WO2013102985A1 - Organic photoelectric conversion element and organic thin-film solar battery module - Google Patents

Organic photoelectric conversion element and organic thin-film solar battery module Download PDF

Info

Publication number
WO2013102985A1
WO2013102985A1 PCT/JP2012/008316 JP2012008316W WO2013102985A1 WO 2013102985 A1 WO2013102985 A1 WO 2013102985A1 JP 2012008316 W JP2012008316 W JP 2012008316W WO 2013102985 A1 WO2013102985 A1 WO 2013102985A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
photoelectric conversion
Prior art date
Application number
PCT/JP2012/008316
Other languages
French (fr)
Japanese (ja)
Inventor
竜志 前田
圭一 安川
東海林 弘
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2013102985A1 publication Critical patent/WO2013102985A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element and an organic thin film solar cell module that generate electricity by receiving light.
  • the organic photoelectric conversion element which is an organic thin film solar cell
  • the organic thin film solar cell module using the said organic photoelectric conversion element.
  • An organic solar cell is a device that exhibits an electrical output with respect to an optical input, as represented by a photodiode and an imaging device that convert an optical signal into an electrical signal, and a solar cell that converts optical energy into electrical energy.
  • organic solar cells have a problem of low energy conversion efficiency compared to silicon-based solar cells (single crystal silicon, polycrystalline silicon, amorphous silicon) currently used, and have been put into practical use. Not in.
  • a tandem type element As a means for improving the conversion efficiency of an organic solar cell, a tandem type element in which elements are stacked has been reported.
  • a tandem element is a structure in which a plurality of heterojunction semiconductors are stacked to form one element with an intermediate electrode serving as a connection layer sandwiched between the semiconductors.
  • the tandem type device has an open-ended voltage when there is no electrical or optical loss in the intermediate electrode as a connection layer, compared to a single layer type device (single device; device having only one heterojunction semiconductor). Can be doubled (in the case of two layers).
  • Patent Document 1 uses a metal cluster as an intermediate electrode, thins the film thickness of the front cell and the back cell to balance light absorption, and generates a photocurrent generated in the front cell and the back cell.
  • An example of succeeding in improving the conversion efficiency as compared with a single-layer type element by making it substantially the same will be disclosed.
  • Non-Patent Document 1 discloses that the conversion efficiency of a tandem organic solar cell using a 4MeO-TPD layer doped with F4-TCNQ as a charge transport layer and a layer adjacent to the intermediate electrode is higher than that of a single-type device. Reporting improvements.
  • An object of the present invention is to provide a photoelectric conversion element having high conversion efficiency.
  • the present inventors have found that the donor material constituting the doped layer has a low ionization potential (Ip), such as ZnPc (5.1 eV) or 4MeO-TPD (5.3 eV), where Ip ⁇ 5.3 eV. It has been found that the use of a donor material has a drawback that the efficiency of organic solar power cannot be increased. Based on the above findings, the present inventors can obtain a high effect even when the ionization potential (Ip) of the donor material is large in the case where the donor material constituting the doped layer satisfies the requirements having an energy level relationship. I found out.
  • Ip ionization potential
  • a pair of electrodes consisting of a positive electrode and a negative electrode; An intermediate electrode disposed between the pair of electrodes; A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode; A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode; An organic photoelectric conversion device comprising a doped layer including an acceptor material and a donor material between the intermediate electrode and the second organic photoelectric conversion layer,
  • of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) ⁇
  • the organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
  • each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .) 4).
  • the organic photoelectric conversion device 3, wherein at least one of the four Rs of the tetracyanoquinodimethane derivative represented by the formula (1) is a cyano group. 5. 5. The organic photoelectric conversion device according to any one of 1 to 4, wherein the donor material is a compound represented by the following formula (2) or formula (3). (Wherein X 1 , X 2 , Y 1 and Y 2 are each independently a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, and 6 to 40 ring atoms A substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, a substituted or unsubstituted 6 to 40 ring carbon atoms, or Unsubstit
  • substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, number of ring forming atoms
  • a substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, and 6 to 6 carbon atoms forming a ring 40 substituted or unsubstituted aryloxy groups, substituted or unsubstituted arylamino groups having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkyl groups having 1 to 40 carbon atoms It is an amino group.) 7).
  • the organic photoelectric conversion device according to any one of 1 to 4, wherein the donor material is an aromatic amine derivative represented by the following formula (5).
  • L is a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
  • Ar 1 is a phenyl group substituted with an aryl group selected from a phenyl group, a naphthyl group, and a phenanthryl group, or a naphthyl group
  • Ar 2 to Ar 4 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a naphthyl group substituted with a phenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent; Ar 1 to Ar 4 are different from each other, or any three of Ar 1 to Ar 4 are different from each other.
  • Ar 1 to Ar 4 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. ) 8). 5.
  • the donor material is an aromatic amine derivative represented by the following formula (5 ′).
  • L 1 to L 3 are each independently a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene having an alkyl group having 1 to 6 carbon atoms which may form a ring at the 9-position as a substituent. It is a group.
  • Ar 1 to Ar 6 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenyl group-substituted naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
  • Ar 1 to Ar 6 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom.
  • a pair of electrodes consisting of a positive electrode and a negative electrode; An intermediate electrode disposed between the pair of electrodes; A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode; A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode; An acceptor material that is a tetracyanoquinodimethane derivative represented by the following formula (1) and a compound represented by the following formula (2) or (3) between the intermediate electrode and the second organic photoelectric conversion layer.
  • An organic photoelectric conversion element comprising a doped layer containing a donor material,
  • of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) ⁇
  • the organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
  • each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .) (Wherein X 1 , X 2 , Y 1 and Y 2 are each independently a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, and 6 to 40 ring atoms A substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, a substituted or unsubstituted 6 to 40 ring carbon atoms, or Unsubstit
  • R 3 to R 7 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms.
  • An organic photoelectric conversion element comprising a doped layer containing a material,
  • of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) ⁇
  • the organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
  • each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group.
  • L is a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
  • Ar 1 is a phenyl group substituted with an aryl group selected from a phenyl group, a naphthyl group, and a phenanthryl group, or a naphthyl group
  • Ar 2 to Ar 4 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a naphthyl group substituted with a phenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent; Ar 1 ⁇ Ar 4 are different from each other, or one of Ar 1 ⁇ Ar 4 is any one of the same of Ar 1 ⁇ Ar 4.
  • Ar 1 to Ar 4 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom.
  • a pair of electrodes consisting of a positive electrode and a negative electrode; An intermediate electrode disposed between the pair of electrodes; A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode; A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode; An acceptor material that is a tetracyanoquinodimethane derivative represented by the following formula (1) and an aromatic amine derivative represented by the following formula (5 ′) between the intermediate electrode and the second organic photoelectric conversion layer.
  • An organic photoelectric conversion element comprising a doped layer containing a donor material,
  • of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) ⁇
  • the organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
  • each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group.
  • L 1 to L 3 are each independently a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent. It is a group.
  • Ar 1 to Ar 6 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenyl group-substituted naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
  • Ar 1 to Ar 6 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom.
  • the second organic photoelectric conversion layer includes a hole transport layer in contact with the doped layer, and the hole transport layer includes a donor material of the doped layer. 17.
  • the intermediate electrode is made of 1 to 16 selected from Pt and Au, and one or more selected from metals and oxides of Ni, Cu, Zn, Pd, Ag, Cd, Mo, V, Ti, In, Sn, and Ca.
  • the organic photoelectric conversion element in any one. 18. 18. An organic thin film solar cell module using the organic photoelectric conversion device as described in any one of 1 to 17 above.
  • a photoelectric conversion element having high conversion efficiency can be provided.
  • the photoelectric conversion element of the present invention includes a pair of electrodes composed of a positive electrode and a negative electrode, an intermediate electrode disposed between the pair of electrodes, a first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode, A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode, and a doped layer including an acceptor material and a donor material are provided between the intermediate electrode and the second organic photoelectric conversion layer.
  • a pair of electrodes composed of a positive electrode and a negative electrode, an intermediate electrode disposed between the pair of electrodes, a first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode, A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode, and a doped layer including an acceptor material and a donor material are provided between the intermediate electrode and the second organic photoelectric conversion layer.
  • the doped layer of the organic photoelectric conversion element of the present invention includes an acceptor material and a donor material, and Ip (D) that is the ionization potential (Ip) energy of the donor material and the energy of the lowest unoccupied molecular orbital (LUMO) of the acceptor material.
  • which is the absolute value of the level, has a relationship of Ip (D) ⁇
  • is not particularly limited, but is 0 eV, for example.
  • the donor material of the doped layer has an Ip (D) of 5.4 eV or more and 5.6 eV or less, preferably 5.4 eV or more and 5.5 eV or less.
  • the doped layer is a low-resistance and high-transmittance layer, and can function as an optical spacer layer that does not interfere with charge transport between adjacent photoelectric conversion layers by satisfying the above energy level requirements.
  • By providing the doped layer it is possible to design an optimal element thickness considering the optical interference effect caused by incident light and reflected light, and to improve the photoelectric conversion characteristics of the organic photoelectric conversion element.
  • the above effect is significant when the photoelectric conversion element is a tandem element having two or more photoelectric conversion layers.
  • Ip (D) which is the ionization potential energy of the donor material
  • which is the absolute value of the LUMO energy level of the acceptor material
  • Ip (D) which is the ionization potential energy of the donor material
  • Ip (D) forms a thin film of the target compound on the ITO glass substrate by vacuum deposition, and uses the thin film on the ITO glass substrate to produce a photoelectron spectrometer (RIKEN Keiki Co., Ltd.) in the atmosphere. It can be measured using Co., Ltd. (AC-3). Specifically, it can be measured by irradiating a thin film of the target compound with light and measuring the amount of electrons generated by charge separation at that time.
  • the acceptor material of the doped layer of the photoelectric conversion element of the present invention may have a deep HOMO value, and the photoelectron spectrometer may not be able to accurately measure the HOMO value. Since LUMO is a value calculated from the difference between the HOMO value and the energy gap obtained from the optical absorption edge, the LUMO of the acceptor material may also be difficult to accurately measure. For acceptor materials having a deep HOMO value, the LUMO value can be calculated by using molecular orbital software.
  • Table 1 shows literature values and calculated values of HOMO and LUMO of the compounds described in the literature.
  • the literature value and the calculated value are different from each other because the literature value is a value as a physical property of the material thin film as a solid, whereas the calculated value is a value obtained by calculation based on one molecule. .
  • HOMO and LUMO of the target compound can be calculated.
  • Example HOMO and LUMO in the case of using the approximate curve of FIG. 1 HOMO and LUMO of Compound C and D are 7.9 eV and LUMO of 4.6 eV for Compound C, and HOMO of Compound D is 7.1 eV and LUMO is 4.9 eV.
  • the acceptor material is, for example, an organic compound having an electron-withdrawing substituent, and specifically, a quinoid derivative having an electron-withdrawing substituent, a pyrazine derivative having an electron-withdrawing substituent, and an electron-withdrawing substitution.
  • examples of the quinoid derivative include quinodimethane derivatives, thiopyran dioxide derivatives, thioxanthene dioxide derivatives, quinone derivatives, and the like
  • examples of electron-withdrawing substituents include fluoro groups and cyano groups.
  • the species can be used alone or as a mixture of two or more species. Of these, preferred are cyano compounds in which the substituent of the electron-withdrawing group is a cyano group.
  • the cyano compound that is an acceptor material is preferably a tetracyanoquinodimethane derivative represented by the following formula (1).
  • the tetracyanoquinodimethane derivative represented by the formula (1) at least one of the four Rs is preferably a cyano group, and more preferably at least two of the four Rs are cyano groups.
  • each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .
  • main chain conjugated polymers such as polyhexylthiophene (P3HT) and methoxyethylhexyloxyphenylene vinylene (MEHPPV), and side chains represented by polyvinylcarbazole and the like.
  • P3HT polyhexylthiophene
  • MEHPPV methoxyethylhexyloxyphenylene vinylene
  • side chains represented by polyvinylcarbazole and the like.
  • Type polymers These compounds can be used individually by 1 type or in mixture of 2 or more types.
  • the donor material is preferably a compound represented by the following formula (2) or formula (3). (Wherein X 1 , X 2 , Y 1 and Y 2 are each independently a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, and 6 to 40 ring atoms A substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, a substituted or unsubstituted 6 to 40 ring carbon atoms, or Unsubstit
  • the substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms of X 1 , X 2 , Y 1 and Y 2 is preferably represented by the following formula (4) It is a group.
  • R 3 to R 7 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms.
  • substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, number of ring forming atoms
  • a substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, and 6 to 6 carbon atoms forming a ring 40 substituted or unsubstituted aryloxy groups, substituted or unsubstituted arylamino groups having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkyl groups having 1 to 40 carbon atoms It is an amino group.
  • the donor material is preferably an aromatic amine derivative represented by the following formula (5) or (5 ′).
  • L is a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
  • Ar 1 is a phenyl group substituted with an aryl group selected from a phenyl group, a naphthyl group, and a phenanthryl group, or a naphthyl group
  • Ar 2 to Ar 4 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a naphthyl group substituted with a phenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent; Ar 1 to Ar 4 are different from each other, or any three of Ar 1 to Ar 4 are different from each other.
  • Ar 1 to Ar 4 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom.
  • L 1 to L 3 are each independently a phenylene group, a biphenylene group, a terphenylene group, or an alkyl group having 1 to 6 carbon atoms that may form a ring at the 9-position as a substituent. It is a fluorenylene group having a group.
  • Ar 1 to Ar 6 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenyl group-substituted naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
  • Ar 1 to Ar 6 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom.
  • At least three of Ar 1 to Ar 4 in the formula (5) are a substituent (an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an alkoxycarbonyl having 1 to 10 carbon atoms).
  • the aryl skeleton portions excluding the group or halogen atom are different from each other.
  • the doped layer is a tetracyanoquinodimethane derivative in which the acceptor material is represented by the formula (1), and the donor material is a combination of compounds represented by the formula (2) or (3), or the acceptor
  • the material is a tetracyanoquinodimethane derivative represented by the formula (1)
  • the donor material is a doped layer made of a combination of aromatic amine derivatives represented by the formula (5) or (5 ′).
  • the content ratio (or doping ratio) of the acceptor material and the donor material is, for example, 0.1 to 80%, preferably 0.5 to 50% of the acceptor material with respect to the donor material in terms of mass ratio. More preferably, it is 1 to 20%.
  • the thickness of the doped layer is, for example, 1 to 300 nm, preferably 5 to 250 nm, and more preferably 10 to 200 nm.
  • Each of the first organic photoelectric conversion layer and the second organic photoelectric conversion layer can have the following layer structure.
  • the layer configurations of the first organic photoelectric conversion layer and the second organic photoelectric conversion layer may be the same as or different from each other.
  • the p layer and the n layer may be replaced (reverse configuration).
  • the lower electrode that was the positive electrode is used as the negative electrode
  • the upper electrode is used as the positive electrode.
  • Upper electrode (positive electrode) (11) Lower electrode (negative electrode)
  • the charge transport layer is a layer that transports charges.
  • the charge transport layer on the positive electrode side is a hole transport layer
  • the charge transport layer on the negative electrode side is an electron transport layer.
  • the charge transport layer preferably has a function of blocking charge transport opposite to the main transport charge.
  • a charge transport layer (hole transport layer) between the positive electrode and the charge generation layer is It is preferably configured to prevent movement of electrons to the positive electrode side.
  • the charge transport layer (electron transport layer) between the negative electrode and the charge generation layer prevents the movement of holes to the negative electrode side in order to efficiently move electrons generated in the charge generation layer to the negative electrode. It is preferable to be configured as described above. When it does not have a function to block charge transport, for example, on the positive electrode side, movement of holes and electrons to the positive electrode side occurs in the charge transport layer (hole transport layer) between the positive electrode and the charge generation layer. As a result, deactivation occurs due to recombination of holes and electrons.
  • the charge transport layer (electron transport layer) located between the negative electrode and the charge generation layer causes the movement of electrons and holes to the negative electrode side, resulting in deactivation due to recombination of holes and electrons. Can occur. Therefore, the charge transport layer has a function of blocking the transport of charges opposite to the main transport charge, so that deactivation due to recombination with holes and electrons can be suppressed, and the charge is efficiently taken out to each electrode. It becomes possible.
  • the material for the charge transport layer is not particularly limited.
  • the charge transport layer on the positive electrode side is a hole transport layer, and a compound having a function as a hole acceptor is preferable.
  • a material having a high hole mobility is preferable.
  • the charge transport layer on the negative electrode side is an electron transport layer, preferably a compound having a function as an electron acceptor, and preferably a material having high electron mobility.
  • the charge generation layer is a layer that absorbs light and generates charges (holes and electrons).
  • the i layer can be used alone or in combination as a charge generation layer.
  • the p material is not particularly limited, but a compound having a function as a hole acceptor is preferable, and a material having a high hole mobility is preferable.
  • a material having a high hole mobility is preferable.
  • Amine compounds typified by '-tris (phenyl-3-tolylamino) triphenylamine (MTDATA), etc., phthalocyanine (Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), titanyl phthalocyanine (TiOPc), boron phthalocyanine ( Examples thereof include phthalocyanine complexes such as SubPc), naphthalocyanine complexes, benzoporphyrin (BP),
  • main chain type conjugated polymers such as methoxyethyl hexyloxy phenylene vinylene (MEHPPV), polyhexyl thiophene (P3HT), cyclopentadithiophene-benzothiadiazole (PCPDTBT) And side chain polymers represented by polyvinylcarbazole and the like.
  • MEHPPV methoxyethyl hexyloxy phenylene vinylene
  • P3HT polyhexyl thiophene
  • PCPDTBT cyclopentadithiophene-benzothiadiazole
  • side chain polymers represented by polyvinylcarbazole and the like.
  • a complex is preferable, and a phthalocyanine complex or a naphthalocyanine complex is particularly preferable.
  • the phthalocyanine complexes are solid skeletons and have excellent weather resistance and heat resistance to light and heat, as is known for phthalocyanine blue, which is a representative pigment. This is because the charge generation layer is a material capable of generating charges by good light absorption and having excellent durability.
  • the central metal of the complex is not particularly limited, and magnesium (Mg), zinc (Zn), iron (Fe), nickel (Ni), cobalt (Co), tin (Sn), lead (Pb), copper ( It may be a metal atom such as Cu), silicon (Si), palladium (Pd), titanium (Ti), titanyl (TiO), vanadium (V), vanadyl (VO), or an oxometal atom.
  • the naphthalocyanine complex the following compounds are preferable.
  • the ionization potential (Ip) of the p material is preferably 5.2 to 5.8 eV.
  • the n material is not particularly limited, but a compound having a function as a hole donor is preferable, and a material having high electron mobility is preferable.
  • fullerene derivatives such as C 60 and C 70 , carbon nanotubes, perylene derivatives, polycyclic quinones, quinacridones, and the like, such as CN-poly (phenylene-vinylene), MEH-CN-PPV, -CN group or CF 3 group-containing polymer, poly (fluorene) derivative and the like.
  • a material having a small affinity (electron affinity) is preferable.
  • a sufficient open-circuit voltage can be realized by combining materials with low affinity as the n layer.
  • Fullerenes or fullerene derivatives are preferred in terms of conversion efficiency.
  • inorganic compounds include n-type inorganic semiconductor compounds. Specifically, doping semiconductors and compound semiconductors such as n-Si, GaAs, CdS, PbS, CdSe, InP, Nb 2 O 5 , WO 3 , Fe 2 O 3 , titanium dioxide (TiO 2 ), monoxide Examples thereof include titanium oxide such as titanium (TiO) and dititanium trioxide (Ti 2 O 3 ), and conductive oxides such as zinc oxide (ZnO) and tin oxide (SnO 2 ). One or more of these may be used in combination. From the viewpoint of conversion efficiency, titanium oxide is preferably used, and titanium dioxide is particularly preferably used.
  • the thickness of the charge generation layer is, for example, 0.5 to 200 nm, preferably 1 to 100 nm, and more preferably 2 to 50 nm.
  • the organic thin film solar cell often has a thin total film thickness, and therefore, the positive electrode and the negative electrode are short-circuited, and the yield of cell fabrication often decreases. In such a case, it is preferable to prevent this by laminating a buffer layer in contact with the electrode. In addition, it is preferable to provide a buffer layer in order to efficiently extract the generated current to the outside.
  • Preferred compounds for the buffer layer include, for example, aromatic cyclic acid anhydrides represented by NTCDA shown below for low molecular compounds, and poly (3,4-ethylenedioxy) for high molecular compounds.
  • the buffer layer can also have a role of preventing excitons from diffusing to the electrode and being deactivated. Inserting a buffer layer as an exciton blocking layer in this way is effective for increasing efficiency.
  • the exciton blocking layer can be inserted on either the positive electrode side or the cathode side, or both can be inserted simultaneously.
  • a preferable material for the exciton blocking layer for example, a well-known material for a hole barrier layer or a material for an electron barrier layer for use in an organic EL device can be used.
  • a preferable material for the hole blocking layer is a compound having a sufficiently large ionization potential
  • a preferable material for the electron blocking layer is a compound having a sufficiently small electron affinity.
  • bathocuproin (BCP), bathophenanthroline (BPhen), and the like which are well-known materials for organic EL applications, can be used as the cathode-side hole barrier layer material.
  • the inorganic semiconductor compound illustrated as said n material for a buffer layer.
  • the p-type inorganic semiconductor compound CdTe, p-Si, SiC, GaAs, WO 3 or the like can be used.
  • the thickness of the buffer layer is, for example, 0.1 to 200 nm, preferably 0.5 to 100 nm, and more preferably 1 to 50 nm.
  • the second organic photoelectric conversion layer is preferably doped with any of the layers constituting the second organic photoelectric conversion layer
  • the donor material which comprises a layer is included, More preferably, a 2nd organic photoelectric converting layer contains a charge transport layer (hole transport layer), and the said hole transport layer contains the donor material which comprises a dope layer.
  • the material for the positive electrode and the negative electrode is not particularly limited, and a known conductive material can be used.
  • a metal such as tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), gold (Au), osmium (Os), palladium (Pd) can be used as the positive electrode, and silver (Ag) can be used as the negative electrode.
  • ITO tin-doped indium oxide
  • FTO fluorine-doped tin oxide
  • Au gold
  • Os osmium
  • palladium (Pd) palladium
  • silver (Ag) can be used as the negative electrode.
  • the organic thin film solar cell be sufficiently transparent in the sunlight spectrum.
  • the transparent electrode is formed using a known conductive material so as to ensure predetermined translucency by a method such as vapor deposition or sputtering.
  • the light transmittance of the electrode on the light receiving surface is preferably 10% or more.
  • one of the electrode portions includes a metal having a high work function, and the other includes a metal having a low work function.
  • the intermediate electrode forms an electron-hole recombination zone, and the individual photoelectric conversion units of the stacked device can be separated.
  • the intermediate electrode serves to prevent the formation of a reverse heterojunction between the n layer of the positive-side photoelectric conversion unit (front cell) and the p-layer of the negative-electrode side photoelectric conversion unit (back cell).
  • the intermediate electrode provides a zone where electrons entering from the photoelectric conversion unit on the positive electrode side and holes from the photoelectric conversion unit on the negative electrode side are recombined, and a photo-induced current can be generated by efficient recombination.
  • the intermediate electrode is preferably a thin metal layer, and the metal layer may be sufficiently thin and translucent so that light can reach the photoelectric conversion unit (s) on the negative electrode side. Accordingly, the thickness of the intermediate electrode is preferably about 20 mm or less, more preferably about 5 mm, and the intermediate electrode may be a continuous film of metal or a layer made of isolated metal nanoparticles.
  • the material for the intermediate electrode is not particularly limited, and materials for forming the positive electrode and the negative electrode can be used.
  • Pt and Au, and Ni, Cu, Zn, Pd, Ag, Cd, Mo, V, Ti, In It consists of one or more selected from the metals and oxides of Sn, Ca.
  • oxides of Ni, Cu, Zn, Pd, Ag, Cd, Mo, V, Ti, In, and Sn include, for example, MoO 3 , VO, ZnO, TiO, TiO 2 , In 2 O 3 , SnO 2 and V. 2 O 5 is mentioned.
  • the intermediate electrode is a layer made of silver, a layer made of gold, a layer made of calcium, a laminated film or mixed film of the above-mentioned metal and molybdenum oxide (MoO 3 ), or a layer made of an alloy.
  • the substrate preferably has mechanical and thermal strength and has transparency.
  • a glass substrate and a transparent resin film are mentioned.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone.
  • each layer of the organic photoelectric conversion element of the present invention dry film forming methods such as vacuum deposition, sputtering, plasma, ion plating, etc .; and wet methods such as spin coating, dip coating, casting, roll coating, flow coating, and ink jet A film formation method can be applied. Any of the above film forming processes or a combination thereof can be applied. However, since the organic thin film is affected by moisture and oxygen, it is more preferable that the film forming process is unified.
  • each layer is not particularly limited, but may be set to an appropriate thickness. In general, it is known that the exciton diffusion length of an organic thin film is short. If the film thickness is too thick, the exciton is deactivated before reaching the heterointerface, which may reduce the photoelectric conversion efficiency. . On the other hand, if the film thickness is too thin, pinholes and the like are generated, so that sufficient diode characteristics cannot be obtained and conversion efficiency may be reduced. Therefore, the film thickness is usually in the range of 1 nm to 10 ⁇ m, preferably in the range of 3 nm to 0.2 ⁇ m.
  • the dry film forming method is preferably a known resistance heating method, and for forming the mixed layer, for example, a film forming method by simultaneous vapor deposition from a plurality of evaporation sources is preferable. More preferably, the substrate temperature is controlled during film formation.
  • an organic solution is prepared by dissolving or dispersing the material forming each layer in an appropriate solvent, and the thin film formed by the wet film formation method is heated at an appropriate temperature to remove the solvent.
  • Any solvent can be used as the solvent, for example, halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrachloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, dibutyl ether, tetrahydrofuran, dioxane, Ether solvents such as anisole, alcohol solvents such as methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, benzene, toluene, xylene, ethy
  • an appropriate resin or additive may be used in order to improve film formability and prevent pinholes in the film.
  • Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl.
  • photoconductive resins such as carbazole and polysilane
  • conductive resins such as polythiophene and polypyrrole.
  • the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • Example 1 A glass substrate with an ITO transparent electrode having a thickness of 25 mm ⁇ 75 mm ⁇ 0.7 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • the glass substrate with a transparent electrode line after washing was mounted on a substrate holder of a vacuum deposition apparatus.
  • Compound A film (film thickness: 10 nm: charge transport layer), SubNc film (film thickness: 10 nm: p layer), C60 film (film thickness: 20 nm: n layer) on the surface where the transparent electrode line as the positive electrode is formed ), BCP film (film thickness 5 nm, buffer layer), Ag film (film thickness 0.5 nm: intermediate electrode), MoO 3 film (film thickness 2 nm: intermediate electrode), compound A: compound D film (film thickness 150 nm: dope) Layer), Compound A film (film thickness 10 nm: charge transport layer), SubNc film (film thickness 10 nm: p layer), C60 film (film thickness 20 nm: n layer), BCP film (film thickness 10 nm: buffer layer), metal Al films (thickness 80 nm: negative electrode) were laminated in this order to produce an organic thin film solar cell (element area 0.5 cm 2 ).
  • the compound A compound D film as the doped layer is formed by depositing compound A on the donor material at 1 ⁇ / s by resistance heating vapor deposition and simultaneously using compound D as the acceptor material at 0.05 ⁇ / s by resistance heating vapor deposition. The film was formed by vapor deposition. The deposition temperature of Compound D at this time was about 210 ° C.
  • the material used for manufacture of the said organic thin film solar cell is shown below.
  • the IV characteristic was measured under the AM1.5 condition (light intensity (P in ) 100 mW / cm 2 ) by the following method.
  • Table 2 shows the results of open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and conversion efficiency ( ⁇ ).
  • the conversion efficiency ⁇ [%] was calculated from Voc ⁇ Jsc ⁇ FF / P in ⁇ 100.
  • Example 2 Of the two SubNc film, and 20nm thickness of SubNc film positive side, of the two C 60 film, except that the thickness of the C 60 film on the negative electrode side was set to 40nm in the same manner as in Example 1 Organic Thin film solar cells were manufactured and evaluated. The results are shown in Table 2.
  • Example 3 Of the two SubNc film, and 20nm thickness of SubNc film positive side, of the two C 60 film, the thickness of the C 60 film on the negative electrode side and 40 nm, instead of the two compounds A film, either A compound B film was formed, and an organic thin film solar cell was manufactured and evaluated in the same manner as in Example 1 except that compound B was used instead of compound A as a donor material for the doped layer. The results are shown in Table 2.
  • Example 4 An organic thin film solar cell is manufactured in the same manner as in Example 2 except that a compound E film is formed in place of the two compound A films and the compound E is used in place of the compound A as a donor material for the doped layer. And evaluated. The results are shown in Table 2.
  • Example 5 An organic thin film solar cell was manufactured and evaluated in the same manner as in Example 4 except that the Ag film was formed using Ca. The results are shown in Table 2.
  • Comparative Example 1 In place of the two compound A films, a compound D film is formed, 4MeO-TPD shown below is used instead of compound A as the donor material of the doped layer, and compound D is used as the acceptor material instead of compound D.
  • An organic thin-film solar cell was produced and evaluated in the same manner as in Example 1 except that C was used. The results are shown in Table 2. The deposition temperature of compound C forming the dope layer was about 310 ° C.
  • Comparative Example 2 An organic thin film solar cell was manufactured and evaluated in the same manner as in Example 1 except that Compound C was used instead of Compound D as an acceptor material for the doped layer. The results are shown in Table 2.
  • Comparative Example 3 In place of the two compound A films, a compound B film is formed, and as the donor material of the doped layer, compound B is used instead of compound A, acceptor material, and compound C is used instead of compound D. In the same manner as in Example 1, an organic thin film solar cell was produced and evaluated. The results are shown in Table 2.
  • Comparative Example 5 An organic thin-film solar cell was produced and evaluated in the same manner as in Example 4 except that Compound C was used instead of Compound D as the acceptor material for the doped layer. The results are shown in Table 2.
  • Comparative Example 6 An organic thin film solar cell was manufactured and evaluated in the same manner as in Example 5 except that Compound C was used instead of Compound D as the acceptor material for the doped layer. The results are shown in Table 2.
  • ⁇ 0.7 eV does not decrease the short-circuit current density Jsc even when the doped layer thickness is 150 nm. It became. This means that the thickness of the doped layer of the present invention does not adversely affect the device characteristics, and it can be seen that yield reduction due to leakage or the like can be prevented.
  • ⁇ 0.7 eV does not lower the Jsc even if the film thickness is 150 nm, which adversely affects the device characteristics. Since it was not given, it was found that by changing the film thickness of the active layer responsible for light generation, element design incorporating the optical interference effect becomes possible, and tandem element characteristics are improved.
  • Evaluation Example 1 [Production of doped layer single layer element] A glass substrate with an ITO transparent electrode having a thickness of 25 mm ⁇ 75 mm ⁇ 0.7 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. A glass substrate with a transparent electrode line after cleaning is mounted on a substrate holder of a vacuum deposition apparatus, and is a donor material so as to first cover the transparent electrode on the surface on which the transparent electrode line as a positive electrode is formed.
  • Compound A is deposited by resistance heating vapor deposition at 1 ⁇ / s, and at the same time, compound C as an acceptor material is co-evaporated by resistance heating deposition at 0.05 ⁇ / s, thereby forming a 200 nm thick doped layer.
  • metal Al was deposited as a negative electrode in a film thickness of 80 nm to produce a doped layer single layer device (single charge device). The element area was 0.5 cm 2 .
  • the obtained doped layer single layer device was evaluated for JV characteristics. The results are shown in Table 3.
  • FIG. 2 shows the JV characteristics of the doped layer single layer element.
  • Evaluation Example 2-4 A doped layer single layer device was manufactured and evaluated in the same manner as in Evaluation Example 1 except that the compounds shown in Table 3 were used as the donor material and the acceptor material. The results are shown in Table 3 and FIGS.
  • the JV characteristic of the doped layer of Evaluation Example 1 in which the donor material is Compound A and the acceptor material is Compound C is high resistance, whereas the donor material is Compound A. Since the JV characteristic of the doped layer of Evaluation Example 3 in which the acceptor material is Compound D shows an ohmic behavior, the doped layer of Evaluation Example 3 has sufficient intrinsic carriers and has low resistance. It turns out that it is a dope layer. Similarly, the JV characteristic of the doped layer of Evaluation Example 2 in which the donor material is Compound B and the acceptor material is Compound C is high resistance, whereas the donor material is Compound B and the acceptor material is Compound B.
  • the doped layer of Evaluation Example 4 Since the JV characteristic of the doped layer of Evaluation Example 3 in which D is Compound D shows an ohmic behavior, the doped layer of Evaluation Example 4 has sufficient intrinsic carriers, and a low-resistance doped layer and You can see that Therefore, it can be seen that a doped layer having a relationship of
  • the photoelectric conversion element and organic thin-film solar cell module of the present invention can be used for watches, mobile phones, mobile personal computers, and the like.

Abstract

Disclosed is an organic photoelectric conversion element comprising: a pair of electrodes comprising a positive electrode and negative electrode; an intermediate electrode arranged between said pair of electrodes; a first organic photoelectric conversion layer arranged between said positive electrode and intermediate electrode; a second organic photoelectric conversion layer arranged between said negative electrode and intermediate electrode; and a doping layer including an acceptor material and a donor material between said intermediate electrode and second organic photoelectric conversion layer; wherein the energy Ip (D) of the ionisation potential (Ip) of said donor material and the absolute value |LUMO(A)| of the energy level of the lowest unoccupied molecular orbital (LUMO) of said acceptor material is in the relationship: Ip(D)-|LUMO(A)|≦ 0.7eV, and the Ip(D)of said donor material is at least 5.4 eV but no more than 5.6 eV.

Description

有機光電変換素子及び有機薄膜太陽電池モジュールOrganic photoelectric conversion element and organic thin film solar cell module
 本発明は、光を受けて電気を発生する有機光電変換素子及び有機薄膜太陽電池モジュールに関する。さらに詳しくは、有機薄膜太陽電池である有機光電変換素子、及び当該有機光電変換素子を用いた有機薄膜太陽電池モジュールに関する。 The present invention relates to an organic photoelectric conversion element and an organic thin film solar cell module that generate electricity by receiving light. In more detail, it is related with the organic photoelectric conversion element which is an organic thin film solar cell, and the organic thin film solar cell module using the said organic photoelectric conversion element.
 太陽電池は、化石燃料の枯渇問題や地球温暖化問題を背景に、クリーンエネルギー源として近年大変注目されてきており、研究開発が盛んに行なわれている。
 従来、実用化されてきたのは、単結晶Si、多結晶Si、アモルファスSi等に代表されるシリコン系太陽電池であるが、高価であることや原料Siの不足問題等が表面化するにつれて、次世代太陽電池への要求が高まりつつある。このような背景の中で、有機太陽電池は、安価で毒性が低く、原材料不足の懸念もないことから、シリコン系太陽電池に次ぐ次世代の太陽電池として大変注目を集めている。
Solar cells have attracted much attention as a clean energy source in recent years against the background of fossil fuel depletion problems and global warming problems, and research and development have been actively conducted.
Conventionally, silicon solar cells represented by single crystal Si, polycrystal Si, amorphous Si, etc. have been put into practical use. However, as the cost and raw material Si shortage problems surface, The demand for next generation solar cells is increasing. Against this background, organic solar cells are attracting much attention as next-generation solar cells next to silicon-based solar cells because they are inexpensive, have low toxicity, and do not have a fear of shortage of raw materials.
 有機太陽電池は、光信号を電気信号に変換するフォトダイオード及び撮像素子、光エネルギーを電気エネルギーに変換する太陽電池に代表されるように、光入力に対して電気出力を示す装置である。
 しかしながら、有機太陽電池は、現在利用されているシリコン系(単結晶シリコン、多結晶シリコン、アモルファスシリコン)のシリコン系太陽電池に比べ、エネルギー変換効率が低いという問題点があり、実用化には至っていない。
An organic solar cell is a device that exhibits an electrical output with respect to an optical input, as represented by a photodiode and an imaging device that convert an optical signal into an electrical signal, and a solar cell that converts optical energy into electrical energy.
However, organic solar cells have a problem of low energy conversion efficiency compared to silicon-based solar cells (single crystal silicon, polycrystalline silicon, amorphous silicon) currently used, and have been put into practical use. Not in.
 有機太陽電池の変換効率を向上させる手段の1つとして、素子を積層するタンデム型素子が報告されている。タンデム型素子とは、複数のヘテロ接合の半導体を、これら半導体間に接続層である中間電極を挟んで積み重ねて1つの素子を形成した構造体である。タンデム型素子は単層型素子(シングル素子;ヘテロ接合の半導体が1つだけの素子)に比べて、接続層である中間電極において電気的、光学的なロス等がない場合には開放端電圧を2倍(2層の場合)とすることができる。 As a means for improving the conversion efficiency of an organic solar cell, a tandem type element in which elements are stacked has been reported. A tandem element is a structure in which a plurality of heterojunction semiconductors are stacked to form one element with an intermediate electrode serving as a connection layer sandwiched between the semiconductors. The tandem type device has an open-ended voltage when there is no electrical or optical loss in the intermediate electrode as a connection layer, compared to a single layer type device (single device; device having only one heterojunction semiconductor). Can be doubled (in the case of two layers).
 上記タンデム型素子について、特許文献1は、中間電極に金属クラスターを使用し、フロントセルとバックセルの膜厚を薄くして光吸収のバランスを取り、フロントセルとバックセルで発生する光電流をほぼ同じにすることで変換効率を単層型素子に比べて向上させることに成功した例を開示する。
 また、非特許文献1は、F4-TCNQでドープした4MeO-TPD層を電荷輸送層として用い、中間電極と隣接した層として設置したタンデム型有機太陽電池により、シングル型素子に比較して変換効率の向上を報告している。
Regarding the tandem type element, Patent Document 1 uses a metal cluster as an intermediate electrode, thins the film thickness of the front cell and the back cell to balance light absorption, and generates a photocurrent generated in the front cell and the back cell. An example of succeeding in improving the conversion efficiency as compared with a single-layer type element by making it substantially the same will be disclosed.
Non-Patent Document 1 discloses that the conversion efficiency of a tandem organic solar cell using a 4MeO-TPD layer doped with F4-TCNQ as a charge transport layer and a layer adjacent to the intermediate electrode is higher than that of a single-type device. Reporting improvements.
特表2004-523129号公報JP-T-2004-523129
 本発明の目的は、高い変換効率を有する光電変換素子を提供することである。 An object of the present invention is to provide a photoelectric conversion element having high conversion efficiency.
 本発明者らは鋭意研究した結果、ドープ層を構成するドナー材料について、イオン化ポテンシャル(Ip)が小さい、例えばZnPc(5.1eV)や4MeO-TPD(5.3eV)といったIp≦5.3eVのドナー材料を用いると、有機太陽電の効率が高められない欠点があることを知見した。
 上記知見に基づき、本発明者らは、ドープ層を構成するドナー材料等について、エネルギー準位関係がある要件を満たす場合において、ドナー材料のイオン化ポテンシャル(Ip)が大きい場合でも高い効果を得られることを見出した。
As a result of intensive studies, the present inventors have found that the donor material constituting the doped layer has a low ionization potential (Ip), such as ZnPc (5.1 eV) or 4MeO-TPD (5.3 eV), where Ip ≦ 5.3 eV. It has been found that the use of a donor material has a drawback that the efficiency of organic solar power cannot be increased.
Based on the above findings, the present inventors can obtain a high effect even when the ionization potential (Ip) of the donor material is large in the case where the donor material constituting the doped layer satisfies the requirements having an energy level relationship. I found out.
 本発明によれば、以下の光電変換素子等が提供される。
1. 正極と負極からなる一対の電極と、
 前記一対の電極の間に配置される中間電極と、
 前記正極と中間電極の間に配置される第1の有機光電変換層と、
 前記負極と中間電極の間に配置される第2の有機光電変換層と、
 前記中間電極と第2の有機光電変換層との間に、アクセプター材料とドナー材料とを含むドープ層を備える有機光電変換素子であって、
 前記ドナー材料のイオン化ポテンシャル(Ip)のエネルギーIp(D)と、前記アクセプター材料の最低空分子軌道(LUMO)のエネルギーレベルの絶対値|LUMO(A)|が、Ip(D)-|LUMO(A)|≦0.7eVの関係にあり、
 前記ドナー材料のIp(D)が、5.4eV以上5.6eV以下である有機光電変換素子。
2.前記アクセプター材料が、シアノ化合物である1に記載の有機光電変換素子。
3.前記アクセプター材料が、下記式(1)で表わされるテトラシアノキノジメタン誘導体である1又は2に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数2~20のジアルキルアミン基又はシアノ基である。)
4.前記式(1)で表わされるテトラシアノキノジメタン誘導体の4つのRのうち少なくとも1つがシアノ基である3に記載の有機光電変換素子。
5.前記ドナー材料が、下記式(2)又は式(3)で示される化合物である、1~4のいずれかに記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000002
(式中、X、X、Y及びYは、それぞれ独立に、環形成炭素数6~40の置換もしくは無置換のアリール基である。
 R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~40の置換もしくは無置換のアルキル基、環形成炭素数3~10の置換もしくは無置換のシクロアルキル基、炭素数2~40の置換もしくは無置換のアルケニル基、炭素数2~40の置換もしくは無置換のアルキニル基、環形成炭素数6~40の置換もしくは無置換のアリール基、環形成原子数6~40の置換もしくは無置換のヘテロアリール基、炭素数1~40の置換もしくは無置換のアルコキシ基、環形成炭素数3~10の置換もしくは無置換のシクロアルコキシ基、環形成炭素数6~40の置換もしくは無置換のアリールオキシ基、環形成炭素数6~40の置換もしくは無置換のアリールアミノ基、又は炭素数1~40の置換もしくは無置換のアルキルアミノ基である。)
6.X、X、Y及びYの環形成炭素数6~40の置換もしくは無置換のアリール基が、下記式(4)で表わされる基である5に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~40の置換もしくは無置換のアルキル基、環形成炭素数3~10の置換もしくは無置換のシクロアルキル基、炭素数2~40の置換もしくは無置換のアルケニル基、炭素数2~40の置換もしくは無置換のアルキニル基、環形成炭素数6~40の置換もしくは無置換のアリール基、環形成原子数6~40の置換もしくは無置換のヘテロアリール基、炭素数1~40の置換もしくは無置換のアルコキシ基、環形成炭素数3~10の置換もしくは無置換のシクロアルコキシ基、環形成炭素数6~40の置換もしくは無置換のアリールオキシ基、環形成炭素数6~40の置換もしくは無置換のアリールアミノ基、又は炭素数1~40の置換もしくは無置換のアルキルアミノ基である。)
7.前記ドナー材料が、下記式(5)で表される芳香族アミン誘導体である1~4のいずれかに記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000004
(式中、Lは、フェニレン基、ビフェニレン基、テルフェニレン基、又は置換基として9位に環を形成していてもよい炭素数1~6のアルキル基を有するフルオレニレン基である。
 Arは、フェニル基、ナフチル基及びフェナントリル基から選ばれるアリール基で置換されたフェニル基、又はナフチル基であり、
 Ar~Arは、それぞれ独立に、フェニル基、ナフチル基置換のフェニル基、ビフェニル基、テルフェニル基、ナフチル基、フェニル基置換のナフチル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、又は置換基として9位に環を形成してもよい炭素数1~6のアルキル基を有するフルオレニル基であり、
 Ar~Arは互いに異なる、又はAr~Arのいずれか3つは互いに異なる。
 但し、Ar~Arは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子でさらに置換されていてもよい。)
8.前記ドナー材料が、下記式(5’)で表される芳香族アミン誘導体である1~4のいずれかに記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000005
(式中、L~Lはそれぞれ独立に、フェニレン基、ビフェニレン基、テルフェニレン基、又は置換基として9位に環を形成していてもよい炭素数1~6のアルキル基を有するフルオレニレン基である。
 Ar~Arは、それぞれ独立に、フェニル基、ナフチル基置換のフェニル基、ビフェニル基、テルフェニル基、ナフチル基、フェニル基置換のナフチル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、又は置換基として9位に環を形成してもよい炭素数1~6のアルキル基を有するフルオレニル基である。
 但し、Ar~Arは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子でさらに置換されていてもよい。)
9.正極と負極からなる一対の電極と、
 前記一対の電極の間に配置される中間電極と、
 前記正極と中間電極の間に配置される第1の有機光電変換層と、
 前記負極と中間電極の間に配置される第2の有機光電変換層と、
 前記中間電極と第2の有機光電変換層との間に、下記式(1)で表わされるテトラシアノキノジメタン誘導体であるアクセプター材料と下記式(2)又は(3)で表わされる化合物であるドナー材料とを含むドープ層を備える有機光電変換素子であって、
 前記ドナー材料のイオン化ポテンシャル(Ip)のエネルギーIp(D)と、前記アクセプター材料の最低空分子軌道(LUMO)のエネルギーレベルの絶対値|LUMO(A)|が、Ip(D)-|LUMO(A)|≦0.7eVの関係にあり、
 前記ドナー材料のIp(D)が、5.4eV以上5.6eV以下である有機光電変換素子。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数2~20のジアルキルアミン基又はシアノ基である。)
Figure JPOXMLDOC01-appb-C000007
(式中、X、X、Y及びYは、それぞれ独立に、環形成炭素数6~40の置換もしくは無置換のアリール基である。
 R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~40の置換もしくは無置換のアルキル基、環形成炭素数3~10の置換もしくは無置換のシクロアルキル基、炭素数2~40の置換もしくは無置換のアルケニル基、炭素数2~40の置換もしくは無置換のアルキニル基、環形成炭素数6~40の置換もしくは無置換のアリール基、環形成原子数6~40の置換もしくは無置換のヘテロアリール基、炭素数1~40の置換もしくは無置換のアルコキシ基、環形成炭素数3~10の置換もしくは無置換のシクロアルコキシ基、環形成炭素数6~40の置換もしくは無置換のアリールオキシ基、環形成炭素数6~40の置換もしくは無置換のアリールアミノ基、又は炭素数1~40の置換もしくは無置換のアルキルアミノ基である。)
10.前記式(1)で表わされるテトラシアノキノジメタン誘導体の4つのRのうち少なくとも1つがシアノ基である9に記載の有機光電変換素子。
11.X、X、Y及びYの環形成炭素数6~40の置換もしくは無置換のアリール基が、下記式(4)で表わされる基である9又は10に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000008
(式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~40の置換もしくは無置換のアルキル基、環形成炭素数3~10の置換もしくは無置換のシクロアルキル基、炭素数2~40の置換もしくは無置換のアルケニル基、炭素数2~40の置換もしくは無置換のアルキニル基、環形成炭素数6~40の置換もしくは無置換のアリール基、環形成原子数6~40の置換もしくは無置換のヘテロアリール基、炭素数1~40の置換もしくは無置換のアルコキシ基、環形成炭素数3~10の置換もしくは無置換のシクロアルコキシ基、環形成炭素数6~40の置換もしくは無置換のアリールオキシ基、環形成炭素数6~40の置換もしくは無置換のアリールアミノ基、又は炭素数1~40の置換もしくは無置換のアルキルアミノ基である。)
12.正極と負極からなる一対の電極と、
 前記一対の電極の間に配置される中間電極と、
 前記正極と中間電極の間に配置される第1の有機光電変換層と、
 前記負極と中間電極の間に配置される第2の有機光電変換層と、
 前記中間電極と第2の有機光電変換層との間に、下記式(1)で表わされるテトラシアノキノジメタン誘導体であるアクセプター材料と下記式(5)で表わされる芳香族アミン誘導体であるドナー材料とを含むドープ層を備える有機光電変換素子であって、
 前記ドナー材料のイオン化ポテンシャル(Ip)のエネルギーIp(D)と、前記アクセプター材料の最低空分子軌道(LUMO)のエネルギーレベルの絶対値|LUMO(A)|が、Ip(D)-|LUMO(A)|≦0.7eVの関係にあり、
 前記ドナー材料のIp(D)が、5.4eV以上5.6eV以下である有機光電変換素子。
Figure JPOXMLDOC01-appb-C000009
(式中、Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数2~20のジアルキルアミン基又はシアノ基である。)
Figure JPOXMLDOC01-appb-C000010
(式中、Lは、フェニレン基、ビフェニレン基、テルフェニレン基、又は置換基として9位に環を形成していてもよい炭素数1~6のアルキル基を有するフルオレニレン基である。
 Arは、フェニル基、ナフチル基及びフェナントリル基から選ばれるアリール基で置換されたフェニル基、又はナフチル基であり、
 Ar~Arは、それぞれ独立に、フェニル基、ナフチル基置換のフェニル基、ビフェニル基、テルフェニル基、ナフチル基、フェニル基置換のナフチル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、又は置換基として9位に環を形成してもよい炭素数1~6のアルキル基を有するフルオレニル基であり、
 Ar~Arは互いに異なる、又はAr~Arのいずれか1つは、Ar~Arのいずれか1つと同じである。
 但し、Ar~Arは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子でさらに置換されていてもよい。)
13.前記式(1)で表わされるテトラシアノキノジメタン誘導体の4つのRのうち少なくとも1つがシアノ基である12に記載の有機光電変換素子。
14.正極と負極からなる一対の電極と、
 前記一対の電極の間に配置される中間電極と、
 前記正極と中間電極の間に配置される第1の有機光電変換層と、
 前記負極と中間電極の間に配置される第2の有機光電変換層と、
 前記中間電極と第2の有機光電変換層との間に、下記式(1)で表わされるテトラシアノキノジメタン誘導体であるアクセプター材料と下記式(5’)で表わされる芳香族アミン誘導体であるドナー材料とを含むドープ層を備える有機光電変換素子であって、
 前記ドナー材料のイオン化ポテンシャル(Ip)のエネルギーIp(D)と、前記アクセプター材料の最低空分子軌道(LUMO)のエネルギーレベルの絶対値|LUMO(A)|が、Ip(D)-|LUMO(A)|≦0.7eVの関係にあり、
 前記ドナー材料のIp(D)が、5.4eV以上5.6eV以下である有機光電変換素子。
Figure JPOXMLDOC01-appb-C000011
(式中、Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数2~20のジアルキルアミン基又はシアノ基である。)
Figure JPOXMLDOC01-appb-C000012
(式中、L~Lはそれぞれ独立に、フェニレン基、ビフェニレン基、テルフェニレン基、又は置換基として9位に環を形成していてもよい炭素数1~6のアルキル基を有するフルオレニレン基である。
 Ar~Arは、それぞれ独立に、フェニル基、ナフチル基置換のフェニル基、ビフェニル基、テルフェニル基、ナフチル基、フェニル基置換のナフチル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、又は置換基として9位に環を形成してもよい炭素数1~6のアルキル基を有するフルオレニル基である。
 但し、Ar~Arは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子でさらに置換されていてもよい。)
15.前記第2の有機光電変換層が、前記ドープ層のドナー材料を含む1~14に記載の有機光電変換素子。
16.前記第2の有機光電変換層が、前記ドープ層と接する正孔輸送層を含み、前記正孔輸送層が、前記ドープ層のドナー材料を含む15に記載の有機光電変換素子。
17.前記中間電極が、Pt及びAu、並びにNi、Cu、Zn、Pd、Ag、Cd、Mo、V、Ti、In、Sn、Caの金属及び酸化物から選択される1以上からなる1~16のいずれかに記載の有機光電変換素子。
18.上記1~17のいずれか記載の有機光電変換素子を用いた有機薄膜太陽電池モジュール。
According to the present invention, the following photoelectric conversion elements and the like are provided.
1. A pair of electrodes consisting of a positive electrode and a negative electrode;
An intermediate electrode disposed between the pair of electrodes;
A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode;
A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode;
An organic photoelectric conversion device comprising a doped layer including an acceptor material and a donor material between the intermediate electrode and the second organic photoelectric conversion layer,
The energy Ip (D) of the ionization potential (Ip) of the donor material and the absolute value | LUMO (A) | of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) − | LUMO ( A) | ≦ 0.7 eV,
The organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
2. 2. The organic photoelectric conversion element according to 1, wherein the acceptor material is a cyano compound.
3. 3. The organic photoelectric conversion element according to 1 or 2, wherein the acceptor material is a tetracyanoquinodimethane derivative represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
(In the formula, each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .)
4). 4. The organic photoelectric conversion device according to 3, wherein at least one of the four Rs of the tetracyanoquinodimethane derivative represented by the formula (1) is a cyano group.
5. 5. The organic photoelectric conversion device according to any one of 1 to 4, wherein the donor material is a compound represented by the following formula (2) or formula (3).
Figure JPOXMLDOC01-appb-C000002
(Wherein X 1 , X 2 , Y 1 and Y 2 are each independently a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms.
R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, and 6 to 40 ring atoms A substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, a substituted or unsubstituted 6 to 40 ring carbon atoms, or Unsubstituted aryloxy group, substituted or unsubstituted arylamino group having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms It is. )
6). 6. The organic photoelectric conversion device according to 5, wherein the substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms of X 1 , X 2 , Y 1 and Y 2 is a group represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000003
Wherein R 3 to R 7 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms. Group, substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, number of ring forming atoms A substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, and 6 to 6 carbon atoms forming a ring 40 substituted or unsubstituted aryloxy groups, substituted or unsubstituted arylamino groups having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkyl groups having 1 to 40 carbon atoms It is an amino group.)
7). 5. The organic photoelectric conversion device according to any one of 1 to 4, wherein the donor material is an aromatic amine derivative represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000004
(In the formula, L is a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
Ar 1 is a phenyl group substituted with an aryl group selected from a phenyl group, a naphthyl group, and a phenanthryl group, or a naphthyl group,
Ar 2 to Ar 4 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a naphthyl group substituted with a phenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent;
Ar 1 to Ar 4 are different from each other, or any three of Ar 1 to Ar 4 are different from each other.
However, Ar 1 to Ar 4 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. )
8). 5. The organic photoelectric conversion device according to any one of 1 to 4, wherein the donor material is an aromatic amine derivative represented by the following formula (5 ′).
Figure JPOXMLDOC01-appb-C000005
Wherein L 1 to L 3 are each independently a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene having an alkyl group having 1 to 6 carbon atoms which may form a ring at the 9-position as a substituent. It is a group.
Ar 1 to Ar 6 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenyl group-substituted naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
However, Ar 1 to Ar 6 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. )
9. A pair of electrodes consisting of a positive electrode and a negative electrode;
An intermediate electrode disposed between the pair of electrodes;
A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode;
A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode;
An acceptor material that is a tetracyanoquinodimethane derivative represented by the following formula (1) and a compound represented by the following formula (2) or (3) between the intermediate electrode and the second organic photoelectric conversion layer. An organic photoelectric conversion element comprising a doped layer containing a donor material,
The energy Ip (D) of the ionization potential (Ip) of the donor material and the absolute value | LUMO (A) | of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) − | LUMO ( A) | ≦ 0.7 eV,
The organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
Figure JPOXMLDOC01-appb-C000006
(In the formula, each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .)
Figure JPOXMLDOC01-appb-C000007
(Wherein X 1 , X 2 , Y 1 and Y 2 are each independently a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms.
R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, and 6 to 40 ring atoms A substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, a substituted or unsubstituted 6 to 40 ring carbon atoms, or Unsubstituted aryloxy group, substituted or unsubstituted arylamino group having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms It is. )
10. 10. The organic photoelectric conversion element according to 9, wherein at least one of four Rs of the tetracyanoquinodimethane derivative represented by the formula (1) is a cyano group.
11. The organic photoelectric conversion device according to 9 or 10, wherein the substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms of X 1 , X 2 , Y 1 and Y 2 is a group represented by the following formula (4): .
Figure JPOXMLDOC01-appb-C000008
Wherein R 3 to R 7 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms. Group, substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, number of ring forming atoms A substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, and 6 to 6 carbon atoms forming a ring 40 substituted or unsubstituted aryloxy groups, substituted or unsubstituted arylamino groups having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkyl groups having 1 to 40 carbon atoms It is an amino group.)
12 A pair of electrodes consisting of a positive electrode and a negative electrode;
An intermediate electrode disposed between the pair of electrodes;
A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode;
A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode;
An acceptor material that is a tetracyanoquinodimethane derivative represented by the following formula (1) and a donor that is an aromatic amine derivative represented by the following formula (5) between the intermediate electrode and the second organic photoelectric conversion layer. An organic photoelectric conversion element comprising a doped layer containing a material,
The energy Ip (D) of the ionization potential (Ip) of the donor material and the absolute value | LUMO (A) | of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) − | LUMO ( A) | ≦ 0.7 eV,
The organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
Figure JPOXMLDOC01-appb-C000009
(In the formula, each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .)
Figure JPOXMLDOC01-appb-C000010
(In the formula, L is a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
Ar 1 is a phenyl group substituted with an aryl group selected from a phenyl group, a naphthyl group, and a phenanthryl group, or a naphthyl group,
Ar 2 to Ar 4 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a naphthyl group substituted with a phenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent;
Ar 1 ~ Ar 4 are different from each other, or one of Ar 1 ~ Ar 4 is any one of the same of Ar 1 ~ Ar 4.
However, Ar 1 to Ar 4 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. )
13. 13. The organic photoelectric conversion element according to 12, wherein at least one of four Rs of the tetracyanoquinodimethane derivative represented by the formula (1) is a cyano group.
14 A pair of electrodes consisting of a positive electrode and a negative electrode;
An intermediate electrode disposed between the pair of electrodes;
A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode;
A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode;
An acceptor material that is a tetracyanoquinodimethane derivative represented by the following formula (1) and an aromatic amine derivative represented by the following formula (5 ′) between the intermediate electrode and the second organic photoelectric conversion layer. An organic photoelectric conversion element comprising a doped layer containing a donor material,
The energy Ip (D) of the ionization potential (Ip) of the donor material and the absolute value | LUMO (A) | of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) − | LUMO ( A) | ≦ 0.7 eV,
The organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
Figure JPOXMLDOC01-appb-C000011
(In the formula, each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .)
Figure JPOXMLDOC01-appb-C000012
Wherein L 1 to L 3 are each independently a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent. It is a group.
Ar 1 to Ar 6 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenyl group-substituted naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
However, Ar 1 to Ar 6 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. )
15. 15. The organic photoelectric conversion element according to 1 to 14, wherein the second organic photoelectric conversion layer contains a donor material for the doped layer.
16. 16. The organic photoelectric conversion element according to 15, wherein the second organic photoelectric conversion layer includes a hole transport layer in contact with the doped layer, and the hole transport layer includes a donor material of the doped layer.
17. The intermediate electrode is made of 1 to 16 selected from Pt and Au, and one or more selected from metals and oxides of Ni, Cu, Zn, Pd, Ag, Cd, Mo, V, Ti, In, Sn, and Ca. The organic photoelectric conversion element in any one.
18. 18. An organic thin film solar cell module using the organic photoelectric conversion device as described in any one of 1 to 17 above.
 本発明によれば、高い変換効率を有する光電変換素子が提供できる。 According to the present invention, a photoelectric conversion element having high conversion efficiency can be provided.
文献記載化合物のHOMO及びLUMOの文献値及び計算値から得られる近似曲線を示す図である。It is a figure which shows the approximated curve obtained from the literature value and calculation value of HOMO of a literature description compound, and LUMO. 評価例1及び3のドープ層単層素子のJ-V特性を示す図である。It is a figure which shows the JV characteristic of the doped layer single layer element of Evaluation Examples 1 and 3. 評価例2及び4のドープ層単層素子のJ-V特性を示す図である。It is a figure which shows the JV characteristic of the doped layer single layer element of the evaluation examples 2 and 4.
 本発明の光電変換素子は、正極と負極からなる一対の電極と、一対の電極の間に配置される中間電極と、正極と中間電極の間に配置される第1の有機光電変換層と、負極と中間電極の間に配置される第2の有機光電変換層と、中間電極と第2の有機光電変換層との間に、アクセプター材料及びドナー材料を含むドープ層とを備える。
 以下、各層について説明する。
The photoelectric conversion element of the present invention includes a pair of electrodes composed of a positive electrode and a negative electrode, an intermediate electrode disposed between the pair of electrodes, a first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode, A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode, and a doped layer including an acceptor material and a donor material are provided between the intermediate electrode and the second organic photoelectric conversion layer.
Hereinafter, each layer will be described.
[ドープ層]
 本発明の有機光電変換素子のドープ層は、アクセプター材料及びドナー材料を含み、ドナー材料のイオン化ポテンシャル(Ip)のエネルギーであるIp(D)と、アクセプター材料の最低空分子軌道(LUMO)のエネルギーレベルの絶対値である|LUMO(A)|が、Ip(D)-|LUMO(A)|≦0.7eVの関係にあり、好ましくはIp(D)-|LUMO(A)|≦0.6eVである。
 尚、Ip(D)-|LUMO(A)|の下限は特に限定されないが、例えば0eVである。
 また、ドープ層のドナー材料は、Ip(D)が、5.4eV以上5.6eV以下であり、好ましくは5.4eV以上5.5eV以下である。
[Dope layer]
The doped layer of the organic photoelectric conversion element of the present invention includes an acceptor material and a donor material, and Ip (D) that is the ionization potential (Ip) energy of the donor material and the energy of the lowest unoccupied molecular orbital (LUMO) of the acceptor material. | LUMO (A) |, which is the absolute value of the level, has a relationship of Ip (D) − | LUMO (A) | ≦ 0.7 eV, preferably Ip (D) − | LUMO (A) | ≦ 0. 6 eV.
The lower limit of Ip (D) − | LUMO (A) | is not particularly limited, but is 0 eV, for example.
The donor material of the doped layer has an Ip (D) of 5.4 eV or more and 5.6 eV or less, preferably 5.4 eV or more and 5.5 eV or less.
 ドープ層は低抵抗且つ高透過率な層であり、上記のエネルギー準位の要件を満たすことで、隣接する光電変換層の電荷輸送を妨げることのない光学スペーサー層として機能できる。ドープ層を設けることで、入射光と反射光により生じる光学干渉効果を考慮した最適な素子の膜厚設計を行うことができ、有機光電変換素子の光電変換特性を高効率にすることができる。
 上記は、光電変換素子が2以上の光電変換層を有するタンデム素子の場合に大きな効果が得られる。
The doped layer is a low-resistance and high-transmittance layer, and can function as an optical spacer layer that does not interfere with charge transport between adjacent photoelectric conversion layers by satisfying the above energy level requirements. By providing the doped layer, it is possible to design an optimal element thickness considering the optical interference effect caused by incident light and reflected light, and to improve the photoelectric conversion characteristics of the organic photoelectric conversion element.
The above effect is significant when the photoelectric conversion element is a tandem element having two or more photoelectric conversion layers.
 ドナー材料のイオン化ポテンシャルのエネルギーであるIp(D)及びアクセプター材料のLUMOのエネルギーレベルの絶対値である|LUMO(A)|は、例えば以下の方法で測定することができる。
 ドナー材料のイオン化ポテンシャルのエネルギーであるIp(D)は、ITOガラス基板上に真空蒸着で目的化合物の薄膜を成膜し、ITOガラス基板上の薄膜を用いて大気下で光電子分光装置(理研計器(株)社製:AC-3)を用いて測定することができる。具体的には、目的化合物の薄膜に光を照射し、その際に電荷分離によって生じる電子量を測定することにより測定することができる。
Ip (D), which is the ionization potential energy of the donor material, and | LUMO (A) |, which is the absolute value of the LUMO energy level of the acceptor material, can be measured, for example, by the following method.
Ip (D), which is the ionization potential energy of the donor material, forms a thin film of the target compound on the ITO glass substrate by vacuum deposition, and uses the thin film on the ITO glass substrate to produce a photoelectron spectrometer (RIKEN Keiki Co., Ltd.) in the atmosphere. It can be measured using Co., Ltd. (AC-3). Specifically, it can be measured by irradiating a thin film of the target compound with light and measuring the amount of electrons generated by charge separation at that time.
 本発明の光電変換素子のドープ層のアクセプター材料は、HOMOの値が深い場合があり、上記光電子分光装置ではHOMOの値を正確に測定できないおそれがある。LUMOは、HOMOの値と光学吸収端から求められるエネルギーギャップの差から算出される値であるため、アクセプター材料のLUMOも、同様に正確な測定が困難となるおそれがある。
 HOMOの値が深いアクセプター材料は、分子軌道ソフトを用いることで、LUMOの値を算出することができる。
The acceptor material of the doped layer of the photoelectric conversion element of the present invention may have a deep HOMO value, and the photoelectron spectrometer may not be able to accurately measure the HOMO value. Since LUMO is a value calculated from the difference between the HOMO value and the energy gap obtained from the optical absorption edge, the LUMO of the acceptor material may also be difficult to accurately measure.
For acceptor materials having a deep HOMO value, the LUMO value can be calculated by using molecular orbital software.
 例えば分子軌道ソフトとして、WINWOSTERを使用する場合、「J.AM.CHEM.SOC.2007,129,15259」、「Adv.Mater.2005,17,285.」、「Appl.Phys.Lett.,2001,79,126.」及び「J.Appl.Phys.,2003,93,3693.」に開示の化合物について、これら化合物の文献値(上記文献に記載の値)と、分子軌道ソフトを用いて得られた計算値(計算条件がMOPAC/AM1)を比較する。これら化合物は、有機薄膜太陽電池で慣用されている化合物であって、イオン化ポテンシャル及びアフィニティが大きい化合物である。
 文献記載の化合物を以下に示す。また文献記載の化合物のHOMO及びLUMOの文献値と計算値を表1に示す。尚、文献値と計算値では、文献値が材料薄膜の固体としての物性としての値であるのに対し、計算値は一分子を基に計算して得られる値であるため、互いに異なっている。
Figure JPOXMLDOC01-appb-C000013
For example, when WINWOSTER is used as molecular orbital software, “J. AM. CHEM. SOC. 2007, 129, 15259”, “Adv. Mater. 2005, 17, 285.”, “Appl. Phys. Lett., 2001” 79, 126. ”and“ J. Appl. Phys., 2003, 93, 3693. ”, the literature values of these compounds (values described in the above literature) and molecular orbital software are used. The calculated values (calculation conditions are MOPAC / AM1) are compared. These compounds are compounds commonly used in organic thin-film solar cells, and have high ionization potential and affinity.
The compounds described in the literature are shown below. Table 1 shows literature values and calculated values of HOMO and LUMO of the compounds described in the literature. The literature value and the calculated value are different from each other because the literature value is a value as a physical property of the material thin film as a solid, whereas the calculated value is a value obtained by calculation based on one molecule. .
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図1に示すように上記文献値と計算値から近似曲線を求め、目的化合物の計算値を、当該近似曲線に当てはめることで、目的化合物のHOMO及びLUMOを算出できる。
 図1の近似曲線を用いた場合の実施例化合物C及びDのHOMO及びLUMOは、化合物CのHOMOが7.9eVでLUMOが4.6eVであり、化合物DのHOMOが7.1eVでLUMOが4.9eVである。
Figure JPOXMLDOC01-appb-C000014
As shown in FIG. 1, by calculating an approximate curve from the above literature values and calculated values, and applying the calculated value of the target compound to the approximate curve, HOMO and LUMO of the target compound can be calculated.
Example HOMO and LUMO in the case of using the approximate curve of FIG. 1 HOMO and LUMO of Compound C and D are 7.9 eV and LUMO of 4.6 eV for Compound C, and HOMO of Compound D is 7.1 eV and LUMO is 4.9 eV.
Figure JPOXMLDOC01-appb-C000014
 アクセプター材料は、例えば電子吸引性の置換基を有する有機化合物であり、具体的には、電子吸引性の置換基を有するキノイド誘導体、電子吸引性の置換基を有するピラジン誘導体、電子吸引性の置換基を有するアリールボラン誘導体、電子吸引性の置換基を有するイミド誘導体等が挙げられる。
 例えば上記キノイド誘導体としては、キノジメタン誘導体、チオピランジオキシド誘導体、チオキサンテンジオキシド誘導体、キノン誘導体等が挙げられ、電子吸引性の置換基として、フルオロ基、シアノ基が挙げられ、これら化合物は1種単独で、又は2種以上の混合物として使用できる。
 これらのうち、好ましくは電子吸引性基の置換基がシアノ基であるシアノ化合物である。
The acceptor material is, for example, an organic compound having an electron-withdrawing substituent, and specifically, a quinoid derivative having an electron-withdrawing substituent, a pyrazine derivative having an electron-withdrawing substituent, and an electron-withdrawing substitution. And arylborane derivatives having a group, imide derivatives having an electron-withdrawing substituent, and the like.
For example, examples of the quinoid derivative include quinodimethane derivatives, thiopyran dioxide derivatives, thioxanthene dioxide derivatives, quinone derivatives, and the like, and examples of electron-withdrawing substituents include fluoro groups and cyano groups. The species can be used alone or as a mixture of two or more species.
Of these, preferred are cyano compounds in which the substituent of the electron-withdrawing group is a cyano group.
 アクセプター材料であるシアノ化合物としては、好ましくは下記式(1)で表わされるテトラシアノキノジメタン誘導体である。式(1)で表わされるテトラシアノキノジメタン誘導体は、より好ましくは4つのRのうち少なくとも1つがシアノ基であり、さらに好ましくは4つのRのうち少なくとも2つがシアノ基である。
Figure JPOXMLDOC01-appb-C000015
(式中、Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数2~20のジアルキルアミン基又はシアノ基である。)
The cyano compound that is an acceptor material is preferably a tetracyanoquinodimethane derivative represented by the following formula (1). In the tetracyanoquinodimethane derivative represented by the formula (1), at least one of the four Rs is preferably a cyano group, and more preferably at least two of the four Rs are cyano groups.
Figure JPOXMLDOC01-appb-C000015
(In the formula, each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .)
 ドナー材料としては、例えば有機化合物であれば、N,N’-ビス(3-トリル)-N,N’-ジフェニルベンジジン(mTPD)、N,N’-ジナフチル-N,N’-ジフェニルベンジジン(NPD)、4,4’,4’’-トリス(フェニル-3-トリルアミノ)トリフェニルアミン(MTDATA)等に代表されるアミン化合物;フタロシアニン(Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)、チタニルフタロシアニン(TiOPc)等のフタロシアニン類;オクタエチルポルフィリン(OEP)、白金オクタエチルポルフィリン(PtOEP)、亜鉛テトラフェニルポルフィリン(ZnTPP)等に代表されるポルフィリン類;アントラセン、テトラセン、ペンタセン等のアセン類;及びチオフェン基等をπ共役として導入した化合物が挙げられ;高分子化合物であれば、ポリヘキシルチオフェン(P3HT)、メトキシエチルヘキシロキシフェニレンビニレン(MEHPPV)等の主鎖型共役高分子類、ポリビニルカルバゾール等に代表される側鎖型高分子類等が挙げられる。
 これら化合物は1種単独で、又は2種以上の混合物として使用できる。
As the donor material, for example, in the case of an organic compound, N, N′-bis (3-tolyl) -N, N′-diphenylbenzidine (mTPD), N, N′-dinaphthyl-N, N′-diphenylbenzidine ( NPD), 4,4 ′, 4 ″ -tris (phenyl-3-tolylamino) triphenylamine (MTDATA) and other amine compounds; phthalocyanine (Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc) Phthalocyanines such as titanyl phthalocyanine (TiOPc); porphyrins typified by octaethylporphyrin (OEP), platinum octaethylporphyrin (PtOEP), zinc tetraphenylporphyrin (ZnTPP), and the like; acenes such as anthracene, tetracene, and pentacene And a thiophene group etc. In the case of a high molecular compound, main chain conjugated polymers such as polyhexylthiophene (P3HT) and methoxyethylhexyloxyphenylene vinylene (MEHPPV), and side chains represented by polyvinylcarbazole and the like. Type polymers.
These compounds can be used individually by 1 type or in mixture of 2 or more types.
 ドナー材料は、好ましくは下記式(2)又は式(3)で示される化合物である。
Figure JPOXMLDOC01-appb-C000016
(式中、X、X、Y及びYは、それぞれ独立に、環形成炭素数6~40の置換もしくは無置換のアリール基である。
 R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~40の置換もしくは無置換のアルキル基、環形成炭素数3~10の置換もしくは無置換のシクロアルキル基、炭素数2~40の置換もしくは無置換のアルケニル基、炭素数2~40の置換もしくは無置換のアルキニル基、環形成炭素数6~40の置換もしくは無置換のアリール基、環形成原子数6~40の置換もしくは無置換のヘテロアリール基、炭素数1~40の置換もしくは無置換のアルコキシ基、環形成炭素数3~10の置換もしくは無置換のシクロアルコキシ基、環形成炭素数6~40の置換もしくは無置換のアリールオキシ基、環形成炭素数6~40の置換もしくは無置換のアリールアミノ基、又は炭素数1~40の置換もしくは無置換のアルキルアミノ基である。)
The donor material is preferably a compound represented by the following formula (2) or formula (3).
Figure JPOXMLDOC01-appb-C000016
(Wherein X 1 , X 2 , Y 1 and Y 2 are each independently a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms.
R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, and 6 to 40 ring atoms A substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, a substituted or unsubstituted 6 to 40 ring carbon atoms, or Unsubstituted aryloxy group, substituted or unsubstituted arylamino group having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms It is. )
 上記式(2)及び(3)において、X、X、Y及びYの環形成炭素数6~40の置換もしくは無置換のアリール基は、好ましくは下記式(4)で表わされる基である。
Figure JPOXMLDOC01-appb-C000017
(式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~40の置換もしくは無置換のアルキル基、環形成炭素数3~10の置換もしくは無置換のシクロアルキル基、炭素数2~40の置換もしくは無置換のアルケニル基、炭素数2~40の置換もしくは無置換のアルキニル基、環形成炭素数6~40の置換もしくは無置換のアリール基、環形成原子数6~40の置換もしくは無置換のヘテロアリール基、炭素数1~40の置換もしくは無置換のアルコキシ基、環形成炭素数3~10の置換もしくは無置換のシクロアルコキシ基、環形成炭素数6~40の置換もしくは無置換のアリールオキシ基、環形成炭素数6~40の置換もしくは無置換のアリールアミノ基、又は炭素数1~40の置換もしくは無置換のアルキルアミノ基である。)
In the above formulas (2) and (3), the substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms of X 1 , X 2 , Y 1 and Y 2 is preferably represented by the following formula (4) It is a group.
Figure JPOXMLDOC01-appb-C000017
Wherein R 3 to R 7 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms. Group, substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, number of ring forming atoms A substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, and 6 to 6 carbon atoms forming a ring 40 substituted or unsubstituted aryloxy groups, substituted or unsubstituted arylamino groups having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkyl groups having 1 to 40 carbon atoms It is an amino group.)
 以下に、式(2)及び(3)で示される化合物の好ましい具体例を示す。但し、(2)及び(3)で表わされる化合物は、下記に限定されない。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Below, the preferable specific example of a compound shown by Formula (2) and (3) is shown. However, the compounds represented by (2) and (3) are not limited to the following.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 上記の式(2)及び(3)で示される化合物の具体例のうち、より好ましくは下記化合物である。
Figure JPOXMLDOC01-appb-C000020
Of the specific examples of the compounds represented by the above formulas (2) and (3), the following compounds are more preferable.
Figure JPOXMLDOC01-appb-C000020
 ドナー材料は、好ましくは下記式(5)又は(5’)で表される芳香族アミン誘導体である。
Figure JPOXMLDOC01-appb-C000021
(式(5)中、Lは、フェニレン基、ビフェニレン基、テルフェニレン基、又は置換基として9位に環を形成していてもよい炭素数1~6のアルキル基を有するフルオレニレン基である。
 Arは、フェニル基、ナフチル基及びフェナントリル基から選ばれるアリール基で置換されたフェニル基、又はナフチル基であり、
 Ar~Arは、それぞれ独立に、フェニル基、ナフチル基置換のフェニル基、ビフェニル基、テルフェニル基、ナフチル基、フェニル基置換のナフチル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、又は置換基として9位に環を形成してもよい炭素数1~6のアルキル基を有するフルオレニル基であり、
 Ar~Arは互いに異なる、又はAr~Arのいずれか3つは互いに異なる。
 但し、Ar~Arは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子でさらに置換されていてもよい。)
(式(5’)中、L~Lはそれぞれ独立に、フェニレン基、ビフェニレン基、テルフェニレン基、又は置換基として9位に環を形成していてもよい炭素数1~6のアルキル基を有するフルオレニレン基である。
 Ar~Arは、それぞれ独立に、フェニル基、ナフチル基置換のフェニル基、ビフェニル基、テルフェニル基、ナフチル基、フェニル基置換のナフチル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、又は置換基として9位に環を形成してもよい炭素数1~6のアルキル基を有するフルオレニル基である。
 但し、Ar~Arは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子でさらに置換されていてもよい。)
The donor material is preferably an aromatic amine derivative represented by the following formula (5) or (5 ′).
Figure JPOXMLDOC01-appb-C000021
(In Formula (5), L is a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
Ar 1 is a phenyl group substituted with an aryl group selected from a phenyl group, a naphthyl group, and a phenanthryl group, or a naphthyl group,
Ar 2 to Ar 4 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a naphthyl group substituted with a phenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent;
Ar 1 to Ar 4 are different from each other, or any three of Ar 1 to Ar 4 are different from each other.
However, Ar 1 to Ar 4 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. )
(In Formula (5 ′), L 1 to L 3 are each independently a phenylene group, a biphenylene group, a terphenylene group, or an alkyl group having 1 to 6 carbon atoms that may form a ring at the 9-position as a substituent. It is a fluorenylene group having a group.
Ar 1 to Ar 6 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenyl group-substituted naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
However, Ar 1 to Ar 6 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. )
 上述の通り、式(5)のAr~Arのうち少なくとも3つは、置換基(炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子)を除いたアリール骨格部分が互いに異なる。 As described above, at least three of Ar 1 to Ar 4 in the formula (5) are a substituent (an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an alkoxycarbonyl having 1 to 10 carbon atoms). The aryl skeleton portions excluding the group or halogen atom are different from each other.
 式(5)又は(5’)で表わされる化合物の具体例を以下に示す。但し、式(5)又は(5’)で表わされる化合物は、下記化合物に限定されない。
Figure JPOXMLDOC01-appb-C000022
Specific examples of the compound represented by the formula (5) or (5 ′) are shown below. However, the compound represented by the formula (5) or (5 ′) is not limited to the following compounds.
Figure JPOXMLDOC01-appb-C000022
 ドープ層は、好ましくはアクセプター材料が式(1)で表わされるテトラシアノキノジメタン誘導体であって、ドナー材料が式(2)又は(3)で表わされる化合物の組み合わせからなるドープ層、又はアクセプター材料が式(1)で表わされるテトラシアノキノジメタン誘導体であって、ドナー材料が式(5)又は(5’)で表わされる芳香族アミン誘導体の組み合わせからなるドープ層である。 Preferably, the doped layer is a tetracyanoquinodimethane derivative in which the acceptor material is represented by the formula (1), and the donor material is a combination of compounds represented by the formula (2) or (3), or the acceptor The material is a tetracyanoquinodimethane derivative represented by the formula (1), and the donor material is a doped layer made of a combination of aromatic amine derivatives represented by the formula (5) or (5 ′).
 ドープ層において、アクセプター材料とドナー材料の含有比(又はドープ率)は、例えば質量比でドナー材料に対してアクセプター材料が0.1~80%であり、好ましくは0.5~50%であり、より好ましくは1~20%である。
 また、ドープ層の厚さは、例えば1~300nmであり、好ましくは5~250nmであり、より好ましくは10~200nmである。
In the doped layer, the content ratio (or doping ratio) of the acceptor material and the donor material is, for example, 0.1 to 80%, preferably 0.5 to 50% of the acceptor material with respect to the donor material in terms of mass ratio. More preferably, it is 1 to 20%.
Further, the thickness of the doped layer is, for example, 1 to 300 nm, preferably 5 to 250 nm, and more preferably 10 to 200 nm.
[第1の有機光電変換層と第2の有機光電変換層]
 第1の有機光電変換層及び第2の有機光電変換層は、それぞれ以下のような層構成をとることができる。尚、第1の有機光電変換層及び第2の有機光電変換層の層構成は、互いに同じでも異なってもよい。
 (1)下部電極(正極)|電荷輸送層/i層(p材料とn材料の混合層)|上部電極(負極)
 (2)下部電極(正極)|i層/電荷輸送層|上部電極(負極)
 (3)下部電極(正極)|電荷輸送層/i層/電荷輸送層|上部電極(負極)
 (4)下部電極(正極)|電荷輸送層/p層/n層|上部電極(負極)
 (5)下部電極(正極)|p層/n層/電荷輸送層|上部電極(負極)
 (6)下部電極(正極)|電荷輸送層/p層/n層/電荷輸送層|上部電極(負極)
 (7)下部電極(正極)|電荷輸送層/p層/n層/バッファー層|上部電極(負極)
 (8)下部電極(正極)|バッファー層/電荷輸送層/p層/n層/バッファー層|上部電極(負極)
 (9)下部電極(正極)|バッファー層/電荷輸送層/p層/i層/n層/バッファー層|上部電極(負極)
[First organic photoelectric conversion layer and second organic photoelectric conversion layer]
Each of the first organic photoelectric conversion layer and the second organic photoelectric conversion layer can have the following layer structure. The layer configurations of the first organic photoelectric conversion layer and the second organic photoelectric conversion layer may be the same as or different from each other.
(1) Lower electrode (positive electrode) | Charge transport layer / i layer (mixed layer of p and n materials) | Upper electrode (negative electrode)
(2) Lower electrode (positive electrode) | i layer / charge transport layer | Upper electrode (negative electrode)
(3) Lower electrode (positive electrode) | Charge transport layer / i layer / charge transport layer | Upper electrode (negative electrode)
(4) Lower electrode (positive electrode) | Charge transport layer / p layer / n layer | Upper electrode (negative electrode)
(5) Lower electrode (positive electrode) | p layer / n layer / charge transport layer | Upper electrode (negative electrode)
(6) Lower electrode (positive electrode) | Charge transport layer / p layer / n layer / charge transport layer | Upper electrode (negative electrode)
(7) Lower electrode (positive electrode) | Charge transport layer / p layer / n layer / buffer layer | Upper electrode (negative electrode)
(8) Lower electrode (positive electrode) | Buffer layer / charge transport layer / p layer / n layer / buffer layer | Upper electrode (negative electrode)
(9) Lower electrode (positive electrode) | Buffer layer / charge transport layer / p layer / i layer / n layer / buffer layer | Upper electrode (negative electrode)
 また、上記の構成において、p層とn層を置換してもよい(逆構成)。例えば上記(4)及び(6)を逆構成にした場合、以下のような構造が挙げられる。この場合、正極であった下部電極は負極として用い、上部電極は正極として用いる。
 (10)下部電極(負極)|電荷輸送層/n層/p層|上部電極(正極)
 (11)下部電極(負極)|電荷輸送層/n層/p層/電荷輸送層|上部電極(正極)
In the above configuration, the p layer and the n layer may be replaced (reverse configuration). For example, when the above (4) and (6) are reversed, the following structures are mentioned. In this case, the lower electrode that was the positive electrode is used as the negative electrode, and the upper electrode is used as the positive electrode.
(10) Lower electrode (negative electrode) | Charge transport layer / n layer / p layer | Upper electrode (positive electrode)
(11) Lower electrode (negative electrode) | Charge transport layer / n layer / p layer / charge transport layer | Upper electrode (positive electrode)
 電荷輸送層は、電荷を輸送する層であり、例えば(6)の層構成であれば、正極側の電荷輸送層は正孔輸送層であり、負極側の電荷輸送層は電子輸送層である。
 電荷輸送層は、その主たる輸送電荷と逆の電荷の輸送をブロックする機能を有することが好ましい。具体的に、電荷発生層(例えばp層及びn層)で生じた正孔を正極へ効率的に移動させるために、正極と電荷発生層の間にある電荷輸送層(正孔輸送層)は、正極側への電子の移動を防止するように構成されることが好ましい。また、負極と電荷発生層の間にある電荷輸送層(電子輸送層)は、電荷発生層で生じた電子を負極へ効率的に移動させるために、負極側への正孔の移動を防止するように構成されることが好ましい。電荷の輸送をブロックする機能を有しない場合、例えば正極側において、正極と電荷発生層の間にある電荷輸送層(正孔輸送層)で、正極側への正孔と電子の移動が起こることにより、正孔と電子の再結合による失活が起こる。同様に負極側において、負極と電荷発生層の間にある電荷輸送層(電子輸送層)で、負極側への電子と正孔の移動が起こることにより、正孔と電子の再結合による失活が起こることが考えられる。
 従って、電荷輸送層がその主たる輸送電荷と逆の電荷の輸送をブロックする機能を有することで正孔と電子に再結合による失活を抑制させることができ、効率的に電荷を各電極へ取り出すことが可能となる。
The charge transport layer is a layer that transports charges. For example, in the case of (6), the charge transport layer on the positive electrode side is a hole transport layer, and the charge transport layer on the negative electrode side is an electron transport layer. .
The charge transport layer preferably has a function of blocking charge transport opposite to the main transport charge. Specifically, in order to efficiently move holes generated in the charge generation layer (eg, p layer and n layer) to the positive electrode, a charge transport layer (hole transport layer) between the positive electrode and the charge generation layer is It is preferably configured to prevent movement of electrons to the positive electrode side. The charge transport layer (electron transport layer) between the negative electrode and the charge generation layer prevents the movement of holes to the negative electrode side in order to efficiently move electrons generated in the charge generation layer to the negative electrode. It is preferable to be configured as described above. When it does not have a function to block charge transport, for example, on the positive electrode side, movement of holes and electrons to the positive electrode side occurs in the charge transport layer (hole transport layer) between the positive electrode and the charge generation layer. As a result, deactivation occurs due to recombination of holes and electrons. Similarly, on the negative electrode side, the charge transport layer (electron transport layer) located between the negative electrode and the charge generation layer causes the movement of electrons and holes to the negative electrode side, resulting in deactivation due to recombination of holes and electrons. Can occur.
Therefore, the charge transport layer has a function of blocking the transport of charges opposite to the main transport charge, so that deactivation due to recombination with holes and electrons can be suppressed, and the charge is efficiently taken out to each electrode. It becomes possible.
 電荷輸送層の材料としては、特に限定されないが、例えば(6)の層構成であれば、正極側の電荷輸送層は正孔輸送層であり、正孔受容体としての機能を有する化合物が好ましく、正孔の移動度が高い材料が好ましい。また、負極側の電荷輸送層は電子輸送層であり、電子受容体としての機能を有する化合物が好ましく、電子の移動度が高い材料が好ましい。 The material for the charge transport layer is not particularly limited. For example, in the case of the layer configuration of (6), the charge transport layer on the positive electrode side is a hole transport layer, and a compound having a function as a hole acceptor is preferable. A material having a high hole mobility is preferable. The charge transport layer on the negative electrode side is an electron transport layer, preferably a compound having a function as an electron acceptor, and preferably a material having high electron mobility.
 電荷発生層は、光を吸収し電荷(正孔及び電子)を発生させる層であり、例えば電子供与性であるp材料からなる層(p層)、電子受容性であるn材料からなるn層、又はp材料とn材料の混合層(i層)のいずれかである。i層を単独で、又はこれらの層を組み合わせて電荷発生層とすることができる。 The charge generation layer is a layer that absorbs light and generates charges (holes and electrons). For example, a layer (p layer) made of an electron donating p material, an n layer made of an electron accepting n material. Or a mixed layer (i layer) of p material and n material. The i layer can be used alone or in combination as a charge generation layer.
 p材料は特に限定されないが、正孔受容体としての機能を有する化合物が好ましく、正孔の移動度が高い材料が好ましい。
 例えば、N,N’-ビス(3-トリル)-N,N’-ジフェニルベンジジン(mTPD)、N,N’-ジナフチル-N,N’-ジフェニルベンジジン(NPD)、4,4’,4’’-トリス(フェニル-3-トリルアミノ)トリフェニルアミン(MTDATA)等に代表されるアミン化合物、フタロシアニン(Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)、チタニルフタロシアニン(TiOPc)、ホウ素フタロシアニン(SubPc)等のフタロシアニン錯体、ナフタロシアニン錯体、ベンゾポルフィリン(BP)、オクタエチルポルフィリン(OEP)、白金オクタエチルポルフィリン(PtOEP)、亜鉛テトラフェニルポルフィリン(ZnTPP)等に代表されるポルフィリン錯体が挙げられる。
 また、溶液による塗布プロセスを用いる高分子化合物であれば、メトキシエチルヘキシロキシフェニレンビニレン(MEHPPV)、ポリヘキシルチオフェン(P3HT)、シクロペンタジチオフェン‐ベンゾチアジアゾール(PCPDTBT)等の主鎖型共役高分子類、ポリビニルカルバゾール等に代表される側鎖型高分子類等が挙げられる。
The p material is not particularly limited, but a compound having a function as a hole acceptor is preferable, and a material having a high hole mobility is preferable.
For example, N, N′-bis (3-tolyl) -N, N′-diphenylbenzidine (mTPD), N, N′-dinaphthyl-N, N′-diphenylbenzidine (NPD), 4,4 ′, 4 ′ Amine compounds typified by '-tris (phenyl-3-tolylamino) triphenylamine (MTDATA), etc., phthalocyanine (Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), titanyl phthalocyanine (TiOPc), boron phthalocyanine ( Examples thereof include phthalocyanine complexes such as SubPc), naphthalocyanine complexes, benzoporphyrin (BP), octaethylporphyrin (OEP), platinum octaethylporphyrin (PtOEP), and zinc tetraphenylporphyrin (ZnTPP).
Moreover, if it is a high molecular compound using the application | coating process by a solution, main chain type conjugated polymers, such as methoxyethyl hexyloxy phenylene vinylene (MEHPPV), polyhexyl thiophene (P3HT), cyclopentadithiophene-benzothiadiazole (PCPDTBT) And side chain polymers represented by polyvinylcarbazole and the like.
 上記のp材料のうち、錯体が好ましく、特にフタロシアニン錯体又はナフタロシアニン錯体が好ましい。
 フタロシアニン錯体類は、色素顔料の代表的な一つであるフタロシアニンブルーで知られるように、堅牢な骨格であり光や熱に対する耐候性、耐熱性が優れている。電荷発生層として、良好な光吸収により電荷を生成することが可能であり、且つ、耐久性においても優れた材料であるためである。
 錯体の中心金属は特に限定されるものでは無く、マグネシウム(Mg)、亜鉛(Zn)、鉄(Fe)、ニッケル(Ni)、コバルト(Co)、錫(Sn)、鉛(Pb)、銅(Cu)、シリコン(Si)、パラジウム(Pd)、チタン(Ti)、チタニル(TiO)、又はバナジウム(V)、バナジル(VO)等の金属原子又はオキソメタル原子であってもよい。
 ナフタロシアニン錯体としては、下記化合物が好ましい。
Figure JPOXMLDOC01-appb-C000023
Of the above-mentioned p materials, a complex is preferable, and a phthalocyanine complex or a naphthalocyanine complex is particularly preferable.
The phthalocyanine complexes are solid skeletons and have excellent weather resistance and heat resistance to light and heat, as is known for phthalocyanine blue, which is a representative pigment. This is because the charge generation layer is a material capable of generating charges by good light absorption and having excellent durability.
The central metal of the complex is not particularly limited, and magnesium (Mg), zinc (Zn), iron (Fe), nickel (Ni), cobalt (Co), tin (Sn), lead (Pb), copper ( It may be a metal atom such as Cu), silicon (Si), palladium (Pd), titanium (Ti), titanyl (TiO), vanadium (V), vanadyl (VO), or an oxometal atom.
As the naphthalocyanine complex, the following compounds are preferable.
Figure JPOXMLDOC01-appb-C000023
 p材料の、イオン化ポテンシャル(Ip)は、5.2~5.8eVであることが好ましい。これにより、電荷発生層のn材料のアフィニティとのエネルギーギャップが十分に大きくなり、有機薄膜太陽電池の開放端電圧(Voc)を高くすることが可能となるため、有機薄膜太陽電池の変換効率を向上することができる。 The ionization potential (Ip) of the p material is preferably 5.2 to 5.8 eV. As a result, the energy gap with the affinity of the n material of the charge generation layer becomes sufficiently large, and the open-circuit voltage (Voc) of the organic thin film solar cell can be increased. Can be improved.
 n材料は特に限定されないが、正孔供与体としての機能を有する化合物が好ましく、電子の移動度が高い材料が好ましい。
 例えば、有機化合物であれば、C60、C70等のフラーレン誘導体、カーボンナノチューブ、ペリレン誘導体、多環キノン、キナクリドン等、高分子系ではCN-ポリ(フェニレン-ビニレン)、MEH-CN-PPV、-CN基又はCF基含有ポリマー、ポリ(フルオレン)誘導体等を挙げることができる。好ましくは、アフィニティ(電子親和力)が小さい材料が好ましい。アフィニティの小さい材料をn層として組み合わせることで充分な開放端電圧を実現することができる。
 変換効率の点でフラーレン又はフラーレン誘導体が好ましい。
The n material is not particularly limited, but a compound having a function as a hole donor is preferable, and a material having high electron mobility is preferable.
For example, in the case of organic compounds, fullerene derivatives such as C 60 and C 70 , carbon nanotubes, perylene derivatives, polycyclic quinones, quinacridones, and the like, such as CN-poly (phenylene-vinylene), MEH-CN-PPV, -CN group or CF 3 group-containing polymer, poly (fluorene) derivative and the like. A material having a small affinity (electron affinity) is preferable. A sufficient open-circuit voltage can be realized by combining materials with low affinity as the n layer.
Fullerenes or fullerene derivatives are preferred in terms of conversion efficiency.
 無機化合物であれば、n型特性の無機半導体化合物を挙げることができる。具体的には、n-Si、GaAs、CdS、PbS、CdSe、InP、Nb,WO,Fe等のドーピング半導体及び化合物半導体、又、二酸化チタン(TiO)、一酸化チタン(TiO)、三酸化二チタン(Ti)等の酸化チタン、酸化亜鉛(ZnO)、酸化スズ(SnO)等の導電性酸化物が挙げられる。これらのうちの1種又は2種以上を組み合わせて用いてもよい。変換効率の点で好ましくは、酸化チタン、特に好ましくは、二酸化チタンを用いる。 Examples of inorganic compounds include n-type inorganic semiconductor compounds. Specifically, doping semiconductors and compound semiconductors such as n-Si, GaAs, CdS, PbS, CdSe, InP, Nb 2 O 5 , WO 3 , Fe 2 O 3 , titanium dioxide (TiO 2 ), monoxide Examples thereof include titanium oxide such as titanium (TiO) and dititanium trioxide (Ti 2 O 3 ), and conductive oxides such as zinc oxide (ZnO) and tin oxide (SnO 2 ). One or more of these may be used in combination. From the viewpoint of conversion efficiency, titanium oxide is preferably used, and titanium dioxide is particularly preferably used.
 電荷発生層の厚みは、例えば0.5~200nmであり、好ましくは1~100nmであり、より好ましくは2~50nmである。 The thickness of the charge generation layer is, for example, 0.5 to 200 nm, preferably 1 to 100 nm, and more preferably 2 to 50 nm.
 一般に、有機薄膜太陽電池は総膜厚が薄いことが多く、そのため正極と負極が短絡し、セル作製の歩留まりが低下することが多い。このような場合には、電極に接してバッファー層を積層することによってこれを防止することが好ましい。また、発生した電流を効率よく外部に取り出すためにもバッファー層を設けた方が好ましい。 In general, the organic thin film solar cell often has a thin total film thickness, and therefore, the positive electrode and the negative electrode are short-circuited, and the yield of cell fabrication often decreases. In such a case, it is preferable to prevent this by laminating a buffer layer in contact with the electrode. In addition, it is preferable to provide a buffer layer in order to efficiently extract the generated current to the outside.
 バッファー層に好ましい化合物としては、例えば、低分子化合物であれば下記に示すNTCDAに代表される芳香族環状酸無水物等が挙げられ、高分子化合物であればポリ(3,4-エチレンジオキシ)チオフェン:ポリスチレンスルホネート(PEDOT:PSS)、ポリアニリン:カンファースルホン酸(PANI:CSA)等に代表される公知の導電性高分子等が挙げられる。
Figure JPOXMLDOC01-appb-C000024
Preferred compounds for the buffer layer include, for example, aromatic cyclic acid anhydrides represented by NTCDA shown below for low molecular compounds, and poly (3,4-ethylenedioxy) for high molecular compounds. ) Known conductive polymers represented by thiophene: polystyrene sulfonate (PEDOT: PSS), polyaniline: camphorsulfonic acid (PANI: CSA), and the like.
Figure JPOXMLDOC01-appb-C000024
 バッファー層には、励起子が電極まで拡散して失活してしまうのを防止する役割を持たせることも可能である。このように励起子阻止層としてバッファー層を挿入することは、高効率化のために有効である。励起子阻止層は正極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
 この場合、励起子阻止層として好ましい材料としては、例えば有機EL素子用途で公知な正孔障壁層用材料又は電子障壁層用材料等が挙げられる。正孔障壁層として好ましい材料は、イオン化ポテンシャルが充分に大きい化合物であり、電子障壁層として好ましい材料は、電子親和力が充分に小さい化合物である。具体的には有機EL用途で公知な材料であるバソクプロイン(BCP)、バソフェナントロリン(BPhen)等が陰極側の正孔障壁層材料として挙げられる。
Figure JPOXMLDOC01-appb-C000025
The buffer layer can also have a role of preventing excitons from diffusing to the electrode and being deactivated. Inserting a buffer layer as an exciton blocking layer in this way is effective for increasing efficiency. The exciton blocking layer can be inserted on either the positive electrode side or the cathode side, or both can be inserted simultaneously.
In this case, as a preferable material for the exciton blocking layer, for example, a well-known material for a hole barrier layer or a material for an electron barrier layer for use in an organic EL device can be used. A preferable material for the hole blocking layer is a compound having a sufficiently large ionization potential, and a preferable material for the electron blocking layer is a compound having a sufficiently small electron affinity. Specifically, bathocuproin (BCP), bathophenanthroline (BPhen), and the like, which are well-known materials for organic EL applications, can be used as the cathode-side hole barrier layer material.
Figure JPOXMLDOC01-appb-C000025
 さらに、バッファー層には、上記n材料として例示した無機半導体化合物を用いてもよい。また、p型無機半導体化合物としてはCdTe、p-Si、SiC、GaAs、WO等を用いることができる。 Furthermore, you may use the inorganic semiconductor compound illustrated as said n material for a buffer layer. Further, as the p-type inorganic semiconductor compound, CdTe, p-Si, SiC, GaAs, WO 3 or the like can be used.
 バッファ層の厚みは、例えば0.1~200nmであり、好ましくは0.5~100nmであり、より好ましくは1~50nmである。 The thickness of the buffer layer is, for example, 0.1 to 200 nm, preferably 0.5 to 100 nm, and more preferably 1 to 50 nm.
 第1の有機光電変換層及び第2の有機光電変換層の層構成を説明したが、第2の有機光電変換層は、好ましくは第2の有機光電変換層を構成する層のいずれかがドープ層を構成するドナー材料を含み、より好ましくは第2の有機光電変換層が電荷輸送層(正孔輸送層)を含み、当該正孔輸送層がドープ層を構成するドナー材料を含む。 Although the layer structure of the first organic photoelectric conversion layer and the second organic photoelectric conversion layer has been described, the second organic photoelectric conversion layer is preferably doped with any of the layers constituting the second organic photoelectric conversion layer The donor material which comprises a layer is included, More preferably, a 2nd organic photoelectric converting layer contains a charge transport layer (hole transport layer), and the said hole transport layer contains the donor material which comprises a dope layer.
[正極及び負極]
 正極及び負極の材料は特に制限はなく、公知の導電性材料を使用できる。例えば、正極としては、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)、金(Au)、オスミウム(Os),パラジウム(Pd)等の金属が使用でき、負極としては、銀(Ag)、アルミニウム(Al)、インジウム(IN),カルシウム(Ca),白金(Pt)リチウム(Li)等の金属やMg:Ag、Mg:InやAl:Li等の2成分金属系,さらには正極の例示材料が使用できる。
[Positive electrode and negative electrode]
The material for the positive electrode and the negative electrode is not particularly limited, and a known conductive material can be used. For example, a metal such as tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), gold (Au), osmium (Os), palladium (Pd) can be used as the positive electrode, and silver (Ag) can be used as the negative electrode. ), Aluminum (Al), indium (IN), calcium (Ca), platinum (Pt), lithium (Li), and other metals, binary metals such as Mg: Ag, Mg: In, Al: Li, and the positive electrode The following exemplary materials can be used.
 尚、高効率の光電変換特性を得るためには、有機薄膜太陽電池の少なくとも一方の面は太陽光スペクトルにおいて充分透明にすることが望ましい。透明電極は、公知の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように形成する。受光面の電極の光透過率は10%以上とすることが望ましい。一対の電極構成の好ましい構成では、電極部の一方が仕事関数の大きな金属を含み、他方は仕事関数の小さな金属を含む。 In order to obtain highly efficient photoelectric conversion characteristics, it is desirable that at least one surface of the organic thin film solar cell be sufficiently transparent in the sunlight spectrum. The transparent electrode is formed using a known conductive material so as to ensure predetermined translucency by a method such as vapor deposition or sputtering. The light transmittance of the electrode on the light receiving surface is preferably 10% or more. In a preferred configuration of the pair of electrode configurations, one of the electrode portions includes a metal having a high work function, and the other includes a metal having a low work function.
[中間電極]
 本発明のような積層型有機光電変換素子において、中間電極は、電子-正孔再結合ゾーンを形成し、積層型素子の個々の光電変換ユニットを分離することができる。
 中間電極は、正極側の光電変換ユニット(フロントセル)のn層と、負極側の光電変換ユニット(バックセル)のp層の間の逆ヘテロ接合の形成を防ぐ役目をする。中間電極は、正極側の光電変換ユニットから入る電子と負極側の光電変換ユニットからの正孔が再結合するゾーンを提供し、効率的な再結合によって光誘起電流を起こすことができる。
[Intermediate electrode]
In the stacked organic photoelectric conversion device as in the present invention, the intermediate electrode forms an electron-hole recombination zone, and the individual photoelectric conversion units of the stacked device can be separated.
The intermediate electrode serves to prevent the formation of a reverse heterojunction between the n layer of the positive-side photoelectric conversion unit (front cell) and the p-layer of the negative-electrode side photoelectric conversion unit (back cell). The intermediate electrode provides a zone where electrons entering from the photoelectric conversion unit on the positive electrode side and holes from the photoelectric conversion unit on the negative electrode side are recombined, and a photo-induced current can be generated by efficient recombination.
 中間電極は、好ましくは薄い金属層であり、当該金属層は、光が負極側の(複数の)光電変換ユニットに到達できるように、十分薄く且つ半透明であるとよい。
 従って、中間電極の厚さは、好ましくは約20Å以下であり、より好ましくは約5Å程度であり、中間電極は、金属の連続膜でも、孤立した金属ナノ粒子からなる層でもよい。
The intermediate electrode is preferably a thin metal layer, and the metal layer may be sufficiently thin and translucent so that light can reach the photoelectric conversion unit (s) on the negative electrode side.
Accordingly, the thickness of the intermediate electrode is preferably about 20 mm or less, more preferably about 5 mm, and the intermediate electrode may be a continuous film of metal or a layer made of isolated metal nanoparticles.
 中間電極の材料は特に限定されず、上記正極及び負極を形成する材料を用いることができ、好ましくはPt及びAu、並びにNi、Cu、Zn、Pd、Ag、Cd、Mo、V、Ti、In、Sn、Caの金属及び酸化物から選択される1以上からなる。
 上記Ni、Cu、Zn、Pd、Ag、Cd、Mo、V、Ti、In、Snの酸化物としては、例えばMoO、VO、ZnO、TiO、TiO、In、SnO及びVが挙げられる。
 中間電極は、より好ましくは銀からなる層、又は金からなる層、又はカルシウムからなる層、更に上述の金属及び酸化モリブデン(MoO)の積層膜又は混合膜、合金からなる層である。
The material for the intermediate electrode is not particularly limited, and materials for forming the positive electrode and the negative electrode can be used. Preferably, Pt and Au, and Ni, Cu, Zn, Pd, Ag, Cd, Mo, V, Ti, In It consists of one or more selected from the metals and oxides of Sn, Ca.
Examples of the oxides of Ni, Cu, Zn, Pd, Ag, Cd, Mo, V, Ti, In, and Sn include, for example, MoO 3 , VO, ZnO, TiO, TiO 2 , In 2 O 3 , SnO 2 and V. 2 O 5 is mentioned.
More preferably, the intermediate electrode is a layer made of silver, a layer made of gold, a layer made of calcium, a laminated film or mixed film of the above-mentioned metal and molybdenum oxide (MoO 3 ), or a layer made of an alloy.
[基板]
 基板は、機械的、熱的強度を有し、透明性を有するものが好ましい。例えば、ガラス基板及び透明性樹脂フィルムが挙げられる。
 透明性樹脂フィルムとしては、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリプロピレン等が挙げられる。
[substrate]
The substrate preferably has mechanical and thermal strength and has transparency. For example, a glass substrate and a transparent resin film are mentioned.
Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone. , Polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene, etc. It is.
[光電変換素子の製造方法]
 本発明の有機光電変換素子の各層の形成には、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法;及びスピンコーティング、ディップコート、キャスティング、ロールコート、フローコーティング、インクジェット等の湿式成膜法を適用することができる。
 上記いずれの成膜プロセス、あるいは組み合わせを適用することができるが、有機薄膜は水分・酸素の影響を受けるため、より好ましくは、成膜プロセスが統一されていることが望ましい。
[Production Method of Photoelectric Conversion Element]
For the formation of each layer of the organic photoelectric conversion element of the present invention, dry film forming methods such as vacuum deposition, sputtering, plasma, ion plating, etc .; and wet methods such as spin coating, dip coating, casting, roll coating, flow coating, and ink jet A film formation method can be applied.
Any of the above film forming processes or a combination thereof can be applied. However, since the organic thin film is affected by moisture and oxygen, it is more preferable that the film forming process is unified.
 各層の膜厚は特に限定されないが、適切な膜厚に設定するとよい。
 一般に有機薄膜の励起子拡散長は短いことが知られているため、膜厚が厚すぎると励起子がヘテロ界面に到達する前に失活してしまうため、光電変換効率が低くなるおそれがある。一方、膜厚が薄すぎるとピンホール等が発生してしまうため、充分なダイオード特性が得らず、変換効率が低下するおそれがある。
 従って、膜厚は通常1nmから10μmの範囲であり、好ましくは3nmから0.2μmの範囲である。
The thickness of each layer is not particularly limited, but may be set to an appropriate thickness.
In general, it is known that the exciton diffusion length of an organic thin film is short. If the film thickness is too thick, the exciton is deactivated before reaching the heterointerface, which may reduce the photoelectric conversion efficiency. . On the other hand, if the film thickness is too thin, pinholes and the like are generated, so that sufficient diode characteristics cannot be obtained and conversion efficiency may be reduced.
Therefore, the film thickness is usually in the range of 1 nm to 10 μm, preferably in the range of 3 nm to 0.2 μm.
 乾式成膜法は、公知の抵抗加熱法が好ましく、混合層の形成には、例えば、複数の蒸発源からの同時蒸着による成膜方法が好ましい。さらに好ましくは、成膜時に基板温度を制御する。 The dry film forming method is preferably a known resistance heating method, and for forming the mixed layer, for example, a film forming method by simultaneous vapor deposition from a plurality of evaporation sources is preferable. More preferably, the substrate temperature is controlled during film formation.
 湿式成膜法は、各層を形成する材料を、適切な溶媒に溶解又は分散させて有機溶液を調製し、湿式成膜法で形成した薄膜を適切な温度による加熱をして溶媒除去することで実施する。
 上記溶媒は任意の溶媒が使用でき、例えばジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、テトラクロロエタン、トリクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン等のハロゲン系炭化水素系溶媒や、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒、メタノールやエタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール等のアルコール系溶媒、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘキサン、オクタン、デカン、テトラリン等の炭化水素系溶媒、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル系溶媒等が挙げられ、これらの溶媒は単独で使用しても複数混合して用いてもよい。
 上記溶媒のうち、炭化水素系溶媒又はエーテル系溶媒が好ましい。
In the wet film formation method, an organic solution is prepared by dissolving or dispersing the material forming each layer in an appropriate solvent, and the thin film formed by the wet film formation method is heated at an appropriate temperature to remove the solvent. carry out.
Any solvent can be used as the solvent, for example, halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrachloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, dibutyl ether, tetrahydrofuran, dioxane, Ether solvents such as anisole, alcohol solvents such as methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, benzene, toluene, xylene, ethylbenzene, hexane, octane, decane , Hydrocarbon solvents such as tetralin, and ester solvents such as ethyl acetate, butyl acetate, and amyl acetate. These solvents are used alone. It may be used in multiple mixing.
Of the above solvents, hydrocarbon solvents or ether solvents are preferred.
 有機光電変換素子のいずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用してもよい。
 使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ-N-ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。
 また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等が挙げられる。
In any organic thin film layer of the organic photoelectric conversion element, an appropriate resin or additive may be used in order to improve film formability and prevent pinholes in the film.
Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
[タンデム型太陽電池の製造]
実施例1
 25mm×75mm×0.7mm厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間実施した。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着した。
 正極である透明電極ラインが形成されている側の面上に、化合物A膜(膜厚10nm:電荷輸送層)、SubNc膜(膜厚10nm:p層)、C60膜(膜厚20nm:n層)、BCP膜(膜厚5nm、バッファー層)、Ag膜(膜厚0.5nm:中間電極)、MoO膜(膜厚2nm:中間電極)、化合物A:化合物D膜(膜厚150nm:ドープ層)、化合物A膜(膜厚10nm:電荷輸送層)、SubNc膜(膜厚10nm:p層)、C60膜(膜厚20nm:n層)、BCP膜(膜厚10nm:バッファー層)、金属Al膜(膜厚80nm:負極)をこの順に積層し、有機薄膜太陽電池(素子面積0.5cm)を作製した。
 これら層は、抵抗加熱蒸着により積層し、ドープ層を除いて蒸着速度は1Å/sで実施した。上記ドープ層である化合物A:化合物D膜は、ドナー材料に化合物Aを抵抗加熱蒸着により1Å/sで成膜すると同時に、アクセプター材料として、化合物Dを抵抗加熱蒸着により0.05Å/sで共蒸着成膜することで成膜した。この時の化合物Dの蒸着温度は約210℃であった。
[Manufacture of tandem solar cells]
Example 1
A glass substrate with an ITO transparent electrode having a thickness of 25 mm × 75 mm × 0.7 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. The glass substrate with a transparent electrode line after washing was mounted on a substrate holder of a vacuum deposition apparatus.
Compound A film (film thickness: 10 nm: charge transport layer), SubNc film (film thickness: 10 nm: p layer), C60 film (film thickness: 20 nm: n layer) on the surface where the transparent electrode line as the positive electrode is formed ), BCP film (film thickness 5 nm, buffer layer), Ag film (film thickness 0.5 nm: intermediate electrode), MoO 3 film (film thickness 2 nm: intermediate electrode), compound A: compound D film (film thickness 150 nm: dope) Layer), Compound A film (film thickness 10 nm: charge transport layer), SubNc film (film thickness 10 nm: p layer), C60 film (film thickness 20 nm: n layer), BCP film (film thickness 10 nm: buffer layer), metal Al films (thickness 80 nm: negative electrode) were laminated in this order to produce an organic thin film solar cell (element area 0.5 cm 2 ).
These layers were laminated by resistance heating vapor deposition, and the vapor deposition rate was 1 Å / s except for the doped layer. The compound A: compound D film as the doped layer is formed by depositing compound A on the donor material at 1 加熱 / s by resistance heating vapor deposition and simultaneously using compound D as the acceptor material at 0.05 Å / s by resistance heating vapor deposition. The film was formed by vapor deposition. The deposition temperature of Compound D at this time was about 210 ° C.
 上記有機薄膜太陽電池の製造に用いた材料を以下に示す。
Figure JPOXMLDOC01-appb-C000026
The material used for manufacture of the said organic thin film solar cell is shown below.
Figure JPOXMLDOC01-appb-C000026
 得られた有機薄膜太陽電池について、以下の方法で、AM1.5条件下(光強度(Pin)100mW/cm)でI-V特性を測定した。開放端電圧(Voc)、短絡電流密度(Jsc)、曲線因子(FF)及び変換効率(η)の結果を表2に示す。
 尚、変換効率はη[%]は、Voc×Jsc×FF/Pin×100より算出した。
With respect to the obtained organic thin film solar cell, the IV characteristic was measured under the AM1.5 condition (light intensity (P in ) 100 mW / cm 2 ) by the following method. Table 2 shows the results of open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and conversion efficiency (η).
The conversion efficiency η [%] was calculated from Voc × Jsc × FF / P in × 100.
実施例2
 2つのSubNc膜のうち、正極側のSubNc膜の膜厚を20nmとし、2つのC60膜のうち、負極側のC60膜の膜厚を40nmとした他は実施例1と同様にして有機薄膜太陽電池を製造し、評価した。結果を表2に示す。
Example 2
Of the two SubNc film, and 20nm thickness of SubNc film positive side, of the two C 60 film, except that the thickness of the C 60 film on the negative electrode side was set to 40nm in the same manner as in Example 1 Organic Thin film solar cells were manufactured and evaluated. The results are shown in Table 2.
実施例3
 2つのSubNc膜のうち、正極側のSubNc膜の膜厚を20nmとし、2つのC60膜のうち、負極側のC60膜の膜厚を40nmとし、2つの化合物A膜に代えて、いずれも化合物B膜を成膜し、ドープ層のドナー材料として化合物Aの代わりに化合物Bを用いた他は実施例1と同様にして有機薄膜太陽電池を製造し、評価した。結果を表2に示す。
Example 3
Of the two SubNc film, and 20nm thickness of SubNc film positive side, of the two C 60 film, the thickness of the C 60 film on the negative electrode side and 40 nm, instead of the two compounds A film, either A compound B film was formed, and an organic thin film solar cell was manufactured and evaluated in the same manner as in Example 1 except that compound B was used instead of compound A as a donor material for the doped layer. The results are shown in Table 2.
実施例4
 2つの化合物A膜に代えて、いずれも化合物E膜を成膜し、ドープ層のドナー材料として化合物Aの代わりに化合物Eを用いた他は実施例2と同様にして有機薄膜太陽電池を製造し、評価した。結果を表2に示す。
Example 4
An organic thin film solar cell is manufactured in the same manner as in Example 2 except that a compound E film is formed in place of the two compound A films and the compound E is used in place of the compound A as a donor material for the doped layer. And evaluated. The results are shown in Table 2.
実施例5
 Ag膜をCaを用いて成膜した他は、実施例4と同様にして有機薄膜太陽電池を製造し、評価した。結果を表2に示す。
Example 5
An organic thin film solar cell was manufactured and evaluated in the same manner as in Example 4 except that the Ag film was formed using Ca. The results are shown in Table 2.
比較例1
 2つの化合物A膜に代えて、いずれも化合物D膜を成膜し、ドープ層のドナー材料として化合物Aの代わりに、以下に示す4MeO-TPDを用い、アクセプター材料として化合物Dの代わりに、化合物Cを用いた他は実施例1と同様にして有機薄膜太陽電池を製造し、評価した。結果を表2に示す。
 尚、ドープ層を形成する化合物Cの蒸着温度は約310℃であった。
Figure JPOXMLDOC01-appb-C000027
Comparative Example 1
In place of the two compound A films, a compound D film is formed, 4MeO-TPD shown below is used instead of compound A as the donor material of the doped layer, and compound D is used as the acceptor material instead of compound D. An organic thin-film solar cell was produced and evaluated in the same manner as in Example 1 except that C was used. The results are shown in Table 2.
The deposition temperature of compound C forming the dope layer was about 310 ° C.
Figure JPOXMLDOC01-appb-C000027
比較例2
 ドープ層のアクセプター材料として化合物Dの代わりに化合物Cを用いた他は実施例1と同様にして有機薄膜太陽電池を製造し、評価した。結果を表2に示す。
Comparative Example 2
An organic thin film solar cell was manufactured and evaluated in the same manner as in Example 1 except that Compound C was used instead of Compound D as an acceptor material for the doped layer. The results are shown in Table 2.
比較例3
 2つの化合物A膜に代えて、いずれも化合物B膜を成膜し、ドープ層のドナー材料として、化合物Aの代わりに化合物Bを用い、アクセプター材料して、化合物Dの代わりに化合物Cを用いた他は実施例1と同様にして有機薄膜太陽電池を製造し、評価した。結果を表2に示す。
Comparative Example 3
In place of the two compound A films, a compound B film is formed, and as the donor material of the doped layer, compound B is used instead of compound A, acceptor material, and compound C is used instead of compound D. In the same manner as in Example 1, an organic thin film solar cell was produced and evaluated. The results are shown in Table 2.
比較例4
 2つの化合物A膜に代えて、いずれもmTPD膜を成膜し、ドープ層のドナー材料として、化合物Aの代わりにmTPDを用い、アクセプター材料として、化合物Dの代わりに化合物Cを用いた他は実施例1と同様にして有機薄膜太陽電池を製造し、評価した。結果を表2に示す。
Comparative Example 4
In place of the two compound A films, both mTPD films were formed, mTPD was used instead of compound A as the donor material of the doped layer, and compound C was used instead of compound D as the acceptor material. Organic thin-film solar cells were manufactured and evaluated in the same manner as in Example 1. The results are shown in Table 2.
比較例5
 ドープ層のアクセプター材料として化合物Dの代わりに化合物Cを用いた他は実施例4と同様にして有機薄膜太陽電池を製造し、評価した。結果を表2に示す。
Comparative Example 5
An organic thin-film solar cell was produced and evaluated in the same manner as in Example 4 except that Compound C was used instead of Compound D as the acceptor material for the doped layer. The results are shown in Table 2.
比較例6
 ドープ層のアクセプター材料として化合物Dの代わりに化合物Cを用いた他は実施例5と同様にして有機薄膜太陽電池を製造し、評価した。結果を表2に示す。
Comparative Example 6
An organic thin film solar cell was manufactured and evaluated in the same manner as in Example 5 except that Compound C was used instead of Compound D as the acceptor material for the doped layer. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表中のドナー材料に用いた化合物のIp及びアクセプター材料に用いた化合物の|LUMO(A)|は、それぞれ本願明細書で説明した方法で測定したものである。 In the table, Ip of the compound used for the donor material and | LUMO (A) | of the compound used for the acceptor material were measured by the methods described in this specification.
 表が示すように、Ip(D)-|LUMO(A)|≦0.7eVを満たすドープ層を備える電池は、ドープ層の膜厚が150nmであっても、短絡電流密度Jscが低下しない結果となった。このことは、本発明のドープ層は、その厚さが素子特性に悪影響を与えないことを意味し、リーク等による歩留まり低下を防ぐことができることが分かる。
 また、特に実施例2から、Ip(D)-|LUMO(A)|≦0.7eVの関係を満たすドープ層が、その膜厚が150nmであってもJscが低下せず素子特性に悪影響を与えていないため、光生成を担う活性層膜厚の変更により、光学干渉効果を取り入れた素子設計が可能となり、タンデム素子特性が向上することが分かった。
As shown in the table, the battery including the doped layer satisfying Ip (D) − | LUMO (A) | ≦ 0.7 eV does not decrease the short-circuit current density Jsc even when the doped layer thickness is 150 nm. It became. This means that the thickness of the doped layer of the present invention does not adversely affect the device characteristics, and it can be seen that yield reduction due to leakage or the like can be prevented.
In particular, from Example 2, the doped layer satisfying the relationship of Ip (D) − | LUMO (A) | ≦ 0.7 eV does not lower the Jsc even if the film thickness is 150 nm, which adversely affects the device characteristics. Since it was not given, it was found that by changing the film thickness of the active layer responsible for light generation, element design incorporating the optical interference effect becomes possible, and tandem element characteristics are improved.
評価例1
[ドープ層単層素子の作製]
 25mm×75mm×0.7mm厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間実施した。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず正極である透明電極ラインが形成されている側の面上に、当該透明電極を覆うようにしてドナー材料である化合物Aを抵抗加熱蒸着により1Å/sで成膜すると同時に、アクセプター材料である化合物Cを抵抗加熱蒸着により0.05Å/sで共蒸着成膜することで、膜厚200nmのドープ層を成膜した。ドープ層上に、負極として金属Alを膜厚80nmで蒸着し、ドープ層単層素子(単電荷素子)を作製した。素子面積は0.5cmであった。
 得られたドープ層単層素子について、J-V特性評価を行った。結果を表3に示す。また、ドープ層単層素子のJ-V特性を図2に示す。
Evaluation Example 1
[Production of doped layer single layer element]
A glass substrate with an ITO transparent electrode having a thickness of 25 mm × 75 mm × 0.7 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. A glass substrate with a transparent electrode line after cleaning is mounted on a substrate holder of a vacuum deposition apparatus, and is a donor material so as to first cover the transparent electrode on the surface on which the transparent electrode line as a positive electrode is formed. Compound A is deposited by resistance heating vapor deposition at 1 Å / s, and at the same time, compound C as an acceptor material is co-evaporated by resistance heating deposition at 0.05 Å / s, thereby forming a 200 nm thick doped layer. did. On the doped layer, metal Al was deposited as a negative electrode in a film thickness of 80 nm to produce a doped layer single layer device (single charge device). The element area was 0.5 cm 2 .
The obtained doped layer single layer device was evaluated for JV characteristics. The results are shown in Table 3. FIG. 2 shows the JV characteristics of the doped layer single layer element.
評価例2-4
 ドナー材料及びアクセプター材料として、表3に示す化合物を用いた他は評価例1と同様にしてドープ層単層素子を製造し、評価した。結果を表3並びに図2及び3に示す。
Evaluation Example 2-4
A doped layer single layer device was manufactured and evaluated in the same manner as in Evaluation Example 1 except that the compounds shown in Table 3 were used as the donor material and the acceptor material. The results are shown in Table 3 and FIGS.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表が示すように、ドナー材料が化合物Aであって、アクセプター材料が化合物Cである評価例1のドープ層のJ-V特性が高抵抗であるのに対し、ドナー材料が化合物Aであって、アクセプター材料が化合物Dである評価例3のドープ層のJ-V特性がオーミック挙動を示していることから、評価例3のドープ層は、内在キャリアが充分に存在しており、低抵抗なドープ層となっていることが分かる。
 同様に、ドナー材料が化合物Bであって、アクセプター材料が化合物Cである評価例2のドープ層のJ-V特性が高抵抗であるのに対し、ドナー材料が化合物Bであって、アクセプター材料が化合物Dである評価例3のドープ層のJ-V特性がオーミック挙動を示していることから、評価例4のドープ層は、内在キャリアが充分に存在しており、低抵抗なドープ層となっていることが分かる。
 従って、|HOMO(D)|-|LUMO(A)|≦0.7eVの関係にあるドープ層が、オーミックなJV特性が得られる低抵抗なドープ層となりうることが分かる。
As shown in the table, the JV characteristic of the doped layer of Evaluation Example 1 in which the donor material is Compound A and the acceptor material is Compound C is high resistance, whereas the donor material is Compound A. Since the JV characteristic of the doped layer of Evaluation Example 3 in which the acceptor material is Compound D shows an ohmic behavior, the doped layer of Evaluation Example 3 has sufficient intrinsic carriers and has low resistance. It turns out that it is a dope layer.
Similarly, the JV characteristic of the doped layer of Evaluation Example 2 in which the donor material is Compound B and the acceptor material is Compound C is high resistance, whereas the donor material is Compound B and the acceptor material is Compound B. Since the JV characteristic of the doped layer of Evaluation Example 3 in which D is Compound D shows an ohmic behavior, the doped layer of Evaluation Example 4 has sufficient intrinsic carriers, and a low-resistance doped layer and You can see that
Therefore, it can be seen that a doped layer having a relationship of | HOMO (D) | − | LUMO (A) | ≦ 0.7 eV can be a low-resistance doped layer capable of obtaining ohmic JV characteristics.
 本発明の光電変換素子及び有機薄膜太陽電池モジュールは、時計、携帯電話及びモバイルパソコン等に使用できる。 The photoelectric conversion element and organic thin-film solar cell module of the present invention can be used for watches, mobile phones, mobile personal computers, and the like.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
The contents of the documents described in this specification and the specification of the Japanese application that is the basis of Paris priority of the present application are all incorporated herein.

Claims (18)

  1.  正極と負極からなる一対の電極と、
     前記一対の電極の間に配置される中間電極と、
     前記正極と中間電極の間に配置される第1の有機光電変換層と、
     前記負極と中間電極の間に配置される第2の有機光電変換層と、
     前記中間電極と第2の有機光電変換層との間に、アクセプター材料とドナー材料とを含むドープ層を備える有機光電変換素子であって、
     前記ドナー材料のイオン化ポテンシャル(Ip)のエネルギーIp(D)と、前記アクセプター材料の最低空分子軌道(LUMO)のエネルギーレベルの絶対値|LUMO(A)|が、Ip(D)-|LUMO(A)|≦0.7eVの関係にあり、
     前記ドナー材料のIp(D)が、5.4eV以上5.6eV以下である有機光電変換素子。
    A pair of electrodes consisting of a positive electrode and a negative electrode;
    An intermediate electrode disposed between the pair of electrodes;
    A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode;
    A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode;
    An organic photoelectric conversion device comprising a doped layer including an acceptor material and a donor material between the intermediate electrode and the second organic photoelectric conversion layer,
    The energy Ip (D) of the ionization potential (Ip) of the donor material and the absolute value | LUMO (A) | of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) − | LUMO ( A) | ≦ 0.7 eV,
    The organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
  2.  前記アクセプター材料が、シアノ化合物である請求項1に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 1, wherein the acceptor material is a cyano compound.
  3.  前記アクセプター材料が、下記式(1)で表わされるテトラシアノキノジメタン誘導体である請求項1又は2に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000028
    (式中、Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数2~20のジアルキルアミン基又はシアノ基である。)
    The organic photoelectric conversion device according to claim 1 or 2, wherein the acceptor material is a tetracyanoquinodimethane derivative represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000028
    (In the formula, each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .)
  4.  前記式(1)で表わされるテトラシアノキノジメタン誘導体の4つのRのうち少なくとも1つがシアノ基である請求項3に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 3, wherein at least one of four Rs of the tetracyanoquinodimethane derivative represented by the formula (1) is a cyano group.
  5.  前記ドナー材料が、下記式(2)又は式(3)で示される化合物である、請求項1~4のいずれかに記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000029
    (式中、X、X、Y及びYは、それぞれ独立に、環形成炭素数6~40の置換もしくは無置換のアリール基である。
     R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~40の置換もしくは無置換のアルキル基、環形成炭素数3~10の置換もしくは無置換のシクロアルキル基、炭素数2~40の置換もしくは無置換のアルケニル基、炭素数2~40の置換もしくは無置換のアルキニル基、環形成炭素数6~40の置換もしくは無置換のアリール基、環形成原子数6~40の置換もしくは無置換のヘテロアリール基、炭素数1~40の置換もしくは無置換のアルコキシ基、環形成炭素数3~10の置換もしくは無置換のシクロアルコキシ基、環形成炭素数6~40の置換もしくは無置換のアリールオキシ基、環形成炭素数6~40の置換もしくは無置換のアリールアミノ基、又は炭素数1~40の置換もしくは無置換のアルキルアミノ基である。)
    The organic photoelectric conversion device according to any one of claims 1 to 4, wherein the donor material is a compound represented by the following formula (2) or formula (3).
    Figure JPOXMLDOC01-appb-C000029
    (Wherein X 1 , X 2 , Y 1 and Y 2 are each independently a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms.
    R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, and 6 to 40 ring atoms A substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, a substituted or unsubstituted 6 to 40 ring carbon atoms, or Unsubstituted aryloxy group, substituted or unsubstituted arylamino group having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms It is. )
  6.  X、X、Y及びYの環形成炭素数6~40の置換もしくは無置換のアリール基が、下記式(4)で表わされる基である請求項5に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000030
    (式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~40の置換もしくは無置換のアルキル基、環形成炭素数3~10の置換もしくは無置換のシクロアルキル基、炭素数2~40の置換もしくは無置換のアルケニル基、炭素数2~40の置換もしくは無置換のアルキニル基、環形成炭素数6~40の置換もしくは無置換のアリール基、環形成原子数6~40の置換もしくは無置換のヘテロアリール基、炭素数1~40の置換もしくは無置換のアルコキシ基、環形成炭素数3~10の置換もしくは無置換のシクロアルコキシ基、環形成炭素数6~40の置換もしくは無置換のアリールオキシ基、環形成炭素数6~40の置換もしくは無置換のアリールアミノ基、又は炭素数1~40の置換もしくは無置換のアルキルアミノ基である。)
    6. The organic photoelectric conversion device according to claim 5, wherein the substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms of X 1 , X 2 , Y 1 and Y 2 is a group represented by the following formula (4): .
    Figure JPOXMLDOC01-appb-C000030
    Wherein R 3 to R 7 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms. Group, substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, number of ring forming atoms A substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, and 6 to 6 carbon atoms forming a ring 40 substituted or unsubstituted aryloxy groups, substituted or unsubstituted arylamino groups having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkyl groups having 1 to 40 carbon atoms It is an amino group.)
  7.  前記ドナー材料が、下記式(5)で表される芳香族アミン誘導体である請求項1~4のいずれかに記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000031
    (式中、Lは、フェニレン基、ビフェニレン基、テルフェニレン基、又は置換基として9位に環を形成していてもよい炭素数1~6のアルキル基を有するフルオレニレン基である。
     Arは、フェニル基、ナフチル基及びフェナントリル基から選ばれるアリール基で置換されたフェニル基、又はナフチル基であり、
     Ar~Arは、それぞれ独立に、フェニル基、ナフチル基置換のフェニル基、ビフェニル基、テルフェニル基、ナフチル基、フェニル基置換のナフチル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、又は置換基として9位に環を形成してもよい炭素数1~6のアルキル基を有するフルオレニル基であり、
     Ar~Arは互いに異なる、又はAr~Arのいずれか3つは互いに異なる。
     但し、Ar~Arは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子でさらに置換されていてもよい。)
    The organic photoelectric conversion device according to any one of claims 1 to 4, wherein the donor material is an aromatic amine derivative represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000031
    (In the formula, L is a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
    Ar 1 is a phenyl group substituted with an aryl group selected from a phenyl group, a naphthyl group, and a phenanthryl group, or a naphthyl group,
    Ar 2 to Ar 4 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a naphthyl group substituted with a phenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent;
    Ar 1 to Ar 4 are different from each other, or any three of Ar 1 to Ar 4 are different from each other.
    However, Ar 1 to Ar 4 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. )
  8.  前記ドナー材料が、下記式(5’)で表される芳香族アミン誘導体である請求項1~4のいずれかに記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000032
    (式中、L~Lはそれぞれ独立に、フェニレン基、ビフェニレン基、テルフェニレン基、又は置換基として9位に環を形成していてもよい炭素数1~6のアルキル基を有するフルオレニレン基である。
     Ar~Arは、それぞれ独立に、フェニル基、ナフチル基置換のフェニル基、ビフェニル基、テルフェニル基、ナフチル基、フェニル基置換のナフチル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、又は置換基として9位に環を形成してもよい炭素数1~6のアルキル基を有するフルオレニル基である。
     但し、Ar~Arは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子でさらに置換されていてもよい。)
    The organic photoelectric conversion device according to any one of claims 1 to 4, wherein the donor material is an aromatic amine derivative represented by the following formula (5 ').
    Figure JPOXMLDOC01-appb-C000032
    Wherein L 1 to L 3 are each independently a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene having an alkyl group having 1 to 6 carbon atoms which may form a ring at the 9-position as a substituent. It is a group.
    Ar 1 to Ar 6 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenyl group-substituted naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
    However, Ar 1 to Ar 6 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. )
  9.  正極と負極からなる一対の電極と、
     前記一対の電極の間に配置される中間電極と、
     前記正極と中間電極の間に配置される第1の有機光電変換層と、
     前記負極と中間電極の間に配置される第2の有機光電変換層と、
     前記中間電極と第2の有機光電変換層との間に、下記式(1)で表わされるテトラシアノキノジメタン誘導体であるアクセプター材料と下記式(2)又は(3)で表わされる化合物であるドナー材料とを含むドープ層を備える有機光電変換素子であって、
     前記ドナー材料のイオン化ポテンシャル(Ip)のエネルギーIp(D)と、前記アクセプター材料の最低空分子軌道(LUMO)のエネルギーレベルの絶対値|LUMO(A)|が、Ip(D)-|LUMO(A)|≦0.7eVの関係にあり、
     前記ドナー材料のIp(D)が、5.4eV以上5.6eV以下である有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000033
    (式中、Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数2~20のジアルキルアミン基又はシアノ基である。)
    Figure JPOXMLDOC01-appb-C000034
    (式中、X、X、Y及びYは、それぞれ独立に、環形成炭素数6~40の置換もしくは無置換のアリール基である。
     R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~40の置換もしくは無置換のアルキル基、環形成炭素数3~10の置換もしくは無置換のシクロアルキル基、炭素数2~40の置換もしくは無置換のアルケニル基、炭素数2~40の置換もしくは無置換のアルキニル基、環形成炭素数6~40の置換もしくは無置換のアリール基、環形成原子数6~40の置換もしくは無置換のヘテロアリール基、炭素数1~40の置換もしくは無置換のアルコキシ基、環形成炭素数3~10の置換もしくは無置換のシクロアルコキシ基、環形成炭素数6~40の置換もしくは無置換のアリールオキシ基、環形成炭素数6~40の置換もしくは無置換のアリールアミノ基、又は炭素数1~40の置換もしくは無置換のアルキルアミノ基である。)
    A pair of electrodes consisting of a positive electrode and a negative electrode;
    An intermediate electrode disposed between the pair of electrodes;
    A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode;
    A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode;
    An acceptor material that is a tetracyanoquinodimethane derivative represented by the following formula (1) and a compound represented by the following formula (2) or (3) between the intermediate electrode and the second organic photoelectric conversion layer. An organic photoelectric conversion element comprising a doped layer containing a donor material,
    The energy Ip (D) of the ionization potential (Ip) of the donor material and the absolute value | LUMO (A) | of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) − | LUMO ( A) | ≦ 0.7 eV,
    The organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
    Figure JPOXMLDOC01-appb-C000033
    (In the formula, each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .)
    Figure JPOXMLDOC01-appb-C000034
    (Wherein X 1 , X 2 , Y 1 and Y 2 are each independently a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms.
    R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms, A substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, and 6 to 40 ring atoms A substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, a substituted or unsubstituted 6 to 40 ring carbon atoms, or Unsubstituted aryloxy group, substituted or unsubstituted arylamino group having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkylamino group having 1 to 40 carbon atoms It is. )
  10.  前記式(1)で表わされるテトラシアノキノジメタン誘導体の4つのRのうち少なくとも1つがシアノ基である請求項9に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 9, wherein at least one of four Rs of the tetracyanoquinodimethane derivative represented by the formula (1) is a cyano group.
  11.  X、X、Y及びYの環形成炭素数6~40の置換もしくは無置換のアリール基が、下記式(4)で表わされる基である請求項9又は10に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000035
    (式中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~40の置換もしくは無置換のアルキル基、環形成炭素数3~10の置換もしくは無置換のシクロアルキル基、炭素数2~40の置換もしくは無置換のアルケニル基、炭素数2~40の置換もしくは無置換のアルキニル基、環形成炭素数6~40の置換もしくは無置換のアリール基、環形成原子数6~40の置換もしくは無置換のヘテロアリール基、炭素数1~40の置換もしくは無置換のアルコキシ基、環形成炭素数3~10の置換もしくは無置換のシクロアルコキシ基、環形成炭素数6~40の置換もしくは無置換のアリールオキシ基、環形成炭素数6~40の置換もしくは無置換のアリールアミノ基、又は炭素数1~40の置換もしくは無置換のアルキルアミノ基である。)
    The organic photoelectric device according to claim 9 or 10, wherein the substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms of X 1 , X 2 , Y 1 and Y 2 is a group represented by the following formula (4): Conversion element.
    Figure JPOXMLDOC01-appb-C000035
    Wherein R 3 to R 7 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 40 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 10 ring carbon atoms. Group, substituted or unsubstituted alkenyl group having 2 to 40 carbon atoms, substituted or unsubstituted alkynyl group having 2 to 40 carbon atoms, substituted or unsubstituted aryl group having 6 to 40 ring carbon atoms, number of ring forming atoms A substituted or unsubstituted heteroaryl group having 6 to 40 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 40 carbon atoms, a substituted or unsubstituted cycloalkoxy group having 3 to 10 ring carbon atoms, and 6 to 6 carbon atoms forming a ring 40 substituted or unsubstituted aryloxy groups, substituted or unsubstituted arylamino groups having 6 to 40 ring carbon atoms, or substituted or unsubstituted alkyl groups having 1 to 40 carbon atoms It is an amino group.)
  12.  正極と負極からなる一対の電極と、
     前記一対の電極の間に配置される中間電極と、
     前記正極と中間電極の間に配置される第1の有機光電変換層と、
     前記負極と中間電極の間に配置される第2の有機光電変換層と、
     前記中間電極と第2の有機光電変換層との間に、下記式(1)で表わされるテトラシアノキノジメタン誘導体であるアクセプター材料と下記式(5)で表わされる芳香族アミン誘導体であるドナー材料とを含むドープ層を備える有機光電変換素子であって、
     前記ドナー材料のイオン化ポテンシャル(Ip)のエネルギーIp(D)と、前記アクセプター材料の最低空分子軌道(LUMO)のエネルギーレベルの絶対値|LUMO(A)|が、Ip(D)-|LUMO(A)|≦0.7eVの関係にあり、
     前記ドナー材料のIp(D)が、5.4eV以上5.6eV以下である有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000036
    (式中、Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数2~20のジアルキルアミン基又はシアノ基である。)
    Figure JPOXMLDOC01-appb-C000037
    (式中、Lは、フェニレン基、ビフェニレン基、テルフェニレン基、又は置換基として9位に環を形成していてもよい炭素数1~6のアルキル基を有するフルオレニレン基である。
     Arは、フェニル基、ナフチル基及びフェナントリル基から選ばれるアリール基で置換されたフェニル基、又はナフチル基であり、
     Ar~Arは、それぞれ独立に、フェニル基、ナフチル基置換のフェニル基、ビフェニル基、テルフェニル基、ナフチル基、フェニル基置換のナフチル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、又は置換基として9位に環を形成してもよい炭素数1~6のアルキル基を有するフルオレニル基であり、
     Ar~Arは互いに異なる、又はAr~Arのいずれか1つは、Ar~Arのいずれか1つと同じである。
     但し、Ar~Arは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子でさらに置換されていてもよい。)
    A pair of electrodes consisting of a positive electrode and a negative electrode;
    An intermediate electrode disposed between the pair of electrodes;
    A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode;
    A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode;
    An acceptor material that is a tetracyanoquinodimethane derivative represented by the following formula (1) and a donor that is an aromatic amine derivative represented by the following formula (5) between the intermediate electrode and the second organic photoelectric conversion layer. An organic photoelectric conversion element comprising a doped layer containing a material,
    The energy Ip (D) of the ionization potential (Ip) of the donor material and the absolute value | LUMO (A) | of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) − | LUMO ( A) | ≦ 0.7 eV,
    The organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
    Figure JPOXMLDOC01-appb-C000036
    (In the formula, each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .)
    Figure JPOXMLDOC01-appb-C000037
    (In the formula, L is a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
    Ar 1 is a phenyl group substituted with an aryl group selected from a phenyl group, a naphthyl group, and a phenanthryl group, or a naphthyl group,
    Ar 2 to Ar 4 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a naphthyl group substituted with a phenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent;
    Ar 1 ~ Ar 4 are different from each other, or one of Ar 1 ~ Ar 4 is any one of the same of Ar 1 ~ Ar 4.
    However, Ar 1 to Ar 4 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. )
  13.  前記式(1)で表わされるテトラシアノキノジメタン誘導体の4つのRのうち少なくとも1つがシアノ基である請求項12に記載の有機光電変換素子。 The organic photoelectric conversion device according to claim 12, wherein at least one of four Rs of the tetracyanoquinodimethane derivative represented by the formula (1) is a cyano group.
  14.  正極と負極からなる一対の電極と、
     前記一対の電極の間に配置される中間電極と、
     前記正極と中間電極の間に配置される第1の有機光電変換層と、
     前記負極と中間電極の間に配置される第2の有機光電変換層と、
     前記中間電極と第2の有機光電変換層との間に、下記式(1)で表わされるテトラシアノキノジメタン誘導体であるアクセプター材料と下記式(5’)で表わされる芳香族アミン誘導体であるドナー材料とを含むドープ層を備える有機光電変換素子であって、
     前記ドナー材料のイオン化ポテンシャル(Ip)のエネルギーIp(D)と、前記アクセプター材料の最低空分子軌道(LUMO)のエネルギーレベルの絶対値|LUMO(A)|が、Ip(D)-|LUMO(A)|≦0.7eVの関係にあり、
     前記ドナー材料のIp(D)が、5.4eV以上5.6eV以下である有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000038
    (式中、Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、炭素数2~20のジアルキルアミン基又はシアノ基である。)
    Figure JPOXMLDOC01-appb-C000039
    (式中、L~Lはそれぞれ独立に、フェニレン基、ビフェニレン基、テルフェニレン基、又は置換基として9位に環を形成していてもよい炭素数1~6のアルキル基を有するフルオレニレン基である。
     Ar~Arは、それぞれ独立に、フェニル基、ナフチル基置換のフェニル基、ビフェニル基、テルフェニル基、ナフチル基、フェニル基置換のナフチル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、又は置換基として9位に環を形成してもよい炭素数1~6のアルキル基を有するフルオレニル基である。
     但し、Ar~Arは、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルコキシカルボニル基又はハロゲン原子でさらに置換されていてもよい。)
    A pair of electrodes consisting of a positive electrode and a negative electrode;
    An intermediate electrode disposed between the pair of electrodes;
    A first organic photoelectric conversion layer disposed between the positive electrode and the intermediate electrode;
    A second organic photoelectric conversion layer disposed between the negative electrode and the intermediate electrode;
    An acceptor material that is a tetracyanoquinodimethane derivative represented by the following formula (1) and an aromatic amine derivative represented by the following formula (5 ′) between the intermediate electrode and the second organic photoelectric conversion layer. An organic photoelectric conversion element comprising a doped layer containing a donor material,
    The energy Ip (D) of the ionization potential (Ip) of the donor material and the absolute value | LUMO (A) | of the lowest unoccupied molecular orbital (LUMO) of the acceptor material are Ip (D) − | LUMO ( A) | ≦ 0.7 eV,
    The organic photoelectric conversion element whose Ip (D) of the said donor material is 5.4 eV or more and 5.6 eV or less.
    Figure JPOXMLDOC01-appb-C000038
    (In the formula, each R is independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyloxy group having 1 to 10 carbon atoms, a dialkylamine group having 2 to 20 carbon atoms, or a cyano group. .)
    Figure JPOXMLDOC01-appb-C000039
    Wherein L 1 to L 3 are each independently a phenylene group, a biphenylene group, a terphenylene group, or a fluorenylene having an alkyl group having 1 to 6 carbon atoms which may form a ring at the 9-position as a substituent. It is a group.
    Ar 1 to Ar 6 are each independently a phenyl group, a phenyl group substituted with a naphthyl group, a biphenyl group, a terphenyl group, a naphthyl group, a phenyl group-substituted naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, A fluoranthenyl group or a fluorenyl group having a C 1-6 alkyl group which may form a ring at the 9-position as a substituent.
    However, Ar 1 to Ar 6 may be further substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, or a halogen atom. )
  15.  前記第2の有機光電変換層が、前記ドープ層のドナー材料を含む請求項1~14に記載の有機光電変換素子。 The organic photoelectric conversion element according to any one of claims 1 to 14, wherein the second organic photoelectric conversion layer contains a donor material of the doped layer.
  16.  前記第2の有機光電変換層が、前記ドープ層と接する正孔輸送層を含み、前記正孔輸送層が、前記ドープ層のドナー材料を含む請求項15に記載の有機光電変換素子。 The organic photoelectric conversion element according to claim 15, wherein the second organic photoelectric conversion layer includes a hole transport layer in contact with the doped layer, and the hole transport layer includes a donor material of the doped layer.
  17.  前記中間電極が、Pt及びAu、並びにNi、Cu、Zn、Pd、Ag、Cd、Mo、V、Ti、In、Sn、Caの金属及び酸化物から選択される1以上からなる請求項1~16のいずれかに記載の有機光電変換素子。 The intermediate electrode is made of Pt and Au, and one or more selected from metals and oxides of Ni, Cu, Zn, Pd, Ag, Cd, Mo, V, Ti, In, Sn, and Ca. The organic photoelectric conversion element according to any one of 16.
  18.  請求項1~17のいずれか記載の有機光電変換素子を用いた有機薄膜太陽電池モジュール。 An organic thin-film solar cell module using the organic photoelectric conversion element according to any one of claims 1 to 17.
PCT/JP2012/008316 2012-01-06 2012-12-26 Organic photoelectric conversion element and organic thin-film solar battery module WO2013102985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-001311 2012-01-06
JP2012001311 2012-01-06

Publications (1)

Publication Number Publication Date
WO2013102985A1 true WO2013102985A1 (en) 2013-07-11

Family

ID=48745061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008316 WO2013102985A1 (en) 2012-01-06 2012-12-26 Organic photoelectric conversion element and organic thin-film solar battery module

Country Status (3)

Country Link
JP (1) JPWO2013102985A1 (en)
TW (1) TW201341345A (en)
WO (1) WO2013102985A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073426A (en) * 2015-10-05 2017-04-13 日本放送協会 Imaging element
JP2018515917A (en) * 2015-04-27 2018-06-14 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Organic salts for high pressure organic and transparent solar cells
US10297766B2 (en) 2017-04-28 2019-05-21 Panasonic Intellectual Property Management Co., Ltd. Composition containing naphthalocyanine derivative, photoelectric conversion element containing the same, and imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230109778A (en) * 2015-05-29 2023-07-20 소니 세미컨덕터 솔루션즈 가부시키가이샤 Photoelectric conversion element and solid-state image capture device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117798A (en) * 2006-10-31 2008-05-22 Stanley Electric Co Ltd Organic thin-film element and tandem type photoelectric conversion element
JP2009270011A (en) * 2008-05-07 2009-11-19 Tokyo Univ Of Agriculture & Technology Conjugated polymer compound with controlled electron state and organic semiconductor material using the same
JP2009302247A (en) * 2008-06-12 2009-12-24 Idemitsu Kosan Co Ltd Material for organic thin film solar cell, and organic thin film solar cell using the same
JP2010059417A (en) * 2008-08-07 2010-03-18 Mitsubishi Chemicals Corp Polymer, material for luminescent layer, material for organic electroluminescent element, composition for organic electroluminescent element, and organic electroluminescent element, organic solar cell element, organic el display device, and organic el lighting utilizing the same
WO2010050197A1 (en) * 2008-10-30 2010-05-06 出光興産株式会社 Organic thin-film solar cell
WO2010132236A1 (en) * 2009-05-13 2010-11-18 Global Oled Technology Llc. Internal connector for organic electronic devices
JP2011228752A (en) * 2003-03-19 2011-11-10 Heliatek Gmbh Photoactive component with organic layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228752A (en) * 2003-03-19 2011-11-10 Heliatek Gmbh Photoactive component with organic layer
JP2008117798A (en) * 2006-10-31 2008-05-22 Stanley Electric Co Ltd Organic thin-film element and tandem type photoelectric conversion element
JP2009270011A (en) * 2008-05-07 2009-11-19 Tokyo Univ Of Agriculture & Technology Conjugated polymer compound with controlled electron state and organic semiconductor material using the same
JP2009302247A (en) * 2008-06-12 2009-12-24 Idemitsu Kosan Co Ltd Material for organic thin film solar cell, and organic thin film solar cell using the same
JP2010059417A (en) * 2008-08-07 2010-03-18 Mitsubishi Chemicals Corp Polymer, material for luminescent layer, material for organic electroluminescent element, composition for organic electroluminescent element, and organic electroluminescent element, organic solar cell element, organic el display device, and organic el lighting utilizing the same
WO2010050197A1 (en) * 2008-10-30 2010-05-06 出光興産株式会社 Organic thin-film solar cell
WO2010132236A1 (en) * 2009-05-13 2010-11-18 Global Oled Technology Llc. Internal connector for organic electronic devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515917A (en) * 2015-04-27 2018-06-14 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Organic salts for high pressure organic and transparent solar cells
US11114623B2 (en) 2015-04-27 2021-09-07 Board Of Trustees Of Michigan State University Organic salts for high voltage organic and transparent solar cells
JP2022119940A (en) * 2015-04-27 2022-08-17 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ photoactive device
JP7131910B2 (en) 2015-04-27 2022-09-06 ボード オブ トラスティーズ オブ ミシガン ステート ユニバーシティ Photoactive device and manufacturing method thereof
JP2017073426A (en) * 2015-10-05 2017-04-13 日本放送協会 Imaging element
US10297766B2 (en) 2017-04-28 2019-05-21 Panasonic Intellectual Property Management Co., Ltd. Composition containing naphthalocyanine derivative, photoelectric conversion element containing the same, and imaging device

Also Published As

Publication number Publication date
JPWO2013102985A1 (en) 2015-05-11
TW201341345A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5580976B2 (en) Organic thin film solar cell
EP2926387B1 (en) Organic photovoltaic device with hybrid heterojunction between a planar and a graded layer
JP5583809B2 (en) Organic solar cell
KR20200018718A (en) Organic photovoltaic cell incorporating electron conducting exciton blocking layers
US10978654B2 (en) Exciton management in organic photovoltaic multi-donor energy cascades
WO2012132447A1 (en) Organic thin-film solar cell and organic thin-film solar cell module
US11121336B2 (en) Hybrid planar-mixed heterojunction for organic photovoltaics
WO2013102985A1 (en) Organic photoelectric conversion element and organic thin-film solar battery module
JP2014038975A (en) Organic thin-film solar cell module
JP5260379B2 (en) Organic thin film solar cell
JP2014090093A (en) Tandem type organic thin-film solar cell
JP2011233692A (en) Photoelectric converter, organic solar cell and photoelectric conversion apparatus using these
JP2014075476A (en) Organic solar cell
JP5469943B2 (en) Photoelectric conversion element
JP2011023594A (en) Photoelectric converting element
JP2012033606A (en) Photoelectric conversion element
JP5499193B2 (en) Organic thin film solar cell
JP2014077042A (en) Organic thin film solar cell material including dibenzopyrromethene compound
JP5560132B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
JP2014195030A (en) Organic thin-film solar cell containing inclpc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552351

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864426

Country of ref document: EP

Kind code of ref document: A1