WO2013094758A1 - Laser light irradiation system, laser light irradiation method, and recording medium - Google Patents

Laser light irradiation system, laser light irradiation method, and recording medium Download PDF

Info

Publication number
WO2013094758A1
WO2013094758A1 PCT/JP2012/083352 JP2012083352W WO2013094758A1 WO 2013094758 A1 WO2013094758 A1 WO 2013094758A1 JP 2012083352 W JP2012083352 W JP 2012083352W WO 2013094758 A1 WO2013094758 A1 WO 2013094758A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
laser light
film
laser
oscillator
Prior art date
Application number
PCT/JP2012/083352
Other languages
French (fr)
Japanese (ja)
Inventor
伸 及川
伸彦 西原
力也 松本
ソンウク ミン
ゼヒョン ジョ
ソクキョン カン
Original Assignee
住友化学株式会社
ハードラムカンパニーリミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, ハードラムカンパニーリミテッド filed Critical 住友化学株式会社
Publication of WO2013094758A1 publication Critical patent/WO2013094758A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0838Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt
    • B23K26/0846Devices involving movement of the workpiece in at least one axial direction by using an endless conveyor belt for moving elongated workpieces longitudinally, e.g. wire or strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a laser light irradiation system, a laser light irradiation method, and a recording medium.
  • This application claims priority on December 22, 2011 based on Japanese Patent Application No. 2011-281300 for which it applied to Japan, and uses the content here.
  • Optical films such as polarizing films and retardation films are widely used in various products such as liquid crystal panels.
  • blades have been used for cutting optical films.
  • foreign matters such as film scraps are easily generated from the object to be cut. If the foreign matter adheres to the polarizing film, a product such as a liquid crystal panel may have a defect such as a display defect. As a result, the product yield decreases.
  • Patent Documents 1 to 5 For example, as a cutting method using laser light, various methods have been proposed as described in Patent Documents 1 to 5.
  • the output of laser light is not constant, and the output value fluctuates with a constant amplitude with a set value sandwiched in a very short cycle (for example, 1 millisecond). Therefore, even if the output value of the laser beam is set to the value necessary to cut the optical film due to fluctuations in the output of the laser beam oscillator, the optical film cannot actually be cut properly. There is.
  • the cutting process of the optical film is continuously performed by irradiating a laser beam while conveying a long object of the optical film at a constant speed.
  • the output value of the laser beam is set to a value necessary for the cutting processing of the optical film
  • the optical film is appropriately May not be disconnected.
  • the end (cutting part) of the optical film may be torn or torn from the end of the optical film to the inside. There is.
  • the output value of the laser beam is a value necessary for the cutting process of the optical film so that the cutting process can be appropriately performed even when the output value of the laser beam becomes lower than a set value by a certain amount or more.
  • a method of setting a higher value is also conceivable.
  • the output value of the laser beam is set to a value higher than the value necessary for the cutting process of the optical film, the following problems occur. That is, when the output value becomes higher than the set value by a certain level due to the output fluctuation of the laser beam oscillator, there arises a problem that the output value becomes too high. When such a problem occurs, defects such as melting of the end portion (cutting portion) of the optical film due to excessive heat due to laser light irradiation, and swelling or warping due to thermal expansion occur.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a laser light irradiation system, a laser light irradiation method, and a recording medium capable of appropriately cutting an optical film.
  • a laser beam oscillator that oscillates a laser beam
  • a laser beam that is oscillated by the laser beam oscillator is branched into a first laser beam and a second laser beam.
  • a beam splitter for irradiating the film with one laser beam, a measuring device for measuring the intensity of the second laser beam branched by the beam splitter, and the intensity of the second laser beam measured by the measuring device A laser light irradiation system comprising: a correction device that calculates an output value of a laser light oscillator and brings the output value of the laser light oscillator close to a set value.
  • a shutter is disposed on the optical path of the first laser light between the beam splitter and the film and blocks the first laser light irradiated from the beam splitter.
  • the shutter is opened, and when the film is not irradiated with the first laser beam.
  • a control device that closes the shutter.
  • the first laser light is reflected light from the beam splitter of the laser light oscillated by the laser light oscillator, and the second laser light is the laser light oscillation.
  • the light transmitted through the beam splitter may be laser light oscillated by a machine.
  • the measuring device may measure the intensity of the second laser beam by converting the second laser beam into a thermoelectromotive force.
  • the laser beam oscillator may be a CO 2 laser beam oscillator.
  • the film may have a strip shape, and may further include a supply device that supplies the film to an irradiation position of the first laser.
  • a shutter disposed on the optical path of the first laser light between the beam splitter and the film and blocking the first laser light irradiated from the beam splitter. Further, the control device stops the film in a predetermined cutting region and opens the shutter when the first laser beam is irradiated on the belt-shaped film supplied from the supply device. When the film is not irradiated with the first laser beam, the shutter may be closed without stopping the belt-like film in the predetermined cutting region.
  • control device may transport the film to the predetermined cutting region based on a transport speed of the film by the supply device.
  • the correction device increases the intensity of the laser beam oscillated by the laser beam oscillator when the output value calculated by the correction device is smaller than the set value.
  • the intensity of the laser beam oscillated by the laser beam oscillator may be decreased.
  • the said beam splitter irradiates the said 1st laser beam to the said film so that the condensing diameter of the said 1st laser beam may be 5 micrometers or more and 500 micrometers or less. Also good.
  • the measurement device may measure the intensity of the second laser beam branched by the beam splitter at a measurement interval of 10 milliseconds or less.
  • a laser beam oscillated from a laser beam oscillator is branched into a first laser beam and a second laser beam, and the film is irradiated with the first laser beam, Laser light irradiation method for measuring the intensity of the second laser light, calculating the output value of the laser light oscillator from the intensity of the second laser light, and bringing the output value of the laser light oscillator close to a set value .
  • the said film is strip
  • the film supplied to the laser irradiation position may be cut into a predetermined size.
  • a laser beam oscillated from a laser beam oscillator is branched into a first laser beam and a second laser beam, and the film is irradiated with the first laser beam, The intensity of the second laser beam is measured, the output value of the laser beam oscillator is calculated from the intensity of the second laser beam, and the output value of the laser beam oscillator is brought close to a set value.
  • the present invention it is possible to provide a laser light irradiation system, a laser light irradiation method, and a recording medium capable of appropriately cutting an optical film.
  • FIG. 1 is a schematic diagram showing a film cutting system 1 according to an embodiment of the present invention.
  • a film cutting system 1 shown in FIG. 1 cuts an optical film such as a polarizing film or a retardation film attached to a substrate of an optical display panel such as a liquid crystal panel or an organic EL panel.
  • the optical film is not particularly limited as long as it is a belt-like functional film having flexibility.
  • a polarizing film will be described as an example.
  • the polarizing film (cutting object) which the laser beam irradiation system 30 cuts is not particularly limited, but a known polarizing film can be used.
  • a long polarizing film for example, the length of the polarizing film in the cutting direction is 10 m or more
  • a polarizing film having a short length for example, a length of the polarizing film in the cutting direction of 2 m or more and less than 10 m
  • a plate shape for example, a length of the polarizing film in the cutting direction of 10 cm or more and less than 2 m
  • polarizing film for example, a film in which films such as a TAC (triacetylcellulose) film and a COP (cycloolefin polymer) film are bonded as protective film members on both surfaces of the polarizer film can be used.
  • a film in which a protective film is laminated on a TAC film on the reverse side (back side) of the surface with respect to the laser light irradiation system 30 via an adhesive can be used.
  • polarizer film located at the center of the polarizing film a film in which a protective film member such as TAC is bonded to a film obtained by dyeing a polyvinyl alcohol film with a dyeing agent such as iodine and stretching can be used.
  • a protective film member such as TAC
  • a dyeing agent such as iodine and stretching
  • hydrophilic polymer films such as partially formalized polyvinyl alcohol film, ethylene / vinyl acetate copolymer partially saponified film, and cellulose film, dehydrated polyvinyl alcohol and polychlorinated
  • a polyene oriented film such as a dehydrochlorinated product of vinyl can also be used.
  • the protective film a film such as a polyester film or a polyethylene terephthalate film can also be used.
  • the thickness and width of the protective film are not particularly limited.
  • the protective film has a thickness of, for example, 5 ⁇ m or more and 60 ⁇ m or less, and a film having a width of 200 mm or more and 1500 mm or less is preferably used.
  • the thickness of the polarizing film including the protective film is not particularly limited, but may be 100 ⁇ m or more and 500 ⁇ m or less. In addition, the thickness of the polarizer film is generally 10 ⁇ m or more and 50 ⁇ m or less. Furthermore, the polarizing film may further contain other layers in addition to the above three layers (polarizer film, TAC film and COP film, protective film) as long as there is no practical problem.
  • the film cutting system 1 includes a supply device 2, a cutting mechanism 3 (laser light irradiation system 30), an intermittent transport unit 3 ⁇ / b> A, a transport conveyor 4, a carry-out mechanism 5, and a control unit 6.
  • the supply device 2 feeds and supplies the strip-shaped polarizing film F.
  • the cutting mechanism 3 cuts the strip-shaped polarizing film F into sheets having a predetermined length in the transport direction.
  • the intermittent transport unit 3A intermittently transports the polarizing film F cut to a predetermined length.
  • the transport conveyor 4 continuously transports the polarizing film F transported from the intermittent transport unit 3A.
  • the carry-out mechanism 5 carries out the polarizing film F transported from the transport conveyor 4 to the next process.
  • the control unit 6 controls the supply device 2, the cutting mechanism 3 (laser light irradiation system 30), the intermittent transport unit 3 ⁇ / b> A, the transport conveyor 4, and the carry-out mechanism 5.
  • the “intermittent conveyance” refers to conveyance including temporarily stopping the polarizing film F in the process of conveying the polarizing film F.
  • the “continuous conveyance” is conveyance in which the polarizing film F is continuously fed out without stopping the polarizing film F in the process of conveying the polarizing film F.
  • the raw roll 7 is loaded on the bobbin 8.
  • the original fabric roll 7 is obtained by turning the band-shaped polarizing film F into a roll state.
  • the bobbin 8 is connected to a driving device such as a motor and can rotate.
  • a dancer roller D is disposed between the supply device 2 and the cutting mechanism 3.
  • the dancer roller D feeds the polarizing film F supplied from the supply device 2 until the polarizing film F sucked and held by the suction table 9 of the cutting mechanism 3 is cut by the laser light irradiation system 30 and the suction holding is released. Absorb the amount.
  • a plurality of rollers that form a conveyance path for the polarizing film F are disposed between the supply device 2 and the cutting mechanism 3.
  • the side approaching the starting point (supply device 2) of the transport path with respect to an arbitrary position on the transport path is referred to as the upstream side, and the side approaching the end point of the transport path (unloading mechanism 5). This is called the downstream side.
  • FIG. 2 is a cross-sectional view showing a main part of the cutting mechanism 3.
  • the cutting mechanism 3 includes a suction table 9, a laser light irradiation system 30, a pair of gripping rollers 11 and 12, and an alignment camera 13.
  • the suction table 9 sucks and holds the polarizing film F from the back surface.
  • the laser beam irradiation system 30 irradiates a laser beam that cuts the polarizing film F.
  • the pair of gripping rollers 11 and 12 grips the polarizing film F on the upstream side and the downstream side with the laser light irradiation system 30 in between.
  • the alignment camera 13 confirms the alignment of the polarizing film F.
  • the cutting mechanism 3 of the present embodiment has two sets of a laser light irradiation system 30, a pair of gripping rollers 11 and 12, and an alignment camera 13 (see FIG. 1). That is, in the present embodiment, the polarizing film F supplied from the supply device 2 is simultaneously cut at two positions at a predetermined cutting action position, and two sheets of polarizing film F are cut out by one cutting operation. Carry one by one.
  • the two holding blocks 9a and 9b having the same height are fixed on the upper surface of the suction table 9 close to each other along the conveying direction of the polarizing film F. That is, the suction groove 14 orthogonal to the conveyance direction of the polarizing film F is formed by the opposing inner walls of the holding blocks 9a and 9b.
  • the suction groove 14 serves as a scanning path for laser light emitted from the laser light irradiation system 30.
  • the position where the laser beam is scanned (position where the suction groove 14 is formed) is the cutting action position of the polarizing film F.
  • the laser light irradiation system 30 can move horizontally so as to cut the polarizing film F along the suction groove 14 (direction perpendicular to the conveying direction of the polarizing film F).
  • the gripping rollers 11 and 12 are composed of driving rollers 11a and 12a and free rollers 11b and 12b.
  • the driving roller 11a and the driving roller 12a are disposed to face each other with the polarizing film F interposed therebetween.
  • the free roller 11b and the free roller 12b are disposed to face each other with the polarizing film F interposed therebetween.
  • the surface of a core made of metal is coated with an elastic material such as urethane (hardness of about 30 to 90).
  • the configuration of the gripping rollers 11 and 12 is not limited to this, and a metal roller, a rubber roller, or the like can be used in appropriate combination as necessary.
  • the driving rollers 11a and 12a are disposed on the lower surface side of the polarizing film F.
  • the driving rollers 11a and 12a are connected to a driving device such as a motor and can feed out the polarizing film F.
  • the free rollers 11b and 12b are arranged on the upper surface side of the polarizing film F.
  • the free rollers 11b and 12b can freely rotate according to the rotation of the drive rollers 11a and 12a.
  • the alignment camera 13 is disposed above the polarizing film F. From the imaging result of the alignment camera 13, it can be confirmed whether the polarizing film F is accurately aligned, such as whether the polarizing film F is sent out until it reaches a predetermined cutting action position.
  • the gripping rollers 11 and 12 function as an intermittent conveyance unit 3A that intermittently conveys the polarizing film F cut to a predetermined length to the conveyance conveyor 4 on the downstream side.
  • FIG. 3 is a schematic diagram showing the laser light irradiation system 30 of the present embodiment.
  • the laser light irradiation system 30 includes a laser light oscillator 31, a reflection mirror 32, a beam splitter 33, a measurement device 34, a correction device 35, a shutter device 36, and a control device 37.
  • the laser beam oscillator 31 oscillates the laser beam L.
  • a CO 2 laser beam oscillator carbon dioxide laser beam oscillator
  • a UV laser beam oscillator a UV laser beam oscillator
  • a semiconductor laser beam oscillator a YAG laser beam oscillator
  • an excimer laser beam oscillator etc.
  • an oscillator can be used, a specific configuration is not particularly limited.
  • a CO 2 laser light oscillator is preferable to using another oscillator because it can oscillate laser light at a high output suitable for, for example, cutting processing of a polarizing film.
  • the output of the laser beam is not constant, and the output value fluctuates with a constant amplitude sandwiching the set value at a very short cycle (for example, 1 millisecond). Further, in the laser beam oscillator 31, when the output of the laser beam is low, the output value of the laser beam tends to become unstable (the higher the output, the smaller the fluctuation range of the output value). For this reason, in order to further stabilize the output value of the laser beam oscillator 31, it is desirable to set the output of the laser beam oscillator 31 to a relatively high output.
  • the polarizing film will be melted by excessive heat due to the irradiation of the laser beam, or it will expand and warp due to thermal expansion, resulting in defects at the edge of the polarizing film after cutting. There is a fear.
  • the output value of the laser oscillator 31 is set in advance to an appropriate setting value according to conditions such as the material and thickness of the polarizing film. That is, the specific output value of the laser light oscillator 31 is an appropriate set value according to the material and thickness of the polarizing film, the conveyance speed of the polarizing film, and the ratio of transmitted light and reflected light by the beam splitter 33. It is desirable to set to.
  • the frequency of the laser light L is appropriately set according to conditions such as the output of the laser light oscillator 31, the material and thickness of the polarizing film, and the conveying speed of the polarizing film.
  • the frequency of the laser beam L can be 5 kHz or more and 100 kHz or less.
  • the laser light oscillator 31 outputs laser light according to a preset set value, and is corrected by the correction device 35 so that the output value approaches the set value.
  • the laser light oscillator 31 continuously oscillates the laser light L under the control of the control device 37.
  • the reflection mirror 32 reflects the laser beam L oscillated from the laser beam oscillator 31 toward the beam splitter 33.
  • the reflecting mirror 32 is preferably a plane reflecting mirror, but may be any configuration that can reflect the laser light L toward the beam splitter 33.
  • the number is not specifically limited.
  • the beam splitter 33 branches the laser light L oscillated from the laser light oscillator 31 and reflected by the reflection mirror 32 into two at a certain ratio (ratio). That is, the beam splitter 33 branches the laser light L into the reflected light L1 and the transmitted light L2 at a constant ratio.
  • the beam splitter 33 irradiates the polarizing film with the reflected light L1 (first laser light) out of the branched laser light through an optical member such as a condenser lens, and is used for cutting the polarizing film. To do.
  • the beam splitter 33 irradiates the measuring device 34 with the transmitted light L2 (second laser light) and uses it to adjust the output of the laser light oscillator 31.
  • a known beam splitter can be used as the beam splitter 33.
  • the condensing lens for example, a known lens such as a spherical lens or an aspherical lens can be used, but it is not particularly limited.
  • the cutting width (cutting distance) of the polarizing film is determined by the condensing diameter of the laser light that is the reflected light L1, the condensing diameter of the laser light on the polarizing film is 5 ⁇ m or more and 500 ⁇ m or less. Is preferably 10 ⁇ m or more and 400 ⁇ m or less.
  • the reflected light L1 is used for cutting the polarizing film and the transmitted light L2 is used for adjusting the output of the laser light oscillator 31, but this is not limitative. Absent.
  • the transmitted light L2 may be used for cutting the polarizing film, and the reflected light L1 may be used for adjusting the output of the laser light oscillator 31.
  • the measuring device 34 is a so-called power sensor that converts the transmitted light L2 into a thermoelectromotive force and measures the intensity of the laser light that is the transmitted light L2.
  • the measuring device 34 measures the electric power generated when the laser beam is irradiated, and thereby measures the intensity of the laser beam.
  • the measurement interval by the measuring device 34 is preferably shorter, and may be 10 milliseconds or less (for example, 10 milliseconds), but is not particularly limited.
  • the measuring device 34 can use a known power sensor.
  • the measuring apparatus 34 should just be the structure which can measure the intensity
  • the measuring device 34 transmits the measured laser beam intensity (measured value) data to the correction device 35 via an A / D converter (not shown).
  • the A / D converter converts analog data of measurement values into digital data, and transmits the digital data of measurement values to the correction device 35.
  • the correction device 35 incorporates an arithmetic processing device such as a CPU (central processing unit).
  • the correction device 35 uses the digital data of the measurement value received from the measurement device 34 via the A / D converter and the ratio (ratio) of the transmitted light L2 at the branching at the beam splitter 33, so that the laser light oscillator 31 Calculate the output value. Then, the correction device 35 determines whether the output value is large (over or short) with respect to a preset setting value, and always corrects the output value of the laser beam oscillator 31 so as to approach the set value.
  • the correction device 35 feeds back the calculation result to the laser beam oscillator 31 constantly, specifically, for example, every 10 milliseconds so that the actual output value of the laser beam oscillator 31 approaches the set value. Adjust (correct). More specifically, when the intensity of the laser light that is the transmitted light L2 is small and the output value of the laser light oscillator 31 is smaller than the set value, the laser is set so that the actual output value of the laser light L becomes large. The output of the optical oscillator 31 is adjusted. On the other hand, when the intensity of the laser light that is the transmitted light L2 is large and the output value of the laser light oscillator 31 is larger than the set value, the laser light oscillator 31 is set so that the actual output value of the laser light L becomes small. Adjust the output.
  • the correction device 35 may be any configuration that can perform the above calculation and determination, and the specific configuration is not limited to a specific configuration.
  • the shutter device 36 is disposed on the optical path of the laser light L1 between the beam splitter 33 and the polarizing film.
  • the shutter device 36 has a shutter that blocks the laser light L ⁇ b> 1 emitted from the beam splitter 33.
  • the control device 37 continuously oscillates the laser beam L from the laser beam oscillator 31. Moreover, the control apparatus 37 sends the control signal which makes the shutter apparatus 36 open a shutter, when irradiating the laser beam L1 to a polarizing film. On the other hand, the control device 37 sends a control signal for closing the shutter to the shutter device 36 when the polarizing film is not irradiated with the laser light L1.
  • the transfer conveyor 4 is disposed downstream of the intermittent transfer unit 3A.
  • the transport conveyor 4 continuously transports the polarizing film F that is intermittently transported from the intermittent transport section 3A.
  • the conveyor 4 is set to a length that can hold the two polarizing films F cut by the cutting mechanism 3 and sent out from the intermittent conveyor 3A on a plane at a predetermined pitch.
  • the unloading mechanism 5 includes a roller conveyor that is continuously arranged below the end of the conveyor 4.
  • a tray 15 for collecting the polarizing film F falling from the conveyor 4 is disposed at the starting end portion of the carry-out mechanism 5.
  • the intermittent transport unit 3A When the sheet-fed polarizing film F is transferred from the intermittent transport unit 3A to the transport conveyor 4 downstream of the intermittent transport unit 3A, at the end of the intermittent transport process in the intermittent transport unit 3A, the intermittent transport unit 3A.
  • the control unit 6 controls the intermittent conveyance unit 3A so that the rear end of the polarizing film F is separated from the sheet and the sheet-shaped polarizing film F is sent out.
  • the intermittent transport unit 3A feeds the cut polarizing film F after cutting so that the rear end thereof exceeds the intermittent transport unit 3A during the next intermittent transport, and continues downstream of the intermittent transport unit 3A. Delivered to the conveyor 4.
  • “Send out beyond the intermittent conveyance unit 3A” means that the rear end of the cut polarizing film F is separated from the intermittent conveyance unit 3A, that is, a conveyance roller located on the most downstream side of the intermittent conveyance unit 3A. Means to be separated. Thereby, the polarizing film F after cutting
  • the control unit 6 of this embodiment includes a computer.
  • This computer includes an arithmetic processing unit 6a such as a CPU and a storage unit 6b such as a memory or a hard disk.
  • the control unit 6 according to the present embodiment includes an interface capable of executing communication with a device external to the computer.
  • An input device that can input an input signal may be connected to the control unit 6.
  • the input device is a communication device or the like capable of inputting data from an input device such as a keyboard and a mouse, or a device external to the computer.
  • the control unit 6 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the film cutting system 1 or may be connected to the display device.
  • An operating system (OS) that controls the computer is installed in the storage unit 6b of the control unit 6.
  • OS operating system
  • the storage unit 6b of the control unit 6 there is a program that causes the arithmetic processing unit 6a to control each part of the film cutting system 1, thereby causing the respective parts of the film cutting system 1 to execute processing for accurately conveying the polarizing film F.
  • Various types of information including programs recorded in the storage unit 6b can be read by the arithmetic processing unit 6a of the control unit 6.
  • the control unit 6 may include a logic circuit such as an ASIC that executes various processes required for controlling each unit of the film cutting system 1.
  • FIG. 4 is a flowchart illustrating a film cutting method according to an embodiment of the present invention.
  • the film cutting method according to the present embodiment is a film cutting method for cutting the strip-shaped polarizing film F into a film of a predetermined size, and includes a first step of supplying the strip-shaped polarizing film F and the supplied strip-shaped film. And a second step of cutting the polarizing film F into a predetermined size.
  • the laser beam irradiation system 30 is used (a laser beam irradiation method is used).
  • the strip-shaped polarizing film F1 is stopped at a predetermined cutting area and the shutter is opened, and the laser beam L1 is applied to the strip-shaped polarizing film F. Is not irradiated, the shutter is closed without stopping the strip-shaped polarizing film F1 in a predetermined cutting area.
  • belt-shaped polarizing film F using the film cutting system 1 is demonstrated.
  • the original roll 7 of the polarizing film F to be used is loaded into the supply device 2.
  • the operator makes initial settings using an operation panel or the like (step S1 shown in FIG. 4). For example, the operator sets the cutting length, thickness, supply speed, laser light output and depth of focus, feeding speed of the driving roller 12a, transport speed of the transport conveyor 4, and the like by the initial setting.
  • the supply device 2 starts to supply the polarizing film F from the raw fabric roll 7 based on the control of the control unit 6 (first step, step S2 shown in FIG. 4).
  • the rotational speed of a drive shaft such as a motor provided in the supply device 2 is detected by a sensor such as a rotary encoder (not shown).
  • the polarizing film F supplied from the supply device 2 is transported to the cutting mechanism 3 by a plurality of rollers that form a transport path of the polarizing film F.
  • the control unit 6 determines whether or not the polarizing film F has been sent out until it reaches a predetermined cutting action position (second step, step S3 shown in FIG. 4). For example, whether or not the polarizing film F has been sent out until reaching a predetermined cutting action position is determined based on a time table stored in the storage unit 6b of the control unit 6 in advance.
  • a predetermined length when the polarizing film F is cut the rotational speeds of the driving rollers 11a and 12a in the intermittent transport unit 3A (the transport speed of the polarizing film F), the intermittent transport unit 3A and the transport conveyor Set the distance between 4 and 4.
  • this determination can also be made based on the imaging result of the alignment camera 13. For example, the control unit 6 determines whether or not the polarizing film F is accurately aligned based on the imaging result of the alignment camera 13. Thereby, it can be determined with high accuracy whether or not the polarizing film F has been sent out until reaching a predetermined cutting action position.
  • the gripping rollers 11 and 12 are controlled by the control unit 6. Based on this, the polarizing film F is stopped at a predetermined cutting area (step S4 shown in FIG. 4). For example, when the leading end of the polarizing film F passes the gripping roller 12 and reaches a predetermined position, the driving of the driving rollers 11 a and 12 a is stopped under the control of the control unit 6. Thereby, the polarizing film F is gripped on both sides of the suction table 9.
  • controller 6 operates a suction device (not shown) in this state to cause the suction table 9 to hold the polarizing film F by suction.
  • the dancer roller D is operated by the control of the control unit 6 in conjunction with these operations. Thereby, it adjusts so that the polarizing film F supplied continuously from the supply apparatus 2 may not be drawn out after the dancer roller D.
  • the laser beam oscillator 31 continuously oscillates the laser beam L under the control of the control device 37.
  • the beam splitter 33 always irradiates the laser device L1 toward the shutter device 36.
  • the shutter device 36 is previously closed by the control of the control device 37, and the laser light L1 emitted from the beam splitter 33 toward the shutter device 36 is blocked by the shutter. Thereby, the laser beam L1 irradiated from the beam splitter 33 does not reach the polarizing film F.
  • control device 37 controls the laser light oscillator 31 to continuously oscillate the laser light L based on the control of the control unit 6. Further, the control device 37 controls the shutter device 36 to open and close the shutter based on the control of the control unit 6. The control unit 6 controls the laser light L to be continuously oscillated from the laser light oscillator 31 without using the control device 37, and controls the shutter device 36 to open and close the shutter. Also good.
  • the shutter device 36 When the polarizing film F is sucked and held on the suction table 9, the shutter device 36 is brought into the opened state from the closed state under the control of the control device 37 (step S5 shown in FIG. 4).
  • the shutter device 36 allows the laser light L1 emitted from the beam splitter 33 to pass when the shutter is open. Thereby, the laser beam L1 irradiated from the beam splitter 33 reaches the polarizing film F.
  • the laser beam irradiation system 30 moves horizontally in a direction orthogonal to the transport direction of the polarizing film F under the control of the control unit 6.
  • the polarizing film F sucked and held on the suction table 9 is cut along the suction grooves 14.
  • the strip-shaped polarizing film F is cut into sheets of a predetermined length (step S6 shown in FIG. 4).
  • Step S7 shown in FIG. 4
  • the shutter device 36 maintains the closed state under the control of the control unit 6 (step S8 shown in FIG. 4). And until it determines with having been sent out until the polarizing film F reached the predetermined
  • FIG. 5 is a schematic diagram showing a laser light irradiation system 130 of a comparative example.
  • the laser light irradiation system 130 of the comparative example includes a laser light oscillator 131, a reflection mirror 132, a reflection mirror 133, and a condenser lens (not shown). That is, the laser light irradiation system 130 of the comparative example does not include a beam splitter, a measurement device, an A / D converter, a correction device, a shutter device, and a control device.
  • the laser light irradiation system 130 reflects all of the laser light L oscillated from the laser light oscillator 131 by the reflection mirror 132 and the reflection mirror 133 and uses it for film cutting.
  • the laser light irradiation system 130 of the comparative example has a configuration other than the configuration for correcting the output value of the laser beam oscillator 31 according to the embodiment of the present invention so as to be close to the set value. Similar to the irradiation system 30. Further, the laser light oscillator 131 of the comparative example uses the same oscillator as the laser light oscillator 31 according to the embodiment of the present invention.
  • FIG. 6A and 6B show the output fluctuation of the laser beam irradiated by the laser beam irradiation system 30 (see FIG. 3) of the present embodiment and the laser beam irradiated by the laser beam irradiation system 130 (see FIG. 5) of the comparative example. It is the graph which contrasted the output change of light.
  • FIG. 6A is a graph when the output value of the laser beam L oscillated from the laser beam oscillator is set to 14.0 W and the film is cut at a speed of 6 m / min.
  • FIG. 6B is a graph when the output value of the laser beam L oscillated from the laser beam oscillator is set to 100.0 W and the film is cut at a speed of 60 m / min.
  • the following points can be seen from the output fluctuation of the laser light when the output value of the laser light L oscillated from the laser light oscillator is set to 14.0 W. That is, in the laser beam irradiation system 130 of the comparative example, the output value of the actually output laser beam L varies within the range of 12.3 to 15.0 W (average 13.8 W, swing width 2.7 W). ). On the other hand, in the laser beam irradiation system 30 according to the present embodiment, the output value of the actually output laser beam L is generally within the range of 13.5 to 14.3 W (average of 13.9 W, fluctuation) Width 0.8W).
  • the output value of the laser beam L oscillated from the laser beam oscillator is set to 14.0 W
  • the output of the laser beam L oscillated from the laser beam oscillator 31 of the laser beam irradiation system 30 of the present embodiment is small. That is, it can be seen that the performance of the laser light irradiation system 30 of the present embodiment is remarkably superior to that of the laser light irradiation system 130 of the comparative example.
  • the following points can be seen by looking at the output fluctuation of the laser light when the output value of the laser light L oscillated from the laser light oscillator is set to 100.0 W. That is, in the laser beam irradiation system 130 of the comparative example, the output value of the actually output laser beam L varies within the range of 95.2 to 102.8 W (average 99.1 W, swing width 7.6 W). ). On the other hand, in the laser beam irradiation system 30 according to the present embodiment, the output value of the actually output laser beam L is generally within the range of 99.3 to 101.0 W (average 100.2 W, fluctuation) Width 1.7 W).
  • the output value of the laser beam L oscillated from the laser beam oscillator is set to 100.0 W
  • the output of the laser beam L oscillated from the laser beam oscillator 31 of the laser beam irradiation system 30 of the present embodiment is set to 100.0 W
  • the fluctuation is small. That is, it can be seen that the performance of the laser light irradiation system 30 of the present embodiment is remarkably superior to that of the laser light irradiation system 130 of the comparative example.
  • the performance of the laser light irradiation system 30 according to this embodiment is oscillated from the laser light oscillator 31 as compared with the performance of the laser light irradiation system 130 of the comparative example. Since the output fluctuation of the laser beam L is small, it is clear that it is remarkably excellent.
  • the intensity of the transmitted light L2 is measured by the measurement device 34 and the correction device 35, for example, at a measurement interval of 10 milliseconds.
  • a so-called FTS (full time stabilizer) system that adjusts the output value of the laser beam L is employed to obtain the actual output value of the laser beam oscillator 31. Adjust (correct) so that it approaches the set value. Therefore, in the laser beam irradiation system 30 and the laser beam irradiation method of this embodiment, the polarizing film F can be appropriately cut.
  • the laser beam L is continuously oscillated from the laser beam oscillator 31 under the control of the control device 37. For this reason, compared with the case where the laser beam L is oscillated intermittently from the laser beam oscillator 31, the output value of the laser beam L can be stabilized.
  • “when laser light is oscillated intermittently” means that when the polarizing film is cut, the laser light oscillator is turned on to irradiate the laser light, and when the polarizing film is not cut, the laser light is oscillated. This is the case where the power of the machine is turned off to stop the irradiation of laser light.
  • the shutter under the control of the control device 37, the shutter is opened when the polarizing film F is irradiated with the laser light L1, and the shutter is closed when the polarizing film F is not irradiated with the laser light L1.
  • the cutting timing of the polarizing film F can be adjusted by the opening / closing timing of the shutter. Therefore, the polarizing film F can be appropriately cut at a predetermined timing.
  • the polarizing film F can be appropriately cut at a predetermined timing.
  • the polarizing film F can be appropriately cut at a predetermined timing.
  • cutting the film means not only dividing the film into at least two parts, but also making a cut through the film or a groove having a predetermined depth (cut). “Cut at least part of”, such as forming a film, is also included. More specifically, “cutting” includes, for example, cutting (cutting off) an end portion of the film, half cutting, marking processing, and the like.
  • the present embodiment the case where the strip-shaped polarizing film is cut into a single-sheet polarizing film has been described as an example, but the present invention is not limited thereto.
  • the present embodiment can also be applied to a case where a plurality of film chips are cut out from a strip-shaped polarizing film or a rectangular intermediate film is cut into a film having a predetermined size.
  • the number of sheets of polarizing film F cut by the cutting mechanism 3 may be one, or may be three or more.
  • the polarizing film is described as an example of the optical film.
  • the present embodiment is not limited to this, and the present embodiment can be applied to a polarizing film with a separator.
  • the present invention can be applied to a laser light irradiation system, a laser light irradiation method, a recording medium, and the like that can appropriately cut and process an optical film.
  • 1 film cutting system 2 supply device, 30 Laser light irradiation system, 31 Laser light oscillator, 33 Beam splitter, 34 measuring device, 35 correction device, 36 shutter device, 37 control device, F Polarizing film (film)

Abstract

In order to handle output variations in a laser light oscillator in which the output of laser light varies by a fixed amplitude around a setting value for a very short period rather than being fixed, the present invention adjusts the output of the laser light oscillator so that the actual output value for laser light matches a setting value, thus making possible a suitable cutting process for an optical film. This laser light irradiation system is provided with: a laser light oscillator that oscillates laser light; a beam splitter splits the laser light oscillated by the laser light oscillator into first laser light and second laser light and irradiates a film with the first laser light; a measurement device that measures the intensity of the second laser light split by the beam splitter; and a correction device that calculates an output value for the laser light oscillator from the second laser light intensity measured by the measurement device and makes the output value for the laser light oscillator approach the setting value.

Description

レーザー光照射システム、レーザー光照射方法及び記録媒体Laser light irradiation system, laser light irradiation method, and recording medium
 本発明は、レーザー光照射システム、レーザー光照射方法及び記録媒体に関する。
 本願は、2011年12月22日に、日本に出願された特願2011-281300号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a laser light irradiation system, a laser light irradiation method, and a recording medium.
This application claims priority on December 22, 2011 based on Japanese Patent Application No. 2011-281300 for which it applied to Japan, and uses the content here.
 偏光フィルム、位相差フィルム等の光学フィルムは、液晶パネル等の各種製品に広く用いられる。従来、光学フィルムの切断加工には刃物が用いられていた。しかしながら、刃物による切断加工の場合、被切断物からフィルム屑等の異物が生じ易い。この異物が偏光フィルムに付着すると、液晶パネル等の製品に表示不具合等の欠陥が生じることがある。その結果、製品の歩留まりが低下してしまう。 Optical films such as polarizing films and retardation films are widely used in various products such as liquid crystal panels. Conventionally, blades have been used for cutting optical films. However, in the case of cutting with a blade, foreign matters such as film scraps are easily generated from the object to be cut. If the foreign matter adheres to the polarizing film, a product such as a liquid crystal panel may have a defect such as a display defect. As a result, the product yield decreases.
 そこで、近年、光学フィルムの切断加工には、刃物に代わってレーザー光が使用されている。レーザー光で切断加工を行うことにより、刃物による切断加工に比べて、被切断物からフィルム屑等の異物が生じ難くなる。その結果、製品の歩留まりの低下を抑制することができる。 Therefore, in recent years, laser light has been used instead of blades for cutting optical films. By performing the cutting process with the laser beam, foreign matters such as film scraps are less likely to be generated from the object to be cut as compared with the cutting process using the blade. As a result, a decrease in product yield can be suppressed.
 例えば、レーザー光による切断方法として、特許文献1~5に記載されているように、種々の方法が提案されている。 For example, as a cutting method using laser light, various methods have been proposed as described in Patent Documents 1 to 5.
特開2008-284572号公報JP 2008-284572 A 特開2008-302376号公報JP 2008-302376 A 特開2009-22978号公報JP 2009-22978 A 特開2009-167321号公報JP 2009-167321 A 特開2010-53310号公報JP 2010-53310 A
 一般にレーザー光発振機は、レーザー光の出力が一定ではなく、ごく短い周期(例えば1ミリ秒)で、出力値が設定値を挟んだ一定の振幅で変動する。その為、レーザー光発振機の出力変動により、光学フィルムを切断加工するのに必要な値にレーザー光の出力値を設定しても、実際には光学フィルムを適切に切断加工することができない場合がある。 Generally, in laser light oscillators, the output of laser light is not constant, and the output value fluctuates with a constant amplitude with a set value sandwiched in a very short cycle (for example, 1 millisecond). Therefore, even if the output value of the laser beam is set to the value necessary to cut the optical film due to fluctuations in the output of the laser beam oscillator, the optical film cannot actually be cut properly. There is.
 通常、光学フィルムの切断加工は、光学フィルムの長尺物を一定の速度で搬送しながらレーザー光を照射することによって連続的に行われる。ここで、レーザー光の出力値を光学フィルムの切断加工に必要な値に設定すると、レーザー光発振機の出力変動によって当該出力値が設定値よりも一定以上低くなったときには、光学フィルムが適切に切断されない場合がある。これに伴い、切断加工後の光学フィルムを巻回するときに、当該光学フィルムの端部(切断部)が引きちぎられたり、光学フィルムの端部から内側に向かって破れたりする欠陥が発生することがある。 Usually, the cutting process of the optical film is continuously performed by irradiating a laser beam while conveying a long object of the optical film at a constant speed. Here, when the output value of the laser beam is set to a value necessary for the cutting processing of the optical film, when the output value becomes lower than a set value by a fluctuation of the output of the laser beam oscillator, the optical film is appropriately May not be disconnected. Along with this, when winding the optical film after the cutting process, the end (cutting part) of the optical film may be torn or torn from the end of the optical film to the inside. There is.
 前記欠陥を解消するために、レーザー光の出力値が設定値よりも一定以上低くなったときにおいても適切に切断加工ができるように、レーザー光の出力値を光学フィルムの切断加工に必要な値よりも高い値に設定する方法も考えられる。しかしながら、レーザー光の出力値を光学フィルムの切断加工に必要な値よりも高い値に設定すると、以下の問題が生じる。つまり、レーザー光発振機の出力変動によって当該出力値が設定値よりも一定以上高くなったときには、出力値が高くなりすぎるという問題が生じる。このような問題が生じると、光学フィルムの端部(切断部)がレーザー光の照射による過剰な熱で溶解したり、熱膨張して盛り上がったり反り返ったりするといった欠陥が発生する。 In order to eliminate the defect, the output value of the laser beam is a value necessary for the cutting process of the optical film so that the cutting process can be appropriately performed even when the output value of the laser beam becomes lower than a set value by a certain amount or more. A method of setting a higher value is also conceivable. However, when the output value of the laser beam is set to a value higher than the value necessary for the cutting process of the optical film, the following problems occur. That is, when the output value becomes higher than the set value by a certain level due to the output fluctuation of the laser beam oscillator, there arises a problem that the output value becomes too high. When such a problem occurs, defects such as melting of the end portion (cutting portion) of the optical film due to excessive heat due to laser light irradiation, and swelling or warping due to thermal expansion occur.
 しかしながら、特許文献1~5に記載されている切断方法においては、レーザー光発振機の前記特性、即ち、ごく短い周期でレーザー光の出力が変動するという特性について、特段の考慮や対策は行われていない。つまり、特許文献1~5に記載されている切断方法においては、光学フィルムを適切に切断加工することができない。 However, in the cutting methods described in Patent Documents 1 to 5, special consideration and countermeasures are taken for the characteristics of the laser oscillator, that is, the characteristics that the output of the laser light fluctuates in a very short period. Not. That is, in the cutting methods described in Patent Documents 1 to 5, the optical film cannot be appropriately cut.
 本発明はこのような事情に鑑みてなされたものであって、光学フィルムを適切に切断加工することが可能なレーザー光照射システム、レーザー光照射方法及び記録媒体を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a laser light irradiation system, a laser light irradiation method, and a recording medium capable of appropriately cutting an optical film.
 本発明の第1の態様は、レーザー光を発振するレーザー光発振機と、前記レーザー光発振機が発振したレーザー光を、第1のレーザー光と第2のレーザー光とに分岐し、前記第1のレーザー光をフィルムに照射するビームスプリッターと、前記ビームスプリッターが分岐した前記第2のレーザー光の強度を測定する測定装置と、前記測定装置が測定した前記第2のレーザー光の強度から前記レーザー光発振機の出力値を算出し、前記レーザー光発振機の前記出力値を、設定値に近づける補正装置と、を備えるレーザー光照射システムである。 According to a first aspect of the present invention, a laser beam oscillator that oscillates a laser beam, a laser beam that is oscillated by the laser beam oscillator is branched into a first laser beam and a second laser beam. A beam splitter for irradiating the film with one laser beam, a measuring device for measuring the intensity of the second laser beam branched by the beam splitter, and the intensity of the second laser beam measured by the measuring device A laser light irradiation system comprising: a correction device that calculates an output value of a laser light oscillator and brings the output value of the laser light oscillator close to a set value.
 本発明の第1の態様において、前記ビームスプリッターと前記フィルムとの間における前記第1のレーザー光の光路上に配置され、前記ビームスプリッターから照射される前記第1のレーザー光を遮断するシャッターと、前記レーザー光発振機に前記レーザー光を連続的に発振させ、前記フィルムに前記第1のレーザー光を照射させるときは前記シャッターを開き、前記フィルムに前記第1のレーザー光を照射させないときは前記シャッターを閉じる制御装置と、を更に備えてもよい。 In the first aspect of the present invention, a shutter is disposed on the optical path of the first laser light between the beam splitter and the film and blocks the first laser light irradiated from the beam splitter. When the laser beam oscillator continuously oscillates the laser beam and the film is irradiated with the first laser beam, the shutter is opened, and when the film is not irradiated with the first laser beam. And a control device that closes the shutter.
 本発明の第1の態様において、前記第1のレーザー光は、前記レーザー光発振機が発振したレーザー光の前記ビームスプリッターでの反射光であり、前記第2のレーザー光は、前記レーザー光発振機が発振したレーザー光の前記ビームスプリッターでの透過光であってもよい。 In the first aspect of the present invention, the first laser light is reflected light from the beam splitter of the laser light oscillated by the laser light oscillator, and the second laser light is the laser light oscillation. The light transmitted through the beam splitter may be laser light oscillated by a machine.
 本発明の第1の態様において、前記測定装置は、前記第2のレーザー光を熱起電力に変換して前記第2のレーザー光の強度を測定してもよい。 In the first aspect of the present invention, the measuring device may measure the intensity of the second laser beam by converting the second laser beam into a thermoelectromotive force.
 本発明の第1の態様において、前記レーザー光発振機は、COレーザー光発振機であってもよい。 In the first aspect of the present invention, the laser beam oscillator may be a CO 2 laser beam oscillator.
 本発明の第1の態様において、前記フィルムは帯状であり、前記フィルムを、前記第1のレーザーの照射位置に供給する供給装置を更に備えてもよい。 In the first aspect of the present invention, the film may have a strip shape, and may further include a supply device that supplies the film to an irradiation position of the first laser.
 本発明の第1の態様において、前記ビームスプリッターと前記フィルムとの間における前記第1のレーザー光の光路上に配置され、前記ビームスプリッターから照射される前記第1のレーザー光を遮断するシャッターを更に備え、前記制御装置は、前記供給装置から供給された前記帯状のフィルムに前記第1のレーザー光を照射させるときは前記フィルムを所定の切断領域で停止させるとともに前記シャッターを開き、前記帯状のフィルムに前記第1のレーザー光を照射させないときは前記帯状のフィルムを前記所定の切断領域で停止させないで前記シャッターを閉じてもよい。 In the first aspect of the present invention, there is provided a shutter disposed on the optical path of the first laser light between the beam splitter and the film and blocking the first laser light irradiated from the beam splitter. Further, the control device stops the film in a predetermined cutting region and opens the shutter when the first laser beam is irradiated on the belt-shaped film supplied from the supply device. When the film is not irradiated with the first laser beam, the shutter may be closed without stopping the belt-like film in the predetermined cutting region.
 本発明の第1の態様において、前記制御装置は、前記供給装置による前記フィルムの搬送速度に基づいて、前記フィルムを、前記所定の切断領域まで搬送してもよい。 In the first aspect of the present invention, the control device may transport the film to the predetermined cutting region based on a transport speed of the film by the supply device.
 本発明の第1の態様において、前記補正装置は、前記補正装置が算出した前記出力値が、前記設定値よりも小さい場合には、前記レーザー光発振機が発振するレーザー光の強度を増加させ、前記補正装置が算出した前記出力値が、前記設定値よりも大きい場合には、前記レーザー光発振機が発振するレーザー光の強度を減少させてもよい。 In the first aspect of the present invention, the correction device increases the intensity of the laser beam oscillated by the laser beam oscillator when the output value calculated by the correction device is smaller than the set value. When the output value calculated by the correction device is larger than the set value, the intensity of the laser beam oscillated by the laser beam oscillator may be decreased.
 本発明の第1の態様において、前記ビームスプリッターは、前記第1のレーザー光の集光径が、5μm以上、500μm以下となるように、前記第1のレーザー光を、前記フィルムに照射してもよい。 1st aspect of this invention WHEREIN: The said beam splitter irradiates the said 1st laser beam to the said film so that the condensing diameter of the said 1st laser beam may be 5 micrometers or more and 500 micrometers or less. Also good.
 本発明の第1の態様において、前記測定装置は、前記ビームスプリッターが分岐した前記第2のレーザー光の強度を、10ミリ秒以下の測定間隔で測定してもよい。 In the first aspect of the present invention, the measurement device may measure the intensity of the second laser beam branched by the beam splitter at a measurement interval of 10 milliseconds or less.
 本発明の第2の態様は、レーザー光発振機から発振されたレーザー光を、第1のレーザー光と第2のレーザー光とに分岐させ、前記第1のレーザー光をフィルムに照射し、前記第2のレーザー光の強度を測定し、前記第2のレーザー光の強度から前記レーザー光発振機の出力値を算出し、前記レーザー光発振機の出力値を、設定値に近づけるレーザー光照射方法。 According to a second aspect of the present invention, a laser beam oscillated from a laser beam oscillator is branched into a first laser beam and a second laser beam, and the film is irradiated with the first laser beam, Laser light irradiation method for measuring the intensity of the second laser light, calculating the output value of the laser light oscillator from the intensity of the second laser light, and bringing the output value of the laser light oscillator close to a set value .
 本発明の第2の態様において、前記フィルムは帯状であり、前記フィルムを、前記第1のレーザーの照射位置に供給し、前記第1のレーザー光を前記フィルムに照射することにより、前記第1のレーザーの照射位置に供給された前記フィルムを所定サイズに切断してもよい。 2nd aspect of this invention WHEREIN: The said film is strip | belt-shaped, supplying the said film to the irradiation position of the said 1st laser, and irradiating the said 1st laser beam to the said 1st laser, The film supplied to the laser irradiation position may be cut into a predetermined size.
 本発明の第2の態様において、前記第1のレーザー光を前記フィルムに照射する際に、供給された前記フィルムに前記第1のレーザー光を照射させるときは前記フィルムを所定の切断領域で停止させるとともに、前記第1のレーザー光を遮断するシャッターを開き、前記フィルムに前記第1のレーザー光を照射させないときは前記フィルムを前記所定の切断領域で停止させないで前記シャッターを閉じてもよい。 2nd aspect of this invention WHEREIN: When irradiating the said 1st laser beam to the said film supplied when irradiating the said 1st laser beam to the said film, the said film is stopped in a predetermined cutting area | region In addition, a shutter that blocks the first laser light may be opened, and when the film is not irradiated with the first laser light, the shutter may be closed without stopping the film in the predetermined cutting region.
 本発明の第3の態様は、レーザー光発振機から発振されたレーザー光を、第1のレーザー光と第2のレーザー光とに分岐させ、前記第1のレーザー光をフィルムに照射し、前記第2のレーザー光の強度を測定し、前記第2のレーザー光の強度から前記レーザー光発振機の出力値を算出し、前記レーザー光発振機の出力値を、設定値に近づけることを実行するプログラムを記録したコンピュータ読み取り可能な記録媒体である。 According to a third aspect of the present invention, a laser beam oscillated from a laser beam oscillator is branched into a first laser beam and a second laser beam, and the film is irradiated with the first laser beam, The intensity of the second laser beam is measured, the output value of the laser beam oscillator is calculated from the intensity of the second laser beam, and the output value of the laser beam oscillator is brought close to a set value. A computer-readable recording medium on which a program is recorded.
 本発明によれば、光学フィルムを適切に切断加工することが可能なレーザー光照射システム、レーザー光照射方法及び記録媒体を提供することができる。 According to the present invention, it is possible to provide a laser light irradiation system, a laser light irradiation method, and a recording medium capable of appropriately cutting an optical film.
本発明の実施形態によるフィルム切断システムを示す模式図である。It is a mimetic diagram showing a film cutting system by an embodiment of the present invention. 本発明の実施形態による切断機構の要部を示す断面図である。It is sectional drawing which shows the principal part of the cutting mechanism by embodiment of this invention. 本発明の実施形態によるレーザー光照射システムを示す模式図である。It is a schematic diagram which shows the laser beam irradiation system by embodiment of this invention. 本発明の実施形態によるフィルム切断方法を示すフローチャートである。It is a flowchart which shows the film cutting method by embodiment of this invention. 比較例のレーザー光照射システムを示す模式図である。It is a schematic diagram which shows the laser beam irradiation system of a comparative example. 本発明の実施形態によるレーザー光照射システムによって照射されたレーザー光の出力変動と、比較例のレーザー光照射システムによって照射されたレーザー光の出力変動とを対比したグラフである。It is the graph which contrasted the output fluctuation of the laser beam irradiated with the laser beam irradiation system by embodiment of this invention, and the output fluctuation of the laser beam irradiated with the laser beam irradiation system of a comparative example. 本発明の実施形態によるレーザー光照射システムによって照射されたレーザー光の出力変動と、比較例のレーザー光照射システムによって照射されたレーザー光の出力変動とを対比した他のグラフである。It is the other graph which contrasted the output fluctuation | variation of the laser beam irradiated with the laser beam irradiation system by embodiment of this invention, and the output fluctuation | variation of the laser beam irradiated with the laser beam irradiation system of a comparative example.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。
 尚、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
In all the drawings below, the dimensions and ratios of the respective constituent elements are appropriately changed in order to make the drawings easy to see. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明の実施形態によるフィルム切断システム1を示す模式図である。
 図1に示すフィルム切断システム1は、例えば液晶パネルや有機ELパネルなどの光学表示パネルの基板に貼り付ける偏光フィルム、位相差フィルムなどの光学フィルムを切断する。尚、光学フィルムは、可撓性を有する帯状の機能性フィルムであれば特に限定されるものではなく、本実施形態では偏光フィルムを例に挙げて説明する。
FIG. 1 is a schematic diagram showing a film cutting system 1 according to an embodiment of the present invention.
A film cutting system 1 shown in FIG. 1 cuts an optical film such as a polarizing film or a retardation film attached to a substrate of an optical display panel such as a liquid crystal panel or an organic EL panel. The optical film is not particularly limited as long as it is a belt-like functional film having flexibility. In the present embodiment, a polarizing film will be described as an example.
 尚、レーザー光照射システム30が切断する偏光フィルム(切断対象)は、特に限定されるものではないが、公知の偏光フィルムを用いることができる。当該偏光フィルムとしては、通常、長尺(例えば切断方向における偏光フィルムの長さが10m以上)の偏光フィルムが用いられる。しかし、短尺(例えば切断方向における偏光フィルムの長さが2m以上、10m未満)または板状(例えば切断方向における偏光フィルムの長さが10cm以上、2m未満)の偏光フィルムを用いてもよい。 In addition, the polarizing film (cutting object) which the laser beam irradiation system 30 cuts is not particularly limited, but a known polarizing film can be used. As the polarizing film, a long polarizing film (for example, the length of the polarizing film in the cutting direction is 10 m or more) is usually used. However, a polarizing film having a short length (for example, a length of the polarizing film in the cutting direction of 2 m or more and less than 10 m) or a plate shape (for example, a length of the polarizing film in the cutting direction of 10 cm or more and less than 2 m) may be used.
 偏光フィルムとしては、例えば、偏光子フィルムの両面に保護フィルム部材としてTAC(トリアセチルセルロース)フィルム、COP(シクロオレフィンポリマー)フィルム等のフィルムが貼合されているフィルムを用いることができる。また、その偏光フィルムとしては、レーザー光照射システム30に対する面の逆面(裏面)のTACフィルムに、粘着剤を介して保護フィルムが積層されたフィルムを用いることができる。偏光フィルムの中心に位置する偏光子フィルムとしては、ポリビニルアルコールフィルムにヨウ素等の染色剤によって染色がなされて延伸されたフィルムに、TAC等の保護フィルム部材が貼合されたフィルムを用いることができる。また、前記ポリビニルアルコールフィルムに代えて、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム、セルロース系フィルム等の親水性高分子フィルム、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン配向フィルムを使用することもできる。 As the polarizing film, for example, a film in which films such as a TAC (triacetylcellulose) film and a COP (cycloolefin polymer) film are bonded as protective film members on both surfaces of the polarizer film can be used. Moreover, as the polarizing film, a film in which a protective film is laminated on a TAC film on the reverse side (back side) of the surface with respect to the laser light irradiation system 30 via an adhesive can be used. As the polarizer film located at the center of the polarizing film, a film in which a protective film member such as TAC is bonded to a film obtained by dyeing a polyvinyl alcohol film with a dyeing agent such as iodine and stretching can be used. . Further, in place of the polyvinyl alcohol film, hydrophilic polymer films such as partially formalized polyvinyl alcohol film, ethylene / vinyl acetate copolymer partially saponified film, and cellulose film, dehydrated polyvinyl alcohol and polychlorinated A polyene oriented film such as a dehydrochlorinated product of vinyl can also be used.
 上記保護フィルムとしては、ポリエステルフィルム、ポリエチレンテレフタラートフィルム等のフィルムを用いることもできる。上記保護フィルムの厚さおよび幅は、特に限定されるものではない。例えば、偏光フィルムの保護フィルムとして用いられる観点から、保護フィルムは、例えば、5μm以上、60μm以下の厚さであり、200mm以上、1500mm以下の幅のフィルムを用いることが好ましい。 As the protective film, a film such as a polyester film or a polyethylene terephthalate film can also be used. The thickness and width of the protective film are not particularly limited. For example, from the viewpoint of being used as a protective film for a polarizing film, the protective film has a thickness of, for example, 5 μm or more and 60 μm or less, and a film having a width of 200 mm or more and 1500 mm or less is preferably used.
 保護フィルムを含めた偏光フィルムの厚さは、特に限定されるものではないが、100μm以上、500μm以下とすることができる。尚、偏光子フィルムの厚さは、概して10μm以上、50μm以下である。さらに、偏光フィルムは、実用上、問題が無い範囲において、上記三層(偏光子フィルム、TACフィルムおよびCOPフィルム、保護フィルム)以外にさらに他の層を含んでいてもよい。 The thickness of the polarizing film including the protective film is not particularly limited, but may be 100 μm or more and 500 μm or less. In addition, the thickness of the polarizer film is generally 10 μm or more and 50 μm or less. Furthermore, the polarizing film may further contain other layers in addition to the above three layers (polarizer film, TAC film and COP film, protective film) as long as there is no practical problem.
 図1に示すように、フィルム切断システム1は、供給装置2、切断機構3(レーザー光照射システム30)、間欠搬送部3A、搬送コンベア4、搬出機構5、制御部6を備える。
 供給装置2は、帯状の偏光フィルムFを繰り出し供給する。切断機構3は、帯状の偏光フィルムFを搬送方向において所定長さの枚葉に切断する。間欠搬送部3Aは、所定長さに切断された偏光フィルムFを間欠的に搬送する。搬送コンベア4は、間欠搬送部3Aから搬送された偏光フィルムFを連続的に搬送する。搬出機構5は、搬送コンベア4から搬送された偏光フィルムFを次工程に搬出する。制御部6は、供給装置2、切断機構3(レーザー光照射システム30)、間欠搬送部3A、搬送コンベア4、搬出機構5を統括的に制御する。 尚、「間欠的搬送」とは、偏光フィルムFを搬送する過程で偏光フィルムFをいったん停止させることを含む搬送である。また、「連続的搬送」とは、偏光フィルムFを搬送する過程で偏光フィルムFを停止させることなく偏光フィルムFの送り出しを継続する搬送である。
As shown in FIG. 1, the film cutting system 1 includes a supply device 2, a cutting mechanism 3 (laser light irradiation system 30), an intermittent transport unit 3 </ b> A, a transport conveyor 4, a carry-out mechanism 5, and a control unit 6.
The supply device 2 feeds and supplies the strip-shaped polarizing film F. The cutting mechanism 3 cuts the strip-shaped polarizing film F into sheets having a predetermined length in the transport direction. The intermittent transport unit 3A intermittently transports the polarizing film F cut to a predetermined length. The transport conveyor 4 continuously transports the polarizing film F transported from the intermittent transport unit 3A. The carry-out mechanism 5 carries out the polarizing film F transported from the transport conveyor 4 to the next process. The control unit 6 controls the supply device 2, the cutting mechanism 3 (laser light irradiation system 30), the intermittent transport unit 3 </ b> A, the transport conveyor 4, and the carry-out mechanism 5. The “intermittent conveyance” refers to conveyance including temporarily stopping the polarizing film F in the process of conveying the polarizing film F. Further, the “continuous conveyance” is conveyance in which the polarizing film F is continuously fed out without stopping the polarizing film F in the process of conveying the polarizing film F.
 供給装置2は、原反ロール7がボビン8に装填される。原反ロール7は、帯状の偏光フィルムFをロール状態にしたものである。ボビン8は、モーターなどの駆動装置に接続されており、回転することが可能である。 In the supply device 2, the raw roll 7 is loaded on the bobbin 8. The original fabric roll 7 is obtained by turning the band-shaped polarizing film F into a roll state. The bobbin 8 is connected to a driving device such as a motor and can rotate.
 供給装置2と切断機構3との間には、ダンサローラDが配置される。ダンサローラDは、切断機構3の吸着テーブル9で吸着保持される偏光フィルムFが、レーザー光照射システム30で切断されて吸着保持が解除されるまで、供給装置2から供給される偏光フィルムFの繰り出し量を吸収する。 A dancer roller D is disposed between the supply device 2 and the cutting mechanism 3. The dancer roller D feeds the polarizing film F supplied from the supply device 2 until the polarizing film F sucked and held by the suction table 9 of the cutting mechanism 3 is cut by the laser light irradiation system 30 and the suction holding is released. Absorb the amount.
 また、供給装置2と切断機構3との間には、偏光フィルムFの搬送経路を形成する複数のローラが配置される。尚、以下の説明においては、搬送経路上の任意の位置に対して、搬送経路の始点(供給装置2)に近づく側を上流側と称し、搬送経路の終点(搬出機構5)に近づく側を下流側と称する。 Further, a plurality of rollers that form a conveyance path for the polarizing film F are disposed between the supply device 2 and the cutting mechanism 3. In the following description, the side approaching the starting point (supply device 2) of the transport path with respect to an arbitrary position on the transport path is referred to as the upstream side, and the side approaching the end point of the transport path (unloading mechanism 5). This is called the downstream side.
 図2は、切断機構3の要部を示す断面図である。
 図2に示すように、切断機構3は、吸着テーブル9、レーザー光照射システム30、一対の把持ローラ11及び12、アライメントカメラ13を備える。
 吸着テーブル9は、偏光フィルムFを裏面から吸着保持する。レーザー光照射システム30は、偏光フィルムFをカットするレーザー光を照射する。一対の把持ローラ11及び12は、レーザー光照射システム30を挟んで上流側と下流側とで偏光フィルムFを把持する。アライメントカメラ13は、偏光フィルムFのアライメントを確認する。
FIG. 2 is a cross-sectional view showing a main part of the cutting mechanism 3.
As shown in FIG. 2, the cutting mechanism 3 includes a suction table 9, a laser light irradiation system 30, a pair of gripping rollers 11 and 12, and an alignment camera 13.
The suction table 9 sucks and holds the polarizing film F from the back surface. The laser beam irradiation system 30 irradiates a laser beam that cuts the polarizing film F. The pair of gripping rollers 11 and 12 grips the polarizing film F on the upstream side and the downstream side with the laser light irradiation system 30 in between. The alignment camera 13 confirms the alignment of the polarizing film F.
 本実施形態の切断機構3は、レーザー光照射システム30、一対の把持ローラ11及び12、アライメントカメラ13を2組有する(図1参照)。即ち、本実施形態においては、供給装置2から供給される偏光フィルムFを所定の切断作用位置で2箇所同時に切断し、枚葉の偏光フィルムFを一回の切断動作で2枚切り出し、2枚ずつ搬送する。 The cutting mechanism 3 of the present embodiment has two sets of a laser light irradiation system 30, a pair of gripping rollers 11 and 12, and an alignment camera 13 (see FIG. 1). That is, in the present embodiment, the polarizing film F supplied from the supply device 2 is simultaneously cut at two positions at a predetermined cutting action position, and two sheets of polarizing film F are cut out by one cutting operation. Carry one by one.
 吸着テーブル9の上面には高さが同一の2個の保持ブロック9a及び9bが、偏光フィルムFの搬送方向に沿って近接して固定される。つまり、両保持ブロック9a及び9bの対向する内側壁によって、偏光フィルムFの搬送方向に直交する吸着溝14が形成される。この吸着溝14は、レーザー光照射システム30から照射されるレーザー光の走査経路となる。尚、レーザー光が走査される位置(吸着溝14が形成される位置)が、偏光フィルムFの切断作用位置となる。 The two holding blocks 9a and 9b having the same height are fixed on the upper surface of the suction table 9 close to each other along the conveying direction of the polarizing film F. That is, the suction groove 14 orthogonal to the conveyance direction of the polarizing film F is formed by the opposing inner walls of the holding blocks 9a and 9b. The suction groove 14 serves as a scanning path for laser light emitted from the laser light irradiation system 30. The position where the laser beam is scanned (position where the suction groove 14 is formed) is the cutting action position of the polarizing film F.
 レーザー光照射システム30は、偏光フィルムFを吸着溝14(偏光フィルムFの搬送方向に直交する方向)に沿って切断するように、水平に移動することが可能である。 The laser light irradiation system 30 can move horizontally so as to cut the polarizing film F along the suction groove 14 (direction perpendicular to the conveying direction of the polarizing film F).
 把持ローラ11及び12は、駆動ローラ11a及び12aと、フリーローラ11b及び12bと、から構成される。駆動ローラ11aと駆動ローラ12aは、偏光フィルムFを挟んで対向配置される。フリーローラ11bとフリーローラ12bは、偏光フィルムFを挟んで対向配置される。把持ローラ11及び12は、例えば金属からなる芯材の表面にウレタン(硬度30~90程度)などの弾性材が被覆される。尚、把持ローラ11及び12の構成は、これに限らず、金属ローラやゴムローラなどを必要に応じて適宜組み合わせて用いることができる。 The gripping rollers 11 and 12 are composed of driving rollers 11a and 12a and free rollers 11b and 12b. The driving roller 11a and the driving roller 12a are disposed to face each other with the polarizing film F interposed therebetween. The free roller 11b and the free roller 12b are disposed to face each other with the polarizing film F interposed therebetween. In the gripping rollers 11 and 12, for example, the surface of a core made of metal is coated with an elastic material such as urethane (hardness of about 30 to 90). The configuration of the gripping rollers 11 and 12 is not limited to this, and a metal roller, a rubber roller, or the like can be used in appropriate combination as necessary.
 駆動ローラ11a及び12aは、偏光フィルムFの下面側に配置される。駆動ローラ11a及び12aは、モーターなどの駆動装置に接続されており、偏光フィルムFを繰り出すことが可能である。 The driving rollers 11a and 12a are disposed on the lower surface side of the polarizing film F. The driving rollers 11a and 12a are connected to a driving device such as a motor and can feed out the polarizing film F.
 フリーローラ11b及び12bは、偏光フィルムFの上面側に配置される。フリーローラ11b及び12bは、駆動ローラ11a及び12aの回転に従って自在に回転することが可能である。 The free rollers 11b and 12b are arranged on the upper surface side of the polarizing film F. The free rollers 11b and 12b can freely rotate according to the rotation of the drive rollers 11a and 12a.
 アライメントカメラ13は、偏光フィルムFの上方に配置される。アライメントカメラ13の撮像結果により、偏光フィルムFが所定の切断作用位置に達するまで送り出されているかなど、偏光フィルムFのアライメントが精度よくなされているかを確認することができる。 The alignment camera 13 is disposed above the polarizing film F. From the imaging result of the alignment camera 13, it can be confirmed whether the polarizing film F is accurately aligned, such as whether the polarizing film F is sent out until it reaches a predetermined cutting action position.
 尚、把持ローラ11及び12は、所定長さに切断された偏光フィルムFを下流側の搬送コンベア4に間欠的に搬送する間欠搬送部3Aとして機能する。 The gripping rollers 11 and 12 function as an intermittent conveyance unit 3A that intermittently conveys the polarizing film F cut to a predetermined length to the conveyance conveyor 4 on the downstream side.
 図3は、本実施形態のレーザー光照射システム30を示す模式図である。
 図3に示すように、レーザー光照射システム30は、レーザー光発振機31、反射ミラー32、ビームスプリッター33、測定装置34、補正装置35、シャッター装置36、制御装置37、を備える。
FIG. 3 is a schematic diagram showing the laser light irradiation system 30 of the present embodiment.
As shown in FIG. 3, the laser light irradiation system 30 includes a laser light oscillator 31, a reflection mirror 32, a beam splitter 33, a measurement device 34, a correction device 35, a shutter device 36, and a control device 37.
 レーザー光発振機31は、レーザー光Lを発振する。例えば、レーザー光発振機31としては、COレーザー光発振機(二酸化炭素レーザー光発振機)、UVレーザー光発振機、半導体レーザー光発振機、YAGレーザー光発振機、エキシマレーザー光発振機等の発振機を用いることができるが、具体的な構成は特に限定されるものではない。例示した発振機の中でもCOレーザー光発振機は、例えば偏光フィルムの切断加工に好適な高出力でレーザー光を発振することができるので、他の発振機を用いるよりも好ましい。 The laser beam oscillator 31 oscillates the laser beam L. For example, as the laser beam oscillator 31, a CO 2 laser beam oscillator (carbon dioxide laser beam oscillator), a UV laser beam oscillator, a semiconductor laser beam oscillator, a YAG laser beam oscillator, an excimer laser beam oscillator, etc. Although an oscillator can be used, a specific configuration is not particularly limited. Among the exemplified oscillators, a CO 2 laser light oscillator is preferable to using another oscillator because it can oscillate laser light at a high output suitable for, for example, cutting processing of a polarizing film.
 一般に、レーザー光発振機31は、レーザー光の出力が一定ではなく、ごく短い周期(例えば1ミリ秒)で、出力値が設定値を挟んだ一定の振幅で変動する。また、レーザー光発振機31は、レーザー光の出力が低い場合には、レーザー光の出力値が不安定となり易い(出力が高いほど出力値の変動幅が小さくなり易い)。このため、レーザー光発振機31の出力値をより一層安定化させるには、レーザー光発振機31の出力を比較的高出力にすることが望ましい。但し、出力値が高すぎると、偏光フィルムがレーザー光の照射による過剰な熱で溶解したり、熱膨張して盛り上がったり反り返ったりしてしまい、切断加工後の偏光フィルムの端部において欠陥が生じるおそれがある。 Generally, in the laser beam oscillator 31, the output of the laser beam is not constant, and the output value fluctuates with a constant amplitude sandwiching the set value at a very short cycle (for example, 1 millisecond). Further, in the laser beam oscillator 31, when the output of the laser beam is low, the output value of the laser beam tends to become unstable (the higher the output, the smaller the fluctuation range of the output value). For this reason, in order to further stabilize the output value of the laser beam oscillator 31, it is desirable to set the output of the laser beam oscillator 31 to a relatively high output. However, if the output value is too high, the polarizing film will be melted by excessive heat due to the irradiation of the laser beam, or it will expand and warp due to thermal expansion, resulting in defects at the edge of the polarizing film after cutting. There is a fear.
 その為、レーザー光発振機31の出力値は、偏光フィルムの材質や厚さ等の条件に応じた適切な設定値に予め設定することが望ましい。即ち、レーザー光発振機31の具体的な出力値は、偏光フィルムの材質や厚さ、偏光フィルムの搬送速度、並びに、ビームスプリッター33による透過光および反射光の比率に応じて、適切な設定値に設定することが望ましい。 Therefore, it is desirable that the output value of the laser oscillator 31 is set in advance to an appropriate setting value according to conditions such as the material and thickness of the polarizing film. That is, the specific output value of the laser light oscillator 31 is an appropriate set value according to the material and thickness of the polarizing film, the conveyance speed of the polarizing film, and the ratio of transmitted light and reflected light by the beam splitter 33. It is desirable to set to.
 本実施形態において、レーザー光Lの周波数は、レーザー光発振機31の出力、偏光フィルムの材質や厚さ、偏光フィルムの搬送速度等の条件により適宜設定される。例えば、レーザー光Lの周波数は、5kHz以上、100kHz以下とすることができる。 In the present embodiment, the frequency of the laser light L is appropriately set according to conditions such as the output of the laser light oscillator 31, the material and thickness of the polarizing film, and the conveying speed of the polarizing film. For example, the frequency of the laser beam L can be 5 kHz or more and 100 kHz or less.
 レーザー光発振機31は、予め設定された設定値に従ってレーザー光を出力するとともに、補正装置35によって、その出力値が設定値に近づくように補正される。なお、本実施形態において、レーザー光発振機31は、制御装置37の制御により、レーザー光Lを連続的に発振する。 The laser light oscillator 31 outputs laser light according to a preset set value, and is corrected by the correction device 35 so that the output value approaches the set value. In the present embodiment, the laser light oscillator 31 continuously oscillates the laser light L under the control of the control device 37.
 反射ミラー32は、レーザー光発振機31から発振されたレーザー光Lを、ビームスプリッター33に向けて反射する。例えば、反射ミラー32は、平面反射鏡が好適であるが、レーザー光Lをビームスプリッター33に向けて反射することができる構成であればよい。また、その個数は特に限定されるものではない。 The reflection mirror 32 reflects the laser beam L oscillated from the laser beam oscillator 31 toward the beam splitter 33. For example, the reflecting mirror 32 is preferably a plane reflecting mirror, but may be any configuration that can reflect the laser light L toward the beam splitter 33. Moreover, the number is not specifically limited.
 ビームスプリッター33は、レーザー光発振機31から発振され反射ミラー32にて反射されたレーザー光Lを、一定の比率(割合)で二つに分岐する。即ち、ビームスプリッター33は、レーザー光Lを、一定の比率で反射光L1と透過光L2とに分岐する。そして、ビームスプリッター33は、分岐させたレーザー光のうち、反射光L1(第1のレーザー光)を、集光レンズ等の光学部材を介して偏光フィルムに照射して偏光フィルムの切断加工に使用する。また、ビームスプリッター33は、透過光L2(第2のレーザー光)を、測定装置34に照射してレーザー光発振機31の出力調節に使用する。当該ビームスプリッター33は、公知のビームスプリッターを使用することができる。 The beam splitter 33 branches the laser light L oscillated from the laser light oscillator 31 and reflected by the reflection mirror 32 into two at a certain ratio (ratio). That is, the beam splitter 33 branches the laser light L into the reflected light L1 and the transmitted light L2 at a constant ratio. The beam splitter 33 irradiates the polarizing film with the reflected light L1 (first laser light) out of the branched laser light through an optical member such as a condenser lens, and is used for cutting the polarizing film. To do. The beam splitter 33 irradiates the measuring device 34 with the transmitted light L2 (second laser light) and uses it to adjust the output of the laser light oscillator 31. As the beam splitter 33, a known beam splitter can be used.
 集光レンズは、例えば球面レンズや非球面レンズ等の公知のレンズを使用することができるが、特に限定されるものではない。尚、反射光L1であるレーザー光の集光径によって偏光フィルムの切断幅(切りしろ)が決定されるため、偏光フィルム上における当該レーザー光の集光径は、5μm以上、500μm以下であることが好ましく、10μm以上、400μm以下であることがより好ましい。 As the condensing lens, for example, a known lens such as a spherical lens or an aspherical lens can be used, but it is not particularly limited. In addition, since the cutting width (cutting distance) of the polarizing film is determined by the condensing diameter of the laser light that is the reflected light L1, the condensing diameter of the laser light on the polarizing film is 5 μm or more and 500 μm or less. Is preferably 10 μm or more and 400 μm or less.
 尚、本実施形態に係るレーザー光照射システム30においては、反射光L1を偏光フィルムの切断加工に使用し、透過光L2をレーザー光発振機31の出力調節に使用しているが、これに限らない。例えば反射ミラー(図示しない)を用いることにより、透過光L2を偏光フィルムの切断加工に使用し、反射光L1をレーザー光発振機31の出力調節に使用してもよい。 In the laser light irradiation system 30 according to the present embodiment, the reflected light L1 is used for cutting the polarizing film and the transmitted light L2 is used for adjusting the output of the laser light oscillator 31, but this is not limitative. Absent. For example, by using a reflection mirror (not shown), the transmitted light L2 may be used for cutting the polarizing film, and the reflected light L1 may be used for adjusting the output of the laser light oscillator 31.
 測定装置34は、透過光L2を熱起電力に変換し、透過光L2であるレーザー光の強度を測定する素子、いわゆるパワーセンサーである。測定装置34は、レーザー光が照射されることによって発生する電力を測定し、これにより当該レーザー光の強度を測定する。測定装置34による測定間隔は短い方がより好ましく、10ミリ秒以下(例えば10ミリ秒)とすればよいが、特に限定されるものではない。尚、測定装置34は、公知のパワーセンサーを使用することができる。また、測定装置34は、レーザー光の強度を測定することができる構成であればよい。 The measuring device 34 is a so-called power sensor that converts the transmitted light L2 into a thermoelectromotive force and measures the intensity of the laser light that is the transmitted light L2. The measuring device 34 measures the electric power generated when the laser beam is irradiated, and thereby measures the intensity of the laser beam. The measurement interval by the measuring device 34 is preferably shorter, and may be 10 milliseconds or less (for example, 10 milliseconds), but is not particularly limited. The measuring device 34 can use a known power sensor. Moreover, the measuring apparatus 34 should just be the structure which can measure the intensity | strength of a laser beam.
 測定装置34は、測定したレーザー光の強度(測定値)のデータを、A/Dコンバータ(図示しない)を介して補正装置35に送信する。上記A/Dコンバータは、測定値のアナログデータをデジタルデータに変換し、測定値のデジタルデータを補正装置35に送信する。 The measuring device 34 transmits the measured laser beam intensity (measured value) data to the correction device 35 via an A / D converter (not shown). The A / D converter converts analog data of measurement values into digital data, and transmits the digital data of measurement values to the correction device 35.
 補正装置35は、CPU(central processing unit)等の演算処理装置を内蔵する。補正装置35は、測定装置34からA/Dコンバータを介して受信した測定値のデジタルデータと、ビームスプリッター33での分岐における透過光L2の比率(割合)とから、上記レーザー光発振機31の出力値を算出する。そして、補正装置35は、予め設定された設定値に対する上記出力値の大小(過不足)を判定して、上記レーザー光発振機31の出力値を設定値に近づけるように常時補正する。 The correction device 35 incorporates an arithmetic processing device such as a CPU (central processing unit). The correction device 35 uses the digital data of the measurement value received from the measurement device 34 via the A / D converter and the ratio (ratio) of the transmitted light L2 at the branching at the beam splitter 33, so that the laser light oscillator 31 Calculate the output value. Then, the correction device 35 determines whether the output value is large (over or short) with respect to a preset setting value, and always corrects the output value of the laser beam oscillator 31 so as to approach the set value.
 つまり、補正装置35は、演算結果をレーザー光発振機31に常時、具体的には例えば10ミリ秒毎にフィードバックして、レーザー光発振機31の実際の出力値を、設定値に近づくように調節(補正)する。より具体的には、透過光L2であるレーザー光の強度が小さく、レーザー光発振機31の出力値が設定値よりも小さい場合には、レーザー光Lの実際の出力値が大きくなるようにレーザー光発振機31の出力を調節する。一方、透過光L2であるレーザー光の強度が大きく、レーザー光発振機31の出力値が設定値よりも大きい場合には、レーザー光Lの実際の出力値が小さくなるようにレーザー光発振機31の出力を調節する。尚、補正装置35は、上記算出および判定を行うことができる構成であればよく、その具体的な構成は、特定の構成に限定されるものではない。 That is, the correction device 35 feeds back the calculation result to the laser beam oscillator 31 constantly, specifically, for example, every 10 milliseconds so that the actual output value of the laser beam oscillator 31 approaches the set value. Adjust (correct). More specifically, when the intensity of the laser light that is the transmitted light L2 is small and the output value of the laser light oscillator 31 is smaller than the set value, the laser is set so that the actual output value of the laser light L becomes large. The output of the optical oscillator 31 is adjusted. On the other hand, when the intensity of the laser light that is the transmitted light L2 is large and the output value of the laser light oscillator 31 is larger than the set value, the laser light oscillator 31 is set so that the actual output value of the laser light L becomes small. Adjust the output. The correction device 35 may be any configuration that can perform the above calculation and determination, and the specific configuration is not limited to a specific configuration.
 シャッター装置36は、ビームスプリッター33と偏光フィルムの間におけるレーザー光L1の光路上に配置される。シャッター装置36は、ビームスプリッター33から照射されるレーザー光L1を遮断するシャッターを有する。 The shutter device 36 is disposed on the optical path of the laser light L1 between the beam splitter 33 and the polarizing film. The shutter device 36 has a shutter that blocks the laser light L <b> 1 emitted from the beam splitter 33.
 制御装置37は、レーザー光発振機31からレーザー光Lを連続的に発振させる。また、制御装置37は、偏光フィルムにレーザー光L1を照射させるときは、シャッター装置36にシャッターを開かせる制御信号を送る。一方、制御装置37は、偏光フィルムにレーザー光L1を照射させないときは、シャッター装置36にシャッターを閉じさせる制御信号を送る。 The control device 37 continuously oscillates the laser beam L from the laser beam oscillator 31. Moreover, the control apparatus 37 sends the control signal which makes the shutter apparatus 36 open a shutter, when irradiating the laser beam L1 to a polarizing film. On the other hand, the control device 37 sends a control signal for closing the shutter to the shutter device 36 when the polarizing film is not irradiated with the laser light L1.
 図1に戻り、搬送コンベア4は、間欠搬送部3Aの下流側に配置される。搬送コンベア4は、間欠搬送部3Aから間欠的に搬送される偏光フィルムFを受け取りながら連続的に搬送する。搬送コンベア4は、切断機構3で切断されて間欠搬送部3Aから送り出された2枚の偏光フィルムFを、所定ピッチで平面保持できる長さに設定される。 Returning to FIG. 1, the transfer conveyor 4 is disposed downstream of the intermittent transfer unit 3A. The transport conveyor 4 continuously transports the polarizing film F that is intermittently transported from the intermittent transport section 3A. The conveyor 4 is set to a length that can hold the two polarizing films F cut by the cutting mechanism 3 and sent out from the intermittent conveyor 3A on a plane at a predetermined pitch.
 搬出機構5は、搬送コンベア4の終端下方に連続配置されたローラコンベアを備える。搬出機構5の始端部分には、搬送コンベア4から落下してくる偏光フィルムFを回収するトレー15が配置される。 The unloading mechanism 5 includes a roller conveyor that is continuously arranged below the end of the conveyor 4. A tray 15 for collecting the polarizing film F falling from the conveyor 4 is disposed at the starting end portion of the carry-out mechanism 5.
 間欠搬送部3Aから、当該間欠搬送部3Aの下流側に続く搬送コンベア4に枚葉の偏光フィルムFを受け渡す際には、間欠搬送部3Aにおける間欠搬送過程の終了時点において、間欠搬送部3Aから偏光フィルムFの後端が離間して枚葉の偏光フィルムFが送り出されるように、制御部6は間欠搬送部3Aを制御する。具体的には、間欠搬送部3Aは、切断後の枚葉の偏光フィルムFを後端が次の間欠搬送時に当該間欠搬送部3Aを越えるよう送り出し、当該間欠搬送部3Aの下流側に続く搬送コンベア4に受け渡す。「間欠搬送部3Aを越えるように送り出す」とは、切断後の枚葉の偏光フィルムFの後端が間欠搬送部3Aから離間すること、即ち、間欠搬送部3Aの最も下流側にある搬送ローラと離間することを意味する。これにより、切断後の偏光フィルムFは、間欠搬送部3Aを越えて下流側の搬送コンベア4上に載置される。 When the sheet-fed polarizing film F is transferred from the intermittent transport unit 3A to the transport conveyor 4 downstream of the intermittent transport unit 3A, at the end of the intermittent transport process in the intermittent transport unit 3A, the intermittent transport unit 3A. The control unit 6 controls the intermittent conveyance unit 3A so that the rear end of the polarizing film F is separated from the sheet and the sheet-shaped polarizing film F is sent out. Specifically, the intermittent transport unit 3A feeds the cut polarizing film F after cutting so that the rear end thereof exceeds the intermittent transport unit 3A during the next intermittent transport, and continues downstream of the intermittent transport unit 3A. Delivered to the conveyor 4. “Send out beyond the intermittent conveyance unit 3A” means that the rear end of the cut polarizing film F is separated from the intermittent conveyance unit 3A, that is, a conveyance roller located on the most downstream side of the intermittent conveyance unit 3A. Means to be separated. Thereby, the polarizing film F after cutting | disconnection is mounted on the conveyance conveyor 4 of a downstream side exceeding the intermittent conveyance part 3A.
 本実施形態の制御部6は、コンピュータを備える。このコンピュータは、CPU等の演算処理部6aと、メモリーやハードディスク等の記憶部6bとを備える。本実施形態の制御部6は、コンピュータの外部の装置との通信を実行することが可能なインターフェースを備える。制御部6には、入力信号を入力することが可能な入力装置が接続されてもよい。上記の入力装置は、キーボード、マウス等の入力機器、あるいはコンピュータシの外部の装置からのデータを入力することが可能な通信装置等である。制御部6は、フィルム切断システム1の各部の動作状況を示す液晶表示ディスプレイ等の表示装置を備えてもよいし、表示装置と接続されてもよい。 The control unit 6 of this embodiment includes a computer. This computer includes an arithmetic processing unit 6a such as a CPU and a storage unit 6b such as a memory or a hard disk. The control unit 6 according to the present embodiment includes an interface capable of executing communication with a device external to the computer. An input device that can input an input signal may be connected to the control unit 6. The input device is a communication device or the like capable of inputting data from an input device such as a keyboard and a mouse, or a device external to the computer. The control unit 6 may include a display device such as a liquid crystal display that indicates the operation status of each unit of the film cutting system 1 or may be connected to the display device.
 制御部6の記憶部6bには、コンピュータを制御するオペレーティングシステム(OS)がインストールされる。制御部6の記憶部6bには、演算処理部6aにフィルム切断システム1の各部を制御させることによって、フィルム切断システム1の各部に偏光フィルムFを精度よく搬送させるための処理を実行させるプログラムが記録される。記憶部6bに記録されるプログラムを含む各種情報は、制御部6の演算処理部6aが読み取り可能である。制御部6は、フィルム切断システム1の各部の制御に要する各種処理を実行するASIC等の論理回路を含んでもよい。 An operating system (OS) that controls the computer is installed in the storage unit 6b of the control unit 6. In the storage unit 6b of the control unit 6, there is a program that causes the arithmetic processing unit 6a to control each part of the film cutting system 1, thereby causing the respective parts of the film cutting system 1 to execute processing for accurately conveying the polarizing film F. To be recorded. Various types of information including programs recorded in the storage unit 6b can be read by the arithmetic processing unit 6a of the control unit 6. The control unit 6 may include a logic circuit such as an ASIC that executes various processes required for controlling each unit of the film cutting system 1.
(フィルム切断方法)
 図4は、本発明の実施形態によるフィルム切断方法を示すフローチャートである。
 本実施形態に係るフィルム切断方法は、帯状の偏光フィルムFを所定サイズのフィルムに切断するためのフィルム切断方法であり、帯状の偏光フィルムFを供給する第1の工程と、供給された帯状の偏光フィルムFを所定のサイズに切断する第2の工程と、を有する。第2の工程としては、前記レーザー光照射システム30を用いる(レーザー光照射方法を用いる)。
 第2の工程において、供給された帯状の偏光フィルムFにレーザー光L1を照射させるときは帯状の偏光フィルムF1を所定の切断領域で停止させるとともにシャッターを開き、帯状の偏光フィルムFにレーザー光L1を照射させないときは帯状の偏光フィルムF1を所定の切断領域で停止させないでシャッターを閉じる。
 以下、フィルム切断システム1を用いて帯状の偏光フィルムFを切断するまでの動作を説明する。
(Film cutting method)
FIG. 4 is a flowchart illustrating a film cutting method according to an embodiment of the present invention.
The film cutting method according to the present embodiment is a film cutting method for cutting the strip-shaped polarizing film F into a film of a predetermined size, and includes a first step of supplying the strip-shaped polarizing film F and the supplied strip-shaped film. And a second step of cutting the polarizing film F into a predetermined size. As the second step, the laser beam irradiation system 30 is used (a laser beam irradiation method is used).
In the second step, when the supplied strip-shaped polarizing film F is irradiated with the laser beam L1, the strip-shaped polarizing film F1 is stopped at a predetermined cutting area and the shutter is opened, and the laser beam L1 is applied to the strip-shaped polarizing film F. Is not irradiated, the shutter is closed without stopping the strip-shaped polarizing film F1 in a predetermined cutting area.
Hereinafter, operation | movement until it cut | disconnects the strip | belt-shaped polarizing film F using the film cutting system 1 is demonstrated.
 先ず、使用する偏光フィルムFの原反ロール7を供給装置2に装填する。この装填が完了した後、オペレータは、操作パネルなどを利用して初期設定を行う(図4に示すステップS1)。例えば、オペレータは、当該初期設定により、偏光フィルムFの切断長さ、厚み、供給速度、レーザー光の出力および焦点深度、駆動ローラ12aの繰り出し速度、搬送コンベア4の搬送速度などを設定する。 First, the original roll 7 of the polarizing film F to be used is loaded into the supply device 2. After this loading is completed, the operator makes initial settings using an operation panel or the like (step S1 shown in FIG. 4). For example, the operator sets the cutting length, thickness, supply speed, laser light output and depth of focus, feeding speed of the driving roller 12a, transport speed of the transport conveyor 4, and the like by the initial setting.
 初期設定が完了すると、供給装置2は、制御部6の制御に基づいて、原反ロール7から偏光フィルムFの供給を開始する(第1の工程、図4に示すステップS2)。当該偏光フィルムFの供給の際には、供給装置2に設けられたモーターなどの駆動軸の回転数がロータリーエンコーダなどのセンサーにより検出される(図示略)。 When the initial setting is completed, the supply device 2 starts to supply the polarizing film F from the raw fabric roll 7 based on the control of the control unit 6 (first step, step S2 shown in FIG. 4). When supplying the polarizing film F, the rotational speed of a drive shaft such as a motor provided in the supply device 2 is detected by a sensor such as a rotary encoder (not shown).
 供給装置2から供給される偏光フィルムFは、当該偏光フィルムFの搬送経路を形成する複数のローラにより、切断機構3に搬送される。当該搬送の際、制御部6は、偏光フィルムFが所定の切断作用位置に達するまで送り出されたか否か判定する(第2の工程、図4に示すステップS3)。例えば、偏光フィルムFが所定の切断作用位置に達するまで送り出されたか否かの判定は、予め制御部6の記憶部6bに記憶されたタイムテーブルにより行われる。具体的には、初期設定において、偏光フィルムFを切断する際の所定長さ、間欠搬送部3Aにおける駆動ローラ11a及び12aの回転速度(偏光フィルムFの搬送速度)、間欠搬送部3Aと搬送コンベア4との間の距離を設定しておく。これにより、偏光フィルムを搬送する際、偏光フィルムFが所定の切断作用位置に達するまで送り出されたか否かを判定することができる。 The polarizing film F supplied from the supply device 2 is transported to the cutting mechanism 3 by a plurality of rollers that form a transport path of the polarizing film F. During the conveyance, the control unit 6 determines whether or not the polarizing film F has been sent out until it reaches a predetermined cutting action position (second step, step S3 shown in FIG. 4). For example, whether or not the polarizing film F has been sent out until reaching a predetermined cutting action position is determined based on a time table stored in the storage unit 6b of the control unit 6 in advance. Specifically, in the initial setting, a predetermined length when the polarizing film F is cut, the rotational speeds of the driving rollers 11a and 12a in the intermittent transport unit 3A (the transport speed of the polarizing film F), the intermittent transport unit 3A and the transport conveyor Set the distance between 4 and 4. Thereby, when conveying a polarizing film, it can be determined whether the polarizing film F was sent out until it reached a predetermined cutting action position.
 なお、当該判定は、アライメントカメラ13の撮像結果に基づいて行うこともできる。例えば、制御部6は、アライメントカメラ13の撮像結果に基づいて、偏光フィルムFのアライメントが精度良くなされているかを判定する。これにより、偏光フィルムFが所定の切断作用位置に達するまで送り出されたか否かを高精度に判定することができる。 Note that this determination can also be made based on the imaging result of the alignment camera 13. For example, the control unit 6 determines whether or not the polarizing film F is accurately aligned based on the imaging result of the alignment camera 13. Thereby, it can be determined with high accuracy whether or not the polarizing film F has been sent out until reaching a predetermined cutting action position.
 そして、偏光フィルムFが所定の切断作用位置に達するまで送り出されたと判定された場合には(図4に示すステップS3で“YES”)、両把持ローラ11及び12は、制御部6の制御に基づいて、偏光フィルムFを所定の切断領域で停止させる(図4に示すステップS4)。例えば、偏光フィルムFの先端が把持ローラ12を通過して所定の位置に到達すると、制御部6の制御により、駆動ローラ11a及び12aの駆動を停止させる。これにより、偏光フィルムFが吸着テーブル9の両側で把持される。 When it is determined that the polarizing film F has been sent out until it reaches the predetermined cutting action position (“YES” in step S3 shown in FIG. 4), the gripping rollers 11 and 12 are controlled by the control unit 6. Based on this, the polarizing film F is stopped at a predetermined cutting area (step S4 shown in FIG. 4). For example, when the leading end of the polarizing film F passes the gripping roller 12 and reaches a predetermined position, the driving of the driving rollers 11 a and 12 a is stopped under the control of the control unit 6. Thereby, the polarizing film F is gripped on both sides of the suction table 9.
 また、制御部6は、この状態で吸引装置(図示略)を作動させて吸着テーブル9に偏光フィルムFを吸着保持させる。 In addition, the controller 6 operates a suction device (not shown) in this state to cause the suction table 9 to hold the polarizing film F by suction.
 尚、これらの動作に連動して、制御部6の制御により、ダンサローラDが作動する。これにより、供給装置2から連続的に供給される偏光フィルムFがダンサローラD以降に繰り出さないよう調整される。 In addition, the dancer roller D is operated by the control of the control unit 6 in conjunction with these operations. Thereby, it adjusts so that the polarizing film F supplied continuously from the supply apparatus 2 may not be drawn out after the dancer roller D.
 本実施形態においては、レーザー光発振機31は、制御装置37の制御より、レーザー光Lを連続的に発振する。これにより、ビームスプリッター33は、常時、レーザー光L1をシャッター装置36に向けて照射する。シャッター装置36は、制御装置37の制御により、予めシャッターが閉じ、ビームスプリッター33からシャッター装置36に向けて照射されるレーザー光L1はシャッターにより遮断される。これにより、ビームスプリッター33から照射されるレーザー光L1が偏光フィルムFに到達しない。 In the present embodiment, the laser beam oscillator 31 continuously oscillates the laser beam L under the control of the control device 37. Thereby, the beam splitter 33 always irradiates the laser device L1 toward the shutter device 36. The shutter device 36 is previously closed by the control of the control device 37, and the laser light L1 emitted from the beam splitter 33 toward the shutter device 36 is blocked by the shutter. Thereby, the laser beam L1 irradiated from the beam splitter 33 does not reach the polarizing film F.
 本実施形態においては、制御装置37は、制御部6の制御に基づいて、レーザー光発振機31からレーザー光Lを連続的に発振させるように制御する。また、制御装置37は、制御部6の制御に基づいて、シャッター装置36にシャッターを開閉動作させるように制御する。
 なお、制御部6が、制御装置37を介さずに、レーザー光発振機31からレーザー光Lを連続的に発振させるように制御するとともに、シャッター装置36にシャッターを開閉動作させるように制御してもよい。
In the present embodiment, the control device 37 controls the laser light oscillator 31 to continuously oscillate the laser light L based on the control of the control unit 6. Further, the control device 37 controls the shutter device 36 to open and close the shutter based on the control of the control unit 6.
The control unit 6 controls the laser light L to be continuously oscillated from the laser light oscillator 31 without using the control device 37, and controls the shutter device 36 to open and close the shutter. Also good.
 偏光フィルムFが吸着テーブル9に吸着保持されると、シャッター装置36は、制御装置37の制御により、シャッターが閉じた状態から開いた状態にする(図4に示すステップS5)。シャッター装置36は、シャッターが開いた状態のとき、ビームスプリッター33から照射されるレーザー光L1を通過させる。これにより、ビームスプリッター33から照射されるレーザー光L1が偏光フィルムFに到達する。 When the polarizing film F is sucked and held on the suction table 9, the shutter device 36 is brought into the opened state from the closed state under the control of the control device 37 (step S5 shown in FIG. 4). The shutter device 36 allows the laser light L1 emitted from the beam splitter 33 to pass when the shutter is open. Thereby, the laser beam L1 irradiated from the beam splitter 33 reaches the polarizing film F.
 そして、レーザー光照射システム30は、制御部6の制御により、偏光フィルムFの搬送方向に直交する方向に水平移動する。これにより、吸着テーブル9に吸着保持された偏光フィルムFは、吸着溝14に沿って切断される。その結果、帯状の偏光フィルムFが所定長さの枚葉に切断される(図4に示すステップS6)。 And the laser beam irradiation system 30 moves horizontally in a direction orthogonal to the transport direction of the polarizing film F under the control of the control unit 6. Thereby, the polarizing film F sucked and held on the suction table 9 is cut along the suction grooves 14. As a result, the strip-shaped polarizing film F is cut into sheets of a predetermined length (step S6 shown in FIG. 4).
 尚、制御部6が、偏光フィルムFが所定の切断作用位置に達するまで送り出されていないと判定した場合には(図4に示すステップS3で“NO”)、偏光フィルムFを所定の切断領域で停止させない(図4に示すステップS7)。この場合、シャッター装置36は、制御部6の制御により、シャッターが閉じた状態を維持する(図4に示すステップS8)。そして、偏光フィルムFが所定の切断作用位置に達するまで送り出されたと判定されるまで(図4に示すステップS3で“YES”)、偏光フィルムFの搬送が継続される(図4に示すステップS9)。 When the control unit 6 determines that the polarizing film F has not been sent out until reaching the predetermined cutting action position (“NO” in step S3 shown in FIG. 4), the polarizing film F is moved to the predetermined cutting area. (Step S7 shown in FIG. 4). In this case, the shutter device 36 maintains the closed state under the control of the control unit 6 (step S8 shown in FIG. 4). And until it determines with having been sent out until the polarizing film F reached the predetermined | prescribed cutting action position ("YES" in step S3 shown in FIG. 4), conveyance of the polarizing film F is continued (step S9 shown in FIG. 4). ).
 図5は、比較例のレーザー光照射システム130を示す模式図である。
 図5に示すように、比較例のレーザー光照射システム130は、レーザー光発振機131、反射ミラー132、反射ミラー133、および集光レンズ(図示しない)を備える。つまり、比較例のレーザー光照射システム130は、ビームスプリッター、測定装置、A/Dコンバータ、補正装置、シャッター装置及び制御装置を備えていない。レーザー光照射システム130は、レーザー光発振機131から発振されるレーザー光Lの全てを反射ミラー132および反射ミラー133で反射して、フィルムの切断加工に使用する。
 尚、比較例のレーザー光照射システム130は、本発明の実施形態によるレーザー光発振機31の出力値を設定値に近づけるように補正するための構成以外の構成については、本実施形態のレーザー光照射システム30と同様に備える。また、比較例のレーザー光発振機131は、本発明の実施形態によるレーザー光発振機31と同一の発振機を用いる。
FIG. 5 is a schematic diagram showing a laser light irradiation system 130 of a comparative example.
As shown in FIG. 5, the laser light irradiation system 130 of the comparative example includes a laser light oscillator 131, a reflection mirror 132, a reflection mirror 133, and a condenser lens (not shown). That is, the laser light irradiation system 130 of the comparative example does not include a beam splitter, a measurement device, an A / D converter, a correction device, a shutter device, and a control device. The laser light irradiation system 130 reflects all of the laser light L oscillated from the laser light oscillator 131 by the reflection mirror 132 and the reflection mirror 133 and uses it for film cutting.
Note that the laser light irradiation system 130 of the comparative example has a configuration other than the configuration for correcting the output value of the laser beam oscillator 31 according to the embodiment of the present invention so as to be close to the set value. Similar to the irradiation system 30. Further, the laser light oscillator 131 of the comparative example uses the same oscillator as the laser light oscillator 31 according to the embodiment of the present invention.
 図6A及び図6Bは、本実施形態のレーザー光照射システム30(図3参照)によって照射されたレーザー光の出力変動と、比較例のレーザー光照射システム130(図5参照)によって照射されたレーザー光の出力変動とを対比したグラフである。図6Aは、レーザー光発振機から発振されるレーザー光Lの出力値を14.0Wに設定し、フィルムを6m/分の速度で切断加工した場合のグラフである。
 図6Bは、レーザー光発振機から発振されるレーザー光Lの出力値を100.0Wに設定し、フィルムを60m/分の速度で切断加工した場合のグラフである。
6A and 6B show the output fluctuation of the laser beam irradiated by the laser beam irradiation system 30 (see FIG. 3) of the present embodiment and the laser beam irradiated by the laser beam irradiation system 130 (see FIG. 5) of the comparative example. It is the graph which contrasted the output change of light. FIG. 6A is a graph when the output value of the laser beam L oscillated from the laser beam oscillator is set to 14.0 W and the film is cut at a speed of 6 m / min.
FIG. 6B is a graph when the output value of the laser beam L oscillated from the laser beam oscillator is set to 100.0 W and the film is cut at a speed of 60 m / min.
 図6Aに示すように、レーザー光発振機から発振されるレーザー光Lの出力値を14.0Wに設定した場合のレーザー光の出力変動を見ると、以下の点が分かる。つまり、比較例のレーザー光照射システム130では、実際に出力されたレーザー光Lの出力値は概して12.3~15.0Wの範囲内にばらついている(平均13.8W、振れ幅2.7W)。
 これに対し、本実施形態に係るレーザー光照射システム30では、実際に出力されたレーザー光Lの出力値は概して13.5~14.3Wの範囲内に納まっている(平均13.9W、振れ幅0.8W)。
 従って、レーザー光発振機から発振されるレーザー光Lの出力値を14.0Wに設定した場合において、本実施形態のレーザー光照射システム30のレーザー光発振機31から発振されるレーザー光Lの出力変動は小さい。つまり、本実施形態のレーザー光照射システム30の性能は、比較例のレーザー光照射システム130の性能と比較して、格段に優れていることが判る。
As shown in FIG. 6A, the following points can be seen from the output fluctuation of the laser light when the output value of the laser light L oscillated from the laser light oscillator is set to 14.0 W. That is, in the laser beam irradiation system 130 of the comparative example, the output value of the actually output laser beam L varies within the range of 12.3 to 15.0 W (average 13.8 W, swing width 2.7 W). ).
On the other hand, in the laser beam irradiation system 30 according to the present embodiment, the output value of the actually output laser beam L is generally within the range of 13.5 to 14.3 W (average of 13.9 W, fluctuation) Width 0.8W).
Therefore, when the output value of the laser beam L oscillated from the laser beam oscillator is set to 14.0 W, the output of the laser beam L oscillated from the laser beam oscillator 31 of the laser beam irradiation system 30 of the present embodiment. The fluctuation is small. That is, it can be seen that the performance of the laser light irradiation system 30 of the present embodiment is remarkably superior to that of the laser light irradiation system 130 of the comparative example.
 図6Bに示すように、レーザー光発振機から発振されるレーザー光Lの出力値を100.0Wに設定した場合のレーザー光の出力変動を見ると、以下の点が分かる。つまり、比較例のレーザー光照射システム130では、実際に出力されたレーザー光Lの出力値は概して95.2~102.8Wの範囲内にばらついている(平均99.1W、振れ幅7.6W)。
 これに対し、本実施形態に係るレーザー光照射システム30では、実際に出力されたレーザー光Lの出力値は概して99.3~101.0Wの範囲内に納まっている(平均100.2W、振れ幅1.7W)。
 従って、レーザー光発振機から発振されるレーザー光Lの出力値を100.0Wに設定した場合において、本実施形態のレーザー光照射システム30のレーザー光発振機31から発振されるレーザー光Lの出力変動は小さい。つまり、本実施形態のレーザー光照射システム30の性能は、比較例のレーザー光照射システム130の性能と比較して、格段に優れていることが判る。
As shown in FIG. 6B, the following points can be seen by looking at the output fluctuation of the laser light when the output value of the laser light L oscillated from the laser light oscillator is set to 100.0 W. That is, in the laser beam irradiation system 130 of the comparative example, the output value of the actually output laser beam L varies within the range of 95.2 to 102.8 W (average 99.1 W, swing width 7.6 W). ).
On the other hand, in the laser beam irradiation system 30 according to the present embodiment, the output value of the actually output laser beam L is generally within the range of 99.3 to 101.0 W (average 100.2 W, fluctuation) Width 1.7 W).
Therefore, when the output value of the laser beam L oscillated from the laser beam oscillator is set to 100.0 W, the output of the laser beam L oscillated from the laser beam oscillator 31 of the laser beam irradiation system 30 of the present embodiment. The fluctuation is small. That is, it can be seen that the performance of the laser light irradiation system 30 of the present embodiment is remarkably superior to that of the laser light irradiation system 130 of the comparative example.
 即ち、図6A、図6Bに示す結果から、本実施形態に係るレーザー光照射システム30の性能は、比較例のレーザー光照射システム130の性能と比較して、レーザー光発振機31から発振されるレーザー光Lの出力変動が小さいので、格段に優れていることが明らかである。 That is, from the results shown in FIGS. 6A and 6B, the performance of the laser light irradiation system 30 according to this embodiment is oscillated from the laser light oscillator 31 as compared with the performance of the laser light irradiation system 130 of the comparative example. Since the output fluctuation of the laser beam L is small, it is clear that it is remarkably excellent.
 このように本実施形態のレーザー光照射システム30、レーザー光照射方法では、測定装置34及び補正装置35により、例えば10ミリ秒の測定間隔で透過光L2の強度を測定する。そして、本実施形態のレーザー光照射システム30、レーザー光照射方法では、レーザー光Lの出力値を調節するいわゆるFTS(full time stabilizer)システムを採用してレーザー光発振機31の実際の出力値を設定値に近づくように調節(補正)する。よって、本実施形態のレーザー光照射システム30、レーザー光照射方法では、偏光フィルムFを適切に切断することができる。 As described above, in the laser light irradiation system 30 and the laser light irradiation method of the present embodiment, the intensity of the transmitted light L2 is measured by the measurement device 34 and the correction device 35, for example, at a measurement interval of 10 milliseconds. In the laser beam irradiation system 30 and the laser beam irradiation method of the present embodiment, a so-called FTS (full time stabilizer) system that adjusts the output value of the laser beam L is employed to obtain the actual output value of the laser beam oscillator 31. Adjust (correct) so that it approaches the set value. Therefore, in the laser beam irradiation system 30 and the laser beam irradiation method of this embodiment, the polarizing film F can be appropriately cut.
 さらに、本実施形態においては、制御装置37の制御より、レーザー光発振機31からレーザー光Lを連続的に発振させる。このため、レーザー光発振機31からレーザー光Lを間欠的に発振させる場合に比べて、レーザー光Lの出力値を安定させることができる。ここで、「レーザー光を間欠的に発振させる場合」とは、偏光フィルムを切断するときはレーザー光発振機の電源をONにしてレーザー光を照射させ、偏光フィルムを切断しないときはレーザー光発振機の電源をOFFにしてレーザー光の照射を停止させる場合をいう。
 また、本実施形態においては、制御装置37の制御より、偏光フィルムFにレーザー光L1を照射させるときはシャッターを開き、偏光フィルムFにレーザー光L1を照射させないときはシャッターを閉じる。このため、シャッターの開閉タイミングで偏光フィルムFの切断タイミングを調整することができる。よって、偏光フィルムFを所定のタイミングで適切に切断することができる。
Further, in the present embodiment, the laser beam L is continuously oscillated from the laser beam oscillator 31 under the control of the control device 37. For this reason, compared with the case where the laser beam L is oscillated intermittently from the laser beam oscillator 31, the output value of the laser beam L can be stabilized. Here, “when laser light is oscillated intermittently” means that when the polarizing film is cut, the laser light oscillator is turned on to irradiate the laser light, and when the polarizing film is not cut, the laser light is oscillated. This is the case where the power of the machine is turned off to stop the irradiation of laser light.
In the present embodiment, under the control of the control device 37, the shutter is opened when the polarizing film F is irradiated with the laser light L1, and the shutter is closed when the polarizing film F is not irradiated with the laser light L1. For this reason, the cutting timing of the polarizing film F can be adjusted by the opening / closing timing of the shutter. Therefore, the polarizing film F can be appropriately cut at a predetermined timing.
 また、本実施形態のフィルム切断システム1によれば、前記レーザー光照射システム30を備えるため、偏光フィルムFを所定のタイミングで適切に切断することができる。 Moreover, according to the film cutting system 1 of this embodiment, since the laser light irradiation system 30 is provided, the polarizing film F can be appropriately cut at a predetermined timing.
 また、本実施形態のフィルム切断方法によれば、第2の工程として、前記レーザー光照射方法を用いるため、偏光フィルムFを所定のタイミングで適切に切断することができる。 Moreover, according to the film cutting method of the present embodiment, since the laser light irradiation method is used as the second step, the polarizing film F can be appropriately cut at a predetermined timing.
 尚、本実施形態においては、フィルムを「切断する」とは、フィルムを少なくとも二つに分割することの他に、フィルムに貫通する切れ目を入れることやフィルムに所定の深さの溝(切れ込み)を形成すること等の「少なくとも一部を切断する」ことも包含される。より具体的には、「切断する」には、例えば、フィルムの端部の切断(切り落とし)、ハーフカット、マーキング加工等も含まれる。 In the present embodiment, “cutting” the film means not only dividing the film into at least two parts, but also making a cut through the film or a groove having a predetermined depth (cut). “Cut at least part of”, such as forming a film, is also included. More specifically, “cutting” includes, for example, cutting (cutting off) an end portion of the film, half cutting, marking processing, and the like.
 また、本実施形態においては、帯状の偏光フィルムを枚葉の偏光フィルムに切断する場合を例に挙げて説明したが、これに限らない。例えば、帯状の偏光フィルムから複数のフィルムチップを切り出したり、矩形状の中間フィルムを切り出したりする等、所定サイズのフィルムに切断する場合においても、本実施形態を適用することができる。 In the present embodiment, the case where the strip-shaped polarizing film is cut into a single-sheet polarizing film has been described as an example, but the present invention is not limited thereto. For example, the present embodiment can also be applied to a case where a plurality of film chips are cut out from a strip-shaped polarizing film or a rectangular intermediate film is cut into a film having a predetermined size.
 また、本実施形態においては、切断機構3で切断される枚葉の偏光フィルムFの枚数が2枚の場合を例に挙げて説明したが、これに限らない。例えば、切断機構3で切断される枚葉の偏光フィルムFの枚数は、1枚であってもよいし、3枚以上であってもよい。 In the present embodiment, the case where the number of the polarizing films F that are cut by the cutting mechanism 3 is two has been described as an example, but the present invention is not limited thereto. For example, the number of sheets of polarizing film F cut by the cutting mechanism 3 may be one, or may be three or more.
 また、本実施形態においては、光学フィルムとして偏光フィルムを例に挙げて説明したが、これに限らず、セパレータ付きの偏光フィルムにおいても、本実施形態を適用することができる。 In this embodiment, the polarizing film is described as an example of the optical film. However, the present embodiment is not limited to this, and the present embodiment can be applied to a polarizing film with a separator.
 以上、添付図面を参照しながら本発明の実施形態について説明したが、本発明は上述した実施形態に限定されない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々の変更を加えることが可能である。 As mentioned above, although embodiment of this invention was described referring an accompanying drawing, this invention is not limited to embodiment mentioned above. Various shapes, combinations, and the like of the constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 本発明は、光学フィルムを適切に切断加工することが可能なレーザー光照射システム、レーザー光照射方法及び記録媒体などに適用することができる。 The present invention can be applied to a laser light irradiation system, a laser light irradiation method, a recording medium, and the like that can appropriately cut and process an optical film.
 1 フィルム切断システム、
 2 供給装置、
 30 レーザー光照射システム、
 31 レーザー光発振機、
 33 ビームスプリッター、
 34 測定装置、
 35 補正装置、
 36 シャッター装置、
 37 制御装置、
 F 偏光フィルム(フィルム)
1 film cutting system,
2 supply device,
30 Laser light irradiation system,
31 Laser light oscillator,
33 Beam splitter,
34 measuring device,
35 correction device,
36 shutter device,
37 control device,
F Polarizing film (film)

Claims (15)

  1.  レーザー光を発振するレーザー光発振機と、
     前記レーザー光発振機が発振したレーザー光を、第1のレーザー光と第2のレーザー光とに分岐し、前記第1のレーザー光をフィルムに照射するビームスプリッターと、
     前記ビームスプリッターが分岐した前記第2のレーザー光の強度を測定する測定装置と、
     前記測定装置が測定した前記第2のレーザー光の強度から前記レーザー光発振機の出力値を算出し、前記レーザー光発振機の前記出力値を、設定値に近づける補正装置と、
     を備えるレーザー光照射システム。
    A laser beam oscillator that oscillates the laser beam;
    A beam splitter that divides the laser beam oscillated by the laser beam oscillator into a first laser beam and a second laser beam, and irradiates the film with the first laser beam;
    A measuring device for measuring the intensity of the second laser beam branched by the beam splitter;
    A correction device for calculating an output value of the laser beam oscillator from the intensity of the second laser beam measured by the measuring device, and for bringing the output value of the laser beam oscillator close to a set value;
    Laser light irradiation system comprising.
  2.  前記ビームスプリッターと前記フィルムとの間における前記第1のレーザー光の光路上に配置され、前記ビームスプリッターから照射される前記第1のレーザー光を遮断するシャッターと、
     前記レーザー光発振機に前記レーザー光を連続的に発振させ、前記フィルムに前記第1のレーザー光を照射させるときは前記シャッターを開き、前記フィルムに前記第1のレーザー光を照射させないときは前記シャッターを閉じる制御装置と、
     を更に備える請求項1に記載のレーザー光照射システム。
    A shutter disposed on an optical path of the first laser light between the beam splitter and the film and blocking the first laser light irradiated from the beam splitter;
    When the laser beam oscillator continuously oscillates the laser beam and the film is irradiated with the first laser beam, the shutter is opened, and when the film is not irradiated with the first laser beam, A control device for closing the shutter;
    The laser light irradiation system according to claim 1, further comprising:
  3.  前記第1のレーザー光は、前記レーザー光発振機が発振したレーザー光の前記ビームスプリッターでの反射光であり、
     前記第2のレーザー光は、前記レーザー光発振機が発振したレーザー光の前記ビームスプリッターでの透過光である請求項1に記載のレーザー光照射システム。
    The first laser light is reflected light from the beam splitter of laser light oscillated by the laser light oscillator,
    2. The laser light irradiation system according to claim 1, wherein the second laser light is light transmitted through the beam splitter of laser light oscillated by the laser light oscillator.
  4.  前記測定装置は、前記第2のレーザー光を熱起電力に変換して前記第2のレーザー光の強度を測定する請求項1に記載のレーザー光照射システム。 The laser beam irradiation system according to claim 1, wherein the measurement device converts the second laser beam into a thermoelectromotive force and measures the intensity of the second laser beam.
  5.  前記レーザー光発振機は、COレーザー光発振機である請求項1に記載のレーザー光照射システム。 The laser light irradiation system according to claim 1, wherein the laser light oscillator is a CO 2 laser light oscillator.
  6.  前記フィルムは帯状であり、前記フィルムを、前記第1のレーザーの照射位置に供給する供給装置 を更に備える請求項1に記載のレーザー光照射システム。 2. The laser light irradiation system according to claim 1, further comprising a supply device that supplies the film to the irradiation position of the first laser.
  7.  前記ビームスプリッターと前記フィルムとの間における前記第1のレーザー光の光路上に配置され、前記ビームスプリッターから照射される前記第1のレーザー光を遮断するシャッターを更に備え、
     前記制御装置は、前記供給装置から供給された前記帯状のフィルムに前記第1のレーザー光を照射させるときは前記フィルムを所定の切断領域で停止させるとともに前記シャッターを開き、前記帯状のフィルムに前記第1のレーザー光を照射させないときは前記帯状のフィルムを前記所定の切断領域で停止させないで前記シャッターを閉じる
     請求項6に記載のレーザー光照射システム。
    A shutter that is disposed on an optical path of the first laser beam between the beam splitter and the film and blocks the first laser beam irradiated from the beam splitter;
    The control device stops the film at a predetermined cutting area and opens the shutter when irradiating the belt-shaped film supplied from the supply device with the first laser beam, and opens the shutter on the belt-shaped film. The laser light irradiation system according to claim 6, wherein when the first laser light is not irradiated, the shutter is closed without stopping the belt-like film in the predetermined cutting region.
  8.  前記制御装置は、前記供給装置による前記フィルムの搬送速度に基づいて、前記フィルムを、前記所定の切断領域まで搬送する請求項7に記載のレーザー光照射システム。 The laser light irradiation system according to claim 7, wherein the control device conveys the film to the predetermined cutting region based on a conveyance speed of the film by the supply device.
  9.  前記補正装置は、
     前記補正装置が算出した前記出力値が、前記設定値よりも小さい場合には、前記レーザー光発振機が発振するレーザー光の強度を増加させ、
     前記補正装置が算出した前記出力値が、前記設定値よりも大きい場合には、前記レーザー光発振機が発振するレーザー光の強度を減少させる
     請求項1に記載のレーザー光照射システム。
    The correction device includes:
    When the output value calculated by the correction device is smaller than the set value, increase the intensity of the laser light oscillated by the laser light oscillator,
    The laser beam irradiation system according to claim 1, wherein when the output value calculated by the correction device is larger than the set value, the intensity of the laser beam oscillated by the laser beam oscillator is decreased.
  10.  前記ビームスプリッターは、前記第1のレーザー光の集光径が、5μm以上、500μm以下となるように、前記第1のレーザー光を、前記フィルムに照射する請求項1に記載のレーザー光照射システム。 2. The laser beam irradiation system according to claim 1, wherein the beam splitter irradiates the first laser beam on the film so that a condensed diameter of the first laser beam is 5 μm or more and 500 μm or less. .
  11.  前記測定装置は、前記ビームスプリッターが分岐した前記第2のレーザー光の強度を、10ミリ秒以下の測定間隔で測定する請求項1に記載のレーザー光照射システム。 The laser beam irradiation system according to claim 1, wherein the measurement device measures the intensity of the second laser beam branched by the beam splitter at a measurement interval of 10 milliseconds or less.
  12.  レーザー光発振機から発振されたレーザー光を、第1のレーザー光と第2のレーザー光とに分岐させ、前記第1のレーザー光をフィルムに照射し、
     前記第2のレーザー光の強度を測定し、
     前記第2のレーザー光の強度から前記レーザー光発振機の出力値を算出し、前記レーザー光発振機の出力値を、設定値に近づける
     レーザー光照射方法。
    A laser beam oscillated from a laser beam oscillator is branched into a first laser beam and a second laser beam, and the film is irradiated with the first laser beam;
    Measuring the intensity of the second laser beam;
    A laser light irradiation method of calculating an output value of the laser light oscillator from the intensity of the second laser light and causing the output value of the laser light oscillator to approach a set value.
  13.  前記フィルムは帯状であり、前記フィルムを、前記第1のレーザーの照射位置に供給し、
     前記第1のレーザー光を前記フィルムに照射することにより、前記第1のレーザーの照射位置に供給された前記フィルムを所定サイズに切断する
     請求項12に記載のレーザー光照射方法。
    The film is strip-shaped, and the film is supplied to the irradiation position of the first laser.
    The laser light irradiation method according to claim 12, wherein the film supplied to the irradiation position of the first laser is cut into a predetermined size by irradiating the film with the first laser light.
  14.  前記第1のレーザー光を前記フィルムに照射する際に、
     供給された前記フィルムに前記第1のレーザー光を照射させるときは前記フィルムを所定の切断領域で停止させるとともに、前記第1のレーザー光を遮断するシャッターを開き、
     前記フィルムに前記第1のレーザー光を照射させないときは前記フィルムを前記所定の切断領域で停止させないで前記シャッターを閉じる
     請求項13に記載のレーザー光照射方法。
    When irradiating the film with the first laser beam,
    When irradiating the first laser light to the supplied film, the film is stopped in a predetermined cutting area, and a shutter that blocks the first laser light is opened,
    The laser light irradiation method according to claim 13, wherein when the first laser light is not irradiated on the film, the shutter is closed without stopping the film in the predetermined cutting region.
  15.  レーザー光発振機から発振されたレーザー光を、第1のレーザー光と第2のレーザー光とに分岐させ、前記第1のレーザー光をフィルムに照射し、
     前記第2のレーザー光の強度を測定し、
     前記第2のレーザー光の強度から前記レーザー光発振機の出力値を算出し、前記レーザー光発振機の出力値を、設定値に近づける
     ことを実行するプログラムを記録したコンピュータ読み取り可能な記録媒体。
    A laser beam oscillated from a laser beam oscillator is branched into a first laser beam and a second laser beam, and the film is irradiated with the first laser beam;
    Measuring the intensity of the second laser beam;
    A computer-readable recording medium storing a program for calculating an output value of the laser beam oscillator from the intensity of the second laser beam and bringing the output value of the laser beam oscillator close to a set value.
PCT/JP2012/083352 2011-12-22 2012-12-21 Laser light irradiation system, laser light irradiation method, and recording medium WO2013094758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011281300A JP2013128966A (en) 2011-12-22 2011-12-22 Laser beam irradiation apparatus, film cutting apparatus, laser beam irradiation method, and film cutting method
JP2011-281300 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094758A1 true WO2013094758A1 (en) 2013-06-27

Family

ID=48668635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083352 WO2013094758A1 (en) 2011-12-22 2012-12-21 Laser light irradiation system, laser light irradiation method, and recording medium

Country Status (3)

Country Link
JP (1) JP2013128966A (en)
TW (1) TW201341099A (en)
WO (1) WO2013094758A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168380A1 (en) * 2017-03-13 2018-09-20 日本電気硝子株式会社 Glass film production method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203220A (en) * 2015-04-24 2016-12-08 デュプロ精工株式会社 Laser cutter apparatus equipped with bending line forming tool
TWI656938B (en) * 2017-12-11 2019-04-21 住華科技股份有限公司 Cutting apparatus and cutting method using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204585A (en) * 1982-05-24 1983-11-29 Matsushita Electric Ind Co Ltd Laser device
JPH04237583A (en) * 1991-01-22 1992-08-26 Matsushita Electric Ind Co Ltd Light output generator
JPH07314165A (en) * 1994-05-26 1995-12-05 Nec Corp Laser device
JP2003046173A (en) * 2001-07-30 2003-02-14 Matsushita Electric Ind Co Ltd Laser, wavelength changing element, laser oscillator, wavelength changing device, and method for laser beam machining
JP2009061498A (en) * 2006-10-17 2009-03-26 Nitto Denko Corp Optical member adhering method and apparatus using the method
JP2009531179A (en) * 2005-05-18 2009-09-03 ベネツケ−カリコ・アーゲー Method for generating the surface of a three-dimensional structure
WO2010021025A1 (en) * 2008-08-19 2010-02-25 日東電工株式会社 Method for cutting optical film and device employing the method
JP2012135782A (en) * 2010-12-24 2012-07-19 Sumitomo Chemical Co Ltd Apparatus and method for laser light irradiation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204585A (en) * 1982-05-24 1983-11-29 Matsushita Electric Ind Co Ltd Laser device
JPH04237583A (en) * 1991-01-22 1992-08-26 Matsushita Electric Ind Co Ltd Light output generator
JPH07314165A (en) * 1994-05-26 1995-12-05 Nec Corp Laser device
JP2003046173A (en) * 2001-07-30 2003-02-14 Matsushita Electric Ind Co Ltd Laser, wavelength changing element, laser oscillator, wavelength changing device, and method for laser beam machining
JP2009531179A (en) * 2005-05-18 2009-09-03 ベネツケ−カリコ・アーゲー Method for generating the surface of a three-dimensional structure
JP2009061498A (en) * 2006-10-17 2009-03-26 Nitto Denko Corp Optical member adhering method and apparatus using the method
WO2010021025A1 (en) * 2008-08-19 2010-02-25 日東電工株式会社 Method for cutting optical film and device employing the method
JP2012135782A (en) * 2010-12-24 2012-07-19 Sumitomo Chemical Co Ltd Apparatus and method for laser light irradiation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168380A1 (en) * 2017-03-13 2018-09-20 日本電気硝子株式会社 Glass film production method
CN110382425A (en) * 2017-03-13 2019-10-25 日本电气硝子株式会社 The manufacturing method of glass-film
KR20190127656A (en) * 2017-03-13 2019-11-13 니폰 덴키 가라스 가부시키가이샤 Manufacturing Method Of Glass Film
TWI732107B (en) * 2017-03-13 2021-07-01 日商日本電氣硝子股份有限公司 Manufacturing method of glass film
CN110382425B (en) * 2017-03-13 2021-11-23 日本电气硝子株式会社 Method for producing glass film
KR102421584B1 (en) 2017-03-13 2022-07-15 니폰 덴키 가라스 가부시키가이샤 Method for manufacturing glass film

Also Published As

Publication number Publication date
TW201341099A (en) 2013-10-16
JP2013128966A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5405310B2 (en) Optical film cutting method and apparatus using the same
JP5821155B2 (en) Optical display device production method and optical display device production system
TWI485025B (en) Method for cutting polarizing sheet and polarizing sheet cut by the method
US10710351B2 (en) System and method for continuously manufacturing optical display device
WO2019244653A1 (en) Glass roll manufacturing method
JP2011042459A (en) Web carrying device, method thereof and method of manufacturing battery
KR101535050B1 (en) System for continuous manufacture of optical display panels, and method for continuous manufacture of optical display panels
JP5427929B2 (en) Optical display panel continuous manufacturing method and optical display panel continuous manufacturing system
KR101649083B1 (en) Continuous production method for producing optical display panel and continuous production system for producing optical display panel
WO2010021024A1 (en) Cutting method of optical film and device employing it
WO2013094758A1 (en) Laser light irradiation system, laser light irradiation method, and recording medium
JP5800486B2 (en) Laser cutting apparatus, slitter machine equipped with the same, and laser cutting method
KR20180132500A (en) Manufacturing method for optical display device
KR20200122728A (en) Apparatus for processing film
WO2012086764A1 (en) Laser beam irradiation apparatus and laser beam irradiation method
EP3424853B1 (en) Material splicing method, and material supply device
JP6486252B2 (en) Edge sensor
KR20220092327A (en) Film cutting apparatus
WO2019244654A1 (en) Glass roll manufacturing method
JP2014130286A (en) System for manufacturing optical display device
JP2014121736A (en) Laser light irradiation apparatus and laser light irradiation method
JP7404815B2 (en) Glass roll manufacturing method
JP2007175375A (en) Method for manufacturing compound sheet
JP2006176308A (en) Film winding method and film winder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860375

Country of ref document: EP

Kind code of ref document: A1