WO2013107369A1 - 多频段宽带信号的削峰方法和设备 - Google Patents

多频段宽带信号的削峰方法和设备 Download PDF

Info

Publication number
WO2013107369A1
WO2013107369A1 PCT/CN2013/070632 CN2013070632W WO2013107369A1 WO 2013107369 A1 WO2013107369 A1 WO 2013107369A1 CN 2013070632 W CN2013070632 W CN 2013070632W WO 2013107369 A1 WO2013107369 A1 WO 2013107369A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
peak
carrier signal
signal
vector
Prior art date
Application number
PCT/CN2013/070632
Other languages
English (en)
French (fr)
Inventor
熊芳
孙华荣
陈东
马艳君
Original Assignee
电信科学技术研究院
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院, 大唐移动通信设备有限公司 filed Critical 电信科学技术研究院
Publication of WO2013107369A1 publication Critical patent/WO2013107369A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2623Reduction thereof by clipping
    • H04L27/2624Reduction thereof by clipping by soft clipping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • BBU Basic Band Unit
  • RRU Radio Remote Unit
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • a base station site has several base stations of different standards, which means that it operates in several frequency bands at the same time, it is necessary to configure several independent RRUs.
  • the RRU When the station is built, the RRU is often caused by high requirements and the site is difficult to obtain. High deployment and maintenance costs, and cannot It satisfies the dynamic allocation of spectrum and power resources between different frequency bands in the subsequent evolution.
  • the evolution of wireless technology from 2G (2nd Generation, 2nd generation mobile communication system) to 3G (3rd Generation, 3rd generation mobile communication system), and then to 3.9G/LTE (Long Term Evolved, long-term evolution) , so mobile operators have to face the reality of operating multiple standard networks.
  • the MU is more scalable in the spectrum width, and the narrowband RRU device is obviously not satisfied.
  • the radio frequency broadband represented by the broadband RRU can realize the unity of multi-standard and multi-band devices, and effectively solve the above-mentioned series of problems, which has become a common trend of full-business demand and promotion of industry development.
  • the key technology is the Broadband MCPA (Multi Carrier Power Amplifier).
  • the traditional technology implements F, k, E multi-band networking at least 7 MUs, station building, maintenance difficulties, expansion, and frequent replacement.
  • the use of broadband MCPA technology requires only three RRUs to achieve full coverage of TD-SCDMA outdoor and outdoor indoor and indoor environments, enabling long-term stable development of the network.
  • the outdoor broadband MCPA U weight and volume are reduced by at least 203 ⁇ 4, which is conducive to rapid engineering implementation.
  • the broadband MCPA electronic components are reduced by 30%, the reliability is improved by more than 60%, and the power consumption is reduced by more than 203 ⁇ 4.
  • the narrowband RRU cannot support different frequency bands where TD and TD-LTE are located at the same time, and the broadband RRU based on MCPA technology can continue to exist in the TD-LTE era only through software upgrade, realizing smooth evolution in the true sense and future multi-standard network. Fusion coexistence. Affected by market demand, the entire broadband RRU industry chain has gradually matured.
  • CFR Rest Factor Reduction
  • DPD Digital Pre-Distortion
  • FIG. 1 it is a schematic diagram of a peri-cycle scenario using conventional multi-band CFR technology in the prior art, which is actually a simple combination of narrow band CFR+DPD for two frequency bands. Separate PAs are used for each frequency band. F and A are isolated on the physical channel. The signals have no effect on each other.
  • the CFR scheme used is the traditional peak pulse cancellation algorithm.
  • FIG. 2 it is a schematic diagram of another application scenario in the prior art using conventional multi-band CFR technology.
  • the F+A signal is combined for CFR and DPD processing, and the combined signal passes through the same MCPA power amplifier, F+A frequency band.
  • the combined signal frequency band spans more than 120Mhz.
  • a higher intermediate frequency processing rate is usually adopted.
  • the intermediate frequency clock rate is generally lower than 250Msps.
  • the above scheme shown in FIG. 1 is a direct combination of two single-band CFR+DPD systems, and two independent power amplifiers are used, which has the advantages of not requiring any modification to the existing algorithm, and the performance is stable, and the disadvantage is that the device is bulky. Low efficiency, high cost, non-compliance with technological evolution requirements, and difficulty in meeting operators' demand for green-based stations.
  • the CFR module can guarantee the entrance peak-to-average ratio of the DAC (Dig i ta l to Analog Conver ter), but the peak-to-peak ratio of the DAC is larger, F+ A signal bandwidth occupies 145M z, which is limited by the current FPGA (Fi e ld - Programmable Gate Array).
  • the sampling rate in B ⁇ 4 is up to 250Msps, so the DAC introduces peak regeneration. At l.
  • the CFR clipping peak threshold should be set lower, so the consumption of resources will increase, EVM (Error Vector Magni tude The error vector amplitude) is also deteriorated.
  • Another solution is to maintain the existing CFR peak clipping threshold, and the PA performs a certain power back-off, so that the power amplifier efficiency is greatly reduced.
  • the scheme In order to ensure the normal implementation of the DPD scheme, the scheme generally has a high intermediate frequency processing rate, which also makes the design of the CFR peak clipping filter more difficult.
  • the embodiment of the invention provides a method and a device for peak clipping of a multi-band wideband signal, and solves the problem that the base station device uses a wide frequency power amplifier in a single channel and supports multiple frequency bands at the same time. When there is a peak-to-average ratio of the signal present.
  • an embodiment of the present invention provides a multi-band wideband signal.
  • Step A Predicting a value of a received multi-band multi-carrier signal after being processed by a digital-to-analog conversion DAC;
  • Step B determining whether the predicted peak value is higher than a value detection threshold
  • Step E Subtract the corresponding multi-band multi-carrier signal from the corresponding peak-canceling cancellation pulse vector, and output the multi-band multi-carrier signal after the peak clipping process.
  • the embodiment of the present invention further provides a peak clipping processing unit for a multi-band wideband signal, including at least:
  • a receiving module configured to receive a multi-band multi-carrier signal
  • a prediction module configured to predict a peak value of the multi-band multi-carrier signal received by the receiving module after being processed by the DAC
  • a first determining module configured to determine whether a peak predicted by the prediction module is higher than a peak detection threshold
  • a determining module configured to determine, when the first determining module determines that the predicted peak value is higher than the peak detection threshold, respectively, determining a peak adjustment value of the multi-carrier signal of each frequency band; corresponding to the multi-carrier signal of each frequency band Peak clipping 3 ⁇ 4 cancellation pulse vector;
  • a processing module configured to subtract the corresponding peak clipping offset pulse vector from the multi-band multi-carrier signal received by the receiving module, and output the multi-band multi-carrier signal after the peak clipping process.
  • the technical solution proposed by the embodiment of the present invention has the following advantages:
  • the peak value of the received multi-band multi-carrier signal after being processed by the DAC is predicted in advance, and corresponding pre-cut peak processing is performed according to the predicted result to ensure multi-band multi-carrier.
  • the peak-to-average ratio of the signal after MC processing thereby solving the problem that the existing base station equipment adopts a wide-band power amplifier in a single channel, and simultaneously supports multi-band, the peak-to-average ratio of the signal existing, and the digital pre-distortion scheme is used to ensure The linearity and efficiency of the power amplifier ensure that the same system multi-band application, different system common mode, and common platform implementation are technically feasible.
  • FIG. 1 is a schematic diagram of an application scenario in the prior art using conventional multi-band CFR technology
  • FIG. 1 is a schematic diagram of another application scenario in the prior art using conventional multi-band CFR technology
  • FIG. 3 is a schematic flow chart of a method for peak clipping of a multi-band wideband signal according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a system according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a Pre-Peak CFR scheme according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a peak clipping processing unit for a multi-band wideband signal according to an embodiment of the present invention.
  • the existing technical solutions of the Zhou Zhou independent power amplifier have the defects of large volume, low efficiency, high cost, and the technical solution for the base station equipment to adopt the broadband power amplifier in a single channel and simultaneously support the signals in the multi-band,
  • the above problems can be solved, it will occur in the case of ensuring the peak-to-average ratio of the DAC inlet, the problem of the peak-to-average ratio after the DAC processing cannot be ensured, affecting the specific application effect, and the technical standards of the actual implementation process.
  • the embodiment of the present invention proposes a multi-band wideband signal.
  • the peak clipping method predicts the peak value of the multi-band wideband signal after the DAC processing, and pre-cuts the signal of the corresponding frequency band to ensure the peak-to-average ratio after the DAC processing.
  • FIG. 3 it is a schematic flowchart of a method for peak clipping of a multi-band wideband signal according to an embodiment of the present invention, where the method specifically includes the following steps:
  • Step S301 Predict the peak value of the received multi-band multi-carrier signal after being processed by the digital-to-analog conversion DAC.
  • Step S302 Determine whether the predicted peak value is higher than a peak detection threshold.
  • step S303 is performed;
  • step S306 is performed.
  • the peak detection threshold is calculated according to a preset peak clipping threshold, wherein the peak detection threshold is slightly higher than the preset peak clipping threshold.
  • Step S303 Determine a peak adjustment value of the multi-carrier signal of each corresponding frequency band.
  • Step S304 Generate, according to the determined peak adjustment value, a peak clipping cancellation pulse vector corresponding to the multi-carrier signal of each frequency band.
  • Step S305 Subtract the corresponding multi-band multi-carrier signal from the corresponding peak clipping; 3 ⁇ 4 cancel the pulse vector, and output the multi-band multi-carrier signal after the peak clipping process.
  • Step S306 Determine whether the currently processed data length position is the maximum data length position of the multi-band multi-carrier signal.
  • a signal iteration number threshold in the process of generating a peak-canceling cancellation pulse vector corresponding to a multi-carrier signal of each frequency band may be preset.
  • the peak clipping offset pulse vector corresponding to the multi-carrier signal of each frequency band is directly generated according to the current cumulative pulse cancellation vector.
  • step S301 it is necessary to perform data delay processing on the received multi-band multi-carrier signal until After the processing of step S304 is completed, respectively, after the corresponding peak clipping vector of the multi-carrier signal of each frequency band is generated, step S301 is performed, and the multi-band multi-carrier signals after the data delay processing are respectively subtracted correspondingly.
  • the peak clipping cancels the pulse vector, and outputs the multi-band multi-carrier signal after the peak clipping process.
  • the technical solution proposed by the embodiment of the present invention has the following advantages: by applying the technical solution of the embodiment of the present invention, predicting in advance the peak value of the received multi-band multi-carrier signal after being processed by the DAC According to the predicted result, the corresponding pre-cut peak processing is performed to ensure the peak-to-average ratio of the multi-band multi-carrier signal after MC processing, thereby solving the problem that the existing base station equipment adopts a wide-band power amplifier in a single channel, and simultaneously supports multiple In the frequency band, the peak-to-average ratio of the existing signals is matched with the digital pre-distortion scheme to ensure the linearity and efficiency of the power amplifier, ensuring that the same system multi-band application, different system common mode, and common platform implementation are technically feasible.
  • the technical solutions proposed by the embodiments of the present invention are described below in conjunction with specific specific scenarios.
  • FIG. 4 it is a schematic diagram of a system structure of a technical scenario applied to an embodiment of the present invention.
  • the embodiment of the present invention provides a detailed process of the Pre Peak CFR algorithm under such a framework to ensure that the CFR process is processed.
  • the basic idea of the Pre Peak CFR scheme is to pre-predict the peaks of the F-band and A-band signals by predicting the peaks of the multi-band signal DAC in advance, and to ensure the peak-to-average ratio after the MC.
  • the F+A broadband system is taken as an example to describe the Pre Peak CFR implementation scheme in the system architecture shown in FIG. 4 in detail.
  • FIG. 5 it is a schematic flowchart of a Pre Peak CFR solution according to an embodiment of the present invention, where the method specifically includes the following steps:
  • Step S501 The CFR module receives the multi-carrier signals of the F-band and the A-band.
  • the CFR module After the CFR module receives the multi-carrier signals of the F-band and the A-band _, on the one hand, the corresponding signal needs to be subjected to data delay processing, and on the other hand, the subsequent step S502 needs to be performed according to the received information of the corresponding signal.
  • Step S502 Prediction of a peak value of the received multi-carrier signal.
  • the specific prediction methods include the following two types:
  • Method 1 determine the letter of each phase point on the multi-carrier signal of the F-band and the A-band.
  • Ffl is the current phase point, n ⁇ ) ... P-Num- ⁇ 0
  • the possible values of F/A after HB, NC0, and MC are obtained.
  • the number of possible values currently considered is P-Num.
  • the peak value of the multi-carrier signal of the F-band and the ⁇ band after MC processing is determined as the predicted peak value:
  • the largest amplitude value among the plurality of possible values can be obtained as the predicted peak value, so that the leakage-free can be ensured to the greatest extent.
  • the second method is actually a simplified processing of the above method one, that is, directly into the peak prediction by the following method: It is not as good as the method of the first method - but it is obviously better than the method in the processing efficiency - "i'l is simple, simple, in the actual application scenario, according to the actual needs - to determine the application: Changes in the content of the applied method do not affect the scope of protection of the present invention The value of the size of 4.
  • step S503 If -(?')> ' in step S503, you need to calculate the corresponding ⁇ value window ⁇ ', / ⁇ /+Win_ length ⁇ ⁇
  • step S504 is further performed.
  • step S503 If the result of the determination in step S503 is ??? , Hsax (0 ⁇ 4), it is determined whether the currently processed data length position is the maximum data length position of the multi-carrier signal of the F/A band, that is, whether the current/is equal to N is determined.
  • the signal at the next data length position ( / ⁇ 1 ) of the multi-band multi-carrier signal is subjected to the peak after the MC processing, and the subsequent processing is performed according to the predicted result.
  • Step S506 is performed directly.
  • Step S5 M, peak adjustment is performed, and the F/A signal is calculated.
  • Step S 5 0: 5 respectively performing the multiplication operation on the adjustment values ( ) and ⁇ ( ⁇ ) outputted by the step SSiM to generate a peak-shaping cancellation pulse vector of the multi-carrier signal of the F/A band.
  • step S505 it is necessary to generate peak clipping filter coefficients t and h a of the multi-carrier signal of the F/A band according to the frequency point configuration and the peak clipping filter length.
  • the corresponding data dimension is I x ; is the peak clipping filter length - in this step, the peak value of the multi-carrier signal of the F-band is adjusted to c f ( .
  • the filter coefficient h is vector-multiplied to obtain the pulse canceling sub-vector of the multi-carrier signal of the F-band, and at the same time, the peak-adjusting value C (x) of the multi-carrier signal of the A-band and the peak-shaping filtering of the multi-carrier signal of the A-band Coefficient
  • the quantities are multiplied to obtain a pulse canceling sub-vector of the multi-carrier signal of the A-band.
  • the obtained pulse canceling sub-vectors are respectively increased to the cumulative value according to the following formula Consumer vector) ⁇ and) ⁇ Medium:
  • 4 + ⁇ ( /2) is determined, and it is judged whether the currently processed data length position is the maximum data length position of the multi-carrier signal of the F/A band, that is, whether the current / is equal to or not
  • step S502 it is determined and returned to step S502 to continue to predict the peak value of the signal on the next data length position (1) of the received multi-band multi-carrier signal after being processed by the DAC, and according to the prediction The result is followed up.
  • the current cumulative pulse cancellation vector sum is the peak clipping cancellation pulse vector of the multi-carrier signal of the F-band and the ⁇ -band, respectively, and directly performs step S506 to step S506, and F/ of the data delay processing in step S501.
  • the multi-carrier input data y, ⁇ and y of the A-band are subtracted from the corresponding peak-shaping canceling pulse vectors y ⁇ and y ⁇ , and the corresponding peak-cutting output results y and y a are output to achieve peak cancellation of the input signal. Cheng.
  • the processing of the returning step S502 in the step S503 or the processing of the returning step S502 in the step S505 belongs to the iterative processing of the CFR module, in order to improve the corresponding The processing efficiency, avoiding the case where the processing efficiency is reduced due to excessive iterative processing, the number of iterations of the CFR module can be preset in the initial state of the ILoopJ, the loop variable
  • the process of performing step S502 for the same multi-carrier signal each time belongs to the iterative process. Therefore, it is required to perform the process of step S502 every time for the same multi-carrier signal.
  • the current loop variable is processed according to the following rules:
  • the technical solution proposed by the embodiment of the present invention has the following advantages:
  • the peak of the received multi-band multi-carrier signal after MC processing is predicted in advance by the technical solution of the embodiment of the present invention.
  • the corresponding pre-cut peak processing is performed to ensure the peak-to-average ratio of the multi-band multi-carrier signal after MC processing, thereby solving the existing base station setting, and the standby channel adopts the broadband power amplifier.
  • the peak-to-average ratio of the existing signals is matched with the digital pre-distortion scheme to ensure the linearity and efficiency of the power amplifier, and to ensure that the same system multi-band application, different system common mode, and common platform implementation are technically feasible.
  • the peak clipping processing unit of the multi-band wideband signal has a structure diagram as shown in FIG. 6, and at least includes:
  • Block 601 configured to receive a multi-band multi-carrier signal
  • the prediction module 602 is configured to predict a peak value of the multi-band multi-carrier signal received by the receiving module 601 after being processed by the DAC;
  • the first determining module 603 is configured to determine whether the peak predicted by the prediction module 602 is higher than a peak detection threshold
  • a determining module 604 configured to determine, when the first determining module 603 determines that the predicted peak value is higher than the _ peak detecting side threshold, respectively, a value adjustment value of the multi-carrier signal of each corresponding frequency band;
  • the generating module 605 is configured to generate, according to the peak adjustment value determined by the determining module 604, a peak clipping canceling pulse vector corresponding to the multi-carrier signal of each frequency band;
  • the processing module 606 is configured to subtract the multi-band multi-carrier signal received by the receiving module 601 from the corresponding peak-canceling cancellation pulse vector, and output the multi-band multi-carrier signal after the peak clipping process.
  • the peak clipping processing unit of the multi-band wideband signal further includes:
  • the second determining module 607 is configured to: when the first determining module 603 determines that the predicted peak value is not higher than the peak detection threshold, determine whether the currently processed data length position is the multi-band multi-carrier signal. Maximum data length position;
  • the notification prediction module 602 continues to predict the peak of the signal at the next data length position of the received multi-band multi-carrier signal after the DAC processing; if so, the notification generation module 605 directly according to the current accumulation.
  • the pulse cancellation vector generates a peak clipping cancellation pulse vector corresponding to the multicarrier signal of each frequency band.
  • the peak clipping processing unit of the multi-band wideband signal further includes: a setting module 608, configured to preset a signal iteration number threshold in a process of generating a peak clipping offset pulse vector corresponding to the multi-carrier signal of each frequency band;
  • the third determining module 609 is configured to determine, in the process of generating the peak clipping offset pulse vector corresponding to the multi-carrier signal of each frequency band, whether the current signal iteration number reaches the signal iteration number threshold set by the setting module 608, and When the result of the determination is YES, the generating module 605 is directly notified to generate another frequency band according to the current accumulated pulse canceling vector.
  • the peak clipping processing unit of the multi-band wideband signal further includes: a delay module 610, Performing data delay processing on the multi-band multi-carrier signal received by the receiving module 601;
  • the processing module 606 is specifically configured to: after the generating module 605 separately generates the peak clipping canceling pulse vector corresponding to the multi-carrier signal of each frequency band, the delay module 610 performs the data delay processing on the multi-band multi-band The carrier signal is respectively subtracted from the corresponding peak clipping pulse elimination vector, and the multi-band multi-carrier signal after peak clipping processing is output.
  • the peak clipping processing unit of the multi-band wideband signal may be a CFR module, which is applied to a single-channel broadband power amplifier and supports multiple frequency band base station devices.
  • the technical solution proposed by the embodiment of the present invention has the following advantages: by applying the technical solution of the embodiment of the present invention, predicting in advance the peak value of the received multi-band multi-carrier signal after being processed by the DAC According to the predicted result, the corresponding pre-cut peak processing is performed to ensure the peak-to-average ratio of the multi-band multi-carrier signal after MC processing, thereby solving the problem that the existing base station equipment adopts a wide-band power amplifier in a single channel, and simultaneously supports multiple In the frequency band, the peak-to-average ratio of the existing signals is matched with the digital pre-distortion scheme to ensure the linearity and efficiency of the power amplifier, ensuring that the same system multi-band application, different system common mode, and common platform implementation are technically feasible.
  • the embodiments of the present invention can be implemented by hardware or by means of software plus a necessary general hardware platform.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD ROM, a USB flash drive, a mobile hard disk, etc.), including
  • a computer device which may be a personal computer, a server, or a network side device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuits Of Receivers In General (AREA)
  • Amplifiers (AREA)

Abstract

本发明实施例公开了一种多频段宽带信号的削峰方法和设备,通过应用本发明实施例的技术方案,事先预测所接收到的多频段的多载波信号在经过DAC处理后的峰值,并根据预测的结果进行相应的预削峰处理,保证多频段的多载波信号在经过DAC处理后的峰均比,从而,解决了现有的基站设备单通道采用宽频功放,且同时支持多频段时,所存在的信号的峰均比问题,配合数字预失真方案来保证功放的线性和效率,确保同一***多频段应用、异***共模、共平台实现技术可行。

Description

信号的削 "方法和设备
本申请要求于 2012年 1月 19日提交中国专利局, 申请号为
201210017306, 9, 发明名称为 "多频段宽带信号的削峰方法和设备''
'请的优先权, 其全部内容通过引用结
方法和设备。
伴随国内外移动运营商的高度认可、 近年来的大规模部署商用 , BBU ( Base Band Unit, 基带处-理单元) + RRU ( Radio Remote Unit, 射频拉远单元)的建网模式呈现出从根本上改变传统网络架构的趋势 由于各国家和地区频谱政策差异,相应的全球移动运营商获得的 频谱资源相对分散 (包括 900MHz /1800MHz /2100MHz /2300MHz /2600MHz 等) , 普遍面临着多制式、 多频段的挑战。 以***为 例 , 在 TD-SCDMA ( Time Division Synchronous Code Division Multiple Access , 时分同步码分多址) 制式上先后分得了 F ( 1880MHz 1920MHz )、 A( 2010MHz 2025MHz )、 E( 2320MHz 2370MHz ) 和 D ( 2570MHz 2620固 z ) 4个频段, -富, 但频段间隔 较大。 为了满足 TD (Time Division, 时分) 网络适应不同频段、 应 用场景需求, l)产品已经有十数种之多, 即使是主流厂商也难以全 部覆.盖。 而且未来一旦频段划分再调整, 现有窄带 U设备也不得不 替换, 这些都促使射频尽快向宽带化方向发展。
一般来说, 一个基站站点如果开通几个不同制式的基站, 意味着 同时在几个频段上运行, 就需配置几个独立 RRU, 建站时常因 RRU多 而造成天面要求高、 站点获取难、 部署和维护成本高等问题, 且无法 满足后续演进时不同频段间的频谱与功率资源动态调配需求。与此同 时, 无线技术从 2G ( 2nd Generation, 第二代移动通信***)到 3G ( 3rd Generation,第三代移动通信***)、再向 3.9G/LTE( Long Term Evolved, 长期演进) 的演进道路, 使移动运营商不得不面临运营多 个制式网络的现实问题。 为了实现更灵活的网络架枸, 更高的频谱利 用率和集成度, 具体到 MU 则要在频谱宽度上更具可扩展性, 窄带 RRU设备显然无法满足。 以宽带 RRU为代表的射频宽带化可实现多制 式、 多频段时设备合一, 有效解决上述一系列问题, 已成为满 营 商需求与推动行业发展的共同趋势。
在射频宽带化的背后,关键性技术即为宽带 MCPA(Multi Carrier Power Amplifier, 多载波功放) 。 传统技术实现 F、 k、 E多频段组 网至少需 7款 MU、 建站、 维护困难, 扩容时设,备更换频繁。 而采用 宽带 MCPA技术仅需 3款 RRU可实现 TD-SCDMA室外、室外打室内和室 内全场景覆盖, 实现网络长期稳定发展。 同时, 相对采周传统技术的 U产品, 室外宽带 MCPA U重量、 体积均至少减小 20¾, 有利于快 速工程实施。 相比传统将 2个功放 "双拼" 的 RRU产品, 宽带 MCPA 电子元器件减少 30%, 可靠性提升 60%以上, 功耗降低 20¾以上。
窄带 RRU无法同时支持 TD和 TD-LTE所在的不同频段, 而基于 MCPA技术的宽带 RRU只需通过软件升级便得以在 TD-LTE时代继续存 在, 实现真正意义上的平滑演进和未来多制式网络的融合共存。 受市 场需求影响, 整个宽带 RRU产业链已渐渐趋于成熟。
而解决 MCPA的核心技术就是 CFR (Crest Factor Reduction, 宽带峰均比抑制)技术以及 DPD ( Digital Pre- Distortion, 宽带数 字预失真)技术。 这两种方案是互相补充和制约的。
下面对目前业界上针对多频段的几种常用 CFR+DPD 解决方案进 行说明。
如图 1所示,为现有技术中采用常规多频段 CFR技术的一种应周 场景的示意图, 其实际上是针对两个频段窄带 CFR+DPD的简单组合, 各频段使用单独的 PA, F和 A在物理通道上是隔离的, 信号彼此之间 没有影响, 其采用的 CFR方案为传统峰值脉冲抵消算法。
如图 2所示,为现有技术中采用常规多频段 CFR技术的另一种应 用场景的示意图, F+A信号合路进行 CFR和 DPD处理, 合路信号经过 同一 MCPA功放, F+A频段合路信号频段跨越 120Mhz以上, 为了完成 CFR和 DPD的算法, 通常会采用较高的中频处理速率, 当然也要受限 于目前 FPGA的时钟处理能力, 中频时钟速率一般低于 250Msps。
在实现本发明的过程.中,发明人发现现有技术中至少存在以下问 题:
上述的如图 1所示的方案是两个单频段 CFR+DPD***的直接組合, 采用两个独立的功放, 其优点是不需要对现有算法做任何修改, 性能 稳定, 缺点是设备体积大、 效率低、 成本高, 不符合技术演进要求, 也很难满足运营商对绿色基.站的需求。
而上述的图 2所示的方案中, CFR模块能保证进入 DAC ( Dig i ta l to Analog Conver ter , 数模转换器) 的入口峰均比, 但是 DAC后峰 均比抬升较大, F+A信号带宽占据 145M z , 而受限于目前的 FPGA ( Fi e ld - Programmable Gate Array, ί见 可编程.门阵歹 ) , B†4中采 样速率最高为 250Msps , 这样 DAC引入峰值再生一般可能在 l。 5dB左 右, 如果 -要保证进 -入 PA ( Power Amp l if ier , 功率放大器) 的'峰均比 较低, CFR削峰门限要设置的更低,这样消耗资源会增加, EVM ( Error Vector Magni tude , 误差矢量振幅)恶化也较大, 另一种解决方案就 是保持现有 CFR削峰门限, PA做一定的功率回退, 这样功放效率大 大降低。 该方案为了保证 DPD方案的正常实施, 一般中频处理速率较 高, 这样也使得 CFR中削峰滤波器设计难度加大。
本发明实施例提供一种多频段宽带信号的削峰方法和设备,解决 现有的技术方案中基站设备单通道采用宽频功放,且同时支持多频段 时, 所存在的信号的峰均比问题。
为达到上述目的,本发明实施例一方面提供了一种多频段宽带信 步骤 A、 预测所接收到的多频段的多载波信号在经过数模转换 DAC处理后的 "值;
步骤 B、 判断所预测的峰值是否高于 值检测阈值;
步骤(、 当所预测的峰值高于所述 值检测阈值时, 分别确定相 步骤 D、 根据所确定的峰值调整值, 分别生成各频段的多载波信 号相应的削峰抵消脉冲向量;
步骤 E、 将所接收到的多频段的多载波信号分别减去相对应的削 峰抵消脉冲向量, 输出削峰处理后的多频段的多载波信号。 另一方面,本发明实施例还提供了一种多频段宽带信号的削峰处 理单元, 至少包括:
接收模块, 用于接收多频段的多载波信号;
预测模块,用于预测所述.接收模块所接收到的多频段的多载波信 号在经过 DAC处理后的峰值;
第一判断模块,用于判断所述预测模块所预测的峰值是否高于峰 值检测阈值;
确定模块,用于当所述第一判断模块判断所预测的峰值高于所述 峰值检测阈值时,分别确定相应的各频段的多载波信号的峰值调整值; 成各频段的多载波信号相应的削峰 ¾消脉冲向量;
处理模块,用于将所述接收模块所接收到的多频段的多载波信号 分别减去相对应的削峰抵消脉冲向量,输出削峰处理后的多频段的多 载波信号。
与现有技术相比,本发明实施例所提出的技术方案具有以下优点: 通过.应用本发明实施例的技术方案,事先预测所接收到的多频段 的多载波信号在经过 DAC处理后的峰值,并根据预测的结果进行相应 的预削峰处理,保证多频段的多载波信号在经过 MC处理后的峰均比, 从而, 解决了现有的基站设备单通道采用宽频功放, 且同时支持多频 段时, 所存在的信号的峰均比问题, 配合数字预失真方案来保证功放 的线性和效率, 确保同一***多频段应用、 异***共模、 共平台实现 技术可行。
图 1为现有技术中采用常规多频段 CFR技术的一种应用场景的示 意图;
图 1为现有技术中采用常规多频段 CFR技术的另一种应用场景的 示意图;
图 3 为本发明实施例所提出的一种多频段宽带信号的削峰方法 的流程示意图;
图 4为本发明实施例所应用的技术场景的***结构示意图; 图 5为本发明实施例所提出的一种 Pre- Peak CFR方案的流程示 意图;
图 6 为本发明实施例提出的一种多频段宽带信号的削峰处理单 元的结构示意图。
如背景技术所述, 现有的采周独立功放的技术方案存在体积大、 效率低、 成本高的缺陷, 而对于基站设备在单通道采用宽频功放, 且 同时支持多频段时信号的技术方案, 虽然可以解决上述问题,但会出 现在保证 DAC入口峰均比的情况下,无法保证 DAC处理后的峰均比的问 题, 影响具体的应用效果, 和实际实施过程的技术标准需要。
为了克服这样的缺陷,本发明实施例提出了一种多频段宽带信号 的削峰方法, 通过事先预测多频段宽带信号在 DAC处理后的峰值, 对 相应频段的信号进行预削峰处理,保证其在经过 DAC处理后的峰均比。
如图 3所示,为本发明实施例所提出的一种多频段宽带信号的削 峰方法的流程示意图, 该方法具体包括以下步骤:
步骤 S301、 预测所接收到的多频段的多载波信号在经过数模转 换 DAC处理后的峰值。
步骤 S302、 判断所预测的峰值是否高于峰值检测阈值。
当所预测的峰值高于所述 -峰值检测阈值时, 执行步骤 S303;
当所预测的峰值没有高于所述峰值检测阈值时,执行步骤 S 306。 在具体的处理场景中, 所述峰值检测阈值, 具体是根据预设的削 峰阈值计算得到的, 其中, 所述峰值检测阈值的取值稍高于所述预设 的削峰阈值。
步骤 S 303、分别确定相应的各频段的多载波信号的峰值调整值。 步骤 S 304、 根据所确定的峰值调整值, 分别生成各频段的多载 波信号相应的削峰抵消脉冲向量。
步骤 S 305、 将所接收到的多频段的多载波信号分别减去相对应 的削峰; ¾消脉冲向量, 输出削峰处理后的多频段的多载波信号。
步骤 S 306、 判断当前所处理的数据长度位置是否为所述多频段 的多载波信号的最大数据长度位置。
如果不是, 返回步骤 S301 , 继续预测所接收到的多频段的多载 波信号的下一个数据长度位置上的信号在经过 DAC处理后的峰值; 如果是, 直接执行步骤 304 , 根据当前的累计脉冲抵消向量生成 各频段的多载波信号相应的削峰抵消脉冲向量。 在具体的处理场景中,为了对具体的处理过程的长度和效率进行 控制,可以预先设置生成各频段的多载波信号相应的削峰抵消脉冲向 量的过程中的信号迭代次数阈值。
当在生成各频段的多载波信号相应的削峰抵消脉冲向量的过程 中的信号迭代次数达到所述信号迭代次数阈值时,直接根据当前的累 计脉冲抵消向量生成各频段的多载波信号相应的削峰抵消脉冲向量。
通过这样的处理, 可以避免出现无限制的迭代处理, 或者过多次 数的迭代处理所带来的处理时间的延长, 提高相应处理的效率。 另一方面, 为了能使相应的输出信号得到及时准确的处理, 在执 行步骤 S 301至步骤 S 304的过程中,还需要对所接收到的多频段的多 载波信号进行数据延时处理, 直到步骤 S 304的处理完成, 分别生成 各频段的多载波信号相应的削峰^ ^肖脉冲向量之后,才执行步骤 S 301 , 将数据延时处理后的多频段的多载波信号分别减去相对应的削峰抵 消脉冲向量, 输出削峰处理后的多频段的多载波信号。
与现有技术相比,本发明实施例所提出的技术方案具有以下优点: 通过.应用本发明实施例的技术方案,事先预测所接收到的多频段 的多载波信号在经过 DAC处理后的峰值,并根据预测的结果进行相应 的预削峰处理,保证多频段的多载波信号在经过 MC处理后的峰均比, 从而, 解决了现有的基站设备单通道采用宽频功放, 且同时支持多频 段时, 所存在的信号的峰均比问题, 配合数字预失真方案来保证功放 的线性和效率, 确保同一***多频段应用、 异***共模、 共平台实现 技术可行。 下面, 结合具体的应周场景, 对本发明实施例所提出的技术方案 进行说明。
如图 4所示,为本发明实施例所应用的技术场景的***结构示意 图, 本发明实施例提出了应周于这样的架构下的 Pre Peak CFR算法 的详细过.程,保证 CFR处理后经过一系列的处理后进入 PA的峰均比。
Pre Peak CFR方案的基本思想通过事先预测多频段信号 DAC后 峰值, 对 F频段和 A频段的信号进-行预削峰处理,保证 MC后的峰均 比。 下面以 F+A宽频***为例,详细对 1·.于图 4所示的***架构下的 Pre Peak CFR实现方案进行说明。
在这样的处理流程中,具体以 F频段和 A频段的信号的处理过程 为例进 _行说明, 当然, 如果相应的需要处理其他频段的信号, 则相应 的处理过.程需要进-行相应的调整,这样的变化并不影响本发明的保护 范围。
如图 5所示, 为本发明实施例所提出的一种 Pre Peak CFR方案 的流程示意图, 该方法具体包括以下步骤:
步骤 S501、 CFR模块接收 F频段和 A频段的多载波信号。
在本发明以下的实施例描述中,具体的输入信号为 F频段和 A频 段的多载波信号,记做 y, = {yA / ), /= — y¾和 ya = [yA / ), , 其中, 为多载波信号的数据长度。
在 CFR模块接收到 F频段和 A频段 _的多载波信号之后, 一方面, 需要将相应的信号进行数据延迟处理, 另一方面, 需要根据接收到的 相应的信号的信息执行后续的步骤 S502。
步骤 S502、 预测接收到的多载波信号的峰值。
在实际的操作处理中, 具体的预测方法包括以下两种:
方法一、 首先, 确定 F频段和 A频段的多载波信号上的各相位点 的信
Figure imgf000010_0001
./ F频段和 A频段的中心频段间隔;
Figure imgf000010_0002
凡 Λ½?为选择的相位点数量;
ffl为当前的相位点, n^) ... P-Num- \ 0
通过上述表达式得到 F/A经过 HB、 NC0合路以及 MC后的可能值, 目前考虑的可能取值个数为 P-Num。 然后 / , 根据以下公式, 在上述公式所确定的多个可能取值中, 确 定 F频段和 Α频段的多载波信号在经过 MC处理后的峰值,作为预测 的峰值:
)7ma ί ^ ) " max y( m)
通过.上述过.程,可以求出多个可能取值中最大的幅度值作为预测 峰值, 这样可以最大程度上保证无漏削。
方法二、 实际上是对上述的方法一的简化处理, 即通过下面方式 直接进 _行峰值预测:
Figure imgf000011_0001
个不如如方方法法一- ,但在处理效率上显然要优于方 法 - , "i'l 捷, 简单, 在实际的应用场景中, 可以根据实际的需-要 确定应用上: 法,具体应用的方法内容的变化并不会影响本 发明的保护范围
Figure imgf000011_0002
值 4的大小。
在实际的应用中 f S503之前, ***初始化时, 需要通过削峰阈值 峰值检测阈值 , 4通常稍高于 , 其具 体的取值可根据实
如果步骤 S503 的 -(?')> ' 则需要计算相应^ 值窗口 { ', / Λ /+Win— length}内 ^
( m) ( K < i+Win... length ) 中寻找最大峰值, 得到预测峰值位置 4X以及 F频段的多载波信号的峰值点 yf ax )和 A频段的多载波信 号的峰值点 ( » ), 在具体的处理场景中, 峰值窗口 Win—length取 值可以为 23, 在完成上述处理后, 进一步执行步骤 S504。
如果步骤 S503的判断结果为),Hsax(0<4,则判断当前所处理的数 据长度位置是否为 F/A频段的多载波信号的最大数据长度位置,即判 断当前的 /是否等于 N。
当 /〈 , 确定 /=/+1, 并返回执行步骤 S502, 继续预测所接收 到的多频段的多载波信号的下一个数据长度位置 ( /÷1 )上的信号在 经过 MC处理后的峰值, 并根据预测的结果进-行后续的处理。
当 时, 则确定当前的累计脉冲抵消向量) ^和 分别为 F频 段和 A频段的多载波信号的削峰抵消脉冲向量,并直接执行步骤 S506 步骤 S5(M、进行峰值调整,计算 F/A信号的峰值调整值 cf (^)和 根据以下的公式确定步骤 S503中所得到的 F频段的 j
Figure imgf000012_0001
τ7 的峰值点 ( I,,, )的削减值 c, ( 1^ ), 作为 F频段的多载 S
值调整值:
Figure imgf000012_0002
根据 骤 S503中所得到
的 '峰 '值点 ( Lj的削 c,,( L, ), 作为
Figure imgf000012_0003
值调整值:
Figure imgf000012_0004
步骤 S50:5、分别对步骤 SSiM所输出的调整值 ( )和^( ^)完 成相乘操作, 生成 F/A频段的多载波信号的削峰抵消脉冲向量。
在实际的应用中, 在步骒 S505之前, 或者是在***初始化时, 需要根据频点配置以及削峰滤波器长度 产生 F/A频段的多载波信号 的削峰滤波器系数 t 和 ha,其中, 相应的数据维数为 I x ; 为削峰 滤波器长度- 在本步骒中, 将 F频段的多载波信号的峰值调整值 cf ( . )与 F 频段的多载波信号的削峰滤波器系数 h进行向量相乘,得到 F频段的 多载波信号的脉冲抵消子向量, 同时, 将 A频段的多载波信号的峰值 调整值 C ( x)与 A频段的多载波信号的削峰滤波器系数
量相乘, 得到 A频段的多载波信号的脉沖抵消子向量。
将得到的脉冲抵消子向量分别按照以下公式增加至累计 消向量)^和) ·中:
V( -- floor (K/2) + n ) - yj {im2iK― floor ( K/2) + n)~cf (匪 -1··· AT i iax― floor ( K/2) + n )-v:|/max- floor (K/2) + n)~ca (max )-ha(n),n^-h~-K 其中, ¾or(.)表示向下取整数, 累计脉冲抵消向量 和)ς初始 化为数值为零, 维数为 ix/ 的向量。
在完成上述的累加处理后, 确定 4 +^ ( /2), 并判断当前 所处理的数据长度位置是否为 F/A 频段的多载波信号的最大数据长 度位置, 即判断当前的 /是否等于
当 /<Λ,时, 确定 并返回执行步骤 S502, 继续预测所接收 到的多频段的多载波信号的下一个数据长度位置( 1 )上的信号在 经过 DAC处理后的峰值, 并根据预测的结果进行后续的处理。
当 时, 則确定当前的累计脉冲抵消向量 和;^分别为 F频 段和 Α频段的多载波信号的削峰抵消脉冲向量,并直接执行步骤 S506 步骤 S506、 将步骤 S501中进行数据延迟处理的 F/A频段的多载 波输入数据 y ,·和 y,与相应的削峰抵消脉冲向量 y~和 y~相减, 输出相 应的削峰输出结果 y和 ya, 实现对输入信号进行峰值抵消过.程。
具体的处理过程如下:
yf(n)=-yf(n)-~yf-(n) ,
y»y。(K ("),
其中, ? M
需要进一步指出的是, 在上述的步骤 S506开始执行之前, 无论 是步骤 S503中的返回步骤 S502的处理, 还是步骤 S505中的返回步 骤 S502的处理, 均属于 CFR模块的迭代处理过程, 为了提高相应的 处理效率, 避.免迭代处理过多所带来的处理效率降低的情况, 可以预 先设定 CFR模块的迭代次数 ILoopJ 初始状态下, 循环变量 在具体的处理场景中,每次对于同一个多载波信号执行步骤 S502 的过程均属于依次迭代处理过.程, 因此, 需要在每次针对同一个多载 波信号执行步骤 S502的处理时, 均需要按照以下规则对当前的循环 变量进行处理:
( 1 ) 口果 I ter -.num<N-Loo -Nuni, .则 I ter— num I t er— num+l, 并继续执行步骤 S502及其后续流程。
( 2 )如果 I ter— num=N— Loop— Num, 则停止循环, 直接执行步骤 S506 , 输出相应的削峰输出结果 和 y。
与现有技术相比,本发明实施例所提出的技术方案具有以下优点: 通过应周本发明实施例的技术方案,事先预测所接收到的多频段 的多载波信号在经过 MC处理后的峰值,并根据预测的结果进 _行相应 的预削峰处理,保证多频段的多载波信号在经过 MC处理后的峰均比, 从而, 解决了现有的基站设,备单通道采用宽频功放, 且同时支持多频 段时, 所存在的信号的峰均比问题, 配合数字预失真方案来保证功放 的线性和效率, 确保同一***多频段应用、 异***共模、 共平台实现 技术可行。
多频段宽带信号的削峰处理单元 , 其结构示意图如图 6所示, 至少包 括:
接 块 601 , 用于接收多频段的多载波信号;
预测模块 602, 用于预测所述 -接收模块 601所接收到的多频段的 多载波信号在经过 DAC处理后的峰值;
第一判断模块 603 , 用于判断所述预测模块 602所预测的峰值是 否高于峰值检测阈值;
确定模块 604, 用于当所述第一判断模块 603判断所预测的峰值 高于所述 _峰值检侧阈值时,分別确定相应的各频段的多载波信号的 " 值调整值; 生成模块 605,周于根据所述确定模块 604所确定的峰值调整值, 分别生成各频段的多载波信号相应的削峰抵消脉冲向量;
处理模块 606 , 用于将所述接收模块 601所接收到的多频段的多 载波信号分别减去相对应的削峰抵消脉冲向量,输出削峰处理后的多 频段的多载波信号。
进一步的, 该多频段宽带信号的削峰处理单元还包括:
第二判断模块 607, 用于在所述第一判断模块 603判断所预测的 峰值没有高于所述峰值检测阈值时,判断当前所处理的数据长度位置 是否为所述多频段的多载波信号的最大数据长度位置;
如果不是,则通知预测模块 602继续预测所接收到的多频段的多 载波信号的下一个数据长度位置上的信号在经过 DAC处理后的峰值; 如果是,则通知生成模块 605直接根据当前的累计脉冲抵消向量 生成各频段的多载波信号相应的削峰抵消脉冲向量。
另一种场景下, 该多频段宽带信号的削峰处理单元还包括: 设置模块 608 , 用于预先设置生成各频段的多载波信号相应的削 峰抵消脉冲向量的过程中的信号迭代次数阈值;
第三判断模块 609, 用于在生成各频段的多载波信号相应的削峰 抵消脉冲向量的过程中,判断当前的信号迭代次数是否达到所述设置 模块 608所设置的信号迭代次数阈值, 并在判断结果为是时, 直接通 知所述生成模块 605 根据当前的累计脉冲抵消向量生成各频段的多 另一种场景下, 该多频段宽带信号的削峰处理单元还包括: 延时模块 610, 用于对所述接收模块 601所接收到的多频段的多 载波信号进行数据延时处理;
所述处理模块 606, 具体用于当所述生成模块 605分别生成各频 段的多载波信号相应的削峰抵消脉冲向量之后, 将所述延时模块 610 进行数据延时处理后的多频段的多载波信号分别减去相对应的削峰 消脉冲向量, 输出削峰处理后的多频段的多载波信号。 在实际的应用场景中, 上述的多频段宽带信号的削峰处理单元, 具体可以为一种 CFR模块,应用于单通道采用宽频功放, 且同时支持 多频段的基站设备中。
当然, 在符合本发明技术思想的前提下, 具体的多频段宽带信号 的削峰处理单元的类型的变化并不会影响本发明的保护范围。
与现有技术相比,本发明实施例所提出的技术方案具有以下优点: 通过.应用本发明实施例的技术方案,事先预测所接收到的多频段 的多载波信号在经过 DAC处理后的峰值,并根据预测的结果进行相应 的预削峰处理,保证多频段的多载波信号在经过 MC处理后的峰均比, 从而, 解决了现有的基站设备单通道采用宽频功放, 且同时支持多频 段时, 所存在的信号的峰均比问题, 配合数字预失真方案来保证功放 的线性和效率, 确保同一***多频段应用、 异***共模、 共平台实现 技术可行。 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明实施例可以通过硬件实现,也可以借助软件加必要的通用硬 件平台的方式来实现。基于这样的理解, 本发明实施例的技术方案可 以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性 存储介质(可以是 CD ROM, U盘, 移动硬盘等) 中, 包括若千指令周 以使得一台计算机设备(可以是个人计算机, 服务器, 或网络侧设备 等)执行本发明实施例各个实施场景所述的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图, 本领域技术人员可以理解实施场景中的装置中的模块可以按照 实施场景描述进 _行分布于实施场景的装置中,也可以进行相应变化位 于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以 合并为一个模块, 也可以进 步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施场景的优劣。 以上公开的仅为本发明实施例的几个具体实施场景,但是, 本发明实 施例并非局限于此,任何本领域的技术人员能思之的变化都应落入本 发明实施例的业务限制范围

Claims

1、 -种多频段 在于, 至少包括以 下步骤:
>
步骤 A、 预测所接收到的多频段的
Figure imgf000018_0001
DAC处理后^
步骤 Β、 预测的峰值是否高于峰值检测阈值;
步骤(、 当所预测的峰值高于所述 值检测阈值时, 分别确定相 步骤 D、 根据所确定的峰值调整值, 分别生成各频段的多载波信 号相应的削峰抵消脉冲向量;
步骤 E、 将所接收到的多频段的多载波信号分别减去相对应的削 峰抵消脉冲向量, 输出削峰处理后的多频段的多载波信号。
2、 如权利要求 1所述的方法, 其特征在于, 所述步骤 A, 具体 包括:
接收到 F频段的多载波信号 y,. ι=ΓΜ和 Α频段的多 根据以下公式,确定 F频段和 A频段的多载波信号上的各相位点 的信号在经过 DAC处理后的可能取值:
./; m
( )"" (0' ~ 1 + 其中, ./;为数字中频速率, /^为 F频段和 A频段的中心频段间
?为选择的相位点数量, Λ?为当前的相位点, nU —Num-Λ ', 根据以下公式, 在所确定的多个可能取值中, 确定 F频段和 Α频 段的 处理后^
Figure imgf000018_0002
或, 所述步骤 A, 具体包括:
接收到 F频段的多载波信号 y : { f ( 1 ), /=1 N、和
载波信号 [y, ( ./ ), , 其中 为多载波.信号的数据长 J 根据以下公式,确定 F频段和 A频段的多载波信号在经过 MC处 理后
Figure imgf000019_0001
3、如权利要求 1所述的方法,其特征在于,所述峰值检测阈值, 具体为:
根据预设的削峰阈值计算得到的, 其中, 所述峰值检测阈值的取 值稍高于所述预设的削峰阈值。
4、 如权利要求 1所述的方法, 其特征在于, 所述步骤 B之后, 还包括:
步骤. F、 当所预测的峰值没有高于所述 值检测阈值时, 判断当 前所处理的数据长度位置是否为所述多频段的多载波信号的最大数 据长度位置;
如果不是, 返_回步骤. A, 继续预测所接收到的多频段的多载波信 号的下一个数据长度位置上的信号在经过 DAC处理后的峰值;
如果是, 直接执行步骤 D, 根据当前的累计脉冲抵消向量生成各 频段的多载波信号相应的削峰抵消脉冲向量。
5、 如权利要求 4所述的方法, 其特征在于, 所述步骤 F , 具体 包括:
在接收到 F频段的多载波信号 = {yf ( i ), 和 Α频段的 多载波信号 {y, ( ι ), 其中, 为多载波信号的数据长 当所预测的峰值 yaax ( i )没有高于所述峰值检测阈值时, 判断 / 是否小于 N;
如果判断结果为是, 确定 / = /÷1, 并返回步骤 A, 继续预测所接 收到的 F频段和 A频段的多载波信号在当前的数据长度位置上的信号 在经过 MC处理后的峰值 y„iax ( ), 并根据预测的结果进 -行后续的处 如果判断结果为否, 直接执行步骤 D, 分别确定当前的累计脉冲 抵消向量 和) 分别为 F频段和 Α频段的多载波信号的削峰抵消脉 冲向量,并按照以下公式将所接收到的 F频段和 A频段的多载波信号 分别减去 F频段和 A频段 _的多载波信号的削峰; ¾消脉冲向量,输出削 峰处理后的多频段的多载波信号:
yf(n)==yf{n)-~y~.(n),
">'«"(«),
其中,
Figure imgf000020_0001
Λ
6、 如权利要求 1所述的方法, 其特征在于, 所述步骤 C, 具体 包括:
在接收到 F频段 _的多载波信号 y,. - {vr ( / ), 和 A频段的 多载波信号 u \y, ( i), ι-Γ^ , 其中, 为多载波信号的数据长 当所预测的峰值 yax ( /)高于所述峰值检测阈值时, 计算峰值窗 口 i+Win- length}内的所有预测的 ίΕ ^直 y»x ( m) ( /<,¾/< iV#in.. length }, 根据其中的最大值, 确定所预测的峰值的位置 „ 以及 F频段的多载波信号的峰值点 ( 和 A频段的多载波信号 的峰直点 ya ( ax );
分別根据以下公式确定 F频段的多载波信号的峰值点 Vr ( ax) 的削减值 cf ( imx )和 A频段的多载波信号的峰值点 ya ( imx ) 的削减 值 值调整值:
Figure imgf000020_0002
7、如权利要求 1所述的方法,其特征在于, ^述步骤 D量之前, 还包括:
根据当前***中的频点配置, 以及削峰滤波器长度 1 分别设置 各频段的多载波信号的削峰滤波器系数; 其中, 削峰滤波器系数的数据维数为 ΐ χ
8、 如权利要求 7所述的方法, 其特征在于, 所述步骤 D, 具体 包括:
在接收到 F频段 _的多载波信号 y,. - {vr ( / ), 和 A频段的 多载波信号 {ya ( i), ι-Γ^ , 其中, 为多载波信号的数据长 将 F频段的多载波信号的峰值调整值 c, ( i^)和 A频段的多载 波信号的峰值调整值 ca ( 分別与 F频段的多载波信号的削峰滤 波器系数 h,.和 A频段的多载波信号的削峰滤波器系数!^进_行向量相 乘, 得到相应的脉冲抵消子向量;
将所得到的脉冲抵消子向量按照以下公式增加到相应的累计脉 冲^^消向量)^和) 中:
)':;: ( ― floor [K !2) + n) - > ( floor (Κβ) + η)― cf ό' hf (η),η ^ \·--Κ
JO. ( floor (Kf2' + n) - ya' (max floor(K/2) + n)― c j^ - ha («),« - 1· --K 其中, feorO表示向下取整数;
确定^^ +/!00 ^72), 并判断 /是否小于 N;
如果判断结果为否, 确定当前的累计脉冲抵消向量 和 分别 为 F频段和 A频段的多载波信号的削峰抵消脉冲向量。
9、 如权利要求 8 所述的方法, 其特征在于, 所述确定 i = imax +/I or(K/2) , 并判断 /是否小于 N之后, 还包括:
如果判断结果为是, 确定 /=/+1;
返回步骤 A, 继续预测所接收到的 F频段和 A频段的多载波信号 在当前的数据长度位置上的信号在经过 MC处理后的峰值 y,Bax ( /), 并根据预测的结果进行后续的处理。
10、 如权利要求 1所述的方法, 其特征在于, 所述步骤 E, 具体 包括: 在接收到 F频段的多载波信号 ), /=Γ/¾和 Α频段的 多载波信号 {y, ( ι ), 其中, 为多载波信号的数据长 在确定当前的累计脉冲抵消向量)^和) 分别为 F频段和 Α频段 的多载波信号的削峰抵消脉冲向量之后,按照以下公式将所接收到的 F频段和 A频段的多载波信号分别减去 F频段和 A频段 _的多载波信号 的削峰; ¾消脉冲向量, 输出削峰处理后的多频段的多载波信号:
yf(n)=-yf(n)-~yf- (n) ,
y»y。(K("),
其中, ? M
11、 如权利要求 1所述的方法, 其特征在于, 还包括:
预先设置生成各频段的多载波信号相应的削峰抵消脉冲向量的 过.程中的信号迭代次数阈值;
当在生成各频段的多载波信号相应的削峰抵消脉冲向量的过程 中的信号迭代次数达到所述信号迭代次数阈值时,直接根据当前的累 计脉冲抵消向量生成各频段的多载波信号相应的削峰抵消脉冲向量。
12、 如权利要求 11所述的方法, 其特征在于, 具体包括: 在接收到 F频段 _的多载波信号 y,. - {vr ( / ), 和 A频段的 多载波信号 {ya ( i), ι-Γ^ , 其中, 为多载波信号的数据长 预先设置生成 F频段和 A频段的多载波信号相应的削^ ^民消脉冲 向量的过程中的信号迭代次数阈值 ILoop— Num;
当通过步骤 D 将得到的脉冲抵消子向量增加到相应的累计脉冲 抵消向量 和 W之后, 判断当前的迭代次数 Iter— Num是否达到 N-.Loop.-Num;
¾口果 Iter— Num<N— -Loop— Nmn, ,则 I ter..Num=I ter ..Num+1 , 骤 A, 继续预测所接收到的 F频段和 A频段 _的多载波信号在当前的数 据长度位置上的信号在经过 MC处理后的峰值 yax ( i), 并根据预测 的结果进-行后续的处理;
如果 I t er Jum=N— Loop- Num或 I t.er— N画〉 N— L.oopJum, 确定当 前的累计脉冲抵消向量)^和) 分别为 F频段和 Α频段的多载波信号 的削峰抵消脉冲向量,并按照以下公式将所接收到的 F频段和 A频段 的多载波信号分别减去 F频段和 A频段的多载波信号的削峰抵消脉冲 向量, 输出削峰处理后的多频段的多载波信号:
Figure imgf000023_0001
" >'«" («),
其中,
Figure imgf000023_0002
... Λ
1 3、 如权利要求 1所述的方法, 其特征在于, 在执行步骤 Α至步 骤 D的过.程中, 还包括:
对所接收到的多频段的多载波信号进行数据延时处理;
当所述步骤 D的处理完成,分别生成各频段的多载波信号相应的 削峰^ i消脉冲向量之后, 执行步骤 E, 将数据延时处理后的多频段的 多载波信号分别减去相对应的削峰抵消脉冲向量,输出削峰处理后的 多频段的多载波信号。
14、 一种多频段宽带信号的削峰处理单元, 其特征在于, 至少包 括:
接收模块, 用于接收多频段的多载波信号;
预测模块,用于预测所述.接收模块所接收到的多频段的多载波信 号在经过 DAC处理后的峰值;
第一判断模块,用于判断所述预测模块所预测的峰值是否高于峰 值检测阈值;
确定模块,用于当所述第一判断模块判断所预测的峰值高于所述 峰值检测阈值时,分别确定相应的各频段的多载波信号的峰值调整值; 成各频段的多载波信号相应的削峰 ¾消脉冲向量; 处理模块,用于将所述接收模块所接收到的多频段的多载波信号 分别减去相对应的削峰抵消脉冲向量,输出削峰处理后的多频段的多 载波信号。
15、 如权利要求 14所述的多频段宽带信号的削峰处理单元, 其 特征在于, 还包括:
第二判断模块,用于在所述第一判断模块判断所预测的峰值没有 高于所述_峰值检侧阈值时,判断当前所处理的数据长度位置是否为所 述多频段的多载波信号的最大数据长度位置;
如果不是,则通知预测模块继续预测所接收到的多频段妁多载波 信号的下一个数据长度位置上的信号在经过 DAC处理后的峰值;
如果是,则通知生成模块直接根据当前的累计脉冲抵消向量生成 各频段的多载波信号相应的削峰抵消脉冲向量。
16、 如权利要求 14所述的多频段宽带信号的削峰处理单元, 其 特征在于, 还包括:
设置模块,用于预先设置生成各频段的多载波信号相应的削峰抵 消脉冲向量的过程.中的信号迭代次数阈值;
第三判断模块,用于在生成各频段的多载波信号相应的削峰抵消 脉冲向量的过.程中,判断当前的信号迭代次数是否达到所述设置模块 所设置的信号迭代次数阈值, 并在判断结果为是时, 直接通知所述生 成模块根据当前的累计脉冲抵消向量生成各频段的多载波信号相应 的削峰抵消脉冲向量;
或, 其特征在于, 还包括:
延时模块,用于对所述接收模块所接收到的多频段的多载波信号 进行数据延时处理;
所述处理模块,具体用于当所述生成模块分别生成各频段的多载 波信号相应的削峰抵消脉冲向量之后,将所述延时模块进 -行数据延时 处理后的多频段的多载波信号分别减去相对应的削峰抵消脉冲向量, 输出削峰处理后的多频段的多载波信号。
PCT/CN2013/070632 2012-01-19 2013-01-17 多频段宽带信号的削峰方法和设备 WO2013107369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210017306.9 2012-01-19
CN201210017306.9A CN102437994B (zh) 2012-01-19 2012-01-19 多频段宽带信号的削峰方法和设备

Publications (1)

Publication Number Publication Date
WO2013107369A1 true WO2013107369A1 (zh) 2013-07-25

Family

ID=45985873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070632 WO2013107369A1 (zh) 2012-01-19 2013-01-17 多频段宽带信号的削峰方法和设备

Country Status (2)

Country Link
CN (1) CN102437994B (zh)
WO (1) WO2013107369A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117278185A (zh) * 2023-11-24 2023-12-22 四川恒湾科技有限公司 一种基于ofdm***的峰值削减***及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437994B (zh) * 2012-01-19 2014-05-21 电信科学技术研究院 多频段宽带信号的削峰方法和设备
CN202841188U (zh) * 2012-08-16 2013-03-27 中兴通讯股份有限公司 Msr***发射机削峰装置
CN102970266B (zh) * 2012-11-01 2016-03-16 大唐移动通信设备有限公司 一种多频段信号削峰的方法及装置
CN103841059B (zh) * 2012-11-26 2018-03-09 中兴通讯股份有限公司 多频段数字中频的处理装置及方法
CN103532902B (zh) * 2013-10-16 2017-01-04 大唐移动通信设备有限公司 Dpd训练序列生成方法和装置
CN107124144B (zh) * 2017-04-20 2020-02-18 京信通信***(中国)有限公司 一种数字预失真处理方法和装置
US11082072B2 (en) 2017-08-17 2021-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Coherent multi band peak detection
CN109586677B (zh) * 2017-09-29 2020-12-25 华为技术有限公司 信号处理装置、多输入功率放大***及相关方法
CN107707495B (zh) * 2017-10-27 2020-05-05 京信通信***(中国)有限公司 多频段数字预失真处理的方法、装置和***
CN110166394B (zh) * 2018-03-15 2021-10-01 西安电子科技大学 一种sc-fdma信号papr降低方法
CN115250219B (zh) * 2021-04-25 2023-09-15 北京金山云网络技术有限公司 削峰进度的预测方法、装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058400A2 (en) * 1999-06-02 2000-12-06 Nortel Networks Limited Method & apparatus for reducing the peak power probability of a spread spectrum signal
WO2004039024A1 (en) * 2002-10-22 2004-05-06 Wiseband Communications Ltd. A peak-to-average power ratio modifier
CN101867541A (zh) * 2009-04-20 2010-10-20 大唐移动通信设备有限公司 一种信号波峰削除的方法及设备
CN102223338A (zh) * 2010-04-15 2011-10-19 电信科学技术研究院 多载波***的自适应削峰方法及装置
CN102437994A (zh) * 2012-01-19 2012-05-02 电信科学技术研究院 多频段宽带信号的削峰方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050118966A1 (en) * 2003-12-01 2005-06-02 Kiomars Anvari Simple Crest Factor reduction technique for multi-carrier signals
CN101252570B (zh) * 2008-04-01 2012-02-08 北京天碁科技有限公司 一种多载波接收机及其信号处理方法
CN102299883B (zh) * 2010-06-24 2014-02-19 大唐移动通信设备有限公司 一种宽频信号波峰削除方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058400A2 (en) * 1999-06-02 2000-12-06 Nortel Networks Limited Method & apparatus for reducing the peak power probability of a spread spectrum signal
WO2004039024A1 (en) * 2002-10-22 2004-05-06 Wiseband Communications Ltd. A peak-to-average power ratio modifier
CN101867541A (zh) * 2009-04-20 2010-10-20 大唐移动通信设备有限公司 一种信号波峰削除的方法及设备
CN102223338A (zh) * 2010-04-15 2011-10-19 电信科学技术研究院 多载波***的自适应削峰方法及装置
CN102437994A (zh) * 2012-01-19 2012-05-02 电信科学技术研究院 多频段宽带信号的削峰方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117278185A (zh) * 2023-11-24 2023-12-22 四川恒湾科技有限公司 一种基于ofdm***的峰值削减***及方法
CN117278185B (zh) * 2023-11-24 2024-02-20 四川恒湾科技有限公司 一种基于ofdm***的峰值削减***及方法

Also Published As

Publication number Publication date
CN102437994B (zh) 2014-05-21
CN102437994A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2013107369A1 (zh) 多频段宽带信号的削峰方法和设备
TWI649994B (zh) 用於產生並傳送資料訊框的裝置和方法
Choi et al. Joint resource allocation for parallel multi-radio access in heterogeneous wireless networks
TWI620422B (zh) 通道估計
US10263632B2 (en) Method and system for gain control for time-interleaved analog-to-digital convertor (ADC)
US11438205B2 (en) Ultra-wideband crest factor reduction
US20180359126A1 (en) Method and apparatus for crest factor reduction
WO2013007188A1 (zh) 多频段宽带dpd查找表生成方法、dpd处理方法和***
WO2015007136A1 (zh) 多通道预失真方法及装置
US20110261896A1 (en) Apparatus and method for crest factor reduction architecture
WO2014067301A1 (zh) 一种多频段信号削峰的方法及装置
CN104519558B (zh) 用于数字到时间转换器的功率节省技术
WO2013170623A1 (zh) 一种射频信号的控制方法和设备
WO2010034263A1 (zh) 多载波控制方法、多载波削峰模块和基站
CN105684338B (zh) 带间载波聚合信号的波峰因数降低
WO2013034086A1 (zh) 一种获得多频段数字预失真输出信号的方法及装置
JP2016533687A (ja) マルチキャリアのピーク抑圧処理方法及び装置
WO2023029608A1 (zh) 控制发射功率的方法及通信设备
CN102340471A (zh) 基带拉远场景下的信号传输方法、设备和***
Gonzalez et al. Concepts for energy efficient LTE transceiver systems in macro base stations
EP2938138B1 (en) Power adjustment method and apparatus based on low delay power detection before dpd
Kardaras et al. Advanced multimode radio for wireless & mobile broadband communication
US20220416735A1 (en) Methods and devices for increased efficiency in linear power amplifier
US20210409136A1 (en) Reducing interference by combining signals at different strengths and transmitting the combined signal from an antenna
CN105430666B (zh) 一种小区接入的方法及光纤分布***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738933

Country of ref document: EP

Kind code of ref document: A1