WO2013105345A1 - Fluorescent body and light emission device - Google Patents

Fluorescent body and light emission device Download PDF

Info

Publication number
WO2013105345A1
WO2013105345A1 PCT/JP2012/080542 JP2012080542W WO2013105345A1 WO 2013105345 A1 WO2013105345 A1 WO 2013105345A1 JP 2012080542 W JP2012080542 W JP 2012080542W WO 2013105345 A1 WO2013105345 A1 WO 2013105345A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
sialon
nitride
powder
Prior art date
Application number
PCT/JP2012/080542
Other languages
French (fr)
Japanese (ja)
Inventor
真太郎 渡邉
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Publication of WO2013105345A1 publication Critical patent/WO2013105345A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • nitride or oxynitride phosphors As typical nitride or oxynitride phosphors, ⁇ sialon phosphors, ⁇ sialon phosphors, CASN phosphors (that is, CaAlSiN 3 phosphors) and the like are known.
  • a nitride or oxynitride having a ⁇ -type Si 3 N 4 crystal structure is used as a base crystal, and a metal element M (where M is selected from Mn, Ce, Eu) Has been proposed, and the phosphor has a green luminance higher than that of a conventional rare earth activated sialon phosphor, and is a conventional oxide phosphor. It is said that it is excellent in durability (patent document 1).
  • a lanthanide metal Re1 (Re1 is Ce, Pr, Eu, Tb) in which a part or all of a metal that is solid-solved in ⁇ sialon, which is a base material, is the center of light emission. , Yb, or Er) or two kinds of lanthanide metals Re1 and Re2 as a coactivator (Re2 is Dy), and a crystalline oxynitride phosphor has been proposed.
  • the phosphor has an excitation spectrum shifted to a longer wavelength side as compared with a conventional oxide phosphor, and is said to be excellent in thermal and mechanical properties and chemical stability (Patent Document 2).
  • CASN phosphors having an inorganic compound having the same crystal structure as that of CaAlSiN 3 as the host crystal emit longer orange or red light than conventional rare-earth activated sialon phosphors.
  • the luminance is higher than that of a red phosphor having a base crystal of oxynitride (Patent Documents 3 and 4).
  • Example 2 A phosphor was manufactured in the same manner as in Example 1 except that a silicon nitride powder having a Cu content of 30 ppm was used as a raw material. As a result, the Cu content was 14 ppm and Eu 0.15 Si 5.8 Al 0.2. ⁇ sialon represented by O 0.2 N 7.8 was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

The objective of the present invention is to provide: a fluorescent body having a higher light emission strength than conventional fluorescent bodies; and a high-brightness light emission device that uses the fluorescent body. The nitride or oxynitride fluorescent body has a Cu content of no greater than 15 ppm. The nitride or oxynitride fluorescent body contains: a β-sialon fluorescent body represented by the general formula Si6-zAlzOzN8-z (0 < z ≤ 4.2) and containing Eu as the light-emission center; an α-sialon fluorescent body represented by the general formula (MI)x(Eu)y(Si,Al)12(O,N)16; and a fluorescent body represented by the general formula (MII)x(Si,Al)2(N,O)3±y, a portion of the element MII being substituted with the element Eu, and the primary crystal phase having the same crystal structure as CaAlSiN3.

Description

蛍光体及び発光装置Phosphor and light emitting device
 本発明は、LEDなどの発光素子の光の波長を変換する蛍光体及びこの蛍光体を用いた発光装置に関するものである。さらに詳しくは、発光ピーク強度が高い窒化物又は酸窒化物蛍光体、並びに当該蛍光体の使用により優れた輝度を有する発光装置に関するものである。 The present invention relates to a phosphor that converts the wavelength of light of a light emitting element such as an LED, and a light emitting device using the phosphor. More specifically, the present invention relates to a nitride or oxynitride phosphor having a high emission peak intensity, and a light emitting device having superior luminance due to the use of the phosphor.
 半導体発光素子と蛍光体とを組み合わせた発光装置は、低消費電力、小型、高輝度かつ広範囲な色再現性が期待される次世代の発光装置として注目され、活発に研究、開発が行われている。このような蛍光体として、発光特性、熱安定性、化学的安定性が良好であるという理由から、窒化物もしくは酸窒化物を母体材料とし、遷移金属もしくは希土類金属で付活された窒化物又は酸窒化物蛍光体が広く用いられている。 Light-emitting devices combining semiconductor light-emitting elements and phosphors are attracting attention as next-generation light-emitting devices that are expected to have low power consumption, small size, high brightness, and wide color reproducibility, and are actively researched and developed. Yes. As such a phosphor, a nitride or oxynitride as a base material, and a nitride activated by a transition metal or a rare earth metal, because of its good emission characteristics, thermal stability, and chemical stability, Oxynitride phosphors are widely used.
 代表的な窒化物又は酸窒化物蛍光体として、βサイアロン蛍光体、αサイアロン蛍光体、CASN蛍光体(すなわち、CaAlSiN蛍光体)等が知られている。 As typical nitride or oxynitride phosphors, β sialon phosphors, α sialon phosphors, CASN phosphors (that is, CaAlSiN 3 phosphors) and the like are known.
 βサイアロンを母体材料に用いた蛍光体としては、β型Si結晶構造を持つ窒化物または酸窒化物を母体結晶とし、金属元素M(ただし、Mは、Mn、Ce、Euから選ばれる1種または2種以上の元素)を発光中心として添加した蛍光体が提案されており、この蛍光体は、従来の希土類付活サイアロン蛍光体より緑色の輝度が高く、従来の酸化物蛍光体よりも耐久性に優れるとされている(特許文献1)。 As a phosphor using β sialon as a base material, a nitride or oxynitride having a β-type Si 3 N 4 crystal structure is used as a base crystal, and a metal element M (where M is selected from Mn, Ce, Eu) Has been proposed, and the phosphor has a green luminance higher than that of a conventional rare earth activated sialon phosphor, and is a conventional oxide phosphor. It is said that it is excellent in durability (patent document 1).
 αサイアロンを母体材料に用いた蛍光体としては、母体材料であるαサイアロンに固溶する金属の一部若しくは全てが、発光の中心となるランタニド金属Re1(Re1は、Ce、Pr、Eu、Tb、Yb、又はErの一種若しくは二種以上)又は二種類のランタニド金属Re1及び共付活剤としてのRe2(Re2はDy)で置換した結晶性の酸窒化物蛍光体が提案されており、この蛍光体は、従来の酸化物蛍光体と比較して励起スペクトルが長波長側にシフトしており、熱及び機械的性質、さらに化学的安定性に優れるとされている(特許文献2)。 As a phosphor using α sialon as a base material, a lanthanide metal Re1 (Re1 is Ce, Pr, Eu, Tb) in which a part or all of a metal that is solid-solved in α sialon, which is a base material, is the center of light emission. , Yb, or Er) or two kinds of lanthanide metals Re1 and Re2 as a coactivator (Re2 is Dy), and a crystalline oxynitride phosphor has been proposed. The phosphor has an excitation spectrum shifted to a longer wavelength side as compared with a conventional oxide phosphor, and is said to be excellent in thermal and mechanical properties and chemical stability (Patent Document 2).
 CaAlSiN結晶と同一の結晶構造を有する無機化合物を母体結晶とするCASN蛍光体については、従来の希土類付活サイアロン蛍光体より長波長の橙色や赤色に発光し、また従来報告されている窒化物や酸窒化物を母体結晶とする赤色蛍光体よりも輝度が高いとされている(特許文献3及び4)。 CASN phosphors having an inorganic compound having the same crystal structure as that of CaAlSiN 3 as the host crystal emit longer orange or red light than conventional rare-earth activated sialon phosphors. In addition, it is said that the luminance is higher than that of a red phosphor having a base crystal of oxynitride (Patent Documents 3 and 4).
 また、これらの窒化物又は酸窒化物蛍光体について、発光特性を改善するための種々の試みもなされている。例えば、原料混合物を特定の圧力範囲の窒素中において特定の温度範囲で焼結し、次いで、得られた焼結体を平均粒径が特定の範囲となるまで粉砕する方法(特許文献5)、液相焼結することにより粗大化した単結晶粒子を得る方法(特許文献6)、あるいは、特定の組成領域範囲となるように制御する方法などが提案されている(特許文献7)。さらに、蛍光体の原材料に微粒子の二酸化珪素(SiO)で被覆された窒化アルミニウム(AlN)を混合することにより、窒化物又は酸窒化物蛍光体の反射率を向上させることが提案されている(特許文献8)。 Various attempts have been made to improve the light emission characteristics of these nitride or oxynitride phosphors. For example, a method of sintering a raw material mixture in a specific pressure range in a specific pressure range in a specific temperature range, and then pulverizing the obtained sintered body until the average particle size reaches a specific range (Patent Document 5), There have been proposed a method for obtaining coarse single crystal particles by liquid phase sintering (Patent Document 6), a method for controlling the composition to be in a specific composition region range, and the like (Patent Document 7). Further, it has been proposed to improve the reflectance of a nitride or oxynitride phosphor by mixing aluminum nitride (AlN) coated with fine particle silicon dioxide (SiO 2 ) into the phosphor raw material. (Patent Document 8).
 しかしながら、高輝度の発光装置を得るためには、蛍光体の発光特性をさらに改善することが依然として求められている。 However, in order to obtain a high-luminance light emitting device, it is still required to further improve the light emission characteristics of the phosphor.
特開2005-255895号公報JP 2005-255895 A 特開2002-363554号公報JP 2002-363554 A 特開2006-8721号公報JP 2006-8721 A 特開2005-239985号公報JP 2005-239985 A 特開2005-8794号公報Japanese Patent Laid-Open No. 2005-8794 特開2006-152069号公報JP 2006-152069 A 国際公開第2006/101095号パンフレットInternational Publication No. 2006/101095 Pamphlet 特開2008-127547号公報JP 2008-127547 A
 本発明は、前記課題に鑑みてなされたものであり、高い発光強度を有する蛍光体を提供すること、及び、かかる蛍光体を用いた高輝度の発光装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a phosphor having high emission intensity and to provide a high-luminance light-emitting device using such a phosphor.
 本発明者は検討を重ねた結果、窒化物又は酸窒化物蛍光体においてCuの存在量を一定値以下に制御することにより、高発光強度の蛍光体を得ることができることを見出し、本発明を完成するに至った。これにより半導体発光素子、特に青色LED又は紫外LEDを光源としたときに、高発光強度の窒化物又は酸窒化物蛍光体、さらにこれらを用いた高効率の発光装置を提供することができる。 As a result of repeated studies, the present inventor has found that a phosphor with high emission intensity can be obtained by controlling the amount of Cu present in a nitride or oxynitride phosphor to a certain value or less. It came to be completed. Thereby, when a semiconductor light emitting element, particularly, a blue LED or an ultraviolet LED is used as a light source, it is possible to provide a nitride or oxynitride phosphor having high emission intensity, and a highly efficient light emitting device using these.
 すなわち、本発明は以下を要旨とするものである。
(1)Cuの含有量が15ppm以下である窒化物又は酸窒化物蛍光体。
(2)付活元素が2価のEu又は3価のCeである(1)の蛍光体。
(3)一般式:Si6-zAl8-z(0<z≦4.2)で示され、発光中心としてEuを含有するβサイアロン蛍光体である(1)の蛍光体。
(4)一般式:(MI)(Eu)(Si,Al)12(O,N)16(ただし、MI元素はLi、Mg、Ca、Sr、Ba、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる少なくともCaを含む1種以上の元素を示し、0<x≦3.0、0.005≦y≦0.4)で示されるαサイアロン蛍光体である(1)の蛍光体。
(5)前記MI元素がCaである(4)の蛍光体。
(6)一般式:(MII)(Si,Al)(N,O)3±y(ただし、MII元素はLi、Mg、Ca、Sr及びBaから選ばれる一種以上のアルカリ金属元素又はアルカリ土類金属元素であり、0.8≦x≦1.2、0≦y≦0.2)で示され、MII元素の一部がEu元素で置換されている蛍光体であって、主結晶相がCaAlSiNと同一の結晶構造を有する(1)の蛍光体。
(7)前記MII元素がCa及びSrのいずれか一方又は双方の元素である(6)の蛍光体。
(8)一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換部とを備えた発光装置であって、前記波長変換部は前記(1)乃至(7)のいずれかの蛍光体を少なくとも一つ含む発光装置。
That is, this invention makes the following a summary.
(1) A nitride or oxynitride phosphor having a Cu content of 15 ppm or less.
(2) The phosphor according to (1), wherein the activating element is divalent Eu or trivalent Ce.
(3) The phosphor of (1), which is a β sialon phosphor represented by the general formula: Si 6-z Al z O z N 8-z (0 <z ≦ 4.2) and containing Eu as the emission center .
(4) General formula: (MI) x (Eu) y (Si, Al) 12 (O, N) 16 (where MI elements are Li, Mg, Ca, Sr, Ba, Y and lanthanide elements (La and Ce) Is an α-sialon phosphor represented by 0 <x ≦ 3.0, 0.005 ≦ y ≦ 0.4) (1). ) Phosphor.
(5) The phosphor according to (4), wherein the MI element is Ca.
(6) General formula: (MII) x (Si, Al) 2 (N, O) 3 ± y (where the MII element is one or more alkali metal elements or alkalis selected from Li, Mg, Ca, Sr and Ba) A phosphor which is an earth metal element and is represented by 0.8 ≦ x ≦ 1.2 and 0 ≦ y ≦ 0.2), wherein a part of the MII element is substituted with Eu element, The phosphor of (1) whose phase has the same crystal structure as CaAlSiN 3 .
(7) The phosphor according to (6), wherein the MII element is one or both of Ca and Sr.
(8) A light-emitting device including a light-emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light, The wavelength conversion unit is a light emitting device including at least one phosphor of any one of (1) to (7).
 本発明によれば、高発光強度の窒化物又は酸窒化物蛍光体を提供することができ、さらに、当該蛍光体を使用することにより高輝度を実現できる発光装置を提供することができる。 According to the present invention, a nitride or oxynitride phosphor having high emission intensity can be provided, and further, a light-emitting device capable of realizing high luminance by using the phosphor can be provided.
 以下、本発明を詳細に説明する。
 本発明の蛍光体は、付活元素M、2価の金属元素M、3価の金属元素M、及び4価の金属元素Mを含むことができ、下記一般式[1]で表される窒化物又は酸窒化物蛍光体である。
 [1]
Hereinafter, the present invention will be described in detail.
The phosphor of the present invention can include an activating element M 1 , a divalent metal element M 2 , a trivalent metal element M 3 , and a tetravalent metal element M 4, and is represented by the following general formula [1]. It is a nitride or oxynitride phosphor represented.
M 1 a M 2 b M 3 c M 4 d N e O f [1]
 付活元素Mとしては、窒化物又は酸窒化物蛍光体を構成する結晶母体に含有可能な各種の発光イオンを使用することができ、Cr、Mn、Fe、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、及びYbよりなる群から選ばれる1種以上の元素を使用すると、発光特性の高い蛍光体を製造することが可能なので好ましい。発光中心となる元素Mの中でも、Eu又はCeは高い輝度が得られるため特に好ましい。 The activating element M 1, can be used emitting ions that can be contained various crystal matrix constituting the nitride or oxynitride phosphor, Cr, Mn, Fe, Ce , Pr, Nd, Sm, Use of one or more elements selected from the group consisting of Eu, Tb, Dy, Ho, Er, Tm, and Yb is preferable because a phosphor having high emission characteristics can be produced. Among the elements M 1 as an emission center also, Eu or Ce is particularly preferred because the resulting high brightness.
 付活元素M以外の元素としては、2価の金属元素MがMg、Ca、Sr、Ba、及びZnよりなる群から選ばれる1種以上の元素、3価の金属元素MがAl、Ga、In、及びScよりなる群から選ばれる1種以上の元素、4価の金属元素MがSi、Ge、Sn、Ti、Zr、及びHfよりなる群から選ばれる1種以上の元素であることが、発光特性の高い蛍光体を得ることができるので好ましい。 As an element other than the activation element M 1 , the divalent metal element M 2 is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, and Zn, and the trivalent metal element M 3 is Al. One or more elements selected from the group consisting of Ga, In, and Sc, and one or more elements selected from the group consisting of Si, Ge, Sn, Ti, Zr, and Hf, and the tetravalent metal element M 4 It is preferable that a phosphor with high emission characteristics can be obtained.
 このような窒化物又は酸窒化物蛍光体の中でも、特に、2価のEuで付活されたβサイアロン蛍光体、2価のEuで付活されたαサイアロン蛍光体、主結晶相がCaAlSiNと同一の結晶構造を有する2価のEuで付活されたCASN蛍光体が好ましい。 Among such nitride or oxynitride phosphors, in particular, β sialon phosphors activated with divalent Eu, α sialon phosphors activated with divalent Eu, and the main crystal phase is CaAlSiN 3 A CASN phosphor activated with divalent Eu having the same crystal structure as is preferred.
 Eu付活βサイアロン蛍光体は、一般式:Si6-ZAl8-Zで示されるβサイアロンをホスト結晶とするものであり、発光中心としてEu2+が固溶されたものである。このβサイアロン蛍光体は、一般式:Si6-zAl8-z:Eu(0<z≦4.2)と表される。 The Eu-activated β sialon phosphor has a β sialon represented by the general formula: Si 6-Z Al Z O Z N 8-Z as a host crystal, and Eu 2+ is dissolved as a luminescent center. is there. This β-sialon phosphor is represented by the general formula: Si 6-z Al z O z N 8-z : Eu (0 <z ≦ 4.2).
 Eu付活αサイアロン蛍光体は、一般式:(MI)(Eu)(Si,Al)12(O,N)16(但し、MI元素はLi、Mg、Ca、Sr、Ba、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる少なくともCaを含む1種以上の元素を示し、0<x≦3.0、0.005≦y≦0.4)で示される。MI元素としては、色度調整の面で有利なCaが好ましい。 The Eu-activated α sialon phosphor has a general formula: (MI) x (Eu) y (Si, Al) 12 (O, N) 16 (where the MI element is Li, Mg, Ca, Sr, Ba, Y and One or more elements including at least Ca selected from the group consisting of lanthanide elements (excluding La and Ce) are represented by 0 <x ≦ 3.0 and 0.005 ≦ y ≦ 0.4. As the MI element, Ca which is advantageous in terms of chromaticity adjustment is preferable.
 主結晶相がCaAlSiNと同一の結晶構造を有するEu付活蛍光体は、一般式:(MII)(Si,Al)(N,O)3±y(ただし、MII元素はLi、Mg、Ca、Sr及びBaから選ばれる一種以上のアルカリ金属元素又はアルカリ土類金属元素であり、0.8≦x≦1.2、0≦y≦0.2)で示され、MII元素の一部がEu元素で置換されている蛍光体である。MII元素としては、色度調整が有利なCa及びSrの少なくとも一方又は双方の元素が好ましい。 The Eu-activated phosphor whose main crystal phase has the same crystal structure as CaAlSiN 3 has the general formula: (MII) x (Si, Al) 2 (N, O) 3 ± y (where the MII element is Li, Mg) One or more alkali metal elements or alkaline earth metal elements selected from Ca, Sr and Ba, 0.8 ≦ x ≦ 1.2, 0 ≦ y ≦ 0.2), and one of the MII elements It is a phosphor whose part is substituted with Eu element. As the MII element, at least one or both of Ca and Sr, which are advantageous in chromaticity adjustment, are preferable.
 一般式[1]で表される他の窒化物又は酸窒化物蛍光体の例としては、次のものがある。CaSi:Eu、SrSi:Eu、(Sr0.5Ca0.5Sr:Eu、CaSi0.17.9:Eu、SrSi0.17.9:Eu、(Sr0.5Ca0.5Sr0.17.9:Eu、BaSi:Eu、SrSi:Eu、CaSi:Eu、SrAlSiON13:Eu、SrAlSi1321:Eu、CaSi:Eu、SrSi:Eu、CaAlSi:Eu、CaAlSi:Ce、SrAlSi:Eu、SrAlSi:Ce、Ce付活βサイアロン、Ce付活αサイアロン、主結晶相がCaAlSiNと同一の結晶構造を有するCe付活蛍光体。 Examples of other nitride or oxynitride phosphors represented by the general formula [1] include the following. Ca 2 Si 5 N 8 : Eu, Sr 2 Si 5 N 8 : Eu, (Sr 0.5 Ca 0.5 ) 2 Sr 5 N 8 : Eu, Ca 2 Si 5 O 0.1 N 7.9 : Eu , Sr 2 Si 5 O 0.1 N 7.9: Eu, (Sr 0.5 Ca 0.5) 2 Sr 5 O 0.1 N 7.9: Eu, BaSi 2 O 2 N 2: Eu, SrSi 2 O 2 N 2 : Eu, CaSi 2 O 2 N 2 : Eu, Sr 2 Al 3 Si 7 ON 13 : Eu, Sr 3 Al 3 Si 13 O 2 N 21 : Eu, Ca 3 Si 2 N 2 O 4 : Eu, Sr 3 Si 2 N 2 O 4 : Eu, CaAlSi 4 N 7 : Eu, CaAlSi 4 N 7 : Ce, SrAlSi 4 N 7 : Eu, SrAlSi 4 N 7 : Ce, Ce-activated β sialon, Ce-activated α sialon, the main crystal phase is Ca LSin 3 Ce-activated phosphor having the same crystal structure and.
 本発明は、上記一般式[1]で表される窒化物又は酸窒化物蛍光体におけるCuの存在量を規定したことを主な特徴とするものである。Cuは、特開2007-138007等に示されるとおり、一部の蛍光体においては発光中心として添加されうる遷移金属である。本発明者は、無数に存在し得る元素の中から、発光中心にもなり得るCuに敢えて着目し、予想外にも、Cuが窒化物又は酸窒化物蛍光体においては発光強度を低下させてしまうことを見出し、本発明を完成するに至った。 The main feature of the present invention is that the abundance of Cu in the nitride or oxynitride phosphor represented by the general formula [1] is defined. Cu is a transition metal that can be added as an emission center in some phosphors, as disclosed in JP-A-2007-138007. The present inventor dares to focus on Cu, which can also be a luminescent center, from an infinite number of elements. Unexpectedly, Cu reduces the emission intensity in a nitride or oxynitride phosphor. As a result, the present invention has been completed.
 本発明の窒化物又は酸窒化物蛍光体におけるCu含有量は15ppm以下であり、好ましくは10ppm以下である。蛍光体中のCu含有量が15ppmを超えると発光強度の低下が大きくなる傾向がある。各蛍光体中におけるCuの含有量は、例えば質量分析計を備えたICP発光分析装置を用いて微量分析を行うことにより算出することができる。蛍光体のCu含有量は、原料粉末に含まれるCu含有量を反映するため、Cu含有量の少ない原料を用いることによって制御することが可能である。 The Cu content in the nitride or oxynitride phosphor of the present invention is 15 ppm or less, preferably 10 ppm or less. When the Cu content in the phosphor exceeds 15 ppm, the emission intensity tends to decrease greatly. The Cu content in each phosphor can be calculated, for example, by performing a microanalysis using an ICP emission analyzer equipped with a mass spectrometer. Since the Cu content of the phosphor reflects the Cu content contained in the raw material powder, it can be controlled by using a raw material with a low Cu content.
 本発明は、前記各蛍光体を用いた発光装置にも関する。すなわち、本発明に係る発光装置は、一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長以上の長さの波長を有する二次光を発する波長変換部とを備え、当該波長変換部に上述した窒化物又は酸窒化物蛍光体の少なくともいずれかを含む。当該発光装置に用いられる窒化物又は酸窒化物蛍光体はCu含有量が一定値以下であり発光強度が高いため、発光装置の輝度を向上させることが可能である。 The present invention also relates to a light-emitting device using each of the phosphors. That is, a light-emitting device according to the present invention includes a light-emitting element that emits primary light, and a wavelength conversion unit that absorbs part of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light. And the wavelength converter includes at least one of the above-described nitride or oxynitride phosphor. Since the nitride or oxynitride phosphor used in the light-emitting device has a Cu content of a certain value or less and high light emission intensity, the luminance of the light-emitting device can be improved.
 以下、実施例及び比較例を挙げて本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
(実施例1)
 実施例1の蛍光体として、βサイアロンを用いて説明する。
 合成後のβサイアロン(Si6-zAl8-z)のz値が0.2となるように、Cu含有量が20ppmの窒化ケイ素粉末、窒化アルミニウム粉末、酸化アルミニウム粉末を配合し、更にこれらに対して外割で0.8質量%の酸化ユーロピウム粉末を配合し、原料混合物を得た。この原料混合物に対して、ナイロン製ポットと窒化ケイ素製のボールを用い、乾式ボールミルによる混合を行った。ボールミル混合後、目開き150μmの篩を全通させて凝集物を取り除き、原料混合粉末を得た。
Example 1
The phosphor of Example 1 will be described using β sialon.
Compounding of silicon nitride powder, aluminum nitride powder, and aluminum oxide powder with a Cu content of 20 ppm so that the z value of β sialon (Si 6-z Al z O z N 8-z ) after synthesis is 0.2 Furthermore, 0.8% by mass of europium oxide powder was blended in an external ratio to these to obtain a raw material mixture. This raw material mixture was mixed by a dry ball mill using a nylon pot and silicon nitride balls. After mixing with the ball mill, a sieve having an opening of 150 μm was passed through to remove aggregates to obtain a raw material mixed powder.
 原料混合粉末を蓋付き円筒窒化ホウ素製容器に充填し、カーボンヒーターの電気炉で0.8MPaの加圧窒素雰囲気中、2000℃で10時間の加熱処理を行った。 The raw material mixed powder was filled in a cylindrical boron nitride container with a lid, and was subjected to a heat treatment at 2000 ° C. for 10 hours in a pressurized nitrogen atmosphere of 0.8 MPa in an electric furnace of a carbon heater.
 得られた合成物を乳鉢で軽く解砕し、目開き150μmの篩を全通させ、蛍光体粉末を得た。CuKα線を用いた粉末X線回折測定により、結晶相を調べたところ、結晶相はβサイアロン単相であった。 The obtained composite was lightly crushed in a mortar and passed through a sieve having an opening of 150 μm to obtain a phosphor powder. When the crystal phase was examined by powder X-ray diffraction measurement using CuKα rays, the crystal phase was a β sialon single phase.
 この蛍光体粉末をアルカリ溶剤(炭酸ナトリウム、炭酸カリウム及びホウ酸)に加熱融解させ塩酸を加えたものを試料液として、ICP発光分光分析装置(株式会社リガク製、CIROS-120)により、Cu含有量の分析を行った。その結果、この粉末のCu含有量は8ppmであり、Eu0.15Si5.8Al0.20.27.8で表されるβサイアロンであった。 The phosphor powder was heated and melted in an alkali solvent (sodium carbonate, potassium carbonate and boric acid) and hydrochloric acid was added as a sample solution. Using an ICP emission spectrometer (CIROS-120, manufactured by Rigaku Corporation), Cu contained Quantity analysis was performed. As a result, the Cu content of this powder was 8 ppm, and it was β sialon represented by Eu 0.15 Si 5.8 Al 0.2 O 0.2 N 7.8 .
(実施例2)
 原料としてCu含有量が30ppmの窒化ケイ素粉末を用いた以外は実施例1と同様にして蛍光体を製造したところ、Cu含有量が14ppmであり、Eu0.15Si5.8Al0.20.27.8で表されるβサイアロンを得た。
(Example 2)
A phosphor was manufactured in the same manner as in Example 1 except that a silicon nitride powder having a Cu content of 30 ppm was used as a raw material. As a result, the Cu content was 14 ppm and Eu 0.15 Si 5.8 Al 0.2. Β sialon represented by O 0.2 N 7.8 was obtained.
(比較例1)
 原料としてCu含有量が50ppmの窒化ケイ素粉末を用いた以外は実施例1と同様にして蛍光体を製造したところ、Cu含有量が20ppmであり、Eu0.15Si5.8Al0.20.27.8で表されるβサイアロンを得た。
(Comparative Example 1)
A phosphor was manufactured in the same manner as in Example 1 except that a silicon nitride powder having a Cu content of 50 ppm was used as a raw material. The phosphor had a Cu content of 20 ppm and Eu 0.15 Si 5.8 Al 0.2. Β sialon represented by O 0.2 N 7.8 was obtained.
(実施例3)
 実施例3の蛍光体としてαサイアロンを用いて説明する。
 Cu含有量が20ppmの窒化ケイ素粉末を71.6質量%、窒化アルミニウム粉末を質量25.8%、酸化ユーロピウム粉末を2.6質量%とし、これらをエタノール溶媒中において、窒化ケイ素質ポットとボールによる湿式混合を1時間行い、得られたスラリーを吸引濾過し、溶媒を除去し、乾燥し、予混合粉末を得た。
(Example 3)
Description will be made using α sialon as the phosphor of Example 3.
The silicon nitride powder with a Cu content of 20 ppm is 71.6 mass%, the aluminum nitride powder is 25.8 mass%, the europium oxide powder is 2.6 mass%, and these are placed in an ethanol solvent in a silicon nitride pot and ball. Wet mixing was performed for 1 hour, and the resulting slurry was suction filtered to remove the solvent and dried to obtain a premixed powder.
 次に、この予混合粉末を窒素雰囲気下のグローブボックス内に入れ、窒化カルシウム粉末と乳鉢混合し、原料混合粉末を得た。混合比は予混合粉末:窒化カルシウム粉末=87.1:12.9質量比とした。 Next, this premixed powder was put in a glove box under a nitrogen atmosphere and mixed with calcium nitride powder and a mortar to obtain a raw material mixed powder. The mixing ratio was premixed powder: calcium nitride powder = 87.1: 12.9 mass ratio.
 前記原料混合粉末を、同じくグローブボックス内で、目開き250μmの篩を通過させた後、窒化ホウ素質の坩堝に充填し、カーボンヒーターの電気炉で大気圧窒素雰囲気中、1750℃で16時間の加熱処理を行った。尚、原料混合粉末に含まれる窒化カルシウムは、空気中で容易に加水分解しやすいので、原料混合粉末を充填した坩堝はグローブボックスから取り出した後、速やかに電気炉にセットし、直ちに真空排気し、窒化カルシウムの反応を防いだ。 The raw material mixed powder is passed through a sieve having an opening of 250 μm in the same glove box, and then filled into a boron nitride crucible, and is heated at 1750 ° C. for 16 hours in an atmospheric pressure nitrogen atmosphere in an electric furnace of a carbon heater. Heat treatment was performed. Since calcium nitride contained in the raw material mixed powder is easily hydrolyzed in the air, the crucible filled with the raw material mixed powder is taken out of the glove box and immediately set in an electric furnace and immediately evacuated. Prevented the reaction of calcium nitride.
 得られた合成物を乳鉢で軽く解砕し、目開き150μmの篩を全通させ、蛍光体粉末を得た。CuKα線を用いた粉末X線回折測定により、結晶相を調べたところ、存在する結晶相はαサイアロン単相であった。 The obtained composite was lightly crushed in a mortar and passed through a sieve having an opening of 150 μm to obtain a phosphor powder. When the crystal phase was examined by powder X-ray diffraction measurement using CuKα ray, the existing crystal phase was α sialon single phase.
 この蛍光体粉末をアルカリ溶剤(炭酸ナトリウム、炭酸カリウム及びホウ酸)に加熱融解させ塩酸を加えたものを試料液として、ICP発光分光分析装置(株式会社リガク製、CIROS-120)により、分析を行った。その結果、この粉末はCu含有量が7ppmであり、Ca1.7Eu0.1Si8.5Al3.50.115.9で表されるαサイアロンであった。 The phosphor powder was heated and melted in an alkaline solvent (sodium carbonate, potassium carbonate and boric acid) and hydrochloric acid was added, and the sample solution was analyzed with an ICP emission spectrometer (CIROS-120, manufactured by Rigaku Corporation). went. As a result, this powder was α sialon having a Cu content of 7 ppm and represented by Ca 1.7 Eu 0.1 Si 8.5 Al 3.5 O 0.1 N 15.9 .
(実施例4)
 原料としてCu含有量が30ppmの窒化ケイ素粉末を用いた以外は実施例3と同様にして蛍光体を製造したところ、Cu含有量が13ppmであり、Ca1.7Eu0.1Si8.5Al3.50.115.9で表されるαサイアロンを得た。
(Example 4)
A phosphor was manufactured in the same manner as in Example 3 except that silicon nitride powder having a Cu content of 30 ppm was used as a raw material. The phosphor had a Cu content of 13 ppm and Ca 1.7 Eu 0.1 Si 8.5. An α sialon represented by Al 3.5 O 0.1 N 15.9 was obtained.
(比較例2)
 原料としてCu含有量が50ppmの窒化ケイ素粉末を用いた以外は実施例3と同様にして蛍光体を製造したところ、Cu含有量が18ppmであり、Ca1.7Eu0.1Si8.5Al3.50.115.9で表されるαサイアロンを得た。
(Comparative Example 2)
A phosphor was manufactured in the same manner as in Example 3 except that a silicon nitride powder having a Cu content of 50 ppm was used as a raw material. The phosphor had a Cu content of 18 ppm and Ca 1.7 Eu 0.1 Si 8.5. An α sialon represented by Al 3.5 O 0.1 N 15.9 was obtained.
(実施例5)
 実施例5の蛍光体として主結晶相がCaAlSiNと同一の結晶構造を有し、MII元素がCaである蛍光体を用いて説明する。
 Cu含有量が20ppmの窒化ケイ素粉末を33.8質量%、窒化アルミニウム粉末を29.7質量%、窒化カルシウム粉末を35.5質量%、窒化ユーロピウム粉末を1.0質量%とし、メノウ乳棒と乳鉢で30分間混合を行なった後に、得られた混合物を、目開き500μmの篩を全通させて凝集物を取り除き、原料混合粉末を得た。粉末の秤量、混合、成形の各工程は全て、水分1ppm以下酸素1ppm以下の窒素雰囲気を保持することができるグローブボックス中で操作を行った。
(Example 5)
The phosphor of Example 5 will be described using a phosphor whose main crystal phase has the same crystal structure as CaAlSiN 3 and whose MII element is Ca.
The silicon nitride powder having a Cu content of 20 ppm is 33.8% by mass, the aluminum nitride powder is 29.7% by mass, the calcium nitride powder is 35.5% by mass, the europium nitride powder is 1.0% by mass, After mixing for 30 minutes in a mortar, the resulting mixture was passed through a sieve having an opening of 500 μm to remove aggregates, thereby obtaining a raw material mixed powder. The powder weighing, mixing, and molding steps were all performed in a glove box that could maintain a nitrogen atmosphere with a moisture content of 1 ppm or less and oxygen of 1 ppm or less.
 この原料混合粉末を窒化ホウ素製の坩堝に充填し、カーボンヒーターの電気炉で大気圧窒素雰囲気中、1800℃で2時間の加熱処理を行った。 The raw material mixed powder was filled in a boron nitride crucible and subjected to a heat treatment at 1800 ° C. for 2 hours in a nitrogen atmosphere in a carbon heater electric furnace.
 得られた合成物を乳鉢で軽く解砕し、目開き100μmの篩を全通させ、蛍光体粉末を得た。CuKα線を用いた粉末X線回折測定により、結晶相を調べたところ、主結晶相がCaAlSiNと同一の結晶構造を有していた。 The obtained composite was lightly crushed with a mortar, and passed through a sieve having an opening of 100 μm to obtain a phosphor powder. When the crystal phase was examined by powder X-ray diffraction measurement using CuKα rays, the main crystal phase had the same crystal structure as CaAlSiN 3 .
 この蛍光体粉末をアルカリ溶剤(炭酸ナトリウム、炭酸カリウム及びホウ酸)に加熱融解させ塩酸を加えたものを試料液として、ICP発光分光分析装置(株式会社リガク製、CIROS-120)により、分析を行った。その結果、この粉末はCu含有量が6ppmであり、Ca1.0Eu0.01Si1.0Al1.02.80.2で表される蛍光体であることが分かった。なお、このように原料粉末中にOが存在していなくても、空気中の酸素によりNの一部がOで置換される場合がある。この場合でも、置換されていないものと変わらない発光特性を示すため、Nの一部がOで置換されたものも本発明の範囲に含む。 The phosphor powder was heated and melted in an alkaline solvent (sodium carbonate, potassium carbonate and boric acid) and hydrochloric acid was added, and the sample solution was analyzed with an ICP emission spectrometer (CIROS-120, manufactured by Rigaku Corporation). went. As a result, this powder was found to be a phosphor having a Cu content of 6 ppm and represented by Ca 1.0 Eu 0.01 Si 1.0 Al 1.0 N 2.8 O 0.2 . . Even if O is not present in the raw material powder in this way, part of N may be replaced with O by oxygen in the air. Even in this case, in order to show the same light emission characteristics as those not substituted, those in which a part of N is substituted with O are also included in the scope of the present invention.
(実施例6)
 原料としてCu含有量が30ppmの窒化ケイ素粉末を用いた以外は実施例5と同様にして蛍光体を製造したところ、Cu含有量が11ppmであり、Ca1.0Eu0.0 1Si1.0Al1.02.80.2で表される蛍光体を得た。
(Example 6)
A phosphor was manufactured in the same manner as in Example 5 except that a silicon nitride powder having a Cu content of 30 ppm was used as a raw material. As a result, the Cu content was 11 ppm and Ca 1.0 Eu 0.0 1 Si 1. A phosphor represented by 0 Al 1.0 N 2.8 O 0.2 was obtained.
(比較例3)
 原料としてCu含有量が50ppmの窒化ケイ素粉末を用いた以外は実施例5と同様にして蛍光体を製造したところ、Cu含有量が18ppmであり、Ca1.0Eu0.0 1Si1.0Al1.02.80.2で表される蛍光体を得た。
(Comparative Example 3)
A phosphor was manufactured in the same manner as in Example 5 except that a silicon nitride powder having a Cu content of 50 ppm was used as a raw material. As a result, the Cu content was 18 ppm and Ca 1.0 Eu 0.0 1 Si 1. A phosphor represented by 0 Al 1.0 N 2.8 O 0.2 was obtained.
(実施例7)
 実施例7の蛍光体として主結晶相がCaAlSiNと同一の結晶構造を有し、MII元素がCa及びSrである蛍光体を用いて説明する。
 Cu含有量が20ppmの窒化ケイ素粉末を26.6質量%、窒化アルミニウム粉末を23.3質量%、窒化カルシウム粉末を5.6質量%、窒化ストロンチウム粉末を43.7質量%、窒化ユーロピウム粉末を0.8質量%用いた以外は実施例5と同様にして蛍光体を製造したところ、Cu含有量が7ppmであり、Sr0.8Ca0.2Eu0.01Si1.0Al1.02.80.2で表される蛍光体を得た。
(Example 7)
The phosphor of Example 7 will be described using a phosphor whose main crystal phase has the same crystal structure as CaAlSiN 3 and whose MII elements are Ca and Sr.
26.6 mass% of silicon nitride powder with a Cu content of 20 ppm, 23.3 mass% of aluminum nitride powder, 5.6 mass% of calcium nitride powder, 43.7 mass% of strontium nitride powder, and europium nitride powder except for using 0.8 mass% was prepared the phosphors in the same manner as in example 5, a Cu content of 7ppm, Sr 0.8 Ca 0.2 Eu 0.01 Si 1.0 Al 1. A phosphor represented by 0 N 2.8 O 0.2 was obtained.
(実施例8)
 原料としてCu含有量が30ppmの窒化ケイ素粉末を用いた以外は実施例7と同様にして蛍光体を製造したところ、Cu含有量が12ppmであり、Sr0.8Ca0.2Eu0.0 1Si1.0Al1.02.80.2で表される蛍光体を得た。
(Example 8)
A phosphor was manufactured in the same manner as in Example 7 except that silicon nitride powder having a Cu content of 30 ppm was used as a raw material. The phosphor had a Cu content of 12 ppm and Sr 0.8 Ca 0.2 Eu 0.0. A phosphor represented by 1 Si 1.0 Al 1.0 N 2.8 O 0.2 was obtained.
(比較例4)
 原料としてCu含有量が50ppmの窒化ケイ素粉末を用いた以外は実施例7と同様にして蛍光体を製造したところ、Cu含有量が19ppmであり、Sr0.8Ca0.2Eu0.0 1Si1.0Al1.02.80.2で表される蛍光体を得た。
(Comparative Example 4)
A phosphor was manufactured in the same manner as in Example 7 except that silicon nitride powder having a Cu content of 50 ppm was used as a raw material. The phosphor had a Cu content of 19 ppm and Sr 0.8 Ca 0.2 Eu 0.0. A phosphor represented by 1 Si 1.0 Al 1.0 N 2.8 O 0.2 was obtained.
 実施例1~8、比較例1~4で得られた蛍光体について、分光蛍光光度計(日立ハイテクノロジーズ社製F4500)を用いて発光ピーク強度を測定した結果を表1に示す。測定においては、励起光として波長455nmの青色光を用いた。発光強度は、対応する蛍光体種毎に相対強度(%)で表した。すなわち、実施例1、比較例1の値は実施例2の発光ピーク強度を100%としたときの相対強度、実施例3、比較例2の値は実施例4の発光ピーク強度を100%としたときの相対強度、実施例5、比較例3の値は実施例6の発光ピーク強度を100%としたときの相対強度、実施例7、比較例4の値は実施例8の発光ピーク強度を100%としたときの相対強度である。 Table 1 shows the results of measuring the emission peak intensity of the phosphors obtained in Examples 1 to 8 and Comparative Examples 1 to 4 using a spectrofluorometer (F4500, manufactured by Hitachi High-Technologies Corporation). In the measurement, blue light having a wavelength of 455 nm was used as excitation light. The emission intensity was expressed as a relative intensity (%) for each corresponding phosphor type. That is, the values of Example 1 and Comparative Example 1 are the relative intensity when the emission peak intensity of Example 2 is 100%, and the values of Example 3 and Comparative Example 2 are the emission peak intensity of Example 4 being 100%. Relative intensities, values in Example 5 and Comparative Example 3 are relative intensities when the emission peak intensity of Example 6 is 100%, and values in Example 7 and Comparative Example 4 are emission peak intensities in Example 8. Is the relative strength when 100 is 100%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、いずれの窒化物又は酸窒化物蛍光体においても、Cu含有量を15ppm以下、特に10ppm以下に制御することにより、高い発光ピーク強度を示すことが確認された。 As shown in Table 1, it was confirmed that any nitride or oxynitride phosphor showed high emission peak intensity by controlling the Cu content to 15 ppm or less, particularly 10 ppm or less.
(実施例:実施例1~8の蛍光体を用いた発光装置)
 発光素子として、440nmにピ-ク波長を有する窒化ガリウム(GaN)系半導体を用いた。波長変換部には、実施例1~8の蛍光体を用いた。この蛍光体を所定のシリコーン樹脂中に分散して波長変換部を形成し、発光装置を作製した。得られた発光装置は、いずれも高輝度であった。
(Example: Light-emitting device using phosphors of Examples 1 to 8)
As the light emitting element, a gallium nitride (GaN) based semiconductor having a peak wavelength at 440 nm was used. The phosphors of Examples 1 to 8 were used for the wavelength converter. This phosphor was dispersed in a predetermined silicone resin to form a wavelength conversion part, and a light emitting device was manufactured. All of the obtained light emitting devices had high luminance.
 本発明に係る蛍光体は、LEDの蛍光体として適用できる。本発明に係る蛍光体を用いた発光装置は、照明装置、液晶パネルのバックライト、画像表示用プロジェクター及び信号表示装置の光源に適用することができる。 The phosphor according to the present invention can be applied as an LED phosphor. The light emitting device using the phosphor according to the present invention can be applied to an illumination device, a backlight of a liquid crystal panel, a projector for image display, and a light source of a signal display device.

Claims (8)

  1. Cuの含有量が15ppm以下である窒化物又は酸窒化物蛍光体。 A nitride or oxynitride phosphor having a Cu content of 15 ppm or less.
  2. 付活元素が2価のEu又は3価のCeである請求項1記載の蛍光体。 The phosphor according to claim 1, wherein the activator element is divalent Eu or trivalent Ce.
  3. 一般式:Si6-zAl8-z(0<z≦4.2)で示され、発光中心としてEuを含有するβサイアロン蛍光体である請求項1記載の蛍光体。 The phosphor according to claim 1, which is a β sialon phosphor represented by a general formula: Si 6-z Al z O z N 8-z (0 <z ≦ 4.2) and containing Eu as an emission center.
  4. 一般式:(MI)(Eu)(Si,Al)12(O,N)16(ただし、MI元素はLi、Mg、Ca、Sr、Ba、Y及びランタニド元素(LaとCeを除く)からなる群から選ばれる少なくともCaを含む1種以上の元素を示し、0<x≦3.0、0.005≦y≦0.4)で示されるαサイアロン蛍光体である請求項1記載の蛍光体。 General formula: (MI) x (Eu) y (Si, Al) 12 (O, N) 16 (where MI elements are Li, Mg, Ca, Sr, Ba, Y and lanthanide elements (excluding La and Ce)) 2. The α-sialon phosphor according to claim 1, which is an α-sialon phosphor represented by at least one element containing at least Ca selected from the group consisting of 0 <x ≦ 3.0, 0.005 ≦ y ≦ 0.4). Phosphor.
  5. 前記MI元素がCaである請求項4記載の蛍光体。 The phosphor according to claim 4, wherein the MI element is Ca.
  6. 一般式:(MII)(Si,Al)(N,O)3±y(ただし、MII元素はLi、Mg、Ca、Sr及びBaから選ばれる一種以上のアルカリ金属元素又はアルカリ土類金属元素であり、0.8≦x≦1.2、0≦y≦0.2)で示され、MII元素の一部がEu元素で置換されている蛍光体であって、主結晶相がCaAlSiNと同一の結晶構造を有する請求項1記載の蛍光体。 General formula: (MII) x (Si, Al) 2 (N, O) 3 ± y (where the MII element is one or more alkali metal elements or alkaline earth metals selected from Li, Mg, Ca, Sr and Ba) An element, 0.8 ≦ x ≦ 1.2, 0 ≦ y ≦ 0.2), a phosphor in which a part of the MII element is substituted with Eu element, and the main crystal phase is CaAlSiN The phosphor according to claim 1, which has the same crystal structure as 3 .
  7. 前記MII元素がCa及びSrのいずれか一方又は双方の元素である請求項6記載の蛍光体。 The phosphor according to claim 6, wherein the MII element is one or both of Ca and Sr.
  8. 一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換部とを備えた発光装置であって、前記波長変換部は請求項1乃至7のいずれかの蛍光体を少なくとも一つ含む発光装置。 A light-emitting device comprising: a light-emitting element that emits primary light; and a wavelength conversion unit that absorbs part of the primary light and emits secondary light having a wavelength longer than that of the primary light, the wavelength conversion device The light emitting device includes at least one phosphor according to claim 1.
PCT/JP2012/080542 2012-01-12 2012-11-27 Fluorescent body and light emission device WO2013105345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012003784A JP2013142134A (en) 2012-01-12 2012-01-12 Fluorescent substance and light-emitting device
JP2012-003784 2012-01-12

Publications (1)

Publication Number Publication Date
WO2013105345A1 true WO2013105345A1 (en) 2013-07-18

Family

ID=48781309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080542 WO2013105345A1 (en) 2012-01-12 2012-11-27 Fluorescent body and light emission device

Country Status (2)

Country Link
JP (1) JP2013142134A (en)
WO (1) WO2013105345A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676999B2 (en) 2014-02-26 2017-06-13 Denka Company Limited Phosphor, light emitting element, and light emitting device
US9680066B2 (en) 2014-02-26 2017-06-13 Denka Company Limited Phosphor, light emitting element, and light emitting device
US10093854B2 (en) 2013-12-26 2018-10-09 Denka Company Limited Phosphor and light emitting device
CN113388400A (en) * 2021-06-03 2021-09-14 西安鸿宇光电技术有限公司 Yellow-green mechanoluminescence material and preparation method and application thereof
WO2022054764A1 (en) * 2020-09-10 2022-03-17 デンカ株式会社 EUROPIUM ACTIVATING β-TYPE SIALON PHOSPHOR, AND LIGHT-EMITTING DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133612A1 (en) * 2014-03-06 2015-09-11 公益財団法人神奈川科学技術アカデミー Transparent fluorescent sialon ceramic and method for producing same
JP2015196708A (en) * 2014-03-31 2015-11-09 三菱化学株式会社 Phosphor, phosphor-containing composition, light emitting device, image display device and illumination device
JP6645429B2 (en) 2014-08-07 2020-02-14 三菱ケミカル株式会社 Phosphor, light emitting device, image display device and lighting device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288460A (en) * 2000-04-04 2001-10-16 Toshiba Corp Production method for rare earth phosphor
JP2004238506A (en) * 2003-02-06 2004-08-26 Ube Ind Ltd Sialon-based oxynitride phosphor and its manufacturing method
JP2004238505A (en) * 2003-02-06 2004-08-26 Ube Ind Ltd Sialon-based oxynitride phosphor and its manufacturing method
JP2005117057A (en) * 2004-11-11 2005-04-28 Nichia Chem Ind Ltd Light emitting device
JP2005239985A (en) * 2004-02-27 2005-09-08 Dowa Mining Co Ltd Phosphor, light source and led
JP2006008721A (en) * 2003-11-26 2006-01-12 National Institute For Materials Science Phosphor and luminous equipment using phosphor
JP2007112650A (en) * 2005-10-19 2007-05-10 Denki Kagaku Kogyo Kk Alpha-type sialon, phosphor consisting of alpha-type sialon, and lighting equipment using it
JP2007145919A (en) * 2005-11-25 2007-06-14 Denki Kagaku Kogyo Kk Method for producing sialon phosphor and lighting utensil using phosphor obtained thereby
JP2007332324A (en) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk Sialon phosphor, method for producing the same, and light-emitting element by using the same
JP2010241995A (en) * 2009-04-08 2010-10-28 Denki Kagaku Kogyo Kk beta-TYPE SIALON PHOSPHOR, METHOD FOR PRODUCING THE SAME AND APPLICATION OF THE SAME

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288460A (en) * 2000-04-04 2001-10-16 Toshiba Corp Production method for rare earth phosphor
JP2004238506A (en) * 2003-02-06 2004-08-26 Ube Ind Ltd Sialon-based oxynitride phosphor and its manufacturing method
JP2004238505A (en) * 2003-02-06 2004-08-26 Ube Ind Ltd Sialon-based oxynitride phosphor and its manufacturing method
JP2006008721A (en) * 2003-11-26 2006-01-12 National Institute For Materials Science Phosphor and luminous equipment using phosphor
JP2005239985A (en) * 2004-02-27 2005-09-08 Dowa Mining Co Ltd Phosphor, light source and led
JP2005117057A (en) * 2004-11-11 2005-04-28 Nichia Chem Ind Ltd Light emitting device
JP2007112650A (en) * 2005-10-19 2007-05-10 Denki Kagaku Kogyo Kk Alpha-type sialon, phosphor consisting of alpha-type sialon, and lighting equipment using it
JP2007145919A (en) * 2005-11-25 2007-06-14 Denki Kagaku Kogyo Kk Method for producing sialon phosphor and lighting utensil using phosphor obtained thereby
JP2007332324A (en) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk Sialon phosphor, method for producing the same, and light-emitting element by using the same
JP2010241995A (en) * 2009-04-08 2010-10-28 Denki Kagaku Kogyo Kk beta-TYPE SIALON PHOSPHOR, METHOD FOR PRODUCING THE SAME AND APPLICATION OF THE SAME

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093854B2 (en) 2013-12-26 2018-10-09 Denka Company Limited Phosphor and light emitting device
US9676999B2 (en) 2014-02-26 2017-06-13 Denka Company Limited Phosphor, light emitting element, and light emitting device
US9680066B2 (en) 2014-02-26 2017-06-13 Denka Company Limited Phosphor, light emitting element, and light emitting device
WO2022054764A1 (en) * 2020-09-10 2022-03-17 デンカ株式会社 EUROPIUM ACTIVATING β-TYPE SIALON PHOSPHOR, AND LIGHT-EMITTING DEVICE
CN116018388A (en) * 2020-09-10 2023-04-25 电化株式会社 Europium-activated beta-sialon phosphor and light-emitting device
CN113388400A (en) * 2021-06-03 2021-09-14 西安鸿宇光电技术有限公司 Yellow-green mechanoluminescence material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2013142134A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
US10259997B2 (en) Phosphor, method of producing the same, and light emitting apparatus
US8158026B2 (en) Method for preparing B-Sialon phosphor
JP5025474B2 (en) β-type sialon phosphor
JP3668770B2 (en) Oxynitride phosphor activated with rare earth elements
JP4565141B2 (en) Phosphors and light emitting devices
JP4911578B2 (en) Oxynitride phosphor and light emitting device
WO2013105345A1 (en) Fluorescent body and light emission device
JP6220112B2 (en) Phosphor and light emitting device
KR101172143B1 (en) OXYNITRIDE-BASED PHOSPHORS COMPOSING OF SiON ELEMENT FOR WHITE LEDs, MANUFACTURING METHOD THEREOF AND LEDs USING THE SAME
JP6102763B2 (en) Phosphor, light emitting device using the same, and method for producing phosphor
JP6167913B2 (en) Phosphor and light emitting device using the same
WO2006126567A1 (en) Phosphor and use thereof
WO2012067130A1 (en) Phosphor, and light-emitting device and use thereof
JPWO2008062781A1 (en) Phosphor, method for manufacturing the same, and light emitting device
WO2007004493A1 (en) Fluorophor and method for production thereof and illuminator
JP2011140664A (en) Method for producing phosphor
TWI808946B (en) Phosphor, light emitting device, lighting device and image display device
JP2005008793A (en) Oxynitride phosphor
JP2009138070A (en) Phosphor, method for producing the same, and light-emitting device using phosphor
KR101593286B1 (en) Fluorophore and light-emitting device
JP6288343B2 (en) Phosphor and light emitting device using the same
WO2022244523A1 (en) Phosphor, method for producing same, light emitting element and light emitting device
JP5702569B2 (en) Phosphor manufacturing method and light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865083

Country of ref document: EP

Kind code of ref document: A1