WO2013105189A1 - Zoom lens system, imaging device, and camera - Google Patents

Zoom lens system, imaging device, and camera Download PDF

Info

Publication number
WO2013105189A1
WO2013105189A1 PCT/JP2012/008240 JP2012008240W WO2013105189A1 WO 2013105189 A1 WO2013105189 A1 WO 2013105189A1 JP 2012008240 W JP2012008240 W JP 2012008240W WO 2013105189 A1 WO2013105189 A1 WO 2013105189A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens system
zoom lens
lens group
image
Prior art date
Application number
PCT/JP2012/008240
Other languages
French (fr)
Japanese (ja)
Inventor
岩下 勉
朴 一武
靖典 東地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013105189A1 publication Critical patent/WO2013105189A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses

Definitions

  • the present disclosure relates to a zoom lens system, an imaging device, and a camera.
  • a digital camera such as a digital still camera or a digital video camera
  • a compact digital camera equipped with a zoom lens system having a high zooming ratio is strongly demanded for its convenience.
  • a zoom lens system having a wide angle range with a wide shooting range for example, various zoom lens systems having a negative and positive three-group configuration have been proposed.
  • Patent Document 1 discloses a zoom lens that includes an optical element made of a material having an anomalous dispersion having the negative-positive-positive three-group configuration in any lens group.
  • Patent Document 2 discloses a zoom lens that has two negative and positive three-group configurations, and in which a lens group having positive power includes two cemented lenses made of a material having anomalous dispersion.
  • the present disclosure not only has a high resolution, but also has a zooming ratio as high as 5 times, and also has a large angle of view at the wide-angle end, and is a compact zoom lens system that can be sufficiently adapted to wide-angle shooting. I will provide a.
  • the present disclosure also provides an imaging apparatus including the zoom lens system and a thin and compact camera including the imaging apparatus.
  • the zoom lens system in the present disclosure is: Having a plurality of lens groups composed of at least one lens element; In order from the object side to the image side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power are provided.
  • An imaging apparatus capable of outputting an optical image of an object as an electrical image signal, A zoom lens system that forms an optical image of the object; An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is Having a plurality of lens groups composed of at least one lens element; In order from the object side to the image side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power are provided.
  • the camera in the present disclosure is A camera that converts an optical image of an object into an electrical image signal, and displays and stores the converted image signal;
  • An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is Having a plurality of lens groups composed of at least one lens element; In order from the object side to the image side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power are provided.
  • the zoom lens system according to the present disclosure not only has a high resolution, but also has a zooming ratio as high as 5 times, and also has a large angle of view at the wide-angle end, and is small enough to be suitable for wide-angle shooting. it can.
  • FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1).
  • FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity.
  • FIG. 3 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2).
  • FIG. 4 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity.
  • FIG. 5 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 6 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
  • FIG. 7 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4).
  • FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity.
  • FIG. 9 is a schematic configuration diagram of a digital still camera according to the fifth embodiment.
  • Embodiments 1 to 4) 1, 3, 5, and 7 are lens arrangement diagrams of the zoom lens systems according to Embodiments 1 to 4, respectively, and all represent the zoom lens system in an infinitely focused state.
  • the lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ).
  • the broken line arrows provided between FIGS. (A) and (b) are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line.
  • the wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
  • FIGS. 1, 3, 5, and 7 show directions in which a third lens group G3, which will be described later, moves during focusing from an infinitely focused state to a close object focused state.
  • the zoom lens system according to each embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power, a second lens group G2 having a positive power, and a first lens group having a positive power. 3 lens group G3.
  • the distance between the lens groups that is, the distance between the first lens group G1 and the second lens group G2, and the distance between the second lens group G2 and the third lens group G3 are all changed. All lens groups move in the direction along the optical axis.
  • the zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
  • an asterisk * attached to a specific surface indicates that the surface is aspherical.
  • a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group.
  • the straight line described on the rightmost side represents the position of the image plane S, and is located on the object side of the image plane S (between the image plane S and the most image side lens surface of the third lens group G3).
  • a parallel plate P equivalent to an optical low-pass filter, a face plate of an image sensor, or the like.
  • an aperture stop A is provided on the most object side of the second lens group G2, that is, between the first lens group G1 and the second lens group G2.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side.
  • the second lens element L2 having a shape. Among these, the second lens element L2 has two aspheric surfaces. The second lens element L2 satisfies all the conditions (1) to (4) described later.
  • the second lens group G2 includes, in order from the object side to the image side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a negative meniscus second lens element with a convex surface facing the object side.
  • 5 lens elements L5. the third lens element L3 and the fourth lens element L4 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the third lens element L3 and the fourth lens element L4. Surface number 7 is given to the agent layer.
  • the fifth lens element L5 has two aspheric surfaces. The fifth lens element L5 satisfies all the conditions (1) to (4) described later.
  • the third lens group G3 comprises solely a positive meniscus sixth lens element L6 with the convex surface facing the image side.
  • the sixth lens element L6 has two aspheric surfaces. The sixth lens element L6 satisfies all the conditions (1) to (4) described later.
  • An aperture stop A is provided on the object side of the second lens group G2.
  • the aperture stop A moves on the optical axis integrally with the second lens group G2 during zooming from the wide-angle end to the telephoto end during imaging.
  • a parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the sixth lens element L6.
  • the first lens group G1 moves toward the object side along a locus convex to the image side, and the second lens group G2 moves toward the object side substantially monotonously.
  • the third lens group G3 moves to the image side substantially monotonously. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 increases. Move along each.
  • the third lens group G3 moves toward the object side along the optical axis.
  • the entire second lens group G2 By moving the entire second lens group G2 in a direction orthogonal to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire second lens group G2 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side.
  • the second lens element L2 having a shape. Among these, the second lens element L2 has two aspheric surfaces. The second lens element L2 satisfies all the conditions (1) to (4) described later.
  • the second lens group G2 includes, in order from the object side to the image side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a negative meniscus second lens element with a convex surface facing the object side.
  • 5 lens elements L5. the third lens element L3 and the fourth lens element L4 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the third lens element L3 and the fourth lens element L4. Surface number 7 is given to the agent layer.
  • the fifth lens element L5 has two aspheric surfaces. The fifth lens element L5 satisfies all the conditions (1) to (4) described later.
  • the third lens group G3 comprises solely a positive meniscus sixth lens element L6 with the convex surface facing the image side.
  • the sixth lens element L6 has two aspheric surfaces. The sixth lens element L6 satisfies all the conditions (1) to (4) described later.
  • An aperture stop A is provided on the object side of the second lens group G2.
  • the aperture stop A moves on the optical axis integrally with the second lens group G2 during zooming from the wide-angle end to the telephoto end during imaging.
  • a parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the sixth lens element L6.
  • the first lens group G1 moves toward the object side along a locus convex to the image side, and the second lens group G2 moves toward the object side substantially monotonously.
  • the third lens group G3 moves to the image side substantially monotonously. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 increases. Move along each.
  • the third lens group G3 moves toward the object side along the optical axis.
  • the entire second lens group G2 By moving the entire second lens group G2 in a direction orthogonal to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire second lens group G2 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side.
  • the second lens element L2 having a shape. Among these, the second lens element L2 has two aspheric surfaces. The second lens element L2 satisfies all the conditions (1) to (4) described later.
  • the second lens group G2 includes, in order from the object side to the image side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a negative meniscus second lens element with a convex surface facing the object side.
  • 5 lens elements L5. the third lens element L3 and the fourth lens element L4 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the third lens element L3 and the fourth lens element L4. Surface number 7 is given to the agent layer.
  • the fifth lens element L5 has two aspheric surfaces. The fifth lens element L5 satisfies all the conditions (1) to (4) described later.
  • the third lens group G3 comprises solely a positive meniscus sixth lens element L6 with the convex surface facing the image side.
  • the sixth lens element L6 has two aspheric surfaces. The sixth lens element L6 satisfies all the conditions (1) to (4) described later.
  • An aperture stop A is provided on the object side of the second lens group G2.
  • the aperture stop A moves on the optical axis integrally with the second lens group G2 during zooming from the wide-angle end to the telephoto end during imaging.
  • a parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the sixth lens element L6.
  • the first lens group G1 moves toward the image side along a locus convex to the image side, and the second lens group G2 moves toward the object side substantially monotonously.
  • the third lens group G3 moves to the image side substantially monotonously. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 increases. Move along each.
  • the third lens group G3 moves toward the object side along the optical axis.
  • the entire second lens group G2 By moving the entire second lens group G2 in a direction orthogonal to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire second lens group G2 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side.
  • the second lens element L2 having a shape. Among these, the second lens element L2 has two aspheric surfaces. The second lens element L2 satisfies all the conditions (1) to (4) described later.
  • the second lens group G2 includes, in order from the object side to the image side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a negative meniscus second lens element with a convex surface facing the object side.
  • 5 lens elements L5. the third lens element L3 and the fourth lens element L4 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the third lens element L3 and the fourth lens element L4. Surface number 7 is given to the agent layer.
  • the fifth lens element L5 has two aspheric surfaces. The fifth lens element L5 satisfies all the conditions (1) to (4) described later.
  • the third lens group G3 comprises solely a positive meniscus sixth lens element L6 with the convex surface facing the image side.
  • the sixth lens element L6 has two aspheric surfaces. The sixth lens element L6 satisfies all the conditions (1) to (4) described later.
  • An aperture stop A is provided on the object side of the second lens group G2.
  • the aperture stop A moves on the optical axis integrally with the second lens group G2 during zooming from the wide-angle end to the telephoto end during imaging.
  • a parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the sixth lens element L6.
  • the first lens group G1 moves toward the object side along a locus convex to the image side, and the second lens group G2 moves toward the object side substantially monotonously.
  • the third lens group G3 moves to the image side substantially monotonously. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 increases. Move along each.
  • the third lens group G3 moves toward the object side along the optical axis.
  • the entire second lens group G2 By moving the entire second lens group G2 in a direction orthogonal to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire second lens group G2 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • a plurality of useful conditions are defined for the zoom lens system according to each embodiment, but the configuration of the zoom lens system that satisfies all of the plurality of conditions is most effective. However, by satisfying individual conditions, it is possible to obtain a zoom lens system that exhibits the corresponding effects.
  • the first lens has a plurality of lens groups each including at least one lens element, and has negative power in order from the object side to the image side.
  • Group a second lens group having a positive power
  • a third lens group having a positive power.
  • each lens group satisfies the following conditions (1) to (4):
  • the zoom lens system has at least one lens element and satisfies the following condition (5).
  • ⁇ d Abbe number for the d-line of the lens elements constituting the lens system
  • PgF partial dispersion ratio between g-line and F-line of the lens elements constituting the lens system
  • the conditions (1) to (4) are conditions for defining the partial dispersion ratio of the lens element.
  • a zoom lens system includes a lens group that does not have lens elements that satisfy all of the conditions (1) to (4), it becomes difficult to control the secondary spectrum, and to correct chromatic aberration satisfactorily.
  • the overall length of the zoom lens system becomes long, or the number of lens elements increases. That is, it becomes difficult to provide a compact lens barrel, imaging device, and camera.
  • the condition (5) is a condition for defining the focal length and angle of view of the zoom lens system. If the condition (5) is not satisfied, the ratio of the focal length of the lens system at the telephoto end to the focal length of the lens system at the wide-angle end is small, or a sufficiently wide angle of view cannot be secured. It becomes difficult to satisfy the convenience that is desired in recent years.
  • Each lens group constituting the zoom lens system according to Embodiments 1 to 4 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes)
  • a diffractive lens element that deflects incident light by diffraction a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffraction and refraction, and a refractive index that deflects incident light by the refractive index distribution in the medium
  • Each lens group may be composed of a distributed lens element or the like.
  • a diffractive / diffractive hybrid lens element forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
  • Embodiments 1 to 4 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • FIG. 9 is a schematic configuration diagram of a digital still camera according to the fifth embodiment.
  • the digital still camera includes an image pickup apparatus including a zoom lens system 1 and an image pickup device 2 that is a CCD, a liquid crystal monitor 3, and a housing 4.
  • the zoom lens system 1 includes a first lens group G1, an aperture stop A, a second lens group G2, and a third lens group G3.
  • the zoom lens system 1 is disposed on the front side
  • the imaging element 2 is disposed on the rear side of the zoom lens system 1.
  • a liquid crystal monitor 3 is disposed on the rear side of the housing 4, and an optical image of the subject by the zoom lens system 1 is formed on the image plane S.
  • the lens barrel is composed of a main lens barrel 5, a movable lens barrel 6, and a cylindrical cam 7.
  • the first lens group G1, the aperture stop A, the second lens group G2, and the third lens group G3 move to predetermined positions with reference to the image sensor 2, and from the wide angle end to the telephoto end. Zooming up to can be performed.
  • the third lens group G3 is movable in the optical axis direction by a focus adjustment motor.
  • any of the zoom lens systems according to the second to fourth embodiments may be used instead of the zoom lens system according to the first embodiment.
  • the optical system of the digital still camera shown in FIG. 9 can be used for a digital video camera for moving images. In this case, not only a still image but also a moving image with high resolution can be taken.
  • the zoom lens system according to the first to fourth embodiments is shown as the zoom lens system 1, but these zoom lens systems do not use the entire zooming area. May be. That is, a range in which the optical performance is ensured may be cut out according to a desired zooming area, and used as a zoom lens system having a lower magnification than the zoom lens system described in the first to fourth embodiments.
  • the zoom lens system is applied to a so-called collapsible lens barrel
  • a prism having an internal reflection surface or a surface reflection mirror may be disposed at an arbitrary position such as in the first lens group G1, and the zoom lens system may be applied to a so-called bent lens barrel.
  • a part of the lens groups constituting the zoom lens system such as the entire second lens group G2 and a part of the second lens group G2 are retracted from the optical axis when retracted.
  • a zoom lens system may be applied to the sliding lens barrel.
  • the fifth embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • an image pickup apparatus including the zoom lens system according to Embodiments 1 to 4 described above and an image pickup device such as a CCD or a CMOS is used as a camera for a portable information terminal such as a smartphone, a monitoring camera for a monitoring system, a Web
  • an image pickup apparatus including the zoom lens system according to Embodiments 1 to 4 described above and an image pickup device such as a CCD or a CMOS is used as a camera for a portable information terminal such as a smartphone, a monitoring camera for a monitoring system, a Web
  • the present invention can also be applied to cameras, in-vehicle cameras, and the like.
  • the unit of length in the table is “mm”, and the unit of angle of view is “°”.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • vd is an Abbe number with respect to the d line.
  • the surface marked with * is an aspherical surface
  • the aspherical shape is defined by the following equation.
  • Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
  • h height from the optical axis
  • r vertex radius of curvature
  • conic constant
  • An n-order aspherical coefficient.
  • each longitudinal aberration diagram shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end.
  • SA spherical aberration
  • AST mm
  • DIS distortion
  • the vertical axis represents the F number (indicated by F in the figure)
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line (C- line) and the dashed line are the characteristics of the g-line.
  • the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there.
  • the vertical axis represents the image height (indicated by H in the figure).
  • Table 13 shows the corresponding values for each condition in the zoom lens system of each numerical example.
  • the present disclosure can be applied to digital input devices such as digital cameras, cameras of portable information terminals such as smartphones, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras.
  • digital input devices such as digital cameras, cameras of portable information terminals such as smartphones, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras.
  • the present disclosure can be applied to a photographing optical system that requires high image quality, such as a digital camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

A zoom lens system that is provided with a negative-power first lens group, a positive-power second lens group, and a positive-power third lens group, and varies power by moving the three or more lens groups along an optical axis when zooming, wherein each lens group has one or more lens elements which satisfy the following conditions: 21<νd, 0.55<PgF, 0.000<PgF+0.0032×νd-0.705, and 0.000<PgF+0.0020×νd-0.664 (νd: Abbe number in relation to d-line of lens element; and PgF: partial dispersion ratio of g-line and F-line of lens element). Furthermore, each lens group satisfies the following condition: 3.85<Z×tan(ωW) (Z=fT/fW, fW and fT: focal length of lens system at wide-angle end and telescopic-end; and ωW: half angle of field at wide-angle end).

Description

ズームレンズ系、撮像装置及びカメラZoom lens system, imaging device and camera
 本開示は、ズームレンズ系、撮像装置及びカメラに関する。 The present disclosure relates to a zoom lens system, an imaging device, and a camera.
 デジタルスチルカメラやデジタルビデオカメラ等の、光電変換を行う撮像素子を持つカメラ(以下、単にデジタルカメラという)に対するコンパクト化及び高性能化の要求は極めて強い。特に、ズーミング比が高いズームレンズ系を搭載したコンパクトタイプのデジタルカメラが、その利便性から強く要望されている。またさらに、撮影範囲が広い広角域を持つズームレンズ系も求められている。このようなズームレンズ系としては、例えば負正正の3群構成を有するズームレンズ系が種々提案されている。 Demand for downsizing and high performance of a camera having an image sensor that performs photoelectric conversion (hereinafter simply referred to as a digital camera) such as a digital still camera or a digital video camera is extremely strong. In particular, a compact digital camera equipped with a zoom lens system having a high zooming ratio is strongly demanded for its convenience. Furthermore, there is a need for a zoom lens system having a wide angle range with a wide shooting range. As such a zoom lens system, for example, various zoom lens systems having a negative and positive three-group configuration have been proposed.
 特許文献1には、前記負正正の3群構成を有し、異常分散性を有する材料からなる光学素子をいずれかのレンズ群に含むズームレンズが開示されている。 Patent Document 1 discloses a zoom lens that includes an optical element made of a material having an anomalous dispersion having the negative-positive-positive three-group configuration in any lens group.
 特許文献2には、前記負正正の3群構成を有し、正のパワーを有するレンズ群が、異常分散性を有する材料からなる2つの接合レンズを含むズームレンズが開示されている。 Patent Document 2 discloses a zoom lens that has two negative and positive three-group configurations, and in which a lens group having positive power includes two cemented lenses made of a material having anomalous dispersion.
特開2008-209727号公報JP 2008-209727 A 特開2003-241091号公報JP 2003-241091 A
 本開示は、高解像度を有するのは勿論のこと、5倍程度の高いズーミング比を有するだけでなく、広角端での画角が大きく、小型でありながら広角撮影に充分に適応できるズームレンズ系を提供する。また本開示は、該ズームレンズ系を含む撮像装置、及び該撮像装置を備えた薄型でコンパクトなカメラを提供する。 The present disclosure not only has a high resolution, but also has a zooming ratio as high as 5 times, and also has a large angle of view at the wide-angle end, and is a compact zoom lens system that can be sufficiently adapted to wide-angle shooting. I will provide a. The present disclosure also provides an imaging apparatus including the zoom lens system and a thin and compact camera including the imaging apparatus.
 本開示におけるズームレンズ系は、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
物体側から像側へと順に、負のパワーを有する第1レンズ群と、正のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを備え、
撮像時の広角端から望遠端へのズーミングの際に、少なくとも3つのレンズ群を光軸に沿って移動させて変倍を行い、
各レンズ群が、以下の条件(1)~(4):
  21<νd ・・・(1)
  0.55<PgF ・・・(2)
  0.000<PgF+0.0032×νd-0.705 ・・・(3)
  0.000<PgF+0.0020×νd-0.664 ・・・(4)
(ここで、
 νd:レンズ系を構成するレンズ素子のd線に対するアッベ数、
 PgF:レンズ系を構成するレンズ素子のg線とF線との部分分散比
である)
を満足するレンズ素子を少なくとも1枚有し、
以下の条件(5):
  3.85<Z×tan(ω) ・・・(5)
(ここで、
 Z:次式で表される値
   Z=f/f
 f:広角端におけるレンズ系の焦点距離、
 f:望遠端におけるレンズ系の焦点距離、
 ω:広角端における半画角(°)
である)
を満足する、ことを特徴とする。
The zoom lens system in the present disclosure is:
Having a plurality of lens groups composed of at least one lens element;
In order from the object side to the image side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power are provided.
During zooming from the wide-angle end to the telephoto end during imaging, at least three lens units are moved along the optical axis to perform zooming,
Each lens group has the following conditions (1) to (4):
21 <νd (1)
0.55 <PgF (2)
0.000 <PgF + 0.0032 × νd−0.705 (3)
0.000 <PgF + 0.0020 × νd−0.664 (4)
(here,
νd: Abbe number for the d-line of the lens elements constituting the lens system,
(PgF: partial dispersion ratio between g-line and F-line of the lens element constituting the lens system)
Having at least one lens element satisfying
The following condition (5):
3.85 <Z × tan (ω W ) (5)
(here,
Z: Value represented by the following formula Z = f T / f W ,
f W : focal length of the lens system at the wide-angle end,
f T : focal length of the lens system at the telephoto end,
ω W : Half angle of view (°) at wide angle end
Is)
It is characterized by satisfying.
 本開示における撮像装置は、
物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
物体の光学的な像を形成するズームレンズ系と、
該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
を備え、
前記ズームレンズ系が、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
物体側から像側へと順に、負のパワーを有する第1レンズ群と、正のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを備え、
撮像時の広角端から望遠端へのズーミングの際に、少なくとも3つのレンズ群を光軸に沿って移動させて変倍を行い、
各レンズ群が、以下の条件(1)~(4):
  21<νd ・・・(1)
  0.55<PgF ・・・(2)
  0.000<PgF+0.0032×νd-0.705 ・・・(3)
  0.000<PgF+0.0020×νd-0.664 ・・・(4)
(ここで、
 νd:レンズ系を構成するレンズ素子のd線に対するアッベ数、
 PgF:レンズ系を構成するレンズ素子のg線とF線との部分分散比
である)
を満足するレンズ素子を少なくとも1枚有し、
以下の条件(5):
  3.85<Z×tan(ω) ・・・(5)
(ここで、
 Z:次式で表される値
   Z=f/f
 f:広角端におけるレンズ系の焦点距離、
 f:望遠端におけるレンズ系の焦点距離、
 ω:広角端における半画角(°)
である)
を満足する、ことを特徴とする。
An imaging apparatus according to the present disclosure
An imaging apparatus capable of outputting an optical image of an object as an electrical image signal,
A zoom lens system that forms an optical image of the object;
An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
The zoom lens system is
Having a plurality of lens groups composed of at least one lens element;
In order from the object side to the image side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power are provided.
During zooming from the wide-angle end to the telephoto end during imaging, at least three lens units are moved along the optical axis to perform zooming,
Each lens group has the following conditions (1) to (4):
21 <νd (1)
0.55 <PgF (2)
0.000 <PgF + 0.0032 × νd−0.705 (3)
0.000 <PgF + 0.0020 × νd−0.664 (4)
(here,
νd: Abbe number for the d-line of the lens elements constituting the lens system,
(PgF: partial dispersion ratio between g-line and F-line of the lens element constituting the lens system)
Having at least one lens element satisfying
The following condition (5):
3.85 <Z × tan (ω W ) (5)
(here,
Z: Value represented by the following formula: Z = f T / f W ,
f W : the focal length of the lens system at the wide-angle end,
f T : focal length of the lens system at the telephoto end,
ω W : Half angle of view (°) at wide angle end
Is)
It is characterized by satisfying.
 本開示におけるカメラは、
物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
前記ズームレンズ系が、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
物体側から像側へと順に、負のパワーを有する第1レンズ群と、正のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを備え、
撮像時の広角端から望遠端へのズーミングの際に、少なくとも3つのレンズ群を光軸に沿って移動させて変倍を行い、
各レンズ群が、以下の条件(1)~(4):
  21<νd ・・・(1)
  0.55<PgF ・・・(2)
  0.000<PgF+0.0032×νd-0.705 ・・・(3)
  0.000<PgF+0.0020×νd-0.664 ・・・(4)
(ここで、
 νd:レンズ系を構成するレンズ素子のd線に対するアッベ数、
 PgF:レンズ系を構成するレンズ素子のg線とF線との部分分散比
である)
を満足するレンズ素子を少なくとも1枚有し、
以下の条件(5):
  3.85<Z×tan(ω) ・・・(5)
(ここで、
 Z:次式で表される値
   Z=f/f
 f:広角端におけるレンズ系の焦点距離、
 f:望遠端におけるレンズ系の焦点距離、
 ω:広角端における半画角(°)
である)
を満足する、ことを特徴とする。
The camera in the present disclosure is
A camera that converts an optical image of an object into an electrical image signal, and displays and stores the converted image signal;
An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
The zoom lens system is
Having a plurality of lens groups composed of at least one lens element;
In order from the object side to the image side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power are provided.
During zooming from the wide-angle end to the telephoto end during imaging, at least three lens units are moved along the optical axis to perform zooming,
Each lens group has the following conditions (1) to (4):
21 <νd (1)
0.55 <PgF (2)
0.000 <PgF + 0.0032 × νd−0.705 (3)
0.000 <PgF + 0.0020 × νd−0.664 (4)
(here,
νd: Abbe number for the d-line of the lens elements constituting the lens system,
(PgF: partial dispersion ratio between g-line and F-line of the lens element constituting the lens system)
Having at least one lens element satisfying
The following condition (5):
3.85 <Z × tan (ω W ) (5)
(here,
Z: Value represented by the following formula: Z = f T / f W
f W : the focal length of the lens system at the wide-angle end,
f T : focal length of the lens system at the telephoto end,
ω W : Half angle of view (°) at wide angle end
Is)
It is characterized by satisfying.
 本開示におけるズームレンズ系は、高解像度を有するのは勿論のこと、5倍程度の高いズーミング比を有するだけでなく、広角端での画角が大きく、小型でありながら広角撮影に充分に適応できる。 The zoom lens system according to the present disclosure not only has a high resolution, but also has a zooming ratio as high as 5 times, and also has a large angle of view at the wide-angle end, and is small enough to be suitable for wide-angle shooting. it can.
図1は、実施の形態1(数値実施例1)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1). 図2は、数値実施例1に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity. 図3は、実施の形態2(数値実施例2)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 3 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2). 図4は、数値実施例2に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 4 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity. 図5は、実施の形態3(数値実施例3)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 5 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3). 図6は、数値実施例3に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 6 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity. 図7は、実施の形態4(数値実施例4)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。FIG. 7 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4). 図8は、数値実施例4に係るズームレンズ系の無限遠合焦状態の縦収差図である。FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity. 図9は、実施の形態5に係るデジタルスチルカメラの概略構成図である。FIG. 9 is a schematic configuration diagram of a digital still camera according to the fifth embodiment.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 In addition, the inventors provide the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims. Absent.
 (実施の形態1~4) 
 図1、3、5及び7は、各々実施の形態1~4に係るズームレンズ系のレンズ配置図であり、いずれも無限遠合焦状態にあるズームレンズ系を表している。
(Embodiments 1 to 4)
1, 3, 5, and 7 are lens arrangement diagrams of the zoom lens systems according to Embodiments 1 to 4, respectively, and all represent the zoom lens system in an infinitely focused state.
 各図において、(a)図は広角端(最短焦点距離状態:焦点距離f)のレンズ構成、(b)図は中間位置(中間焦点距離状態:焦点距離f=√(f*f))のレンズ構成、(c)図は望遠端(最長焦点距離状態:焦点距離f)のレンズ構成をそれぞれ表している。また各図において、(a)図と(b)図との間に設けられた折れ線の矢印は、上から順に、広角端、中間位置、望遠端の各状態におけるレンズ群の位置を結んで得られる直線である。広角端と中間位置との間、中間位置と望遠端との間は、単純に直線で接続されているだけであり、実際の各レンズ群の動きとは異なる。 In each figure, (a) shows a lens configuration at the wide angle end (shortest focal length state: focal length f W ), and (b) shows an intermediate position (intermediate focal length state: focal length f M = √ (f W * f). The lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ). Also, in each figure, the broken line arrows provided between FIGS. (A) and (b) are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line. The wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
 さらに各図において、レンズ群に付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングを表す。すなわち、図1、3、5及び7では、後述する第3レンズ群G3が無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に移動する方向を示している。 Further, in each figure, an arrow attached to the lens group represents focusing from an infinitely focused state to a close object focused state. That is, FIGS. 1, 3, 5, and 7 show directions in which a third lens group G3, which will be described later, moves during focusing from an infinitely focused state to a close object focused state.
 各実施の形態に係るズームレンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3とを備える。ズーミングに際して、各レンズ群の間隔、すなわち、前記第1レンズ群G1と第2レンズ群G2との間隔、及び第2レンズ群G2と第3レンズ群G3との間隔がいずれも変化するように、全レンズ群が光軸に沿った方向にそれぞれ移動する。各実施の形態に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。 The zoom lens system according to each embodiment includes, in order from the object side to the image side, a first lens group G1 having a negative power, a second lens group G2 having a positive power, and a first lens group having a positive power. 3 lens group G3. During zooming, the distance between the lens groups, that is, the distance between the first lens group G1 and the second lens group G2, and the distance between the second lens group G2 and the third lens group G3 are all changed. All lens groups move in the direction along the optical axis. The zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
 なお図1、3、5及び7において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。また各図において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーの符号に対応する。また各図において、最も右側に記載された直線は、像面Sの位置を表し、該像面Sの物体側(像面Sと第3レンズ群G3の最像側レンズ面との間)には、光学的ローパスフィルタや撮像素子のフェースプレート等と等価な平行平板Pが設けられている。 In FIGS. 1, 3, 5 and 7, an asterisk * attached to a specific surface indicates that the surface is aspherical. In each figure, a symbol (+) and a symbol (−) attached to a symbol of each lens group correspond to a power symbol of each lens group. In each figure, the straight line described on the rightmost side represents the position of the image plane S, and is located on the object side of the image plane S (between the image plane S and the most image side lens surface of the third lens group G3). Are provided with a parallel plate P equivalent to an optical low-pass filter, a face plate of an image sensor, or the like.
 さらに図1、3、5及び7において、第2レンズ群G2の最物体側、すなわち、第1レンズ群G1と第2レンズ群G2との間に開口絞りAが設けられている。 Further, in FIGS. 1, 3, 5 and 7, an aperture stop A is provided on the most object side of the second lens group G2, that is, between the first lens group G1 and the second lens group G2.
(実施の形態1)
 図1に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた正メニスカス形状の第2レンズ素子L2とからなる。これらのうち、第2レンズ素子L2は、その両面が非球面である。なお、第2レンズ素子L2は、後述する条件(1)~(4)を全て満足する。
(Embodiment 1)
As shown in FIG. 1, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side. The second lens element L2 having a shape. Among these, the second lens element L2 has two aspheric surfaces. The second lens element L2 satisfies all the conditions (1) to (4) described later.
 第2レンズ群G2は、物体側から像側へと順に、両凸形状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第3レンズ素子L3と第4レンズ素子L4とが接合されており、後述する対応数値実施例における面データでは、これら第3レンズ素子L3と第4レンズ素子L4との間の接着剤層に面番号7が付与されている。また、第5レンズ素子L5は、その両面が非球面である。なお、第5レンズ素子L5は、後述する条件(1)~(4)を全て満足する。 The second lens group G2 includes, in order from the object side to the image side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a negative meniscus second lens element with a convex surface facing the object side. 5 lens elements L5. Among these, the third lens element L3 and the fourth lens element L4 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the third lens element L3 and the fourth lens element L4. Surface number 7 is given to the agent layer. The fifth lens element L5 has two aspheric surfaces. The fifth lens element L5 satisfies all the conditions (1) to (4) described later.
 第3レンズ群G3は、像側に凸面を向けた正メニスカス形状の第6レンズ素子L6のみからなる。この第6レンズ素子L6は、その両面が非球面である。また、第6レンズ素子L6は、後述する条件(1)~(4)を全て満足する。 The third lens group G3 comprises solely a positive meniscus sixth lens element L6 with the convex surface facing the image side. The sixth lens element L6 has two aspheric surfaces. The sixth lens element L6 satisfies all the conditions (1) to (4) described later.
 第2レンズ群G2の物体側には、開口絞りAが設けられている。該開口絞りAは、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2と一体的に光軸上を物体側へ移動する。 An aperture stop A is provided on the object side of the second lens group G2. The aperture stop A moves on the optical axis integrally with the second lens group G2 during zooming from the wide-angle end to the telephoto end during imaging.
 像面Sの物体側、すなわち像面Sと第6レンズ素子L6との間には、平行平板Pが設けられている。 A parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the sixth lens element L6.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、略単調に物体側へ移動し、第3レンズ群G3は、略単調に像側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が増大するように、全レンズ群が光軸に沿ってそれぞれ移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves toward the object side along a locus convex to the image side, and the second lens group G2 moves toward the object side substantially monotonously. The third lens group G3 moves to the image side substantially monotonously. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 increases. Move along each.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第3レンズ群G3が光軸に沿って物体側へ移動する。 In focusing from the infinitely focused state to the close object focused state, the third lens group G3 moves toward the object side along the optical axis.
 第2レンズ群G2全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第2レンズ群G2全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。 By moving the entire second lens group G2 in a direction orthogonal to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire second lens group G2 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
(実施の形態2)
 図3に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた正メニスカス形状の第2レンズ素子L2とからなる。これらのうち、第2レンズ素子L2は、その両面が非球面である。なお、第2レンズ素子L2は、後述する条件(1)~(4)を全て満足する。
(Embodiment 2)
As shown in FIG. 3, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side. The second lens element L2 having a shape. Among these, the second lens element L2 has two aspheric surfaces. The second lens element L2 satisfies all the conditions (1) to (4) described later.
 第2レンズ群G2は、物体側から像側へと順に、両凸形状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第3レンズ素子L3と第4レンズ素子L4とが接合されており、後述する対応数値実施例における面データでは、これら第3レンズ素子L3と第4レンズ素子L4との間の接着剤層に面番号7が付与されている。また、第5レンズ素子L5は、その両面が非球面である。なお、第5レンズ素子L5は、後述する条件(1)~(4)を全て満足する。 The second lens group G2 includes, in order from the object side to the image side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a negative meniscus second lens element with a convex surface facing the object side. 5 lens elements L5. Among these, the third lens element L3 and the fourth lens element L4 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the third lens element L3 and the fourth lens element L4. Surface number 7 is given to the agent layer. The fifth lens element L5 has two aspheric surfaces. The fifth lens element L5 satisfies all the conditions (1) to (4) described later.
 第3レンズ群G3は、像側に凸面を向けた正メニスカス形状の第6レンズ素子L6のみからなる。この第6レンズ素子L6は、その両面が非球面である。また、第6レンズ素子L6は、後述する条件(1)~(4)を全て満足する。 The third lens group G3 comprises solely a positive meniscus sixth lens element L6 with the convex surface facing the image side. The sixth lens element L6 has two aspheric surfaces. The sixth lens element L6 satisfies all the conditions (1) to (4) described later.
 第2レンズ群G2の物体側には、開口絞りAが設けられている。該開口絞りAは、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2と一体的に光軸上を物体側へ移動する。 An aperture stop A is provided on the object side of the second lens group G2. The aperture stop A moves on the optical axis integrally with the second lens group G2 during zooming from the wide-angle end to the telephoto end during imaging.
 像面Sの物体側、すなわち像面Sと第6レンズ素子L6との間には、平行平板Pが設けられている。 A parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the sixth lens element L6.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、略単調に物体側へ移動し、第3レンズ群G3は、略単調に像側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が増大するように、全レンズ群が光軸に沿ってそれぞれ移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves toward the object side along a locus convex to the image side, and the second lens group G2 moves toward the object side substantially monotonously. The third lens group G3 moves to the image side substantially monotonously. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 increases. Move along each.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第3レンズ群G3が光軸に沿って物体側へ移動する。 In focusing from the infinitely focused state to the close object focused state, the third lens group G3 moves toward the object side along the optical axis.
 第2レンズ群G2全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第2レンズ群G2全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。 By moving the entire second lens group G2 in a direction orthogonal to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire second lens group G2 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
(実施の形態3)
 図5に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた正メニスカス形状の第2レンズ素子L2とからなる。これらのうち、第2レンズ素子L2は、その両面が非球面である。なお、第2レンズ素子L2は、後述する条件(1)~(4)を全て満足する。
(Embodiment 3)
As shown in FIG. 5, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side. The second lens element L2 having a shape. Among these, the second lens element L2 has two aspheric surfaces. The second lens element L2 satisfies all the conditions (1) to (4) described later.
 第2レンズ群G2は、物体側から像側へと順に、両凸形状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第3レンズ素子L3と第4レンズ素子L4とが接合されており、後述する対応数値実施例における面データでは、これら第3レンズ素子L3と第4レンズ素子L4との間の接着剤層に面番号7が付与されている。また、第5レンズ素子L5は、その両面が非球面である。なお、第5レンズ素子L5は、後述する条件(1)~(4)を全て満足する。 The second lens group G2 includes, in order from the object side to the image side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a negative meniscus second lens element with a convex surface facing the object side. 5 lens elements L5. Among these, the third lens element L3 and the fourth lens element L4 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the third lens element L3 and the fourth lens element L4. Surface number 7 is given to the agent layer. The fifth lens element L5 has two aspheric surfaces. The fifth lens element L5 satisfies all the conditions (1) to (4) described later.
 第3レンズ群G3は、像側に凸面を向けた正メニスカス形状の第6レンズ素子L6のみからなる。この第6レンズ素子L6は、その両面が非球面である。また、第6レンズ素子L6は、後述する条件(1)~(4)を全て満足する。 The third lens group G3 comprises solely a positive meniscus sixth lens element L6 with the convex surface facing the image side. The sixth lens element L6 has two aspheric surfaces. The sixth lens element L6 satisfies all the conditions (1) to (4) described later.
 第2レンズ群G2の物体側には、開口絞りAが設けられている。該開口絞りAは、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2と一体的に光軸上を物体側へ移動する。 An aperture stop A is provided on the object side of the second lens group G2. The aperture stop A moves on the optical axis integrally with the second lens group G2 during zooming from the wide-angle end to the telephoto end during imaging.
 像面Sの物体側、すなわち像面Sと第6レンズ素子L6との間には、平行平板Pが設けられている。 A parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the sixth lens element L6.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて像側へ移動し、第2レンズ群G2は、略単調に物体側へ移動し、第3レンズ群G3は、略単調に像側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が増大するように、全レンズ群が光軸に沿ってそれぞれ移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves toward the image side along a locus convex to the image side, and the second lens group G2 moves toward the object side substantially monotonously. The third lens group G3 moves to the image side substantially monotonously. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 increases. Move along each.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第3レンズ群G3が光軸に沿って物体側へ移動する。 In focusing from the infinitely focused state to the close object focused state, the third lens group G3 moves toward the object side along the optical axis.
 第2レンズ群G2全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第2レンズ群G2全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。 By moving the entire second lens group G2 in a direction orthogonal to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire second lens group G2 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
(実施の形態4)
 図7に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた正メニスカス形状の第2レンズ素子L2とからなる。これらのうち、第2レンズ素子L2は、その両面が非球面である。なお、第2レンズ素子L2は、後述する条件(1)~(4)を全て満足する。
(Embodiment 4)
As shown in FIG. 7, the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side. The second lens element L2 having a shape. Among these, the second lens element L2 has two aspheric surfaces. The second lens element L2 satisfies all the conditions (1) to (4) described later.
 第2レンズ群G2は、物体側から像側へと順に、両凸形状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第3レンズ素子L3と第4レンズ素子L4とが接合されており、後述する対応数値実施例における面データでは、これら第3レンズ素子L3と第4レンズ素子L4との間の接着剤層に面番号7が付与されている。また、第5レンズ素子L5は、その両面が非球面である。なお、第5レンズ素子L5は、後述する条件(1)~(4)を全て満足する。 The second lens group G2 includes, in order from the object side to the image side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a negative meniscus second lens element with a convex surface facing the object side. 5 lens elements L5. Among these, the third lens element L3 and the fourth lens element L4 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the third lens element L3 and the fourth lens element L4. Surface number 7 is given to the agent layer. The fifth lens element L5 has two aspheric surfaces. The fifth lens element L5 satisfies all the conditions (1) to (4) described later.
 第3レンズ群G3は、像側に凸面を向けた正メニスカス形状の第6レンズ素子L6のみからなる。この第6レンズ素子L6は、その両面が非球面である。また、第6レンズ素子L6は、後述する条件(1)~(4)を全て満足する。 The third lens group G3 comprises solely a positive meniscus sixth lens element L6 with the convex surface facing the image side. The sixth lens element L6 has two aspheric surfaces. The sixth lens element L6 satisfies all the conditions (1) to (4) described later.
 第2レンズ群G2の物体側には、開口絞りAが設けられている。該開口絞りAは、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2と一体的に光軸上を物体側へ移動する。 An aperture stop A is provided on the object side of the second lens group G2. The aperture stop A moves on the optical axis integrally with the second lens group G2 during zooming from the wide-angle end to the telephoto end during imaging.
 像面Sの物体側、すなわち像面Sと第6レンズ素子L6との間には、平行平板Pが設けられている。 A parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the sixth lens element L6.
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、略単調に物体側へ移動し、第3レンズ群G3は、略単調に像側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が増大するように、全レンズ群が光軸に沿ってそれぞれ移動する。 During zooming from the wide-angle end to the telephoto end during imaging, the first lens group G1 moves toward the object side along a locus convex to the image side, and the second lens group G2 moves toward the object side substantially monotonously. The third lens group G3 moves to the image side substantially monotonously. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 increases. Move along each.
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第3レンズ群G3が光軸に沿って物体側へ移動する。 In focusing from the infinitely focused state to the close object focused state, the third lens group G3 moves toward the object side along the optical axis.
 第2レンズ群G2全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第2レンズ群G2全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。 By moving the entire second lens group G2 in a direction orthogonal to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire second lens group G2 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
 以下、例えば実施の形態1~4に係るズームレンズ系のごときズームレンズ系が満足することが有益な条件を説明する。なお、各実施の形態に係るズームレンズ系に対して、複数の有益な条件が規定されるが、これら複数の条件すべてを満足するズームレンズ系の構成が最も効果的である。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏するズームレンズ系を得ることも可能である。 Hereinafter, for example, conditions useful for satisfying a zoom lens system such as the zoom lens systems according to Embodiments 1 to 4 will be described. A plurality of useful conditions are defined for the zoom lens system according to each embodiment, but the configuration of the zoom lens system that satisfies all of the plurality of conditions is most effective. However, by satisfying individual conditions, it is possible to obtain a zoom lens system that exhibits the corresponding effects.
 例えば実施の形態1~4に係るズームレンズ系のように、少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、物体側から像側へと順に、負のパワーを有する第1レンズ群と、正のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを備え、撮像時の広角端から望遠端へのズーミングの際に、少なくとも3つのレンズ群を光軸に沿って移動させて変倍を行う(以下、このレンズ構成を、実施の形態の基本構成という)ズームレンズ系においては、各レンズ群が、以下の条件(1)~(4)を満足するレンズ素子を少なくとも1枚有し、該ズームレンズ系が、以下の条件(5)を満足する。
  21<νd ・・・(1)
  0.55<PgF ・・・(2)
  0.000<PgF+0.0032×νd-0.705 ・・・(3)
  0.000<PgF+0.0020×νd-0.664 ・・・(4)
  3.85<Z×tan(ω) ・・・(5)
ここで、
 νd:レンズ系を構成するレンズ素子のd線に対するアッベ数、
 PgF:レンズ系を構成するレンズ素子のg線とF線との部分分散比、
 Z:次式で表される値
   Z=f/f
 f:広角端におけるレンズ系の焦点距離、
 f:望遠端におけるレンズ系の焦点距離、
 ω:広角端における半画角(°)
である。
For example, as in the zoom lens systems according to Embodiments 1 to 4, the first lens has a plurality of lens groups each including at least one lens element, and has negative power in order from the object side to the image side. Group, a second lens group having a positive power, and a third lens group having a positive power. When zooming from the wide-angle end to the telephoto end during imaging, at least three lens groups are placed on the optical axis. In the zoom lens system in which the zoom lens system is moved along the zoom lens (hereinafter, this lens configuration is referred to as a basic configuration of the embodiment), each lens group satisfies the following conditions (1) to (4): The zoom lens system has at least one lens element and satisfies the following condition (5).
21 <νd (1)
0.55 <PgF (2)
0.000 <PgF + 0.0032 × νd−0.705 (3)
0.000 <PgF + 0.0020 × νd−0.664 (4)
3.85 <Z × tan (ω W ) (5)
here,
νd: Abbe number for the d-line of the lens elements constituting the lens system,
PgF: partial dispersion ratio between g-line and F-line of the lens elements constituting the lens system,
Z: Value represented by the following formula: Z = f T / f W
f W : the focal length of the lens system at the wide-angle end,
f T : focal length of the lens system at the telephoto end,
ω W : Half angle of view (°) at wide angle end
It is.
 前記条件(1)~(4)は、レンズ素子の部分分散比を規定するための条件である。条件(1)~(4)を全て満足するレンズ素子を有さないレンズ群がズームレンズ系に存在する場合には、二次スペクトルの制御が困難になり、色収差を良好に補正するためには、ズームレンズ系の全長が長くなってしまうか、又はレンズ素子の枚数が増加する。すなわち、コンパクトなレンズ鏡筒や撮像装置、カメラを提供することが困難となる。 The conditions (1) to (4) are conditions for defining the partial dispersion ratio of the lens element. When a zoom lens system includes a lens group that does not have lens elements that satisfy all of the conditions (1) to (4), it becomes difficult to control the secondary spectrum, and to correct chromatic aberration satisfactorily. The overall length of the zoom lens system becomes long, or the number of lens elements increases. That is, it becomes difficult to provide a compact lens barrel, imaging device, and camera.
 なお、さらに以下の条件(1)’を満足することにより、前記効果をさらに奏功させることができるほか、低コスト化を図ることもできる。
  21<νd<59 ・・・(1)’
In addition, when the following condition (1) ′ is further satisfied, the above-described effect can be further achieved, and the cost can be reduced.
21 <νd <59 (1) ′
 前記条件(5)は、ズームレンズ系の焦点距離及び画角を規定するための条件である。条件(5)を満足しない場合には、望遠端におけるレンズ系の焦点距離と広角端におけるレンズ系の焦点距離との比が小さくなるか、あるいは十分に広い画角を確保することができず、近年望まれるような利便性を満足することが困難となる。 The condition (5) is a condition for defining the focal length and angle of view of the zoom lens system. If the condition (5) is not satisfied, the ratio of the focal length of the lens system at the telephoto end to the focal length of the lens system at the wide-angle end is small, or a sufficiently wide angle of view cannot be secured. It becomes difficult to satisfy the convenience that is desired in recent years.
 なお、さらに以下の条件(5)’を満足することにより、前記効果をさらに奏功させることができる。
  4.17<Z×tan(ω) ・・・(5)’
In addition, when the following condition (5) ′ is further satisfied, the above effect can be further achieved.
4.17 <Z × tan (ω W ) (5) ′
 実施の形態1~4に係るズームレンズ系を構成している各レンズ群は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で、各レンズ群を構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善されるので、有益である。 Each lens group constituting the zoom lens system according to Embodiments 1 to 4 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes) However, the present invention is not limited to this. For example, a diffractive lens element that deflects incident light by diffraction, a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffraction and refraction, and a refractive index that deflects incident light by the refractive index distribution in the medium Each lens group may be composed of a distributed lens element or the like. In particular, in a refractive / diffractive hybrid lens element, forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
 以上のように、本出願において開示する技術の例示として、実施の形態1~4を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, Embodiments 1 to 4 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 (実施の形態5) 
 図9は、実施の形態5に係るデジタルスチルカメラの概略構成図である。図9において、デジタルスチルカメラは、ズームレンズ系1とCCDである撮像素子2とを含む撮像装置と、液晶モニタ3と、筐体4とから構成される。ズームレンズ系1として、実施の形態1に係るズームレンズ系が用いられている。図9において、ズームレンズ系1は、第1レンズ群G1と、開口絞りAと、第2レンズ群G2と、第3レンズ群G3とから構成されている。筐体4は、前側にズームレンズ系1が配置され、ズームレンズ系1の後側には、撮像素子2が配置されている。筐体4の後側に液晶モニタ3が配置され、ズームレンズ系1による被写体の光学的な像が像面Sに形成される。
(Embodiment 5)
FIG. 9 is a schematic configuration diagram of a digital still camera according to the fifth embodiment. In FIG. 9, the digital still camera includes an image pickup apparatus including a zoom lens system 1 and an image pickup device 2 that is a CCD, a liquid crystal monitor 3, and a housing 4. As the zoom lens system 1, the zoom lens system according to Embodiment 1 is used. In FIG. 9, the zoom lens system 1 includes a first lens group G1, an aperture stop A, a second lens group G2, and a third lens group G3. In the housing 4, the zoom lens system 1 is disposed on the front side, and the imaging element 2 is disposed on the rear side of the zoom lens system 1. A liquid crystal monitor 3 is disposed on the rear side of the housing 4, and an optical image of the subject by the zoom lens system 1 is formed on the image plane S.
 鏡筒は、主鏡筒5と、移動鏡筒6と、円筒カム7とで構成されている。円筒カム7を回転させると、第1レンズ群G1、開口絞りAと第2レンズ群G2、及び第3レンズ群G3が撮像素子2を基準にした所定の位置に移動し、広角端から望遠端までのズーミングを行うことができる。第3レンズ群G3はフォーカス調整用モータにより光軸方向に移動可能である。 The lens barrel is composed of a main lens barrel 5, a movable lens barrel 6, and a cylindrical cam 7. When the cylindrical cam 7 is rotated, the first lens group G1, the aperture stop A, the second lens group G2, and the third lens group G3 move to predetermined positions with reference to the image sensor 2, and from the wide angle end to the telephoto end. Zooming up to can be performed. The third lens group G3 is movable in the optical axis direction by a focus adjustment motor.
 こうして、デジタルスチルカメラに実施の形態1に係るズームレンズ系を用いることにより、解像度及び像面湾曲を補正する能力が高く、非使用時のレンズ全長が短い小型のデジタルスチルカメラを提供することができる。なお、図9に示したデジタルスチルカメラには、実施の形態1に係るズームレンズ系の替わりに実施の形態2~4に係るズームレンズ系のいずれかを用いてもよい。また、図9に示したデジタルスチルカメラの光学系は、動画像を対象とするデジタルビデオカメラに用いることもできる。この場合、静止画像だけでなく、解像度の高い動画像を撮影することができる。 Thus, by using the zoom lens system according to Embodiment 1 for a digital still camera, it is possible to provide a small digital still camera that has a high ability to correct resolution and curvature of field and has a short overall lens length when not in use. it can. In the digital still camera shown in FIG. 9, any of the zoom lens systems according to the second to fourth embodiments may be used instead of the zoom lens system according to the first embodiment. Further, the optical system of the digital still camera shown in FIG. 9 can be used for a digital video camera for moving images. In this case, not only a still image but also a moving image with high resolution can be taken.
 なお、本実施の形態5に係るデジタルスチルカメラでは、ズームレンズ系1として実施の形態1~4に係るズームレンズ系を示したが、これらのズームレンズ系は、全てのズーミング域を使用しなくてもよい。すなわち、所望のズーミング域に応じて、光学性能が確保されている範囲を切り出し、実施の形態1~4で説明したズームレンズ系よりも低倍率のズームレンズ系として使用してもよい。 In the digital still camera according to the fifth embodiment, the zoom lens system according to the first to fourth embodiments is shown as the zoom lens system 1, but these zoom lens systems do not use the entire zooming area. May be. That is, a range in which the optical performance is ensured may be cut out according to a desired zooming area, and used as a zoom lens system having a lower magnification than the zoom lens system described in the first to fourth embodiments.
 さらに、実施の形態5では、いわゆる沈胴構成の鏡筒にズームレンズ系を適用した例を示したが、これに限られない。例えば、第1レンズ群G1内等の任意の位置に、内部反射面を持つプリズムや、表面反射ミラーを配置し、いわゆる屈曲構成の鏡筒にズームレンズ系を適用してもよい。さらに、実施の形態5において、第2レンズ群G2全体、第2レンズ群G2の一部等のズームレンズ系を構成している一部のレンズ群を、沈胴時に光軸上から退避させる、いわゆるスライディング鏡筒にズームレンズ系を適用してもよい。 Furthermore, in the fifth embodiment, an example in which the zoom lens system is applied to a so-called collapsible lens barrel is shown, but the present invention is not limited to this. For example, a prism having an internal reflection surface or a surface reflection mirror may be disposed at an arbitrary position such as in the first lens group G1, and the zoom lens system may be applied to a so-called bent lens barrel. Further, in the fifth embodiment, a part of the lens groups constituting the zoom lens system such as the entire second lens group G2 and a part of the second lens group G2 are retracted from the optical axis when retracted. A zoom lens system may be applied to the sliding lens barrel.
 以上のように、本出願において開示する技術の例示として、実施の形態5を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。 As described above, the fifth embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
 また、以上説明した実施の形態1~4に係るズームレンズ系と、CCDやCMOS等の撮像素子とから構成される撮像装置を、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用することもできる。 In addition, an image pickup apparatus including the zoom lens system according to Embodiments 1 to 4 described above and an image pickup device such as a CCD or a CMOS is used as a camera for a portable information terminal such as a smartphone, a monitoring camera for a monitoring system, a Web The present invention can also be applied to cameras, in-vehicle cameras, and the like.
 以下、実施の形態1~4に係るズームレンズ系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数である。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。
Figure JPOXMLDOC01-appb-M000001
ここで、
Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
h:光軸からの高さ、
r:頂点曲率半径、
κ:円錐定数、
An:n次の非球面係数
である。
Hereinafter, numerical examples in which the zoom lens systems according to Embodiments 1 to 4 are specifically implemented will be described. In each numerical example, the unit of length in the table is “mm”, and the unit of angle of view is “°”. In each numerical example, r is a radius of curvature, d is a surface interval, nd is a refractive index with respect to the d line, and vd is an Abbe number with respect to the d line. In each numerical example, the surface marked with * is an aspherical surface, and the aspherical shape is defined by the following equation.
Figure JPOXMLDOC01-appb-M000001
here,
Z: distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex,
h: height from the optical axis,
r: vertex radius of curvature,
κ: conic constant,
An: n-order aspherical coefficient.
 図2、4、6及び8は、各々数値実施例1~4に係るズームレンズ系の縦収差図である。 2, 4, 6 and 8 are longitudinal aberration diagrams of the zoom lens systems according to Numerical Examples 1 to 4, respectively.
 各縦収差図において、(a)図は広角端、(b)図は中間位置、(c)図は望遠端における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)、一点破線はg線(g-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。 In each longitudinal aberration diagram, (a) shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end. Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left side. In the spherical aberration diagram, the vertical axis represents the F number (indicated by F in the figure), the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line (C- line) and the dashed line are the characteristics of the g-line. In the astigmatism diagram, the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there. In the distortion diagram, the vertical axis represents the image height (indicated by H in the figure).
(数値実施例1)
 数値実施例1のズームレンズ系は、図1に示した実施の形態1に対応する。数値実施例1のズームレンズ系の面データを表1に、非球面データを表2に、各種データを表3に示す。
(Numerical example 1)
The zoom lens system of Numerical Example 1 corresponds to Embodiment 1 shown in FIG. Table 1 shows surface data of the zoom lens system of Numerical Example 1, Table 2 shows aspheric data, and Table 3 shows various data.
表 1(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1        196.45960     0.30000     1.72916    54.7               
     2          5.98460     1.86770                                   
     3*         8.66670     1.53070     1.63550    23.9               
     4*        14.84410        可変                                   
   5(絞り)           ∞    -0.30000                                   
     6          4.58530     1.58970     1.72916    54.7               
     7         -8.94400     0.00500     1.56732    42.8               
     8         -8.94400     0.30000     1.62004    36.3               
     9         36.01690     0.49620                                   
    10*         8.37030     1.28650     1.63550    23.9               
    11*         3.69800        可変                                   
    12*       -35.59240     1.43840     1.54310    56.0               
    13*        -7.00810        可変                                   
    14               ∞     0.50000     1.51680    64.2               
    15               ∞     0.37000                                   
    16               ∞        (BF)                                       
    像面             ∞                                               
Table 1 (surface data)

Surface number r d nd vd
Object ∞
1 196.45960 0.30000 1.72916 54.7
2 5.98460 1.86770
3 * 8.66670 1.53070 1.63550 23.9
4 * 14.84410 variable
5 (Aperture) ∞ -0.30000
6 4.58530 1.58970 1.72916 54.7
7 -8.94400 0.00500 1.56732 42.8
8 -8.94400 0.30000 1.62004 36.3
9 36.01690 0.49620
10 * 8.37030 1.28650 1.63550 23.9
11 * 3.69800 Variable
12 * -35.59240 1.43840 1.54310 56.0
13 * -7.00810 Variable
14 ∞ 0.50000 1.51680 64.2
15 ∞ 0.37000
16 ∞ (BF)
Image plane ∞
表 2(非球面データ)
 
  第3面
   K= 0.00000E+00, A4=-1.96013E-04, A6= 8.08283E-06, A8=-1.38859E-06 
   A10= 5.09613E-08, A12=-4.79626E-11, A14= 1.28647E-11, A16=-1.00260E-12 
  第4面
   K= 0.00000E+00, A4=-4.49795E-04, A6= 2.80911E-06, A8=-1.82439E-06 
   A10= 1.18077E-07, A12=-2.34888E-09, A14=-9.27771E-18, A16= 1.24568E-16 
  第10面
   K= 0.00000E+00, A4=-2.78446E-03, A6=-2.52712E-04, A8= 8.93720E-06 
   A10= 2.13422E-05, A12=-7.27526E-06, A14= 1.74476E-07, A16= 1.16882E-07 
  第11面
   K= 0.00000E+00, A4= 1.43930E-04, A6= 2.45586E-04, A8=-7.63582E-05 
   A10=-2.11697E-05, A12= 1.03466E-05, A14= 5.08150E-06, A16=-1.72649E-06 
  第12面
   K= 0.00000E+00, A4= 6.59545E-04, A6=-7.68656E-05, A8= 7.03087E-06 
   A10=-2.67241E-07, A12= 4.96282E-09, A14= 1.20119E-18, A16= 5.61307E-17 
  第13面
   K= 0.00000E+00, A4= 1.81052E-03, A6=-1.03965E-04, A8= 8.50713E-06 
   A10=-3.50264E-07, A12= 7.11113E-09, A14=-7.86620E-19, A16=-3.92809E-17
Table 2 (Aspheric data)

3rd surface K = 0.00000E + 00, A4 = -1.96013E-04, A6 = 8.08283E-06, A8 = -1.38859E-06
A10 = 5.09613E-08, A12 = -4.79626E-11, A14 = 1.28647E-11, A16 = -1.00260E-12
4th surface K = 0.00000E + 00, A4 = -4.49795E-04, A6 = 2.80911E-06, A8 = -1.82439E-06
A10 = 1.18077E-07, A12 = -2.34888E-09, A14 = -9.27771E-18, A16 = 1.24568E-16
10th surface K = 0.00000E + 00, A4 = -2.78446E-03, A6 = -2.52712E-04, A8 = 8.93720E-06
A10 = 2.13422E-05, A12 = -7.27526E-06, A14 = 1.74476E-07, A16 = 1.16882E-07
11th surface K = 0.00000E + 00, A4 = 1.43930E-04, A6 = 2.45586E-04, A8 = -7.63582E-05
A10 = -2.11697E-05, A12 = 1.03466E-05, A14 = 5.08150E-06, A16 = -1.72649E-06
12th surface K = 0.00000E + 00, A4 = 6.59545E-04, A6 = -7.68656E-05, A8 = 7.03087E-06
A10 = -2.67241E-07, A12 = 4.96282E-09, A14 = 1.20119E-18, A16 = 5.61307E-17
13th surface K = 0.00000E + 00, A4 = 1.81052E-03, A6 = -1.03965E-04, A8 = 8.50713E-06
A10 = -3.50264E-07, A12 = 7.11113E-09, A14 = -7.86620E-19, A16 = -3.92809E-17
表 3(各種データ)
 
  ズーム比     4.60994
                広角      中間      望遠
  焦点距離       4.4515    9.2575   20.5212
 Fナンバー     2.66857   3.94423   6.83512
    画角        42.0652   22.4476   10.4202
    像高         3.4000    3.8770    3.8770
 レンズ全長     30.6310   26.1886   31.7260
    BF        0.04090  -0.00776  -0.01299
    d4          14.7223    5.6089    0.6000 
    d11          3.0287    8.1765   18.7176 
    d13          3.4549    3.0269    3.0372 
 入射瞳位置      7.1348    4.9579    2.6926
 射出瞳位置    -13.0677  -39.0826   56.0917
 前側主点位置   10.0747   12.0222   30.7198
 後側主点位置   26.1795   16.9311   11.2048
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1       -8.4710
     2         3       29.8926
     3         6        4.3739
     4         8      -11.5259
     5        10      -11.6736
     6        12       15.7880
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1   -12.19926     3.69840        -0.09212       0.68998
   2      5     8.89034     3.37740        -2.80370      -0.37274
   3     12    15.78795     1.43840         1.14049       1.66296
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      5   -0.48752   -0.97455   -2.16119
   3     12    0.74849    0.77868    0.77835
Table 3 (various data)

Zoom ratio 4.60994
Wide angle Medium telephoto Focal length 4.4515 9.2575 20.5212
F number 2.66857 3.94423 6.83512
Angle of view 42.0652 22.4476 10.4202
Image height 3.4000 3.8770 3.8770
Total lens length 30.6310 26.1886 31.7260
BF 0.04090 -0.00776 -0.01299
d4 14.7223 5.6089 0.6000
d11 3.0287 8.1765 18.7176
d13 3.4549 3.0269 3.0372
Entrance pupil position 7.1348 4.9579 2.6926
Exit pupil position -13.0677 -39.0826 56.0917
Front principal point 10.0747 12.0222 30.7198
Rear principal point position 26.1795 16.9311 11.2048

Single lens data Lens Start surface Focal length 1 1 -8.4710
2 3 29.8926
3 6 4.3739
4 8 -11.5259
5 10 -11.6736
6 12 15.7880

Zoom lens group data Group Start surface Focal length Lens configuration length Front principal point position Rear principal point position 1 1 -12.19926 3.69840 -0.09212 0.68998
2 5 8.89034 3.37740 -2.80370 -0.37274
3 12 15.78795 1.43840 1.14049 1.66296

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 5 -0.48752 -0.97455 -2.16119
3 12 0.74849 0.77868 0.77835
(数値実施例2)
 数値実施例2のズームレンズ系は、図3に示した実施の形態2に対応する。数値実施例2のズームレンズ系の面データを表4に、非球面データを表5に、各種データを表6に示す。
(Numerical example 2)
The zoom lens system of Numerical Example 2 corresponds to Embodiment 2 shown in FIG. Table 4 shows surface data of the zoom lens system of Numerical Example 2, Table 5 shows aspheric data, and Table 6 shows various data.
表 4(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1        222.84880     0.30000     1.72916    54.7               
     2          6.01950     1.88340                                   
     3*         8.86730     1.57900     1.63550    23.9               
     4*        15.48540        可変                                   
   5(絞り)           ∞    -0.30000                                   
     6          4.61350     1.59050     1.72916    54.7               
     7         -8.84760     0.00500     1.56732    42.8               
     8         -8.84760     0.30000     1.62004    36.3               
     9         34.90890     0.54270                                   
    10*         8.20480     1.24370     1.63550    23.9               
    11*         3.70100        可変                                   
    12*       -66.13510     1.62480     1.54310    56.0               
    13*        -7.29070        可変                                   
    14               ∞     0.50000     1.51680    64.2               
    15               ∞     0.37000                                   
    16               ∞        (BF)                                       
    像面             ∞                                               
Table 4 (surface data)

Surface number r d nd vd
Object ∞
1 222.84880 0.30000 1.72916 54.7
2 6.01950 1.88340
3 * 8.86730 1.57900 1.63550 23.9
4 * 15.48540 variable
5 (Aperture) ∞ -0.30000
6 4.61350 1.59050 1.72916 54.7
7 -8.84760 0.00500 1.56732 42.8
8 -8.84760 0.30000 1.62004 36.3
9 34.90890 0.54270
10 * 8.20480 1.24370 1.63550 23.9
11 * 3.70100 variable
12 * -66.13510 1.62480 1.54310 56.0
13 * -7.29070 Variable
14 ∞ 0.50000 1.51680 64.2
15 ∞ 0.37000
16 ∞ (BF)
Image plane ∞
表 5(非球面データ)
 
  第3面
   K= 0.00000E+00, A4=-2.03336E-04, A6= 7.43232E-06, A8=-1.40256E-06 
   A10= 5.08524E-08, A12=-5.33642E-11, A14= 1.27511E-11, A16=-1.04586E-12 
  第4面
   K= 0.00000E+00, A4=-4.57277E-04, A6= 2.48426E-06, A8=-1.83608E-06 
   A10= 1.17169E-07, A12=-2.38445E-09, A14=-4.87226E-13, A16= 7.25019E-14 
  第10面
   K= 0.00000E+00, A4=-2.80994E-03, A6=-3.22624E-04, A8=-1.39850E-06 
   A10= 2.52223E-05, A12=-5.44343E-06, A14= 3.79121E-07, A16=-1.03962E-07 
  第11面
   K= 0.00000E+00, A4=-4.30884E-06, A6=-9.31272E-07, A8= 1.09657E-06 
   A10= 8.69228E-07, A12= 3.82949E-07, A14= 1.18806E-07, A16=-3.53419E-09 
  第12面
   K= 0.00000E+00, A4= 7.09832E-04, A6=-7.26448E-05, A8= 7.03797E-06 
   A10=-2.75470E-07, A12= 3.81777E-09, A14= 4.78240E-12, A16= 2.12344E-13 
  第13面
   K= 0.00000E+00, A4= 1.86079E-03, A6=-1.07020E-04, A8= 8.45615E-06 
   A10=-3.48854E-07, A12= 7.87298E-09, A14=-7.28297E-11, A16=-2.10464E-13
Table 5 (Aspheric data)

3rd surface K = 0.00000E + 00, A4 = -2.03336E-04, A6 = 7.43232E-06, A8 = -1.40256E-06
A10 = 5.08524E-08, A12 = -5.33642E-11, A14 = 1.27511E-11, A16 = -1.04586E-12
4th surface K = 0.00000E + 00, A4 = -4.57277E-04, A6 = 2.48426E-06, A8 = -1.83608E-06
A10 = 1.17169E-07, A12 = -2.38445E-09, A14 = -4.87226E-13, A16 = 7.25019E-14
10th surface K = 0.00000E + 00, A4 = -2.80994E-03, A6 = -3.22624E-04, A8 = -1.39850E-06
A10 = 2.52223E-05, A12 = -5.44343E-06, A14 = 3.79121E-07, A16 = -1.03962E-07
11th surface K = 0.00000E + 00, A4 = -4.30884E-06, A6 = -9.31272E-07, A8 = 1.09657E-06
A10 = 8.69228E-07, A12 = 3.82949E-07, A14 = 1.18806E-07, A16 = -3.53419E-09
12th surface K = 0.00000E + 00, A4 = 7.09832E-04, A6 = -7.26448E-05, A8 = 7.03797E-06
A10 = -2.75470E-07, A12 = 3.81777E-09, A14 = 4.78240E-12, A16 = 2.12344E-13
13th surface K = 0.00000E + 00, A4 = 1.86079E-03, A6 = -1.07020E-04, A8 = 8.45615E-06
A10 = -3.48854E-07, A12 = 7.87298E-09, A14 = -7.28297E-11, A16 = -2.10464E-13
表 6(各種データ)
 
  ズーム比     4.31779
                広角      中間      望遠
  焦点距離       4.4995    9.2460   19.4279
 Fナンバー     2.65780   3.91002   6.49628
    画角        41.7270   22.5375   10.9634
    像高         3.4000    3.8770    3.8770
 レンズ全長     30.4067   26.2130   31.3965
    BF        0.04059  -0.00687  -0.00786
    d4          14.3015    5.4047    0.6000 
    d11          3.0767    8.1459   17.9006 
    d13          3.3488    3.0301    3.2647 
 入射瞳位置      7.0800    4.9040    2.7180
 射出瞳位置    -13.6306  -44.6564   49.8187
 前側主点位置   10.0986   12.2353   29.7210
 後側主点位置   25.9072   16.9670   11.9686
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1       -8.4895
     2         3       29.8787
     3         6        4.3767
     4         8      -11.3543
     5        10      -11.8847
     6        12       14.9423
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1   -12.25722     3.76240        -0.10660       0.69194
   2      5     8.93828     3.38190        -2.79457      -0.38423
   3     12    14.94226     1.62480         1.17201       1.75400
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      5   -0.49945   -0.99320   -2.13078
   3     12    0.73499    0.75949    0.74387
Table 6 (various data)

Zoom ratio 4.31779
Wide angle Medium telephoto Focal length 4.4995 9.2460 19.4279
F number 2.65780 3.91002 6.49628
Angle of View 41.7270 22.5375 10.9634
Image height 3.4000 3.8770 3.8770
Total lens length 30.4067 26.2130 31.3965
BF 0.04059 -0.00687 -0.00786
d4 14.3015 5.4047 0.6000
d11 3.0767 8.1459 17.9006
d13 3.3488 3.0301 3.2647
Entrance pupil position 7.0800 4.9040 2.7180
Exit pupil position -13.6306 -44.6564 49.8187
Front principal point position 10.0986 12.2353 29.7210
Rear principal point position 25.9072 16.9670 11.9686

Single lens data Lens Start surface Focal length 1 1 -8.4895
2 3 29.8787
3 6 4.3767
4 8 -11.3543
5 10 -11.8847
6 12 14.9423

Zoom lens group data Group Start surface Focal length Lens configuration length Front principal point position Rear principal point position 1 1 -12.25722 3.76240 -0.10660 0.69194
2 5 8.93828 3.38190 -2.79457 -0.38423
3 12 14.94226 1.62480 1.17201 1.75400

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 5 -0.49945 -0.99320 -2.13078
3 12 0.73499 0.75949 0.74387
(数値実施例3)
 数値実施例3のズームレンズ系は、図5に示した実施の形態3に対応する。数値実施例3のズームレンズ系の面データを表7に、非球面データを表8に、各種データを表9に示す。
(Numerical Example 3)
The zoom lens system of Numerical Example 3 corresponds to Embodiment 3 shown in FIG. Table 7 shows surface data of the zoom lens system of Numerical Example 3, Table 8 shows aspheric data, and Table 9 shows various data.
表 7(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1        235.37140     0.30000     1.72916    54.7               
     2          6.01840     1.86370                                   
     3*         8.31700     1.48630     1.63550    23.9               
     4*        13.84110        可変                                   
   5(絞り)           ∞    -0.30000                                   
     6          4.61470     1.60620     1.72916    54.7               
     7         -8.85410     0.00500     1.56732    42.8               
     8         -8.85410     0.30000     1.62004    36.3               
     9         34.57260     0.55260                                   
    10*         8.17370     1.24840     1.63550    23.9               
    11*         3.69490        可変                                   
    12*       -20.51670     2.16590     1.54310    56.0               
    13*        -7.20340        可変                                   
    14               ∞     0.50000     1.51680    64.2               
    15               ∞     0.37000                                   
    16               ∞        (BF)                                       
    像面             ∞                                               
Table 7 (surface data)

Surface number r d nd vd
Object ∞
1 235.37140 0.30000 1.72916 54.7
2 6.01840 1.86370
3 * 8.31700 1.48630 1.63550 23.9
4 * 13.84110 variable
5 (Aperture) ∞ -0.30000
6 4.61470 1.60620 1.72916 54.7
7 -8.85410 0.00500 1.56732 42.8
8 -8.85410 0.30000 1.62004 36.3
9 34.57260 0.55260
10 * 8.17370 1.24840 1.63550 23.9
11 * 3.69490 Variable
12 * -20.51670 2.16590 1.54310 56.0
13 * -7.20340 variable
14 ∞ 0.50000 1.51680 64.2
15 ∞ 0.37000
16 ∞ (BF)
Image plane ∞
表 8(非球面データ)
 
  第3面
   K= 0.00000E+00, A4=-2.34823E-04, A6= 6.10169E-06, A8=-1.42295E-06 
   A10= 5.08065E-08, A12=-4.22011E-11, A14= 1.35149E-11, A16=-1.02289E-12 
  第4面
   K= 0.00000E+00, A4=-4.51001E-04, A6= 2.26972E-06, A8=-1.86413E-06 
   A10= 1.16261E-07, A12=-2.39295E-09, A14= 1.16352E-12, A16= 1.99896E-13 
  第10面
   K= 0.00000E+00, A4=-2.81246E-03, A6=-3.17027E-04, A8= 1.26359E-06 
   A10= 2.60885E-05, A12=-5.27339E-06, A14= 3.68234E-07, A16=-1.37058E-07 
  第11面
   K= 0.00000E+00, A4= 3.14401E-05, A6= 1.59978E-05, A8= 7.62334E-06 
   A10= 2.58096E-06, A12= 7.55257E-07, A14= 1.82345E-07, A16=-2.47830E-08 
  第12面
   K= 0.00000E+00, A4= 6.64463E-04, A6=-7.45152E-05, A8= 6.77172E-06 
   A10=-2.84998E-07, A12= 4.22037E-09, A14= 8.01369E-11, A16= 6.09090E-13 
  第13面
   K= 0.00000E+00, A4= 1.74441E-03, A6=-1.14053E-04, A8= 8.30671E-06 
   A10=-3.51346E-07, A12= 7.71998E-09, A14=-6.51900E-11, A16= 3.43386E-12
Table 8 (Aspherical data)

3rd surface K = 0.00000E + 00, A4 = -2.34823E-04, A6 = 6.10169E-06, A8 = -1.42295E-06
A10 = 5.08065E-08, A12 = -4.22011E-11, A14 = 1.35149E-11, A16 = -1.02289E-12
4th surface K = 0.00000E + 00, A4 = -4.51001E-04, A6 = 2.26972E-06, A8 = -1.86413E-06
A10 = 1.16261E-07, A12 = -2.39295E-09, A14 = 1.16352E-12, A16 = 1.99896E-13
10th surface K = 0.00000E + 00, A4 = -2.81246E-03, A6 = -3.17027E-04, A8 = 1.26359E-06
A10 = 2.60885E-05, A12 = -5.27339E-06, A14 = 3.68234E-07, A16 = -1.37058E-07
11th surface K = 0.00000E + 00, A4 = 3.14401E-05, A6 = 1.59978E-05, A8 = 7.62334E-06
A10 = 2.58096E-06, A12 = 7.55257E-07, A14 = 1.82345E-07, A16 = -2.47830E-08
12th surface K = 0.00000E + 00, A4 = 6.64463E-04, A6 = -7.45152E-05, A8 = 6.77172E-06
A10 = -2.84998E-07, A12 = 4.22037E-09, A14 = 8.01369E-11, A16 = 6.09090E-13
13th surface K = 0.00000E + 00, A4 = 1.74441E-03, A6 = -1.14053E-04, A8 = 8.30671E-06
A10 = -3.51346E-07, A12 = 7.71998E-09, A14 = -6.51900E-11, A16 = 3.43386E-12
表 9(各種データ)
 
  ズーム比     5.11031
                広角      中間      望遠
  焦点距離       4.4480    9.7188   22.7307
 Fナンバー     2.83419   4.24150   7.63638
    画角        43.2327   21.6529    9.5150
    像高         3.4000    3.8770    3.8770
 レンズ全長     33.0929   27.0490   32.9277
    BF        0.03311  -0.00171  -0.02706
    d4          16.6863    5.9884    0.6000 
    d11          2.8361    7.8662   19.1731 
    d13          3.4394    3.0980    3.0836 
 入射瞳位置      7.4556    5.0869    2.6772
 射出瞳位置    -13.2864  -31.8464  121.9587
 前側主点位置   10.4182   11.8396   29.6434
 後側主点位置   28.6449   17.3302   10.1971
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1       -8.4751
     2         3       29.6877
     3         6        4.3807
     4         8      -11.3384
     5        10      -11.8995
     6        12       19.3330
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1   -12.21862     3.65000        -0.07720       0.69406
   2      5     8.92111     3.41220        -2.81152      -0.37590
   3     12    19.33296     2.16590         2.04590       2.88422
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      5   -0.44321   -0.94601   -2.20714
   3     12    0.82135    0.84081    0.84287
Table 9 (various data)

Zoom ratio 5.11031
Wide angle Medium telephoto Focal length 4.4480 9.7188 22.7307
F number 2.83419 4.24150 7.63638
Angle of view 43.2327 21.6529 9.5150
Image height 3.4000 3.8770 3.8770
Total lens length 33.0929 27.0490 32.9277
BF 0.03311 -0.00171 -0.02706
d4 16.6863 5.9884 0.6000
d11 2.8361 7.8662 19.1731
d13 3.4394 3.0980 3.0836
Entrance pupil position 7.4556 5.0869 2.6772
Exit pupil position -13.2864 -31.8464 121.9587
Front principal point position 10.4182 11.8396 29.6434
Rear principal point position 28.6449 17.3302 10.1971

Single lens data Lens Start surface Focal length 1 1 -8.4751
2 3 29.6877
3 6 4.3807
4 8 -11.3384
5 10 -11.8995
6 12 19.3330

Zoom lens group data Group Start surface Focal length Lens configuration length Front principal point position Rear principal point position 1 1 -12.21862 3.65000 -0.07720 0.69406
2 5 8.92111 3.41220 -2.81152 -0.37590
3 12 19.33296 2.16590 2.04590 2.88422

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 5 -0.44321 -0.94601 -2.20714
3 12 0.82135 0.84081 0.84287
(数値実施例4)
 数値実施例4のズームレンズ系は、図7に示した実施の形態4に対応する。数値実施例4のズームレンズ系の面データを表10に、非球面データを表11に、各種データを表12に示す。
(Numerical example 4)
The zoom lens system of Numerical Example 4 corresponds to Embodiment 4 shown in FIG. Table 10 shows surface data of the zoom lens system of Numerical Example 4, Table 11 shows aspheric data, and Table 12 shows various data.
表 10(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1        444.39660     0.30000     1.72916    54.7               
     2          6.07460     1.88870                                   
     3*         8.51540     0.92120     1.63550    23.9               
     4*        14.39820        可変                                   
   5(絞り)           ∞    -0.30000                                   
     6          4.58500     1.58970     1.72916    54.7               
     7         -8.99450     0.00500     1.56732    42.8               
     8         -8.99450     0.30000     1.62004    36.3               
     9         32.03060     0.49610                                   
    10*         8.11060     1.28850     1.63550    23.9               
    11*         3.70180        可変                                   
    12*       -37.24560     1.43290     1.54410    89.3               
    13*        -7.05250        可変                                   
    14               ∞     0.50000     1.51680    64.2               
    15               ∞     0.37000                                   
    16               ∞        (BF)                                       
    像面             ∞                                               
Table 10 (surface data)

Surface number r d nd vd
Object ∞
1 444.39660 0.30000 1.72916 54.7
2 6.07460 1.88870
3 * 8.51540 0.92120 1.63550 23.9
4 * 14.39820 Variable
5 (Aperture) ∞ -0.30000
6 4.58500 1.58970 1.72916 54.7
7 -8.99450 0.00500 1.56732 42.8
8 -8.99450 0.30000 1.62004 36.3
9 32.03060 0.49610
10 * 8.11060 1.28850 1.63550 23.9
11 * 3.70180 Variable
12 * -37.24560 1.43290 1.54410 89.3
13 * -7.05250 variable
14 ∞ 0.50000 1.51680 64.2
15 ∞ 0.37000
16 ∞ (BF)
Image plane ∞
表 11(非球面データ)
 
  第3面
   K= 0.00000E+00, A4=-2.11090E-04, A6= 6.23593E-06, A8=-1.42630E-06 
   A10= 5.16580E-08, A12=-4.67328E-13, A14= 1.34895E-11, A16=-1.11072E-12 
  第4面
   K= 0.00000E+00, A4=-4.41879E-04, A6= 3.42217E-06, A8=-1.85379E-06 
   A10= 1.15716E-07, A12=-2.42032E-09, A14= 1.61082E-12, A16= 2.19198E-13 
  第10面
   K= 0.00000E+00, A4=-2.74532E-03, A6=-2.48882E-04, A8= 8.24297E-06 
   A10= 2.10603E-05, A12=-7.30674E-06, A14= 1.96369E-07, A16= 1.36916E-07 
  第11面
   K= 0.00000E+00, A4= 1.52362E-04, A6= 2.49533E-04, A8=-7.24049E-05 
   A10=-1.86667E-05, A12= 1.14230E-05, A14= 5.21832E-06, A16=-1.90992E-06 
  第12面
   K= 0.00000E+00, A4= 4.93295E-04, A6=-8.14782E-05, A8= 7.07908E-06 
   A10=-2.61719E-07, A12= 5.01994E-09, A14=-9.31782E-12, A16=-3.00411E-13 
  第13面
   K= 0.00000E+00, A4= 1.62384E-03, A6=-1.07312E-04, A8= 8.38044E-06 
   A10=-3.51409E-07, A12= 7.48865E-09, A14= 3.05714E-12, A16= 1.97333E-13
Table 11 (Aspheric data)

3rd surface K = 0.00000E + 00, A4 = -2.11090E-04, A6 = 6.23593E-06, A8 = -1.42630E-06
A10 = 5.16580E-08, A12 = -4.67328E-13, A14 = 1.34895E-11, A16 = -1.11072E-12
4th surface K = 0.00000E + 00, A4 = -4.41879E-04, A6 = 3.42217E-06, A8 = -1.85379E-06
A10 = 1.15716E-07, A12 = -2.42032E-09, A14 = 1.61082E-12, A16 = 2.19198E-13
10th surface K = 0.00000E + 00, A4 = -2.74532E-03, A6 = -2.48882E-04, A8 = 8.24297E-06
A10 = 2.10603E-05, A12 = -7.30674E-06, A14 = 1.96369E-07, A16 = 1.36916E-07
11th surface K = 0.00000E + 00, A4 = 1.52362E-04, A6 = 2.49533E-04, A8 = -7.24049E-05
A10 = -1.86667E-05, A12 = 1.14230E-05, A14 = 5.21832E-06, A16 = -1.90992E-06
12th surface K = 0.00000E + 00, A4 = 4.93295E-04, A6 = -8.14782E-05, A8 = 7.07908E-06
A10 = -2.61719E-07, A12 = 5.01994E-09, A14 = -9.31782E-12, A16 = -3.00411E-13
13th surface K = 0.00000E + 00, A4 = 1.62384E-03, A6 = -1.07312E-04, A8 = 8.38044E-06
A10 = -3.51409E-07, A12 = 7.48865E-09, A14 = 3.05714E-12, A16 = 1.97333E-13
表 12(各種データ)
 
  ズーム比     4.60981
                広角      中間      望遠
  焦点距離       4.4505    9.3071   20.5159
 Fナンバー     2.65753   3.93674   6.79921
    画角        42.0779   22.3453   10.4118
    像高         3.4000    3.8770    3.8770
 レンズ全長     30.0447   25.5597   31.1822
    BF        0.03586  -0.01299  -0.03129
    d4          14.7482    5.5428    0.6000 
    d11          3.0025    8.1373   18.6672 
    d13          3.4661    3.1005    3.1541 
 入射瞳位置      6.9623    4.7355    2.4660
 射出瞳位置    -13.0163  -38.9409   55.5665
 前側主点位置    9.8952   11.8174   30.5524
 後側主点位置   25.5942   16.2526   10.6663
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1       -8.4488
     2         3       30.9144
     3         6        4.3812
     4         8      -11.2943
     5        10      -12.0887
     6        12       15.7265
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1   -12.23503     3.10990        -0.26642       0.19176
   2      5     8.88459     3.37930        -2.78611      -0.36312
   3     12    15.72648     1.43290         1.12592       1.64609
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      5   -0.48734   -0.98441   -2.17628
   3     12    0.74639    0.77274    0.77050
Table 12 (various data)

Zoom ratio 4.60981
Wide angle Medium telephoto Focal length 4.4505 9.3071 20.5159
F number 2.65753 3.93674 6.79921
Angle of view 42.0779 22.3453 10.4118
Image height 3.4000 3.8770 3.8770
Total lens length 30.0447 25.5597 31.1822
BF 0.03586 -0.01299 -0.03129
d4 14.7482 5.5428 0.6000
d11 3.0025 8.1373 18.6672
d13 3.4661 3.1005 3.1541
Entrance pupil position 6.9623 4.7355 2.4660
Exit pupil position -13.0163 -38.9409 55.5665
Front principal point position 9.8952 11.8174 30.5524
Rear principal point position 25.5942 16.2526 10.6663

Single lens data Lens Start surface Focal length 1 1 -8.4488
2 3 30.9144
3 6 4.3812
4 8 -11.2943
5 10 -12.0887
6 12 15.7265

Zoom lens group data Group Start surface Focal length Lens construction length Front principal point position Rear principal point position 1 1 -12.23503 3.10990 -0.26642 0.19176
2 5 8.88459 3.37930 -2.78611 -0.36312
3 12 15.72648 1.43290 1.12592 1.64609

Zoom lens group magnification group Start surface Wide angle Medium telephoto 1 1 0.00000 0.00000 0.00000
2 5 -0.48734 -0.98441 -2.17628
3 12 0.74639 0.77274 0.77050
 以下の表13に、各数値実施例のズームレンズ系における各条件の対応値を示す。 Table 13 below shows the corresponding values for each condition in the zoom lens system of each numerical example.
表 13(条件の対応値) 
Figure JPOXMLDOC01-appb-T000001
Table 13 (corresponding values of conditions)
Figure JPOXMLDOC01-appb-T000001
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, the embodiments have been described as examples of the technology in the present disclosure. For this purpose, the accompanying drawings and detailed description are provided.
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiments are for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be made within the scope of the claims and the equivalents thereof.
 本開示は、デジタルカメラ、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等のデジタル入力装置に適用可能である。特に本開示は、デジタルカメラ等の高画質が要求される撮影光学系に適用可能である。 The present disclosure can be applied to digital input devices such as digital cameras, cameras of portable information terminals such as smartphones, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras. In particular, the present disclosure can be applied to a photographing optical system that requires high image quality, such as a digital camera.
G1  第1レンズ群
G2  第2レンズ群
G3  第3レンズ群
L1  第1レンズ素子
L2  第2レンズ素子
L3  第3レンズ素子
L4  第4レンズ素子
L5  第5レンズ素子
L6  第6レンズ素子
A   開口絞り
P   平行平板
S   像面
1   ズームレンズ系
2   撮像素子
3   液晶モニタ
4   筐体
5   主鏡筒
6   移動鏡筒
7   円筒カム
 
G1 1st lens group G2 2nd lens group G3 3rd lens group L1 1st lens element L2 2nd lens element L3 3rd lens element L4 4th lens element L5 5th lens element L6 6th lens element A Aperture stop P Parallel Flat plate S Image plane 1 Zoom lens system 2 Image sensor 3 Liquid crystal monitor 4 Case 5 Main barrel 6 Moving barrel 7 Cylindrical cam

Claims (3)

  1.  少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するズームレンズ系であって、
    物体側から像側へと順に、負のパワーを有する第1レンズ群と、正のパワーを有する第2レンズ群と、正のパワーを有する第3レンズ群とを備え、
    撮像時の広角端から望遠端へのズーミングの際に、少なくとも3つのレンズ群を光軸に沿って移動させて変倍を行い、
    各レンズ群が、以下の条件(1)~(4)を満足するレンズ素子を少なくとも1枚有し、
    以下の条件(5)を満足することを特徴とする、ズームレンズ系:
      21<νd ・・・(1)
      0.55<PgF ・・・(2)
      0.000<PgF+0.0032×νd-0.705 ・・・(3)
      0.000<PgF+0.0020×νd-0.664 ・・・(4)
      3.85<Z×tan(ω) ・・・(5)
    ここで、
     νd:レンズ系を構成するレンズ素子のd線に対するアッベ数、
     PgF:レンズ系を構成するレンズ素子のg線とF線との部分分散比、
     Z:次式で表される値
       Z=f/f
     f:広角端におけるレンズ系の焦点距離、
     f:望遠端におけるレンズ系の焦点距離、
     ω:広角端における半画角(°)
    である。
    A zoom lens system having a plurality of lens groups each composed of at least one lens element,
    In order from the object side to the image side, a first lens group having negative power, a second lens group having positive power, and a third lens group having positive power are provided.
    During zooming from the wide-angle end to the telephoto end during imaging, at least three lens units are moved along the optical axis to perform zooming,
    Each lens group has at least one lens element that satisfies the following conditions (1) to (4):
    A zoom lens system characterized by satisfying the following condition (5):
    21 <νd (1)
    0.55 <PgF (2)
    0.000 <PgF + 0.0032 × νd−0.705 (3)
    0.000 <PgF + 0.0020 × νd−0.664 (4)
    3.85 <Z × tan (ω W ) (5)
    here,
    νd: Abbe number for the d-line of the lens elements constituting the lens system,
    PgF: partial dispersion ratio between g-line and F-line of the lens elements constituting the lens system,
    Z: Value represented by the following formula: Z = f T / f W ,
    f W : the focal length of the lens system at the wide-angle end,
    f T : focal length of the lens system at the telephoto end,
    ω W : Half angle of view (°) at wide angle end
    It is.
  2.  物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
    物体の光学的な像を形成するズームレンズ系と、
    該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
    を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、撮像装置。
    An imaging apparatus capable of outputting an optical image of an object as an electrical image signal,
    A zoom lens system that forms an optical image of the object;
    An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
    An imaging apparatus, wherein the zoom lens system is the zoom lens system according to claim 1.
  3.  物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
    物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、カメラ。
     
    A camera that converts an optical image of an object into an electrical image signal, and displays and stores the converted image signal;
    An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
    The camera according to claim 1, wherein the zoom lens system is the zoom lens system according to claim 1.
PCT/JP2012/008240 2012-01-13 2012-12-25 Zoom lens system, imaging device, and camera WO2013105189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012005151A JP2013145285A (en) 2012-01-13 2012-01-13 Zoom lens system, imaging apparatus, and camera
JP2012-005151 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013105189A1 true WO2013105189A1 (en) 2013-07-18

Family

ID=48781168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008240 WO2013105189A1 (en) 2012-01-13 2012-12-25 Zoom lens system, imaging device, and camera

Country Status (2)

Country Link
JP (1) JP2013145285A (en)
WO (1) WO2013105189A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116616A (en) * 1987-10-30 1989-05-09 Canon Inc Variable magnification finder
JP2003050352A (en) * 2001-08-07 2003-02-21 Canon Inc Zoom lens and optical equipment using the same
JP2004144947A (en) * 2002-10-23 2004-05-20 Ricoh Co Ltd Zoom lens, camera and personal digital assistant device
WO2006115107A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
JP2011095488A (en) * 2009-10-29 2011-05-12 Olympus Imaging Corp Lens component, image forming optical system, and electronic imaging apparatus having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116616A (en) * 1987-10-30 1989-05-09 Canon Inc Variable magnification finder
JP2003050352A (en) * 2001-08-07 2003-02-21 Canon Inc Zoom lens and optical equipment using the same
JP2004144947A (en) * 2002-10-23 2004-05-20 Ricoh Co Ltd Zoom lens, camera and personal digital assistant device
WO2006115107A1 (en) * 2005-04-22 2006-11-02 Konica Minolta Opto, Inc. Variable power optical system, imaging lens system and digital apparatus
JP2011095488A (en) * 2009-10-29 2011-05-12 Olympus Imaging Corp Lens component, image forming optical system, and electronic imaging apparatus having the same

Also Published As

Publication number Publication date
JP2013145285A (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5676505B2 (en) Zoom lens system, imaging device and camera
WO2012101959A1 (en) Zoom-lens system, imaging device, and camera
JP2011232543A (en) Zoom lens system, imaging apparatus and camera
JP5919519B2 (en) Zoom lens system, imaging device and camera
JP2012198504A (en) Zoom lens system, imaging device, and camera
JP2012198503A (en) Zoom lens system, imaging device, and camera
JP2012048200A (en) Zoom lens system, image pickup device, and camera
JP2011232542A (en) Zoom lens system, imaging apparatus and camera
JP2012198505A (en) Zoom lens system, imaging device, and camera
WO2014006653A1 (en) Zoom lens system, image capturing device and camera
JP5919518B2 (en) Zoom lens system, imaging device and camera
JP2011085653A (en) Zoom lens system, imaging apparatus and camera
JP2012198506A (en) Zoom lens system, imaging device, and camera
WO2013105190A1 (en) Zoom lens system, imaging device, and camera
JP2011064933A (en) Zoom lens system, imaging apparatus and camera
JP6198071B2 (en) Zoom lens system, imaging device and camera
JP2012150432A (en) Zoom lens system, imaging device and camera
JP2011248269A (en) Zoom lens system, imaging device and camera system
JP2010160334A (en) Zoom lens system, imaging apparatus, and camera
JP2010160329A (en) Zoom lens system, imaging apparatus, and camera
JP5669105B2 (en) Zoom lens system, imaging device and camera
JP5271090B2 (en) Zoom lens system, imaging device and camera
WO2013111602A1 (en) Zoom lens system, image capturing device and camera
JP5320080B2 (en) Zoom lens system, imaging device and camera
JP2011013541A (en) Zoom lens system, imaging apparatus and camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864748

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12864748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE