WO2013107269A1 - 一种信息的传输、配置方法及装置 - Google Patents

一种信息的传输、配置方法及装置 Download PDF

Info

Publication number
WO2013107269A1
WO2013107269A1 PCT/CN2012/087881 CN2012087881W WO2013107269A1 WO 2013107269 A1 WO2013107269 A1 WO 2013107269A1 CN 2012087881 W CN2012087881 W CN 2012087881W WO 2013107269 A1 WO2013107269 A1 WO 2013107269A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
configuration information
information
cell
reference signal
Prior art date
Application number
PCT/CN2012/087881
Other languages
English (en)
French (fr)
Inventor
苟伟
卢科学
夏树强
戴博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013107269A1 publication Critical patent/WO2013107269A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of mobile wireless communications, and in particular, to a method and apparatus for transmitting and configuring information.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • LTE-A evolved LTE
  • Sex Sex.
  • LTE-A there are multiple component carriers (CCs), one LTE terminal can only work on one backward compatible CC, and the stronger LTE-A terminal can simultaneously on multiple CCs.
  • This technique is known as multi-carrier aggregation technology.
  • the multi-carrier aggregation technology is supported in the LTE-A system, and data is transmitted through a multi-carrier aggregation to achieve a larger bandwidth.
  • the base station has a maximum of five carriers, which are called component carriers, and are carriers with backward compatibility.
  • the carrier with backward compatibility means that the necessary control channels and reference signals specified in the LTE R8/R9/R10 system are configured in these carriers, and the procedures and system broadcasts specified in LTE R8/R9/R10 are implemented.
  • the message transmission mechanism, the paging message transmission mechanism performs the cell handover/reselection mechanism specified in LTE R8/R9/R10.
  • the new carrier proposed in the LTE is an N-type carrier.
  • the cell reference signal (CRS) in LTE R8/R9/R10 is not provided in the new carrier.
  • CRS cell reference signal
  • the main reason is to reduce the interference between the carriers due to CRS and because the CRS overhead is too large, a new reference is considered in the new carrier.
  • the signal replaces the original CRS.
  • the primary and secondary synchronization (PSS/SSS) in the new carrier is not mandatory. It is considered that the PSS/SSS in the new carrier is optional, and in the LTE R8/R9/R10, the PSS/SSS is mandatory.
  • UE User equipment
  • the new carrier and the backward compatible carrier are classified into a synchronous carrier and an asynchronous carrier.
  • the carrier aggregation technology in LTE R8/R9/R10 when two aggregated carriers transmit on the base station side, they need to meet certain time difference requirements. This time difference requirement can basically ensure that two carriers are directly from the base station at the same time (LTE R11).
  • LTE R11 There is no RRH node introduced before, and the RRH node is introduced in the LTE R11. Therefore, there is a case where the carrier is forwarded by the RRH and arrives at the UE.
  • the synchronization is basically maintained.
  • the UE can synchronize with the two carriers through the primary and secondary synchronizations in the above two carriers, thereby respectively receiving data from the carrier.
  • the new carrier technology if the base station side only keeps the synchronous transmission of the new carrier and the backward compatible carrier, once the PSS/SSS is not configured in the new carrier, the new carrier and the backward compatible carrier may not be guaranteed on the UE side. Synchronization, for example, the new carrier and the backward compatible carrier do not experience the same node transmission, or the new carrier and the backward compatible carrier do not belong to the same band (bandwidth), and cannot be synchronized due to the large difference in carrier frequencies.
  • the embodiment of the present invention provides a method for transmitting and configuring information, and a device, which can transmit information required by a user equipment to use a new carrier in LTE to a user equipment, so that the base station can configure a new carrier in the LTE for the user equipment.
  • the base station configures the carrier in the Long Term Evolution (LTE), and sends the configuration information of the carrier to the user equipment (UE), where the configuration information of the carrier includes a carrier bandwidth, a cell identifier (ID), a cyclic prefix (CP) type, Any one or any combination of channel state information measurement pilot (CSI-RS) configuration information and downlink transmission mode.
  • the base station sends the configuration information of the carrier to the user equipment by using a handover command, a measurement command, a UE-specific command, or a system broadcast message.
  • the base station sends the configuration information of the carrier to the user equipment by using a backward compatible carrier paired with the carrier in the LTE.
  • the cell ID is a virtual cell ID or an actual physical cell ID.
  • the configuration information of the carrier further includes: an access frequency of the carrier.
  • the base station carries the configuration information of the carrier in a connection reconfiguration (RRCConnectionReconfiguration) message, a measurement configuration (measConfig) message, or a pairing notification message of a carrier and a backward compatible carrier in the LTE, and sends the configuration information to the
  • the user equipment in the connection reconfiguration message, the measurement configuration message, and the pairing notification message, identifies that the configuration information of the carrier belongs to a carrier in the LTE.
  • the base station sends the configuration information of the carrier as the system information of the backward compatible carrier to the user equipment through a system information block (SIB), and the configuration of the carrier is identified in the SIB.
  • SIB system information block
  • the information belongs to the carrier in the LTE.
  • the base station is configured as a carrier unit in the LTE, and includes any one or any combination of the following in the information unit structure: carrier type information, access frequency, bandwidth, cell ID, CP
  • the type, the CSI-RS configuration information, and the downlink transmission mode refer to the information unit structure in the message, and send the configuration information of the carrier to the user equipment.
  • the information of the paired backward compatible carrier is further included in the information unit structure, and is used to identify a backward compatible carrier.
  • the above method further includes:
  • the base station notifies the user equipment of the pairing relationship between the carrier in the LTE and the backward compatible carrier.
  • the downlink transmission mode includes a downlink transmission mode 9.
  • the data information corresponding to the downlink control information in the downlink transmission mode 9 is transmitted in a physical downlink shared channel (PDSCH) by a single antenna port, or is a diversity transmission based on a user-specific reference signal;
  • the downlink control information (DCI) in the downlink transmission mode 9 is DCI Format 1 A or DCI Format 1.
  • the single antenna port transmission is a downlink transmission mode transmitted by the single antenna port 7;
  • the diversity transmission based on the user-specific reference signal is a downlink transmission mode based on diversity transmission of the user-specific reference signal.
  • the CSI-RS configuration information includes any one or any combination of the following: antenna port number, CSI-RS resource configuration, CSI-RS subframe configuration, CSI-RS power control.
  • the base station configures the carrier in Long Term Evolution (LTE) to use the same configuration information as the paired backward compatible carrier.
  • LTE Long Term Evolution
  • the configuration information includes: a cell identifier (ID) and a CP type.
  • the base station configures a reference signal for synchronization/synchronization tracking for a carrier in Long Term Evolution (LTE); the base station sends configuration information of the reference signal to a user equipment through a backward compatible carrier paired with a carrier in the LTE Or the base station sends the configuration information of the reference signal to the user equipment by using the system broadcast information of the LTE carrier, or the base station uses the configuration information agreed by the base station and the user equipment to configure the reference signal. Or, the base station establishes a correspondence between configuration information of the reference signal and a primary-secondary synchronization sequence or a cell identifier of the LTE carrier.
  • LTE Long Term Evolution
  • the mapping between the configuration information of the reference signal and the primary/secondary synchronization sequence or the cell identifier of the LTE carrier is as follows:
  • the base station and the user equipment agree that the total number of sets N, N of configuration information of the reference signals for synchronization/synchronization tracking is a positive integer, and the configuration information of each set is sequentially numbered from 0 to N-1, in the configuration information and the cell ID or the main
  • the mapping between the configuration information of the reference signal and the primary/secondary synchronization sequence or the cell identifier of the LTE carrier is as follows:
  • the base station and the user equipment agree that the total number of sets N, N of the configuration information of the reference signals for synchronization/synchronization tracking is a positive integer, and the configuration information of each set is sequentially numbered from 0 to N-1, in the configuration information and
  • the configuration information is applied to the cell that is used for the cell ID or the primary and secondary synchronization sequence is m, or the configuration information corresponding to the number that is numbered m and immediately adjacent to the number m is used for the cell ID or the primary and secondary synchronization.
  • a cell of sequence m is m.
  • the reference signal is a channel state indication reference signal (CSI-RS), a cell reference signal (CRS) or a decoded demodulation reference signal (DM-RS).
  • CSI-RS channel state indication reference signal
  • CRS cell reference signal
  • DM-RS decoded demodulation reference signal
  • the information transmission device includes: a configuration unit and a sending unit, where: the configuration unit is configured to configure a carrier in Long Term Evolution (LTE), where configuration information of the carrier includes a bandwidth of a carrier, a cell Any one or any combination of an identification (ID), a cyclic prefix (CP) type, channel state information measurement pilot (CSI-RS) configuration information, and a downlink transmission mode;
  • LTE Long Term Evolution
  • ID identification
  • CP cyclic prefix
  • CSI-RS channel state information measurement pilot
  • the sending unit is configured to send configuration information of the carrier to the user equipment (UE).
  • UE user equipment
  • the sending unit is configured to send the configuration information to the user equipment by using a handover command, a measurement command, a UE-specific command, or a system broadcast message.
  • the sending unit is configured to send configuration information of the carrier to the user equipment by using a backward compatible carrier paired with the carrier in the LTE.
  • the cell ID is a virtual cell ID or an actual physical cell ID.
  • the configuration information of the carrier further includes: an access frequency of the carrier.
  • the sending unit is further configured to set an information unit structure for the carrier in the LTE, and include any one or any combination of the following in the information unit structure: carrier type information, access frequency, bandwidth And the cell ID, the CP type, the CSI-RS configuration information, and the downlink transmission mode, and the information unit structure is referenced in the message, and the configuration information of the carrier is sent to the user equipment.
  • the downlink transmission mode includes a downlink transmission mode 9, and the data information corresponding to the downlink control information in the downlink transmission mode 9 is transmitted in a physical downlink shared channel (PDSCH) by a single antenna port, or The diversity transmission based on the user-specific reference signal; the downlink control information (DCI) in the downlink transmission mode 9 uses DCI Format (format) 1 A or DCI Format 1.
  • DCI Format format 1 A or DCI Format 1.
  • the single antenna port transmission is a downlink transmission mode transmitted by a single antenna port 7; the diversity transmission based on a user-specific reference signal is diversity based on a user-specific reference signal.
  • the downstream transmission mode of the transmission is a downlink transmission mode transmitted by a single antenna port 7;
  • the device for configuring information provided by the embodiment of the present invention includes: a configuration unit, where: the configuration unit is configured to configure carrier configuration in Long Term Evolution (LTE) and the same configuration information of the paired backward compatible carrier.
  • LTE Long Term Evolution
  • the configuration information includes: a cell identity (ID) and a cyclic prefix (CP) type.
  • ID a cell identity
  • CP cyclic prefix
  • the embodiment of the invention further provides another information transmission device, including:
  • a configuration unit configured to: configure a reference signal for synchronization/synchronization tracking for a carrier in Long Term Evolution (LTE);
  • the configuration unit is configured to: configure the reference signal by using configuration information agreed by the base station and the user equipment in advance, or establish configuration information of the reference signal and a primary-secondary synchronization sequence or a cell identifier of the LTE carrier Correspondence; or
  • the transmitting device further includes: a sending unit, configured to: send configuration information of the reference signal to a user equipment through a backward compatible carrier paired with the carrier in the LTE, or configure the reference signal
  • the information is sent to the user equipment by the system broadcast information of the carrier of the LTE.
  • the configuration information of the carrier is sent to the user equipment for the new carrier in the LTE, so that the user equipment can use the new carrier according to the configuration information of the carrier when the base station configures the new carrier for the user equipment.
  • FIG. 1 is a flowchart of a method for transmitting information according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for detecting carrier synchronization in an embodiment of the present invention
  • FIG. 3 is a structural diagram of an apparatus for detecting carrier synchronization in an embodiment of the present invention.
  • FIG. 4 is a structural diagram of an information transmission apparatus according to an embodiment of the present invention.
  • the base station performs information matching on the operation of the first carrier (new carrier in LTE).
  • the configuration information of the new carrier is transmitted to the UE to support the work of the UE in the new carrier.
  • the base station when the base station configures a new carrier for the UE, the base station notifies the UE by the second carrier (backward compatible carrier) paired with the new carrier, and the CSI-RS in the new carrier ( The channel status indication reference signal) configuration information, the UE receives the CSI-RS in the new carrier according to the CSI-RS configuration information and the carrier information of the new carrier, and calculates according to the carrier information of the new carrier and the configuration information of the new carrier received in advance.
  • the CSI-RS if the received CSI-RS is the same as the calculated CSI-RS, the UE considers that the new carrier and the paired backward compatible carrier are synchronous carriers, and the user equipment is synchronized with the new carrier.
  • the carrier information of the new carrier is that the UE assumes that the new carrier is synchronized with the paired backward compatible carrier.
  • the carrier information of the new carrier is determined to be the same as the carrier information of the backward compatible carrier, that is, the new carrier.
  • the paired backward compatible carrier is synchronized in time, and the carrier information of the default new carrier and the frame number of the paired backward compatible carrier, the subframe number, the slot number, and the index of the OFDM symbol are the same.
  • the embodiment further provides a method for transmitting information, which is used for sending a reference signal that is synchronously tracked by a UE with a new carrier.
  • the base station configures a reference signal for synchronization/synchronization tracking for the new carrier, and sends configuration information of the reference signal to the UE through a radio resource control (RRC) message of the backward compatible carrier, or the configuration information of the reference signal passes through
  • RRC radio resource control
  • the system broadcast information of the carrier is sent to the user equipment, or the configuration information of the reference signal is used in advance by the base station and the user equipment, or the configuration information of the reference signal and the primary/secondary synchronization sequence or the cell ID of the carrier. Establish a correspondence.
  • the configuration information of the reference signal includes: resource information, period information, and bandwidth information of the reference signal.
  • the reference signal is used for synchronization/synchronization tracking with the new carrier instead of the time/frequency alignment of the new carrier with the paired backward compatible carrier. Get synchronization/synchronization tracking with the new carrier.
  • the above reference signal may be a CSI-RS, a Cell Reference Signal (CRS) or a Decoded Demodulation Reference Signal (DM-RS).
  • CRS Cell Reference Signal
  • DM-RS Decoded Demodulation Reference Signal
  • the configuration information of the reference signal is CSI-RS configuration information.
  • the configuration information of the reference signal is used in a manner agreed by the base station and the user equipment in advance. For example, a set of CSI-RSs that are fixedly configured by the base station and the UE are used as reference signals for synchronization tracking, and the base station according to the agreed fixed configuration information. The set of CSI-RSs is sent, and then the UE receives the set of CSI-RSs for synchronization tracking according to the agreed fixed configuration information after the cell accesses.
  • the configuration information of the reference signal is associated with the primary and secondary synchronization sequence or the cell ID of the carrier. For example, the correspondence between the base station and the UE is a convention N (N is a positive integer, for example, a value of 6), and the CSI for synchronization tracking is used.
  • the RS configuration information is then numbered for each set, for example, numbered 0 ⁇ 5, and then the following relationship is suggested between the cell ID or the primary and secondary synchronization sequences:
  • Cell ID mod N number, the base station according to the equation, in the determination
  • the cell ID mod 6 number
  • the base station in this cell that is, the CSI-RS corresponding to the transmission number is used for synchronization tracking, and after the UE side knows the cell ID, the same can determine the CSI-RS transmitted in the cell.
  • the CSI-RS is received for synchronization tracking.
  • a CSI-RS may be determined after the foregoing correspondence is determined, and then the CSI-RS of the immediately preceding or backward cycle is selected according to the CSI-RS number value. Synchronization tracking, thereby determining 2 sets of CSI-RSs for synchronous tracking of cells corresponding to cell IDs in the equation.
  • the CSI-RS configuration information for the new carrier synchronization/synchronization tracking is sent to the UE through the RRC message, and the RRC message of the UE-specific type and the RRC message of the broadcast type can be distinguished.
  • the RRC message dedicated to the UE is preferably used. Since there is a problem with synchronization/synchronization tracking of not all UEs for UEs operating in a new carrier, the base station can select a CSI-RS for which synchronization/synchronization tracking is configured according to the needs of the UE.
  • the base station may configure a reference signal for synchronization/synchronization tracking for the UE, such as a CSI-RS, and send configuration information of the reference signal to the UE through a UE-specific RRC message.
  • the UE performs synchronization/synchronization tracking with the new carrier wave by using the CSI-RS configured by the base station for synchronization/synchronization tracking.
  • Step 101 A base station configures a carrier in LTE;
  • Step 102 The base station sends the configuration information of the carrier to the UE, where the configuration information of the carrier includes one or more of a carrier bandwidth, a cell ID, a CP type, CSI-RS configuration information, and a downlink transmission mode.
  • Carrier configuration information can be changed by switching commands, measurement commands, UE-specific commands, or systems.
  • the broadcast message is sent to the UE.
  • the configuration information of the new carrier includes: a frequency of access of the carrier and a bandwidth, and the information can be transmitted as system information of the paired backward compatible carrier in a system information block (SIB), considering that different SIBs contain information content and functions.
  • SIB system information block
  • the access frequency and bandwidth of the new carrier can be placed in the SIB3 or SIB4 of the backward compatible carrier, and the access frequency and bandwidth carried in the SIB3 or SIB4 need to be specifically marked as the new carrier.
  • the access frequency and bandwidth are used to distinguish the existing identification carrier. If the identification does not belong to the access channel and bandwidth of the new carrier, the UE accesses as a normal carrier, but there is no PSS/ in the new carrier. The SSS will cause the UE to be unable to access the new carrier.
  • the identifier belongs to the new carrier, and the UE can accurately know that the frequency and the bandwidth correspond to the new carrier, and the UE can process according to the new carrier. Or,
  • the base station sends the foregoing frequency point and bandwidth to the UE through a handover command or a measurement command, or may be sent to the UE through a UE-specific command or a system broadcast message.
  • the base station may send the foregoing frequency point and bandwidth in the connection reconfiguration (RRCConnectionReconfiguration) message to the UE, or configure the frequency and bandwidth of the new carrier in the measurement configuration (measConfig) message. Similarly, the base station needs to additionally An indication is added to indicate that the type of carrier is a new carrier. Or,
  • an independent information unit structure may be set for the configuration information of the new carrier, so that The information unit structure is directly referenced by different messages.
  • the information unit structure of the new carrier includes: carrier type information, frequency point and bandwidth, optionally, information of a backward compatible carrier paired with the new carrier, and the carrier type information indicates that the information in the information unit structure is for that type.
  • the carrier configuration can be used as an optional parameter.
  • the information of the paired backward compatible carrier may be implied as the carrier that transmits the information unit structure of the new carrier.
  • the information unit structure of the new carrier does not include the information of the paired backward compatible carrier
  • the information unit is sent by default.
  • the carrier of the structure is a paired backward compatible carrier. If the information unit structure of the new carrier includes the information of the paired backward compatible carrier, then the new carrier is paired with the backward compatible carrier, so that it can be conveniently in other messages. Configure the configuration information of the new carrier directly.
  • a method for configuring a cell ID in a new carrier is also provided, and the new carrier is used by default.
  • the same cell ID as the paired backward compatible carrier can eliminate the step of notifying the cell ID of the new carrier of the UE, and can also eliminate the complicated process of configuring the actual physical cell ID for the new carrier.
  • the process of establishing the RRC connection and registering the access information in the core network may not be re-executed. or,
  • the new carrier uses the virtual cell ID.
  • the value of the virtual cell ID needs to be notified to the UE by the base station through the backward compatible carrier.
  • the notification mode may be different from the frequency and bandwidth notification mode of the new carrier.
  • the ID generally needs to be notified in a point-to-point manner, for example, using the RRCConnectionReconfiguration message described above to notify the UE in a point-to-point manner.
  • the virtual cell ID may also be omitted from the process of registering on the core network side. Therefore, if the virtual cell ID is used for the new carrier, the parameter of the virtual cell ID used by the new carrier needs to be added to the information element structure of the new carrier.
  • the new carrier uses the actual physical cell ID, and the notification of the actual physical cell ID is the same as the virtual cell ID. For the information element structure of the new carrier, the cell ID used by the new carrier is added.
  • the new carrier can be used in a Coordinated Multi-Point (COMP) scenario.
  • the base station can configure a flexible virtual device for the new carrier.
  • the cell ID combined with the unique characteristics of the physical downlink control channel (PDCCH), CRS and PSS/SSS in the new carrier, makes the inter-cell interference under the COMP well coordinated and avoided.
  • the virtual cell ID of the new carrier can be determined by the base station according to the physical ID of the backward compatible carrier participating in the cooperation, since the virtual cell ID and the physical ID of the backward compatible carrier are parameters used to generate other information in the carrier, and the parameters are the same. In the case of the other parameters generated, such as CSI-RS, etc., this will cause non-orthogonality between the CSI-RSs in the two carriers, thereby causing interference. Therefore, the decision of the virtual cell ID can be circumvented by the interference generated when the other information is calculated by the cell ID.
  • the virtual cell ID in the new carrier is generated and configured by the UE dedicated signaling for the required UE, which is different from the existing physical cell ID, and the latter is configured for all UEs in the cell, so the latter is subject to
  • one carrier can only be configured with one physical cell ID, and it is necessary to consider whether the distribution of physical cell IDs between its neighboring cells is reasonable, for example, orthogonality.
  • the configuration of the virtual cell ID in the new carrier is not restricted by the restriction condition of the original physical cell ID, for example.
  • the base station can configure a virtual cell ID for each of the two UEs in a new carrier, and notify the UE by using UE-specific signaling, which can largely avoid the interference in the COMP scenario.
  • the new carrier is fully configurable, and the PDCCH, CRS, and PSS/SSS are deleted. In combination with the use of the virtual cell ID in this embodiment, the new carrier performance is fully embodied in the COMP scenario.
  • the base station can configure one and the same virtual cell ID for multiple UEs in the new carrier.
  • the base station After the base station determines the virtual cell ID for the new carrier, the base station generates a scrambling code sequence according to the virtual cell ID, performs an uplink reference signal UL-RS sequence grouping, and performs a frequency hopping Hopping process.
  • the embodiment also provides a configuration and notification manner of a cyclic prefix (CP) type in a new carrier.
  • the base station uses the same CP type as the backward compatible carrier in the new carrier, that is, the backward compatible carrier uses a long CP or a short.
  • the paired new carrier also uses a long CP or a short CP, and the method is solidified.
  • the CP type in the new carrier can be directly known.
  • the UE needs to determine the CP type of the carrier by retrieving the PSS/SSS in a certain carrier.
  • the UE must first retrieve the PSS/SSS of the carrier to synchronize with the carrier when accessing the carrier.
  • the CP type is obtained while retrieving the PSS/SSS, otherwise the synchronization process with the carrier cannot be completed. But in the new carrier, since the new carrier is not configured
  • the UE cannot use the existing method of retrieving PSS/SSS to acquire the CP type of the new carrier, and considering the UE that needs to work in the new carrier, it must first be in the backward compatible carrier paired with the new carrier.
  • the UE first knows the CP type of the backward compatible carrier, so if the new carrier is specified and the paired backward compatible carrier uses the same CP, the UE can know the CP type of the new carrier before entering the new carrier, so that It is possible to omit the signaling of the notification CP and avoid the complicated process of the UE retrieving the PSS/SSS.
  • the UE can know the CP type of the new carrier before entering the new carrier, so that It is possible to omit the signaling of the notification CP and avoid the complicated process of the UE retrieving the PSS/SSS.
  • the CP type of the new carrier is arbitrarily configured. Then, the base station notifies the UE of the CP type in the new carrier by signaling. Preferably, when the base station configures to use the new carrier for the UE, the base station notifies the UE of the CP type used in the new carrier by using an RRC message or a handover command or a measurement command or a system broadcast message in the backward compatible carrier. Specifically, it may be sent to the UE using RRC reconfiguration (RRCConnectionReconfiguration) or in a pairing notification message notifying the pairing of the new carrier and the backward compatible carrier or in the measurement configuration (measConfig). If indeed It is configurable to use the CP type for the new carrier. Therefore, for the new carrier information unit described above, it is necessary to add a parameter of the CP type used by the new carrier.
  • RRC reconfiguration RRCConnectionReconfiguration
  • measConfig a pairing notification message notifying the pairing of the new carrier and the backward compatible carrier or in the
  • the CP type of the new carrier can be determined according to the needs of the new carrier. For example, when a large coverage is required, the base station can configure a long CP for the new carrier to achieve better performance, and the CP type of the new carrier is The same backward-compatible carrier configuration does not achieve this flexibility. Or, in a manner of dynamically configuring a CP type, that is, when the base station sends a command for the UE to notify the CP of the new carrier, the type of the new carrier is determined according to the notified command, and if the base station does not send the command, the base station and the base station The UE defaults to the new carrier using the same CP type as the paired backward compatible carrier.
  • the base station and the UE all use the same new carrier and the backward compatible carrier.
  • the CP if there is the CP type parameter, the base station and the UE are all executed according to the CP type configured by the parameter.
  • the access frequency, bandwidth, cell ID, CP type, and CSI-RS configuration information of the new carrier may be selected according to different application scenarios. For example, in the cell handover process, in order to reduce the number of interactions between the base station and the UE, the foregoing information may be added to the UE in a handover command or a measurement command sent by the base station to the UE, so that the UE performs measurement on the target carrier.
  • the difference from the related art is that the cell ID, the CP type, and the CSI-RS of the new carrier cannot be obtained after the UE directly accesses the target carrier, and the physical cell ID of the target cell in the cell handover or measurement process of the related art,
  • the CP type and the CRS configuration are obtained by the UE itself after directly accessing the target cell.
  • the transmission mode of the configuration information of the carrier is not limited, and the configuration information of the carrier may be carried in the RRC message, the measurement configuration message, or the handover command, the measurement command, the UE-specific command, and the system broadcast message.
  • Sending in the pairing notification message a suitable transmission method may be preferred for different scenarios.
  • the base station notifies the UE of the CSI-RS configuration information of the new carrier by using the backward compatible carrier, including: antenna port number (antennaPortsCount-rlO), CSI-RS resource configuration (resourceConfig-rlO), CSI-RS subframe configuration (frameConfig-rlO), CSI-RS power control (pC-rlO).
  • the CSI-RS configuration information of the new carrier is included in the measurement command sent by the base station to the UE, which requires the UE to measure the new carrier, so that when the UE obtains the measurement command sent by the base station, it also knows the need.
  • the measured CSI-RS configuration information of the carrier can facilitate the measurement of the UE.
  • the complexity of the CSI-RS configuration is mainly considered.
  • the CRS configuration is relatively simple, so the reference signal is not given in the measurement command in the related art, and the measurement purpose is different.
  • the specific RRC message is different. Therefore, in the cell that needs to be measured by using the CSI-RS, the base station needs to add CSI-RS configuration information to the measurement command sent to the UE, so as to facilitate UE measurement, and reduce the base station and the UE. The interaction between. Of course, it is also possible to transmit using a handover command and a UE-specific command.
  • the embodiment further provides a method for detecting carrier synchronization.
  • the method includes: Step 201: The UE determines, according to carrier information of a backward compatible carrier paired with a new carrier, that the new carrier is synchronized with a backward compatible carrier. Carrier information of the new carrier;
  • the default new carrier is paired with the slot number of the paired backward compatible carrier, s and the OFDM symbol in the slot are aligned, that is, the n s of the new carrier and/the corresponding n s of the paired backward compatible carrier. And / are strictly time aligned.
  • Step 202 The UE receives configuration information of a carrier sent by the base station.
  • Step 203 The UE calculates a CSI-RS of the new carrier according to the carrier information of the new carrier.
  • the UE first calculates an initial value c mit of the CSI-RS of the new carrier according to the configuration information of the new carrier and the carrier information of the new carrier;
  • c imt 2 10 ⁇ (7 ⁇ (« s + 1)+ / + 1) ⁇ (2 ⁇ N ⁇ 11 + 1) + 2 ⁇ N ⁇ 11 + N cp , where the carrier information for the new carrier is included
  • the slot number / is the index of the OFDM included in the carrier information of the new carrier
  • N U is the cell identifier included in the configuration information of the new carrier
  • N CP is the CP type included in the configuration information of the new carrier.
  • Step 204 The UE receives the CSI-RS in the new carrier according to the frequency and bandwidth information of the new carrier sent by the base station through the backward compatible carrier, and the carrier information of the determined new carrier.
  • the user equipment receives information from the first carrier, determines the location of the CSI-RS in the information according to the previously received CSI-RS configuration information, and intercepts the CSI-RS from the information according to the carrier information of the new carrier.
  • Step 205 The UE detects whether the received CSI-RS is the same as the sequence calculated by the foregoing manner. If they are the same, it is considered that the carrier information of the determined new carrier is correct in the new carrier, and the new carrier and the pairing are obtained.
  • the backward compatible carrier is strictly synchronized, that is, the frame number, the subframe number, and the OFDM symbol are strictly time aligned, and the user equipment is synchronized with the first carrier, so that the UE can use the backward compatible carrier. Frame number, subframe number, OFDM symbol to maintain and maintain synchronization with the new carrier.
  • the two CSI-RSs are actually correlated, and the correlation is determined according to the correlation peak. If the correlation between the received CSI-RS and the calculated CSI-RS meets the set threshold, it is considered to be received.
  • the CSI-RS is the same as the calculated CSI-RS.
  • the UE may send the conclusion information to the base station, and after the base station knows the conclusion, the UE may be configured to use the new carrier.
  • the UE can also send the conclusion to the base station as a reason for the failure of the RRM measurement.
  • the UE may not feed back the result to the base station, and the UE may only feed back the measurement result to the base station.
  • the embodiment further provides a downlink transmission mode of the UE in the new carrier, so that the UE knows that the UE is synchronized with the new carrier and the backward compatible carrier, how does the base station allow the UE to work in the new carrier. .
  • this embodiment proposes a transmission mode of the new carrier in the following manner:
  • the downlink transmission mode includes a downlink transmission mode 9 and a DCI in the downlink transmission mode 9
  • the format of the downlink control information is DCI Format 1A.
  • the data corresponding to the downlink control information is transmitted on the PDSCH (Physical Downlink Shared Channel) in single-antenna port mode, or in downlink transmission mode 9.
  • the format of DCI is DCI Format 1A,
  • the transmission mode of the corresponding data on the PDSCH is a diversity mode based on a user-specific reference signal.
  • the downlink transmission mode further includes at least one of the following:
  • the PDSCH uses only the downlink transmission mode transmitted by the single antenna port 7;
  • the PDSCH is a downlink transmission mode based on a user-specific reference signal diversity mode
  • the downlink control information format corresponding to the two downlink transmission modes is DCI Format 1 or DCI.
  • the format of the downlink control information corresponding to the two downlink transmission modes is a new DCI Format or DCI Format 1A; or the downlink control information format corresponding to the two downlink transmission modes is a new DCI Format.
  • the UE shall decode the PDCCH and all related PDSCHs according to the respective combinations defined in Table 1 to Table 6, wherein the PDCCH further includes an enhanced PDCCH;
  • C-RNTI Cell Radio Network Temporary Identifier
  • CRC Cycical Redundancy Check
  • the downlink transmission mode X in Tables 3 to 6 below may also include only one corresponding DCI Format in the following table;
  • DCI Format Z is DCI Format 1A or a new DCI Format
  • the following DCI Format Y is DCI Format 1 or a new DCI Format
  • the component carrier (the serving cell): a single antenna port, port 7;
  • DCI format 1 A 6, MBSFN frame: single antenna port, defined UE specific
  • the component carrier (the serving cell): based on a user-specific reference signal, *,
  • DCI 16 UE specific based on user-specific reference signal definition
  • DCI format search space PDCCH corresponding PDSCH transmission scheme transmission mode C-RNTI
  • the base station pairs the backward compatible carrier with the new carrier, and sends the pairing information to the UE in the backward compatible carrier. Since the new carrier does not support UE direct access, all UEs are from the backward compatible carrier access system, and then the base station performs carrier configuration scheduling on the UE. For example, some UEs are configured to use new carriers.
  • the base station sends the information that the backward compatible carrier and the new carrier are paired to the UE, so that the UE knows, and the new compatible carrier is in a paired use relationship.
  • the base station sends some common channels and important system information of the new carrier to the UE through the paired backward compatible carrier, so that the UE knows the relevant configuration in the new carrier.
  • the new carrier is configured to use the same cell ID as the backward compatible carrier, and the new carrier uses the same CP type as the backward compatible, but considering the application of the CSI-RS, the new carrier uses the short CP. In this way, the information of the cell ID and the CP type information used by the base station to notify the UE of the new carrier can be omitted.
  • the base station needs to send at least CSI-RS configuration information in the new carrier to the UE, where the configuration information is: antenna port number (antennaPortsCount-rlO), CSI-RS resource configuration (resourceConfig-rlO), CSI -RS subframe configuration (frameConfigConfig-rlO), CSI-RS power control (pC-rlO).
  • the base station side needs to perform the carrier aggregation transmission according to the requirements of the existing protocol when the new carrier is used. For example, the base station needs to ensure that the time difference between the two carriers that are aggregated on the base station side does not exceed the maximum value specified by the protocol (refer to LTE TS36 for details). 104) Thus, the two carriers are strictly synchronized when transmitting on the base station side. Then, the two carriers are transmitted through the air interface. Due to the frequency characteristics of the carrier, the mobile characteristics of the UE, and the experienced transmission node, the two carriers may arrive at the UE, and the strict synchronization between the carriers is destroyed, but the base station is unclear.
  • the base station first requires the UE to perform measurement on the new carrier (here mainly refers to RRM measurement, and the base station according to The measurement result determines whether the new carrier is suitable for activation for the UE. Then, since the UE does not know whether it maintains strict synchronization with the new carrier, since there is no PSS/SSS configuration in the new carrier, the UE receives the new carrier required by the base station. After the measurement, the UE processes as follows:
  • the UE-side default new carrier and the backward compatible carrier are strictly synchronized, and the new carrier and the backward compatible carrier are strictly aligned in the time direction, because the UE can be known.
  • the frame number, the slot number, the subframe number, and the index of the OFDM symbol of the backward compatible carrier so the frame number, the slot number, the subframe number, and the index of the OFDM symbol corresponding to the UE default new carrier are completely consistent with the backward compatible carrier. .
  • the UE determines the frame number, the slot number, the subframe number, and the index value of the OFDM symbol of the new carrier through the backward compatible carrier, and receives the C SI-RS in the new carrier, and then detects the received CSI-RS data and passes the same. Whether the CSI-RS calculated by the specific CSI-RS configuration information is the same:
  • the UE side assumes that the new carrier and the backward compatible carrier are strictly time aligned is established.
  • the UE considers that the new carrier and the backward compatible carrier are strictly synchronized, that is, the frame of the new carrier.
  • the index of the number, the slot number, the subframe number, and the OFDM symbol are aligned with the backward compatible carrier, and the UE can determine the frame number, the slot number, the subframe number, and the index of the OFDM symbol in the backward compatible carrier.
  • the frame number, the slot number, the subframe number, and the index of the OFDM symbol in the corresponding new carrier are obtained, thereby implementing the UE to provide a basis for the UE to work in the new carrier.
  • the UE feeds back to the base station the conclusion that the new carrier and the backward compatible carrier detected by the UE side are strictly synchronized.
  • the base station may decide whether to use the new carrier for the UE configuration.
  • the base station configures the UE to use the new carrier.
  • the UE obtains the conclusion that the two carriers are not strictly synchronized when the new carrier and the backward compatible carrier arrive at the UE side, and the UE feeds back the conclusion to the base station, and the base station can determine whether to use the new carrier for the UE according to the conclusion. .
  • the base station will not use the new carrier for the UE configuration.
  • the foregoing UE determines whether the new carrier is synchronized with the paired backward compatible carrier.
  • the UE may implicitly provide feedback through the ACK/NACK, and may also carry feedback to the base station through the message of the RRM measurement report.
  • Example 2
  • This embodiment is basically the same as the first embodiment, except that if the UE determines that the new carrier is not synchronized with the backward compatible carrier by using the CSI-RS of the new carrier, the UE further needs to perform further calculation according to the CSI-RS. , to determine the specific time difference between the new carrier and the backward compatible carrier.
  • the base station pairs the backward compatible carrier with the new carrier, and sends the pairing information to the UE in the backward compatible carrier. Since the new carrier does not support UE direct access, all UEs are from the backward compatible carrier access system, and then the base station performs carrier configuration scheduling on the UE. For example, some UEs are configured to use new carriers.
  • the base station sends the information that the backward compatible carrier and the new carrier are paired to the UE, so that the UE knows, and the new compatible carrier is in a paired use relationship.
  • the base station sends some common channels and important system information of the new carrier to the UE through paired backward compatibility, so that the UE knows the relevant configuration in the new carrier.
  • the base station sends the CSI-RS configuration information in the new carrier to the UE, where the configuration information is: antenna port number (antennaPortsCount-rlO), CSI-RS resource configuration (resourceConfig-rlO), CSI- RS subframe configuration (frameConfig-rlO), CSI-RS power control (pC-rlO), cell ID used in the new carrier, CP type used in the new carrier.
  • the CP type of the new carrier in the present embodiment should be consistent with the CP type of the backward compatible carrier. This facilitates strict time alignment between the new carrier and the paired backward compatible carrier.
  • the base station side needs to perform the carrier aggregation transmission according to the requirements of the existing protocol when the new carrier is used. For example, the base station needs to ensure that the time difference between the two carriers that are aggregated on the base station side does not exceed the maximum value specified by the protocol (refer to LTE TS36 for details). 104) Thus, the two carriers are strictly synchronized when transmitting on the base station side. Then, the two carriers are transmitted through the air interface. Due to the frequency characteristics of the carrier, the mobile characteristics of the UE, and the experienced transmission node, the two carriers may arrive at the UE, and the strict synchronization between the carriers is destroyed, but the base station is unclear.
  • the base station When the compatible carrier and the new carrier arrive at the UE side, whether the strict synchronization is still maintained, therefore, according to the embodiment, further, if the base station needs to use the new carrier to transmit data for the UE, the base station first requires the UE to measure the new carrier (this In the RRM measurement, the base station determines whether the new carrier is suitable for the UE according to the measurement result. Therefore, since the UE does not know whether it is strictly synchronized with the new carrier, because there is no PSS/SSS configuration in the new carrier, After the UE receives the new carrier measurement requested by the base station, the UE processes in the following manner:
  • the default new carrier and the backward compatible carrier on the UE side are strictly synchronized, and the new carrier and the backward compatible carrier are strictly aligned in the time direction, because the UE is known.
  • the frame number, the slot number, the subframe number, and the index of the OFDM symbol of the compatible carrier, so the frame number, the slot number, the subframe number, and the index of the OFDM symbol corresponding to the UE default new carrier are completely identical to the backward compatible carrier. of.
  • the UE determines the frame number, the slot number, the subframe number, and the index of the OFDM symbol of the new carrier through the backward compatible carrier, receives the CSI-RS in the new carrier, and then detects the received CSI-RS and passes the specific CSI- Whether the CSI-RS calculated by the RS configuration information is the same:
  • the UE side assumes that the new carrier and the backward compatible carrier are strictly time aligned is established.
  • the UE considers that the new carrier and the backward compatible carrier are strictly synchronized, that is, the frame of the new carrier.
  • the time slot, the subframe, the index of the OFDM symbol, and the backward compatible carrier are aligned, and the UE can obtain the corresponding information by determining the frame number, the slot number, the subframe number, and the index of the OFDM symbol in the backward compatible carrier.
  • the frame number, the slot number, the subframe number, and the index of the OFDM symbol in the new carrier thereby realizing the UE to provide a basis for the UE to work in the new carrier.
  • the UE feeds back to the base station the conclusion that the new carrier and the backward compatible carrier detected by the UE side are strictly synchronized. After obtaining the conclusion, the base station may decide whether to use the new carrier for the UE configuration. Thus, the base station configures the UE to use the new carrier.
  • the UE side may further determine the actual time difference between the new carrier and the backward compatible carrier by using the CSI-RS. Specifically, before detecting the CSI-RS in the received new carrier, the UE should save the data of the received new carrier, and when the UE obtains the new carrier and the backward compatible carrier are not synchronized, the UE continues to save from the saved. In the data, the time point for intercepting the CSI-RS is adjusted forward or backward based on the received CSI-RS, and the CSI-RS is re-intercepted (in this case, the sample is verified step by step in time direction). The CSI-RS is compared with the CSI-RS calculated by known parameters to obtain the actual time difference between the new carrier and the backward compatible carrier.
  • this time difference is relatively small (for example, does not affect the interval of ACK/NACK feedback, for example, no more than one
  • the UE can still consider that the new carrier and the backward compatible carrier on the UE side are synchronized. If the above time difference is relatively large, the UE can consider that the new carrier and the backward compatible carrier on the UE side are not synchronized.
  • the time difference is actually provided.
  • the UE side if the synchronization time difference between the new carrier and the paired backward compatible carrier does not exceed a certain time difference, and the time difference is known by the UE, the UE side can consider the new carrier.
  • the paired backward compatible carrier is synchronized, so that when the base station uses the new carrier for the UE, the UE can adjust the data of the received new carrier according to the time difference.
  • the foregoing UE determines whether the new carrier is synchronized with the paired backward compatible carrier, and the UE may implicitly feedback through the ACK/NACK, or may carry feedback to the base station through the message of the RRM measurement report.
  • This embodiment is different from the embodiments 1 and 2.
  • the embodiment 3 focuses on the configuration and transmission process of the necessary information of the new carrier, so that the UE can obtain the information in time.
  • the base station may configure a new carrier for its configuration.
  • the base station needs to transmit necessary information of the new carrier for the UE, and the base station includes the information element structure of the new carrier in the RRCConnectionReconfiguration message, and gives the structure in the structure.
  • the parameter gives the value.
  • a value configuration of the structure is given below.
  • New carrier information unit structure
  • the name of the "information unit structure" body indicates that the structure is a new carrier type.
  • the carrier transmitting the structure can be regarded as having a pairing relationship with the carrier described in the structure.
  • the frequency, bandwidth, cell ID and CP type are all describing the new carrier in the structure.
  • the cell ID can be further divided into an actual physical cell ID or a virtual cell ID.
  • the virtual cell ID is only used to determine some parameters in the new carrier. These parameters need to use the cell ID in the calculation, and the virtual cell ID value is used here to calculate.
  • the UE does not need to establish an independent RRC connection for the carrier corresponding to the virtual cell ID.
  • a backward compatible carrier is paired with a plurality of new carriers
  • information of a plurality of new carriers is required in the structure, and information of each new carrier may be corresponding to signaling according to the structure given above, including In the same structure. It is assumed that the new carrier uses the same cell ID as the paired backward compatible carrier.
  • the structure is shown below:
  • New carrier information unit structure
  • Embodiment 4 mainly describes that the base station configures a reference signal for synchronization/synchronization tracking for the UE, and the reference signal herein mainly refers to the CSI-RS 0.
  • the primary and the CSI-RS can be independently configured. Have a relationship.
  • Embodiment 1 and Embodiment 2 can be used in combination with Embodiment 1 and Embodiment 2.
  • the base station can configure the CSI-RS for synchronization/synchronization tracking in the new carrier by using the UE-specific RRC message, and use the CSI-RS configuration information as a reference signal.
  • the configuration information is sent to the UE, and then the UE uses the CSI-RS to complete synchronization/synchronization tracking with the new carrier to ensure that the UE works on the new carrier.
  • the base station configures a specific CSI-RS pattern for the UE to track the new carrier with the new carrier.
  • the UE accesses the new carrier and finds that the CSI-RS configured by the base station for synchronization tracking exists, the UE uses the CSI-RS to perform synchronization tracking. Otherwise, the UE uses the paired with the new carrier. Synchronous tracking of new carriers is made to reference signals in compatible carriers.
  • the base station transmitting the specific CSI-RS configuration information can be sent to the UE through system information (e.g., SIB) or a dedicated RRC message.
  • system information e.g., SIB
  • RRC message e.g., RRC
  • the configuration information of the reference signal may also use the configuration information agreed by the base station and the user equipment in advance, or the base station establishes the correspondence between the configuration information of the reference signal and the primary and secondary synchronization sequence or the cell ID of the LTE carrier. relationship.
  • the base station and the UE agree to use a fixed set of CSI-RS as a reference signal for synchronization tracking, and the base station sends the set of CSI-RS according to the agreed fixed configuration information, and then the UE is fixed according to the agreement after the cell access.
  • the configuration information receives the set of CSI-RSs for use as a synchronization trace.
  • the CSI-RS sent in the cell can be determined in the same manner, so that the CSI-RS is received for synchronization tracking. If two sets of CSI-RSs need to be selected for synchronous tracking, a set of CSI-RSs may be determined in the above correspondence, and then the CSI-RS of the forward or backward loop is selected according to the CSI-RS number value. Synchronization tracking, thereby determining 2 sets of CSI-RSs for synchronous tracking of cells corresponding to cell IDs in the equation.
  • the base station directly determines whether the base station performs measurement according to the measurement result by allowing the UE to perform measurement on the new carrier.
  • Configuring a CSI-RS for synchronization/synchronization tracking for the UE when the UE receives configuration information of a reference signal for new carrier synchronization/synchronization tracking configured by the base station for itself through a dedicated RRC message, then the UE uses the configuration The CSI-RS performs synchronization/synchronization tracking with the new carrier. If the UE does not receive the above-mentioned CSI-RS configuration information for synchronization/synchronization tracking through a dedicated RRC message, the UE determines the synchronization/synchronization tracking of the new carrier using the new carrier and the paired backward compatible carrier time strict alignment.
  • the UE can determine the synchronization between the new carrier and the paired backward compatible carrier by using the reference signal for the base station to configure the synchronization/synchronization tracking for the new carrier, for example, when the UE receives the base station for transmitting a new carrier for the UE.
  • the UE considers that the new carrier and the paired backward compatible carrier are not strictly synchronized with each other, and need to use the configured CSI-RS to complete the new carrier. Synchronization/synchronization tracking, otherwise, the UE considers that the new carrier is strictly synchronized with the paired backward compatible carrier for itself.
  • the new carrier described in this article is not configured with PSS/SSS and no CRS. If the new carrier is configured with its own PSS/SSS, then the UE directly synchronizes with the new carrier using the PSS/SSS in the new carrier.
  • the embodiment further provides an apparatus for detecting carrier synchronization, including: a carrier information determining unit, a CSI-RS calculating unit, a CSI-RS receiving unit, and a comparing unit, where: a carrier information determining unit, setting Determining carrier information of the first carrier according to carrier information of the second carrier;
  • the CSI-RS calculating unit is configured to calculate a CSI-RS of the first carrier according to the carrier information of the first carrier determined by the carrier information determining unit;
  • a CSI-RS receiving unit configured to receive a CSI-RS from the first carrier according to carrier information of the first carrier
  • the comparing unit is configured to compare the CSI-RS received by the CSI-RS receiving unit with the CSI-RS calculated by the CSI-RS calculating unit, to determine whether the first carrier and the second carrier are synchronized, and whether the user equipment and the first carrier are Synchronize.
  • the comparison unit Calculating, by the comparison unit, the CSI-RS received by the CSI-RS receiving unit and the CSI-RS If the CSI-RS calculated by the unit is the same, it is confirmed that the first carrier is synchronized with the second carrier, and the user equipment is synchronized with the first carrier.
  • the carrier information includes: a frame number, a subframe number, a slot number, and an index of an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a CSI-RS receiving unit configured to receive information from the first carrier, according to the pre-received
  • the CSI-RS configuration information determines the location of the CSI-RS in the information, and obtains the CSI-RS from the information according to the carrier information of the first carrier.
  • the sequence of CSI-RS, the initial value of c is c imt , and N ⁇ X ' D L is the number of resource blocks (RBs) of the first carrier.
  • the CSI-RS receiving unit is further configured to save all data of the subframe in which the received CSI-RS is located; and the comparing unit is further configured to: when the received CSI-RS is different from the calculated CSI-RS, from the CSI-
  • the data of the subframe in which the received CSI-RS is stored by the RS receiving unit adjusts the time point for intercepting the CSI-RS forward or backward based on the received CSI-RS, and re-takes the CSI-RS, and repeats the interception.
  • the obtained CSI-RS is compared with the calculated CSI-RS.
  • the CSI-RS obtained by the intercept is the same as the calculated CSI-RS, the first carrier and the first carrier are confirmed according to the adjusted time point of intercepting the CSI-RS. The time difference between the two carriers.
  • the comparing unit is further configured to: when the time difference between the first carrier and the second carrier is less than a time threshold, confirm that the first carrier is synchronized with the second carrier, and the user equipment is synchronized with the first carrier; if the first carrier If the time difference between the second carrier and the second carrier exceeds the time threshold, it is confirmed that the first carrier is not synchronized with the second carrier, and the user equipment is not synchronized with the first carrier.
  • the first carrier is an N-type carrier in Long Term Evolution (LTE)
  • the second carrier is a backward compatible carrier in LTE R8/R9/R10
  • the first carrier and the second carrier are carriers used for pairing.
  • the embodiment further provides an information transmission apparatus, including: a configuration unit and a sending unit, where:
  • a configuration unit configured to configure carriers in Long Term Evolution (LTE);
  • the sending unit is configured to send the configuration information of the carrier to the user equipment (UE), where the configuration information of the carrier includes a bandwidth of the carrier, a cell identifier (ID), a cyclic prefix (CP) type, and a channel state information measurement pilot (CSI-RS) One or more of configuration information and downlink transmission mode.
  • UE user equipment
  • ID cell identifier
  • CP cyclic prefix
  • CSI-RS channel state information measurement pilot
  • the sending unit is configured to send the configuration information to the UE by using a handover command, a measurement command, a UE-specific command, or a system broadcast message.
  • the sending unit is configured to send the configuration information of the carrier to the user equipment by using a backward compatible carrier paired with the carrier in the LTE.
  • the cell ID is a virtual cell ID or an actual physical cell ID.
  • the carrier configuration information also includes: The access frequency of the carrier.
  • the sending unit is further configured to set an information unit structure for the carrier in the LTE, and include one or more of the following in the information unit structure: carrier type information, access frequency, bandwidth, cell ID, CP type, CSI-RS configuration
  • the information unit structure is referenced in the message, and the configuration information of the carrier is sent to the user equipment.
  • the downlink transmission mode includes a downlink transmission mode 9, and the data information corresponding to the downlink control information in the downlink transmission mode 9 is transmitted in a physical downlink shared channel (PDSCH) by a single antenna port, or is a diversity based on a user-specific reference signal.
  • PDSCH physical downlink shared channel
  • DCI Downlink Control Information
  • Downstream Transmission Mode 9 uses DCI Format (Format) 1A or DCI Format 1.
  • Single antenna port transmission is the downlink transmission mode of single antenna port 7 transmission
  • the diversity transmission based on the user-specific reference signal is a downlink transmission mode based on diversity transmission of the user-specific reference signal.
  • the embodiment of the invention further provides another information transmission device, including: a configuration unit, configured to: configure a reference signal for synchronization/synchronization tracking for a carrier in Long Term Evolution (LTE);
  • a configuration unit configured to: configure a reference signal for synchronization/synchronization tracking for a carrier in Long Term Evolution (LTE);
  • the configuration unit is configured to: configure the reference signal by using configuration information agreed by the base station and the user equipment in advance, or establish configuration information of the reference signal and a primary-secondary synchronization sequence or a cell identifier of the LTE carrier Correspondence; or
  • the transmitting device further includes: a sending unit, configured to: send configuration information of the reference signal to a user equipment through a backward compatible carrier paired with the carrier in the LTE, or configure the reference signal
  • the information is sent to the user equipment by the system broadcast information of the carrier of the LTE.
  • the reference signal is a channel state indication reference signal (CSI-RS), a cell reference signal
  • CRS CRS
  • DM-RS Decoded Demodulation Reference Signal
  • the reference signal is configured by using the configuration information agreed by the base station and the user equipment in advance, specifically: a set of CSI-RSs that are fixedly configured between the base station and the UE are used as reference signals for synchronization tracking, and the base station is fixed according to the agreement.
  • the configuration information sends the set of CSI-RSs, and then the UE receives the set of CSI-RSs for synchronization tracking according to the agreed fixed configuration information after the cell access.
  • the mapping between the configuration information of the reference signal and the primary-secondary synchronization sequence or the cell identifier of the LTE carrier is specifically as follows:
  • the correspondence between the base station and the UE is the convention N (N is a positive integer, for example, the value is 6
  • N is a positive integer, for example, the value is 6
  • the CSI-RS configuration information used for synchronization tracking is then numbered for each set, for example, numbered 0 ⁇ 5, and then the following relationship is suggested between the cell ID or the primary and secondary synchronization sequences:
  • Cell ID mod n number
  • the CSI-RS transmitted in the cell thereby receiving the CSI-RS for synchronization tracking. If two sets of CSI-RSs need to be selected for synchronization tracking, a CSI-RS may be determined after the foregoing correspondence is determined, and then the CSI-RS of the immediately preceding or backward cycle is selected according to the CSI-RS number value. Synchronization tracking, thereby determining 2 sets of CSI-RSs for synchronous tracking of cells corresponding to cell IDs in the equation.
  • the embodiment further provides an information configuration apparatus, including: a configuration unit, where: a configuration unit configured to configure carrier compatibility and paired backward compatibility in Long Term Evolution (LTE) The same configuration information for the wave.
  • the configuration information includes: a cell identifier (ID) and a CP type.
  • the configuration information of the carrier is sent to the user equipment for the new carrier in the LTE, so that when the base station configures the new carrier for the user equipment, the user equipment can use the new carrier according to the configuration information of the carrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种信息的传输、配置方法和装置,所述传输方法包括:基站对长期演进(LTE)中的载波进行配置,将载波的配置信息发送给用户设备(UE),所述载波的配置信息包括载波的带宽、小区标识(ID)、循环前缀(CP)类型、信道状态信息测量导频(CSI-RS)配置信息和下行传输模式中的任意一种或任意组合。

Description

一种信息的传输、 配置方法及装置
技术领域
本发明涉及移动无线通信领域, 尤其涉及一种信息的传输、 配置方法及 装置。
背景技术
随着移动通信产业的发展以及对移动数据业务需求的不断增长, 人们对 移动通信的速率和服务质量的要求越来越高, 于是在第三代移动通信 (3G) 还没有大规模商用之前, 就已经开始了对下一代移动通信***的研究和开发 工作, 其中比较典型的是第三代合作伙伴计划 (3GPP) 启动的长期演进 ( LTE )项目, LTE ***可提供的最高频谱带宽为 20MHz (兆赫兹)。 随着网 络的进一步演进, LTE-A (演进 LTE)作为 LTE 的演进***, 可以提供高达 100MHz的频语带宽, 支持更灵活更高质量的通信, 同时 LTE-A***具备很 好的后向兼容性。 在 LTE-A***中有多个分量载波 (CC, component carrier), 一个 LTE终端只能工作在某一个后向兼容的 CC上, 而能力较强的 LTE-A终 端可以同时在多个 CC上进行接收。 即实现 LTE-A的终端同时在多个分量载 波中传输和接收数据, 从而达到提升带宽的目的。 该技术被称为多载波聚合 技术。
在 LTE-A***中支持多载波聚合技术, 通过多载波聚合以求达到更大的 带宽传输数据。 基站下属最多五个载波, 这些载波被称为分量载波, 都是具 有后向兼容性的载波。 所谓具有后向兼容性的载波, 是指在这些载波中都配 置有 LTE R8/R9/R10 ***中规定的必要的控制信道和参考信号, 并且执行 LTE R8/R9/R10规定的流程和***广播消息的发送机制, 寻呼消息的发送机 制, 执行 LTE R8/R9/R10中规定的小区切换 /重选机制。
随着技术的发展, LTE R11中提出了一种新型的载波, 这种载波的详细 特性还在讨论中, 目前可以确认, 新载波不能独立使用, 需要和后向兼容载 波配对使用, 通过聚合技术, 使得新载波起到扩充后向兼容载波传输数据带 宽的作用,为方便称呼,本文中称这种 LTE中提出的新型的载波为 N型载波。 新载波中不提供 LTE R8/R9/R10中的小区参考信号 ( CRS ) , 这里主要是为 了减少载波之间由于 CRS带来的干扰和由于 CRS开销过大, 新载波中考虑 使用了新的参考信号代替了原有的 CRS。 进一步, 新载波中的主辅同步 ( PSS/SSS ) 不是必配的, 目前认为新载波中 PSS/SSS是可选的, 而在 LTE R8/R9/R10中 PSS/SSS是必配的, 是用户设备(UE )用来和载波进行同步的。
发明内容
目前根据新载波的研究进展, 认为新载波和后向兼容载波分为同步载波 和非同步载波。 LTE R8/R9/R10中对于载波聚合技术的要求, 两个被聚合的 载波在基站侧进行发送时, 需要满足一定的时差要求, 这个时差要求基本可 以保证两个载波从基站同时直接(LTE R11之前没有 RRH节点的引入, LTE R11中引入了 RRH节点, 所以存在载波被 RRH转发后到达 UE的情况)到 达 UE时基本保持同步, 但是还是需要两个载波中同时配置 PSS/SSS。 UE可 以通过上述两个载波中的主辅同步分别与两个载波进行同步, 从而实现从载 波中分别接收数据。 而对于新载波技术而言, 如果基站侧仅仅保持新载波与 后向兼容载波的同步发送,一旦新载波中没有配置 PSS/SSS,那么在 UE侧就 有可能不能保证新载波与后向兼容载波的同步, 例如新载波和后向兼容载波 没有经历相同的节点发送, 或者新载波和后向兼容载波不属于同一 band (带 宽) 内, 由于载波频率相差甚大造成不能同步。
本发明实施例提供一种信息的传输、 配置方法及装置, 能够将用户设备 使用 LTE中的新载波所需的信息传输给用户设备, 使基站能够为用户设备配 置使用 LTE中的新载波。
本发明实施例提供的信息的传输方法, 包括:
基站对长期演进 (LTE)中的载波进行配置,将载波的配置信息发送给用户 设备 (UE),所述载波的配置信息包括载波的带宽、小区标识 (ID)、循环前缀 (CP) 类型、 信道状态信息测量导频 (CSI-RS)配置信息和下行传输模式中的任意一 种或任意组合。 较佳地, 所述基站将所述载波的配置信息通过切换命令、 测量命令、 UE 专有命令或***广播消息发送给所述用户设备。
较佳地, 所述基站通过与所述 LTE中的载波配对的后向兼容载波将所述 载波的配置信息发送给所述用户设备。
较佳地, 所述小区 ID为虚拟小区 ID或为实际的物理小区 ID。
较佳地, 所述载波的配置信息还包含: 载波的接入频点。
较佳地, 所述基站将所述载波的配置信息携带在连接重配置 (RRCConnectionReconfiguration)消息、 测量配置 (measConfig)消息或所述 LTE 中的载波与后向兼容载波的配对通知消息中发送给所述用户设备, 在所述连 接重配置消息、 测量配置消息和配对通知消息中标识出所述载波的配置信息 属于所述 LTE中的载波。
较佳地, 所述基站将所述载波的配置信息作为所述后向兼容载波的*** 信息通过***信息块 (SIB)发送给所述用户设备, 在所述 SIB中标识出所述载 波的配置信息属于所述 LTE中的载波。
较佳地, 所述基站为所述 LTE中的载波设置信息单元结构, 在所述信息 单元结构中包括下述任意一个或任意组合: 载波类型信息、 接入频点、 带宽、 小区 ID、 CP类型、 CSI-RS配置信息和下行传输模式, 在消息中引用所述信 息单元结构, 将所述载波的配置信息发送给所述用户设备。
较佳地,在所述信息单元结构中还包含所述配对的后向兼容载波的信息, 用于标识后向兼容载波。
较佳地, 上述方法还包括:
所述基站将所述 LTE中的载波与后向兼容载波的配对关系通知给所述用 户设备。
较佳地, 所述下行传输模式包括下行传输模式 9。
较佳地, 所述下行传输模式 9中的下行控制信息对应的数据信息在物理 下行共享信道 (PDSCH)中的传输方式为单天线端口传输, 或为基于用户专有 参考信号的分集传输; 所述下行传输模式 9中的下行控制信息 (DCI)釆用 DCI Format (格式) 1 A或 DCI Format 1。 较佳地, 所述单天线端口传输为单天线端口 7传输的下行传输模式; 所述基于用户专有参考信号的分集传输为基于用户专有参考信号的分集 传输的下行传输模式。
较佳地, 所述 CSI-RS配置信息包括下述任意一个或任意组合: 天线端口 数目、 CSI-RS资源配置、 CSI-RS子帧配置、 CSI-RS功率控制。
本发明实施例提供的信息的配置方法, 包括:
基站配置长期演进 (LTE)中的载波釆用与配对的后向兼容载波的相同的 配置信息。
较佳地, 所述配置信息包括: 小区标识 (ID)和 CP类型。
本发明实施例提供的另一信息的传输方法, 包括:
基站为长期演进 (LTE)中的载波配置用于同步 /同步跟踪的参考信号; 所述基站将所述参考信号的配置信息通过与所述 LTE中的载波配对的后 向兼容载波发送给用户设备, 或者, 所述基站将所述参考信号的配置信息通 过所述 LTE的载波的***广播信息发送给用户设备, 或者, 所述基站釆用基 站与用户设备事先约定的配置信息配置所述参考信号, 或者, 所述基站建立 所述参考信号的配置信息与所述 LTE的载波的主辅同步序列或小区标识的对 应关系。
较佳地, 所述基站建立所述参考信号的配置信息与所述 LTE的载波的主 辅同步序列或小区标识的对应关系包括:
基站和用户设备约定用于同步 /同步跟踪的参考信号的配置信息的总套 数 N, N为正整数, 并对各套配置信息依次从 0编号到 N-1 , 在配置信息与 小区 ID或主辅同步序列之间建立: n=m mod N的关系, n为配置信息编号, m为小区 ID或主辅同步序列, 其中, 编号为 n的配置信息作用于小区 ID或 主辅同步序列为 m的小区。
较佳地, 所述基站建立所述参考信号的配置信息与所述 LTE的载波的主 辅同步序列或小区标识的对应关系包括:
基站和用户设备约定用于同步 /同步跟踪的参考信号的配置信息的总套 数 N, N为正整数, 并对各套配置信息依次从 0编号到 N-1 , 在配置信息与 小区 ID或主辅同步序列之间建立: n=m mod N的关系, n为配置信息编号, m为小区 ID或主辅同步序列, 其中, 编号为 m和紧邻编号 m循环向前的编 号对应的配置信息都作用于被用于小区 ID或主辅同步序列为 m的小区, 或 者编号为 m和紧邻编号 m循环向后的编号对应的配置信息都作用于被用于小 区 ID或主辅同步序列为 m的小区。
较佳地, 所述参考信号为信道状态指示参考信号 (CSI-RS)、 小区参考信 号 (CRS)或译码解调参考信号 (DM-RS)。
本发明提供的信息的传输装置, 包括: 配置单元和发送单元, 其中: 所述配置单元, 设置为对长期演进 (LTE)中的载波进行配置, 所述载波的 配置信息包括载波的带宽、 小区标识 (ID)、循环前缀 (CP)类型、 信道状态信息 测量导频 (CSI-RS)配置信息和下行传输模式中的任意一种或任意组合;
所述发送单元, 设置为将载波的配置信息发送给用户设备 (UE)。
较佳地, 所述发送单元, 是设置为将所述配置信息通过切换命令、 测量 命令、 UE专有命令或***广播消息发送给所述用户设备。
较佳地, 所述发送单元, 是设置为通过与所述 LTE中的载波配对的后向 兼容载波将所述载波的配置信息发送给所述用户设备。
较佳地, 所述小区 ID为虚拟小区 ID或为实际的物理小区 ID。
较佳地, 所述载波的配置信息还包含: 载波的接入频点。
较佳地, 所述发送单元, 还设置为为所述 LTE中的载波设置信息单元结 构, 在所述信息单元结构中包括下述任意一个或任意组合: 载波类型信息、 接入频点、 带宽、 小区 ID、 CP类型、 CSI-RS配置信息和下行传输模式, 在 消息中引用所述信息单元结构,将所述载波的配置信息发送给所述用户设备。
较佳地, 所述下行传输模式包括下行传输模式 9, 所述下行传输模式 9 中的下行控制信息对应的数据信息在物理下行共享信道 (PDSCH)中的传输方 式为单天线端口传输, 或为基于用户专有参考信号的分集传输; 所述下行传 输模式 9中的下行控制信息 (DCI)釆用 DCI Format (格式) 1 A或 DCI Format 1。
较佳地, 所述单天线端口传输为单天线端口 7传输的下行传输模式; 所述基于用户专有参考信号的分集传输为基于用户专有参考信号的分集 传输的下行传输模式。
本发明实施例提供的信息的配置装置, 包括: 配置单元, 其中: 所述配置单元,设置为配置长期演进 (LTE)中的载波釆用与配对的后向兼 容载波的相同的配置信息。
较佳地, 所述配置信息包括: 小区标识 (ID)和循环前缀 (CP)类型。
本发明实施例还提供另一种信息传输装置, 包括:
配置单元, 其设置为: 为长期演进 (LTE)中的载波配置用于同步 /同步跟 踪的参考信号; 其中,
所述配置单元是设置为: 釆用基站与用户设备事先约定的配置信息配置 所述参考信号, 或者, 建立所述参考信号的配置信息与所述 LTE的载波的主 辅同步序列或小区标识的对应关系; 或者
所述传输装置还包括: 发送单元, 其设置为: 将所述参考信号的配置信 息通过与所述 LTE中的载波配对的后向兼容载波发送给用户设备, 或者, 将 所述参考信号的配置信息通过所述 LTE的载波的***广播信息发送给用户设 备。
综上所述, 本发明实施例中对于 LTE中的新载波, 将载波的配置信息发 送给用户设备, 使得用户设备在基站为用户设备配置使用新载波时, 能够根 据载波的配置信息使用新载波。 附图概述
图 1为本发明实施例中信息的传输方法的流程图;
图 2为本发明实施例中检测载波同步的方法的流程图;
图 3为本发明实施例中检测载波同步的装置的架构图;
图 4为本发明实施例中信息的传输装置的架构图。
本发明的较佳实施方式
本实施方式中, 基站为第一载波(LTE中的新载波) 的运营进行信息配 置, 将新载波的配置信息传输给 UE, 以支持 UE在新载波中的工作。 同时还 给出了在具有新载波的***中, 当基站为 UE配置使用新载波时, 基站通过 与新载波配对的第二载波(后向兼容载波 )通知 UE, 新载波中的 CSI-RS (信 道状态指示参考信号) 配置信息, UE根据 CSI-RS配置信息和新载波的载波 信息, 在新载波中接收 CSI-RS, 并根据新载波的载波信息和预先接收到的新 载波的配置信息计算 CSI-RS,如果接收到的 CSI-RS与计算得到的 CSI-RS相 同, 那么 UE则认为新载波与配对的后向兼容载波是同步载波, 并且用户设 备与新载波同步。 新载波的载波信息是 UE假设新载波与配对的后向兼容载 波同步, 根据后向兼容载波的载波信息, 将新载波的载波信息确定为与后向 兼容载波的载波信息相同, 即: 新载波与配对的后向兼容载波在时间上同步, 默认新载波的载波信息和配对的后向兼容载波的载波信息中的帧号、子帧号、 时隙号和 OFDM符号的索引的取值相同。
本实施方式还提供了一种信息的传输方法, 用于 UE与新载波同步跟踪 的参考信号的发送。 基站为新载波配置用于同步 /同步跟踪的参考信号, 并通 过后向兼容载波的无线资源控制 (RRC ) 消息将参考信号的配置信息发送给 UE, 或者, 所述参考信号的配置信息通过所述载波的***广播信息发送给用 户设备, 或者, 所述参考信号的配置信息釆用基站与用户设备事先约定的方 式, 或者, 所述参考信号的配置信息与载波的主辅同步序列或小区 ID建立对 应关系。 参考信号的配置信息包括: 发送参考信号的资源信息、 周期信息和 带宽信息等。 如果 UE接收到用于同步 /同步跟踪的参考信号的配置信息, 则 使用参考信号进行与新载波的同步 /同步跟踪, 而不是通过新载波与配对的后 向兼容载波在时间 /频率的对齐来获得与新载波的同步 /同步跟踪。
上述参考信号可以为 CSI-RS、 小区参考信号(CRS )或译码解调参考信 号 (DM-RS ) 。 下面以 CSI-RS为例进行说明。 在参考信号釆用 CSI-RS时, 参考信号的配置信息为 CSI-RS配置信息。
所述参考信号的配置信息釆用基站与用户设备事先约定的方式, 例如, 基站和 UE之间约定釆用固定配置的一套 CSI-RS作为同步跟踪的参考信号, 基站按照约定的固定配置信息发送该套 CSI-RS, 然后 UE在小区接入后按照 约定的固定配置信息接收该套 CSI-RS用作同步跟踪。 所述参考信号的配置信息与载波的主辅同步序列或小区 ID建立对应关 系, 例如, 基站和 UE对应关系为约定 N ( N为正整数, 例如取值为 6 )套用 于同步跟踪的 CSI-RS配置信息, 然后为每一套的编号, 例如编号为 0~5, 然 后与小区 ID或主辅同步序列之间建议下面的关系: 小区 ID mod N=编号, 基 站按照该等式, 在确定小区 ID后, 例如小区 ID mod 6 =编号, 基站在此小 区中即发送编号对应的 CSI-RS用于同步跟踪, UE侧获知小区 ID后, 同理即 可确定小区中发送的 CSI-RS, 从而接收 CSI-RS用于同步跟踪。 如果需要选 择两套 CSI-RS用于同步跟踪时, 可以在上述对应关系确定一套 CSI-RS后, 再根据该 CSI-RS编号值选择紧邻的循环向前或向后的 CSI-RS用于同步跟踪, 从而确定 2套 CSI-RS用于等式中小区 ID对应的小区的同步跟踪。
通过 RRC消息为 UE发送用于对新载波同步 /同步跟踪的 CSI-RS配置信 息, 可以区分 UE专用类型的 RRC消息和广播类型的 RRC消息, 本实施方 式中优选釆用 UE专用的 RRC消息, 因为对于在新载波中工作的 UE, 不是 所有 UE的同步 /同步跟踪都存在问题, 基站可以根据 UE的需求选择为其配 置用于同步 /同步跟踪的 CSI-RS。
例如, 当基站获知 UE与新载波不能同步 /同步跟踪时, 如在 UE侧新载 波与配对的后向兼容载波不是严格的时间对齐, UE无法通过后向兼容载波来 完成与新载波的同步 /同步跟踪时,基站可以为该 UE配置用于同步 /同步跟踪 的参考信号,如 CSI-RS,将参考信号的配置信息通过 UE专用 RRC消息发送 给 UE。 UE利用基站为其配置的用于同步 /同步跟踪的 CSI-RS来完成与新载 波的同步 /同步跟踪。
如图 1所示, 本实施方式提供的另一种信息的传输方法, 包括: 步骤 101 : 基站对 LTE中的载波进行配置;
步骤 102: 基站将载波的配置信息发送给 UE, 载波的配置信息包括载波 的带宽、 小区 ID、 CP类型、 CSI-RS配置信息和下行传输模式中的一种或多 种。
载波的配置信息均可以通过切换命令、测量命令、 UE专有命令或***广 播消息发送给 UE。
下面对这种信息的传输方法进行详细说明。
上述新载波的配置信息包括: 载波的接入频点和带宽, 这些信息能够作 为配对的后向兼容载波的***信息在***信息块(SIB )中传输, 考虑到不同 的 SIB包含信息内容和功能的不同, 综合考虑后可以将新载波的接入频点和 带宽放在后向兼容载波的 SIB3或 SIB4中, 并且需要在 SIB3或 SIB4中特别 标明携带的接入频点和带宽是新载波的接入频点和带宽, 以区别现有的标识 载波的方式, 如果没有标识是属于新载波的接入频道和带宽, 那么 UE会作 为常规的载波进行接入,但是由于新载波中没有 PSS/SSS,会造成 UE无法接 入该新载波。 标识属于新载波, 可以使 UE准确地获知该频点和带宽对应的 是新载波, UE就可以按照新载波的方式来进行处理。 或者,
基站将上述的频点和带宽优选通过切换命令或测量命令发送给 UE,也可 以通过 UE专有命令或***广播消息发送给 UE。
基 站 可 以 将 上 述 的 频 点 和 带 宽 携 带 在 连接 重 配 置 ( RRCConnectionReconfiguration ) 消息发送给 UE , 也可以在测量配置 ( measConfig ) 消息中配置新载波的频点和带宽, 同样地, 也需要在消息中 额外增加指示以标明载波的类型为新载波。 或者,
考虑到较多的消息中都需要配置新载波的带宽和频点信息, 所以为了便 于实现在其他信息中方便地引入该信息, 也可以为新载波的配置信息设置一 个独立的信息单元结构, 以便于不同的消息直接引用该信息单元结构。 新载 波的信息单元结构包括: 载波类型信息、 频点和带宽, 可选的还可以增加与 新载波配对的后向兼容载波的信息, 载波类型信息是标明信息单元结构中的 信息是为那个类型的载波配置的, 可以作为可选项参数。 配对的后向兼容载 波的信息可以暗含为发送该新载波的信息单元结构的载波, 例如, 如果新载 波的信息单元结构中不包含配对的后向兼容载波的信息, 则默认为发送该信 息单元结构的载波为配对的后向兼容载波, 如果新载波的信息单元结构中包 含配对的后向兼容载波的信息, 那么则表示新载波与该后向兼容载波配对, 这样可以方便地在其他消息中直接配置新载波的配置信息。
本实施方式中,还提供新载波中小区 ID的配置方法, 新载波中默认使用 与配对的后向兼容载波相同的小区 ID, 这样可以省去通知 UE新载波的小区 ID的步骤, 也可以省去为新载波配置实际的物理小区 ID的复杂过程。 对于 UE而言, 如果被调度使用新载波, 可以不重新进行 RRC连接的建立以及在 核心网注册接入信息等过程。 或者,
新载波使用虚拟小区 ID, 虚拟小区 ID的取值还是需要基站通过后向兼 容载波通知 UE,通知的方式可以和上述的新载波的频点和带宽的通知方式有 一定区别也可以相同,虚拟小区 ID—般需要釆用点到点的方式进行通知, 例 如,使用上述的 RRCConnectionReconfiguration消息釆用点到点方式通知 UE。 虚拟小区 ID也可以省去在核心网侧注册的过程, 因此, 如果为新载波使用虚 拟小区 ID, 那么上述的新载波的信息单元结构中, 需要再加入新载波使用的 虚拟小区 ID这个参数。 或者, 新载波使用实际的物理小区 ID, 实际的物理 小区 ID的通知与虚拟小区 ID相同, 对于新载波的信息单元结构, 增加新载 波使用的小区 ID这个参数。
当新载波使用虚拟小区 ID 时, 新载波能够很好的被用于协作多点传输 ( COMP, Coordinated Multi-Point )场景, 在该场景下使用, 能够通过基站为 新载波根据需要配置灵活的虚拟小区 ID, 并且结合新载波中没有物理下行控 制信道( PDCCH, Physical downlink control channel ) 、 CRS和 PSS/SSS的独 有特性, 使得 COMP下的小区间干扰得到了很好的协调和避免。
新载波的虚拟小区 ID 能够由基站根据参与协作的后向兼容载波的物理 ID进行决定, 由于虚拟小区 ID和后向兼容载波的物理 ID都是用来生成载波 中其他信息的参数, 在参数相同的情况下, 生成的其他的参数就会相同, 例 如 CSI-RS等,这样就会带来两个载波中 CSI-RS之间不正交,从而产生干扰。 所以虚拟小区 ID的决定只要能够规避后续由小区 ID计算其他信息时产生的 干扰即可。
优选地, 新载波中的虚拟小区 ID是通过 UE专用信令为需要的 UE产生 和配置的, 与现有的物理小区 ID不同, 后者是为小区内所有的 UE配置, 所 以后者要受到较大的限制, 例如, 一个载波只能配置一个物理小区 ID, 并且 需要考虑与其相邻小区之间物理小区 ID的分布是否合理, 例如, 正交性。 而 新载波中的虚拟小区 ID的配置不受原有物理小区 ID的限制条件的约束, 例 如, 基站可以为一个新载波中的两个 UE各自配置一个虚拟小区 ID, 并分别 通过 UE专用信令通知 UE即可, 这样可以很大程度的规避 COMP场景中的 干扰。 显然, 新载波由于简化了配置, 删除了 PDCCH、 CRS和 PSS/SSS, 再 结合本实施方式中的虚拟小区 ID的使用, 使得新载波性能在 COMP场景中 得到充分的体现。
基站可以为新载波中多个 UE配置一个相同的虚拟小区 ID。
基站为一个新载波确定虚拟小区 ID后, 基站根据虚拟小区 ID生成扰码 序列, 执行上行参考信号 UL-RS序列分组, 执行进行跳频 Hopping等处理。
本实施方式还提供了新载波中循环前缀(CP )类型的配置和通知方式, 优选地, 基站在新载波中使用与后向兼容载波相同的 CP类型, 即后向兼容 载波使用长 CP或短 CP, 则配对的新载波也对应使用长 CP或短 CP, 并将该 方式固化。 当 UE在后向兼容载波中时就可以直接获知新载波中的 CP类型。 相关技术中 UE需要在某一载波中通过检索 PSS/SSS来确定该载波的 CP类 型, 这主要是因为 UE在接入该载波时, 必须先检索该载波的 PSS/SSS以和 该载波同步, 相关技术中在检索 PSS/SSS的同时就获得了 CP类型, 否则无 法完成与该载波的同步过程。 但是在新载波中, 由于新载波没有配置
PSS/SSS, 所以 UE无法釆用现有的检索 PSS/SSS的方式来获取新载波的 CP 类型, 又考虑到需要到新载波中工作的 UE, 必然先在与新载波配对的后向兼 容载波中工作, 所以 UE是先获知后向兼容载波的 CP类型, 所以如果规定新 载波和配对后向兼容载波使用相同的 CP, 那么 UE在进入新载波工作之前就 可以获知新载波的 CP类型, 这样就可以省去通知 CP的信令, 避免 UE检索 PSS/SSS的复杂过程。 或者,
新载波的 CP类型任意配置, 那么此时,基站通过信令来通知 UE新载波 中的 CP类型。 优选地, 基站在为 UE配置使用新载波时, 基站通过后向兼容 载波中的 RRC消息或切换命令或测量命令或***广播消息来通知 UE, 新载 波 中 使 用 的 CP 类 型 。 具 体 的 可 以 使 用 RRC 重 配 置 ( RRCConnectionReconfiguration )或者在通知新载波与后向兼容载波配对的 配对的配对通知消息中或者在测量配置(measConfig ) 中发送给 UE。 如果确 定为新载波使用 CP类型是可配置的, 那么对于上述的的新载波信息单元中, 需要再增加新载波使用的 CP类型的参数。
这种方式可以使得新载波的 CP类型根据新载波的需要来制定, 例如, 需要大覆盖时, 基站可以为新载波配置长 CP, 以达到更好的效果, 而前述将 新载波的 CP类型与后向兼容载波配置相同无法达到这样的灵活性。 或者, 釆用一种动态配置 CP类型的方式, 即基站为 UE发送通知新载波的 CP 类型的命令时, 则按照通知的命令确定新载波的类型, 如果基站没有发送所 述命令, 那么基站和 UE都默认新载波使用与配对的后向兼容载波相同的 CP 类型。 此时对于上述的新载波的信息单元结构, 需要对于所述 CP类型参数 作一些规定, 即当信息单元结构中没有 CP类型参数时,基站和 UE都默认新 载波使用与配对后向兼容载波相同的 CP, 如果有该 CP类型参数时, 基站和 UE都按照参数配置的 CP类型执行即可。
上述的新载波的接入频点、 带宽、 小区 ID、 CP类型和 CSI-RS配置信息 根据不同的应用场景可以选择合适的消息承载。 例如, 在小区切换过程中, 为了减少基站和 UE的交互次数,可以在基站发送给 UE的切换命令或测量命 令中添加上述的信息给 UE, 以便于 UE对目标载波进行测量。 这里与相关技 术的不同在于, 新载波的小区 ID、 CP类型和 CSI-RS都不能通过 UE直接接 入目标载波后获得, 而相关技术的小区切换或测量过程中, 目标小区的物理 小区 ID、 CP类型和 CRS配置都是 UE直接接入目标小区后自己获取的。
本实施方式中不对上述载波的配置信息釆用的发送方式进行限制, 载波 的配置信息均可以在切换命令、 测量命令、 UE专有命令和***广播消息中, 携带在 RRC消息、 测量配置消息或配对通知消息中发送, 针对不同的场景可 优选合适的发送方式。
基站通过后向兼容载波通知 UE新载波的 CSI-RS配置信息包括: 天线端 口数目 ( antennaPortsCount-rlO ) 、 CSI-RS资源配置 ( resourceConfig-rlO ) 、 CSI-RS子帧配置 ( subframeConfig-rlO ) 、 CSI-RS功率控制 (p-C-rlO ) 。 新 载波的 CSI-RS配置信息包含在基站给 UE发送的要求 UE对于新载波进行测 量的测量命令中, 这样当 UE获得基站发送测量命令的同时, 也获知了需要 测量的载波的 CSI-RS配置信息,可以方便 UE的测量。这里主要考虑到 CSI-RS 配置的复杂性, 与相关技术中釆用 CRS进行测量不同, CRS配置比较简单, 所以相关技术中并没有在测量命令中给出参考信号, 由于测量目的不同, 使 用的具体的 RRC消息不同, 所以本实施方式中对于需要使用 CSI-RS进行测 量的小区, 基站都需要在发送给 UE的测量命令中添加 CSI-RS配置信息, 以 便于 UE测量, 并减少基站与 UE之间的交互。 当然, 同样可以釆用切换命令 和 UE专有命令等进行发送。
本实施方式还提供了一种检测载波同步的方法, 如图 2所示, 包括: 步骤 201 : UE根据与新载波配对的后向兼容载波的载波信息, 确定在新 载波与后向兼容载波同步的情况下, 新载波的载波信息;
本实施方式中默认新载波与配对后向兼容载波的时隙号《s和时隙内的 OFDM符号 /是对齐的,即新载波的 ns和 /与配对后向兼容载波的对应的 ns和 / 是严格时间对齐的。
步骤 202: UE接收基站发送的载波的配置信息;
步骤 203: UE根据新载波的载波信息计算新载波的 CSI-RS;
UE先根据新载波的配置信息和新载波的载波信息计算新载波的 CSI-RS 的初始值 cmit ;
CSI-RS初始值 cimt的计算公式:
cimt = 210 · (7 · («s + 1)+ / + 1) · (2 · N^11 + 1)+ 2 · N^11 + Ncp , 其中, 为新载波的载波 信息中包含的时隙号, /为新载波的载波信息中包含的 OFDM的索引, N U为 新载波的配置信息中包含的小区标识, NCP为新载波的配置信息中包含的 CP 类型。
UE再使用 CSI-RS的初始值 cimt , 按照新载波的时隙号和 OFDM符号的 索 引 计 算 新 载 波 的 信 道 状 态 信 息 测 量 导 频 , rl n (m) = -^= {\ - 2 - c(2m)) + j-^={\ - 2 - c(2m + \)), = 0,1,...,N^X'DL 1
' s /2 V2 , 其中, c为生成
CSI-RS的序列, c的初始值为 Cmit , N^ax'DL为所述第一载波的资源块 (RB)数量。 步骤 204: UE根据基站通过后向兼容载波发送的新载波的频点和带宽信 息, 以及上述确定的新载波的载波信息, 在新载波中接收 CSI-RS;
用户设备是从第一载波中接收信息,根据预先接收到的 CSI-RS配置信息 确定 CSI-RS 在信息中的位置, 再按照新载波的载波信息从信息中截取 CSI-RS。
步骤 205: UE检测接收到的 CSI-RS与通过上述方式计算的序列是否相 同, 如果相同, 则认为上述确定的新载波的载波信息在新载波中是正确的, 即可得出新载波与配对的后向兼容载波是严格同步的, 即帧号、 子帧号、 OFDM符号都是严格时间对齐的, 并且, 用户设备与第一载波是同步的, 这 样 UE就可以借助后向兼容载波中的帧号、 子帧号、 OFDM符号来保持和维 护自己与新载波的同步。
这里实际是对得到的两个 CSI-RS做相关运算,根据相关峰值来判断是否 相同的,如果接收的 CSI-RS与计算得到的 CSI-RS的相关度满足设定的门限, 则认为接收到的 CSI-RS与所述计算得到的 CSI-RS相同。
UE可以将此结论信息发送给基站, 基站得知此结论后, 就可以为 UE配 置使用该新载波。 当然, UE也可以把所述结论作为 RRM测量失败的原因发 送给基站。 当然, UE也可以不反馈所述结果给基站, UE仅将测量结果反馈 给基站即可。
另外, 本实施方式还提供了一种 UE在新载波中的下行传输模式, 以使 得 UE获知自己与新载波和后向兼容载波之间是同步的情况下, 基站如何让 UE在新载波中工作。
考虑到现在 LTE中存在多种传输模式, 那么针对新载波的特性, 本实施 方式提出新载波的传输模式釆用下面方式:
所述下行传输模式包括下行传输模式 9 , 且, 下行传输模式 9 中 DCI
( Downlink Control Information, 下行控制信息)的格式为 DCI Format (格式) 1A, 下行控制信息对应的数据在 PDSCH (物理下行共享信道)的传输方式为 单天线端口传输方式,或者,下行传输模式 9中 DCI的格式为 DCI Format 1A, 对应数据在 PDSCH的传输方式为基于用户专有参考信号的分集方式。
所述下行传输模式还包括以下至少之一:
PDSCH仅使用单天线端口 7传输的下行传输模式;
PDSCH为基于用户专有参考信号分集方式的下行传输模式;
上述两个下行传输模式对应的下行控制信息格式为 DCI Format 1或 DCI
Format 1A; 或者, 上述两个下行传输模式对应的下行控制信息格式为新的 DCI Format或 DCI Format 1A; 或者, 上述两个下行传输模式对应的下行控 制信息格式为新的 DCI Format。
即,如果 UE被高层设置为用小区无线网络临时标识( C-RNTI, Cell Radio Network Temporary Identifier )力4尤的循环冗余校-险( CRC, Cyclical Redundancy Check ) 来进行物理下行控制信道 ( PDCCH , Physical Downlink Control Channel )解码, 则 UE应当按照表 1到表 6中定义的相应组合来解码 PDCCH 和所有相关的 PDSCH, 其中, 所述 PDCCH还包括增强的 PDCCH;
下述表 3到表 6中下行传输模式 X也可以仅包括下述表中对应的一个 DCI Format;
下述 DCI Format Z为 DCI Format 1A或者新的 DCI Format;
下述 DCI Format Y为 DCI Format 1或者新的 DCI Format;
表 1
Figure imgf000017_0001
1、 如果 PBCH天线端口的数 目为 1 , 用单天线端口, 端口 0, 否则 传输分集;
Common和 C-RNTI
DCI format 1 A
定义的 UE specific 2、 MBSFN帧: 单天线端口, 模式 9
端口 7;
3、 所述分量载波(所述服务 小区) : 单天线端口, 端口 7;
C-RNTI定义的
DCI format 2C 4、 最多 8层传输, 端口 7-端
UE specific
π 14
表 2
UE下行传
DCI格式 搜索空间 PDCCH相应 PDSCH传输方案 输模式
5、 如果 PBCH天线端口的数 目为 1 , 用单天线端口, 端口 0, 否则 传输分集;
Common和 C-RNTI
DCI format 1 A 6、 MBSFN帧: 单天线端口, 定义的 UE specific
模式 9 端口 7;
7、 所述分量载波(所述服务 小区) : 基于用户专有参考信号的分 术 *·,
C-RNTI定义的
DCI format 2C 8、 最多 8层传输, 端口 7-端
UE specific
π 14
表 3 UE下行传
DCI格式 搜索空间 PDCCH相应 PDSCH传输方案 输模式
C-RNTI
9、 DCI
定义的 UE specific 10、 单天线端口, 端口 7 format Z
模式 X
C-RNTI定义的
11、 DCI
UE specific 12、 单天线端口, 端口 7 format Y
表 4
UE下行传
DCI格式 搜索空间 PDCCH相应 PDSCH传输方案 输模式
C-RNTI
13、 DCI 基于用户专有参考信号的分集
定义的 UE specific
format Z
模式 X
C-RNTI定义的
14、 DCI 基于用户专有参考信号的分集
UE specific
format Y
表 5
UE下行传
DCI格式 搜索空间 PDCCH相应 PDSCH传输方案 输模式
C-RNTI
15、 DCI 16、 基于用户专有参考信号 定义的 UE specific
format Z 的分集
模式 X
C-RNTI定义的
17、 DCI
UE specific 18、 单天线端口, 端口 7 format Y
表 6
UE下行传
DCI格式 搜索空间 PDCCH相应 PDSCH传输方案 输模式 C-RNTI
19、 DCI 单天线端口, 端口 7
定义的 UE specific
format Z
模式 X
C-RNTI定义的
20、 DCI 基于用户专有参考信号的分集
UE specific
format Y
实施例 1 :
在某一***中有两个载波, 假设一个是具有后向兼容性质的载波, 一个 是所述的新载波, 本实施例中假设新载波中没有配置独立的 PSS/SSS。
首先, 基站将后向兼容载波与所述新载波进行配对, 并将配对信息发送 后向兼容载波中的 UE。 由于新载波不支持 UE直接接入, 所以所有 UE都是 从后向兼容载波接入***的, 然后基站对 UE进行载波的配置调度。 例如为 一些 UE配置使用新载波。
具体的,基站将后向兼容载波与所述新载波配对的信息发送给 UE,使得 UE获知,后向兼容载波与哪一个新载波是配对使用关系。基站将新载波中的 一些公共信道、 重要的***信息通过配对的后向兼容载波发送给 UE, 使得 UE获知新载波中的相关配置。本实施例中配置新载波与后向兼容载波使用相 同的小区 ID,新载波使用与后向兼容相同的 CP类型,但是考虑到 CSI-RS的 应用情况, 所以新载波使用短 CP。 这样就可以省去基站通知 UE新载波使用 的小区 ID的信息和 CP类型信息。 例如本实施方式中, 基站至少需要将新载 波中的 CSI-RS 配置信息发送给 UE , 所述配置信息为: 天线端口数目 ( antennaPortsCount-rlO ) 、 CSI-RS资源配置( resourceConfig-rlO ) 、 CSI-RS 子帧配置 ( subframeConfig-rlO ) 、 CSI-RS功率控制 (p-C-rlO ) 。
基站侧在使用新载波时, 需要按照现有协议规定的载波聚合发送的要求 执行, 例如基站需要保证聚合的两个载波在基站侧发送的时差不超过协议规 定的最大值(具体参看 LTE TS36.104 ) , 这样, 两个载波在基站侧进行发送 时是严格同步的。 然后两个载波通过空口传输, 由于载波的频率特性、 UE的 移动特性以及经历的传输节点, 可能导致两个载波在到达 UE时, 载波之间 的严格同步被破坏, 但是由于基站不清楚后向兼容载波和新载波到达 UE侧 时, 是否还保持着严格的同步, 所以, 按照本实施方式, 进一步, 如果基站 需要为 UE使用新载波传输数据时,首先基站要求 UE对于新载波进行测量(这 里主要是指 RRM测量,基站根据测量结果判断新载波对于 UE而言是否适合 激活) , 那么由于 UE不清楚自身与新载波是否保持严格的同步, 因为新载 波中并没有 PSS/SSS配置, 所以在 UE接收到基站要求的新载波测量后, UE 按照下面的方式处理:
当 UE接收到基站要求执行新载波测量的命令后, UE侧默认新载波和后 向兼容载波是严格同步的, 认为新载波和后向兼容载波在时间方向是严格对 齐的, 由于 UE是能够获知后向兼容载波的帧号、 时隙号、 子帧号和 OFDM 符号的索引, 所以 UE默认新载波对应的帧号、 时隙号、 子帧号和 OFDM符 号的索引与后向兼容载波完全一致。 所以 UE通过后向兼容载波确定了新载 波的帧号、时隙号、子帧号和 OFDM符号的索引取值接收新载波中的 C SI-RS , 然后检测接收到的 CSI-RS数据与通过具体 CSI-RS配置信息计算出的 CSI-RS 是否相同:
如果相同, 则认为前述的假设 UE侧假设新载波与后向兼容载波是严格 时间对齐的结论是成立的, 此时 UE则认为新载波与后向兼容载波是严格同 步的, 即新载波的帧号、 时隙号、 子帧号和 OFDM符号的索引与后向兼容载 波是对齐的, UE通过确定后相兼容载波中的帧号、 时隙号、 子帧号和 OFDM 符号的索引后就可以得到对应的新载波中的帧号、 时隙号、 子帧号和 OFDM 符号的索引, 从而实现 UE为 UE在新载波中工作提供基础。 UE将在 UE侧 检测得到的新载波与后向兼容载波是严格同步的结论反馈给基站, 基站在获 得结论后, 可以决定是否为 UE配置使用新载波。 这样, 基站为该 UE配置使 用新载波。
如果不同,那么 UE则获得新载波与后向兼容载波在到达 UE侧时两个载 波是没有严格同步的结论, UE将该结论反馈给基站,基站能够根据该结论决 定是否为 UE配置使用新载波。 这样, 基站将不为该 UE配置使用新载波。
上述的 UE判断新载波与配对后向兼容载波的是否同步的结论, UE可以 通过 ACK/NACK暗含反馈,也可以通过 RRM测量报告的消息携带反馈给基 站。 实施例 2:
该实施例与实施例 1基本是相同的, 不同之处在于, 如果 UE通过新载 波的 CSI-RS判断出新载波与后向兼容载波不同步时, 进一步 UE需要根据 CSI-RS做进一步的计算, 以确定新载波与后向兼容载波之间具体的时差值。
在某一***中有两个载波, 假设一个是具有后向兼容性质的载波, 一个 是所述的新载波, 本实施例中假设新载波中没有配置独立的 PSS/SSS。
首先, 基站将后向兼容载波与所述新载波进行配对, 并将配对信息发送 后向兼容载波中的 UE。 由于新载波不支持 UE直接接入, 所以所有 UE都是 从后向兼容载波接入***的, 然后基站对 UE进行载波的配置调度。 例如为 一些 UE配置使用新载波。
具体的,基站将后向兼容载波与所述新载波配对的信息发送给 UE,使得 UE获知,后向兼容载波与哪一个新载波是配对使用关系。基站将新载波中的 一些公共信道、 重要的***信息通过配对的后向兼容发送给 UE, 使得 UE获 知新载波中的相关配置。例如本发明实施例中,基站将新载波中的 CSI-RS配 置信息发送给 UE,所述配置信息为:天线端口数目(antennaPortsCount-rlO )、 CSI-RS 资 源 配 置 ( resourceConfig-rlO ) 、 CSI-RS 子 帧 配 置 ( subframeConfig-rlO ) 、 CSI-RS功率控制 ( p-C-rlO ) , 新载波中使用的小区 ID, 新载波中使用的 CP类型。 对于新载波的 CP类型, 本实施方式中给出新 载波的 CP类型应该与后向兼容载波的 CP类型保持一致。这样有利于新载波 和配对后向兼容载波之间进行严格的时间对齐。
基站侧在使用新载波时, 需要按照现有协议规定的载波聚合发送的要求 执行, 例如基站需要保证聚合的两个载波在基站侧发送的时差不超过协议规 定的最大值(具体参看 LTE TS36.104 ) , 这样, 两个载波在基站侧进行发送 时是严格同步的。 然后两个载波通过空口传输, 由于载波的频率特性、 UE的 移动特性以及经历的传输节点, 可能导致两个载波在到达 UE时, 载波之间 的严格同步被破坏, 但是由于基站不清楚后向兼容载波和新载波到达 UE侧 时, 是否还保持着严格的同步, 所以, 按照本实施方式, 进一步, 如果基站 需要为 UE使用新载波传输数据时,首先基站要求 UE对于新载波进行测量(这 里主要是指 RRM测量,基站根据测量结果判断新载波对于 UE而言是否适合 激活) , 那么由于 UE不清楚自己与新载波是否保持严格的同步, 因为新载 波中又没有 PSS/SSS配置, 所以在 UE接收到基站要求的新载波测量后, UE 按照下面的方式处理:
当 UE接收到基站要求执行新载波测量的命令后, UE侧默认新载波和后 向兼容载波是严格同步的, 认为新载波和后向兼容载波在时间方向是严格对 齐的, 由于 UE是获知后向兼容载波的帧号、 时隙号、 子帧号、 OFDM符号 的索引, 所以 UE默认新载波对应的帧号、 时隙号、 子帧号、 OFDM符号的 索引与后向兼容载波是完全一致的。 所以 UE通过后向兼容载波确定了新载 波的帧号、 时隙号、 子帧号、 OFDM符号的索引, 接收新载波中的 CSI-RS, 然后检测接收到的 CSI-RS与通过具体 CSI-RS配置信息计算出的 CSI-RS是 否相同:
如果相同, 则认为前述的假设 UE侧假设新载波与后向兼容载波是严格 时间对齐的结论是成立的, 此时 UE则认为新载波与后向兼容载波是严格同 步的, 即新载波的帧、 时隙、 子帧、 OFDM符号的索引与后向兼容载波是对 齐的, UE通过确定后相兼容载波中的帧号、 时隙号、 子帧号、 OFDM符号的 索引后就可以得到对应的新载波中的帧号、 时隙号、 子帧号、 OFDM符号的 索引, 从而实现 UE为 UE在新载波中工作提供基础。 UE将在 UE侧检测得 到的新载波与后向兼容载波是严格同步的结论反馈给基站, 基站在获得结论 后, 可以决定是否为 UE配置使用新载波。 这样, 基站为该 UE配置使用新载 波。
如果不同, UE侧可以进一步通过 CSI-RS来确定新载波与后向兼容载波 之间实际存在的时差。具体的, UE在检测接收到的新载波中的 CSI-RS之前, 应该将接收的新载波的数据保存, 当 UE获得新载波与后向兼容载波不同步 的情况发生时, UE继续从保存的数据中, 以所述接收到的 CSI-RS为基准向 前或向后调整截取 CSI-RS的时间点, 重截取 CSI-RS, (此时是按照时间方 向的样点逐步验证)截取可能的 CSI-RS,与通过已知参数计算得出的 CSI-RS 进行对比验证, 从而可以得出新载波与后向兼容载波之间的实际时间差。 当 这个时间差比较小(例如不影响 ACK/NACK反馈的间隔, 又例如不超过一个 lms或 0.5个 ms, 这样的取值不会影响上述的反馈的间隔)时, UE还是能够 认为 UE侧的新载波和后向兼容载波是同步的。 如果上述时间差比较大, 那 么 UE能够认为 UE侧的新载波和后向兼容载波是不同步的。
这里实际提供了一个所述的时间差, 在 UE侧, 新载波和配对后向兼容 载波之间同步时间差只要不超过一定的时间差, 并且这个时间差, UE是获知 的, 那么 UE侧就可以认为新载波和配对的后向兼容载波是同步的, 这样在 基站为 UE使用新载波时, UE可以自行根据时间差调整接收解析新载波的数 据。
上述的 UE判断新载波与配对后向兼容载波的是否同步的结论, UE可以 通过 ACK/NACK暗含反馈,也可以通过 RRM测量报告的消息携带反馈给基 站。
实施例 3:
该实施例与实施例 1、 2有所不同, 实施例 3中重点描述新载波的必要的 信息的配置和发送过程, 以便于 UE能够及时的获得这些信息。
在某一***中有 2个载波, 假设一个是具有后向兼容性质的载波, 一个 是所述的新载波, 本实施例中假设新载波中没有配置独立的 PSS/SSS。
对于接入后向兼容载波的 UE,基站有可能为其配置使用新载波。根据本 发明如果基站计划为某一 UE 配置使用后向兼容载波, 那么基站需要为 UE 发送新载波的必要信息, 此时基站通过在 RRCConnectionReconfiguration消息 包含新载波的信息单元结构, 并给该结构中的参数赋予取值。 下面给出一种 该结构的取值配置。
新载波信息单元结构: {
频点
带宽
小区 ID
CP类型 基站和 UE发送和接收该结构体后, 理解为 "信息单元结构" 体的名称 体现该结构体是新载波类型的。 并可以将发送该结构体的载波看作与结构体 内描述的载波具有配对关系。 频点、 带宽、 小区 ID和 CP类型都是描述结构 体中新载波的。 小区 ID可以进一步分为实际的物理小区 ID, 或者是虚拟的 小区 ID。 虚拟的小区 ID只是用来确定新载波中一些参数, 这些参数在计算 中需要使用小区 ID, 这里就使用虚拟的小区 ID数值来计算。 UE在虚拟小区 ID对应的载波不需要建立独立的 RRC连接。 对于一个后向兼容载波与多个新载波配对的情况下, 结构体中需要包含 多个新载波的信息, 每一个新载波的信息都可以按照前面给出的结构体组成 对应的信令, 包含在同一个结构体中。 假定新载波使用与配对后向兼容载波 相同的小区 ID, 对于一个后向兼容载波与 2个新载波配对的时, 所述结构体 ^口下面所示:
新载波信息单元结构: {
频点 带宽
CP类型
带宽
CP类型
实施例 4:
实施例 4主要描述基站为 UE配置用于同步 /同步跟踪的参考信号, 并且 这里的参考信号主要是指 CSI-RS0 这个主要和 CSI-RS可以进行单套独立配 置有关系。
与实施例 1和实施例 2可以结合使用,在实施例 1和实施例 2的基础上, 当 UE确认不能通过配对后向兼容载波与新载波同步 /同步跟踪(也称在时间、 频率方向上的精同步) 时, 并且基站在获知上述情况后, 基站能够通过 UE 专用的 RRC 消息为 UE在新载波中配置用于同步 /同步跟踪的 CSI-RS, 将 CSI-RS配置信息作为参考信号的配置信息发送给 UE, 然后 UE利用所述的 CSI-RS来完成与新载波的同步 /同步跟踪, 以保证 UE在新载波的工作。
或者,基站对于新载波中配置特定的 CSI-RS图样用于 UE与该新载波的 同步跟踪。 这种情况下当 UE接入新载波后, 发现基站配置的用于同步跟踪 的 CSI-RS存在, 那么 UE就使用所述的 CSI-RS做同步跟踪, 否则, UE使用 与新载波配对的后向兼容载波中的参考信号做新载波的同步跟踪。
基站发送所述特定的 CSI-RS配置信息能够通过***信息(例如 SIB )或 者专用的 RRC消息发送给 UE。
所述参考信号的配置信息也可釆用基站与用户设备事先约定的配置信 息, 或者, 所述基站建立所述参考信号的配置信息与所述 LTE的载波的主辅 同步序列或小区 ID的对应关系。 例如, 基站和 UE之间约定釆用固定配置的 一套 CSI-RS作为同步跟踪的参考信号,基站按照约定的固定配置信息发送该 套 CSI-RS,然后 UE在小区接入后按照约定的固定配置信息接收该套 CSI-RS 用作同步跟踪。 又例如, 基站和 UE对应关系为约定 N ( N为正整数, 例如 取值为 6 )套用于同步跟踪的 CSI-RS配置信息, 然后为每一套的编号, 例如 编号为 0~5 ,然后与小区 ID或主辅同步序列之间建议下面的关系:小区 ID mod N=编号, 基站按照该等式, 在确定小区 ID后, 例如小区 ID mod 6 =编号, 基站在此小区中即发送编号对应的 CSI-RS用于同步跟踪, UE侧获知小区 ID 后, 同理即可确定小区中发送的 CSI-RS, 从而接收 CSI-RS用于同步跟踪。 如果需要选择两套 CSI-RS 用于同步跟踪时, 可以在上述对应关系确定一套 CSI-RS后,再根据该 CSI-RS编号值选择紧邻的循环向前或向后的 CSI-RS用 于同步跟踪, 从而确定 2套 CSI-RS用于等式中小区 ID对应的小区的同步跟 踪。
基站通过让 UE对于新载波执行测量, 根据测量结果基站直接确定是否 为 UE配置用于同步 /同步跟踪的 CSI-RS, 当 UE通过专用 RRC消息接收到 基站为自己配置的用于新载波同步 /同步跟踪的参考信号的配置信息时, 那么 UE则使用所述配置的 CSI-RS执行与新载波的同步 /同步跟踪。 如果 UE通过 专用 RRC消息没有接收到上述用于同步 /同步跟踪的 CSI-RS配置信息, 那么 UE 则使用新载波与配对后向兼容载波时间严格对齐的方式来确定新载波的 同步 /同步跟踪。
UE 能够通过基站是否为自己配置用于新载波的同步 /同步跟踪的参考信 号来判断新载波与配对后向兼容载波之间的同步情况, 例如当 UE接收到基 站为其发送新载波中用于同步 /同步跟踪的 CSI-RS配置信息时, UE则认为对 于自己而言新载波与配对的后向兼容载波之间不是严格同步的, 自己需要使 用所述配置的 CSI-RS来完成与新载波的同步 /同步跟踪, 否则, UE认为对于 自己而言新载波与配对后向兼容载波之间是严格同步的。
本文所述的新载波中是没有配置 PSS/SSS, 也没有 CRS。 如果新载波中 配置有自己的 PSS/SSS那么 UE则直接使用新载波中的 PSS/SSS与新载波进 行同步。
如图 3所示, 本实施方式还提供了一种检测载波同步的装置, 包括: 载 波信息确定单元、 CSI-RS计算单元、 CSI-RS接收单元和比较单元, 其中: 载波信息确定单元, 设置为根据第二载波的载波信息确定第一载波的载 波信息;
CSI-RS计算单元,设置为根据载波信息确定单元确定的第一载波的载波 信息, 计算第一载波的 CSI-RS;
CSI-RS接收单元, 设置为根据第一载波的载波信息从第一载波中接收 CSI-RS;
比较单元, 设置为将 CSI-RS接收单元接收到的 CSI-RS与 CSI-RS计算 单元计算得到的 CSI-RS进行比较,确定第一载波与第二载波是否同步以及用 户设备与第一载波是否同步。
比较单元在所述 CSI-RS接收单元接收到的 CSI-RS与所述 CSI-RS计算 单元计算得到的 CSI-RS相同, 则确认第一载波与第二载波同步,且用户设备 与第一载波同步。
述载波信息包括: 帧号、 子帧号、 时隙号和正交频分复用(OFDM)符号的 索引。
CSI-RS接收单元, 设置为从第一载波中接收信息, 根据预先接收到的
CSI-RS配置信息确定 CSI-RS在信息中的位置, 按照第一载波的载波信息从 信息中取得 CSI-RS。
CSI-RS计算单元,设置为根据预先接收到的第一载波的配置信息和第一 载 波的 载 波信 息计算第 一载 波的 CSI-RS 的 初始值 cmit , cimt = 210. (7 · («s + 1)+ / + 1). (2 · N^1 + 1)+ 2 · N^11 + NCP , 其中, 《s为第一载波的载波信息中 包含的时隙号, /为第一载波的载波信息中包含的 OFDM的索引, N U为第 一载波的配置信息中包含的小区标识, Ncp为第一载波的配置信息中包含的 CP类型。
CSI-RS计算单元, 还设置为使用 CSI-RS的初始值 Cmit , 按照第一载波的 时隙号和 OFDM符号的索引计算第一载波的信道状态信息测量导频 r/ (m) , rl n (m) = -^= {\ - 2 - c(2m)) + j-^={\ - 2 - c(2m + \)), = 0,1,...,N^X'DL 1
/2 V2 , 其中, c为生成
CSI-RS的序列, c的初始值为 cimt , N^X'DL为第一载波的资源块 (RB)数量。
CSI-RS接收单元,还设置为保存接收到的 CSI-RS所在子帧的全部数据; 比较单元,还设置为在接收到的 CSI-RS与计算得到的 CSI-RS不相同时, 从 CSI-RS接收单元保存的接收到的 CSI-RS 所在子帧的数据中以接收到的 CSI-RS为基准向前或向后调整截取 CSI-RS的时间点, 重截取 CSI-RS, 并将 重截取得到的 CSI-RS 与计算得到的 CSI-RS 进行比较, 在重截取得到的 CSI-RS与计算得到的 CSI-RS相同时,根据调整的截取 CSI-RS的时间点, 确 认第一载波与第二载波之间的时间差。
比较单元, 还设置为在第一载波与第二载波之间的时间差小于时间门限 值时, 确认第一载波与所述第二载波同步, 且用户设备与第一载波同步; 如 果第一载波与第二载波之间的时间差超出时间门限值, 则确认第一载波与第 二载波不同步, 且用户设备与第一载波不同步。 第一载波为长期演进 (LTE)中的 N型载波, 第二载波为 LTE R8/R9/R10 中的后向兼容载波, 第一载波和第二载波为配对使用的载波。
如图 4所示, 本实施方式还提供了一种信息的传输装置, 包括: 配置单 元和发送单元, 其中:
配置单元, 设置为对长期演进 (LTE)中的载波进行配置;
发送单元, 设置为将载波的配置信息发送给用户设备 (UE), 载波的配置 信息包括载波的带宽、 小区标识 (ID)、循环前缀 (CP)类型、 信道状态信息测量 导频 (CSI-RS)配置信息和下行传输模式中的一种或多种。
发送单元, 是设置为将配置信息通过切换命令、 测量命令、 UE专有命令 或***广播消息发送给 UE。
发送单元, 是设置为通过与 LTE中的载波配对的后向兼容载波将载波的 配置信息发送给用户设备。
小区 ID为虚拟小区 ID或为实际的物理小区 ID。
载波的配置信息还包含: 载波的接入频点。
发送单元, 还设置为为 LTE中的载波设置信息单元结构, 在信息单元结 构中包括下述一个或多个: 载波类型信息、 接入频点、 带宽、 小区 ID、 CP 类型、 CSI-RS配置信息和下行传输模式, 在消息中引用信息单元结构, 将载 波的配置信息发送给用户设备。
下行传输模式包括下行传输模式 9, 下行传输模式 9 中的下行控制信息 对应的数据信息在物理下行共享信道 (PDSCH)中的传输方式为单天线端口传 输, 或为基于用户专有参考信号的分集传输; 下行传输模式 9中的下行控制 信息 (DCI)釆用 DCI Format (格式) 1A或 DCI Format 1。
单天线端口传输为单天线端口 7传输的下行传输模式;
基于用户专有参考信号的分集传输为基于用户专有参考信号的分集传输 的下行传输模式。
本发明实施例还提供另一种信息传输装置, 包括: 配置单元, 其设置为: 为长期演进 (LTE)中的载波配置用于同步 /同步跟 踪的参考信号; 其中,
所述配置单元是设置为: 釆用基站与用户设备事先约定的配置信息配置 所述参考信号, 或者, 建立所述参考信号的配置信息与所述 LTE的载波的主 辅同步序列或小区标识的对应关系; 或者
所述传输装置还包括: 发送单元, 其设置为: 将所述参考信号的配置信 息通过与所述 LTE中的载波配对的后向兼容载波发送给用户设备, 或者, 将 所述参考信号的配置信息通过所述 LTE的载波的***广播信息发送给用户设 备。
其中: 所述参考信号为信道状态指示参考信号 (CSI-RS)、 小区参考信号
(CRS)或译码解调参考信号 (DM-RS)。
其中: 釆用基站与用户设备事先约定的配置信息配置所述参考信号, 具 体为:基站和 UE之间约定釆用固定配置的一套 CSI-RS作为同步跟踪的参考 信号, 基站按照约定的固定配置信息发送该套 CSI-RS, 然后 UE在小区接入 后按照约定的固定配置信息接收该套 CSI-RS用作同步跟踪。
其中: 建立所述参考信号的配置信息与所述 LTE的载波的主辅同步序列 或小区标识的对应关系, 具体为: 基站和 UE对应关系为约定 N ( N为正整 数, 例如取值为 6 )套用于同步跟踪的 CSI-RS配置信息, 然后为每一套的编 号, 例如编号为 0~5, 然后与小区 ID或主辅同步序列之间建议下面的关系: 小区 ID mod n=编号,基站按照该等式,在确定小区 ID后,例如小区 ID mod 6 =编号, 基站在此小区中即发送编号对应的 CSI-RS用于同步跟踪, UE侧 获知小区 ID后, 同理即可确定小区中发送的 CSI-RS, 从而接收 CSI-RS用于 同步跟踪。如果需要选择两套 CSI-RS用于同步跟踪时, 可以在上述对应关系 确定一套 CSI-RS后, 再根据该 CSI-RS编号值选择紧邻的循环向前或向后的 CSI-RS用于同步跟踪,从而确定 2套 CSI-RS用于等式中小区 ID对应的小区 的同步跟踪。
本实施方式还提供了一种信息的配置装置, 包括: 配置单元, 其中: 配置单元,设置为配置长期演进 (LTE)中的载波釆用与配对的后向兼容载 波的相同的配置信息。 配置信息包括: 小区标识 (ID)和 CP类型。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范围之内。
工业实用性
本发明实施例中对于 LTE中的新载波, 将载波的配置信息发送给用户设 备, 使得用户设备在基站为用户设备配置使用新载波时, 能够根据载波的配 置信息使用新载波。

Claims

权 利 要 求 书
1、 一种信息的传输方法, 其包括:
基站对长期演进 (LTE)中的载波进行配置,将载波的配置信息发送给用户 设备 (UE),所述载波的配置信息包括载波的带宽、小区标识 (ID)、循环前缀 (CP) 类型、 信道状态信息测量导频 (CSI-RS)配置信息和下行传输模式中的任意一 种或任意组合。
2、 如权利要求 1所述的方法, 其中: 所述基站将所述载波的配置信息通 过切换命令、 测量命令、 UE专有命令或***广播消息发送给所述用户设备。
3、 如权利要求 1所述的方法, 其中:
所述基站通过与所述 LTE中的载波配对的后向兼容载波将所述载波的配 置信息发送给所述用户设备。
4、 如权利要求 1所述的方法, 其中: 所述小区 ID为虚拟小区 ID或为实 际的物理小区 ID。
5、 如权利要求 3所述的方法, 其中: 所述载波的配置信息还包含: 载波 的接入频点。
6、 如权利要求 3所述的方法, 其中, 所述基站将所述载波的配置信息携 带在连接重配置 (RRCConnectionReconfiguration)消息、 测量配置 (measConfig) 消息或所述 LTE中的载波与后向兼容载波的配对通知消息中发送给所述用户 设备, 在所述连接重配置消息、 测量配置消息和配对通知消息中标识出所述 载波的配置信息属于所述 LTE中的载波。
7、 如权利要求 3所述的方法, 其中, 所述基站将所述载波的配置信息作 为所述后向兼容载波的***信息通过***信息块 (SIB)发送给所述用户设备, 在所述 SIB中标识出所述载波的配置信息属于所述 LTE中的载波。
8、 如权利要求 3所述的方法, 其中: 所述基站为所述 LTE中的载波设 置信息单元结构, 在所述信息单元结构中包括下述任意一个或任意组合: 载 波类型信息、 接入频点、 带宽、 小区 ID、 CP类型、 CSI-RS配置信息和下行 传输模式, 在消息中引用所述信息单元结构, 将所述载波的配置信息发送给 所述用户设备。
9、 如权利要求 8所述的方法, 其中: 在所述信息单元结构中还包含所述 配对的后向兼容载波的信息, 用于标识后向兼容载波。
10、 如权利要求 1所述的方法, 其还包括:
所述基站将所述 LTE中的载波与后向兼容载波的配对关系通知给所述用 户设备。
11、 如权利要求 1所述的方法, 其中: 所述下行传输模式包括下行传输 模式 9。
12、 如权利要求 11所述的方法, 其中:
所述下行传输模式 9中的下行控制信息对应的数据信息在物理下行共享 信道 (PDSCH)中的传输方式为单天线端口传输, 或为基于用户专有参考信号 的分集传输;所述下行传输模式 9中的下行控制信息 (DCI)釆用 DCI Format (格 式) 1 A或 DCI Format 1。
13、 如权利要求 12所述的方法, 其中:
所述单天线端口传输为单天线端口 7传输的下行传输模式;
所述基于用户专有参考信号的分集传输为基于用户专有参考信号的分集 传输的下行传输模式。
14、 如权利要求 1所述的方法, 其中: 所述 CSI-RS配置信息包括下述任 意一个或任意组合: 天线端口数目、 CSI-RS 资源配置、 CSI-RS 子帧配置、 CSI-RS功率控制。
15、 一种信息的配置方法, 其包括:
基站配置长期演进 (LTE)中的载波釆用与配对的后向兼容载波的相同的 配置信息。
16、如权利要求 15所述的方法,其中: 所述配置信息包括: 小区标识 (ID) 和循环前缀(CP )类型。
17、 一种信息的传输方法, 其包括:
基站为长期演进 (LTE)中的载波配置用于同步 /同步跟踪的参考信号; 所述基站将所述参考信号的配置信息通过与所述 LTE中的载波配对的后 向兼容载波发送给用户设备, 或者, 所述基站将所述参考信号的配置信息通 过所述 LTE的载波的***广播信息发送给用户设备, 或者, 所述基站釆用基 站与用户设备事先约定的配置信息配置所述参考信号, 或者, 所述基站建立 所述参考信号的配置信息与所述 LTE的载波的主辅同步序列或小区标识( ID ) 的对应关系。
18、 如权利要求 17所述的传输方法, 其中, 所述基站建立所述参考信号 的配置信息与所述 LTE的载波的主辅同步序列或小区标识的对应关系包括: 基站和用户设备约定用于同步 /同步跟踪的参考信号的配置信息的总套 数 N, N为正整数, 并对各套配置信息依次从 0编号到 N-1 , 在配置信息与 小区 ID或主辅同步序列之间建立: n=m mod N的关系, n为配置信息编号, m为小区 ID或主辅同步序列, 其中, 编号为 n的配置信息作用于小区 ID或 主辅同步序列为 m的小区。
19、 如权利要求 17所述的传输方法, 其中, 所述基站建立所述参考信号 的配置信息与所述 LTE的载波的主辅同步序列或小区标识的对应关系包括: 基站和用户设备约定用于同步 /同步跟踪的参考信号的配置信息的总套 数 N, N为正整数, 并对各套配置信息依次从 0编号到 N-1 , 在配置信息与 小区 ID或主辅同步序列之间建立: n=m mod N的关系, n为配置信息编号, m为小区 ID或主辅同步序列, 其中, 编号为 m和紧邻编号 m循环向前的编 号对应的配置信息都作用于被用于小区 ID或主辅同步序列为 m的小区, 或 者编号为 m和紧邻编号 m循环向后的编号对应的配置信息都作用于被用于小 区 ID或主辅同步序列为 m的小区。
20、 如权利要求 17所述的方法, 其中: 所述参考信号为信道状态指示参 考信号 (CSI-RS)、 小区参考信号 (CRS)或译码解调参考信号 (DM-RS)。
21、 一种信息的传输装置, 其包括: 配置单元和发送单元, 其中: 所述配置单元设置为对长期演进 (LTE)中的载波进行配置 ,所述载波的配 置信息包括载波的带宽、 小区标识 (ID)、循环前缀 (CP)类型、 信道状态信息测 量导频 (CSI-RS)配置信息和下行传输模式中的一种或任意组合;
所述发送单元设置为: 将所述载波的配置信息发送给用户设备 (UE)。
22、 如权利要求 21所述的装置, 其中:
所述发送单元是设置为: 将所述配置信息通过切换命令、 测量命令、 UE 专有命令或***广播消息发送给所述用户设备。
23、 如权利要求 22所述的装置, 其中:
所述发送单元是设置为: 通过与所述 LTE中的载波配对的后向兼容载波 将所述载波的配置信息发送给所述用户设备。
24、 如权利要求 21所述的装置, 其中: 所述小区 ID为虚拟小区 ID或为 实际的物理小区 ID。
25、 如权利要求 23所述的装置, 其中: 所述载波的配置信息还包含: 载 波的接入频点。
26、 如权利要求 23所述的装置, 其中:
所述发送单元, 还设置为: 为所述 LTE中的载波设置信息单元结构, 在 所述信息单元结构中包括下述任意一个或任意组合: 载波类型信息、 接入频 点、 带宽、 小区 ID、 CP类型、 CSI-RS配置信息和下行传输模式, 在消息中 引用所述信息单元结构, 将所述载波的配置信息发送给所述用户设备。
27、 如权利要求 21所述的装置, 其中: 所述下行传输模式包括下行传输 模式 9, 所述下行传输模式 9 中的下行控制信息对应的数据信息在物理下行 共享信道 (PDSCH)中的传输方式为单天线端口传输, 或为基于用户专有参考 信号的分集传输; 所述下行传输模式 9 中的下行控制信息 (DCI)釆用 DCI Format (格式) 1 A或 DCI Format 1。
28、 如权利要求 27所述的装置, 其中:
所述单天线端口传输为单天线端口 7传输的下行传输模式;
所述基于用户专有参考信号的分集传输为基于用户专有参考信号的分集 传输的下行传输模式。
29、 一种信息的配置装置, 其包括: 配置单元, 其中:
所述配置单元设置为: 配置长期演进 (LTE)中的载波釆用与配对的后向兼 容载波的相同的配置信息。
30、如权利要求 29所述的装置,其中: 所述配置信息包括: 小区标识 (ID) 和循环前缀 (CP)类型。
31、 一种信息的传输装置, 其包括:
配置单元, 其设置为: 为长期演进 (LTE)的载波配置用于同步 /同步跟踪 的参考信号;
其中,
所述配置单元是设置为: 釆用基站与用户设备事先约定的配置信息配置 所述参考信号, 或者, 建立所述参考信号的配置信息与所述 LTE的载波的主 辅同步序列或小区标识的对应关系; 或者
所述传输装置还包括: 发送单元, 其设置为: 将所述参考信号的配置信 息通过与所述 LTE中的载波配对的后向兼容载波发送给用户设备, 或者, 将 所述参考信号的配置信息通过所述 LTE的载波的***广播信息发送给用户设 备。
32、 如权利要求 31所述的装置, 其中, 所述配置单元是设置为以如下方 式建立所述参考信号的配置信息与所述 LTE的载波的主辅同步序列或小区标 识的对应关系:
基站和用户设备约定用于同步 /同步跟踪的参考信号的配置信息的总套 数 N, N为正整数, 并对各套配置信息依次从 0编号到 N-1 , 在配置信息与 小区 ID或主辅同步序列之间建立: n=m mod N的关系, n为配置信息编号, m为小区 ID或主辅同步序列, 其中, 编号为 n的配置信息作用于小区 ID或 主辅同步序列为 m的小区。
33、 如权利要求 31所述的装置, 其中, 所述配置单元是设置为以如下方 式建立所述参考信号的配置信息与所述 LTE的载波的主辅同步序列或小区标 识的对应关系:
基站和用户设备约定用于同步 /同步跟踪的参考信号的配置信息的总套 数 N, N为正整数, 并对各套配置信息依次从 0编号到 N-1 , 在配置信息与 小区 ID或主辅同步序列之间建立: n=m mod N的关系, n为配置信息编号, m为小区 ID或主辅同步序列, 其中, 编号为 m和紧邻编号 m循环向前的编 号对应的配置信息都作用于被用于小区 ID或主辅同步序列为 m的小区, 或 者编号为 m和紧邻编号 m循环向后的编号对应的配置信息都作用于被用于小 区 ID或主辅同步序列为 m的小区。
34、 如权利要求 31所述的装置, 其中: 所述参考信号为信道状态指示参 考信号 (CSI-RS)、 小区参考信号 (CRS)或译码解调参考信号 (DM-RS)。
PCT/CN2012/087881 2012-01-19 2012-12-28 一种信息的传输、配置方法及装置 WO2013107269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210017734.1A CN103220249B (zh) 2012-01-19 2012-01-19 一种信息的传输、配置方法及装置
CN201210017734.1 2012-01-19

Publications (1)

Publication Number Publication Date
WO2013107269A1 true WO2013107269A1 (zh) 2013-07-25

Family

ID=48798600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087881 WO2013107269A1 (zh) 2012-01-19 2012-12-28 一种信息的传输、配置方法及装置

Country Status (2)

Country Link
CN (1) CN103220249B (zh)
WO (1) WO2013107269A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018080A1 (zh) * 2013-08-09 2015-02-12 华为技术有限公司 载波配置方法及基站、用户设备
CN104685848A (zh) * 2013-09-29 2015-06-03 华为技术有限公司 一种发送信息的方法、及确定cp类型的方法
EP3079398B1 (en) * 2013-12-30 2018-06-27 Huawei Technologies Co., Ltd. Neighbor cell measurement method and device
WO2017045205A1 (zh) * 2015-09-18 2017-03-23 华为技术有限公司 一种发送参考信号功率信息的方法及基站
US10887805B2 (en) * 2016-04-01 2021-01-05 Htc Corporation Device and method of handling handover
KR102614082B1 (ko) * 2016-07-01 2023-12-13 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 신호 검출 방법 및 장치
US11405086B2 (en) * 2016-09-30 2022-08-02 Qualcomm Incorporated Channel state information (CSI) acquisition for dynamic MIMO transmission
CN108809494B (zh) * 2017-05-05 2021-03-23 维沃移动通信有限公司 Csi-rs序列的发送方法、接收方法、相关设备及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860972A (zh) * 2010-04-12 2010-10-13 中兴通讯股份有限公司 一种载波聚合中的组成载波指示与配置方法及装置
WO2011038252A2 (en) * 2009-09-25 2011-03-31 Fong, Mo-Han System and method for multi-carrier network operation
CN102036297A (zh) * 2010-12-24 2011-04-27 大唐移动通信设备有限公司 物理下行控制信道发送及检测方法、***和设备
CN102045862A (zh) * 2009-10-22 2011-05-04 ***通信集团公司 一种载波聚合实现方法、装置与***
CN102130875A (zh) * 2011-01-18 2011-07-20 南京邮电大学 载波聚合技术中下行参考信号的产生方法
CN102130876A (zh) * 2011-01-18 2011-07-20 南京邮电大学 载波聚合技术中立方量度改善的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674586B (zh) * 2009-10-13 2014-03-19 中兴通讯股份有限公司 一种载波聚合中的测量处理方法及***
CN102056300B (zh) * 2009-11-03 2015-01-28 中兴通讯股份有限公司 分量载波配置方法、用户设备及基站
CN102196571B (zh) * 2010-03-12 2015-07-15 株式会社Ntt都科摩 载波配置方法及装置
EP2375616B1 (en) * 2010-04-08 2015-04-01 HTC Corporation Method for managing sounding reference signal transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038252A2 (en) * 2009-09-25 2011-03-31 Fong, Mo-Han System and method for multi-carrier network operation
CN102045862A (zh) * 2009-10-22 2011-05-04 ***通信集团公司 一种载波聚合实现方法、装置与***
CN101860972A (zh) * 2010-04-12 2010-10-13 中兴通讯股份有限公司 一种载波聚合中的组成载波指示与配置方法及装置
CN102036297A (zh) * 2010-12-24 2011-04-27 大唐移动通信设备有限公司 物理下行控制信道发送及检测方法、***和设备
CN102130875A (zh) * 2011-01-18 2011-07-20 南京邮电大学 载波聚合技术中下行参考信号的产生方法
CN102130876A (zh) * 2011-01-18 2011-07-20 南京邮电大学 载波聚合技术中立方量度改善的方法

Also Published As

Publication number Publication date
CN103220249B (zh) 2018-04-06
CN103220249A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
TWI742134B (zh) 用於無線通訊中的切換的方法、目標基地台、使用者裝備及電腦可讀取媒體
JP6676224B1 (ja) 狭帯域通信のための狭帯域時分割複信フレーム構造
US11310705B2 (en) Downlink data coordination based low or 0 ms mobility interruption
TWI701960B (zh) 用於基於上行鏈路和下行鏈路的行動性的波束選擇
JP6916177B2 (ja) アクセス手順のための方法および装置
CN110445591B (zh) 用于在异构通信***中进行随机接入的***和方法
EP3062575B1 (en) Terminal apparatus and method in terminal apparatus
WO2013107269A1 (zh) 一种信息的传输、配置方法及装置
JP7478799B2 (ja) 通信システムにおける時間ドメイン割り当てを提供するためのシステムおよび方法
CN103220119B (zh) 一种检测载波同步的方法及装置
JPWO2016002441A1 (ja) 移動局装置、および基地局装置
US10075887B2 (en) Terminal device, integrated circuit, and communication method
US20240039587A1 (en) System and Method for Inter-cell and Intra-cell Multiple Transmission-Reception Points Communications
WO2014104505A1 (ko) 무선 통신 시스템에서 서브밴드 측정 방법 및 이를 위한 장치
JP2018508160A (ja) 拡張キャリアアグリゲーションのためのpucch管理
US10411872B2 (en) Terminal device, integrated circuit, and communication method
TW201947904A (zh) 使用者設備及其無線通訊方法
US20230292391A1 (en) Communication system and communication terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865678

Country of ref document: EP

Kind code of ref document: A1