対するCo-Locatedブロックとは、当該ピクチャが参照する参照ピクチャにおいて、xy座標が、当該ブロックと同じであるブロックのことである。
 Temporal Predictor:
Figure JPOXMLDOC01-appb-M000014

 ・・・(17)
Figure JPOXMLDOC01-appb-M000015

 ・・・(18)

Spatio-Temporal Predictor:
Figure JPOXMLDOC01-appb-M000016

 ・・・(19)
 画像符号化装置100においては、それぞれのブロックに関して、それぞれの予測動きベクトル情報を用いた場合のコスト関数値が算出され、最適な予測動きベクトル情報の選択が行われる。画像圧縮情報においては、それぞれのブロックに対し、どの予測動きベクトル情報が用いられたかに関する情報(インデックス)を示すフラグが伝送される。
[コーディングユニット]
 次に、HEVC方式で規定されているコーディングユニットについて説明する。マクロブロックサイズを16画素×16画素とするのは、次世代符号化方式の対象となるような、UHD(Ultra High Definition;4000画素×2000画素)といった大きな画枠に対しては、最適ではない。
 そこで、AVC方式においては、図3で上述したようにマクロブロックとサブマクロブロックによる階層構造が規定されているが、例えば、HEVC方式においては、図8に示されるように、コーディングユニット(CU(Coding Unit))が規定されている。
 CUは、Coding Tree Block(CTB)とも呼ばれ、AVC方式におけるマクロブロックと同様の役割を果たす、ピクチャ単位の画像の部分領域である。後者は、16×16画素の大きさに固定されているのに対し、前者の大きさは固定されておらず、それぞれのシーケンスにおいて、画像圧縮情報中において指定されることになる。
 例えば、出力となる符号化データに含まれるシーケンスパラメータセット(SPS(Sequence Parameter Set))において、CUの最大サイズ(LCU(Largest Coding Unit))と最小サイズ((SCU(Smallest Coding Unit))が規定される。
 それぞれのLCU内においては、SCUのサイズを下回らない範囲で、split-flag=1とすることにより、より小さなサイズのCUに分割することができる。図8の例では、LCUの大きさが128であり、最大階層深度が5となる。2N×2Nの大きさのCUは、split_flagの値が「1」である時、1つ下の階層となる、N×Nの大きさのCUに分割される。
 更に、CUは、イントラ若しくはインター予測の処理単位となる領域(ピクチャ単位の画像の部分領域)であるプレディクションユニット(Prediction Unit(PU))に分割される。また、PUは、直交変換の処理単位となる領域(ピクチャ単位の画像の部分領域)である、トランスフォームユニット(Transform Unit(TU))に分割される。現在、HEVC方式においては、4×4及び8×8に加え、16×16及び32×32直交変換を用いることが可能である。
 インターPUにおいては、1つのCUの大きさが2N×2Nである場合、2N×2N、2N×N、N×2N、およびN×Nのいずれかの大きさに分割することが可能である。なお、上述したシーケンスパラメータセットにおいては、inter _4×4_enable_flagが定義されており、この値が0に設定されることで、4×4ブロックサイズのインターCUの使用を禁止することが可能である。
 以上のHEVC方式のように、CUを定義し、そのCUを単位として各種処理を行うような符号化方式の場合、AVC方式におけるマクロブロックはLCUに相当し、ブロック(サブブロック)はCUに相当すると考えることができる。また、AVC方式における動き補償ブロックは、PUに相当すると考えることができる。ただし、CUは、階層構造を有するので、その最上位階層のLCUのサイズは、例えば128×128画素のように、AVC方式のマクロブロックより大きく設定されることが一般的である。
 よって、以下、LCUは、AVC方式におけるマクロブロックをも含むものとし、CUは、AVC方式におけるブロック(サブブロック)をも含むものとする。
[動きパーティションのマージ]
 次に、HEVC方式におけるマージモードについて説明する。図7を参照して上述した動きベクトルの符号化方式の1つとして、さらに、図9に示されるような、Motion Partition Mergingと呼ばれる手法(マージモード)が提案されている。この手法においては、MergeFlagと、MergeLeftFlagという、2つのflagが、マージモードに関する情報であるマージ情報として伝送される。
 MergeFlag=1は、当該領域Xの動き情報が、当該領域の上に隣接する周辺領域T、若しくは、当該領域の左に隣接する周辺領域Lの動き情報と同一であることを示す。この時、マージ情報には、MergeLeftFlagが含められ、伝送される。MergeFlag=0は、当該領域Xの動き情報が、周辺領域Tおよび周辺領域Lのいずれの動き情報とも異なることを示す。この場合、当該領域Xの動き情報が伝送される。
 当該領域Xの動き情報が、周辺領域Lの動き情報と同一である場合、MergeFlag=1、かつ、MergeLeftFlag=1となる。当該領域Xの動き情報が、周辺領域Tの動き情報と同一である場合、MergeFlag=1、かつ、MergeLeftFlag=0となる。
 すなわち、マージモードにおいても、周辺のブロックから、空間予測動きベクトルと、時間予測動きベクトルが求められ、それらの中から最適な予測動きベクトルが決定される。そして、マージモードにおいては、決定された予測動きベクトルと当該ブロックの動き情報とが同一である場合にフラグ情報のみが伝送される。
[空間予測動きベクトル(spatial predictor)]
 次に、図7を参照して上述したAMVPまたは図9を参照して上述したマージモードにおいて、予測動きベクトル(predictor)の候補として、空間予測動きベクトル(spacial predictor)と時間予測動きベクトル(temporal predictor)とが生成される。そのうちの空間予測動きベクトルの生成処理について、図10を参照して説明する。
 図10の例においては、処理の対象領域であるCurrent PU(当該PU)と、当該PUに対して、所定の位置関係で隣接するPUであるA乃至Eが示されている。
 Aは、当該PUの左に隣接するPUのうち、1番下に位置するPUである。Bは、当該PUの上に隣接するPUのうち、1番左に位置するPUである。Cは、当該PUの右上に隣接するPUであり、Bの左に隣接するPUである。Dは、当該PUの左下に隣接するPUであり、Aの下に隣接するPUである。Eは、当該PUの左上に隣接するPUである。
 HEVCにおいては、当該PUの空間予測動きベクトルの候補として、A乃至Eの隣接PUについて、C、D、A、B、Eの順に、以下のスキャン処理を行って、当該PUに対する空間予測動きベクトルの決定が行われる。
 スキャンの手順について説明する。まず、第1に、当該PUの動きベクトル情報と、Listも、参照フレーム情報も同じであるものが存在するか否かの探索のためのスキャンが行われる。第2に、当該PUの動きベクトル情報と、Listは異なるが、参照フレーム情報が同じであるものが存在するか否かの探索のためのスキャンが行われる。
 第3に、当該PUの動きベクトル情報と、Listは同じであるが、参照フレーム情報が異なるものが存在するか否かの探索のためのスキャンが行われる。第4に、当該PUの動きベクトル情報と、Listも、参照フレーム情報も異なるものが存在するか否かの探索のためのスキャンが行われる。
 以上の第1乃至第4のスキャンは、当該PUの動きベクトル情報と同等のものが2つ検出された時点で終了となる。すなわち、第1のスキャンで2つ検出されれば、第2以降のスキャンは行われない。このようにして検出された2つのうち最適なものが、当該PUに対する空間予測動きベクトルとして決定される。
 ところで、単一の符号化領域であるCUが、例えば、図11に示されるように、2つの予測領域であるPUで構成される場合、すなわち、CUが2N×Nに分割されている場合がある。以下、図11に示されるようなPUを、2N×N PUと称する。
 この場合においても、上述したように空間予測動きベクトルの決定が行われる。したがって、CU内において上に位置するPUに関する動きベクトル情報が確定しないと、CU内において下に位置するPUに関する動きベクトルの符号化/復号処理(すなわち、予測動きベクトルの生成)を行うことができなかった。このため、PUとPUに関する動きベクトル情報を、並列に処理できなかった。なお、CUがN×2Nに分割されている場合(すなわち、N×2N PUの場合)も同様なことがいえた。
[本技術の空間予測動きベクトルの生成方法]
 そこで、動きベクトル符号化部121においては、2N×2N PUに関しては、図10を参照して上述した空間予測動きベクトルの生成方法が適用される。
 これに対して、2N×N PUまたはN×2N PUに関しては、図12および図13に示されるように、CU内において上または左に位置する第1のPUと、CU内において下または右に位置する第2のPUで処理が異なる。
 図12のAは、PUが2N×Nの場合に、CU内において上に位置する第1のPUであるPUの空間予測ベクトルの生成で参照される隣接領域を示す図である。PUにおいては、図10を参照して上述した空間予測動きベクトルの生成方法が適用される。すなわち、当該PUに対して、以下の位置関係で隣接するPUであるA乃至Eの動きベクトル情報が候補とされて、当該PUの予測動きベクトルが決定される。
 Aは、当該PUの左に隣接するPUのうち、1番下に位置するPUである。Bは、当該PUの上に隣接するPUのうち、1番左に位置するPUである。Cは、当該PUの右上に隣接するPUであり、Bの左に隣接するPUである。Dは、当該PUの左下に隣接するPUであり、Aの下に隣接するPUである。Eは、当該PUの左上に隣接するPUである。
 図12のBは、PUが2N×Nの場合に、CU内において下に位置する第2のPUであるPUの空間予測ベクトルの生成で参照される隣接領域を示す図である。当該PUの場合、当該PUに対して以下の位置関係で隣接するPUであるA、D、およびEと、CUにおいて当該PUの上に位置するPUに対して以下の位置関係で隣接するBおよびCの動きベクトル情報が用いられる。
 Aは、当該PUの左に隣接するPUのうち、1番下に位置するPUである。Bは、当該PUの上に位置するPUの上に隣接するPUのうち、1番左に位置するPUである。Cは、当該PUの上に位置する当該PUの右上に隣接するPUであり、Bの左に隣接するPUである。Dは、当該PUの左下に隣接するPUであり、Aの下に隣接するPUである。Eは、当該PUの左上に隣接するPUである。
 すなわち、当該PUについては、Bに相当するPUは、PUということになるので、当該PUの処理を行うとき、PUの処理が終了するのを待たなければならず、並列処理を行う妨げとなる。そこで、当該PUの隣接領域として、Bの代わりに、Bが設定される。なお、さらに、当該PUの隣接領域として、Bに隣接するCの代わりに、Bに隣接するCを設定するようにしてもよい。
 図13のAは、PUがN×2Nの場合に、CU内において左に位置する第1のPUであるPUの空間予測ベクトルの生成で参照される隣接領域を示す図である。PUにおいては、図10を参照して上述した空間予測動きベクトルの生成方法が適用される。すなわち、当該PUに対して、以下の位置関係で隣接するPUであるA乃至Eの動きベクトル情報が候補とされて、当該PUの予測動きベクトルが決定される。
 Aは、当該PUの左に隣接するPUのうち、1番下に位置するPUである。Bは、当該PUの上に隣接するPUのうち、1番左に位置するPUである。Cは、当該PUの右上に隣接するPUであり、Bの左に隣接するPUである。Dは、当該PUの左下に隣接するPUであり、Aの下に隣接するPUである。Eは、当該PUの左上に隣接するPUである。
 図13のBは、PUが2N×Nの場合に、CU内において右に位置する第2のPUであるPUの空間予測ベクトルの生成で参照される隣接領域を示す図である。当該PUの場合、当該PUに対して以下の位置関係で隣接するPUであるB、C、およびEと、CUにおいて当該PUの上に位置するPUに対して以下の位置関係で隣接するAおよびDの動きベクトル情報が用いられる。
 Aは、当該PUの上に位置するPUの左に隣接するPUのうち、1番下に位置するPUである。Bは、当該PUの上に隣接するPUのうち、1番左に位置するPUである。Cは、当該PUの右上に隣接するPUであり、Bの左に隣接するPUである。Dは、当該PUの上に位置するPUの左下に隣接するPUであり、Aの下に隣接するPUである。Eは、当該PUの左上に隣接するPUである。
 すなわち、当該PUについては、Aに相当するPUは、PUということになるので、当該PUの処理を行うとき、PUの処理が終了するのを待たなければならず、並列処理を行う妨げとなる。そこで、当該PUの隣接領域として、Aの代わりに、Aが設定される。なお、さらに、当該PUの隣接領域として、Aに隣接するDの代わりに、Aに隣接するDを設定するようにしてもよい。
 以上のように、PUのサイズ(2N×N,N×2N,2N×2N)に応じて、隣接領域を設定することにより、CU内における複数のPUでの動きベクトルを用いた並列処理を行うことができるようになり、処理効率を向上することができる。
 なお、HEVCにおいては、CUサイズが4×4の場合のみ、N×N PUによる予測が可能である。ただし、これは、シーケンスパラメータセットにおけるinter_4×4_enable_flagの値が1であるときに限る。
 この場合の空間予測動きベクトルの生成は、CU内における位置に応じて、図14に示されるように行われる。
 図14のAは、PUがN×Nの場合に、CU内において左上に位置する第1のPUであるPUの空間予測ベクトルの生成で参照される隣接領域を示す図である。PUにおいては、図10を参照して上述した空間予測動きベクトルの生成方法が適用される。すなわち、当該PUに対して、以下の位置関係で隣接するPUであるA乃至Eの動きベクトル情報が候補とされて、当該PUの予測動きベクトルが決定される。
 Aは、当該PUの左に隣接するPUのうち、1番下に位置するPUである。Bは、当該PUの上に隣接するPUのうち、1番左に位置するPUである。Cは、当該PUの右上に隣接するPUであり、Bの左に隣接するPUである。Dは、当該PUの左下に隣接するPUであり、Aの下に隣接するPUである。Eは、当該PUの左上に隣接するPUである。
 図14のBは、PUがN×Nの場合に、CU内において右上に位置する第2のPUであるPUの空間予測ベクトルの生成で参照される隣接領域を示す図である。当該PUの場合、当該PUに対して以下の位置関係で隣接するPUであるB、C、およびEと、CUにおいて当該PUの上に位置するPUに対して以下の位置関係で隣接するAおよびDの動きベクトル情報が用いられる。
 Aは、当該PUの上に位置するPUの左に隣接するPUのうち、1番下に位置するPUである。Bは、当該PUの上に隣接するPUのうち、1番左に位置するPUである。Cは、当該PUの右上に隣接するPUであり、Bの左に隣接するPUである。Dは、当該PUの上に位置するPUの左下に隣接するPUであり、Aの下に隣接するPUである。Eは、当該PUの左上に隣接するPUである。
 すなわち、図14のBの例は、図13のBの例と同じであり、当該PUについては、Aに相当するPUは、PUということになるので、当該PUの処理を行うとき、PUの処理が終了するのを待たなければならず、並列処理を行う妨げとなる。そこで、当該PUの隣接領域として、Aの代わりに、Aが設定される。なお、さらに、当該PUの隣接領域として、Aに隣接するDの代わりに、Aに隣接するDを設定するようにしてもよい。
 図14のCは、PUがN×Nの場合に、CU内において左下に位置する第2のPUであるPUの空間予測ベクトルの生成で参照される隣接領域を示す図である。当該PUの場合、当該PUに対して以下の位置関係で隣接するPUであるA、D、およびEと、CUにおいて当該PUの上に位置するPUに対して以下の位置関係で隣接するBおよびCの動きベクトル情報が用いられる。
 Aは、当該PUの左に隣接するPUのうち、1番下に位置するPUである。Bは、当該PUの上に位置するPUの上に隣接するPUのうち、1番左に位置するPUである。Cは、当該PUの上に位置する当該PUの右上に隣接するPUであり、Bの左に隣接するPUである。Dは、当該PUの左下に隣接するPUであり、Aの下に隣接するPUである。Eは、当該PUの左上に隣接するPUである。
 すなわち、図14のCの例は、図12のBの例と同じであり、当該PUについては、Bに相当するPUは、PUということになるので、当該PUの処理を行うとき、PUの処理が終了するのを待たなければならず、並列処理を行う妨げとなる。そこで、当該PUの隣接領域として、Bの代わりに、Bが設定される。なお、さらに、当該PUの隣接領域として、Bに隣接するCの代わりに、Bに隣接するCを設定するようにしてもよい。
 図14のDは、PUがN×Nの場合に、CU内において右下に位置する第2のPUであるPUの空間予測ベクトルの生成で参照される隣接領域を示す図である。当該PUの場合、CUにおいて当該PUの左に位置するPUに対して以下の位置関係で隣接するPUであるA、およびDが用いられる。また、CUにおいて当該PUの上に位置するPUに対して以下の位置関係で隣接するBおよびCの動きベクトル情報が用いられる。さらに、CUにおいて当該PUの左上に位置するPUに対して以下の位置関係で隣接するEの動きベクトル情報が用いられる。
 Aは、当該PUの左に位置するPUの左に隣接するPUのうち、1番下に位置するPUである。Bは、当該PUの上に位置するPUの上に隣接するPUのうち、1番左に位置するPUである。Cは、当該PUの上に位置するPUの右上に隣接するPUであり、Bの左に隣接するPUである。Dは、当該PUの左に位置するPUの左下に隣接するPUであり、Aの下に隣接するPUである。Eは、当該PUの左上に位置するPUの左上に隣接するPUである。
 すなわち、図14のDの例は、図12のBの例と図13のBの例を含む例であり、当該PUについては、Bに相当するPUは、PUということになり、Aに相当するPUは、PUということになり、Eに相当するPUは、PUということになる。このため、当該PUの処理を行うとき、PU、PU、およびPUの処理が終了するのを待たなければならず、並列処理を行う妨げとなる。
 そこで、当該PUの隣接領域として、Bの代わりにBが設定され、Aの代わりにAが設定され、Eの代わりにEが設定される。なお、さらに、当該PUの隣接領域として、Bに隣接するCの代わりに、Bに隣接するCを設定し、Aに隣接するDの代わりに、Aに隣接するDを設定するようにしてもよい。
 以上のように、PUがN×Nの場合にも、本技術は適用することができる。
 さらに、HEVCにおいては、図15に示されるように、CUを構成する複数のPUのサイズがそれぞれ異なるAMP(Asymmetric Motion Partition)が定められている。本技術は、このAMPの場合にも適用することが可能である。
[動きベクトル符号化部の構成例]
 図16は、動きベクトル符号化部121の主な構成例を示すブロック図である。
 図16の例の動きベクトル符号化部121は、空間隣接動きベクトルバッファ151、時間隣接動きベクトルバッファ152、候補予測動きベクトル生成部153、コスト関数値算出部154、および最適予測動きベクトル決定部155を含むように構成される。
 動き予測・補償部115から、決定された最適予測モードの動きベクトルの情報が、空間隣接動きベクトルバッファ151、および時間隣接動きベクトルバッファ152に供給される。また、動き予測・補償部115により探索された各予測モードの動きベクトルの情報は、コスト関数値算出部154に供給される。
 ここで、並列処理制御部122は、動き予測・補償部115からのPUサイズの情報を参照し、符号化領域における予測領域の位置に応じて、対象PUの空間隣接PUを設定する制御信号(アドレスなど)を、空間隣接動きベクトルバッファ151に供給する。これにより、動きベクトル符号化部121を構成する各部は、符号化領域(CU)が複数の予測領域(PU)で構成される場合、対象予測領域の予測動きベクトル生成処理を並列で行う。
 空間隣接動きベクトルバッファ151は、ラインバッファで構成される。空間隣接動きベクトルバッファ151は、動き予測・補償部115からの動きベクトル情報を、空間的に隣接する空間隣接領域の動きベクトルの情報として蓄積する。空間隣接動きベクトルバッファ151は、当該PUに空間的に隣接する空間隣接PUに対して求められた動きベクトルを示す情報を読み出す。このとき、空間隣接動きベクトルバッファ151は、並列処理制御部122からの制御信号(アドレス)が示すPUの動きベクトルを示す情報を読み出す。空間隣接動きベクトルバッファ151は、読み出した情報(空間隣接動きベクトル情報)を、候補予測動きベクトル生成部153に供給する。
 時間隣接動きベクトルバッファ152は、メモリで構成される。時間隣接動きベクトルバッファ152は、動き予測・補償部115からの動きベクトル情報を、時間的に隣接する時間隣接領域の動きベクトルの情報として蓄積する。なお、時間的に隣接する領域とは、時間軸上異なるピクチャにおいて、当該領域(当該PU)と同じ空間上のアドレスにある領域(すなわち、Co-located PU)のことである。
 時間隣接動きベクトルバッファ152は、当該PUに時間的に隣接する時間隣接PUに対して求められた動きベクトルを示す情報を読み出し、読み出した情報(時間隣接動きベクトル情報)を、候補予測動きベクトル生成部153に供給する。
 候補予測動きベクトル生成部153は、図7または図9を参照して上述したAMVPまたはマージモードによる方法に基づき、空間隣接動きベクトルバッファ151からの空間隣接動きベクトル情報を参照して、当該PUの候補となる空間予測動きベクトルを生成する。候補予測動きベクトル生成部153は、生成した空間予測動きベクトルを示す情報を、候補予測動きベクトル情報として、コスト関数値算出部154に供給する。
 候補予測動きベクトル生成部153は、AMVPまたはマージモードによる方法に基づいて、時間隣接動きベクトルバッファ152からの時間隣接動きベクトル情報を参照して、当該PUの候補となる時間予測動きベクトルを生成する。候補予測動きベクトル生成部153は、生成した時間予測動きベクトルの情報を、候補予測動きベクトル情報として、コスト関数値算出部154に供給する。
 コスト関数値算出部154は、各候補予測動きベクトルに関するコスト関数値を算出し、算出したコスト関数値を、候補予測動きベクトル情報とともに最適予測動きベクトル決定部155に供給する。
 最適予測動きベクトル決定部155は、コスト関数値算出部154からのコスト関数値を最小とする候補予測動きベクトルを、当該PUに対する最適予測動きベクトルであるとして、その情報を、動き予測・補償部115に供給する。
 なお、動き予測・補償部115は、最適予測動きベクトル決定部155からの最適予測動きベクトルの情報を用い、動きベクトルとの差分である差分動きベクトルを生成して、各予測モードについてコスト関数値を算出する。動き予測・補償部115は、そのうち、コスト関数値を最小とする予測モードを、インター最適予測モードに決定する。
 動き予測・補償部115は、インター最適予測モードの予測画像を、予測画像選択部116に供給する。動き予測・補償部115は、インター最適予測モードの動きベクトルを、空間隣接動きベクトルバッファ151、および時間隣接動きベクトルバッファ152に供給する。また、動き予測・補償部115は、生成した差分動きベクトル情報を、可逆符号化部106に供給し、符号化させる。
 [符号化処理の流れ]
 次に、以上のような画像符号化装置100により実行される各処理の流れについて説明する。最初に、図17のフローチャートを参照して、符号化処理の流れの例を説明する。
 ステップS101において、A/D変換部101は入力された画像をA/D変換する。ステップS102において、画面並べ替えバッファ102は、A/D変換された画像を記憶し、各ピクチャの表示する順番から符号化する順番への並べ替えを行う。ステップS103において、イントラ予測部114は、イントラ予測モードのイントラ予測処理を行う。
 ステップS104において、動き予測・補償部115、動きベクトル符号化部121、および並列処理制御部122は、インター予測モードでの動き予測や動き補償を行うインター動き予測処理を行う。このインター動き予測処理についての詳細は、図18を参照して後述する。
 ステップS104の処理により、当該PUの動きベクトルが探索され、当該PUの各予測動きベクトルが生成される。予測動きベクトルのうち、空間予測動きベクトルについては、CUが複数のPUで構成される場合、CUにおけるPUの位置に応じて設定された空間隣接PUの動きベクトル情報が候補とされて、空間予測動きベクトルが生成される。そして、生成された時間予測動きベクトルおよび空間予測動きベクトルから、当該PUに最適な予測動きベクトルが決定され、最適インター予測モードが決定され、最適インター予測モードの予測画像が生成される。
 決定された最適インター予測モードの予測画像とコスト関数値は、動き予測・補償部115から予測画像選択部116に供給される。また、決定された最適インター予測モードの情報や最適とされた予測動きベクトルに関する情報、予測動きベクトルと動きベクトルの差分を示す情報も、可逆符号化部106に供給され、後述するステップS114において、可逆符号化される。
 ステップS105において、予測画像選択部116は、イントラ予測部114および動き予測・補償部115から出力された各コスト関数値に基づいて、最適なモードを決定する。つまり、予測画像選択部116は、イントラ予測部114により生成された予測画像と、動き予測・補償部115により生成された予測画像のいずれか一方を選択する。
 ステップS106において、演算部103は、ステップS102の処理により並び替えられた画像と、ステップS105の処理により選択された予測画像との差分を演算する。差分データは元の画像データに較べてデータ量が低減される。したがって、画像をそのまま符号化する場合に較べて、データ量を圧縮することができる。
 ステップS107において、直交変換部104は、ステップS106の処理により生成された差分情報を直交変換する。具体的には、離散コサイン変換、カルーネン・レーベ変換等の直交変換が行われ、変換係数が出力される。
 ステップS108において、量子化部105は、レート制御部117からの量子化パラメータを用いて、ステップS107の処理により得られた直交変換係数を量子化する。
 ステップS108の処理により量子化された差分情報は、次のようにして局部的に復号される。すなわち、ステップS109において、逆量子化部108は、ステップS108の処理により生成された量子化された直交変換係数(量子化係数とも称する)を量子化部105の特性に対応する特性で逆量子化する。ステップS110において、逆直交変換部109は、ステップS109の処理により得られた直交変換係数を、直交変換部104の特性に対応する特性で逆直交変換する。
 ステップS111において、演算部110は、予測画像を局部的に復号された差分情報に加算し、局部的に復号された画像(演算部103への入力に対応する画像)を生成する。ステップS112においてデブロックフィルタ111は、ステップS111の処理により得られた局部的な復号画像に対して、デブロックフィルタ処理を適宜行う。
 ステップS113において、フレームメモリ112は、ステップS112の処理によりデブロックフィルタ処理が施された復号画像を記憶する。なお、フレームメモリ112にはデブロックフィルタ111によりフィルタ処理されていない画像も演算部110から供給され、記憶される。
 ステップS114において、可逆符号化部106は、ステップS108の処理により量子化された変換係数を符号化する。すなわち、差分画像に対して、可変長符号化や算術符号化等の可逆符号化が行われる。
 また、このとき、可逆符号化部106は、ステップS105の処理により選択された予測画像の予測モードに関する情報を符号化し、差分画像を符号化して得られる符号化データに付加する。つまり、可逆符号化部106は、イントラ予測部114から供給される最適イントラ予測モード情報、または、動き予測・補償部115から供給される最適インター予測モードに応じた情報なども符号化し、符号化データに付加する。
 なお、ステップS106の処理によりインター予測モードの予測画像が選択された場合には、ステップS105において算出された差分動きベクトルの情報や予測動きベクトルのインデックスを示すフラグも符号化される。
 ステップS115において蓄積バッファ107は、ステップS114の処理により得られた符号化データを蓄積する。蓄積バッファ107に蓄積された符号化データは、適宜読み出され、伝送路や記録媒体を介して復号側に伝送される。
 ステップS116においてレート制御部117は、ステップS115の処理により蓄積バッファ107に蓄積された符号化データの符号量(発生符号量)に基づいて、オーバーフローあるいはアンダーフローが発生しないように、量子化部105の量子化動作のレートを制御する。
 ステップS116の処理が終了すると、符号化処理が終了される。
[インター動き予測処理の流れ]
 次に、図18のフローチャートを参照して、図17のステップS104において実行されるインター動き予測処理の流れの例を説明する。
 ステップS151において、動き予測・補償部115は、各インター予測モードについて動き探索を行う。動き予測・補償部115により探索された動きベクトル情報は、コスト関数値算出部154に供給される。
 ステップS152において、候補予測動きベクトル生成部153は、図7または図9を参照して上述したAMVPまたはマージモードによる方法に基づいて、当該PUの候補となる予測動きベクトルを生成する。予測動きベクトル生成処理の詳細な説明は、図19を参照して後述される。
 ステップS152の処理により、空間隣接動きベクトルバッファ151からの空間隣接動きベクトル情報を参照して、当該PUの候補となる空間予測動きベクトルが生成される。このとき、CUが複数のPUで構成される場合、CUにおけるPUの位置に応じて設定された空間隣接PUの動きベクトル情報が候補とされて、空間予測動きベクトルが生成される。また、時間隣接動きベクトルバッファ152からの時間隣接動きベクトル情報を参照して、当該PUの候補となる時間予測動きベクトルが生成される。
 生成された空間予測動きベクトルおよび調整された時間予測動きベクトルのうち、最適なものが、最適予測動きベクトルとして決定されて、動き予測・補償部115に供給される。
 動き予測・補償部115は、ステップS153において、各インター予測モードに関するコスト関数値を算出する。
 すなわち、動き予測・補償部115は、最適予測動きベクトル決定部155からの最適予測動きベクトルと、動きベクトルとの差分である差分動きベクトルを生成する。そして、動き予測・補償部115は、生成した差分動きベクトル情報や、画面並べ替えバッファ102からの入力画像などを用いて、上述した式(15)または式(16)により、各インター予測モードに関するコスト関数値を算出する。なお、マージモードの場合には差分動きベクトルは生成されない。
 ステップS154において、動き予測・補償部115は、各予測モードのうち、コスト関数値を最小とする予測モードを、最適インター予測モードに決定する。動き予測・補償部115は、ステップS155において、最適インター予測モードの予測画像を生成し、予測画像選択部116に供給する。
 ステップS156において、動き予測・補償部115は、最適インター予測モードに関する情報を、可逆符号化部106に供給し、最適インター予測モードに関する情報を符号化させる。
 なお、最適インター予測モードに関する情報は、例えば、最適インター予測モードの情報、最適インター予測モードの差分動きベクトル情報、最適インター予測モードの参照ピクチャ情報、および予測動きベクトルに関する情報などである。予測動きベクトルに関する情報には、例えば、予測動きベクトルのインデックスを示すフラグなどが含まれる。
 ステップS156の処理に対応して、供給されたこれらの情報は、図17のステップS114において、符号化される。
[予測動きベクトル生成処理の流れ]
 次に、図19のフローチャートを参照して、図18のステップS152の予測動きベクトル生成処理について説明する。なお、図19の例においては、空間予測動きベクトルの生成処理についてのみ記載されるが、実際には、時間予測動きベクトル情報も生成され、コスト関数値が算出されて、その中から、最適予測動きベクトルが決定される。また、図19の例においては、N×N PUについての記載は省略されている。
 動き予測・補償部115から、処理対象のPUのパーティションサイズ(2N×2N PU)を示す情報が並列処理制御部122に供給される。
 ステップS171において、並列処理制御部122は、2N×2N PUに対して、動きベクトル情報が参照される隣接領域を設定する。並列処理制御部122は、例えば、図10に示されるA,B,C,D,Eを隣接領域として設定し、そのアドレスを制御信号として、空間隣接動きベクトルバッファ151に供給する。
 空間隣接動きベクトルバッファ151は、並列処理制御部122からの制御信号(アドレス)が示すPUの動きベクトルを示す情報を読み出し、読み出した動きベクトルを示す情報を、候補予測動きベクトル生成部153に供給する。
 ステップS172において、候補予測動きベクトル生成部153は、2N×2N PUに対する空間予測動きベクトルを生成し、決定する。
 すなわち、候補予測動きベクトル生成部153は、図10のA,B,C,D,Eの空間隣接動きベクトル情報を参照して、スキャン処理を行い、2N×2N PUの候補となる空間予測動きベクトルを生成して、決定する。候補予測動きベクトル生成部153は、決定した空間予測動きベクトルの情報を、候補予測動きベクトル情報として、コスト関数値算出部154に供給する。
 ステップS173において、コスト関数値算出部154は、2N×2N PUの候補予測動きベクトルに関するコスト関数値を算出し、算出したコスト関数値を、候補予測動きベクトルの情報とともに最適予測動きベクトル決定部155に供給する。
 動き予測・補償部115から、処理対象のPUのパーティションサイズ(2N×N/N×2N PU)を示す情報が並列処理制御部122に供給される。
 ステップS174において、並列処理制御部122は、並列処理で、2N×N/N×2N PUに対して、動きベクトル情報が参照される隣接領域を設定する。
 2N×N PUの場合、第1のPUであるPUに対して、並列処理制御部122は、例えば、図12のAに示されるA,B,C,D,Eを隣接領域として設定し、そのアドレスを制御信号として、空間隣接動きベクトルバッファ151に供給する。これと並列して、第2のPUであるPU1に対して、並列処理制御部122は、例えば、図12のBに示されるA1,B,C,D1,E1を隣接領域として設定し、そのアドレスを制御信号として、空間隣接動きベクトルバッファ151に供給する。
 N×2N PUの場合、第1のPUであるPUに対して、並列処理制御部122は、例えば、図13のAに示されるA,B,C,D,Eを隣接領域として設定し、そのアドレスを制御信号として、空間隣接動きベクトルバッファ151に供給する。これと並列して、第2のPUであるPU1に対して、並列処理制御部122は、例えば、図13のBに示されるA,B,C,D,E1を隣接領域として設定し、そのアドレスを制御信号として、空間隣接動きベクトルバッファ151に供給する。
 空間隣接動きベクトルバッファ151は、並列処理制御部122からの制御信号(アドレス)が示すPUの動きベクトルを示す情報を読み出し、読み出した動きベクトルを示す情報を、候補予測動きベクトル生成部153に供給する。
 ステップS175において、候補予測動きベクトル生成部153は、並列処理で、2N×N/N×2N PUに対する空間予測動きベクトルを生成し、決定する。
 すなわち、2N×N PUの場合、候補予測動きベクトル生成部153は、図12のAのA,B,C,D,Eの空間隣接動きベクトル情報を参照して、スキャン処理を行い、2N×N PUの候補となる空間予測動きベクトルを生成して、決定する。これと並列して、候補予測動きベクトル生成部153は、図12のBのA,B,C,D,Eの空間隣接動きベクトル情報を参照して、スキャン処理を行い、2N×N PUの候補となる空間予測動きベクトルを生成して、決定する。
 N×2N PUの場合、候補予測動きベクトル生成部153は、図13のAのA,B,C,D,Eの空間隣接動きベクトル情報を参照して、スキャン処理を行い、N×2N PUの候補となる空間予測動きベクトルを生成して、決定する。これと並列して、候補予測動きベクトル生成部153は、図13のBのA,B,C,D,Eの空間隣接動きベクトル情報を参照して、スキャン処理を行い、N×2N PUの候補となる空間予測動きベクトルを生成して、決定する。
 候補予測動きベクトル生成部153は、決定した空間予測動きベクトルの情報を、候補予測動きベクトル情報として、コスト関数値算出部154に供給する。
 ステップS176において、コスト関数値算出部154は、2N×N/N×2N PUの候補予測動きベクトルに関するコスト関数値を算出し、算出したコスト関数値を、候補予測動きベクトルの情報とともに最適予測動きベクトル決定部155に供給する。
 ステップS177において、最適予測動きベクトル決定部155は、候補予測動きベクトルの中から、最適予測動きベクトルを決定する。すなわち、最適予測動きベクトル決定部155は、コスト関数値算出部154からのコスト関数値を最小とする候補予測動きベクトルを、当該PUに対する最適予測動きベクトルに決定し、その情報を、動き予測・補償部115に供給する。
 以上のように、画像符号化装置100においては、符号化領域(CU)が複数の予測領域(PU)で構成される場合、符号化領域における予測領域の位置に応じて、動きベクトルを参照する隣接領域が設定される。これにより、PUの予測動きベクトル生成処理を並列で行うことができ、処理効率を向上させることができる。
 <2.第2の実施の形態>
 [画像復号装置]
 次に、以上のように符号化された符号化データ(符号化ストリーム)の復号について説明する。図20は、図1の画像符号化装置100に対応する画像復号装置の主な構成例を示すブロック図である。
 図20に示される画像復号装置200は、画像符号化装置100が生成した符号化データを、その符号化方法に対応する復号方法で復号する。なお、画像復号装置200は、画像符号化装置100と同様に、プレディクションユニット(PU)毎にインター予測を行うものとする。
 図20に示されるように画像復号装置200は、蓄積バッファ201、可逆復号部202、逆量子化部203、逆直交変換部204、演算部205、デブロックフィルタ206、画面並べ替えバッファ207、およびD/A変換部208を有する。また、画像復号装置200は、フレームメモリ209、選択部210、イントラ予測部211、動き予測・補償部212、および選択部213を有する。
 さらに、画像復号装置200は、動きベクトル復号部221、および並列処理制御部222を有する。
 蓄積バッファ201は、伝送されてきた符号化データを受け取る受け取り部でもある。蓄積バッファ201は、伝送されてきた符号化データを受け取って、蓄積し、所定のタイミングにおいてその符号化データを可逆復号部202に供給する。符号化データには、予測モード情報、動きベクトル差分情報、および予測動きベクトル情報などの復号に必要な情報が付加されている。可逆復号部202は、蓄積バッファ201より供給された、図1の可逆符号化部106により符号化された情報を、可逆符号化部106の符号化方式に対応する方式で復号する。可逆復号部202は、復号して得られた差分画像の量子化された係数データを、逆量子化部203に供給する。
 また、可逆復号部202は、最適な予測モードにイントラ予測モードが選択されたかインター予測モードが選択されたかを判定する。可逆復号部202は、その最適な予測モードに関する情報を、イントラ予測部211および動き予測・補償部212の内、選択されたと判定したモードの方に供給する。つまり、例えば、画像符号化装置100において最適な予測モードとしてインター予測モードが選択された場合、その最適な予測モードに関する情報が動き予測・補償部212に供給される。
 さらに、可逆復号部202は、動きベクトル差分情報、および予測動きベクトル情報などの動きベクトルの復号に必要な情報を、動きベクトル復号部221に供給する。なお、図20においては図示されていないが、可逆復号部202からのPUのパーティションサイズ情報は、並列処理制御部222に供給される。
 逆量子化部203は、可逆復号部202により復号されて得られた量子化された係数データを、図1の量子化部105の量子化方式に対応する方式で逆量子化し、得られた係数データを逆直交変換部204に供給する。
 逆直交変換部204は、図1の直交変換部104の直交変換方式に対応する方式で逆量子化部203から供給される係数データを逆直交変換する。逆直交変換部204は、この逆直交変換処理により、画像符号化装置100において直交変換される前の残差データに対応する復号残差データを得る。逆直交変換されて得られた復号残差データは、演算部205に供給される。また、演算部205には、選択部213を介して、イントラ予測部211若しくは動き予測・補償部212から予測画像が供給される。
 演算部205は、その復号残差データと予測画像とを加算し、画像符号化装置100の演算部103により予測画像が減算される前の画像データに対応する復号画像データを得る。演算部205は、その復号画像データをデブロックフィルタ206に供給する。
 デブロックフィルタ206は、供給された復号画像に対して、デブロックフィルタ処理を適宜施し、それを画面並べ替えバッファ207に供給する。デブロックフィルタ206は、ループフィルタ206は、復号画像に対してデブロックフィルタ処理を行うことにより復号画像のブロック歪を除去する。
 デブロックフィルタ206は、フィルタ処理結果(フィルタ処理後の復号画像)を画面並べ替えバッファ207およびフレームメモリ209に供給する。なお、演算部205から出力される復号画像は、デブロックフィルタ206を介さずに画面並べ替えバッファ207やフレームメモリ209に供給することができる。つまり、デブロックフィルタ206によるフィルタ処理は省略することができる。
 画面並べ替えバッファ207は、画像の並べ替えを行う。すなわち、図1の画面並べ替えバッファ102により符号化の順番のために並べ替えられたフレームの順番が、元の表示の順番に並べ替えられる。D/A変換部208は、画面並べ替えバッファ207から供給された画像をD/A変換し、図示せぬディスプレイに出力し、表示させる。
 フレームメモリ209は、供給される復号画像を記憶し、所定のタイミングにおいて、若しくは、イントラ予測部211や動き予測・補償部212等の外部の要求に基づいて、記憶している復号画像を参照画像として、選択部210に供給する。
 選択部210は、フレームメモリ209から供給される参照画像の供給先を選択する。選択部210は、イントラ符号化された画像を復号する場合、フレームメモリ209から供給される参照画像をイントラ予測部211に供給する。また、選択部210は、インター符号化された画像を復号する場合、フレームメモリ209から供給される参照画像を動き予測・補償部212に供給する。
 イントラ予測部211には、ヘッダ情報を復号して得られたイントラ予測モードを示す情報等が可逆復号部202から適宜供給される。イントラ予測部211は、図1のイントラ予測部114において用いられたイントラ予測モードで、フレームメモリ209から取得した参照画像を用いてイントラ予測を行い、予測画像を生成する。イントラ予測部211は、生成した予測画像を選択部213に供給する。
 動き予測・補償部212は、ヘッダ情報を復号して得られた情報(最適予測モード情報、参照画像情報等)を可逆復号部202から取得する。
 動き予測・補償部212は、可逆復号部202から取得された最適予測モード情報が示すインター予測モードで、フレームメモリ209から取得した参照画像を用いてインター予測を行い、予測画像を生成する。なお、このとき、動き予測・補償部212は、動きベクトル復号部221により再構築された動きベクトル情報を用いて、インター予測を行う。
 選択部213は、イントラ予測部211からの予測画像または動き予測・補償部212からの予測画像を、演算部205に供給する。そして、演算部205においては、動きベクトルが用いられて生成された予測画像と逆直交変換部204からの復号残差データ(差分画像情報)とが加算されて元の画像が復号される。すなわち、動き予測・補償部212、可逆復号部202、逆量子化部203、逆直交変換部204、演算部205は、動きベクトルを用いて、符号化データを復号し、元の画像を生成する復号部でもある。
 動きベクトル復号部221は、ヘッダ情報を復号して得られた情報のうち、予測動きベクトルのインデックスの情報と差分動きベクトルの情報を可逆復号部202から取得する。ここで、予測動きベクトルのインデックスとは、それぞれのPUに対して、時空間に隣接する隣接領域のうち、どの隣接領域の動きベクトルにより動きベクトルの予測処理(予測動きベクトルの生成)が行われているかを示す情報である。差分動きベクトルに関する情報は、差分動きベクトルの値を示す情報である。
 動きベクトル復号部221は、予測動きベクトルが時間予測動きベクトルである場合、予測動きベクトルのインデックスが示す隣接PUの動きベクトルを用いて、予測動きベクトルを再構築する。予測動きベクトルが空間予測動きベクトルである場合、動きベクトル復号部221は、並列処理制御部122からの制御信号が指定する隣接PUのうち、予測動きベクトルのインデックスが示す隣接PUの動きベクトルを用いて、予測動きベクトルを再構築する。
 動きベクトル復号部221は、再構築した予測動きベクトルと、可逆復号部202からの差分動きベクトルを加算することで、動きベクトルを再構築する。
 並列処理制御部222は、図1の並列処理制御部122と基本的に同様に構成され、対象PUの空間隣接PUを設定する。並列処理制御部222は、特に、符号化領域(CU)が複数の予測領域(PU)で構成される場合、対象予測領域の予測動きベクトル生成処理を並列で行うように、対象PUの空間隣接PUを設定する。なお、対象PUの空間隣接PUを設定することは、予測動きベクトルの生成に用いられる、対象PUの空間隣接PUの動きベクトルを設定することと同義である。
 具体的には、並列処理制御部222は、動き予測・補償部212からのPUサイズの情報を参照し、符号化領域における予測領域の位置に応じて、対象PUの空間隣接PUを設定する制御信号(アドレスなど)を、動きベクトル復号部221に供給する。
 なお、動きベクトル復号部221および並列処理制御部222における、本技術に関連する基本的な動作原理は、図1の動きベクトル符号化部121および並列処理制御部122と同様である。ただし、図1の画像符号化装置100においては、候補となるPUとして、2N×NおよびN×2Nがあり、その空間予測動きベクトルの生成を行う場合、本技術による方法が適用される。
 一方、図20の画像復号装置200においては、当該PUに対して、どのような予測動きベクトルが決定されたかに関する情報が、符号化側から伝送されている。その符号化の際に、CUが、2N×N/N×2N PUにより符号化されており、空間予測動きベクトルが適用されている場合、本技術による方法が適用される。
 [動きベクトル復号部の構成例]
 図21は、動きベクトル復号部221の主な構成例を示すブロック図である。
 図21の例において、動きベクトル復号部221は、予測動きベクトル情報バッファ251、差分動きベクトル情報バッファ252、予測動きベクトル再構築部253、および動きベクトル再構築部254を含むように構成される。動きベクトル復号部221は、さらに、空間隣接動きベクトルバッファ255、および時間隣接動きベクトルバッファ256も含むように構成される。
 予測動きベクトル情報バッファ251は、可逆復号部202により復号された対象領域(PU)の予測動きベクトルのインデックスなどを含む情報(以下、予測動きベクトルの情報と称する)を蓄積する。予測動きベクトル情報バッファ251は、当該PUの予測動きベクトル情報を読み出し、読み出した情報を、予測動きベクトル再構築部253に供給する。
 差分動きベクトル情報バッファ252は、可逆復号部202により復号された対象領域(PU)の差分動きベクトルの情報を蓄積する。差分動きベクトル情報バッファ252は、対象PUの差分動きベクトルの情報を読み出し、読み出した情報を、動きベクトル再構築部254に供給する。
 予測動きベクトル再構築部253は、予測動きベクトル情報バッファ251からの情報が示す当該PUの予測動きベクトルが、空間予測動きベクトルであるか、時間予測動きベクトルであるかを判定する。
 当該PUの予測動きベクトルが、時間予測動きベクトルである場合、予測動きベクトル再構築部253は、時間隣接動きベクトルバッファ256に、予測動きベクトル情報バッファ251からの情報が示す当該PUの動きベクトル情報を読み出させる。そして、予測動きベクトル再構築部253は、読み出された動きベクトル情報を用い、AMVPまたはマージモードによる方法に基づいて、当該PUの予測動きベクトルを生成して、再構築する。予測動きベクトル再構築部253は、再構築した予測動きベクトルの情報を、動きベクトル再構築部254に供給する。
 当該PUの予測動きベクトルが、空間予測動きベクトルである場合、予測動きベクトル再構築部253は、空間隣接動きベクトルバッファ255に、予測動きベクトル情報バッファ251からのインデックスが示す当該PUの動きベクトル情報を読み出させる。そして、予測動きベクトル再構築部253は、読み出された動きベクトル情報を用い、AMVPまたはマージモードによる方法に基づいて、当該PUの予測動きベクトルを生成して、再構築する。予測動きベクトル再構築部253は、再構築した予測動きベクトルの情報を、動きベクトル再構築部254に供給する。
 動きベクトル再構築部254は、差分動きベクトル情報バッファ252からの情報が示す当該PUの差分動きベクトルと、予測動きベクトル再構築部253からの当該PUの予測動きベクトルとを加算することで、動きベクトルを再構築する。動きベクトル再構築部254は、再構築された動きベクトルの情報を、動き予測・補償部212、空間隣接動きベクトルバッファ255、および時間隣接動きベクトルバッファ256に供給する。
 なお、動き予測・補償部212は、この動きベクトル再構築部254により再構築された動きベクトルを用いて、可逆復号部202から取得された最適予測モード情報が示すインター予測モードで、参照画像を用いてインター予測を行い、予測画像を生成する。
 ここで、並列処理制御部222は、可逆復号部202からのPUのパーティションサイズの情報を参照し、符号化領域における予測領域の位置に応じて、対象PUの空間隣接PUを設定する制御信号(アドレスなど)を、空間隣接動きベクトルバッファ255に供給する。これにより、動きベクトル復号部221を構成する各部は、符号化領域(CU)が複数の予測領域(PU)で構成される場合、対象予測領域の予測動きベクトル生成処理を並列で行う。
 空間隣接動きベクトルバッファ255は、図16の空間隣接動きベクトルバッファ151と同様に、ラインバッファで構成されている。空間隣接動きベクトルバッファ255は、動きベクトル再構築部254により再構築された動きベクトル情報を、同じピクチャ内の以降のPUの予測動きベクトル情報のための空間隣接動きベクトル情報として蓄積する。空間隣接動きベクトルバッファ255は、並列処理制御部122からの制御信号(アドレス)が示すPUのうち、予測動きベクトル再構築部253からのインデックスが対応するPUの動きベクトル情報を読み出す。
 時間隣接動きベクトルバッファ256は、図16の時間隣接動きベクトルバッファ152と同様に、メモリで構成されている。時間隣接動きベクトルバッファ256は、動きベクトル再構築部254により再構築された動きベクトル情報を、異なるピクチャのPUの予測動きベクトル情報のための時間隣接動きベクトル情報として蓄積する。時間隣接動きベクトルバッファ256は、予測動きベクトル再構築部253からのインデックスが対応するPUの動きベクトル情報を読み出す。
 [復号処理の流れ]
 次に、以上のような画像復号装置200により実行される各処理の流れについて説明する。最初に、図22のフローチャートを参照して、復号処理の流れの例を説明する。
 復号処理が開始されると、ステップS201において、蓄積バッファ201は、伝送されてきた符号化ストリームを蓄積する。ステップS202において、可逆復号部202は、蓄積バッファ201から供給される符号化ストリーム(符号化された差分画像情報)を復号する。すなわち、図1の可逆符号化部106により符号化されたIピクチャ、Pピクチャ、並びにBピクチャが復号される。
 このとき、ヘッダ情報などの符号化ストリームに含められた差分画像情報以外の各種情報も復号される。可逆復号部202は、例えば、予測モード情報、差分動きベクトルの情報、および予測動きベクトルのインデックスを含む情報などを取得する。可逆復号部202は、取得した情報を、対応する部に供給する。
 ステップS203において、逆量子化部203は、ステップS202の処理により得られた、量子化された直交変換係数を逆量子化する。なお、この逆量子化処理には、後述するステップS208の処理により得られる量子化パラメータが用いられる。ステップS204において逆直交変換部204は、ステップS203において逆量子化された直交変換係数を逆直交変換する。
 ステップS205において、可逆復号部202は、ステップS202において復号した最適な予測モードに関する情報に基づいて、処理対象の符号化データがイントラ符号化されているか否かを判定する。イントラ符号化されていると判定された場合、処理は、ステップS206に進む。
 ステップS206において、イントラ予測部211は、イントラ予測モード情報を取得する。ステップS207において、イントラ予測部211は、ステップS206において取得したイントラ予測モード情報を用いてイントラ予測を行い、予測画像を生成する。
 また、ステップS206において、処理対象の符号化データがイントラ符号化されていない、すなわち、インター符号化されていると判定された場合、処理は、ステップS208に進む。
 ステップS208において、動きベクトル復号部2212は、動きベクトル再構築処理を行う。この動きベクトル再構築処理についての詳細は、図23を参照して後述する。
 ステップS208の処理により、復号された予測動きベクトルに関する情報が参照されて、当該PUの予測動きベクトルが再構築される。その際、当該PUの予測動きベクトルが空間予測動きベクトルである場合に、CUが複数のPUで構成されるとき、CUにおけるPUの位置に応じて設定された空間隣接PUの動きベクトル情報が用いられて予測動きベクトルが再構築される。そして、再構築された当該PUの予測動きベクトルが用いられて、動きベクトルが再構築され、再構築された動きベクトルは、動き予測・補償部212に供給される。
 ステップS209において、動き予測・補償部212は、ステップS208の処理により再構築された動きベクトルを用いて、インター動き予測処理を行い、予測画像を生成する。生成した予測画像は、選択部213に供給される。
 ステップS210において、選択部213は、ステップS207またはステップS209において生成された予測画像を選択する。ステップS211において、演算部205は、ステップS204において逆直交変換されて得られた差分画像情報に、ステップS210において選択された予測画像を加算する。これにより元の画像が復号される。すなわち、動きベクトルが用いられて、予測画像が生成され、生成された予測画像と逆直交変換部204からの差分画像情報とが加算されて元の画像が復号される。
 ステップS212において、デブロックフィルタ206は、ステップS211において得られた復号画像に対して、デブロックフィルタ処理を適宜行う。
 ステップS213において、画面並べ替えバッファ207は、ステップS212においてフィルタ処理された画像の並べ替えを行う。すなわち画像符号化装置100の画面並べ替えバッファ102により符号化のために並べ替えられたフレームの順序が、元の表示の順序に並べ替えられる。
 ステップS214において、D/A変換部208は、ステップS213においてフレームの順序が並べ替えられた画像をD/A変換する。この画像が図示せぬディスプレイに出力され、画像が表示される。
 ステップS215において、フレームメモリ209は、ステップS212においてフィルタ処理された画像を記憶する。
 ステップS215の処理が終了すると、復号処理が終了される。
[動きベクトル再構築処理の流れ]
 次に、図23のフローチャートを参照して、図22のステップS208において実行される動きベクトル再構築処理の流れの例を説明する。なお、この動きベクトル再構築処理は、符号化側から送信されて可逆復号部202により復号された情報を用いて、動きベクトルを復号する処理である。
 図22のステップS202において、可逆復号部202は、復号されたパラメータの情報などを取得し、取得した情報を、対応する部に供給してくる。
 ステップS251において、差分動きベクトル情報バッファ252は、可逆復号部202からの差分動きベクトル情報を取得し、取得した情報を、動きベクトル再構築部254に供給する。
 ステップS252において、予測動きベクトル情報バッファ251は、可逆復号部202から予測動きベクトル情報を取得し、取得した情報を、予測動きベクトル再構築部253に供給する。このとき、並列処理制御部222は、可逆復号部202からPUサイズ(パーティションサイズ)を示す情報を取得する。
 ステップS253において、並列処理制御部222は、取得したPUサイズを参照して、当該PUが2N×2N PUであるか否かを判定する。ステップS253において、2N×2N PUであると判定された場合、処理は、ステップS254に進む。
 ステップS254において、並列処理制御部222は、2N×2N PUに対して、動きベクトル情報が参照される隣接領域を設定する。並列処理制御部222は、例えば、図10に示されるA,B,C,D,Eを隣接領域として設定し、そのアドレスを制御信号として、空間隣接動きベクトルバッファ255に供給する。
 ステップS255において、予測動きベクトル再構築部253は、予測動きベクトルを再構築する。
 すなわち、予測動きベクトル再構築部253は、予測動きベクトル情報バッファ251からの予測動きベクトル情報(インデックス)を、空間隣接動きベクトルバッファ255に供給する。空間隣接動きベクトルバッファ255は、並列処理制御部222から設定された隣接領域のうち、予測動きベクトル再構築部253からのインデックスが示す隣接領域の動きベクトル情報を読み出し、予測動きベクトル再構築部253に供給する。予測動きベクトル再構築部253は、空間隣接動きベクトルバッファ255から読み出された動きベクトル情報を用い、AMVPまたはマージモードによる方法に基づいて、当該PUの空間予測動きベクトルを生成して、再構築する。再構築された予測動きベクトル情報は、動きベクトル再構築部254に供給される。
 一方、ステップS253において、2N×2N PUではない、すなわち、2N×NまたはN×2N PUであると判定された場合、処理は、ステップS256に進む。
 ステップS256において、並列処理制御部222は、2N×NまたはN×2N PUに対して、第1のPUおよび第2のPUの並列処理で、動きベクトル情報が参照される隣接領域を設定する。
 2N×N PUの場合、第1のPUであるPUに対して、並列処理制御部222は、例えば、図12のAに示されるA,B,C,D,Eを隣接領域として設定し、そのアドレスを制御信号として、空間隣接動きベクトルバッファ255に供給する。これと並列して、第2のPUであるPU1に対して、並列処理制御部222は、例えば、図12のBに示されるA1,B,C,D1,E1を隣接領域として設定し、そのアドレスを制御信号として、空間隣接動きベクトルバッファ255に供給する。
 N×2N PUの場合、第1のPUであるPUに対して、並列処理制御部222は、例えば、図13のAに示されるA,B,C,D,Eを隣接領域として設定し、そのアドレスを制御信号として、空間隣接動きベクトルバッファ255に供給する。これと並列して、第2のPUであるPU1に対して、並列処理制御部222は、例えば、図13のBに示されるA,B,C,D,E1を隣接領域として設定し、そのアドレスを制御信号として、空間隣接動きベクトルバッファ255に供給する。
 ステップS255において、予測動きベクトル再構築部253は、第1のPUおよび第2のPUの並列処理で、予測動きベクトルを再構築する。
 すなわち、予測動きベクトル再構築部253は、予測動きベクトル情報バッファ251からの予測動きベクトル情報(インデックス)を、空間隣接動きベクトルバッファ255に供給する。空間隣接動きベクトルバッファ255は、並列処理制御部222から設定された隣接領域のうち、予測動きベクトル再構築部253からのインデックスが示す隣接領域の動きベクトル情報を読み出し、予測動きベクトル再構築部253に供給する。予測動きベクトル再構築部253は、空間隣接動きベクトルバッファ255から読み出された動きベクトル情報を用い、AMVPまたはマージモードによる方法に基づいて、当該PUの空間予測動きベクトルを生成して、再構築する。再構築された予測動きベクトル情報は、動きベクトル再構築部254に供給される。この処理は、第1のPUおよび第2のPUに対して並列処理で行われるので、第1のPUおよび第2のPUの予測動きベクトル情報が一度に動きベクトル再構築部253に供給される。
 ステップS257において、動きベクトル再構築部254は、当該PUの動きベクトルを再構築する。
 すなわち、動きベクトル再構築部254は、差分動きベクトル情報バッファ252からの情報が示す当該PUの差分動きベクトルと、予測動きベクトル再構築部253からの当該PUの予測動きベクトルとを加算することで、動きベクトルを再構築する。動きベクトル再構築部254は、再構築された動きベクトルを示す情報を、動き予測・補償部212、空間隣接動きベクトルバッファ255、および時間隣接動きベクトルバッファ256に供給する。
 なお、図23においては、AMVPによる方法の場合が示されている。マージモードの場合には、差分動きベクトル情報は符号化側から送られてこないので、ステップS251はスキップされる。また、マージモードの場合、ステップS257においては、予測動きベクトル再構築部253からの当該PUの予測動きベクトルが、当該PUの動きベクトルとなる。
 また、図23の例においては、空間予測動きベクトルの生成処理についてのみ記載されるが、実際には、予測動きベクトル情報が時間予測動きベクトルを示すか、空間予測動きベクトルを示すかが判定される。そして、予測動きベクトル情報が時間予測動きベクトルを示す場合には、時間予測動きベクトル情報が再構築されて、動きベクトルが再構築される。さらに、図23の例においては、N×N PUについての記載は省略されている。
 以上のように各処理を行うことにより、画像復号装置200は、画像符号化装置100が符号化した符号化データを正しく復号することができ、処理効率の向上を実現させることができる。
 すなわち、画像復号装置200においても、符号化領域(CU)が複数の予測領域(PU)で構成される場合、符号化領域における予測領域の位置に応じて、動きベクトルを参照する隣接領域が設定される。これにより、PUの予測動きベクトル再構築処理を並列で行うことができ、処理効率を向上させることができる。
 なお、上記説明においては、並列処理制御部122および並列処理制御部222が常に動作する例を説明したが、例えば、符号化側の並列処理制御部122において、並列処理制御(隣接領域設定)のオン、オフを設定し、オンの場合のみ、並列処理制御(隣接領域設定)が動作するようにしてもよい。
 この符号化側での設定は、例えば、可逆符号化部106により、符号化ストリームのシーケンスパラメータセットなどのシンタクス要素において、オン/オフフラグとして設定され、蓄積バッファ107より、復号側に伝送される。そして、このオン/オフフラグは、復号側において、蓄積バッファ201により受け取られ、可逆復号部202により取得されて、各並列処理制御部222に供給される。並列処理制御部222において、供給されたフラグに基づいてオン、オフが設定され、オンの場合のみ、並列処理制御(隣接領域設定)が動作される。
 また、このオン/オフフラグは、CUまたはPUのサイズに応じて設定されるようにしてもよい。すなわち、CUおよびPUがより小さく分割される場合、より多くのブロックに対する動きベクトル情報を処理する必要があり、これを並列処理により実現することは、実時間処理可能である回路を構築するのに大きな恩恵がある。
 一方、より大きなCUまたはPUについては、図12および図13に示したように、離れた箇所の動きベクトル情報を隣接情報として用いることとなり、当該PUに対する動き情報との相関が低くなる恐れがあり、符号化効率の低下につながる恐れがある。
 また、並列処理の必要性は、より大きなサイズのシーケンスに対してより高い。このため、上述したようにフラグを伝送するのではなく、符号化ストリームのシーケンスのプロファイルまたはレベルに応じて設定するようにしてもよい。
 なお、上記説明においては、HEVCに準ずる場合を例に説明してきたが、本技術は、AMVPやマージモードによる動きベクトル情報の符号化処理および復号処理を行う装置であれば、他の符号化方式を用いる装置でも適用することができる。
 また、本技術は、例えば、MPEG、H.26x等の様に、離散コサイン変換等の直交変換と動き補償によって圧縮された画像情報(ビットストリーム)を、衛星放送、ケーブルテレビジョン、インターネット、または携帯電話機などのネットワークメディアを介して受信する際に用いられる画像符号化装置および画像復号装置に適用することができる。また、本技術は、光、磁気ディスク、およびフラッシュメモリのような記憶メディア上で処理する際に用いられる画像符号化装置および画像復号装置に適用することができる。さらに、本技術は、それらの画像符号化装置および画像復号装置などに含まれる動き予測補償装置にも適用することができる。
<3.第3の実施の形態>
[多視点画像符号化・多視点画像復号への適用]
 上述した一連の処理は、多視点画像符号化・多視点画像復号に適用することができる。図24は、多視点画像符号化方式の一例を示す。
 図24に示されるように、多視点画像は、複数の視点の画像を含み、その複数の視点のうちの所定の1つの視点の画像が、ベースビューの画像に指定されている。ベースビューの画像以外の各視点の画像は、ノンベースビューの画像として扱われる。
 図24のような多視点画像符号化を行う場合、各ビュー(同一ビュー)において、上述した並列処理制御(隣接領域設定)のオン/オフフラグを設定することができる。また、各ビュー(異なるビュー)において、他のビューで設定された並列処理制御のオン/オフフラグを共有することもできる。
 この場合、ベースビューにおいて設定された並列処理制御のオン/オフフラグが、少なくとも1つのノンベースビューで用いられる。あるいは、例えば、ノンベースビュー(view_id=i)において設定された並列処理制御のオン/オフフラグが、ベースビューおよびノンベースビュー(view_id=j)の少なくともどちらか一方で用いられる。
 これにより、動きベクトルの符号化または復号において、並列処理により処理効率を向上させることができる。
 [多視点画像符号化装置]
 図25は、上述した多視点画像符号化を行う多視点画像符号化装置を示す図である。図25に示されるように、多視点画像符号化装置600は、符号化部601、符号化部602、および多重化部603を有する。
 符号化部601は、ベースビュー画像を符号化し、ベースビュー画像符号化ストリームを生成する。符号化部602は、ノンベースビュー画像を符号化し、ノンベースビュー画像符号化ストリームを生成する。多重化部603は、符号化部601において生成されたベースビュー画像符号化ストリームと、符号化部602において生成されたノンベースビュー画像符号化ストリームとを多重化し、多視点画像符号化ストリームを生成する。
 この多視点画像符号化装置600の符号化部601および符号化部602に対して、画像符号化装置100(図1)を適用することができる。この場合、多視点画像符号化装置600は、符号化部601が設定した並列処理制御のオン/オフフラグと、符号化部602が設定した並列処理制御のオン/オフフラグとを設定して伝送させる。
 なお、上述したように符号化部601が設定した並列処理制御のオン/オフフラグを、符号化部601および符号化部602で共有して用いるように設定して伝送させるようにしてもよい。逆に、符号化部602がまとめて設定した並列処理制御のオン/オフフラグを、符号化部601および符号化部602で共有して用いるように設定して伝送させるようにしてもよい。
 [多視点画像復号装置]
 図26は、上述した多視点画像復号を行う多視点画像復号装置を示す図である。図26に示されるように、多視点画像復号装置610は、逆多重化部611、復号部612、および復号部613を有する。
 逆多重化部611は、ベースビュー画像符号化ストリームとノンベースビュー画像符号化ストリームとが多重化された多視点画像符号化ストリームを逆多重化し、ベースビュー画像符号化ストリームと、ノンベースビュー画像符号化ストリームとを抽出する。復号部612は、逆多重化部611により抽出されたベースビュー画像符号化ストリームを復号し、ベースビュー画像を得る。復号部613は、逆多重化部611により抽出されたノンベースビュー画像符号化ストリームを復号し、ノンベースビュー画像を得る。
 この多視点画像復号装置610の復号部612および復号部613に対して、画像復号装置200(図20)を適用することができる。この場合、多視点画像復号装置610は、符号化部601が設定し、復号部612が復号した並列処理制御のオン/オフフラグと、符号化部602が設定し、復号部613が復号した並列処理制御のオン/オフフラグを用いて処理を行う。
 なお、上述したように符号化部601(または、符号化部602)が設定した並列処理制御のオン/オフフラグを、符号化部601および符号化部602で共有して用いるように設定して伝送されている場合がある。この場合、多視点画像復号装置610においては、符号化部601(または、符号化部602)が設定し、復号部612(または復号部613)が復号した並列処理制御のオン/オフフラグを用いて処理が行われる。
 <4.第4の実施の形態>
[階層画像符号化・階層画像復号への適用]
 上述した一連の処理は、階層画像符号化・階層画像復号に適用することができる。図27は、多視点画像符号化方式の一例を示す。
 図27に示されるように、階層画像は、複数の階層(解像度)の画像を含み、その複数の解像度のうちの所定の1つの階層の画像が、ベースレイヤの画像に指定されている。ベースレイヤの画像以外の各階層の画像は、ノンベースレイヤの画像として扱われる。
 図27のような階層画像符号化(空間スケーラビリティ)を行う場合、各レイヤ(同一レイヤ)において、上述した並列処理制御(隣接領域設定)のオン/オフフラグを設定することができる。また、各レイヤ(異なるレイヤ)において、他のレイヤで設定された並列処理制御のオン/オフフラグを共有することができる。
 この場合、ベースレイヤにおいて設定された並列処理制御のオン/オフフラグが、少なくとも1つのノンベースレイヤで用いられる。あるいは、例えば、ノンベースレイヤ(layer _id=i)において設定された並列処理制御のオン/オフフラグが、ベースレイヤおよびノンベースレイヤ(layer_id=j)の少なくともどちらか一方で用いられる。
 これにより、動きベクトルの符号化または復号において、並列処理により処理効率を向上させることができる。
 [階層画像符号化装置]
 図28は、上述した階層画像符号化を行う階層画像符号化装置を示す図である。図28に示されるように、階層画像符号化装置620は、符号化部621、符号化部622、および多重化部623を有する。
 符号化部621は、ベースレイヤ画像を符号化し、ベースレイヤ画像符号化ストリームを生成する。符号化部622は、ノンベースレイヤ画像を符号化し、ノンベースレイヤ画像符号化ストリームを生成する。多重化部623は、符号化部621において生成されたベースレイヤ画像符号化ストリームと、符号化部622において生成されたノンベースレイヤ画像符号化ストリームとを多重化し、階層画像符号化ストリームを生成する。
 この階層画像符号化装置620の符号化部621および符号化部622に対して、画像符号化装置100(図1)を適用することができる。この場合、階層画像符号化装置620は、符号化部621が設定した並列処理制御のオン/オフフラグと、符号化部602が設定した並列処理制御のオン/オフフラグとを設定して伝送させる。
 なお、上述したように符号化部621が設定した並列処理制御のオン/オフフラグを、符号化部621および符号化部622で共有して用いるように設定して伝送させるようにしてもよい。逆に、符号化部622が設定した並列処理制御のオン/オフフラグを、符号化部621および符号化部622で共有して用いるように設定して伝送させるようにしてもよい。
 [階層画像復号装置]
 図29は、上述した階層画像復号を行う階層画像復号装置を示す図である。図29に示されるように、階層画像復号装置630は、逆多重化部631、復号部632、および復号部633を有する。
 逆多重化部631は、ベースレイヤ画像符号化ストリームとノンベースレイヤ画像符号化ストリームとが多重化された階層画像符号化ストリームを逆多重化し、ベースレイヤ画像符号化ストリームと、ノンベースレイヤ画像符号化ストリームとを抽出する。復号部632は、逆多重化部631により抽出されたベースレイヤ画像符号化ストリームを復号し、ベースレイヤ画像を得る。復号部633は、逆多重化部631により抽出されたノンベースレイヤ画像符号化ストリームを復号し、ノンベースレイヤ画像を得る。
 この階層画像復号装置630の復号部632および復号部633に対して、画像復号装置200(図20)を適用することができる。この場合、階層画像復号装置630は、符号化部621が設定し、復号部632が復号した並列処理制御のオン/オフフラグと、符号化部622が設定し、復号部633が復号した並列処理制御のオン/オフフラグを用いて処理を行う。
 なお、上述したように符号化部621(または、符号化部622)が設定した並列処理制御のオン/オフフラグを、符号化部621および符号化部622で共有して用いるように設定して伝送されている場合がある。この場合、階層画像復号装置630においては、符号化部621(または、符号化部622)が設定し、復号部632(または、復号部633)が復号した並列処理制御のオン/オフフラグを用いて処理が行われる。
<5.第5の実施の形態>
[コンピュータ]
 上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な汎用のパーソナルコンピュータなどが含まれる。
 図30において、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
 コンピュータ800において、CPU(Central Processing Unit)801,ROM(Read Only Memory)802,RAM(Random Access Memory)803は、バス804により相互に接続されている。
 バス804には、さらに、入出力インタフェース805が接続されている。入出力インタフェース805には、入力部806、出力部807、記憶部508、通信部509、及びドライブ810が接続されている。
 入力部806は、キーボード、マウス、マイクロホンなどよりなる。出力部807は、ディスプレイ、スピーカなどよりなる。記憶部808は、ハードディスクや不揮発性のメモリなどよりなる。通信部809は、ネットワークインタフェースなどよりなる。ドライブ810は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア811を駆動する。
 以上のように構成されるコンピュータでは、CPU801が、例えば、記憶部808に記憶されているプログラムを、入出力インタフェース805及びバス804を介して、RAM803にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ800(CPU801)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア811に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブルメディア811をドライブ810に装着することにより、入出力インタフェース805を介して、記憶部808にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部809で受信し、記憶部808にインストールすることができる。その他、プログラムは、ROM802や記憶部808に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
 また、本明細書において、システムとは、複数のデバイス(装置)により構成される装置全体を表すものである。
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。つまり、本技術は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 上述した実施形態に係る画像符号化装置及び画像復号装置は、衛星放送、ケーブルTVなどの有線放送、インターネット上での配信、及びセルラー通信による端末への配信などにおける送信機若しくは受信機、光ディスク、磁気ディスク及びフラッシュメモリなどの媒体に画像を記録する記録装置、又は、これら記憶媒体から画像を再生する再生装置などの様々な電子機器に応用され得る。以下、4つの応用例について説明する。
 <6.応用例>
[第1の応用例:テレビジョン受像機]
 図31は、上述した実施形態を適用したテレビジョン装置の概略的な構成の一例を示している。テレビジョン装置900は、アンテナ901、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、表示部906、音声信号処理部907、スピーカ908、外部インタフェース909、制御部910、ユーザインタフェース911、及びバス912を備える。
 チューナ902は、アンテナ901を介して受信される放送信号から所望のチャンネルの信号を抽出し、抽出した信号を復調する。そして、チューナ902は、復調により得られた符号化ビットストリームをデマルチプレクサ903へ出力する。即ち、チューナ902は、画像が符号化されている符号化ストリームを受信する、テレビジョン装置900における伝送手段としての役割を有する。
 デマルチプレクサ903は、符号化ビットストリームから視聴対象の番組の映像ストリーム及び音声ストリームを分離し、分離した各ストリームをデコーダ904へ出力する。また、デマルチプレクサ903は、符号化ビットストリームからEPG(Electronic Program Guide)などの補助的なデータを抽出し、抽出したデータを制御部910に供給する。なお、デマルチプレクサ903は、符号化ビットストリームがスクランブルされている場合には、デスクランブルを行ってもよい。
 デコーダ904は、デマルチプレクサ903から入力される映像ストリーム及び音声ストリームを復号する。そして、デコーダ904は、復号処理により生成される映像データを映像信号処理部905へ出力する。また、デコーダ904は、復号処理により生成される音声データを音声信号処理部907へ出力する。
 映像信号処理部905は、デコーダ904から入力される映像データを再生し、表示部906に映像を表示させる。また、映像信号処理部905は、ネットワークを介して供給されるアプリケーション画面を表示部906に表示させてもよい。また、映像信号処理部905は、映像データについて、設定に応じて、例えばノイズ除去などの追加的な処理を行ってもよい。さらに、映像信号処理部905は、例えばメニュー、ボタン又はカーソルなどのGUI(Graphical User Interface)の画像を生成し、生成した画像を出力画像に重畳してもよい。
 表示部906は、映像信号処理部905から供給される駆動信号により駆動され、表示デバイス(例えば、液晶ディスプレイ、プラズマディスプレイ又はOELD(Organic ElectroLuminescence Display)(有機ELディスプレイ)など)の映像面上に映像又は画像を表示する。
 音声信号処理部907は、デコーダ904から入力される音声データについてD/A変換及び増幅などの再生処理を行い、スピーカ908から音声を出力させる。また、音声信号処理部907は、音声データについてノイズ除去などの追加的な処理を行ってもよい。
 外部インタフェース909は、テレビジョン装置900と外部機器又はネットワークとを接続するためのインタフェースである。例えば、外部インタフェース909を介して受信される映像ストリーム又は音声ストリームが、デコーダ904により復号されてもよい。即ち、外部インタフェース909もまた、画像が符号化されている符号化ストリームを受信する、テレビジョン装置900における伝送手段としての役割を有する。
 制御部910は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、プログラムデータ、EPGデータ、及びネットワークを介して取得されるデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、テレビジョン装置900の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース911から入力される操作信号に応じて、テレビジョン装置900の動作を制御する。
 ユーザインタフェース911は、制御部910と接続される。ユーザインタフェース911は、例えば、ユーザがテレビジョン装置900を操作するためのボタン及びスイッチ、並びに遠隔制御信号の受信部などを有する。ユーザインタフェース911は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部910へ出力する。
 バス912は、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、音声信号処理部907、外部インタフェース909及び制御部910を相互に接続する。
 このように構成されたテレビジョン装置900において、デコーダ904は、上述した実施形態に係る画像復号装置の機能を有する。それにより、テレビジョン装置900での画像の復号に際して、動きベクトルの復号において、並列処理により処理効率を向上させることができることができる。
[第2の応用例:携帯電話機]
 図32は、上述した実施形態を適用した携帯電話機の概略的な構成の一例を示している。携帯電話機920は、アンテナ921、通信部922、音声コーデック923、スピーカ924、マイクロホン925、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、制御部931、操作部932、及びバス933を備える。
 アンテナ921は、通信部922に接続される。スピーカ924及びマイクロホン925は、音声コーデック923に接続される。操作部932は、制御部931に接続される。バス933は、通信部922、音声コーデック923、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、及び制御部931を相互に接続する。
 携帯電話機920は、音声通話モード、データ通信モード、撮影モード及びテレビ電話モードを含む様々な動作モードで、音声信号の送受信、電子メール又は画像データの送受信、画像の撮像、及びデータの記録などの動作を行う。
 音声通話モードにおいて、マイクロホン925により生成されるアナログ音声信号は、音声コーデック923に供給される。音声コーデック923は、アナログ音声信号を音声データへ変換し、変換された音声データをA/D変換し圧縮する。そして、音声コーデック923は、圧縮後の音声データを通信部922へ出力する。通信部922は、音声データを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号を、アンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。そして、通信部922は、受信信号を復調及び復号して音声データを生成し、生成した音声データを音声コーデック923へ出力する。音声コーデック923は、音声データを伸張し及びD/A変換し、アナログ音声信号を生成する。そして、音声コーデック923は、生成した音声信号をスピーカ924に供給して音声を出力させる。
 また、データ通信モードにおいて、例えば、制御部931は、操作部932を介するユーザによる操作に応じて、電子メールを構成する文字データを生成する。また、制御部931は、文字を表示部930に表示させる。また、制御部931は、操作部932を介するユーザからの送信指示に応じて電子メールデータを生成し、生成した電子メールデータを通信部922へ出力する。通信部922は、電子メールデータを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号を、アンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。そして、通信部922は、受信信号を復調及び復号して電子メールデータを復元し、復元した電子メールデータを制御部931へ出力する。制御部931は、表示部930に電子メールの内容を表示させると共に、電子メールデータを記録再生部929の記憶媒体に記憶させる。
 記録再生部929は、読み書き可能な任意の記憶媒体を有する。例えば、記憶媒体は、RAM又はフラッシュメモリなどの内蔵型の記憶媒体であってもよく、ハードディスク、磁気ディスク、光磁気ディスク、光ディスク、USB(Unallocated Space Bitmap)メモリ、又はメモリカードなどの外部装着型の記憶媒体であってもよい。
 また、撮影モードにおいて、例えば、カメラ部926は、被写体を撮像して画像データを生成し、生成した画像データを画像処理部927へ出力する。画像処理部927は、カメラ部926から入力される画像データを符号化し、符号化ストリームを記憶再生部929の記憶媒体に記憶させる。
 また、テレビ電話モードにおいて、例えば、多重分離部928は、画像処理部927により符号化された映像ストリームと、音声コーデック923から入力される音声ストリームとを多重化し、多重化したストリームを通信部922へ出力する。通信部922は、ストリームを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号を、アンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。これら送信信号及び受信信号には、符号化ビットストリームが含まれ得る。そして、通信部922は、受信信号を復調及び復号してストリームを復元し、復元したストリームを多重分離部928へ出力する。多重分離部928は、入力されるストリームから映像ストリーム及び音声ストリームを分離し、映像ストリームを画像処理部927、音声ストリームを音声コーデック923へ出力する。画像処理部927は、映像ストリームを復号し、映像データを生成する。映像データは、表示部930に供給され、表示部930により一連の画像が表示される。音声コーデック923は、音声ストリームを伸張し及びD/A変換し、アナログ音声信号を生成する。そして、音声コーデック923は、生成した音声信号をスピーカ924に供給して音声を出力させる。
 このように構成された携帯電話機920において、画像処理部927は、上述した実施形態に係る画像符号化装置及び画像復号装置の機能を有する。それにより、携帯電話機920での画像の符号化及び復号に際して、動きベクトルの符号化または復号において、並列処理により処理効率を向上させることができる。
[第3の応用例:記録再生装置]
 図33は、上述した実施形態を適用した記録再生装置の概略的な構成の一例を示している。記録再生装置940は、例えば、受信した放送番組の音声データ及び映像データを符号化して記録媒体に記録する。また、記録再生装置940は、例えば、他の装置から取得される音声データ及び映像データを符号化して記録媒体に記録してもよい。また、記録再生装置940は、例えば、ユーザの指示に応じて、記録媒体に記録されているデータをモニタ及びスピーカ上で再生する。このとき、記録再生装置940は、音声データ及び映像データを復号する。
 記録再生装置940は、チューナ941、外部インタフェース942、エンコーダ943、HDD(Hard Disk Drive)944、ディスクドライブ945、セレクタ946、デコーダ947、OSD(On-Screen Display)948、制御部949、及びユーザインタフェース950を備える。
 チューナ941は、アンテナ(図示せず)を介して受信される放送信号から所望のチャンネルの信号を抽出し、抽出した信号を復調する。そして、チューナ941は、復調により得られた符号化ビットストリームをセレクタ946へ出力する。即ち、チューナ941は、記録再生装置940における伝送手段としての役割を有する。
 外部インタフェース942は、記録再生装置940と外部機器又はネットワークとを接続するためのインタフェースである。外部インタフェース942は、例えば、IEEE1394インタフェース、ネットワークインタフェース、USBインタフェース、又はフラッシュメモリインタフェースなどであってよい。例えば、外部インタフェース942を介して受信される映像データ及び音声データは、エンコーダ943へ入力される。即ち、外部インタフェース942は、記録再生装置940における伝送手段としての役割を有する。
 エンコーダ943は、外部インタフェース942から入力される映像データ及び音声データが符号化されていない場合に、映像データ及び音声データを符号化する。そして、エンコーダ943は、符号化ビットストリームをセレクタ946へ出力する。
 HDD944は、映像及び音声などのコンテンツデータが圧縮された符号化ビットストリーム、各種プログラムおよびその他のデータを内部のハードディスクに記録する。また、HDD944は、映像及び音声の再生時に、これらデータをハードディスクから読み出す。
 ディスクドライブ945は、装着されている記録媒体へのデータの記録及び読み出しを行う。ディスクドライブ945に装着される記録媒体は、例えばDVDディスク(DVD-Video、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等)又はBlu-ray(登録商標)ディスクなどであってよい。
 セレクタ946は、映像及び音声の記録時には、チューナ941又はエンコーダ943から入力される符号化ビットストリームを選択し、選択した符号化ビットストリームをHDD944又はディスクドライブ945へ出力する。また、セレクタ946は、映像及び音声の再生時には、HDD944又はディスクドライブ945から入力される符号化ビットストリームをデコーダ947へ出力する。
 デコーダ947は、符号化ビットストリームを復号し、映像データ及び音声データを生成する。そして、デコーダ947は、生成した映像データをOSD948へ出力する。また、デコーダ904は、生成した音声データを外部のスピーカへ出力する。
 OSD948は、デコーダ947から入力される映像データを再生し、映像を表示する。また、OSD948は、表示する映像に、例えばメニュー、ボタン又はカーソルなどのGUIの画像を重畳してもよい。
 制御部949は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、及びプログラムデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、記録再生装置940の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース950から入力される操作信号に応じて、記録再生装置940の動作を制御する。
 ユーザインタフェース950は、制御部949と接続される。ユーザインタフェース950は、例えば、ユーザが記録再生装置940を操作するためのボタン及びスイッチ、並びに遠隔制御信号の受信部などを有する。ユーザインタフェース950は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部949へ出力する。
 このように構成された記録再生装置940において、エンコーダ943は、上述した実施形態に係る画像符号化装置の機能を有する。また、デコーダ947は、上述した実施形態に係る画像復号装置の機能を有する。それにより、記録再生装置940での画像の符号化及び復号に際して、動きベクトルの符号化または復号において、並列処理により処理効率を向上させることができる。
[第4の応用例:撮像装置]
 図34は、上述した実施形態を適用した撮像装置の概略的な構成の一例を示している。撮像装置960は、被写体を撮像して画像を生成し、画像データを符号化して記録媒体に記録する。
 撮像装置960は、光学ブロック961、撮像部962、信号処理部963、画像処理部964、表示部965、外部インタフェース966、メモリ967、メディアドライブ968、OSD969、制御部970、ユーザインタフェース971、及びバス972を備える。
 光学ブロック961は、撮像部962に接続される。撮像部962は、信号処理部963に接続される。表示部965は、画像処理部964に接続される。ユーザインタフェース971は、制御部970に接続される。バス972は、画像処理部964、外部インタフェース966、メモリ967、メディアドライブ968、OSD969、及び制御部970を相互に接続する。
 光学ブロック961は、フォーカスレンズ及び絞り機構などを有する。光学ブロック961は、被写体の光学像を撮像部962の撮像面に結像させる。撮像部962は、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などのイメージセンサを有し、撮像面に結像した光学像を光電変換によって電気信号としての画像信号に変換する。そして、撮像部962は、画像信号を信号処理部963へ出力する。
 信号処理部963は、撮像部962から入力される画像信号に対してニー補正、ガンマ補正、色補正などの種々のカメラ信号処理を行う。信号処理部963は、カメラ信号処理後の画像データを画像処理部964へ出力する。
 画像処理部964は、信号処理部963から入力される画像データを符号化し、符号化データを生成する。そして、画像処理部964は、生成した符号化データを外部インタフェース966又はメディアドライブ968へ出力する。また、画像処理部964は、外部インタフェース966又はメディアドライブ968から入力される符号化データを復号し、画像データを生成する。そして、画像処理部964は、生成した画像データを表示部965へ出力する。また、画像処理部964は、信号処理部963から入力される画像データを表示部965へ出力して画像を表示させてもよい。また、画像処理部964は、OSD969から取得される表示用データを、表示部965へ出力する画像に重畳してもよい。
 OSD969は、例えばメニュー、ボタン又はカーソルなどのGUIの画像を生成して、生成した画像を画像処理部964へ出力する。
 外部インタフェース966は、例えばUSB入出力端子として構成される。外部インタフェース966は、例えば、画像の印刷時に、撮像装置960とプリンタとを接続する。また、外部インタフェース966には、必要に応じてドライブが接続される。ドライブには、例えば、磁気ディスク又は光ディスクなどのリムーバブルメディアが装着され、リムーバブルメディアから読み出されるプログラムが、撮像装置960にインストールされ得る。さらに、外部インタフェース966は、LAN又はインターネットなどのネットワークに接続されるネットワークインタフェースとして構成されてもよい。即ち、外部インタフェース966は、撮像装置960における伝送手段としての役割を有する。
 メディアドライブ968に装着される記録媒体は、例えば、磁気ディスク、光磁気ディスク、光ディスク、又は半導体メモリなどの、読み書き可能な任意のリムーバブルメディアであってよい。また、メディアドライブ968に記録媒体が固定的に装着され、例えば、内蔵型ハードディスクドライブ又はSSD(Solid State Drive)のような非可搬性の記憶部が構成されてもよい。
 制御部970は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、及びプログラムデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、撮像装置960の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース971から入力される操作信号に応じて、撮像装置960の動作を制御する。
 ユーザインタフェース971は、制御部970と接続される。ユーザインタフェース971は、例えば、ユーザが撮像装置960を操作するためのボタン及びスイッチなどを有する。ユーザインタフェース971は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部970へ出力する。
 このように構成された撮像装置960において、画像処理部964は、上述した実施形態に係る画像符号化装置及び画像復号装置の機能を有する。それにより、撮像装置960での画像の符号化及び復号に際して、動きベクトルの符号化または復号において、並列処理により処理効率を向上させることができる。
 <7.スケーラブル符号化の応用例>
 [第1のシステム]
 次に、図35を参照して、図27乃至図29を参照して上述したスケーラブル符号化(階層符号化)されたスケーラブル符号化データの具体的な利用例について説明する。スケーラブル符号化は、例えば、図35に示される例のように、伝送するデータの選択のために利用される。
 図35に示されるデータ伝送システム1000において、配信サーバ1002は、スケーラブル符号化データ記憶部1001に記憶されているスケーラブル符号化データを読み出し、ネットワーク1003を介して、パーソナルコンピュータ1004、AV機器1005、タブレットデバイス1006、および携帯電話機1007等の端末装置に配信する。
 その際、配信サーバ1002は、端末装置の能力や通信環境等に応じて、適切な品質の符号化データを選択して伝送する。配信サーバ1002が不要に高品質なデータを伝送しても、端末装置において高画質な画像を得られるとは限らず、遅延やオーバフローの発生要因となる恐れがある。また、不要に通信帯域を占有したり、端末装置の負荷を不要に増大させたりしてしまう恐れもある。逆に、配信サーバ1002が不要に低品質なデータを伝送しても、端末装置において十分な画質の画像を得ることができない恐れがある。そのため、配信サーバ1002は、スケーラブル符号化データ記憶部1001に記憶されているスケーラブル符号化データを、適宜、端末装置の能力や通信環境等に対して適切な品質の符号化データとして読み出し、伝送する。
 例えば、スケーラブル符号化データ記憶部1001は、スケーラブルに符号化されたスケーラブル符号化データ(BL+EL)1011を記憶するとする。このスケーラブル符号化データ(BL+EL)1011は、ベースレイヤとエンハンスメントレイヤの両方を含む符号化データであり、復号することにより、ベースレイヤの画像およびエンハンスメントレイヤの画像の両方を得ることができるデータである。
 配信サーバ1002は、データを伝送する端末装置の能力や通信環境等に応じて、適切なレイヤを選択し、そのレイヤのデータを読み出す。例えば、配信サーバ1002は、処理能力の高いパーソナルコンピュータ1004やタブレットデバイス1006に対しては、高品質なスケーラブル符号化データ(BL+EL)1011をスケーラブル符号化データ記憶部1001から読み出し、そのまま伝送する。これに対して、例えば、配信サーバ1002は、処理能力の低いAV機器1005や携帯電話機1007に対しては、スケーラブル符号化データ(BL+EL)1011からベースレイヤのデータを抽出し、スケーラブル符号化データ(BL+EL)1011と同じコンテンツのデータであるが、スケーラブル符号化データ(BL+EL)1011よりも低品質なスケーラブル符号化データ(BL)1012として伝送する。
 このようにスケーラブル符号化データを用いることにより、データ量を容易に調整することができるので、遅延やオーバフローの発生を抑制したり、端末装置や通信媒体の負荷の不要な増大を抑制したりすることができる。また、スケーラブル符号化データ(BL+EL)1011は、レイヤ間の冗長性が低減されているので、各レイヤの符号化データを個別のデータとする場合よりもそのデータ量を低減させることができる。したがって、スケーラブル符号化データ記憶部1001の記憶領域をより効率よく使用することができる。
 なお、パーソナルコンピュータ1004乃至携帯電話機1007のように、端末装置には様々な装置を適用することができるので、端末装置のハードウエアの性能は、装置によって異なる。また、端末装置が実行するアプリケーションも様々であるので、そのソフトウエアの能力も様々である。さらに、通信媒体となるネットワーク1003も、例えばインターネットやLAN(Local Area Network)等、有線若しくは無線、またはその両方を含むあらゆる通信回線網を適用することができ、そのデータ伝送能力は様々である。さらに、他の通信等によっても変化する恐れがある。
 そこで、配信サーバ1002は、データ伝送を開始する前に、データの伝送先となる端末装置と通信を行い、端末装置のハードウエア性能や、端末装置が実行するアプリケーション(ソフトウエア)の性能等といった端末装置の能力に関する情報、並びに、ネットワーク1003の利用可能帯域幅等の通信環境に関する情報を得るようにしてもよい。そして、配信サーバ1002が、ここで得た情報を基に、適切なレイヤを選択するようにしてもよい。
 なお、レイヤの抽出は、端末装置において行うようにしてもよい。例えば、パーソナルコンピュータ1004が、伝送されたスケーラブル符号化データ(BL+EL)1011を復号し、ベースレイヤの画像を表示しても良いし、エンハンスメントレイヤの画像を表示しても良い。また、例えば、パーソナルコンピュータ1004が、伝送されたスケーラブル符号化データ(BL+EL)1011から、ベースレイヤのスケーラブル符号化データ(BL)1012を抽出し、記憶したり、他の装置に転送したり、復号してベースレイヤの画像を表示したりするようにしてもよい。
 もちろん、スケーラブル符号化データ記憶部1001、配信サーバ1002、ネットワーク1003、および端末装置の数はいずれも任意である。また、以上においては、配信サーバ1002がデータを端末装置に伝送する例について説明したが、利用例はこれに限定されない。データ伝送システム1000は、スケーラブル符号化された符号化データを端末装置に伝送する際、端末装置の能力や通信環境等に応じて、適切なレイヤを選択して伝送するシステムであれば、任意のシステムに適用することができる。
 そして、以上のような図35のようなデータ伝送システム1000においても、図27乃至図29を参照して上述した階層符号化・階層復号への適用と同様に本技術を適用することにより、図27乃至図29を参照して上述した効果と同様の効果を得ることができる。
 [第2のシステム]
 また、スケーラブル符号化は、例えば、図36に示される例のように、複数の通信媒体を介する伝送のために利用される。
 図36に示されるデータ伝送システム1100において、放送局1101は、地上波放送1111により、ベースレイヤのスケーラブル符号化データ(BL)1121を伝送する。また、放送局1101は、有線若しくは無線またはその両方の通信網よりなる任意のネットワーク1112を介して、エンハンスメントレイヤのスケーラブル符号化データ(EL)1122を伝送する(例えばパケット化して伝送する)。
 端末装置1102は、放送局1101が放送する地上波放送1111の受信機能を有し、この地上波放送1111を介して伝送されるベースレイヤのスケーラブル符号化データ(BL)1121を受け取る。また、端末装置1102は、ネットワーク1112を介した通信を行う通信機能をさらに有し、このネットワーク1112を介して伝送されるエンハンスメントレイヤのスケーラブル符号化データ(EL)1122を受け取る。
 端末装置1102は、例えばユーザ指示等に応じて、地上波放送1111を介して取得したベースレイヤのスケーラブル符号化データ(BL)1121を、復号してベースレイヤの画像を得たり、記憶したり、他の装置に伝送したりする。
 また、端末装置1102は、例えばユーザ指示等に応じて、地上波放送1111を介して取得したベースレイヤのスケーラブル符号化データ(BL)1121と、ネットワーク1112を介して取得したエンハンスメントレイヤのスケーラブル符号化データ(EL)1122とを合成して、スケーラブル符号化データ(BL+EL)を得たり、それを復号してエンハンスメントレイヤの画像を得たり、記憶したり、他の装置に伝送したりする。
 以上のように、スケーラブル符号化データは、例えばレイヤ毎に異なる通信媒体を介して伝送させることができる。したがって、負荷を分散させることができ、遅延やオーバフローの発生を抑制することができる。
 また、状況に応じて、伝送に使用する通信媒体を、レイヤ毎に選択することができるようにしてもよい。例えば、データ量が比較的多いベースレイヤのスケーラブル符号化データ(BL)1121を帯域幅の広い通信媒体を介して伝送させ、データ量が比較的少ないエンハンスメントレイヤのスケーラブル符号化データ(EL)1122を帯域幅の狭い通信媒体を介して伝送させるようにしてもよい。また、例えば、エンハンスメントレイヤのスケーラブル符号化データ(EL)1122を伝送する通信媒体を、ネットワーク1112とするか、地上波放送1111とするかを、ネットワーク1112の利用可能帯域幅に応じて切り替えるようにしてもよい。もちろん、任意のレイヤのデータについて同様である。
 このように制御することにより、データ伝送における負荷の増大を、より抑制することができる。
 もちろん、レイヤ数は任意であり、伝送に利用する通信媒体の数も任意である。また、データ配信先となる端末装置1102の数も任意である。さらに、以上においては、放送局1101からの放送を例に説明したが、利用例はこれに限定されない。データ伝送システム1100は、スケーラブル符号化された符号化データを、レイヤを単位として複数に分割し、複数の回線を介して伝送するシステムであれば、任意のシステムに適用することができる。
 そして、以上のような図36のデータ伝送システム1100においても、図27乃至図29を参照して上述した階層符号化・階層復号への適用と同様に本技術を適用することにより、図27乃至図29を参照して上述した効果と同様の効果を得ることができる。
 [第3のシステム]
 また、スケーラブル符号化は、例えば、図37に示される例のように、符号化データの記憶に利用される。
 図37に示される撮像システム1200において、撮像装置1201は、被写体1211を撮像して得られた画像データをスケーラブル符号化し、スケーラブル符号化データ(BL+EL)1221として、スケーラブル符号化データ記憶装置1202に供給する。
 スケーラブル符号化データ記憶装置1202は、撮像装置1201から供給されるスケーラブル符号化データ(BL+EL)1221を、状況に応じた品質で記憶する。例えば、通常時の場合、スケーラブル符号化データ記憶装置1202は、スケーラブル符号化データ(BL+EL)1221からベースレイヤのデータを抽出し、低品質でデータ量の少ないベースレイヤのスケーラブル符号化データ(BL)1222として記憶する。これに対して、例えば、注目時の場合、スケーラブル符号化データ記憶装置1202は、高品質でデータ量の多いスケーラブル符号化データ(BL+EL)1221のまま記憶する。
 このようにすることにより、スケーラブル符号化データ記憶装置1202は、必要な場合のみ、画像を高画質に保存することができるので、画質劣化による画像の価値の低減を抑制しながら、データ量の増大を抑制することができ、記憶領域の利用効率を向上させることができる。
 例えば、撮像装置1201が監視カメラであるとする。撮像画像に監視対象(例えば侵入者)が写っていない場合(通常時の場合)、撮像画像の内容は重要でない可能性が高いので、データ量の低減が優先され、その画像データ(スケーラブル符号化データ)は、低品質に記憶される。これに対して、撮像画像に監視対象が被写体1211として写っている場合(注目時の場合)、その撮像画像の内容は重要である可能性が高いので、画質が優先され、その画像データ(スケーラブル符号化データ)は、高品質に記憶される。
 なお、通常時であるか注目時であるかは、例えば、スケーラブル符号化データ記憶装置1202が、画像を解析することにより判定しても良い。また、撮像装置1201が判定し、その判定結果をスケーラブル符号化データ記憶装置1202に伝送するようにしてもよい。
 なお、通常時であるか注目時であるかの判定基準は任意であり、判定基準とする画像の内容は任意である。もちろん、画像の内容以外の条件を判定基準とすることもできる。例えば、収録した音声の大きさや波形等に応じて切り替えるようにしてもよいし、所定の時間毎に切り替えるようにしてもよいし、ユーザ指示等の外部からの指示によって切り替えるようにしてもよい。
 また、以上においては、通常時と注目時の2つの状態を切り替える例を説明したが、状態の数は任意であり、例えば、通常時、やや注目時、注目時、非常に注目時等のように、3つ以上の状態を切り替えるようにしてもよい。ただし、この切り替える状態の上限数は、スケーラブル符号化データのレイヤ数に依存する。
 また、撮像装置1201が、スケーラブル符号化のレイヤ数を、状態に応じて決定するようにしてもよい。例えば、通常時の場合、撮像装置1201が、低品質でデータ量の少ないベースレイヤのスケーラブル符号化データ(BL)1222を生成し、スケーラブル符号化データ記憶装置1202に供給するようにしてもよい。また、例えば、注目時の場合、撮像装置1201が、高品質でデータ量の多いベースレイヤのスケーラブル符号化データ(BL+EL)1221を生成し、スケーラブル符号化データ記憶装置1202に供給するようにしてもよい。
 以上においては、監視カメラを例に説明したが、この撮像システム1200の用途は任意であり、監視カメラに限定されない。
 そして、以上のような図37の撮像システム1200においても、図27乃至図29を参照して上述した階層符号化・階層復号への適用と同様に本技術を適用することにより、図27乃至図29を参照して上述した効果と同様の効果を得ることができる。
 なお、本明細書では、予測動きベクトルのコードナンバ、差分動きベクトル情報、予測動きベクトル情報、および並列処理制御のオン/オフフラグなどの各種情報が、符号化ストリームに多重化されて、符号化側から復号側へ伝送される例について説明した。しかしながら、これら情報を伝送する手法はかかる例に限定されない。例えば、これら情報は、符号化ビットストリームに多重化されることなく、符号化ビットストリームと関連付けられた別個のデータとして伝送され又は記録されてもよい。ここで、「関連付ける」という用語は、ビットストリームに含まれる画像(スライス若しくはブロックなど、画像の一部であってもよい)と当該画像に対応する情報とを復号時にリンクさせ得るようにすることを意味する。即ち、情報は、画像(又はビットストリーム)とは別の伝送路上で伝送されてもよい。また、情報は、画像(又はビットストリーム)とは別の記録媒体(又は同一の記録媒体の別の記録エリア)に記録されてもよい。さらに、情報と画像(又はビットストリーム)とは、例えば、複数フレーム、1フレーム、又はフレーム内の一部分などの任意の単位で互いに関連付けられてよい。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、本技術は以下のような構成も取ることができる。
 (1) 画像の符号化領域を構成する複数の予測領域の動きベクトルの復号に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定する隣接領域設定部と、
 前記隣接領域設定部により設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成する予測動きベクトル生成部と、
 前記予測領域の予測動きベクトルを用いて、前記予測領域の動きベクトルを復号する動きベクトル復号部と
 を備える画像処理装置。
 (2) 前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左または上に位置する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定する
 前記(1)に記載の画像処理装置。
 (3) 前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記第1の隣接領域に隣接する第2の隣接領域の代わりに、前記第2の予測領域の前記第2の隣接領域を設定する
 前記(2)に記載の画像処理装置。
 (4) 前記符号化領域が2N×Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における上に位置する予測領域であり、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域である
 前記(3)に記載の画像処理装置。
 (5) 前記符号化領域がN×2Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における右に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左に位置する予測領域であり、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域である
 前記(3)に記載の画像処理装置。
 (6) 前記隣接領域設定部は、前記第1の予測領域が前記符号化領域における右および下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左上に接する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定する
 前記(3)に記載の画像処理装置。
 (7) 前記符号化領域が4×4の予測領域に分割される場合、前記第1の予測領域が、前記符号化領域における右上に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域であり、
 前記第1の予測領域が、前記符号化領域における左下に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域であり、
 前記第1の予測領域が、前記符号化領域における右下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左上に隣接する隣接領域である
 前記(6)に記載の画像処理装置。
 (8) 前記符号化領域は、Asymmetric Motion Partitionにより複数の予測領域に分割されている
 前記(1)乃至(5)のいずれかに記載の画像処理装置。
 (9) 符号化ストリームと、前記空間隣接領域の設定を行うか否かを示すフラグを受け取る受け取り部と、
 前記受け取り部により受け取られた符号化ストリームを復号し、前記画像を生成する復号部と
 をさらに備え、
 前記隣接領域設定部は、前記受け取り部により受け取られたフラグに基づいて、前記空間隣接領域の設定を行う
 前記(1)乃至(8)のいずれかに記載の画像処理装置。
 (10)  前記フラグは、前記符号化領域または前記予測領域毎に設定されている
 前記(9)に記載の画像処理装置。
 (11)  前記空間隣接領域の設定を行うか否かは、シーケンスプロファイルまたはレベルに応じて設定されており、
 前記隣接領域設定部は、前記シーケンスプロファイルまたはレベルに基づいて、前記空間隣接領域の設定を行う
 前記(1)乃至(10)のいずれかに記載の画像処理装置。
 (12) 画像処理装置が、
 画像の符号化領域を構成する複数の予測領域の動きベクトルの復号に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定し、
 設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成し、
 前記予測領域の予測動きベクトルを用いて、前記予測領域の動きベクトルを復号する
 画像処理方法。
 (13) 画像の符号化領域を構成する複数の予測領域の動きベクトルの符号化に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定する隣接領域設定部と、
 前記隣接領域設定部により設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成する予測動きベクトル生成部と、
 前記予測領域の予測動きベクトルを用いて、前記予測領域の動きベクトルを符号化する動きベクトル符号化部と
 を備える画像処理装置。
 (14) 前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左または上に位置する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定する
 前記(13)に記載の画像処理装置。
 (15) 前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記第1の隣接領域に隣接する第2の隣接領域の代わりに、前記第2の予測領域の前記第2の隣接領域を設定する
 前記(14)に記載の画像処理装置。
 (16) 前記符号化領域が2N×Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における上に位置する予測領域であり、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域である
 前記(15)に記載の画像処理装置。
 (17) 前記符号化領域がN×2Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における右に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左に位置する予測領域であり、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域である
 前記(15)に記載の画像処理装置。
 (18) 前記隣接領域設定部は、第1の予測領域が前記符号化領域における右下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左上に位置する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定する
 前記(15)に記載の画像処理装置。
 (19) 前記符号化領域が4×4の予測領域に分割される場合、前記第1の予測領域が、前記符号化領域における右上に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域であり、
 前記第1の予測領域が、前記符号化領域における左下に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域であり、
 前記第1の予測領域が、前記符号化領域における右下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左上に隣接する隣接領域である
 前記(18)に記載の画像処理装置。
 (20) 前記符号化領域は、Asymmetric Motion Partitionにより複数の予測領域に分割されている
 前記(15)に記載の画像処理装置。
 (21) 前記空間隣接領域の設定を行うか否かを示すフラグを設定する設定部と、
 前記画像を符号化し、符号化ストリームを生成する符号化部と、
 前記動きベクトル符号化部により符号化された動きベクトル、前記符号化部により生成された符号化ストリーム、および前記設定部により設定されたフラグを伝送する伝送部と
 をさらに備え、
 前記隣接領域設定部は、前記設定部により設定されたフラグに基づいて、前記空間隣接領域の設定を行う
 前記(13)乃至(20)のいずれかに記載の画像処理装置。
 (22)  前記設定部は、前記符号化領域または前記予測領域毎に前記フラグを設定する
 前記(21)に記載の画像処理装置。
 (23) 前記空間隣接領域の設定を行うか否かは、シーケンスプロファイルまたはレベルに応じて設定されており、
 前記隣接領域設定部は、前記シーケンスプロファイルまたはレベルに基づいて、前記空間隣接領域の設定を行う
 前記(13)乃至(22)のいずれかに記載の画像処理装置。
 (24) 画像処理装置が、
 画像の符号化領域を構成する複数の予測領域の動きベクトルの符号化に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定し、
 設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成し、
 前記予測領域の予測動きベクトルを用いて、前記対象領域の動きベクトルを符号化する
 画像処理方法。
  100 画像符号化装置, 106 可逆符号化部, 115 動き予測・補償部, 121 動きベクトル符号化部, 122 並列処理制御部, 151 空間隣接動きベクトルバッファ, 152 時間隣接動きベクトルバッファ, 153 候補予測動きベクトル生成部, 154 コスト関数値算出部, 155 最適予測動きベクトル決定部, 200 画像復号装置, 202 可逆復号部,  212 動き予測・補償部, 221 動きベクトル復号部, 222 並列処理制御部, 251 予測動きベクトル情報バッファ, 252  差分動きベクトル情報バッファ, 253 予測動きベクトル再構築部, 254 動きベクトル再構築部, 255 空間隣接動きベクトルバッファ, 256 時間隣接動きベクトルバッファ

Claims (24)

  1.  画像の符号化領域を構成する複数の予測領域の動きベクトルの復号に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定する隣接領域設定部と、
     前記隣接領域設定部により設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成する予測動きベクトル生成部と、
     前記予測領域の予測動きベクトルを用いて、前記予測領域の動きベクトルを復号する動きベクトル復号部と
     を備える画像処理装置。
  2.  前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左または上に位置する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定する
     請求項1に記載の画像処理装置。
  3.  前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記第1の隣接領域に隣接する第2の隣接領域の代わりに、前記第2の予測領域の前記第2の隣接領域を設定する
     請求項2に記載の画像処理装置。
  4.  前記符号化領域が2N×Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における上に位置する予測領域であり、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域である
     請求項3に記載の画像処理装置。
  5.  前記符号化領域がN×2Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における右に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左に位置する予測領域であり、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域である
     請求項3に記載の画像処理装置。
  6.  前記隣接領域設定部は、前記第1の予測領域が前記符号化領域における右および下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左上に接する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定する
     請求項3に記載の画像処理装置。
  7.  前記符号化領域が4×4の予測領域に分割される場合、前記第1の予測領域が、前記符号化領域における右上に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域であり、
     前記第1の予測領域が、前記符号化領域における左下に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域であり、
     前記第1の予測領域が、前記符号化領域における右下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左上に隣接する隣接領域である
     請求項6に記載の画像処理装置。
  8.  前記符号化領域は、Asymmetric Motion Partitionにより複数の予測領域に分割されている
     請求項3に記載の画像処理装置。
  9.  符号化ストリームと、前記空間隣接領域の設定を行うか否かを示すフラグを受け取る受け取り部と、
     前記受け取り部により受け取られた符号化ストリームを復号し、前記画像を生成する復号部と
     をさらに備え、
     前記隣接領域設定部は、前記受け取り部により受け取られたフラグに基づいて、前記空間隣接領域の設定を行う
     請求項3に記載の画像処理装置。
  10.  前記フラグは、前記符号化領域または前記予測領域毎に設定されている
     請求項9に記載の画像処理装置。
  11.  前記空間隣接領域の設定を行うか否かは、シーケンスプロファイルまたはレベルに応じて設定されており、
     前記隣接領域設定部は、前記シーケンスプロファイルまたはレベルに基づいて、前記空間隣接領域の設定を行う
     請求項3に記載の画像処理装置。
  12.  画像処理装置が、
     画像の符号化領域を構成する複数の予測領域の動きベクトルの復号に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定し、
     設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成し、
     前記予測領域の予測動きベクトルを用いて、前記予測領域の動きベクトルを復号する
     画像処理方法。
  13.  画像の符号化領域を構成する複数の予測領域の動きベクトルの符号化に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定する隣接領域設定部と、
     前記隣接領域設定部により設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成する予測動きベクトル生成部と、
     前記予測領域の予測動きベクトルを用いて、前記予測領域の動きベクトルを符号化する動きベクトル符号化部と
     を備える画像処理装置。
  14.  前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左または上に位置する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定する
     請求項13に記載の画像処理装置。
  15.  前記隣接領域設定部は、第1の予測領域が前記符号化領域における右または下に位置する場合、前記第1の予測領域の隣接領域のうち、前記第1の隣接領域に隣接する第2の隣接領域の代わりに、前記第2の予測領域の前記第2の隣接領域を設定する
     請求項14に記載の画像処理装置。
  16.  前記符号化領域が2N×Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における上に位置する予測領域であり、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域である
     請求項15に記載の画像処理装置。
  17.  前記符号化領域がN×2Nの予測領域に分割される場合、前記第1の予測領域は、前記符号化領域における右に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左に位置する予測領域であり、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域である
     請求項15に記載の画像処理装置。
  18.  前記隣接領域設定部は、第1の予測領域が前記符号化領域における右下に位置する場合、前記第1の予測領域の隣接領域のうち、前記符号化領域における左上に位置する第2の予測領域となる第1の隣接領域の代わりに、前記第2の予測領域の前記第1の隣接領域を設定する
     請求項15に記載の画像処理装置。
  19.  前記符号化領域が4×4の予測領域に分割される場合、前記第1の予測領域が、前記符号化領域における右上に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の左下に隣接する隣接領域であり、
     前記第1の予測領域が、前記符号化領域における左下に位置する予測領域であり、前記第2の予測領域が、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の上に隣接する隣接領域であり、前記第2の隣接領域は、予測領域の右上に隣接する隣接領域であり、
     前記第1の予測領域が、前記符号化領域における右下に位置する予測領域であり、前記第2の予測領域は、前記符号化領域における左上に位置する予測領域であるとき、前記第1の隣接領域は、予測領域の左上に隣接する隣接領域である
     請求項18に記載の画像処理装置。
  20.  前記符号化領域は、Asymmetric Motion Partitionにより複数の予測領域に分割されている
     請求項15に記載の画像処理装置。
  21.  前記空間隣接領域の設定を行うか否かを示すフラグを設定する設定部と、
     前記画像を符号化し、符号化ストリームを生成する符号化部と、
     前記動きベクトル符号化部により符号化された動きベクトル、前記符号化部により生成された符号化ストリーム、および前記設定部により設定されたフラグを伝送する伝送部と
     をさらに備え、
     前記隣接領域設定部は、前記設定部により設定されたフラグに基づいて、前記空間隣接領域の設定を行う
     請求項15に記載の画像処理装置。
  22.  前記設定部は、前記符号化領域または前記予測領域毎に前記フラグを設定する
     請求項21に記載の画像処理装置。
  23.  前記空間隣接領域の設定を行うか否かは、シーケンスプロファイルまたはレベルに応じて設定されており、
     前記隣接領域設定部は、前記シーケンスプロファイルまたはレベルに基づいて、前記空間隣接領域の設定を行う
     請求項15に記載の画像処理装置。
  24.  画像処理装置が、
     画像の符号化領域を構成する複数の予測領域の動きベクトルの符号化に用いられる予測動きベクトルのうちの空間予測動きベクトルを生成する際に、前記複数の予測領域の空間動きベクトルの生成が並列で行うように、前記符号化領域における予測領域の位置に応じて、空間隣接領域を設定し、
     設定された空間隣接領域の動きベクトルを用いて、前記予測領域の空間予測ベクトルを生成し、
     前記予測領域の予測動きベクトルを用いて、前記対象領域の動きベクトルを符号化する
     画像処理方法。
PCT/JP2013/050212 2012-01-19 2013-01-09 画像処理装置および方法 WO2013108689A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13738156.2A EP2806636A1 (en) 2012-01-19 2013-01-09 Image processing device and method
US14/363,503 US9667995B2 (en) 2012-01-19 2013-01-09 Image processing apparatus and method
MX2014008479A MX2014008479A (es) 2012-01-19 2013-01-09 Aparato y metodo de procesamiento de imagenes.
CN201380005256.5A CN104054346A (zh) 2012-01-19 2013-01-09 图像处理装置和方法
IN5807DEN2014 IN2014DN05807A (ja) 2012-01-19 2014-07-11
US15/465,132 US10110920B2 (en) 2012-01-19 2017-03-21 Image processing apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-009328 2012-01-19
JP2012009328 2012-01-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/363,503 A-371-Of-International US9667995B2 (en) 2012-01-19 2013-01-09 Image processing apparatus and method
US15/465,132 Continuation US10110920B2 (en) 2012-01-19 2017-03-21 Image processing apparatus and method

Publications (1)

Publication Number Publication Date
WO2013108689A1 true WO2013108689A1 (ja) 2013-07-25

Family

ID=48799115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050212 WO2013108689A1 (ja) 2012-01-19 2013-01-09 画像処理装置および方法

Country Status (7)

Country Link
US (2) US9667995B2 (ja)
EP (1) EP2806636A1 (ja)
JP (1) JPWO2013108689A1 (ja)
CN (1) CN104054346A (ja)
IN (1) IN2014DN05807A (ja)
MX (1) MX2014008479A (ja)
WO (1) WO2013108689A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2750385A4 (en) * 2011-09-20 2015-11-25 Lg Electronics Inc METHOD AND APPARATUS FOR ENCODING / DECODING IMAGE INFORMATION
ES2705357B1 (es) * 2011-09-23 2020-01-29 Kt Corp Método para inducir un bloque candidato de fusión y dispositivo que usa el mismo
CN105323583B (zh) * 2014-06-13 2019-11-15 财团法人工业技术研究院 编码方法、解码方法、编解码***、编码器与解码器
US9734436B2 (en) * 2015-06-05 2017-08-15 At&T Intellectual Property I, L.P. Hash codes for images
US9998745B2 (en) * 2015-10-29 2018-06-12 Microsoft Technology Licensing, Llc Transforming video bit streams for parallel processing
CN106231317A (zh) * 2016-09-29 2016-12-14 三星电子(中国)研发中心 视频处理、解码方法和装置、vr终端、视频播放***
KR102448635B1 (ko) * 2016-09-30 2022-09-27 후아웨이 테크놀러지 컴퍼니 리미티드 비디오 인코딩 방법, 비디오 디코딩 방법, 및 단말
CN106851298B (zh) * 2017-03-22 2020-04-03 腾讯科技(深圳)有限公司 一种高效视频编码方法及装置
US10464500B2 (en) * 2017-05-29 2019-11-05 Aamp Of Florida, Inc. Aftermarket head unit interface and protocol converter cartridge
US11503329B2 (en) 2018-08-17 2022-11-15 Hfi Innovation Inc. Method and apparatus of simplified sub-mode for video coding
US11245922B2 (en) * 2018-08-17 2022-02-08 Mediatek Inc. Shared candidate list
EP3857888A4 (en) 2018-10-06 2022-08-03 HFI Innovation Inc. METHOD AND APPARATUS FOR AN AREA OF A SHARED MERGER CANDIDATE LIST FOR ENABLING VIDEO CODING
CN112383816A (zh) * 2020-11-03 2021-02-19 广州长嘉电子有限公司 基于安卓***介入的atsc制式信号解析方法及***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020057739A1 (en) * 2000-10-19 2002-05-16 Takumi Hasebe Method and apparatus for encoding video
JP5401071B2 (ja) * 2008-10-09 2014-01-29 株式会社Nttドコモ 動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、動画像符号化プログラム、動画像復号プログラム、動画像処理システムおよび動画像処理方法
US9143795B2 (en) * 2011-04-11 2015-09-22 Texas Instruments Incorporated Parallel motion estimation in video coding

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JOEL JUNG; GUILLAUME LAROCHE: "Competition-Based Scheme for Motion Vector Selection and Coding", VCEG-AC06, ITU-TELECOMMUNICATIONS STANDARDIZATION SECTOR STUDY GROUP 16 QUESTION 6 VIDEO CODING EXPERTS GROUP (VCEG) 29TH MEETING: KLAGENFURT, AUSTRIA, 17 July 2006 (2006-07-17)
KAZUSHI SATO: "On Motion Vector Coding", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 2ND MEETING, 21 July 2010 (2010-07-21), GENEVA,CH, pages 1 - 3, XP008168663, Retrieved from the Internet <URL:http://wftp3.itu.int/av-arch/jctvc-site/201007BGeneva> *
KEN MCCANN ET AL.: "High Efficiency Video Coding (HEVC) Test Model 2 (HM2) Encoder Description", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/ SC29/WG11 3RD MEETING, 7 October 2010 (2010-10-07), GUANGZHOU,CN, pages 11 - 15, XP002679641, Retrieved from the Internet <URL:http://wftp3.itu.int/av-arch/jctvc-site/201101DDaegu> *
MARTIN WINKEN; SEBASTIAN BOSSE; BENJAMIN BROSS; PHILIPP HELLE; TOBIAS HINZ; HEINER KIRCHHOFFER; HARICHARAN LAKSHMAN; DETLEV MARPE;: "Description of video coding technology proposed by Fraunhofer HHI", JCTVC-A116, April 2010 (2010-04-01)
QIN YU ET AL.: "PARALLEL AMVP CANDIDATE LIST CONSTRUCTION FOR HEVC", VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP) 2012,IEEE, 27 November 2012 (2012-11-27), pages 1 - 6, XP032309189 *
THOMAS WIEGAND; WOO-JIN HAN; BENJAMIN BROSS; JENS-RAINER OHM; GARY J. SULLIVAN: "Working Draft 4 of High-Efficiency Video Coding", JCTVC-F803, JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG16 WP3 AND ISO/IEC JTC1/SC29/WG11 6TH MEETING: TORINO, IT, 14 July 2011 (2011-07-14)

Also Published As

Publication number Publication date
JPWO2013108689A1 (ja) 2015-05-11
US20170195689A1 (en) 2017-07-06
US9667995B2 (en) 2017-05-30
US20140348243A1 (en) 2014-11-27
EP2806636A1 (en) 2014-11-26
US10110920B2 (en) 2018-10-23
IN2014DN05807A (ja) 2015-05-15
MX2014008479A (es) 2014-10-14
CN104054346A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
US10110920B2 (en) Image processing apparatus and method
JP5979405B2 (ja) 画像処理装置および方法
JP6033081B2 (ja) 画像処理装置および方法、プログラム、並びに、記録媒体
US20230247217A1 (en) Image processing apparatus and method
WO2013058363A1 (ja) 画像処理装置および方法
US9961366B2 (en) Image processing apparatus and method that prohibits bi-prediction based on block size
WO2013002109A1 (ja) 画像処理装置および方法
JPWO2014050676A1 (ja) 画像処理装置および方法
JP2012244353A (ja) 画像処理装置および方法
WO2013002108A1 (ja) 画像処理装置および方法
WO2014103774A1 (ja) 画像処理装置および方法
WO2012173022A1 (ja) 画像処理装置および方法
JPWO2014103764A1 (ja) 画像処理装置および方法
WO2013084775A1 (ja) 画像処理装置および方法
WO2013054751A1 (ja) 画像処理装置および方法
WO2013002105A1 (ja) 画像処理装置および方法
JP2016201831A (ja) 画像処理装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738156

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554274

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14363503

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013738156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/008479

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE