WO2013100382A1 - Preparation method of graphene-carbon nanotube composite using spray pyrolysis, and graphene-carbon nanotube composite prepared thereby - Google Patents

Preparation method of graphene-carbon nanotube composite using spray pyrolysis, and graphene-carbon nanotube composite prepared thereby Download PDF

Info

Publication number
WO2013100382A1
WO2013100382A1 PCT/KR2012/010027 KR2012010027W WO2013100382A1 WO 2013100382 A1 WO2013100382 A1 WO 2013100382A1 KR 2012010027 W KR2012010027 W KR 2012010027W WO 2013100382 A1 WO2013100382 A1 WO 2013100382A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
carbon nanotube
nanotube composite
precursor solution
catalyst precursor
Prior art date
Application number
PCT/KR2012/010027
Other languages
French (fr)
Korean (ko)
Inventor
송이화
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120130391A external-priority patent/KR20130079144A/en
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Publication of WO2013100382A1 publication Critical patent/WO2013100382A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to a graphene-carbon nanotube composite. More specifically, it relates to a new method for producing a graphene-carbon nanotube composite of the present invention and a graphene-carbon nanotube composite prepared by the method.
  • a carbon allotrope refers to a substance composed of carbon but different in physical or chemical properties because of its different structure.
  • graphite is a carbon layer bonded by van der Waals attraction to form a three-dimensional structure by stacking layers
  • carbon nanotubes (CNT) is a carbon layer is dried one-dimensional structure
  • fullerene (fullerene) It has a shape of 0-dimensional structure
  • graphene has a structure in which carbon atoms have a thickness of a layer of atoms in a two-dimensional honeycomb shape.
  • Graphene is a conductor having a theoretical surface area of about 2000 m 2 / g or more and an electron mobility of about 200,000 cm 2 / Vs, having an electron mobility of about 100 times that of silicon.
  • the electrical resistance value of graphene is very small, about 2/3 of the electrical resistance value of copper, the breaking strength is 42 N / m, and the Young's modulus value is similar to diamond, and the mechanical strength is excellent. Due to such excellent characteristics of graphene, attempts to actively apply graphene to electrodes and composites have been actively made.
  • Graphene synthesis methods known to date include chemical vapor deposition (CVD) and chemical methods.
  • CVD chemical vapor deposition
  • high quality graphene may be synthesized, and the graphene may be used in a transparent electrode or a flexible display.
  • the graphene prepared by the chemical method is prepared from natural graphite, oxidized the natural graphite to graphene oxide (graphene oxide) using an acid, and then ultrasonically dispersed in water, separated by one layer, and then reducing agent or Prepared by reducing with heat.
  • graphene produced by this method essentially has many defects.
  • the chemical method including the wet process has a relatively low specific surface area by the lamination of the graphene during the drying process, there is a problem that the graphene fragments are finely divided in the ultrasonic dispersion step.
  • the present inventors have developed a graphene-carbon nanotube composite having a high specific surface area and excellent electrical conductivity by forming a three-dimensional network of graphene and carbon nanotubes by using a spray pyrolysis process.
  • An object of the present invention is to provide a graphene-carbon nanotube composite having a wide specific surface area and excellent electrical conductivity by forming a three-dimensional network of graphene and carbon nanotubes.
  • Another object of the present invention is to provide a new method for producing a graphene-carbon nanotube composite having a wide specific surface area and excellent electrical conductivity by forming a three-dimensional network of graphene and carbon nanotubes.
  • Still another object of the present invention is to provide a method for preparing a new graphene-carbon nanotube composite having excellent process efficiency and economy.
  • Still another object of the present invention is to provide a new, friendly method for preparing graphene-carbon nanotube composites.
  • Graphene-carbon nanotube composite production method comprises the steps of preparing a catalyst precursor solution containing a graphene, a solvent, and a metal catalyst, spraying the catalyst precursor solution, and sprayed droplets in the reactor ( It is characterized by consisting of a step of synthesizing the graphene-carbon nanotube composite via a reaction furnace.
  • the solvent is an organic solvent having 5 or less carbon atoms in the main chain, preferably ethanol, methanol, or propanol.
  • the metal catalyst peroxine, iron chloride, cobalt nitrite or a mixture thereof may be preferably used, and the amount of the metal catalyst is preferably used in a range of 0.01 to 0.5 mol / l relative to the solvent.
  • graphene is preferably included in an amount of 0.5 to 2 mg / ml relative to the solvent.
  • Spraying the catalyst precursor solution sprays the catalyst precursor solution into the reactor using a droplet generator, and uses an ultrasonic nozzle for the droplet generator. It is preferable that the droplets of the catalyst precursor solution sprayed using the ultrasonic nozzle have a size of 5 to 50 ⁇ m.
  • the carrier gas is supplied to the reactor through which the graphene-carbon nanotube composite is synthesized via the liquid crystal generator.
  • the carrier gas is preferably an inert gas such as argon or nitrogen, methane or propane.
  • As for the temperature of a reactor 600-1500 degreeC is preferable.
  • the graphene-carbon nanotube composite of the present invention sprays the catalyst precursor solution into the reactor using a droplet generator, and pyrolysis the sprayed droplets through the reactor. Since it is manufactured by the spray pyrolysis process (Spray Pyrolysis Process) can be said.
  • graphene and carbon nanotubes form a three-dimensional network.
  • the graphene-carbon nanotube composite has a specific surface area in the range of 300 to 2000 m 2 / g, a weight ratio of graphene and carbon nanotubes in the range of 2: 1 to 1: 5, and excellent electrical conductivity.
  • Such graphene-carbon nanotube composite can produce a supercapacitor.
  • the present invention provides a graphene-carbon nanotube composite having a high specific surface area and excellent electrical conductivity by forming a three-dimensional network of graphene and carbon nanotubes, and provides a new process with excellent process efficiency and economical efficiency and an eco-friendly method. It has the effect of the invention.
  • Figure 1 is a schematic diagram showing a manufacturing process of the graphene-carbon nanotube composite by the spray pyrolysis process of the present invention.
  • Figure 2 (a) is a SEM picture of the graphene-carbon nanotube composite prepared in Example 1
  • Figure 2 (b) is a graph showing the results of EDS analysis.
  • the present invention relates to a graphene-carbon nanotube composite, a novel method for producing a graphene-carbon nanotube composite, and a graphene-carbon nanotube composite prepared by the method.
  • Method for producing a graphene-carbon nanotube composite comprises the steps of preparing a catalyst precursor solution containing a graphene, a solvent, and a metal catalyst, spraying the catalyst precursor solution, sprayed droplets reaction (reaction through a furnace) and the graphene-carbon nanotube composite is synthesized.
  • the method for producing a graphene-carbon nanotube composite is prepared by adding a graphene and a metal catalyst to a solvent to prepare a catalyst precursor solution, using a droplet generator to convert the catalyst precursor solution into a reactor Spraying, and sprayed droplets are synthesized through pyrolysis via a reaction furnace to synthesize graphene-carbon nanotube composites.
  • the present invention may further comprise the step of synthesizing the graphene before preparing the catalyst precursor solution.
  • Graphite used in the synthesis of graphene may be used as natural graphite without limitation, preferably expanded natural graphite (expanded graphite or exfoliated graphite) can be used.
  • an acid generally used such as sulfuric acid or nitric acid
  • the temperature at the time of acid treatment is 50-200 degreeC, Preferably it is 50-100 degreeC, More preferably, it is good to process below the breaking point of the acidic solution to be used.
  • the acid treatment time may vary from 1 to 24 hours depending on the acid treatment temperature, and preferably, treatment is performed within 1 to 5 hours.
  • the acid treated graphite solution is filtered to remove the solution, and further washed with water or diluted hydrochloric acid solution before filtration to increase the filtration efficiency.
  • the diluted hydrochloric acid solution is used instead of water, there is an advantage that the exothermic phenomenon occurs when using water.
  • graphene is synthesized as ions trapped in the graphite are released as a gas.
  • the heat treatment temperature can be made at 200 to 2000 °C, for effective gas release is preferably made at 500 to 1200 °C, more preferably at 700 to 1200 °C.
  • Inert gas such as nitrogen, argon, helium may be used as the gas used for the heat treatment, and a mixture of hydrogen gas may be used to remove defects of graphene that may be generated due to high temperature acid treatment.
  • the catalyst precursor solution for synthesizing the graphene-carbon nanotube composite of the present invention is prepared by dissolving a graphene and a metal catalyst in a solvent. After graphene is uniformly dispersed in a solvent, a metal catalyst is further dissolved to prepare a catalyst precursor solution.
  • the solvent can be used without limitation as long as it is a carbon-containing organic solvent that can be a carbon source.
  • an organic solvent having 5 or less carbon atoms in the main chain such as ethanol, methanol, propanol, and the like.
  • Graphene is preferably mixed in a concentration that can be uniformly dispersed in a solvent, it may be included in 0.1 to 5 mg / ml, preferably 0.5 to 2 mg / ml compared to the solvent.
  • metal ions such as iron (Fe), cobalt (Co), and nickel (Ni), which can grow and synthesize carbon nanotubes, can be used.
  • a metal catalyst that can be dissolved and ionized in an organic solvent such as ethanol may be used, and more preferably, Ferrocene, iron chloride, and cobalt nitrate may be used alone or in combination thereof. It can be used as a mixture of.
  • the metal catalyst is preferably included in an amount of 0.01 to 0.5 mol / l relative to the solvent.
  • the amount of carbon nanotubes synthesized between the graphenes may be reduced, causing aggregation between graphenes.
  • the metal catalyst particles The reactivity of these compounds increases the synthesis yield of carbon nanotubes.
  • FIG. 1 is a schematic diagram showing a manufacturing process of the graphene-carbon nanotube composite by the spray pyrolysis process of the present invention.
  • the graphene-carbon nanotube composite manufacturing apparatus of the present invention is a droplet generator (2) for spraying the catalyst precursor solution, the sprayed droplet is synthesized into the graphene-carbon nanotube composite It consists of a high temperature reactor 3 and a collector 4 for collecting the synthesized graphene-carbon nanotube composite.
  • An ultrasonic nozzle is used for the droplet generator 2. It is preferable that the droplets of the catalyst precursor solution sprayed using the ultrasonic nozzle have a size of 5 to 50 ⁇ m.
  • the carrier gas is supplied to the reactor 3 through which the graphene-carbon nanotube composite is synthesized via the liquid crystal generator 2. In order to measure the amount of carrier gas supplied, a gas flow meter 1 is installed before the liquid crystal generator 2.
  • the carrier gas is preferably an inert gas such as argon or nitrogen, methane, or propane. As for the temperature of a reactor, 600-1500 degreeC is preferable.
  • various spraying methods such as an ultrasonic nozzle method and a general nozzle method may be used.
  • an ultrasonic nozzle method capable of giving sufficient residence time for synthesizing carbon nanotubes is preferable.
  • the droplet size of the catalyst precursor produced is 100 ⁇ m or more.
  • the size of the droplet is 100 ⁇ m or more, it is difficult to synthesize graphene-carbon nanotubes because the drying step, the reaction / synthesis step, and the firing step in the reactor are difficult to occur in a single step.
  • the droplet size is sprayed into the reactor is 5 to 50 ⁇ m, it can be synthesized in a single process.
  • the size of the sprayed spray can be changed according to the concentration of the precursor and the intensity of the ultrasonic wave.
  • the sprayed droplets can be moved into the high temperature reactor 3 by the carrier gas, and the speed, the reactor temperature and the length of the carrier gas determine the time the droplets stay in the reactor.
  • the residence time is short, the catalytic ion becomes a catalyst particle, and it is difficult to complex the graphene with the growth of carbon nanotubes from the catalyst particle.
  • the supply rate of the carrier gas may be determined in consideration of the residence time of the droplets.
  • the carrier gas may be supplied at a feed rate of 0.2 to 3 LPM (l / min).
  • the droplets of the sprayed catalyst precursor solution are passed through the high temperature reactor 3 through the carrier gas supplied to the reactor, and thermally decomposes carbon nanotubes on the metal catalyst, thereby gradually increasing the graphene-carbon nanotubes. Is synthesized.
  • argon, nitrogen, or the like which is an inert gas
  • methane, propane, or the like may be mixed and used together with argon, nitrogen, hydrogen, and the like to auxiliaryly supply a carbon source.
  • graphene-carbon nanotube composites can be synthesized using argon and nitrogen gas, which are inert gases, without supplying a separate carbon source. Therefore, the post-treatment process of the expensive carbon source gas discharged unreacted is not necessary, and there is no fear that a problem such as an explosion may occur because the carbon source gas does not pass the high temperature gas furnace. Therefore, it is more preferable to use inert gases argon and nitrogen as carrier gases.
  • the reactor is a long, high-temperature device that can secure a sufficient residence time while giving a high temperature.
  • the temperature of the reaction furnace is 600-1500 degreeC, Preferably it is 700-1100 degreeC.
  • the reactor has a length of 1 to 3 m, it is preferably designed to ensure a residence time of at least 5 seconds.
  • the metal catalyst contained in the catalyst precursor solution supplied to the reactor is thermally decomposed together with the carbon source of the solution or gaseous carbon sources such as methane and propane, whereby Nanotubes are synthesized.
  • the diameter and the length of the carbon nanotubes may be changed according to the reaction conditions such as the type of metal ions dissolved in the precursor and the reaction temperature.
  • the synthesized carbon nanotube length is proportional to the time that the droplets stay in the reactor.
  • the synthesized graphene-carbon nanotube composite is collected in the collector 4, the synthesis of the graphene-carbon nanotube composite is completed.
  • the graphene-carbon nanotube composite synthesized by the spray pyrolysis process of the present invention has excellent electrical conductivity by efficiently forming a three-dimensional network of graphene and linear carbon nanotubes.
  • Carbon nanotubes grown from metal catalysts serve to prevent graphene from being stacked again by forming a three-dimensional structure as well as an electrical bridge connecting graphene and graphene in terms of conductivity.
  • Figure 2 (a) is a SEM picture of the graphene-carbon nanotube composite prepared in Example 1
  • Figure 2 (b) is a graph showing the results of EDS analysis.
  • the graphene-carbon nanotube composite of the present invention is the catalyst particles are placed between the graphene layer in the ion state in the synthesis step of graphene, carbon nanotubes while solving the lamination problem of graphene As it grows, graphene is dispersed.
  • graphene and carbon nanotubes form a dense network, and the network improves electrical conductivity.
  • the graphene-carbon nanotube composite When synthesizing the graphene-carbon nanotube composite using the spray pyrolysis apparatus of the present invention, it is possible to continuously synthesize the graphene-carbon nanotube composite, shorten the synthesis time, and the post-synthesis cleaning process and Since a post-treatment process such as a heat treatment process is not required, the graphene-carbon nanotube composite may be synthesized by an environmentally friendly method.
  • graphene and carbon nanotubes form a three-dimensional network.
  • the graphene-carbon nanotube composite has a specific surface area in the range of 300 to 2000 m 2 / g, a weight ratio of graphene and carbon nanotubes in the range of 2: 1 to 1: 5, and excellent electrical conductivity.
  • Such graphene-carbon nanotube composite can produce a supercapacitor.
  • Graphene prepared by ultrasonic separation method was dispersed in ethanol at a concentration of 1 mg / ml, and then ferrocene (ferrocene) was dissolved in a concentration of 0.1 M / L to prepare a precursor solution.
  • the precursor solution was sprayed onto the spray pyrolysis apparatus in the form of droplets using argon gas as a carrier gas by ultrasonic spraying.
  • Precursor droplets were synthesized into a graphene-carbon nanotube composite while passing through a high temperature reactor at 900 ° C. having a length of 1 m. After collecting the synthesized complex collected in a filter, the specific surface area was measured according to the following physical property measurement method is shown in Table 1 below.
  • Example 2 The same procedure as in Example 1 was conducted except that a precursor solution containing no catalyst was prepared.
  • the specific surface area was measured using the Brunauer-Emmett-Teller (BET) method. After determining the adsorption-desorption amount of nitrogen using a Model NOVA 4200 instrument, it was measured using the BET method. Degassing at 200 ° C. for 2 hours prior to measurement removed impurities physically adsorbed to the measurement sample.
  • BET Brunauer-Emmett-Teller
  • FIG. 1 is a SEM picture of the graphene-carbon nanotube composite prepared in Example 1
  • Figure 2 (b) is a graph showing the results of EDS analysis.
  • the SEM photograph shows that the plate-like material and the linear carbon nanotubes form a dense network
  • the EDS analysis shows that the plate-like material is composed of carbon (C) rather than iron (Fe). It can be seen that.
  • the graphene-carbon nanotube composite of the present invention can be seen that graphene and carbon nanotubes form a three-dimensional network to prevent re-lamination of graphene and have an excellent specific surface area.
  • the graphene-carbon nanotube composite of the present invention can be suitably used as an electrode material of various batteries such as secondary batteries and supercapacitors having excellent electrical conductivity.

Abstract

According to the present invention, a graphene-carbon nanotube composite is prepared by the following steps: adding graphene and a metal catalyst to a solvent to prepare a catalyst precursor solution; spraying the catalyst precursor solution at a reaction furnace using an aerosol generator; and synthesizing a graphene-carbon nanotube composite through pyrolysis while the sprayed aerosol goes through the reaction furnace. The ratio of graphene and carbon nanotubes in the graphene-carbon nanotube composite of the present invention is 2:1 to 1:5 by weight. According to the present invention, the graphene-carbon nanotube composite forms a three-dimensional network of graphene and carbon nanotubes, has a specific surface area of 300-2,000 m2/g, and has excellent electrical conductivity.

Description

분무열분해 공정을 이용한 그래핀-탄소나노튜브 복합체의 제조방법 및 그 제조방법으로 제조된 그래핀-탄소나노튜브 복합체Graphene-carbon nanotube composites prepared by spray pyrolysis and graphene-carbon nanotube composites prepared by the same
본 발명은 그래핀-탄소나노튜브 복합체에 관한 것이다. 보다 구체적으로, 본 발명의 그래핀-탄소나노튜브 복합체를 제조하기 위한 새로운 방법 및 그 방법에 의하여 제조된 그래핀-탄소나노튜브 복합체에 관한 것이다.The present invention relates to a graphene-carbon nanotube composite. More specifically, it relates to a new method for producing a graphene-carbon nanotube composite of the present invention and a graphene-carbon nanotube composite prepared by the method.
최근 신소재 분야에서 탄소의 동소체로 탄소나노튜브, 플러렌(fullerene), 그래핀(graphene) 등이 활발하게 사용되고 있다. 탄소 동소체란, 탄소로 이루어져 있지만 그 구조가 다르기 때문에 물리적 또는 화학적 성질이 다른 물질을 말한다. 탄소 동소체 중에서, 흑연은 탄소층이 반데르 발스 인력으로 결합되어 층층이 쌓여서 3차원 구조를 이루는 것이고, 탄소나노튜브(CNT)는 탄소층이 1차원적으로 말리는 구조를 이루고, 플러렌(fullerene)은 공 모양의 0차원 구조를 이루며, 그래핀(graphene)은 탄소원자들이 2차원 벌집모양으로 원자 한 층의 두께를 갖는 구조를 이룬다. 그래핀은 이론표면적이 약 2000 m2/g 이상이고, 전자이동도(mobility)가 약 20만 cm2/Vs 정도로서, 실리콘보다 약 100배의 전자이동도를 갖는 전도체이다. 또한, 그래핀의 전기저항값은 구리의 전기저항값의 2/3 정도로 매우 작고, 파괴강도는 42 N/m이며, 영률값은 다이아몬드와 비슷할 정도로 기계적 강도가 우수하다. 이러한 그래핀의 우수한 특성 때문에 그래핀을 전극 및 복합체에 응용하고자 하는 시도가 활발하게 이루어지고 있다.Recently, carbon nanotubes, fullerenes, and graphenes are actively used as allotropees of carbon in the field of new materials. A carbon allotrope refers to a substance composed of carbon but different in physical or chemical properties because of its different structure. Among the carbon allotrope, graphite is a carbon layer bonded by van der Waals attraction to form a three-dimensional structure by stacking layers, carbon nanotubes (CNT) is a carbon layer is dried one-dimensional structure, fullerene (fullerene) It has a shape of 0-dimensional structure, and graphene has a structure in which carbon atoms have a thickness of a layer of atoms in a two-dimensional honeycomb shape. Graphene is a conductor having a theoretical surface area of about 2000 m 2 / g or more and an electron mobility of about 200,000 cm 2 / Vs, having an electron mobility of about 100 times that of silicon. In addition, the electrical resistance value of graphene is very small, about 2/3 of the electrical resistance value of copper, the breaking strength is 42 N / m, and the Young's modulus value is similar to diamond, and the mechanical strength is excellent. Due to such excellent characteristics of graphene, attempts to actively apply graphene to electrodes and composites have been actively made.
현재까지 알려진 그래핀 합성방법으로는 화학기상 증착법(CVD)과 케미컬 방법이 있다. 화학기상 증착법을 이용하여 그래핀을 합성할 경우, 고품질의 그래핀을 합성할 수 있으며, 이렇게 제조된 그래핀은 투명전극이나 플렉서블 디스플레이(flexible display)에 사용될 수 있다. Graphene synthesis methods known to date include chemical vapor deposition (CVD) and chemical methods. When graphene is synthesized by chemical vapor deposition, high quality graphene may be synthesized, and the graphene may be used in a transparent electrode or a flexible display.
반면, 케미컬 방법으로 제조한 그래핀은 천연흑연으로부터 제조된 것으로, 천연흑연을 산을 이용하여 그래핀 옥사이드(graphene oxide)로 산화시킨 후, 물에 초음파 분산하여, 한 층씩 분리한 후, 환원제 또는 열을 이용하여 환원시킴으로써 제조한다. 그러나, 이 방법으로 제조한 그래핀은 필수적으로 많은 결함(defect)을 갖는다. 또한, 습식공정을 포함하는 케미켈 방법은 이후 건조과정을 거치면서 그래핀의 재적층이 이루어져 상당히 낮은 비표면적을 갖고, 초음파 분산단계에서 그래핀 조각들이 잘게 쪼개진다는 문제점이 있다.On the other hand, the graphene prepared by the chemical method is prepared from natural graphite, oxidized the natural graphite to graphene oxide (graphene oxide) using an acid, and then ultrasonically dispersed in water, separated by one layer, and then reducing agent or Prepared by reducing with heat. However, graphene produced by this method essentially has many defects. In addition, the chemical method including the wet process has a relatively low specific surface area by the lamination of the graphene during the drying process, there is a problem that the graphene fragments are finely divided in the ultrasonic dispersion step.
케미컬 방법의 이러한 문제점을 해결하고자 그래핀 사이에 금속입자를 삽입하거나, 탄소나노튜브를 함께 분산하여 그래핀-탄소나노튜브 복합물질(Graphene-Carbonnanotube Composite)을 제조하는 연구가 진행되어 왔다. 그래핀-탄소나노튜브 복합체를 합성할 때 고가의 탄소나노튜브를 그래핀과 함께 분산하여 그래핀-탄소나노튜브 복합체를 제조하는 경우, 제조 단가가 높아져 경제적이지 못하며, 물리적 혼합으로 균일한 그래핀-탄소나노튜브 복합 물질을 합성하지 못한다는 문제점이 있다.In order to solve this problem of the chemical method, a graphene-carbon nanotube composite (Graphene-Carbonnanotube Composite) has been researched by inserting metal particles or dispersing carbon nanotubes together. When synthesizing the graphene-carbon nanotube composite, when the expensive carbon nanotubes are dispersed together with the graphene to produce the graphene-carbon nanotube composite, the manufacturing cost is high and it is not economical. -There is a problem that can not synthesize the carbon nanotube composite material.
이에 본 발명자들은 분무열분해 공정을 이용함으로써 그래핀과 탄소나노튜브가 입체적인 네트워크를 형성하여 비표면적이 넓고 전기전도성이 우수한 그래핀-탄소나노튜브 복합체를 개발하기에 이른 것이다.Therefore, the present inventors have developed a graphene-carbon nanotube composite having a high specific surface area and excellent electrical conductivity by forming a three-dimensional network of graphene and carbon nanotubes by using a spray pyrolysis process.
본 발명의 목적은 그래핀과 탄소나노튜브가 입체적인 네트워크를 형성하여 비표면적이 넓고 전기전도성이 우수한 그래핀-탄소나노튜브 복합체를 제공하기 위한 것이다.An object of the present invention is to provide a graphene-carbon nanotube composite having a wide specific surface area and excellent electrical conductivity by forming a three-dimensional network of graphene and carbon nanotubes.
본 발명의 다른 목적은 그래핀과 탄소나노튜브가 입체적인 네트워크를 형성하여 비표면적이 넓고 전기전도성이 우수한 그래핀-탄소나노튜브 복합체를 제조할 수 있는 새로운 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a new method for producing a graphene-carbon nanotube composite having a wide specific surface area and excellent electrical conductivity by forming a three-dimensional network of graphene and carbon nanotubes.
본 발명의 또 다른 목적은 공정효율성 및 경제성이 우수한 새로운 그래핀-탄소나노튜브 복합체의 제조방법을 제공하기 위한 것이다.Still another object of the present invention is to provide a method for preparing a new graphene-carbon nanotube composite having excellent process efficiency and economy.
본 발명의 또 다른 목적은 그래핀-탄소나노튜브 복합체를 제조하는 친한경적인 새로운 방법을 제공하기 위한 것이다.Still another object of the present invention is to provide a new, friendly method for preparing graphene-carbon nanotube composites.
본 발명의 상기 및 기타의 목적들은 모두 하기 설명되는 본 발명에 의해서 달성될 수 있다.Both the above and other objects of the present invention can be achieved by the present invention described below.
본 발명에 따른 그래핀-탄소나노튜브 복합체의 제조방법은 그래핀, 용매, 및 금속촉매를 포함하는 촉매전구체 용액을 제조하는 단계, 촉매전구체 용액을 분무하는 단계, 및 분무된 액적이 반응로(reaction furnace)를 경유하며 그래핀-탄소나노튜브 복합체가 합성되는 단계로 이루어진 것을 그 특징으로 한다.Graphene-carbon nanotube composite production method according to the present invention comprises the steps of preparing a catalyst precursor solution containing a graphene, a solvent, and a metal catalyst, spraying the catalyst precursor solution, and sprayed droplets in the reactor ( It is characterized by consisting of a step of synthesizing the graphene-carbon nanotube composite via a reaction furnace.
상기 용매는 주쇄의 탄소수가 5개 이하인 유기용매이고, 바람직하게는 에탄올, 메탄올, 또는 프로판올이다. 상기 금속촉매는 페록신, 염화철, 코발트 나이트라이트 또는 이들의 혼합물이 바람직하게 사용될 수 있고, 사용량은 용매대비 0.01 내지 0.5 mol/l 범위로 사용되는 것이 바람직하다. 촉매전구체 용액을 제조하는 단계에서 그래핀은 용매 대비 0.5 내지 2 mg/ml로 포함되는 것이 바람직하다. The solvent is an organic solvent having 5 or less carbon atoms in the main chain, preferably ethanol, methanol, or propanol. As the metal catalyst, peroxine, iron chloride, cobalt nitrite or a mixture thereof may be preferably used, and the amount of the metal catalyst is preferably used in a range of 0.01 to 0.5 mol / l relative to the solvent. In the step of preparing the catalyst precursor solution, graphene is preferably included in an amount of 0.5 to 2 mg / ml relative to the solvent.
상기 촉매전구체 용액을 분무하는 단계는 액적발생기를 이용하여 상기 촉매전구체 용액을 반응로로 분무하고(spray), 액적발생기에는 초음파 노즐을 사용한다. 초음파 노즐을 사용하여 분무된 촉매전구체 용액의 액적은 그 크기가 5 내지 50 ㎛인 것이 바람직하다.Spraying the catalyst precursor solution sprays the catalyst precursor solution into the reactor using a droplet generator, and uses an ultrasonic nozzle for the droplet generator. It is preferable that the droplets of the catalyst precursor solution sprayed using the ultrasonic nozzle have a size of 5 to 50 µm.
그래핀-탄소나노튜브 복합체가 합성되는 반응로에는 액정발생기를 경유하여 캐리어 가스가 공급된다. 이 캐리어 가스로는 아르곤이나 질소와 같은 비활성기체, 메탄, 또는 프로판이 바람직하다. 반응로의 온도는 600 내지 1500 ℃가 바람직하다. The carrier gas is supplied to the reactor through which the graphene-carbon nanotube composite is synthesized via the liquid crystal generator. The carrier gas is preferably an inert gas such as argon or nitrogen, methane or propane. As for the temperature of a reactor, 600-1500 degreeC is preferable.
상기와 같이, 본 발명의 그래핀-탄소나노튜브 복합체는 액적발생기를 이용하여 상기 촉매전구체 용액을 반응로로 분무하고(spray), 그리고 분무된 액적이 반응로를 경유하면서 열분해(pyrolysis)하여 제조되기 때문에 분무열분해 공정(Spray Pyrolysis Process)으로 제조된다고 할 수 있다. As described above, the graphene-carbon nanotube composite of the present invention sprays the catalyst precursor solution into the reactor using a droplet generator, and pyrolysis the sprayed droplets through the reactor. Since it is manufactured by the spray pyrolysis process (Spray Pyrolysis Process) can be said.
본 발명에 따른 그래핀-탄소나노튜브 복합체는 그래핀과 탄소나노튜브가 입체적인 네트워크를 형성한다. 그래핀-탄소나노튜브 복합체는 비표면적이 300 내지 2000 ㎡/g 범위이고, 그래핀과 탄소나노튜브의 중량비가 2:1 내지 1:5 범위이며, 우수한 전기전도성을 갖는다. 이러한 그래핀-탄소나노튜브 복합체는 슈퍼캐패시터를 제조할 수 있다.In the graphene-carbon nanotube composite according to the present invention, graphene and carbon nanotubes form a three-dimensional network. The graphene-carbon nanotube composite has a specific surface area in the range of 300 to 2000 m 2 / g, a weight ratio of graphene and carbon nanotubes in the range of 2: 1 to 1: 5, and excellent electrical conductivity. Such graphene-carbon nanotube composite can produce a supercapacitor.
이하 첨부된 도면을 참고로 본 발명의 구체적인 내용을 하기에 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
본 발명은 그래핀과 탄소나노튜브가 입체적인 네트워크를 형성하여 비표면적이 넓고 전기전도성이 우수한 그래핀-탄소나노튜브 복합체 및 이를 제조할 수 있는 공정효율성 및 경제성이 우수하고 친한경적인 새로운 방법을 제공하는 발명의 효과를 갖는다.The present invention provides a graphene-carbon nanotube composite having a high specific surface area and excellent electrical conductivity by forming a three-dimensional network of graphene and carbon nanotubes, and provides a new process with excellent process efficiency and economical efficiency and an eco-friendly method. It has the effect of the invention.
도 1은 본 발명의 분무열분해 공정(Spray Pyrolysis Process)에 의한 그래핀-탄소나노튜브 복합체의 제조공정을 개략적으로 도시한 구성도이다.Figure 1 is a schematic diagram showing a manufacturing process of the graphene-carbon nanotube composite by the spray pyrolysis process of the present invention.
도 2(a)는 실시예 1에서 제조된 그래핀-탄소나노튜브 복합체의 SEM사진이고, 도 2(b)는 EDS 분석 결과를 나타낸 그래프이다.Figure 2 (a) is a SEM picture of the graphene-carbon nanotube composite prepared in Example 1, Figure 2 (b) is a graph showing the results of EDS analysis.
본 발명은 그래핀-탄소나노튜브 복합체에 관한 것으로, 그래핀-탄소나노튜브 복합체를 제조하기 위한 새로운 방법 및 그 방법에 의하여 제조된 그래핀-탄소나노튜브 복합체에 관한 것이다.The present invention relates to a graphene-carbon nanotube composite, a novel method for producing a graphene-carbon nanotube composite, and a graphene-carbon nanotube composite prepared by the method.
이하, 본 발명의 그래핀-탄소나노튜브 복합체의 제조방법 및 본 발명의 그래핀-탄소나노튜브 복합체에 대하여 상세하게 설명한다.Hereinafter, the graphene-carbon nanotube composite of the present invention and the graphene-carbon nanotube composite of the present invention will be described in detail.
그래핀-탄소나노튜브 복합체의 제조방법Graphene-carbon nanotube composite manufacturing method
본 발명에 따른 그래핀-탄소나노튜브 복합체의 제조방법은 그래핀, 용매, 및 금속촉매를 포함하는 촉매전구체 용액을 제조하는 단계, 촉매전구체 용액을 분무하는 단계, 분무된 액적이 반응로(reaction furnace)를 경유하며 그래핀-탄소나노튜브 복합체가 합성되는 단계로 이루어진다.Method for producing a graphene-carbon nanotube composite according to the present invention comprises the steps of preparing a catalyst precursor solution containing a graphene, a solvent, and a metal catalyst, spraying the catalyst precursor solution, sprayed droplets reaction (reaction through a furnace) and the graphene-carbon nanotube composite is synthesized.
본 발명의 하나의 구체예에서, 그래핀-탄소나노튜브 복합체의 제조방법은 그래핀과 금속촉매를 용매에 부가시켜 촉매전구체 용액을 제조하고, 액적발생기를 이용하여 상기 촉매전구체 용액을 반응로로 분무하고(spray), 그리고 분무된 액적이 반응로(reaction furnace)를 경유하면서 열분해(pyrolysis)를 통하여 그래핀-탄소나노튜브 복합체가 합성되는 단계로 이루어진다. In one embodiment of the present invention, the method for producing a graphene-carbon nanotube composite is prepared by adding a graphene and a metal catalyst to a solvent to prepare a catalyst precursor solution, using a droplet generator to convert the catalyst precursor solution into a reactor Spraying, and sprayed droplets are synthesized through pyrolysis via a reaction furnace to synthesize graphene-carbon nanotube composites.
본 발명은 촉매전구체 용액을 제조하기 전에 그래핀을 합성하는 단계를 더 포함할 수 있다. The present invention may further comprise the step of synthesizing the graphene before preparing the catalyst precursor solution.
(1) 그래핀의 합성단계(1) Graphene Synthesis Step
그래핀의 합성에 사용되는 그라파이트는 천연 그라파이트라면 제한없이 사용할 수 있고, 바람직하게는 팽창 천연 그라파이트(expanded graphite 또는 exfoliated graphite)를 사용할 수 있다. Graphite used in the synthesis of graphene may be used as natural graphite without limitation, preferably expanded natural graphite (expanded graphite or exfoliated graphite) can be used.
그라파이트로 그래핀을 합성하는 방법으로는 화학기상 증착법(CVD)이나 후머법(Hummer's Method)으로 대표되는 화학적 방법, 산 팽창법, 또는 초음파 박리법이 있다. 후머법과 같은 화학적 방법으로 그래핀을 합성하는 경우에는 중간생성물로 그래핀옥사이드가 생성되어 결함이 발생하는 문제점이 있으므로, 산 팽창법이나 초음파 박리법에 의하여 합성하는 것이 바람직하다.As a method for synthesizing graphene with graphite, there is a chemical method represented by chemical vapor deposition (CVD) or Hummer's Method, an acid expansion method, or an ultrasonic separation method. When graphene is synthesized by a chemical method such as a hummer method, since graphene oxide is generated as an intermediate product, there is a problem in that defects are generated. Therefore, it is preferable to synthesize the graphene by an acid expansion method or an ultrasonic separation method.
산 팽창법에서 사용되는 산은 황산이나 질산과 같이 일반적으로 사용되는 산을 혼합용액으로 사용하는 것이 바람직하다. 산처리시 온도는 50 내지 200 ℃이고, 바람직하게는 50 내지 100 ℃이며, 더욱 바람직하게는 사용하는 산성용액의 끊는점 이하에서 처리하는 것이 좋다. 산처리 시간은 1 내지 24시간으로 산처리 온도에 따라 달라질 수 있으며, 바람직하게는 1 내지 5시간 이내에서 처리하는 것이 좋다. 산처리 후, 산처리된 그라파이트 용액을 여과하여 용액을 제거하고, 추가적으로 여과 전에 물 또는 희석된 염산용액으로 세척하여 여과효율을 높일 수 있다. 이때 물 대신 희석된 염산용액을 사용하면, 물을 사용할 때 발생하는 발열현상이 일어나지 않는 장점이 있다. As the acid used in the acid expansion method, it is preferable to use an acid generally used, such as sulfuric acid or nitric acid, as a mixed solution. The temperature at the time of acid treatment is 50-200 degreeC, Preferably it is 50-100 degreeC, More preferably, it is good to process below the breaking point of the acidic solution to be used. The acid treatment time may vary from 1 to 24 hours depending on the acid treatment temperature, and preferably, treatment is performed within 1 to 5 hours. After the acid treatment, the acid treated graphite solution is filtered to remove the solution, and further washed with water or diluted hydrochloric acid solution before filtration to increase the filtration efficiency. At this time, if the diluted hydrochloric acid solution is used instead of water, there is an advantage that the exothermic phenomenon occurs when using water.
산처리된 그라파이트에 별도의 건조공정없이 고온의 열처리를 함으로써, 그라파이트 내에 갇혀 있던 이온들이 가스로 방출되면서 그래핀이 합성된다. 열처리 온도는 200 내지 2000 ℃에서 이루어질 수 있으며, 효과적인 가스 방출을 위해서는 500 내지 1200 ℃에서 이루어지는 것이 바람직하며, 700 내지 1200 ℃에서 이루어지는 것이 더욱 바람직하다. 열처리시 사용되는 가스로는 질소, 아르곤, 헬륨 등의 불활성 가스를 사용할 수 있으며, 수소가스를 혼합 사용하여 고온의 산처리로 인해 발생될 수 있는 그래핀의 결함을 제거할 수 있다.By heat treatment of the acid-treated graphite without a separate drying process, graphene is synthesized as ions trapped in the graphite are released as a gas. The heat treatment temperature can be made at 200 to 2000 ℃, for effective gas release is preferably made at 500 to 1200 ℃, more preferably at 700 to 1200 ℃. Inert gas such as nitrogen, argon, helium may be used as the gas used for the heat treatment, and a mixture of hydrogen gas may be used to remove defects of graphene that may be generated due to high temperature acid treatment.
(2) 촉매전구체 용액의 제조단계(2) Preparation step of catalyst precursor solution
본 발명의 그래핀-탄소나노튜브 복합체를 합성하기 위한 촉매전구체 용액은 용매 내에 그래핀과 금속촉매를 용해시켜 제조한다. 그래핀을 용매에 균일하게 분산시킨 후, 금속촉매를 추가적으로 용해시켜 촉매전구체 용액을 제조한다.The catalyst precursor solution for synthesizing the graphene-carbon nanotube composite of the present invention is prepared by dissolving a graphene and a metal catalyst in a solvent. After graphene is uniformly dispersed in a solvent, a metal catalyst is further dissolved to prepare a catalyst precursor solution.
용매는 탄소원(carbon source)이 될 수 있는 탄소-함유 유기용매라면 제한없이 사용될 수 있다. 다만, 초음파 분무방식에 있어서는 에탄올, 메탄올, 프로판올 등과 같이 주쇄의 탄소수가 5개 이하인 유기용매를 사용하는 것이 바람직하다.The solvent can be used without limitation as long as it is a carbon-containing organic solvent that can be a carbon source. However, in the ultrasonic spraying method, it is preferable to use an organic solvent having 5 or less carbon atoms in the main chain, such as ethanol, methanol, propanol, and the like.
그래핀은 용매에 균일하게 분산될 수 있는 농도로 혼합되는 것이 바람직하며, 용매대비 0.1 내지 5 mg/ml, 바람직하게는 0.5 내지 2 mg/ml로 포함될 수 있다. Graphene is preferably mixed in a concentration that can be uniformly dispersed in a solvent, it may be included in 0.1 to 5 mg / ml, preferably 0.5 to 2 mg / ml compared to the solvent.
금속촉매는 탄소나노튜브를 성장·합성시킬 수 있는 철(Fe), 코발트(Co), 니켈(Ni) 등의 금속이온이 사용 가능하다. 바람직하게는 에탄올과 같은 유기용매에 용해되어 이온화될 수 있는 금속촉매를 사용할 수 있고, 더욱 바람직하게는 페록신(Ferrocene), 염화철(iron chloride), 코발트 나이트라이트(Cobalt nitrate)를 단독으로 또는 이들의 혼합물로 사용할 수 있다. As the metal catalyst, metal ions such as iron (Fe), cobalt (Co), and nickel (Ni), which can grow and synthesize carbon nanotubes, can be used. Preferably, a metal catalyst that can be dissolved and ionized in an organic solvent such as ethanol may be used, and more preferably, Ferrocene, iron chloride, and cobalt nitrate may be used alone or in combination thereof. It can be used as a mixture of.
금속촉매는 용매대비 0.01 내지 0.5 mol/l의 함량으로 포함되는 것이 바람직하다. 0.01 mol/l 미만의 금속촉매를 포함하는 경우 그래핀 사이에 합성되는 탄소나노튜브의 양이 적게 되어 그래핀 간의 응집이 일어날 수 있으며, 0.5 mol/l 초과의 금속촉매를 포함하는 경우 금속촉매 입자들의 반응성이 증가하여 탄소나노튜브의 합성수율이 저하되는 문제점을 가진다.The metal catalyst is preferably included in an amount of 0.01 to 0.5 mol / l relative to the solvent. In the case of containing less than 0.01 mol / l metal catalyst, the amount of carbon nanotubes synthesized between the graphenes may be reduced, causing aggregation between graphenes. In the case of containing more than 0.5 mol / l metal catalyst, the metal catalyst particles The reactivity of these compounds increases the synthesis yield of carbon nanotubes.
(3) 촉매전구체 용액 분무단계 (3) spraying catalyst precursor solution
상기 제조된 촉매전구체 용액은 액적발생기를 이용하여 반응로로 분무한다. 도 1은 본 발명의 분무열분해 공정(Spray Pyrolysis Process)에 의한 그래핀-탄소나노튜브 복합체의 제조공정을 개략적으로 도시한 구성도이다.The prepared catalyst precursor solution is sprayed into the reactor using a droplet generator. Figure 1 is a schematic diagram showing a manufacturing process of the graphene-carbon nanotube composite by the spray pyrolysis process of the present invention.
도 1에 도시된 바와 같이, 본 발명의 그래핀-탄소나노튜브 복합체의 제조장치는 촉매전구체 용액을 분무하기 위한 액적발생기(2), 분무된 액적이 그래핀-탄소나노튜브 복합체로 합성되는 고온의 반응로(3), 및 합성된 그래핀-탄소나노튜브 복합체를 포집하는 포집기(4)로 구성된다.As shown in Figure 1, the graphene-carbon nanotube composite manufacturing apparatus of the present invention is a droplet generator (2) for spraying the catalyst precursor solution, the sprayed droplet is synthesized into the graphene-carbon nanotube composite It consists of a high temperature reactor 3 and a collector 4 for collecting the synthesized graphene-carbon nanotube composite.
상기 액적발생기(2)에는 초음파 노즐을 사용한다. 초음파 노즐을 사용하여 분무된 촉매전구체 용액의 액적은 그 크기가 5 내지 50 ㎛인 것이 바람직하다. 그래핀-탄소나노튜브 복합체가 합성되는 반응로(3)에는 액정발생기(2)를 경유하여 캐리어 가스가 공급된다. 공급되는 캐리어 가스량을 측정하기 위하여 액정발생기(2) 전에 가스 유량계(1)를 설치한다. 캐리어 가스로는 아르곤이나 질소와 같은 비활성기체, 메탄, 또는 프로판이 바람직하다. 반응로의 온도는 600 내지 1500 ℃가 바람직하다. An ultrasonic nozzle is used for the droplet generator 2. It is preferable that the droplets of the catalyst precursor solution sprayed using the ultrasonic nozzle have a size of 5 to 50 µm. The carrier gas is supplied to the reactor 3 through which the graphene-carbon nanotube composite is synthesized via the liquid crystal generator 2. In order to measure the amount of carrier gas supplied, a gas flow meter 1 is installed before the liquid crystal generator 2. The carrier gas is preferably an inert gas such as argon or nitrogen, methane, or propane. As for the temperature of a reactor, 600-1500 degreeC is preferable.
촉매전구체 용액을 고온의 합성 반응로로 도입시키는 분무방법으로는 초음파(ultra-sonic) 노즐방식, 일반 노즐방식 등 다양한 분무방식을 사용할 수 있다. 이중에서 탄소나노튜브가 합성될 수 있는 충분한 체류 시간을 부여할 수 있는 초음파 노즐방식이 바람직하다.As a spraying method for introducing the catalyst precursor solution into a high temperature synthesis reactor, various spraying methods such as an ultrasonic nozzle method and a general nozzle method may be used. Among them, an ultrasonic nozzle method capable of giving sufficient residence time for synthesizing carbon nanotubes is preferable.
일반 노즐방식을 이용할 경우 생성되는 촉매전구체의 액적의 크기가 100 ㎛ 이상이다. 액적의 크기가 100 ㎛ 이상인 경우 반응로 내에서 건조단계, 반응/합성 단계, 및 소성단계가 단일공정(one-step)으로 일어나기 어렵기 때문에 그래핀-탄소나노튜브의 합성이 어렵다는 문제점이 있다.When using the normal nozzle method, the droplet size of the catalyst precursor produced is 100 μm or more. When the size of the droplet is 100 μm or more, it is difficult to synthesize graphene-carbon nanotubes because the drying step, the reaction / synthesis step, and the firing step in the reactor are difficult to occur in a single step.
그러나, 초음파노즐 방식을 이용할 경우, 분무되어 반응기로 들어가는 액적의 크기가 5 내지 50 ㎛이므로, 단일공정으로 합성이 가능하다. 다만, 분무되는 액적의 크기는 전구체의 농도 및 초음파의 강도에 따라 변경 가능하다.However, when using the ultrasonic nozzle method, since the droplet size is sprayed into the reactor is 5 to 50 ㎛, it can be synthesized in a single process. However, the size of the sprayed spray can be changed according to the concentration of the precursor and the intensity of the ultrasonic wave.
분무된 액적은 캐리어 가스에 의해 고온의 반응로(3) 내로 이동이 가능하며, 캐리어 가스의 속도, 반응로 온도 및 길이는 액적이 반응로 내에 체류하는 시간을 결정한다. 체류시간이 짧은 경우에는 촉매이온이 촉매입자로 되고, 촉매입자에서 탄소나노튜브를 성장시키는 동시에 그래핀과 복합화하는 것이 어려운 단점이 있다. 체류시간이 긴 경우에는 반응수율이 낮다는 단점이 있다. 따라서, 캐리어 가스의 공급속도는 액적의 체류시간을 고려하여 결정하는 것이 좋다. 바람직하게는 0.2 내지 3 LPM (l/min)의 공급속도로 캐리어 가스를 공급할 수 있다.The sprayed droplets can be moved into the high temperature reactor 3 by the carrier gas, and the speed, the reactor temperature and the length of the carrier gas determine the time the droplets stay in the reactor. When the residence time is short, the catalytic ion becomes a catalyst particle, and it is difficult to complex the graphene with the growth of carbon nanotubes from the catalyst particle. If the residence time is long, the reaction yield is low. Therefore, the supply rate of the carrier gas may be determined in consideration of the residence time of the droplets. Preferably, the carrier gas may be supplied at a feed rate of 0.2 to 3 LPM (l / min).
(4) 그래핀-탄소나노튜브 복합체의 합성단계(4) Synthesis step of graphene-carbon nanotube composite
분무된 촉매전구체 용액의 액적은 반응로로 공급되는 캐리어 가스를 통하여 고온의 반응로(3)를 경유하게 되고, 열분해가 이루어지면서 금속촉매 상에서 탄소나노튜브가 성장하여 점차적으로 그래핀-탄소나노튜브가 합성된다.The droplets of the sprayed catalyst precursor solution are passed through the high temperature reactor 3 through the carrier gas supplied to the reactor, and thermally decomposes carbon nanotubes on the metal catalyst, thereby gradually increasing the graphene-carbon nanotubes. Is synthesized.
캐리어 가스로는 비활성 기체인 아르곤, 질소 등을 이용할 수 있으며, 동시에 보조적으로 탄소원을 공급하기 위하여 메탄, 프로판 등을 아르곤, 질소, 수소 등과 같이 혼합하여 사용할 수도 있다. As a carrier gas, argon, nitrogen, or the like, which is an inert gas, may be used, and at the same time, methane, propane, or the like may be mixed and used together with argon, nitrogen, hydrogen, and the like to auxiliaryly supply a carbon source.
본 발명에서는 액적에 탄소나노튜브를 형성할 수 있는 유기용매를 사용하였기 때문에, 별도의 탄소원을 공급하지 않고도 비활성 가스인 아르곤 및 질소 가스를 사용하여 그래핀-탄소나노튜브 복합체를 합성할 수 있다. 이로 인하여, 미반응되어 배출되는 고가의 탄소원 가스의 후처리 공정이 필요하지 않으며, 탄소원 가스가 고온의 가스로를 지나지 않음으로써 폭발 등의 문제가 발생할 염려가 없다. 따라서, 비활성 기체인 아르곤 및 질소를 캐리어 가스로 사용하는 것이 더욱 바람직하다.In the present invention, since an organic solvent capable of forming carbon nanotubes is used in the droplets, graphene-carbon nanotube composites can be synthesized using argon and nitrogen gas, which are inert gases, without supplying a separate carbon source. Therefore, the post-treatment process of the expensive carbon source gas discharged unreacted is not necessary, and there is no fear that a problem such as an explosion may occur because the carbon source gas does not pass the high temperature gas furnace. Therefore, it is more preferable to use inert gases argon and nitrogen as carrier gases.
반응로는 고온의 온도를 부여하면서, 충분한 체류 시간을 확보할 수 있는, 길이가 긴 고온의 장치이다. 반응로의 온도는 600 내지 1500 ℃이며, 바람직하게는 700 내지 1100 ℃이다. 상기 반응로는 1 내지 3 m의 길이를 가지며, 최소 5초 이상의 체류시간이 확보되도록 설계되는 것이 바람직하다. The reactor is a long, high-temperature device that can secure a sufficient residence time while giving a high temperature. The temperature of the reaction furnace is 600-1500 degreeC, Preferably it is 700-1100 degreeC. The reactor has a length of 1 to 3 m, it is preferably designed to ensure a residence time of at least 5 seconds.
반응로의 온도 및 체류시간 조건에서, 반응로에 공급된 촉매전구체 용액에 포함된 금속촉매가 용액의 탄소원 또는 메탄, 프로판 등의 가스상 탄소원과 함께 열분해됨으로써, 그래핀 층 사이에 위치한 촉매에 의하여 탄소나노튜브가 합성된다.Under the conditions of the temperature and residence time of the reactor, the metal catalyst contained in the catalyst precursor solution supplied to the reactor is thermally decomposed together with the carbon source of the solution or gaseous carbon sources such as methane and propane, whereby Nanotubes are synthesized.
합성된 탄소나노튜브의 경우, 전구체에 용해되어 있는 금속이온의 종류 및 반응온도와 같은 반응조건에 따라, 탄소나노튜브의 직경 및 길이 등을 변화시킬 수 있다. 하나의 예로, 합성된 탄소나노튜브 길이는 액적이 반응기내에 체류하는 시간에 비례하게 된다.In the case of the synthesized carbon nanotubes, the diameter and the length of the carbon nanotubes may be changed according to the reaction conditions such as the type of metal ions dissolved in the precursor and the reaction temperature. In one example, the synthesized carbon nanotube length is proportional to the time that the droplets stay in the reactor.
합성된 그래핀-탄소나노튜브 복합체는 포집기(4)에서 포집하여 그래핀-탄소나노튜브 복합체의 합성은 완료된다. 본 발명의 분무열분해 공정에 의하여 합성된 그래핀-탄소나노튜브 복합체는 판상의 그래핀과 선형 탄소나노튜브가 3차원적 네트워크를 효율적으로 치밀하게 구성함으로써 전기전도성이 매우 우수하다. 금속촉매에서 성장한 탄소나노튜브는 전도성 측면에서 그래핀과 그래핀 사이를 연결하는 전기적 통로(bridge)뿐만 아니라, 3차원의 입체적 구조를 형성하여 그래핀이 재적층되는 것을 방지하는 기능을 수행한다.The synthesized graphene-carbon nanotube composite is collected in the collector 4, the synthesis of the graphene-carbon nanotube composite is completed. The graphene-carbon nanotube composite synthesized by the spray pyrolysis process of the present invention has excellent electrical conductivity by efficiently forming a three-dimensional network of graphene and linear carbon nanotubes. Carbon nanotubes grown from metal catalysts serve to prevent graphene from being stacked again by forming a three-dimensional structure as well as an electrical bridge connecting graphene and graphene in terms of conductivity.
도 2(a)는 실시예 1에서 제조된 그래핀-탄소나노튜브 복합체의 SEM사진이고, 도 2(b)는 EDS 분석 결과를 나타낸 그래프이다. 도 2에서 보듯이 본 발명의 그래핀-탄소나노튜브 복합체는 그래핀의 합성단계에서 이온상태로 촉매입자가 그래핀 층 사이에 놓이게 되므로, 그래핀의 적층문제를 해결함과 동시에 탄소나노튜브가 성장하면서 그래핀이 분산된다. 또한, 그래핀과 탄소나노튜브가 치밀한 네트워크를 형성하게 되고, 이러한 네트워크로 인하여 전기전도성이 향상된다. Figure 2 (a) is a SEM picture of the graphene-carbon nanotube composite prepared in Example 1, Figure 2 (b) is a graph showing the results of EDS analysis. As shown in Figure 2, the graphene-carbon nanotube composite of the present invention is the catalyst particles are placed between the graphene layer in the ion state in the synthesis step of graphene, carbon nanotubes while solving the lamination problem of graphene As it grows, graphene is dispersed. In addition, graphene and carbon nanotubes form a dense network, and the network improves electrical conductivity.
본 발명에서의 분무열분해 장치를 이용하여 그래핀-탄소나노튜브 복합체를 합성하는 경우, 연속적으로 그래핀-탄소나노튜브 복합체를 합성할 수 있고, 합성시간을 단축시킬 수 있으며, 합성 후 세정공정 및 열처리공정과 같은 후처리 공정이 요구되지 않으므로 환경친화적인 방법으로 그래핀-탄소나노튜브 복합체를 합성할 수 있다. When synthesizing the graphene-carbon nanotube composite using the spray pyrolysis apparatus of the present invention, it is possible to continuously synthesize the graphene-carbon nanotube composite, shorten the synthesis time, and the post-synthesis cleaning process and Since a post-treatment process such as a heat treatment process is not required, the graphene-carbon nanotube composite may be synthesized by an environmentally friendly method.
그래핀-탄소나노튜브 복합체Graphene-carbon nanotube composite
본 발명에 따른 그래핀-탄소나노튜브 복합체는 그래핀과 탄소나노튜브가 입체적인 네트워크를 형성한다. 그래핀-탄소나노튜브 복합체는 비표면적이 300 내지 2000 ㎡/g 범위이고, 그래핀과 탄소나노튜브의 중량비가 2:1 내지 1:5 범위이며, 우수한 전기전도성을 갖는다. 이러한 그래핀-탄소나노튜브 복합체는 슈퍼캐패시터를 제조할 수 있다.In the graphene-carbon nanotube composite according to the present invention, graphene and carbon nanotubes form a three-dimensional network. The graphene-carbon nanotube composite has a specific surface area in the range of 300 to 2000 m 2 / g, a weight ratio of graphene and carbon nanotubes in the range of 2: 1 to 1: 5, and excellent electrical conductivity. Such graphene-carbon nanotube composite can produce a supercapacitor.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.
실시예EXAMPLE
실시예 1Example 1
초음파 박리법으로 제조한 그래핀을 에탄올에 1 mg/ml의 농도로 분산시킨 후, 페로센(ferrocene)을 0.1 M/L의 농도로 용해시켜 전구체용액을 제조하였다. 전구체용액을 초음파 분무방식으로 캐리어 가스로 아르곤 가스를 사용하여 분무열분해 장치에 액적 상태로 분무하였다. 전구체 액적은 길이 1 m인 900 ℃의 고온의 반응로를 통과하면서, 그래핀-탄소나노튜브 복합체로 합성되었다. 상기 합성된 복합체를 필터에 포집하여 회수한 후, 하기 물성 측정방법에 따라 비표면적을 측정하여 하기 표 1에 나타내었다.Graphene prepared by ultrasonic separation method was dispersed in ethanol at a concentration of 1 mg / ml, and then ferrocene (ferrocene) was dissolved in a concentration of 0.1 M / L to prepare a precursor solution. The precursor solution was sprayed onto the spray pyrolysis apparatus in the form of droplets using argon gas as a carrier gas by ultrasonic spraying. Precursor droplets were synthesized into a graphene-carbon nanotube composite while passing through a high temperature reactor at 900 ° C. having a length of 1 m. After collecting the synthesized complex collected in a filter, the specific surface area was measured according to the following physical property measurement method is shown in Table 1 below.
비교실시예 1Comparative Example 1
촉매를 포함하지 않은 전구체용액을 제조한 것을 제외하고 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was conducted except that a precursor solution containing no catalyst was prepared.
비표면적의 측정방법Measurement method of specific surface area
비표면적 측정은 BET(Brunauer-Emmett-Teller) 방법을 사용하였다. Model NOVA 4200 기기를 이용하여 질소의 흡-탈착량을 정량 후, BET 방법을 이용하여 측정하였다. 측정 전에 200 ℃에서 2시간 탈기(degassing)하여 측정 샘플에 물리적으로 흡착되어 있는 불순물을 제거하였다.The specific surface area was measured using the Brunauer-Emmett-Teller (BET) method. After determining the adsorption-desorption amount of nitrogen using a Model NOVA 4200 instrument, it was measured using the BET method. Degassing at 200 ° C. for 2 hours prior to measurement removed impurities physically adsorbed to the measurement sample.
표 1
Figure PCTKR2012010027-appb-T000001
Table 1
Figure PCTKR2012010027-appb-T000001
표 1에서 보듯이, 실시예 1에서 제조된 그래핀-탄소나노튜브 복합체는 비교실시예 1에 비하여 현저히 큰 비표면적(BET)을 가지는 것을 알 수 있다. 도 2(a)는 실시예 1에서 제조된 그래핀-탄소나노튜브 복합체의 SEM사진이고, 도 2(b)는 EDS 분석 결과를 나타낸 그래프이다. 상기 SEM사진은 판상의 물질과 선형 탄소나노튜브가 치밀하게 네트워크를 형성하고 있음을 보여주고 있으며, 상기 EDS 분석 결과는 상기 판상의 물질이 철(Fe)이 아닌 탄소(C)로 이루어진 그래핀 조각인 것을 알 수 있다.As shown in Table 1, it can be seen that the graphene-carbon nanotube composite prepared in Example 1 has a significantly larger specific surface area (BET) than Comparative Example 1. Figure 2 (a) is a SEM picture of the graphene-carbon nanotube composite prepared in Example 1, Figure 2 (b) is a graph showing the results of EDS analysis. The SEM photograph shows that the plate-like material and the linear carbon nanotubes form a dense network, and the EDS analysis shows that the plate-like material is composed of carbon (C) rather than iron (Fe). It can be seen that.
상기와 같이 본 발명의 그래핀-탄소나노튜브 복합체는 그래핀과 탄소나노튜브가 입체적으로 네트워크를 형성하여 그래핀의 재적층을 방지함과 아울러 비표면적이 우수한 것을 알 수 있다. 이로 인하여 본 발명의 그래핀-탄소나노튜브 복합체는 전기전도성이 우수한 2차 전지, 슈퍼캐패시터 등 다양한 전지들의 전극재료로서 적합하게 사용될 수 있다.As described above, the graphene-carbon nanotube composite of the present invention can be seen that graphene and carbon nanotubes form a three-dimensional network to prevent re-lamination of graphene and have an excellent specific surface area. For this reason, the graphene-carbon nanotube composite of the present invention can be suitably used as an electrode material of various batteries such as secondary batteries and supercapacitors having excellent electrical conductivity.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (16)

  1. 그래핀, 용매, 및 금속촉매를 포함하는 촉매전구체 용액을 제조하는 단계; 상기 촉매전구체 용액을 분무하는 단계; 상기 분무된 액적이 반응로(reaction furnace)를 경유하며 그래핀-탄소나노튜브 복합체가 합성되는 단계;를 포함하는 분무열분해 공정(Spray Pyrolysis Process)을 이용한 그래핀-탄소나노튜브 복합체의 제조방법. Preparing a catalyst precursor solution comprising graphene, a solvent, and a metal catalyst; Spraying the catalyst precursor solution; The sprayed droplets are passed through a reaction furnace (reaction furnace) and the graphene-carbon nanotube composite is synthesized; The method of producing a graphene-carbon nanotube composite using a spray pyrolysis process (Spray Pyrolysis Process) comprising a.
  2. 제1항에 있어서, 상기 촉매전구체 용액의 제조 전에 그래핀을 제조하는 단계를 더 포함하는 것을 특징으로 하는 그래핀-탄소나노튜브 복합체의 제조방법. The method of claim 1, further comprising preparing graphene before the preparation of the catalyst precursor solution.
  3. 제1항에 있어서, 상기 촉매전구체 용액의 분무는 액적발생기에서 초음파 노즐을 사용하여 분무되는 것을 특징으로 하는 그래핀-탄소나노튜브 복합체의 제조방법. The method of claim 1, wherein the spraying of the catalyst precursor solution is sprayed using an ultrasonic nozzle in a droplet generator.
  4. 제1항에 있어서, 상기 그래핀은 용매대비 0.5 내지 2 mg/ml로 촉매전구체 용액에 포함되는 것을 특징으로 하는 그래핀-탄소나노튜브 복합체의 제조방법. The method of claim 1, wherein the graphene is included in the catalyst precursor solution at 0.5 to 2 mg / ml relative to the solvent.
  5. 제1항에 있어서, 상기 금속촉매는 페록신, 염화철, 코발트 나이트라이트 및 이들의 혼합물로 이루어진 군으로부터 선택되고, 용매대비 0.01 내지 0.5 mol/l로 촉매전구체 용액에 포함되는 것을 특징으로 하는 그래핀-탄소나노튜브 복합체의 제조방법. The graphene of claim 1, wherein the metal catalyst is selected from the group consisting of peroxine, iron chloride, cobalt nitrite, and mixtures thereof, and is included in the catalyst precursor solution at 0.01 to 0.5 mol / l relative to the solvent. -Carbon nanotube composite production method.
  6. 제4항에 있어서, 상기 용매는 주쇄의 탄소수가 5개 이하인 유기용매인 것을 특징으로 하는 그래핀-탄소나노튜브 복합체의 제조방법. The method of claim 4, wherein the solvent is an organic solvent having 5 or less carbon atoms in the main chain.
  7. 제6항에 있어서, 상기 유기용매는 에탄올, 메탄올, 또는 프로판올인 것을 특징으로 하는 그래핀-탄소나노튜브 복합체의 제조방법. The method of claim 6, wherein the organic solvent is ethanol, methanol, or propanol.
  8. 제3항에 있어서, 상기 초음파 노즐을 사용하여 분무된 촉매전구체 용액의 액적은 5 내지 50 ㎛인 것을 특징으로 하는 그래핀-탄소나노튜브 복합체의 제조방법. The method of claim 3, wherein the droplet of the catalyst precursor solution sprayed using the ultrasonic nozzle is 5 to 50 ㎛.
  9. 제1항에 있어서, 상기 반응로로 공급되는 캐리어 가스는 비활성기체, 메탄, 또는 프로판인 것을 특징으로 하는 그래핀-탄소나노튜브 복합체의 제조방법.The method of claim 1, wherein the carrier gas supplied to the reactor is an inert gas, methane, or propane.
  10. 제9항에 있어서, 상기 비활성기체는 아르곤 또는 질소인 것을 특징으로 하는 그래핀-탄소나노튜브 복합체의 제조방법. 10. The method of claim 9, wherein the inert gas is argon or nitrogen.
  11. 제1항에 있어서, 상기 반응로의 온도는 600 내지 1500 ℃인 것을 특징으로 하는 그래핀-탄소나노튜브 복합체의 제조방법. The method of claim 1, wherein the temperature of the reactor is 600 to 1500 ℃.
  12. 제1항 내지 제11항 중 어느 한 항의 제조방법으로 제조된 그래핀-탄소나노튜브 복합체.Graphene-carbon nanotube composite prepared by the method of any one of claims 1 to 11.
  13. 그래핀과 탄소나노튜브가 입체적인 네트워크를 형성하는 것을 특징으로 하는 그래핀-탄소나노튜브 복합체.Graphene-carbon nanotube composite, characterized in that the graphene and carbon nanotubes form a three-dimensional network.
  14. 제13항에 있어서, 상기 그래핀-탄소나노튜브 복합체는 비표면적(BET)이 300 내지 2000 ㎡/g인 것을 특징으로 하는 그래핀-탄소나노튜브 복합체.The graphene-carbon nanotube composite according to claim 13, wherein the graphene-carbon nanotube composite has a specific surface area (BET) of 300 to 2000 m 2 / g.
  15. 제13항에 있어서, 상기 그래핀과 탄소나노튜브는 2:1 내지 1:5의 중량비로 포함되는 것을 특징으로 하는 그래핀-탄소나노튜브 복합체.The graphene-carbon nanotube composite according to claim 13, wherein the graphene and carbon nanotubes are included in a weight ratio of 2: 1 to 1: 5.
  16. 제13항 내지 제15항 중 어느 한 항의 그래핀-탄소나노튜브 복합체로 제조된 슈퍼캐패시터.A supercapacitor made of the graphene-carbon nanotube composite according to any one of claims 13 to 15.
PCT/KR2012/010027 2011-12-31 2012-11-26 Preparation method of graphene-carbon nanotube composite using spray pyrolysis, and graphene-carbon nanotube composite prepared thereby WO2013100382A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0147998 2011-12-31
KR20110147998 2011-12-31
KR1020120130391A KR20130079144A (en) 2011-12-31 2012-11-16 Graphene carbon-nanotube composite and spray pyrolysis process for preparing same
KR10-2012-0130391 2012-11-16

Publications (1)

Publication Number Publication Date
WO2013100382A1 true WO2013100382A1 (en) 2013-07-04

Family

ID=48697787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010027 WO2013100382A1 (en) 2011-12-31 2012-11-26 Preparation method of graphene-carbon nanotube composite using spray pyrolysis, and graphene-carbon nanotube composite prepared thereby

Country Status (1)

Country Link
WO (1) WO2013100382A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2769960A1 (en) * 2013-02-22 2014-08-27 Samsung Electronics Co., Ltd Graphene-nanomaterial composite, electrode and electric device including the same, and method of manufacturing the graphene-nanomaterial composite
US20180025853A1 (en) * 2015-02-06 2018-01-25 Thales Method of depositing oxidized carbon-based microparticles and nanoparticles
CN111170310A (en) * 2020-01-15 2020-05-19 北京科技大学 Three-dimensional graphene/carbon nanotube composite material and preparation method thereof
CN114068927A (en) * 2020-08-04 2022-02-18 北京大学 Graphene carbon nanotube composite material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090068747A (en) * 2007-12-24 2009-06-29 엠파워(주) Process for preparing catalyst for synthesis of carbon nanotubes using atomizing pyrolysis method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090068747A (en) * 2007-12-24 2009-06-29 엠파워(주) Process for preparing catalyst for synthesis of carbon nanotubes using atomizing pyrolysis method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DU ET AL.: "Preparation of tunable 3D pillared carbon nanotube-graphene networks for high- performance capacitance", CHEMISTRY OF MATERIALS, vol. 23, 17 October 2011 (2011-10-17), pages 4810 - 4816, XP055122309, DOI: doi:10.1021/cm2021214 *
ISKANDAR ET AL.: "Direct synthesis of hBN/MWCNT composite particles using spray pyrolysis", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 471, 2009, pages 166 - 171, XP025994394, DOI: doi:10.1016/j.jallcom.2008.03.037 *
NANDIYANTO ET AL.: "Rapid synthesis of a BN/CNT composite particle via spray routes using ferrocene/ethanol as a catalyst/carbon source", MATERIALS LETTERS, vol. 63, 2009, pages 1847 - 1850, XP026250816, DOI: doi:10.1016/j.matlet.2009.05.052 *
SU ET AL.: "Continuous production of single wall carbon nanotubes by spray pyrolysis of alcohol with dissolved ferrocene", CHEMICAL PHYSICS LETTERS, vol. 420, 2006, pages 421 - 425, XP027876001, DOI: doi:10.1016/j.cplett.2005.12.046 *
WOO ET AL.: "Synthesis of a graphene-carbon nanotube composite and its electrochemical sensing of hydrogen peroxide", ELECTROCHIMICA ACTA, vol. 59, 9 November 2011 (2011-11-09), pages 509 - 514 *
ZHANG ET AL.: "Capacitive behavior of graphene-ZnO composite film for supercapacitors", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 634, 2009, pages 68 - 71, XP026500879, DOI: doi:10.1016/j.jelechem.2009.07.010 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2769960A1 (en) * 2013-02-22 2014-08-27 Samsung Electronics Co., Ltd Graphene-nanomaterial composite, electrode and electric device including the same, and method of manufacturing the graphene-nanomaterial composite
US9721734B2 (en) 2013-02-22 2017-08-01 Samsung Electronics Co., Ltd. Graphene-nanomaterial composite, electrode and electric device including the same, and method of manufacturing the graphene-nanomaterial composite
US20180025853A1 (en) * 2015-02-06 2018-01-25 Thales Method of depositing oxidized carbon-based microparticles and nanoparticles
CN111170310A (en) * 2020-01-15 2020-05-19 北京科技大学 Three-dimensional graphene/carbon nanotube composite material and preparation method thereof
CN111170310B (en) * 2020-01-15 2022-02-25 北京科技大学 Three-dimensional graphene/carbon nanotube composite material and preparation method thereof
CN114068927A (en) * 2020-08-04 2022-02-18 北京大学 Graphene carbon nanotube composite material and preparation method thereof
CN114068927B (en) * 2020-08-04 2023-10-13 北京大学 Graphene carbon nanotube composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR20130079144A (en) Graphene carbon-nanotube composite and spray pyrolysis process for preparing same
JP6359081B2 (en) Boron nitride nanotube and method for producing the same
CN102502593B (en) Preparation method of grapheme or doped graphene or graphene complex
WO2020096338A1 (en) Method for preparing single-atom catalyst supported on carbon support
CN101780951B (en) Purification method for obtaining high-purity carbon nano tube
Karthik et al. Carbon-allotropes: synthesis methods, applications and future perspectives
Zhao et al. Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study
KR102077688B1 (en) Dispersion method
US8845995B2 (en) Single, multi-walled, functionalized and doped carbon nanotubes and composites thereof
Herron et al. Simple and scalable route for the ‘bottom-up’synthesis of few-layer graphene platelets and thin films
WO2013100382A1 (en) Preparation method of graphene-carbon nanotube composite using spray pyrolysis, and graphene-carbon nanotube composite prepared thereby
CN101717083A (en) Graphene and preparation method thereof
WO2016104910A1 (en) Graphene membrane film for solvent purification, method for producing same, and solvent purification system using same
CN101164874B (en) Method for purifying multi-wall carbon nano pipe
KR20140014080A (en) Carbon materials comprising carbon nanotubes and methods of making carbon nanotubes
EP2720978A1 (en) Process for producing graphene
Chithaiah et al. Simple synthesis of nanosheets of rGO and nitrogenated rGO
KR20180022695A (en) Halogenated graphene nanofibers, and their manufacture and use
KR101549732B1 (en) Porous graphene/metal-oxide complex and method for preparing the same
CN101125649A (en) Method for separating metallic single-wall carbon nano-tube
KR20100126746A (en) Method for manufacturing carbon nanotube
WO2020122345A1 (en) Three-dimensional graphene composite material and method for producing same
Bhagabati et al. Synthesis/preparation of carbon materials
Kumari et al. Synthesis of graphene by reduction of graphene oxide using non-toxic chemical reductant
TWI733002B (en) Carbon nanotube, carbon-based fine structure, and substrate with carbon nanotube and methods of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863786

Country of ref document: EP

Kind code of ref document: A1