WO2013094448A1 - Photoelectric conversion element and dye-sensitized solar cell - Google Patents

Photoelectric conversion element and dye-sensitized solar cell Download PDF

Info

Publication number
WO2013094448A1
WO2013094448A1 PCT/JP2012/081898 JP2012081898W WO2013094448A1 WO 2013094448 A1 WO2013094448 A1 WO 2013094448A1 JP 2012081898 W JP2012081898 W JP 2012081898W WO 2013094448 A1 WO2013094448 A1 WO 2013094448A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
insulating layer
conversion element
oxide
Prior art date
Application number
PCT/JP2012/081898
Other languages
French (fr)
Japanese (ja)
Inventor
千葉 恭男
山中 良亮
福井 篤
古宮 良一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013094448A1 publication Critical patent/WO2013094448A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion element and a dye-sensitized solar cell.
  • Patent Document 1 Japanese Patent Laid-Open No. 01-220380
  • a photoelectric conversion layer having a photosensitizer adsorbed and having an absorption spectrum in the visible light region and an electrolytic solution are sandwiched between two glass substrates.
  • a first electrode and a second electrode are formed on the surfaces of the two glass substrates, respectively.
  • a solar cell including a photoelectric conversion element described in Patent Document 2 Japanese Patent Application Laid-Open No. 2001-283941
  • This photoelectric conversion element has a structure that does not use a transparent conductive film on the light incident side.
  • a collecting electrode is formed on the porous semiconductor layer carrying the dye, and electrons are taken out from the collecting electrode.
  • the present invention has been made in view of such points, and an object of the present invention relates to a photoelectric conversion element that can be expected to be reduced in cost and that has an increased short-circuit current density.
  • the present inventors diligently studied to realize a high-efficiency photoelectric conversion element that does not use a transparent conductive film. As a result, a layer having a predetermined refractive index and a sheet resistance value is converted into a translucent support, a photoelectric conversion layer, It has been found that a photoelectric conversion element having excellent photoelectric conversion efficiency can be obtained if it is provided in between, and the present invention has been achieved.
  • the photoelectric conversion element according to the present invention on the translucent support that supports the current collecting electrode, the photoelectric conversion layer having a porous semiconductor layer, the current collecting electrode in contact with the photoelectric conversion layer, A charge transport layer, a counter electrode, and a counter electrode support that supports the counter electrode are sequentially provided.
  • the photoelectric conversion element according to the present invention further includes an insulating layer. This insulating layer is provided between the translucent support and the photoelectric conversion layer, has a refractive index value larger than that of the translucent support and smaller than that of the porous semiconductor layer, and is a sheet of 100 ⁇ / sq or more. It has a resistance value.
  • the sheet resistance value of the insulating layer is preferably 1000 ⁇ / sq or more.
  • the refractive index value of the insulating layer is preferably larger than 1.5 and smaller than 2.52.
  • the insulating layer preferably includes at least one of an oxide material and a fluoride material, and includes aluminum oxide, cerium oxide, hafnium oxide, magnesium oxide, yttrium oxide, titanium pentoxide, tungsten oxide, zinc oxide, and oxide. More preferably, it contains at least one of zirconium, tin oxide, lanthanum fluoride, cerium fluoride, and neodymium fluoride.
  • the insulating layer preferably has a thickness of 1 nm to 0.5 ⁇ m. What is necessary is just to comprise the support base material by the translucent support body and the insulating layer, and the haze rate of a support base material should just be 20% or less.
  • the haze ratio is an index of the transparency of the supporting substrate, and is also called haze.
  • the transparency of the support substrate is caused by unevenness on the surface of the support substrate. Details will be described later.
  • the photoelectric conversion layer preferably contains a porous semiconductor layer, a photosensitizer adsorbed on the porous semiconductor layer, and a carrier transport material filled in the porous semiconductor layer.
  • the dye-sensitized solar cell according to the present invention includes the photoelectric conversion element according to the present invention.
  • the photoelectric conversion element of the present invention cost reduction can be expected and an increase in short circuit current density can be expected.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of a photoelectric conversion element according to the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of the structure of another photoelectric conversion element according to the present invention.
  • the insulating layer 2, the photoelectric conversion layer 3, the current collecting electrode 4, the charge transport layer 5, and the counter electrode 6 are sequentially provided between the translucent support 1 and the counter electrode support 7. It has been.
  • the photoelectric conversion element which concerns on this invention is not provided with the transparent conductive film, in this invention, a photoelectric conversion element can be provided at low cost.
  • the photoelectric conversion layer 3 and the charge transport layer 5 are respectively sealed by the sealing portion 8.
  • the counter electrode support 7 when used as the light receiving surface, the light passes through the counter electrode support 7, the counter electrode 6, the charge transport layer 5 and the collecting electrode 4 and is incident on the photoelectric conversion layer 3. Is generated. The generated electrons are taken out of the photoelectric conversion element through the collector electrode 4 and moved to the counter electrode 6 through the external electric circuit. The electrons that have moved to the counter electrode 6 move in the charge transport layer 5 and the current collecting electrode 4 and return to the photoelectric conversion layer 3. Below, the structural member of the photoelectric conversion element which concerns on this invention is each demonstrated.
  • the material which comprises the translucent support body 1 will not be specifically limited if it is a material which can generally be used for the support body of a photoelectric conversion element, and can exhibit the effect of this invention.
  • the translucent support 1 is preferably made of a material having light transmissivity because light transmissivity is required in the portion that becomes the light receiving surface of the photoelectric conversion element.
  • the translucent support 1 may be a glass substrate such as soda glass, fused silica glass, or crystal quartz glass, or may be a flexible film made of a heat resistant resin material.
  • the translucent support 1 is used as a light-receiving surface, at least light having a wavelength having an effective sensitivity to a photosensitizer described later is substantially transmitted (transmission of the light).
  • the ratio is, for example, 80% or more, preferably 90% or more), and does not necessarily have transparency to light of all wavelengths.
  • film examples include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), and polyarylate (PA). , Polyetherimide (PEI), phenoxy resin, or Teflon (registered trademark).
  • TAC tetraacetyl cellulose
  • PET polyethylene terephthalate
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • PA polyarylate
  • PEI Polyetherimide
  • phenoxy resin phenoxy resin
  • Teflon registered trademark
  • the translucent support 1 can be used when the completed photoelectric conversion element is attached to another structure. That is, the peripheral part of the translucent support body 1 such as a glass substrate can be easily attached to another support body using a metal processed part and a screw.
  • the thickness of the translucent support 1 is not particularly limited, but is preferably about 0.2 to 5 mm.
  • the insulating layer 2 according to the present invention has a refractive index larger than that of the translucent support 1 and smaller than that of the porous semiconductor layer.
  • a film having a predetermined refractive index is formed between the air and the object, so that the reflectance on the surface of the object can be increased by utilizing the light interference effect. It is known to suppress.
  • a photoelectric conversion element having a transparent conductive film a transparent conductive film and a photoelectric conversion layer are sequentially provided on a light-transmitting support, but the refractive index is in the order of the light-transmitting support, the transparent conductive film, and the photoelectric conversion layer. The value is high.
  • Jsc does not increase only by adjusting the refractive index value of the intervening layer, and as a result of intensive studies, it was found that Jsc increases when the sheet resistance value of the intervening layer is set to 100 ⁇ / sq or more.
  • the reason why Jsc does not increase when the sheet resistance value of the intervening layer is low can be considered as follows. This is because if the sheet resistance value of the intervening layer is low, the charges generated in the photoelectric conversion layer are easily taken into the material (intervening layer) having a low sheet resistance value, so that the charges easily accumulate in the intervening layer.
  • an insulating layer 2 having a refractive index larger than that of the translucent support 1 and smaller than that of the photoelectric conversion layer 3 is provided between the translucent support 1 and the photoelectric conversion layer 3.
  • the sheet resistance value of the insulating layer 2 was set to 100 ⁇ / sq or more. This makes it difficult for charges generated in the photoelectric conversion layer 3 to be taken into the insulating layer 2, thereby increasing Jsc.
  • the sheet resistance value of the insulating layer 2 is preferably 1 k ⁇ / sq or more, more preferably 10 k ⁇ / sq or more, and may be 10 M ⁇ / sq or more.
  • the refractive index value may be measured by an ellipsometer.
  • the sheet resistance value may be measured by a sheet resistance measuring device, or may be measured according to a method called a four-probe method or a four-terminal method.
  • the insulating layer 2 preferably includes at least one of an oxide material, a fluoride material, and an organic material. More preferably, the insulating layer 2 is made of aluminum oxide, cerium oxide, hafnium oxide, magnesium oxide, yttrium oxide, titanium pentoxide, tungsten oxide, zinc oxide, zirconium oxide, tin oxide, lanthanum fluoride, cerium fluoride, fluoride. It preferably contains at least one of neodymium and polystyrene. When the translucent support 1 is a light receiving surface, the insulating layer 2 is formed on the light incident side with respect to the photoelectric conversion layer 3.
  • the thickness of the insulating layer 2 is preferably 1 nm to 0.5 ⁇ m, and more preferably 1 nm to 0.1 ⁇ m.
  • the insulating layer 2 may be introduced with an appropriate additive for any of the above materials (non-doped).
  • the additive is not particularly limited, but may be different depending on any of the above materials (non-doped).
  • zinc oxide aluminum, gallium, indium, boron, fluorine, or the like may be used.
  • tin oxide antimony or fluorine may be used.
  • the film thickness of the material into which the additive is introduced is controlled, for example, the film thickness is set to 1 nm or more and 1000 nm or less.
  • the sheet resistance value of the insulating layer 2 is 100 ⁇ / sq or more can be formed. If the film thickness is 100 nm or less, the sheet resistance value of the insulating layer 2 can be 1000 ⁇ / sq or more.
  • the sheet resistance value of the insulating layer 2 can be reduced by controlling the oxygen concentration in the oxide material or introducing the additive. Control becomes easy. Therefore, a material having desired characteristics can be easily obtained as the material of the insulating layer 2.
  • the region where the insulating layer 2 is formed is not particularly limited, but the insulating layer 2 is formed so that light is efficiently taken into the photoelectric conversion layer 3 (that is, light is not easily reflected on the surface of the photoelectric conversion layer 3). It is preferable.
  • the insulating layer 2 is formed in the same region as the photoelectric conversion layer 3 (only on the upper surface of the photoelectric conversion layer 3). More preferably, as shown in FIG. 2, the insulating layer 22 is formed larger than the photoelectric conversion layer 3 (not only on the upper surface of the photoelectric conversion layer 3 but also on the end surface of the photoelectric conversion layer 3). In the case shown in FIG.
  • a photoelectric conversion element can be provided.
  • insulating layer 2 when it is not necessary to distinguish between the insulating layer 2 and the insulating layer 22, they are referred to as “insulating layer 2”.
  • the light transmittance may be reduced by forming the insulating layer 2.
  • the optical path length in the photoelectric conversion layer 3 can be increased, and thus Jsc can be increased.
  • haze it shows by the following ⁇ support base material>.
  • the insulating layer 2 may be formed by, for example, a vacuum evaporation method, an EB evaporation method, a resistance heating evaporation method, a molecular beam epitaxial growth method (MBE method), a sputtering method, or a chemical vapor deposition method (CVD method).
  • the insulating layer 2 is formed using a physical vapor deposition method (PVD method) such as an evaporation method.
  • PVD method physical vapor deposition method
  • the insulating layer 2 is formed using an EB vapor deposition method. Thereby, control of the film thickness of the insulating layer 2 and control of the sheet resistance value are facilitated.
  • the vapor deposition rate may be 1 to 50 ⁇ / s
  • the substrate temperature may be room temperature to 500 ° C.
  • the degree of vacuum is 5 ⁇ 10. It may be set to ⁇ 3 Pa or more and 1 ⁇ 10 ⁇ 6 Pa or less. Any one of these conditions may be satisfied, but more preferably all of these conditions are satisfied.
  • the support base 11 is composed of a translucent support 1 and an insulating layer 2, and in the photoelectric conversion element shown in FIG. 2, the support base 31 is a translucent support. 1 insulating layer 22.
  • the light transmittance may be slightly reduced by forming the insulating layer 2. Therefore, the haze ratio of the support base 11 is preferably 20% or less, more preferably 15% or less, and further preferably 5% or more and 15% or less. Thereby, it is possible to compensate for the decrease in light transmittance caused by the formation of the insulating layer 2. That is, since the light scattering effect into the photoelectric conversion layer 3 is increased, the optical path length in the photoelectric conversion layer 3 is increased, and thus Jsc is increased.
  • the haze ratio of the support base 11 is set to a predetermined value or less.
  • the method of applying haze depends on the material of the insulating layer 2, but is not particularly limited. Physical methods such as dry etching, mechanical polishing using a file, patterning using photolithography, chemical etching such as acid etching, and the like. Any known method such as a method or adjusting the formation conditions of the insulating layer 2 may be used.
  • the haze ratio refers to the diffuse transmittance when a light beam having a spectrum in the visible light region and / or near-infrared region (for example, the standard light source D65 or the standard light source C) is incident on the measurement sample. It is the value divided by the transmittance and is displayed as a value between 0 and 1 or as a percentage of 0 to 100%.
  • the haze ratio is defined as a value measured and calculated using a light beam having a spectrum at 550 nm. Such a haze rate can be measured using a commercially available haze meter.
  • the porous semiconductor layer is composed of a semiconductor material.
  • the porosity means that the specific surface area is 0.5 to 300 m 2 / g, and the porosity is 20% or more.
  • Such a specific surface area is obtained by the BET method which is a gas adsorption method, and the porosity is obtained by calculation from the thickness (film thickness) of the porous semiconductor layer, the mass of the porous semiconductor layer, and the density of the semiconductor fine particles. .
  • the porous semiconductor layer has a specific surface area in the above range, it can adsorb many photosensitizers, and thus can absorb sunlight efficiently.
  • the carrier transport material can be sufficiently diffused, and electrons can be smoothly returned to the photoelectric conversion layer.
  • the material which comprises a porous semiconductor layer will not be specifically limited if it is a material which can generally be used for a photoelectric conversion element, and can exhibit the effect of this invention.
  • examples of such materials include titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide, tungsten oxide, barium titanate, strontium titanate, cadmium sulfide, lead sulfide, zinc sulfide, and indium phosphide.
  • semiconductor compound materials such as copper-indium sulfide (CuInS 2 ), CuAlO 2 , or SrCu 2 O 2 . These may be used alone or in combination. Among these materials, it is particularly preferable to use titanium oxide from the viewpoint of photoelectric conversion efficiency, stability, and safety.
  • the titanium oxide when used as a material constituting the porous semiconductor layer, the titanium oxide is variously narrowly defined as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, or orthotitanic acid. It may be titanium oxide, titanium hydroxide, or hydrous titanium oxide. These may be used alone or in combination. Anatase-type titanium oxide and rutile-type titanium oxide can be in either form depending on the production method or thermal history, but anatase-type titanium oxide is common.
  • the photosensitizer in terms of adsorbing the photosensitizer, it is preferable to use a material having a high content of anatase-type titanium oxide, and it is particularly preferable to use a material having a content of 80% or more.
  • the method for producing titanium oxide is not particularly limited, and may be a known method described in various literatures such as a gas phase method or a liquid phase method (hydrothermal synthesis method or sulfuric acid method). Degussa A method developed by the company to obtain chloride by high-temperature hydrolysis may be used.
  • particles of the material constituting the porous semiconductor layer two or more kinds of particles having different particle sizes may be mixed and used. Particles with a large particle size are considered to contribute to an improvement in light capture rate by scattering incident light. Since particles having a small particle size have more adsorption points of the photosensitizer, it is considered that particles having a small particle size contribute to an increase in the adsorption amount of the photosensitizer.
  • the average particle size of particles having a large particle size is preferably 10 times or more than the average particle size of particles having a small particle size.
  • the average particle size of particles having a large particle size is suitably about 100 to 500 nm, and the average particle size of particles having a small particle size is suitably about 5 to 50 nm.
  • the particles having different particle sizes may be made of the same semiconductor compound or different semiconductor compounds. When particles having different particle sizes are composed of different semiconductor compounds, it is preferable that the material of the particles having a small particle size is a semiconductor compound having a strong adsorption action for the photosensitizer.
  • the average particle diameter may be calculated using a spectrum (XRD (X-ray diffraction) diffraction peak) obtained from X-ray diffraction measurement, or directly observed with a scanning electron microscope (SEM). May be required.
  • the film thickness of the porous semiconductor layer is not particularly limited, and for example, about 0.1 to 100 ⁇ m is appropriate. Further, since the photosensitizer is adsorbed on the porous semiconductor layer, the surface area of the porous semiconductor layer is preferably large. For example, the BET surface area of the porous semiconductor layer is about 10 to 200 m 2 / g. preferable.
  • -Method for forming porous semiconductor layer It does not specifically limit as a method of forming a porous semiconductor layer, A well-known method is mentioned. For example, there may be mentioned a method in which a suspension containing particles made of a semiconductor material is applied on the translucent support 1 and then dried and fired.
  • a suspension fine particles made of a semiconductor material are suspended in an appropriate solvent to obtain a suspension.
  • a solvent include glyme solvents such as ethylene glycol monomethyl ether, alcohols such as isopropyl alcohol, alcohol-based mixed solvents such as isopropyl alcohol / toluene, and water.
  • glyme solvents such as ethylene glycol monomethyl ether
  • alcohols such as isopropyl alcohol
  • alcohol-based mixed solvents such as isopropyl alcohol / toluene
  • water water.
  • a commercially available titanium oxide paste for example, Solaronix, Ti-nanoxide, T, D, T / SP, D / SP
  • Ti-nanoxide for example, Solaronix, Ti-nanoxide, T, D, T / SP, D / SP
  • the obtained suspension is applied onto the translucent support 1 by a known method such as a doctor blade method, a squeegee method, a spin coating method, or a screen printing method, and at least one of drying and baking is performed.
  • a porous semiconductor layer is formed.
  • screen printing is a method in which a screen pattern is filled with a paste, the paste is held with a squeegee, and the substrate to be printed is brought into contact with the screen for printing. Therefore, printing on a portion of the substrate that does not contact the screen is possible, but the printing accuracy is reduced. Therefore, there is a possibility that a portion where the insulating layer 2 and the porous semiconductor layer are not in contact with each other is generated.
  • a paste having a low viscosity is applied from a nozzle such as a dispenser, and the paste spreads to the end of the insulating layer 2 by its own weight. It is preferable to use a coating method of leveling.
  • the temperature, time, atmosphere, etc. necessary for drying and firing may be appropriately set according to the type of material constituting the porous semiconductor layer.
  • the atmosphere may be an air atmosphere or an inert gas atmosphere, and the temperature and time may be about 50 to 800 ° C. and about 10 seconds to 12 hours. This drying and baking may be performed once at a single temperature, or may be performed twice or more by changing the temperature.
  • a suspension containing particles made of different semiconductor materials may be prepared, and at least one of application of the prepared suspension and drying and baking May be repeated twice or more.
  • the dye that is adsorbed on the porous semiconductor layer and functions as a photosensitizer is not particularly limited, but may be various organic dyes that absorb in the visible light region and / or the infrared light region, and may be visible. Various metal complex dyes having absorption in the light region and / or the infrared light region may be used. These pigments may be used alone or in combination of two or more.
  • organic dyes examples include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, and perylenes. And dyes such as indigo dyes and naphthalocyanine dyes.
  • the extinction coefficient of an organic dye is larger than that of a metal complex dye in which a molecule is coordinated to a transition metal.
  • metal complex dyes Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, TA, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, or Rh
  • the thing of the form which the ligand coordinated to the metal atom is mentioned.
  • the metal complex dye may be, for example, a porphyrin dye, a phthalocyanine dye, or a naphthalocyanine dye, and among these, a phthalocyanine dye or a ruthenium dye is preferable, and is a ruthenium metal complex dye. Is more preferable.
  • the metal complex dye is particularly preferably a ruthenium-based metal complex dye represented by chemical formulas (1) to (3).
  • ruthenium-based metal complex dyes include trade name Ruthenium 535 dye, Ruthenium 535-bis TBA dye, or Ruthenium 620-1H3TBA dye manufactured by Solaronix.
  • the photosensitizer has a carboxyl group, alkoxy group, hydroxyl group, sulfonic acid group, ester group, mercapto group, or phosphonyl group in the molecule. It is preferable to have an interlocking group such as In general, the interlock group exists between the photosensitizer and the porous semiconductor layer when the photosensitizer is fixed to the porous semiconductor layer, and the excited state of the photosensitizer and the porous semiconductor layer An electrical coupling that facilitates the transfer of electrons between the conduction bands of the semiconductor material comprising
  • the adsorption amount of such a photosensitizer may be 1 ⁇ 10 ⁇ 8 mol / cm 2 or more and 1 ⁇ 10 ⁇ 6 mol / cm 2 or less, and 5 ⁇ 10 ⁇ 8 mol / cm 2 or more and 5 ⁇ 10. -7 mol / cm 2 is preferred. If the adsorption amount of the photosensitizer is less than 1 ⁇ 10 ⁇ 8 mol / cm 2 , the photoelectric conversion efficiency may be lowered. On the other hand, when the adsorption amount of the photosensitizer exceeds 1 ⁇ 10 ⁇ 6 mol / cm 2 , there may be a problem that the open circuit voltage is lowered.
  • a typical method for adsorbing the photosensitizer on the porous semiconductor layer is, for example, a method of immersing the porous semiconductor layer in a solution in which a dye is dissolved (dye adsorption solution). At this time, it is preferable to heat the dye adsorbing solution in that the dye adsorbing solution penetrates to the back of the micropores of the porous semiconductor layer.
  • the solvent of the dye adsorption solution may be any solvent that can dissolve the photosensitizer, and examples thereof include alcohol, toluene, acetonitrile, tetrahydrofuran (THF), chloroform, and dimethylformamide. These solvents are preferably purified, and two or more types can be mixed and used.
  • the dye concentration in the dye adsorption solution can be appropriately set according to conditions such as the photosensitizer to be used, the type of solvent, and the dye adsorption step, and is preferably 1 ⁇ 10 ⁇ 5 mol / liter or more, for example. .
  • the dye adsorption solution may be heated during preparation.
  • the carrier transport material may be a conductive material capable of transporting ions as described in ⁇ Photoelectric conversion layer> below, and may be, for example, a liquid electrolyte, a solid electrolyte, a gel electrolyte, or a molten salt gel electrolyte.
  • the carrier transport material contained in the porous semiconductor layer may be the same as the material constituting the charge transport layer 5 or may be different from the material constituting the charge transport layer 5.
  • the method for providing the carrier transport material in the porous semiconductor layer is not particularly limited, and the porous semiconductor layer may be immersed in a solution containing the carrier transport material, or the counter electrode support 7 is interposed via the sealing portion 8.
  • the carrier transport material may be injected into the photoelectric conversion layer after being attached to the current collecting electrode 4. Further, when the carrier transport material contained in the porous semiconductor layer is the same as the material constituting the charge transport layer 5, the charge transport layer 5 is formed at the same time as the carrier transport material is injected into a predetermined position.
  • a method in which the carrier transport material is included in the porous semiconductor layer can be employed.
  • the collecting electrode 4 is in contact with the photoelectric conversion layer 3. As shown in FIG. 1, the current collecting electrode 4 is preferably provided outside the sealing portion 8, so that the current collecting electrode 4 can be smoothly connected to the counter electrode 6 through an external electric circuit. .
  • the current collecting electrode 4 preferably contains a carrier transport material, whereby the electrons moved to the counter electrode 6 can be smoothly moved to the photoelectric conversion layer 3.
  • the carrier transport material may be a conductive material capable of transporting ions as described in ⁇ Charge transport layer> below, and may be the same as the material constituting the charge transport layer 5, or the charge transport material.
  • the material constituting the layer 5 may be different.
  • the method for providing the carrier transporting material in the current collecting electrode 4 is not particularly limited, and the current collecting electrode 4 may be immersed in a solution containing the carrier transporting material, and the counter electrode support 7 is provided with the sealing portion 8.
  • the carrier transport material may be injected into the current collecting electrode 4 after being attached to the current collecting electrode 4.
  • the carrier transport material included in the current collecting electrode 4 is the same as the material constituting the charge transport layer 5
  • the charge transport layer 5 is formed at the same time as the carrier transport material is injected into a predetermined position.
  • a method in which a carrier transport material is included in the current collecting electrode 4 can be employed.
  • the material constituting the current collecting electrode 4 is not particularly limited as long as it has conductivity, and may or may not have light transparency. However, in the case where the counter electrode support 7 is used as the light receiving surface, the same light transmittance as that of the translucent support 1 is required. Moreover, it is preferable that the material which comprises the current collection electrode 4 does not have corrosivity with respect to carrier transport materials (electrolyte etc.).
  • Examples of the material constituting the current collecting electrode 4 include indium tin composite oxide (ITO), tin oxide (SnO 2 ), tin oxide doped with fluorine (FTO), and zinc oxide (ZnO). Further, it may be a metal that is not corrosive to a carrier transport material such as titanium, nickel, or tantalum.
  • ITO indium tin composite oxide
  • SnO 2 tin oxide
  • FTO tin oxide doped with fluorine
  • ZnO zinc oxide
  • it may be a metal that is not corrosive to a carrier transport material such as titanium, nickel, or tantalum.
  • the current collecting electrode 4 has a dense structure
  • a plurality of small holes are preferably formed in the current collecting electrode 4.
  • the plurality of small holes function as paths for the carrier transport material. That is, the carrier transport material contained in the charge transport layer 5 can move between the porous semiconductor layer of the photoelectric conversion layer 3 and the counter electrode 6 through the inside of the plurality of small holes formed in the current collecting electrode 4.
  • the diameter of the small holes is preferably about 0.1 ⁇ m to 100 ⁇ m, more preferably about 1 ⁇ m to 50 ⁇ m.
  • the distance between the small holes is preferably about 1 ⁇ m to 200 ⁇ m, and more preferably about 10 ⁇ m to 300 ⁇ m.
  • Such small holes can be formed by physical contact or laser processing.
  • the interval between the stripe-shaped openings is preferably about 1 ⁇ m to 300 ⁇ m, and more preferably about 10 ⁇ m to 200 ⁇ m.
  • the “charge transport layer” is configured by filling a space surrounded by the translucent support 1, the counter electrode support 7, and the sealing portion 8 with a carrier transport material.
  • the carrier transport material only needs to be composed of a conductive material capable of transporting ions, and suitable materials include, for example, a liquid electrolyte, a solid electrolyte, a gel electrolyte, or a molten salt gel electrolyte.
  • the liquid electrolyte is not particularly limited as long as it is a liquid substance containing a redox species and can generally be used in a battery or a solar battery.
  • the liquid electrolyte includes a redox species and a solvent capable of dissolving the redox species, a redox species and a molten salt capable of dissolving the redox species, or a redox species. What consists of the said solvent and the said molten salt is mentioned.
  • the redox species include I ⁇ / I 3 ⁇ , Br 2 ⁇ / Br 3 ⁇ , Fe 2+ / Fe 3+ , or quinone / hydroquinone.
  • the redox species include metal iodide such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), or calcium iodide (CaI 2 ) and iodine (I 2 ). It may be a combination.
  • the redox species includes tetraalkylammonium iodide (TEAI), tetrapropylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), or tetraalkylammonium iodide (THAI) and iodine It may be a combination.
  • the redox species may be a combination of bromide with a metal bromide such as lithium bromide (LiBr), sodium bromide (NaBr), potassium bromide (KBr), or calcium bromide (CaBr 2 ). Among these, a combination of LiI and I 2 is particularly preferable.
  • Examples of the solvent capable of dissolving the redox species include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, and aprotic polar substances. Among these, carbonate compounds or nitrile compounds are particularly preferable. Two or more kinds of these solvents can be mixed and used.
  • the solid electrolyte is a conductive material that can transport electrons, holes, or ions, and may be any material that can be used as an electrolyte of a photoelectric conversion element and has no fluidity.
  • a solid electrolyte includes a hole transport material such as polycarbazole, an electron transport material such as tetranitrofluororenone, a conductive polymer such as polyroll, a polymer electrolyte obtained by solidifying a liquid electrolyte with a polymer compound, iodine Examples thereof include p-type semiconductors such as copper halide and copper thiocyanate, or electrolytes obtained by solidifying liquid electrolytes containing molten salts with fine particles.
  • Gel electrolyte usually consists of electrolyte and gelling agent.
  • the electrolyte may be, for example, the liquid electrolyte or the solid electrolyte.
  • the gelling agent examples include polymer gels such as cross-linked polyacrylic resin derivatives, cross-linked polyacrylonitrile derivatives, polyalkylene oxide derivatives, silicone resins, or polymers having a nitrogen-containing heterocyclic quaternary compound salt structure in the side chain. And the like.
  • the molten salt gel electrolyte is usually composed of the gel electrolyte as described above and a room temperature molten salt.
  • the room temperature molten salt include nitrogen-containing heterocyclic quaternary ammonium salts such as pyridinium salts and imidazolium salts.
  • the charge transport layer may contain the following additives as required.
  • the additive may be a nitrogen-containing aromatic compound such as t-butylpyridine (TBP), dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide ( It may be an imidazole salt such as EMII), ethylimidazole iodide (EII), or hexylmethylimidazole iodide (HMII).
  • TBP t-butylpyridine
  • DMPII dimethylpropylimidazole iodide
  • MPII methylpropylimidazole iodide
  • HMII hexylmethylimidazole iodide
  • the concentration of the electrolyte is preferably in the range of 0.001 to 1.5 mol / liter, particularly preferably in the range of 0.01 to 0.7 mol / liter.
  • incident light passes through the electrolytic solution in the charge transport layer 5 and the photosensitizer is adsorbed. Reach the porous semiconductor layer. Thereby, a carrier is excited.
  • the counter electrode 6 is provided on the counter electrode support 7 and is in contact with the charge transport layer 5.
  • the counter electrode 6 is a pole on the opposite side to the collecting electrode 4.
  • the material constituting the counter electrode 6 may be the same as the material constituting the current collecting electrode 4, or is preferably made of a light transmissive material when the counter electrode support 7 is a light receiving surface.
  • the counter electrode 6 is preferably a laminate of a catalyst layer and a conductive layer.
  • the catalyst layer is preferably provided between the charge transport layer 5 and the conductive layer, and preferably has a function of activating the oxidation-reduction reaction of the electrolyte, such as platinum, carbon black, kettle. It is preferably made of chain black, carbon nanotube, fullerene or the like.
  • the counter electrode 6 may be formed only of the catalyst layer.
  • the method for forming the counter electrode 6 may be the same as the method for forming the collecting electrode 4.
  • the counter electrode 6 can be formed on the counter electrode support 7 by a known method such as sputtering, thermal decomposition of chloroplatinic acid, or electrodeposition.
  • the film thickness of the counter electrode 6 is not particularly limited, and for example, about 0.5 nm to 1000 nm is appropriate.
  • carbon such as carbon black, ketjen black, carbon nanotube, or fullerene
  • carbon dispersed in a solvent and pasted is applied onto the counter electrode support 7 by a screen printing method or the like. The method can be used.
  • the counter electrode support 7 supports the counter electrode 6.
  • the material which comprises the counter electrode support body 7 will not be specifically limited if it is a material which can generally be used for the support body of a photoelectric conversion element, and can exhibit the effect of this invention.
  • the counter electrode support 7 is preferably made of any of the materials listed in the above ⁇ Translucent support>.
  • the counter electrode support 7 may basically have light transmission properties or may not have light transmission properties.
  • the counter electrode support 7 may be, for example, a plate or a film made of an inorganic material such as a metal, or a plate or a film made of an organic material such as a plastic when light transparency is not required. .
  • the counter electrode support 7 can be used when the completed photoelectric conversion element is attached to another structure. That is, the peripheral part of the counter electrode support body 7 can be easily attached to another support body using a metal processed part and a screw.
  • the sealing portion 8 holds the translucent support 1 and the counter electrode support 7, has a function of preventing leakage of the charge transport layer 5, has a function of absorbing falling objects or stress (impact), and has a long-term It has a function of absorbing the deflection acting on each of the translucent support 1 and the counter electrode support 7 during the use.
  • the material which comprises the sealing part 8 will not be specifically limited if it is a material which can generally be used for a photoelectric conversion element, and can exhibit the above-mentioned function.
  • a material include an ultraviolet curable resin or a thermosetting resin, and specifically include a silicone resin, an epoxy resin, a polyisobutylene resin, a hot melt resin, or a glass frit.
  • the sealing part 8 may be formed by using these alone, or the sealing part 8 may be formed by laminating two or more kinds of these materials in two or more layers.
  • model number: 31X-101 manufactured by Three Bond Co., Ltd. can be used.
  • thermosetting resin a model manufactured by Three Bond Co., Ltd., model number: 31X-088, or a commercially available epoxy resin can be used.
  • the pattern of the sealing portion 8 can be formed using a dispenser.
  • the pattern of the sealing portion 8 can be formed by making a hole patterned in the sheet-like hot melt resin.
  • the film thickness of each layer is measured using a surface roughness shape measuring instrument (trade name: Surfcom 1400A, manufactured by Tokyo Seimitsu Co., Ltd.), and the sheet resistance value is measured by a sheet resistance measuring device ( Measured using a product name RT-3000 / RG-80N manufactured by Napson Co., Ltd., and haze ratio was measured using a haze meter (trade name: HZ-1 manufactured by Suga Test Instruments Co., Ltd.). The measurement was performed using an ellipsometer (trade name: FE-5000, manufactured by Otsuka Electronics Co., Ltd.).
  • Example 1 The photoelectric conversion element shown in FIG. 1 was manufactured.
  • a glass substrate (Corning 7059) of 51 mm ⁇ 70 mm ⁇ thickness 1 mm was prepared as the translucent support 1.
  • the refractive index value of this glass substrate was 1.53.
  • a metal mask having a plurality of openings of 5 mm ⁇ 5 mm was prepared, and this metal mask was placed on a glass substrate.
  • Al 2 O 3 manufactured by Kyoto Thin Film Materials Laboratory, with a refractive index value of 1.63
  • the vapor deposition rate is 1 ⁇ / s
  • the insulating layer 2 was formed on a glass substrate.
  • the thickness of the obtained insulating layer 2 was 1 nm
  • the sheet resistance value was 10 M ⁇ / sq or more (exceeding the measurement limit of the sheet resistance measuring device).
  • the haze rate of the support base material in which the insulating layer 2 was formed on the glass substrate was 15%.
  • a screen plate having an opening width of 0.5 mm was placed on the glass substrate on which the insulating layer was formed and around the portion where the porous semiconductor layer was formed.
  • a glass frit was applied on a glass substrate using a screen printing machine (Neurong Seimitsu Kogyo Co., Ltd., model: LS-34TVA), and leveling was performed for 1 hour at room temperature.
  • the obtained coating film was pre-dried at 80 ° C. for 20 minutes and then baked at 450 ° C. for 1 hour. Thereby, the sealing part 8 was formed.
  • a metal mask having an opening of 6 mm ⁇ 10 mm was prepared, and the metal mask was placed on the glass substrate so that the upper surface of the porous semiconductor layer was exposed from the opening of the metal mask.
  • a current collector electrode 4 made of titanium was formed with a target of titanium and a vapor deposition rate of 5 ⁇ / S.
  • the film thickness of the collector electrode 4 was about 500 nm.
  • a photosensitizer (manufactured by Solaronix, trade name: Ruthenium 620-1H3TBA) was mixed with acetonitrile (manufactured by Aldrich Chemical Company) and t-butyl alcohol (manufactured by Aldrich Chemical Company) to a concentration of 4 ⁇ 10 ⁇ 4 mol / liter. It was dissolved in a mixed solvent (volume ratio 1: 1) to obtain a dye adsorption solution.
  • the glass substrate obtained in the above ⁇ formation of current collecting electrode> was cut into a desired size. This glass substrate was immersed in a dye adsorption solution at 40 ° C. for 20 hours to adsorb the photosensitizer to the porous semiconductor layer.
  • the obtained laminate was washed with ethanol (manufactured by Aldrich Chemical Company) and dried at about 80 ° C. for about 10 minutes.
  • a glass plate (manufactured by Nippon Sheet Glass Co., Ltd.) on which an SnO 2 film was formed was prepared as the counter electrode support 7. Platinum was vapor-deposited on the surface of the glass plate to form a counter electrode 6 made of a platinum film having a thickness of 300 nm.
  • An ultraviolet curing agent (manufactured by ThreeBond Co., Ltd., model number: 31X-101) is applied on the previously formed sealing portion 8, and the counter electrode 6 and the collecting electrode 4 are overlapped with each other via the ultraviolet curing agent, and then ultraviolet rays are applied. Was irradiated.
  • LiI redox species, manufactured by Aldrich Chemical Company
  • I2 redox species
  • t-butylpyridine additive, TBP (4-tert-butylpyridine), manufactured by Aldrich Chemical Company
  • DMPII Dimethylpropylimidazole iodide
  • the electrolyte solution injection is performed using an ultraviolet curable resin (manufactured by ThreeBond, model number: 31X-101, 229).
  • the hole was sealed. Thereby, the photoelectric conversion element in the present Example 1 was obtained.
  • the obtained photoelectric conversion element was irradiated with light having an intensity of 1 kW / m 2 (AM1.5 solar simulator), and the characteristics of the photoelectric conversion element were measured. A short circuit current density of 18 mA / cm 2 was obtained.
  • Example 2 A photoelectric conversion element was produced in the same manner as in Example 1 except that the insulating layer 2 was formed using Y 2 O 3 as a target and a deposition rate of 2 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 1.87, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 12%.
  • Example 3 A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using HfO as a target and a deposition rate of 3 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 1.95, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 10%.
  • Example 4 A photoelectric conversion element was produced in the same manner as in Example 1 except that the insulating layer 2 was formed using MgO as a target and a deposition rate of 3 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 1.74, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 10%.
  • Example 5 A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using CeO 2 as a target and a deposition rate of 2 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 2.2, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 13%.
  • Example 6 A photoelectric conversion element was produced in the same manner as in Example 1 except that the insulating layer 2 was formed using WO 3 as a target and a deposition rate of 2 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 2.2, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 15%.
  • Example 7 A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using Ti 3 O 5 as a target and a deposition rate of 2 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 2.3, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 15%.
  • the refractive index value of the insulating layer 2 was 2.05, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 13%.
  • Example 9 A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using SnO 2 as a target and a deposition rate of 2 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 2.0, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 15%.
  • Example 10 A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using ZnO as the target and the deposition rate was 2 ⁇ / s, and that the sputtering apparatus was used as the film forming apparatus.
  • the refractive index value of the insulating layer 2 was 2.1, the sheet resistance value was 10 M ⁇ / sq or more, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 10%.
  • Example 11 A photoelectric conversion element was produced in the same manner as in Example 1 except that the vapor deposition rate when forming the insulating layer 2 was 2 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 1.63
  • the sheet resistance value was 10 M ⁇ / sq or more
  • the film thickness was 0.5 ⁇ m.
  • the haze ratio of the supporting substrate was 18%.
  • Example 12 A photoelectric conversion element was produced in the same manner as in Example 1 except that the insulating layer 2 was formed using lanthanum fluoride (LaF 3 ) as a target and a deposition rate of 2 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 1.59, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 10%.
  • Example 13 A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using cerium fluoride (CeF 3 ) as a target and a deposition rate of 2 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 1.63, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 10%.
  • Example 14 A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using neodymium fluoride (NdF 3 ) as a target and a deposition rate of 2 ⁇ / s.
  • the refractive index value of the insulating layer 2 was 1.61, and the sheet resistance value was 10 M ⁇ / sq or more.
  • the haze ratio of the supporting substrate was 10%.
  • Example 15 Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 3 ⁇ / s, and the sheet resistance value was adjusted to 10,000 ⁇ / sq, the same as in Example 1 above. Thus, a photoelectric conversion element was manufactured.
  • the refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 10%.
  • the refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 10%.
  • Example 18 Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 5 ⁇ / s, and the sheet resistance value was adjusted to 300 ⁇ / sq. Thus, a photoelectric conversion element was manufactured.
  • the refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 12%.
  • Example 19 Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 5 ⁇ / s, and the sheet resistance value was adjusted to 100 ⁇ / sq, the same as in Example 1 above. Thus, a photoelectric conversion element was manufactured.
  • the refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 12%.
  • Example 20> The target was SnO 2 and Sb 2 O 3 (SnO 2 : Sb 2 O 3 95: 5 (mass ratio)), the deposition rate was adjusted to 3 s / s, and the sheet resistance value was adjusted to 1000 ⁇ / sq.
  • a photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed.
  • the refractive index value of the insulating layer 2 was 2.0, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 12%.
  • a photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed.
  • the refractive index value of the insulating layer 2 was 2.0, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 11%.
  • FIG. 4 is a schematic cross-sectional view of the photoelectric conversion element in Comparative Example 1.
  • ⁇ Comparative example 2> Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 7 ⁇ / s, and the sheet resistance value was adjusted to 10 ⁇ / sq. Thus, a photoelectric conversion element was manufactured.
  • the refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 10%.
  • Example 4 The same as in Example 1 except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 7 ⁇ / s, and the sheet resistance value was adjusted to 50 ⁇ / sq. Thus, a photoelectric conversion element was manufactured.
  • the refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 10%.
  • a photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed.
  • the refractive index value of the insulating layer 2 was 2.0, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 10%.
  • a photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed.
  • the refractive index value of the insulating layer 2 was 2.0, and the film thickness was 10 nm.
  • the haze ratio of the supporting substrate was 10%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

In this photoelectric conversion element, a photoelectric conversion layer (3) having a porous semiconductor layer, a current collecting electrode (4) in contact with the photoelectric conversion layer (3), a charge transport layer (5), a counter electrode (6), and a counter electrode supporting body (7) that supports the counter electrode (6) are provided in this order on a light transmitting supporting body (1) that supports the current collecting electrode (4). Furthermore, the photoelectric conversion element is provided with an insulating layer (2). The insulating layer (2) is provided between the light transmitting supporting body (1) and the photoelectric conversion layer (3), has a refractive index value larger than that of the light transmitting supporting body (1) but smaller than that of the porous semiconductor layer, and has a sheet resistance value of 100 Ω/sq or more.

Description

光電変換素子および色素増感太陽電池Photoelectric conversion element and dye-sensitized solar cell
 本発明は、光電変換素子および色素増感太陽電池に関する。 The present invention relates to a photoelectric conversion element and a dye-sensitized solar cell.
 化石燃料に代わるエネルギー源として、太陽光エネルギーを電力エネルギーに変換する太陽電池が注目されている。現在、結晶系シリコン基板を用いた太陽電池および薄膜シリコン太陽電池などが実用化されている。しかし、前者の太陽電池には、シリコン基板の製造コストが高いという問題がある。後者の薄膜シリコン太陽電池には、多種の半導体製造用ガスおよび複雑な装置を用いる必要があるために製造コストが高くなるという問題がある。このため、いずれの太陽電池にも、光電変換の高効率化による発電出力当たりのコストを低減する努力が続けられているが、上記の問題を解決するには至っていない。 As an alternative energy source to fossil fuels, solar cells that convert solar energy into electric energy are drawing attention. Currently, solar cells using crystalline silicon substrates, thin-film silicon solar cells, and the like have been put into practical use. However, the former solar cell has a problem that the manufacturing cost of the silicon substrate is high. The latter thin-film silicon solar cell has a problem that the manufacturing cost increases because it is necessary to use various semiconductor manufacturing gases and complicated apparatuses. For this reason, although efforts have been made to reduce the cost per power generation output by increasing the efficiency of photoelectric conversion in any of the solar cells, the above problem has not been solved.
 新しいタイプの太陽電池として、金属錯体の光誘起電子移動を応用した光電変換素子を含む太陽電池が提案されている(たとえば、特許文献1(特開平01-220380号公報))。この光電変換素子では、2枚のガラス基板により、光増感剤を吸着させて可視光領域に吸収スペクトルをもたせた光電変換層と電解液とが挟持されている。上記の2枚のガラス基板の表面には、それぞれ、第1電極および第2電極が形成されている。 As a new type of solar cell, a solar cell including a photoelectric conversion element applying photoinduced electron transfer of a metal complex has been proposed (for example, Patent Document 1 (Japanese Patent Laid-Open No. 01-220380)). In this photoelectric conversion element, a photoelectric conversion layer having a photosensitizer adsorbed and having an absorption spectrum in the visible light region and an electrolytic solution are sandwiched between two glass substrates. A first electrode and a second electrode are formed on the surfaces of the two glass substrates, respectively.
 第1電極側から光を照射すると、光電変換層に電子が発生し、発生した電子が一方の第1電極から外部電気回路を通って対向する第2電極に移動する。移動した電子は、電解質中のイオンに運ばれて光電変換層に戻る。このような一連の電子の移動により、電気エネルギーを取り出すことができる。しかしながら、光電変換素子では透明導電膜付きガラスを使用しているため、色素増感太陽電池全体のコストが透明導電膜のコストに影響され、更なる低コスト化が限界になりつつある。 When light is irradiated from the first electrode side, electrons are generated in the photoelectric conversion layer, and the generated electrons move from one first electrode to the opposing second electrode through an external electric circuit. The moved electrons are transported to ions in the electrolyte and return to the photoelectric conversion layer. Electrical energy can be extracted by such a series of electron movements. However, since the photoelectric conversion element uses glass with a transparent conductive film, the cost of the entire dye-sensitized solar cell is affected by the cost of the transparent conductive film, and further cost reduction is becoming a limit.
 そのような中、従来の色素増感太陽電池に対する新しいセル形状の太陽電池として、特許文献2(特開2001-283941号公報)に記載の光電変換素子を含む太陽電池が提案されている。この光電変換素子は、光入射側の透明導電膜を使用していない構造をとっている。色素が担持された多孔性半導体層の上に集電電極が形成されており、この集電電極から電子が取り出される。 Under such circumstances, a solar cell including a photoelectric conversion element described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-283941) has been proposed as a new cell-shaped solar cell for a conventional dye-sensitized solar cell. This photoelectric conversion element has a structure that does not use a transparent conductive film on the light incident side. A collecting electrode is formed on the porous semiconductor layer carrying the dye, and electrons are taken out from the collecting electrode.
特開平01-220380号公報Japanese Patent Laid-Open No. 01-220380 特開2001-283941号公報Japanese Patent Laid-Open No. 2001-283941
 特許文献2に記載の光電変換素子では、透明導電膜を使用していないため、低コスト化が期待される。また、透明導電膜による光の吸収ロスがなくなるため、光入射側からの光の透過率が高くなり、よって、電流が増加すると期待されていた。しかし、透明導電膜を使用していない光電変換素子では、透明導電膜を使用している光電変換素子に比べて短絡電流密度(Jsc)が低いことが課題となっている。 In the photoelectric conversion element described in Patent Document 2, since a transparent conductive film is not used, cost reduction is expected. In addition, since there is no light absorption loss due to the transparent conductive film, the light transmittance from the light incident side is increased, and thus the current is expected to increase. However, a photoelectric conversion element that does not use a transparent conductive film has a problem that a short-circuit current density (Jsc) is lower than a photoelectric conversion element that uses a transparent conductive film.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、低コスト化が期待でき、且つ短絡電流密度が増加した光電変換素子に関する。 The present invention has been made in view of such points, and an object of the present invention relates to a photoelectric conversion element that can be expected to be reduced in cost and that has an increased short-circuit current density.
 本発明者らは、透明導電膜を使用しない高効率な光電変換素子の実現のために鋭意検討したところ、所定の屈折率およびシート抵抗値を有する層を透光性支持体と光電変換層との間に設ければ、優れた光電変換効率を有する光電変換素子が得られることを見出し、本発明に至った。 The present inventors diligently studied to realize a high-efficiency photoelectric conversion element that does not use a transparent conductive film. As a result, a layer having a predetermined refractive index and a sheet resistance value is converted into a translucent support, a photoelectric conversion layer, It has been found that a photoelectric conversion element having excellent photoelectric conversion efficiency can be obtained if it is provided in between, and the present invention has been achieved.
 具体的には、本発明に係る光電変換素子では、集電電極を支持する透光性支持体の上に、多孔性半導体層を有する光電変換層と、光電変換層に接する集電電極と、電荷輸送層と、対極と、対極を支持する対極支持体とが順に設けられている。本発明に係る光電変換素子はさらに絶縁層を備えている。この絶縁層は、透光性支持体と光電変換層との間に設けられ、透光性支持体よりも大きく且つ多孔性半導体層よりも小さな屈折率値を有し、100Ω/sq以上のシート抵抗値を有する。 Specifically, in the photoelectric conversion element according to the present invention, on the translucent support that supports the current collecting electrode, the photoelectric conversion layer having a porous semiconductor layer, the current collecting electrode in contact with the photoelectric conversion layer, A charge transport layer, a counter electrode, and a counter electrode support that supports the counter electrode are sequentially provided. The photoelectric conversion element according to the present invention further includes an insulating layer. This insulating layer is provided between the translucent support and the photoelectric conversion layer, has a refractive index value larger than that of the translucent support and smaller than that of the porous semiconductor layer, and is a sheet of 100Ω / sq or more. It has a resistance value.
 絶縁層のシート抵抗値は、1000Ω/sq以上であることが好ましい。絶縁層の屈折率値は、1.5よりも大きく2.52よりも小さいことが好ましい。 The sheet resistance value of the insulating layer is preferably 1000 Ω / sq or more. The refractive index value of the insulating layer is preferably larger than 1.5 and smaller than 2.52.
 絶縁層は、酸化物材料、およびフッ化物材料のうちの少なくとも一つを含むことが好ましく、酸化アルミニウム、酸化セリウム、酸化ハフニウム、酸化マグネシウム、酸化イットリウム、五酸化チタン、酸化タングステン、酸化亜鉛、酸化ジルコニウム、酸化すず、フッ化ランタン、フッ化セリウム、およびフッ化ネオジムのうちの少なくとも一つを含むことがより好ましい。 The insulating layer preferably includes at least one of an oxide material and a fluoride material, and includes aluminum oxide, cerium oxide, hafnium oxide, magnesium oxide, yttrium oxide, titanium pentoxide, tungsten oxide, zinc oxide, and oxide. More preferably, it contains at least one of zirconium, tin oxide, lanthanum fluoride, cerium fluoride, and neodymium fluoride.
 絶縁層は、1nm以上0.5μm以下の膜厚を有することが好ましい。
 透光性支持体と絶縁層とで支持基材を構成していれば良く、支持基材のヘイズ率が20%以下であれば良い。ここで、ヘイズ率は、支持基材の透明性の指標であり、曇り度とも呼ばれる。支持基材の透明性は、支持基材の表面における凹凸に起因する。詳しくは後述する。
The insulating layer preferably has a thickness of 1 nm to 0.5 μm.
What is necessary is just to comprise the support base material by the translucent support body and the insulating layer, and the haze rate of a support base material should just be 20% or less. Here, the haze ratio is an index of the transparency of the supporting substrate, and is also called haze. The transparency of the support substrate is caused by unevenness on the surface of the support substrate. Details will be described later.
 光電変換層は、多孔性半導体層と、多孔性半導体層に吸着された光増感剤と、多孔性半導体層に充填されたキャリア輸送材料とを含むことが好ましい。 The photoelectric conversion layer preferably contains a porous semiconductor layer, a photosensitizer adsorbed on the porous semiconductor layer, and a carrier transport material filled in the porous semiconductor layer.
 本発明に係る色素増感太陽電池は、本発明に係る光電変換素子を備えている。 The dye-sensitized solar cell according to the present invention includes the photoelectric conversion element according to the present invention.
 本発明に係る光電変換素子によれば、低コスト化が期待でき、短絡電流密度の増加が期待できる。 According to the photoelectric conversion element of the present invention, cost reduction can be expected and an increase in short circuit current density can be expected.
本発明の一実施形態に係る光電変換素子の概略断面図である。It is a schematic sectional drawing of the photoelectric conversion element which concerns on one Embodiment of this invention. 本発明の別の実施形態に係る光電変換素子の概略断面図である。It is a schematic sectional drawing of the photoelectric conversion element which concerns on another embodiment of this invention. 実施例の結果の一部を示すグラフである。It is a graph which shows a part of result of an Example. 比較例に係る光電変換素子の概略断面図である。It is a schematic sectional drawing of the photoelectric conversion element which concerns on a comparative example.
 以下、本発明の光電変換素子について図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表わすものではない。 Hereinafter, the photoelectric conversion element of the present invention will be described with reference to the drawings. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In addition, dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.
 <光電変換素子>
 図1は、本発明に係る光電変換素子の構造の一例を模式的に示す断面図である。図2は、本発明に係る別の光電変換素子の構造の一例を模式的に示す断面図である。本発明に係る光電変換素子では、透光性支持体1と対極支持体7との間に、絶縁層2と光電変換層3と集電電極4と電荷輸送層5と対極6とが順に設けられている。このように本発明に係る光電変換素子は透明導電膜を備えていないので、本発明では光電変換素子を低コストで提供できる。なお、光電変換層3および電荷輸送層5はそれぞれ封止部8により封止されていることが好ましい。
<Photoelectric conversion element>
FIG. 1 is a cross-sectional view schematically showing an example of the structure of a photoelectric conversion element according to the present invention. FIG. 2 is a cross-sectional view schematically showing an example of the structure of another photoelectric conversion element according to the present invention. In the photoelectric conversion element according to the present invention, the insulating layer 2, the photoelectric conversion layer 3, the current collecting electrode 4, the charge transport layer 5, and the counter electrode 6 are sequentially provided between the translucent support 1 and the counter electrode support 7. It has been. Thus, since the photoelectric conversion element which concerns on this invention is not provided with the transparent conductive film, in this invention, a photoelectric conversion element can be provided at low cost. In addition, it is preferable that the photoelectric conversion layer 3 and the charge transport layer 5 are respectively sealed by the sealing portion 8.
 このような光電変換素子では、透光性支持体1を受光面としたときには、光は透光性支持体1および絶縁層2を透過して光電変換層3に入射され、光電変換層3で電子が生成される。生成された電子は、集電電極4を介して光電変換素子の外部へ取り出され、外部電気回路を通って対極6へ移動する。対極6へ移動した電子は、電荷輸送層5内および集電電極4内を移動して、光電変換層3へ戻る。 In such a photoelectric conversion element, when the translucent support 1 is used as a light receiving surface, light passes through the translucent support 1 and the insulating layer 2 and enters the photoelectric conversion layer 3. Electrons are generated. The generated electrons are taken out of the photoelectric conversion element through the collector electrode 4 and moved to the counter electrode 6 through the external electric circuit. The electrons that have moved to the counter electrode 6 move in the charge transport layer 5 and the current collecting electrode 4 and return to the photoelectric conversion layer 3.
 一方、対極支持体7を受光面としたときには、光は対極支持体7、対極6、電荷輸送層5および集電電極4を透過して光電変換層3に入射され、光電変換層3で電子が生成される。生成された電子は、集電電極4を介して光電変換素子の外部へ取り出され、外部電気回路を通って対極6へ移動する。対極6へ移動した電子は、電荷輸送層5内および集電電極4内を移動して、光電変換層3へ戻る。以下では、本発明に係る光電変換素子の構成部材をそれぞれ説明する。 On the other hand, when the counter electrode support 7 is used as the light receiving surface, the light passes through the counter electrode support 7, the counter electrode 6, the charge transport layer 5 and the collecting electrode 4 and is incident on the photoelectric conversion layer 3. Is generated. The generated electrons are taken out of the photoelectric conversion element through the collector electrode 4 and moved to the counter electrode 6 through the external electric circuit. The electrons that have moved to the counter electrode 6 move in the charge transport layer 5 and the current collecting electrode 4 and return to the photoelectric conversion layer 3. Below, the structural member of the photoelectric conversion element which concerns on this invention is each demonstrated.
 <透光性支持体>
 透光性支持体1を構成する材料は、一般に光電変換素子の支持体に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。透光性支持体1は、光電変換素子の受光面となる部分では光透過性が必要となるため、光透過性を有する材料からなることが好ましい。たとえば、透光性支持体1は、ソーダガラス、溶融石英ガラス、または結晶石英ガラスなどのガラス基板であっても良いし、耐熱性樹脂材料からなる可撓性フィルムであっても良い。ただし、透光性支持体1は、受光面として使用される場合であっても、少なくとも後述の光増感剤に実効的な感度を有する波長の光を実質的に透過する(当該光の透過率がたとえば80%以上、好ましくは90%以上)ものであれば良く、必ずしも全ての波長の光に対して透過性を有する必要はない。
<Translucent support>
The material which comprises the translucent support body 1 will not be specifically limited if it is a material which can generally be used for the support body of a photoelectric conversion element, and can exhibit the effect of this invention. The translucent support 1 is preferably made of a material having light transmissivity because light transmissivity is required in the portion that becomes the light receiving surface of the photoelectric conversion element. For example, the translucent support 1 may be a glass substrate such as soda glass, fused silica glass, or crystal quartz glass, or may be a flexible film made of a heat resistant resin material. However, even when the translucent support 1 is used as a light-receiving surface, at least light having a wavelength having an effective sensitivity to a photosensitizer described later is substantially transmitted (transmission of the light). The ratio is, for example, 80% or more, preferably 90% or more), and does not necessarily have transparency to light of all wavelengths.
 可撓性フィルム(以下、「フィルム」という)を構成する材料としては、たとえばテトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリフェニレンスルファイド(PPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、フェノキシ樹脂、またはテフロン(登録商標)などが挙げられる。 Examples of the material constituting the flexible film (hereinafter referred to as “film”) include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polycarbonate (PC), and polyarylate (PA). , Polyetherimide (PEI), phenoxy resin, or Teflon (registered trademark).
 加熱を伴って透光性支持体1上に他の層を形成する場合、たとえば250℃程度の加熱を伴って透光性支持体1上に多孔性半導体層を形成する場合には、上記のフィルムを構成する材料の中でも250℃以上の耐熱性を有するテフロン(登録商標)を用いることが特に好ましい。 When forming another layer on the translucent support 1 with heating, for example, when forming a porous semiconductor layer on the translucent support 1 with heating at about 250 ° C. Among the materials constituting the film, it is particularly preferable to use Teflon (registered trademark) having heat resistance of 250 ° C. or higher.
 完成した光電変換素子を他の構造体に取り付けるときに、透光性支持体1を利用できる。すなわち、金属加工部品とねじとを用いて、ガラス基板などの透光性支持体1の周辺部を他の支持体に容易に取り付けることができる。 The translucent support 1 can be used when the completed photoelectric conversion element is attached to another structure. That is, the peripheral part of the translucent support body 1 such as a glass substrate can be easily attached to another support body using a metal processed part and a screw.
 透光性支持体1は、その厚みに特に限定されないが、厚みが0.2~5mm程度のものが好ましい。 The thickness of the translucent support 1 is not particularly limited, but is preferably about 0.2 to 5 mm.
 <絶縁層>
 本発明に係る絶縁層2は、透光性支持体1よりも大きく多孔性半導体層よりも小さな屈折率を有する。
<Insulating layer>
The insulating layer 2 according to the present invention has a refractive index larger than that of the translucent support 1 and smaller than that of the porous semiconductor layer.
 一般に、光の表面反射を抑制する方法として、空気と対象物との間に所定の屈折率を有する膜を形成することにより、光の干渉効果を利用して対象物の表面での反射率を抑えることが知られている。透明導電膜を有する光電変換素子では、透光性支持体上に透明導電膜および光電変換層が順に設けられているが、透光性支持体、透明導電膜、および光電変換層の順に屈折率値が高い。これにより、透明導電膜および光電変換層の各表面での反射率が低く抑えられるため、光の強度の低下をそれほど招くことなく光電変換層へ光を入射させることができる。一方、透明導電膜が設けられていない光電変換素子では、透明導電膜による反射抑制効果を得にくいため、透明導電膜および光電変換層の各表面での反射率が高くなる。 In general, as a method of suppressing the surface reflection of light, a film having a predetermined refractive index is formed between the air and the object, so that the reflectance on the surface of the object can be increased by utilizing the light interference effect. It is known to suppress. In a photoelectric conversion element having a transparent conductive film, a transparent conductive film and a photoelectric conversion layer are sequentially provided on a light-transmitting support, but the refractive index is in the order of the light-transmitting support, the transparent conductive film, and the photoelectric conversion layer. The value is high. Thereby, since the reflectance on each surface of a transparent conductive film and a photoelectric converting layer is restrained low, light can be incident on a photoelectric converting layer, without causing the fall of the intensity | strength of light so much. On the other hand, in the photoelectric conversion element in which the transparent conductive film is not provided, the reflection suppressing effect by the transparent conductive film is difficult to obtain, and thus the reflectance on each surface of the transparent conductive film and the photoelectric conversion layer is increased.
 そこで、透光性支持体よりも大きく且つ多孔性半導体層よりも小さな屈折率値を有する介在層を透光性支持体と光電変換層との間に設けることを検討した。しかし、介在層の屈折率値を調整しただけではJscが増加しないことが分かり、鋭意検討した結果、介在層のシート抵抗値を100Ω/sq以上とすることによりJscが増加することを見出した。なお、介在層のシート抵抗値が低いとJscが増加しない理由としては、次に示すことが考えられる。介在層のシート抵抗値が低いと、光電変換層で発生した電荷がシート抵抗値の低い材料(介在層)に取り込まれ易くなるので、電荷が介在層にたまり易くなるからである。 Therefore, it was examined to provide an intervening layer having a refractive index value larger than that of the light-transmitting support and smaller than that of the porous semiconductor layer between the light-transmitting support and the photoelectric conversion layer. However, it was found that Jsc does not increase only by adjusting the refractive index value of the intervening layer, and as a result of intensive studies, it was found that Jsc increases when the sheet resistance value of the intervening layer is set to 100 Ω / sq or more. The reason why Jsc does not increase when the sheet resistance value of the intervening layer is low can be considered as follows. This is because if the sheet resistance value of the intervening layer is low, the charges generated in the photoelectric conversion layer are easily taken into the material (intervening layer) having a low sheet resistance value, so that the charges easily accumulate in the intervening layer.
 以上を踏まえ、本発明では、透光性支持体1よりも大きく光電変換層3よりも小さな屈折率を有する絶縁層2を透光性支持体1と光電変換層3との間に設け、その絶縁層2のシート抵抗値を100Ω/sq以上とした。これにより、光電変換層3で発生した電荷が絶縁層2に取り込まれ難くなるため、Jscを増加させることができる。絶縁層2のシート抵抗値は、1kΩ/sq以上であることが好ましく、10kΩ/sq以上であることがより好ましく、10MΩ/sq以上であっても良い。ここで、屈折率値は、エリプソメータにより測定されれば良い。また、シート抵抗値は、シート抵抗測定装置により測定されれば良く、または、四探針法あるいは四端子法という方法にしたがって測定されれば良い。 Based on the above, in the present invention, an insulating layer 2 having a refractive index larger than that of the translucent support 1 and smaller than that of the photoelectric conversion layer 3 is provided between the translucent support 1 and the photoelectric conversion layer 3. The sheet resistance value of the insulating layer 2 was set to 100 Ω / sq or more. This makes it difficult for charges generated in the photoelectric conversion layer 3 to be taken into the insulating layer 2, thereby increasing Jsc. The sheet resistance value of the insulating layer 2 is preferably 1 kΩ / sq or more, more preferably 10 kΩ / sq or more, and may be 10 MΩ / sq or more. Here, the refractive index value may be measured by an ellipsometer. The sheet resistance value may be measured by a sheet resistance measuring device, or may be measured according to a method called a four-probe method or a four-terminal method.
 絶縁層2の屈折率値は、透光性支持体1の屈折率値よりも大きく多孔性半導体層の屈折率値よりも小さい。そのため、透光性支持体1および多孔性半導体層の各材料に応じて、絶縁層2を構成する材料を適宜選択すれば良い。具体的には、透光性支持体1がソーダガラスからなり、且つ多孔性半導体層が酸化チタンからなる場合、透光性支持体1の屈折率値は1.5であり、多孔性半導体層の屈折率値は2.52である。よって、この場合には、絶縁層2を構成する材料は、1.5よりも大きく2.52未満の屈折率値を有すれば良い。 The refractive index value of the insulating layer 2 is larger than the refractive index value of the translucent support 1 and smaller than the refractive index value of the porous semiconductor layer. Therefore, the material constituting the insulating layer 2 may be appropriately selected according to the materials of the translucent support 1 and the porous semiconductor layer. Specifically, when the translucent support 1 is made of soda glass and the porous semiconductor layer is made of titanium oxide, the translucent support 1 has a refractive index value of 1.5, and the porous semiconductor layer Has a refractive index value of 2.52. Therefore, in this case, the material constituting the insulating layer 2 may have a refractive index value greater than 1.5 and less than 2.52.
 たとえば、絶縁層2は、酸化物材料、フッ化物材料、および有機物材料のうちの少なくとも一つを含んでいることが好ましい。より好ましくは、絶縁層2は、酸化アルミニウム、酸化セリウム、酸化ハフニウム、酸化マグネシウム、酸化イットリウム、五酸化チタン、酸化タングステン、酸化亜鉛、酸化ジルコニウム、酸化すず、フッ化ランタン、フッ化セリウム、フッ化ネオジム、およびポリスチレンのうちの少なくとも一つを含んでいることが好ましい。透光性支持体1が受光面であるときには、絶縁層2は光電変換層3に対して光入射側に形成される。よって、絶縁層2の膜厚は1nm以上0.5μm以下であることが好ましく、1nm以上0.1μm以下であることがより好ましい。これにより、光電変換層3へ入射する光の強度低下を低減できるので、変換効率に優れた光電変換素子を提供できる。 For example, the insulating layer 2 preferably includes at least one of an oxide material, a fluoride material, and an organic material. More preferably, the insulating layer 2 is made of aluminum oxide, cerium oxide, hafnium oxide, magnesium oxide, yttrium oxide, titanium pentoxide, tungsten oxide, zinc oxide, zirconium oxide, tin oxide, lanthanum fluoride, cerium fluoride, fluoride. It preferably contains at least one of neodymium and polystyrene. When the translucent support 1 is a light receiving surface, the insulating layer 2 is formed on the light incident side with respect to the photoelectric conversion layer 3. Therefore, the thickness of the insulating layer 2 is preferably 1 nm to 0.5 μm, and more preferably 1 nm to 0.1 μm. Thereby, since the intensity fall of the light which injects into the photoelectric converting layer 3 can be reduced, the photoelectric conversion element excellent in conversion efficiency can be provided.
 また、絶縁層2は、上記何れかの材料(ノンドープ)に対して適当な添加剤が導入されていてもよい。添加剤は、特に限定されないが、上記いずれかの材料(ノンドープ)によって異なっていてもよい。たとえば酸化亜鉛に対しては、アルミニウム、ガリウム、インジウム、ボロン、またはフッ素などであればよい。また、酸化スズに対しては、アンチモン、またはフッ素などであればよい。添加剤の添加量は、特に限定されないが、上記何れかの材料(ノンドープ)に対して1質量%以上30質量%以下であれば良い。さらに好ましくは、添加剤を導入した材料の膜厚を制御することであり、たとえばこの膜厚を1nm以上1000nm以下とすることである。これにより、絶縁層2のシート抵抗値が100Ω/sq以上となる層を形成することが出来る。また、膜厚を100nm以下とすれば、絶縁層2のシート抵抗値を1000Ω/sq以上とすることができる。 Further, the insulating layer 2 may be introduced with an appropriate additive for any of the above materials (non-doped). The additive is not particularly limited, but may be different depending on any of the above materials (non-doped). For example, for zinc oxide, aluminum, gallium, indium, boron, fluorine, or the like may be used. For tin oxide, antimony or fluorine may be used. Although the addition amount of an additive is not specifically limited, What is necessary is just 1 mass% or more and 30 mass% or less with respect to one of the said materials (non-dope). More preferably, the film thickness of the material into which the additive is introduced is controlled, for example, the film thickness is set to 1 nm or more and 1000 nm or less. Thereby, a layer in which the sheet resistance value of the insulating layer 2 is 100 Ω / sq or more can be formed. If the film thickness is 100 nm or less, the sheet resistance value of the insulating layer 2 can be 1000 Ω / sq or more.
 また、絶縁層2は、酸素以外に2つの元素を含む酸化物材料でもよいし、酸素以外に3つ以上の元素を含む酸化物材料でもよい。絶縁層2の材料としては、たとえば、酸化インジウムガリウム亜鉛、酸化インジウム・錫、またはチタン酸ストロンチウムなど各種酸素を含む化合物が挙げられる。 The insulating layer 2 may be an oxide material containing two elements other than oxygen, or may be an oxide material containing three or more elements other than oxygen. Examples of the material of the insulating layer 2 include compounds containing various oxygens such as indium gallium zinc oxide, indium / tin oxide, and strontium titanate.
 絶縁層2の材料として酸素以外に3つ以上の元素を含む酸化物材料を用いた場合、酸化物材料における酸素濃度の制御、または上記添加剤の導入などにより、絶縁層2のシート抵抗値を制御が容易になる。よって、絶縁層2の材料として所望の特性の材料を容易に得ることができる。 When an oxide material containing three or more elements other than oxygen is used as the material of the insulating layer 2, the sheet resistance value of the insulating layer 2 can be reduced by controlling the oxygen concentration in the oxide material or introducing the additive. Control becomes easy. Therefore, a material having desired characteristics can be easily obtained as the material of the insulating layer 2.
 絶縁層2が形成される領域は特に限定されないが、光が光電変換層3に効率良く取り込まれるように(つまり光が光電変換層3の表面で反射し難いように)絶縁層2を形成することが好ましい。好ましくは、図1に示すように絶縁層2が光電変換層3と同じ領域(光電変換層3の上面上のみ)に形成されることである。より好ましくは、図2に示すように絶縁層22が光電変換層3よりも大きく(光電変換層3の上面上だけでなく光電変換層3の端面上にも)形成されることである。図2に示す場合には、光電変換層3の端面から入射された光も光電変換層3へ取り込まれるため、光を光電変換層3へ効率良く取り込むことができ、よって、変換効率に優れた光電変換素子を提供できる。なお、以下において、絶縁層2と絶縁層22との区別を要しない場合には「絶縁層2」と記す。 The region where the insulating layer 2 is formed is not particularly limited, but the insulating layer 2 is formed so that light is efficiently taken into the photoelectric conversion layer 3 (that is, light is not easily reflected on the surface of the photoelectric conversion layer 3). It is preferable. Preferably, as shown in FIG. 1, the insulating layer 2 is formed in the same region as the photoelectric conversion layer 3 (only on the upper surface of the photoelectric conversion layer 3). More preferably, as shown in FIG. 2, the insulating layer 22 is formed larger than the photoelectric conversion layer 3 (not only on the upper surface of the photoelectric conversion layer 3 but also on the end surface of the photoelectric conversion layer 3). In the case shown in FIG. 2, since the light incident from the end face of the photoelectric conversion layer 3 is also taken into the photoelectric conversion layer 3, the light can be taken into the photoelectric conversion layer 3 efficiently, and thus the conversion efficiency is excellent. A photoelectric conversion element can be provided. In the following, when it is not necessary to distinguish between the insulating layer 2 and the insulating layer 22, they are referred to as “insulating layer 2”.
 ところで、絶縁層2を形成することにより、光の透過率が低下することがある。このため、絶縁層2にヘイズをつけることが好ましい。これにより、光電変換層3の内部への光の散乱効果が増大するので、光電変換層3における光路長を増加させることができ、よって、Jscを増加させることができる。ヘイズについては下記<支持基材>で示す。 Incidentally, the light transmittance may be reduced by forming the insulating layer 2. For this reason, it is preferable to apply haze to the insulating layer 2. Thereby, since the light scattering effect to the inside of the photoelectric conversion layer 3 increases, the optical path length in the photoelectric conversion layer 3 can be increased, and thus Jsc can be increased. About haze, it shows by the following <support base material>.
 -絶縁層2の形成方法-
 絶縁層2を形成する方法としては、特に限定されず、公知の方法が挙げられる。絶縁層2の形成方法は、たとえば真空蒸着法、EB蒸着法、抵抗加熱蒸着法、分子線エピタキシャル成長法(MBE法)、スパッタリング法、または化学気相成長法(CVD法)であれば良い。好ましくは、蒸着法などの物理気相成長法(PVD法)を用いて絶縁層2を形成することである。これにより、絶縁層2を容易に形成できる。より好ましくは、EB蒸着法を用いて絶縁層2を形成することである。これにより、絶縁層2の膜厚の制御およびそのシート抵抗値の制御が容易となる。
-Method of forming insulating layer 2-
It does not specifically limit as a method of forming the insulating layer 2, A well-known method is mentioned. The insulating layer 2 may be formed by, for example, a vacuum evaporation method, an EB evaporation method, a resistance heating evaporation method, a molecular beam epitaxial growth method (MBE method), a sputtering method, or a chemical vapor deposition method (CVD method). Preferably, the insulating layer 2 is formed using a physical vapor deposition method (PVD method) such as an evaporation method. Thereby, the insulating layer 2 can be formed easily. More preferably, the insulating layer 2 is formed using an EB vapor deposition method. Thereby, control of the film thickness of the insulating layer 2 and control of the sheet resistance value are facilitated.
 たとえばEB蒸着法を用いて絶縁層2を形成する場合、蒸着速度を1Å/s以上50Å/s以下とすれば良く、基板温度を室温以上500℃以下とすれば良く、真空度を5×10-3Pa以上1×10-6Pa以下とすれば良い。これらの何れか1つの条件を満たせば良いが、より好ましくはこれらの条件を全て満たすことである。 For example, when the insulating layer 2 is formed by using the EB vapor deposition method, the vapor deposition rate may be 1 to 50 Å / s, the substrate temperature may be room temperature to 500 ° C., and the degree of vacuum is 5 × 10. It may be set to −3 Pa or more and 1 × 10 −6 Pa or less. Any one of these conditions may be satisfied, but more preferably all of these conditions are satisfied.
 <支持基材>
 図1に示す光電変換素子では、支持基材11は透光性支持体1と絶縁層2とで構成されており、図2に示す光電変換素子では、支持基材31は透光性支持体1絶縁層22とで構成されている。上述のように、絶縁層2を形成することにより光の透過率がやや減少することがある。そこで、支持基材11のヘイズ率を20%以下とすることが好ましく、15%以下とすることがより好ましく、5%以上15%以下とすることがさらに好ましい。これにより、絶縁層2を形成したことに起因する光の透過率の減少分を補填できる。つまり、光電変換層3の内部への光の散乱効果が増大するので、光電変換層3における光路長が増加し、よって、Jscが増加する。
<Support base material>
In the photoelectric conversion element shown in FIG. 1, the support base 11 is composed of a translucent support 1 and an insulating layer 2, and in the photoelectric conversion element shown in FIG. 2, the support base 31 is a translucent support. 1 insulating layer 22. As described above, the light transmittance may be slightly reduced by forming the insulating layer 2. Therefore, the haze ratio of the support base 11 is preferably 20% or less, more preferably 15% or less, and further preferably 5% or more and 15% or less. Thereby, it is possible to compensate for the decrease in light transmittance caused by the formation of the insulating layer 2. That is, since the light scattering effect into the photoelectric conversion layer 3 is increased, the optical path length in the photoelectric conversion layer 3 is increased, and thus Jsc is increased.
 本発明では、絶縁層2にヘイズを付けることにより、支持基材11のヘイズ率を所定値以下としている。ヘイズの付け方は、絶縁層2の材質に依存するが、特に限定されず、ドライエッチング、やすりなどによる機械研磨、フォトリソグラフィーを利用したパターニングなどの物理的な手法、酸によるエッチングなどの化学的な手法、または絶縁層2の形成条件を調整するなどの公知の方法であれば良い。 In the present invention, by applying haze to the insulating layer 2, the haze ratio of the support base 11 is set to a predetermined value or less. The method of applying haze depends on the material of the insulating layer 2, but is not particularly limited. Physical methods such as dry etching, mechanical polishing using a file, patterning using photolithography, chemical etching such as acid etching, and the like. Any known method such as a method or adjusting the formation conditions of the insulating layer 2 may be used.
 ここで、ヘイズ率とは、可視光領域および/または近赤外領域にスペクトルを有する光線(たとえば、標準光源D65または標準光源C)を測定用サンプルに入射した際の拡散透過率を、全光線透過率で割った値であり、0~1の間の値または0~100%の百分率で表示される。本発明では、ヘイズ率を、550nmにスペクトルを有する光線を用いて測定および算出された値と定義している。このようなヘイズ率は、市販のヘイズメータを用いて計測できる。 Here, the haze ratio refers to the diffuse transmittance when a light beam having a spectrum in the visible light region and / or near-infrared region (for example, the standard light source D65 or the standard light source C) is incident on the measurement sample. It is the value divided by the transmittance and is displayed as a value between 0 and 1 or as a percentage of 0 to 100%. In the present invention, the haze ratio is defined as a value measured and calculated using a light beam having a spectrum at 550 nm. Such a haze rate can be measured using a commercially available haze meter.
 <光電変換層>
 光電変換層3は、多孔性半導体層を有する。この多孔性半導体層内には、光増感剤とキャリア輸送材料とが設けられていることが好ましい。以下、それぞれを順に説明する。
<Photoelectric conversion layer>
The photoelectric conversion layer 3 has a porous semiconductor layer. It is preferable that a photosensitizer and a carrier transport material are provided in the porous semiconductor layer. Each will be described in turn below.
 -多孔性半導体層-
 本発明では、多孔性半導体層は、半導体材料から構成される。ここで、多孔性とは、比表面積が0.5~300m2/gであることをいい、空孔率が20%以上であることを言う。このような比表面積は気体吸着法であるBET法によって求められ、空孔率は多孔性半導体層の厚さ(膜厚)、多孔性半導体層の質量、および半導体微粒子の密度から計算によって求められる。多孔性半導体層は、上記範囲の比表面積を有することにより、多くの光増感剤を吸着でき、よって太陽光を効率良く吸収できる。また、多孔性半導体層の空孔率を一定以上の値とすることにより、キャリア輸送材料の十分な拡散が可能となり、光電変換層に電子をスムーズに戻すことができる。
-Porous semiconductor layer-
In the present invention, the porous semiconductor layer is composed of a semiconductor material. Here, the porosity means that the specific surface area is 0.5 to 300 m 2 / g, and the porosity is 20% or more. Such a specific surface area is obtained by the BET method which is a gas adsorption method, and the porosity is obtained by calculation from the thickness (film thickness) of the porous semiconductor layer, the mass of the porous semiconductor layer, and the density of the semiconductor fine particles. . Since the porous semiconductor layer has a specific surface area in the above range, it can adsorb many photosensitizers, and thus can absorb sunlight efficiently. In addition, by setting the porosity of the porous semiconductor layer to a certain value or more, the carrier transport material can be sufficiently diffused, and electrons can be smoothly returned to the photoelectric conversion layer.
 多孔性半導体層を構成する材料は、一般に光電変換素子に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。このような材料としては、たとえば、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ニオブ、酸化セリウム、酸化タングステン、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウム、硫化鉛、硫化亜鉛、リン化インジウム、銅-インジウム硫化物(CuInS2)、CuAlO2、またはSrCu22などの半導体化合物材料を挙げることができる。これらを単独で用いても良いし、これらを組み合わせて用いても良い。これらの材料の中でも、光電変換効率、安定性および安全性の点から、酸化チタンを用いることが特に好ましい。 The material which comprises a porous semiconductor layer will not be specifically limited if it is a material which can generally be used for a photoelectric conversion element, and can exhibit the effect of this invention. Examples of such materials include titanium oxide, zinc oxide, tin oxide, iron oxide, niobium oxide, cerium oxide, tungsten oxide, barium titanate, strontium titanate, cadmium sulfide, lead sulfide, zinc sulfide, and indium phosphide. And semiconductor compound materials such as copper-indium sulfide (CuInS 2 ), CuAlO 2 , or SrCu 2 O 2 . These may be used alone or in combination. Among these materials, it is particularly preferable to use titanium oxide from the viewpoint of photoelectric conversion efficiency, stability, and safety.
 本発明において、多孔性半導体層を構成する材料として酸化チタンを用いる場合、酸化チタンは、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、またはオルソチタン酸などの各種の狭義の酸化チタンであっても良いし、水酸化チタンであっても良いし、含水酸化チタンであっても良い。これらを単独で用いても良いし、混合して用いても良い。アナターゼ型酸化チタンとルチル型酸化チタンとについては、製法または熱履歴によりどちらの形態にもなり得るが、アナターゼ型酸化チタンが一般的である。本発明においては、光増感剤を吸着させるという点に関して、アナターゼ型酸化チタンの含有率の高いものを用いることが好ましく、その含有率が80%以上であるものを用いることが特に好ましい。酸化チタンの製造方法は、特に限定されず、気相法、または液相法(水熱合成法もしくは硫酸法)などの各種文献に記載されている公知の方法であれば良く、デグサ(Degussa)社が開発した、塩化物を高温加水分解により得る方法であっても良い。 In the present invention, when titanium oxide is used as a material constituting the porous semiconductor layer, the titanium oxide is variously narrowly defined as anatase type titanium oxide, rutile type titanium oxide, amorphous titanium oxide, metatitanic acid, or orthotitanic acid. It may be titanium oxide, titanium hydroxide, or hydrous titanium oxide. These may be used alone or in combination. Anatase-type titanium oxide and rutile-type titanium oxide can be in either form depending on the production method or thermal history, but anatase-type titanium oxide is common. In the present invention, in terms of adsorbing the photosensitizer, it is preferable to use a material having a high content of anatase-type titanium oxide, and it is particularly preferable to use a material having a content of 80% or more. The method for producing titanium oxide is not particularly limited, and may be a known method described in various literatures such as a gas phase method or a liquid phase method (hydrothermal synthesis method or sulfuric acid method). Degussa A method developed by the company to obtain chloride by high-temperature hydrolysis may be used.
 多孔性半導体層の形態としては、単結晶または多結晶のいずれでもよい。しかし、安定性、結晶成長の困難さ、および製造コストなどの点では、多孔性半導体層は多結晶焼結体であることが好ましく、微粉末(ナノスケールからマイクロスケール)からなる多結晶焼結体であることが特に好ましい。 The form of the porous semiconductor layer may be either single crystal or polycrystal. However, in terms of stability, difficulty in crystal growth, and manufacturing cost, the porous semiconductor layer is preferably a polycrystalline sintered body, and polycrystalline sintering made of fine powder (nanoscale to microscale). The body is particularly preferred.
 多孔性半導体層を構成する材料の粒子は、粒子サイズが互いに異なる2種類以上の粒子を混合して用いても良い。粒子サイズの大きな粒子は、入射光を散乱させて光捕捉率の向上に寄与すると考えられる。粒子サイズの小さな粒子では光増感剤の吸着点がより多くなるので、粒子サイズの小さな粒子は光増感剤の吸着量の増加に寄与すると考えられる。 As the particles of the material constituting the porous semiconductor layer, two or more kinds of particles having different particle sizes may be mixed and used. Particles with a large particle size are considered to contribute to an improvement in light capture rate by scattering incident light. Since particles having a small particle size have more adsorption points of the photosensitizer, it is considered that particles having a small particle size contribute to an increase in the adsorption amount of the photosensitizer.
 粒子サイズの大きな粒子の平均粒径は、粒子サイズの小さな粒子の平均粒径に対して10倍以上であることが好ましい。粒子サイズの大きな粒子の平均粒径は100~500nm程度が適当であり、粒子サイズの小さな粒子の平均粒径は5nm~50nm程度が適当である。粒子サイズが互いに異なる粒子は、同一の半導体化合物からなっても良いし、異なる半導体化合物からなっても良い。粒子サイズが互いに異なる粒子が異なる半導体化合物からなる場合、粒子サイズの小さな粒子の材料を光増感剤の吸着作用の強い半導体化合物とすることが好ましい。なお、上記平均粒径は、X線回折測定から得られるスペクトル(XRD(X線回折)の回折ピーク)を用いて算出されても良いし、走査型電子顕微鏡(SEM)で直接観察を行うことにより求められても良い。 The average particle size of particles having a large particle size is preferably 10 times or more than the average particle size of particles having a small particle size. The average particle size of particles having a large particle size is suitably about 100 to 500 nm, and the average particle size of particles having a small particle size is suitably about 5 to 50 nm. The particles having different particle sizes may be made of the same semiconductor compound or different semiconductor compounds. When particles having different particle sizes are composed of different semiconductor compounds, it is preferable that the material of the particles having a small particle size is a semiconductor compound having a strong adsorption action for the photosensitizer. The average particle diameter may be calculated using a spectrum (XRD (X-ray diffraction) diffraction peak) obtained from X-ray diffraction measurement, or directly observed with a scanning electron microscope (SEM). May be required.
 多孔性半導体層の膜厚は、特に限定されず、たとえば0.1~100μm程度が適当である。また、多孔性半導体層には光増感剤が吸着されるため、多孔性半導体層の表面積は大きいことが好ましく、たとえば多孔性半導体層のBET表面積は10~200m2/g程度であることが好ましい。 The film thickness of the porous semiconductor layer is not particularly limited, and for example, about 0.1 to 100 μm is appropriate. Further, since the photosensitizer is adsorbed on the porous semiconductor layer, the surface area of the porous semiconductor layer is preferably large. For example, the BET surface area of the porous semiconductor layer is about 10 to 200 m 2 / g. preferable.
 -多孔性半導体層の形成方法-
 多孔性半導体層を形成する方法としては、特に限定されず、公知の方法が挙げられる。たとえば、半導体材料からなる粒子を含有する懸濁液を透光性支持体1上に塗布してから乾燥および焼成の少なくとも一方を行うという方法が挙げられる。
-Method for forming porous semiconductor layer-
It does not specifically limit as a method of forming a porous semiconductor layer, A well-known method is mentioned. For example, there may be mentioned a method in which a suspension containing particles made of a semiconductor material is applied on the translucent support 1 and then dried and fired.
 この方法では、まず、半導体材料からなる微粒子を適当な溶剤に懸濁して、懸濁液を得る。このような溶剤としては、エチレングリコールモノメチルエーテルなどのグライム系溶剤、イソプロピルアルコールなどのアルコール類、イソプロピルアルコール/トルエンなどのアルコール系混合溶剤、または水などが挙げられる。また、このような懸濁液の代わりに市販の酸化チタンペースト(例えば、Solaronix社製、Ti-nanoxide、T、D、T/SP、D/SP)を用いても良い。 In this method, first, fine particles made of a semiconductor material are suspended in an appropriate solvent to obtain a suspension. Examples of such a solvent include glyme solvents such as ethylene glycol monomethyl ether, alcohols such as isopropyl alcohol, alcohol-based mixed solvents such as isopropyl alcohol / toluene, and water. Further, instead of such a suspension, a commercially available titanium oxide paste (for example, Solaronix, Ti-nanoxide, T, D, T / SP, D / SP) may be used.
 次いで、ドクターブレード法、スキージ法、スピンコート法、またはスクリーン印刷法など公知の方法により、得られた懸濁液を透光性支持体1上に塗布し、乾燥および焼成の少なくとも一方を行って多孔性半導体層を形成する。 Next, the obtained suspension is applied onto the translucent support 1 by a known method such as a doctor blade method, a squeegee method, a spin coating method, or a screen printing method, and at least one of drying and baking is performed. A porous semiconductor layer is formed.
 ただし、絶縁層2と多孔性半導体層とを接触させて形成する場合、通常のスクリーン印刷用のペーストを用いてスクリーン印刷法で多孔性半導体層を形成することが難しいことがある。通常、スクリーン印刷は、スクリーンパターンにペーストを充填し、そのペーストをスキージでおさえ、印刷する基板とスクリーンとを接触させ、印刷をするものである。そのため、基板のうちスクリーンへ接触しない部分への印刷は、可能であるが、印刷精度が落ちる。よって、絶縁層2と多孔性半導体層とが接触しない部分が生じるおそれがある。そこで、絶縁層2を形成した後に多孔性半導体層を形成する場合には、ペースト粘性が低いものをディスペンサーのようなノズルなどから塗布し、そのペーストが自重で絶縁層2の端部まで広がってレベリングするという塗布法を用いることが好ましい。 However, when the insulating layer 2 and the porous semiconductor layer are formed in contact with each other, it may be difficult to form the porous semiconductor layer by a screen printing method using a normal screen printing paste. Usually, screen printing is a method in which a screen pattern is filled with a paste, the paste is held with a squeegee, and the substrate to be printed is brought into contact with the screen for printing. Therefore, printing on a portion of the substrate that does not contact the screen is possible, but the printing accuracy is reduced. Therefore, there is a possibility that a portion where the insulating layer 2 and the porous semiconductor layer are not in contact with each other is generated. Therefore, when the porous semiconductor layer is formed after the insulating layer 2 is formed, a paste having a low viscosity is applied from a nozzle such as a dispenser, and the paste spreads to the end of the insulating layer 2 by its own weight. It is preferable to use a coating method of leveling.
 乾燥および焼成に必要な温度、時間、ならびに雰囲気などは、それぞれ、多孔性半導体層を構成する材料の種類に応じて適宜設定すれば良い。たとえば、雰囲気としては大気雰囲気下または不活性ガス雰囲気下が挙げられ、温度および時間としては50~800℃程度の範囲で10秒~12時間程度が挙げられる。この乾燥および焼成は、単一の温度で1回行なっても良いし、温度を変化させて2回以上行っても良い。 The temperature, time, atmosphere, etc. necessary for drying and firing may be appropriately set according to the type of material constituting the porous semiconductor layer. For example, the atmosphere may be an air atmosphere or an inert gas atmosphere, and the temperature and time may be about 50 to 800 ° C. and about 10 seconds to 12 hours. This drying and baking may be performed once at a single temperature, or may be performed twice or more by changing the temperature.
 多孔性半導体層が複数層で構成されている場合には、互いに異なる半導体材料からなる粒子を含む懸濁液を調製すれば良く、調製した懸濁液の塗布と、乾燥および焼成の少なくとも一方とを2回以上繰り返し行なえば良い。 When the porous semiconductor layer is composed of a plurality of layers, a suspension containing particles made of different semiconductor materials may be prepared, and at least one of application of the prepared suspension and drying and baking May be repeated twice or more.
 多孔性半導体層を形成した後、半導体材料からなる微粒子同士の電気的接続の向上、多孔性半導体層の表面積の増加、および半導体材料からなる微粒子上の欠陥準位の低減を目的として、所定の液体で処理しても良い。処理に用いる液体および多孔性半導体層を処理する方法は半導体材料に依存するため一概に言えないが、多孔性半導体層が酸化チタンからなる場合には四塩化チタン水溶液などで酸化チタン膜を表面処理すれば良い。 After the formation of the porous semiconductor layer, for the purpose of improving the electrical connection between the fine particles made of the semiconductor material, increasing the surface area of the porous semiconductor layer, and reducing the defect level on the fine particles made of the semiconductor material, You may process with a liquid. The liquid used for the treatment and the method for treating the porous semiconductor layer depend on the semiconductor material, so it cannot be generally stated, but when the porous semiconductor layer is made of titanium oxide, the titanium oxide film is surface-treated with an aqueous solution of titanium tetrachloride. Just do it.
 -光増感剤-
 多孔性半導体層に吸着されて光増感剤として機能する色素としては、特に限定されないが、可視光領域および/または赤外光領域に吸収をもつ種々の有機色素であっても良いし、可視光領域および/または赤外光領域に吸収をもつ種々の金属錯体色素であっても良い。これらの色素を単独で用いても良いし、2種以上を混合して用いても良い。
-Photosensitizer-
The dye that is adsorbed on the porous semiconductor layer and functions as a photosensitizer is not particularly limited, but may be various organic dyes that absorb in the visible light region and / or the infrared light region, and may be visible. Various metal complex dyes having absorption in the light region and / or the infrared light region may be used. These pigments may be used alone or in combination of two or more.
 有機色素としては、たとえば、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、ペリレン系色素、インジゴ系色素、またはナフタロシアニン系色素などが挙げられる。有機色素の吸光係数は、一般に、遷移金属に分子が配位結合した形態をとる金属錯体色素に比べて大きい。 Examples of organic dyes include azo dyes, quinone dyes, quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, and perylenes. And dyes such as indigo dyes and naphthalocyanine dyes. In general, the extinction coefficient of an organic dye is larger than that of a metal complex dye in which a molecule is coordinated to a transition metal.
 金属錯体色素としては、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、TA、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te、またはRhなどの金属原子に配位子が配位結合した形態のものが挙げられる。金属錯体色素は、たとえば、ポルフィリン系色素、フタロシアニン系色素、またはナフタロシアニン系色素であれば良く、これらの中でも、フタロシアニン系色素またはルテニウム系色素であることが好ましく、ルテニウム系金属錯体色素であることがより好ましい。 As metal complex dyes, Cu, Ni, Fe, Co, V, Sn, Si, Ti, Ge, Cr, Zn, Ru, Mg, Al, Pb, Mn, In, Mo, Y, Zr, Nb, Sb, La, W, Pt, TA, Ir, Pd, Os, Ga, Tb, Eu, Rb, Bi, Se, As, Sc, Ag, Cd, Hf, Re, Au, Ac, Tc, Te, or Rh The thing of the form which the ligand coordinated to the metal atom is mentioned. The metal complex dye may be, for example, a porphyrin dye, a phthalocyanine dye, or a naphthalocyanine dye, and among these, a phthalocyanine dye or a ruthenium dye is preferable, and is a ruthenium metal complex dye. Is more preferable.
 金属錯体色素は、化学式(1)~(3)で表されるルテニウム系金属錯体色素であることが特に好ましい。市販のルテニウム系金属錯体色素として、たとえば、Solaronix社製の商品名Ruthenium535色素、Ruthenium535-bisTBA色素、またはRuthenium620-1H3TBA色素などが挙げられる。 The metal complex dye is particularly preferably a ruthenium-based metal complex dye represented by chemical formulas (1) to (3). Examples of commercially available ruthenium-based metal complex dyes include trade name Ruthenium 535 dye, Ruthenium 535-bis TBA dye, or Ruthenium 620-1H3TBA dye manufactured by Solaronix.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 また、多孔性半導体層に光増感剤を強固に吸着させるためには、光増感剤が分子中にカルボキシル基、アルコキシ基、ヒドロキシル基、スルホン酸基、エステル基、メルカプト基、またはホスホニル基などのインターロック基を有することが好ましい。一般に、インターロック基は、光増感剤が多孔性半導体層に固定される際に光増感剤と多孔性半導体層との間に存在し、光増感剤の励起状態と多孔性半導体層を構成する半導体材料の伝導帯との間の電子の移動を容易にする電気的結合を提供する。 In order to firmly adsorb the photosensitizer to the porous semiconductor layer, the photosensitizer has a carboxyl group, alkoxy group, hydroxyl group, sulfonic acid group, ester group, mercapto group, or phosphonyl group in the molecule. It is preferable to have an interlocking group such as In general, the interlock group exists between the photosensitizer and the porous semiconductor layer when the photosensitizer is fixed to the porous semiconductor layer, and the excited state of the photosensitizer and the porous semiconductor layer An electrical coupling that facilitates the transfer of electrons between the conduction bands of the semiconductor material comprising
 このような光増感剤の吸着量は、1×10-8mol/cm2以上1×10-6mol/cm2以下であれば良く、5×10-8mol/cm2以上5×10-7mol/cm2であることが好ましい。光増感剤の吸着量が1×10-8mol/cm2未満であれば、光電変換効率の低下を招くおそれがある。一方、光増感剤の吸着量が1×10-6mol/cm2を超えると、開放電圧が低下するという不具合を招くことがある。 The adsorption amount of such a photosensitizer may be 1 × 10 −8 mol / cm 2 or more and 1 × 10 −6 mol / cm 2 or less, and 5 × 10 −8 mol / cm 2 or more and 5 × 10. -7 mol / cm 2 is preferred. If the adsorption amount of the photosensitizer is less than 1 × 10 −8 mol / cm 2 , the photoelectric conversion efficiency may be lowered. On the other hand, when the adsorption amount of the photosensitizer exceeds 1 × 10 −6 mol / cm 2 , there may be a problem that the open circuit voltage is lowered.
 -色素吸着法-
 多孔性半導体層に光増感剤を吸着させる方法としては、たとえば色素を溶解した溶液(色素吸着用溶液)に多孔性半導体層を浸漬させる方法が代表的なものとして挙げられる。このとき、色素吸着用溶液を多孔性半導体層の微細孔の奥部まで浸透させるという点において、色素吸着用溶液を加熱することが好ましい。
-Dye adsorption method-
A typical method for adsorbing the photosensitizer on the porous semiconductor layer is, for example, a method of immersing the porous semiconductor layer in a solution in which a dye is dissolved (dye adsorption solution). At this time, it is preferable to heat the dye adsorbing solution in that the dye adsorbing solution penetrates to the back of the micropores of the porous semiconductor layer.
 色素吸着用溶液の溶剤としては、光増感剤を溶解するものであれば良く、たとえばアルコール、トルエン、アセトニトリル、テトラヒドロフラン(THF)、クロロホルム、またはジメチルホルムアミドなどが挙げられる。これらの溶剤は、通常、精製されたものが好ましく、2種類以上を混合して用いることができる。色素吸着用溶液中の色素濃度は、使用する光増感剤、溶媒の種類、および色素吸着工程などの条件に応じて適宜設定でき、たとえば1×10-5モル/リットル以上であることが好ましい。光増感剤の溶解性を高めるために、調製時に色素吸着用溶液を加熱しても良い。 The solvent of the dye adsorption solution may be any solvent that can dissolve the photosensitizer, and examples thereof include alcohol, toluene, acetonitrile, tetrahydrofuran (THF), chloroform, and dimethylformamide. These solvents are preferably purified, and two or more types can be mixed and used. The dye concentration in the dye adsorption solution can be appropriately set according to conditions such as the photosensitizer to be used, the type of solvent, and the dye adsorption step, and is preferably 1 × 10 −5 mol / liter or more, for example. . In order to increase the solubility of the photosensitizer, the dye adsorption solution may be heated during preparation.
 -キャリア輸送材料-
 キャリア輸送材料は、下記<光電変換層>で述べるように、イオンを輸送可能な導電性材料であれば良く、たとえば液体電解質、固体電解質、ゲル電解質、または溶融塩ゲル電解質などであれば良い。多孔性半導体層に含まれるキャリア輸送材料は、電荷輸送層5を構成する材料と同じであっても良いし、電荷輸送層5を構成する材料とは異なっても良い。
-Carrier transport material-
The carrier transport material may be a conductive material capable of transporting ions as described in <Photoelectric conversion layer> below, and may be, for example, a liquid electrolyte, a solid electrolyte, a gel electrolyte, or a molten salt gel electrolyte. The carrier transport material contained in the porous semiconductor layer may be the same as the material constituting the charge transport layer 5 or may be different from the material constituting the charge transport layer 5.
 キャリア輸送材料を多孔性半導体層内に設ける方法は、特に限定されず、キャリア輸送材料を含む溶液に多孔性半導体層を浸漬させても良いし、対極支持体7を封止部8を介して集電電極4に張り合わせてからキャリア輸送材料を光電変換層内に注入させても良い。また、多孔性半導体層に含まれるキャリア輸送材料が電荷輸送層5を構成する材料と同じ場合には、キャリア輸送材料を所定の位置に注入することにより、電荷輸送層5が形成されると同時にキャリア輸送材料が多孔性半導体層に包含されるという方法をとることができる。 The method for providing the carrier transport material in the porous semiconductor layer is not particularly limited, and the porous semiconductor layer may be immersed in a solution containing the carrier transport material, or the counter electrode support 7 is interposed via the sealing portion 8. The carrier transport material may be injected into the photoelectric conversion layer after being attached to the current collecting electrode 4. Further, when the carrier transport material contained in the porous semiconductor layer is the same as the material constituting the charge transport layer 5, the charge transport layer 5 is formed at the same time as the carrier transport material is injected into a predetermined position. A method in which the carrier transport material is included in the porous semiconductor layer can be employed.
 <集電電極>
 集電電極4は、光電変換層3に接している。集電電極4は、図1に示すように封止部8よりも外側にも設けられていることが好ましく、これにより、外部電気回路を介して集電電極4を対極6にスムーズに接続できる。
<Collector electrode>
The collecting electrode 4 is in contact with the photoelectric conversion layer 3. As shown in FIG. 1, the current collecting electrode 4 is preferably provided outside the sealing portion 8, so that the current collecting electrode 4 can be smoothly connected to the counter electrode 6 through an external electric circuit. .
 集電電極4は、キャリア輸送材料を含むことが好ましく、これにより、対極6へ移動した電子を光電変換層3へスムーズに移動させることができる。ここで、キャリア輸送材料は、下記<電荷輸送層>で述べるようにイオンを輸送可能な導電性材料であれば良く、電荷輸送層5を構成する材料と同じであっても良いし、電荷輸送層5を構成する材料とは異なっても良い。また、キャリア輸送材料を集電電極4内に設ける方法は、特に限定されず、キャリア輸送材料を含む溶液に集電電極4を浸漬させても良いし、対極支持体7を封止部8を介して集電電極4に張り合わせてからキャリア輸送材料を集電電極4内に注入させても良い。また、集電電極4に含まれるキャリア輸送材料が電荷輸送層5を構成する材料と同じ場合には、キャリア輸送材料を所定の位置に注入することにより、電荷輸送層5が形成されると同時にキャリア輸送材料が集電電極4に包含されるという方法をとることができる。 The current collecting electrode 4 preferably contains a carrier transport material, whereby the electrons moved to the counter electrode 6 can be smoothly moved to the photoelectric conversion layer 3. Here, the carrier transport material may be a conductive material capable of transporting ions as described in <Charge transport layer> below, and may be the same as the material constituting the charge transport layer 5, or the charge transport material. The material constituting the layer 5 may be different. The method for providing the carrier transporting material in the current collecting electrode 4 is not particularly limited, and the current collecting electrode 4 may be immersed in a solution containing the carrier transporting material, and the counter electrode support 7 is provided with the sealing portion 8. The carrier transport material may be injected into the current collecting electrode 4 after being attached to the current collecting electrode 4. Further, when the carrier transport material included in the current collecting electrode 4 is the same as the material constituting the charge transport layer 5, the charge transport layer 5 is formed at the same time as the carrier transport material is injected into a predetermined position. A method in which a carrier transport material is included in the current collecting electrode 4 can be employed.
 集電電極4を構成する材料としては、導電性を有するものであれば特に限定されず、光透過性を有していても良いし、光透過性を有していなくても良い。ただし、対極支持体7を受光面にする場合は、透光性支持体1と同様な光透過性が必要となる。また、集電電極4を構成する材料は、キャリア輸送材料(電解質など)に対して腐食性を有しないことが好ましい。 The material constituting the current collecting electrode 4 is not particularly limited as long as it has conductivity, and may or may not have light transparency. However, in the case where the counter electrode support 7 is used as the light receiving surface, the same light transmittance as that of the translucent support 1 is required. Moreover, it is preferable that the material which comprises the current collection electrode 4 does not have corrosivity with respect to carrier transport materials (electrolyte etc.).
 集電電極4を構成する材料としては、たとえば、インジウム錫複合酸化物(ITO)、酸化錫(SnO2)、酸化錫にフッ素をドープしたもの(FTO)、または酸化亜鉛(ZnO)などが挙げられ、チタン、ニッケル、またはタンタルなどのキャリア輸送材料に対して腐食性を示さない金属であっても良い。 Examples of the material constituting the current collecting electrode 4 include indium tin composite oxide (ITO), tin oxide (SnO 2 ), tin oxide doped with fluorine (FTO), and zinc oxide (ZnO). Further, it may be a metal that is not corrosive to a carrier transport material such as titanium, nickel, or tantalum.
 集電電極4の形成方法は、特に限定されず、スパッタ法またはスプレー法などの公知の方法により光電変換層3上および封止部8上に形成するという方法であれば良い。このような集電電極4の膜厚としては、0.02~5μm程度が適当である。また、集電電極4のシート抵抗値は、低いほど良く、特に40Ω/sq以下が好ましい。 The method for forming the current collecting electrode 4 is not particularly limited as long as it is formed on the photoelectric conversion layer 3 and the sealing portion 8 by a known method such as sputtering or spraying. The thickness of the current collecting electrode 4 is suitably about 0.02 to 5 μm. Further, the sheet resistance value of the collecting electrode 4 is preferably as low as possible, and particularly preferably 40 Ω / sq or less.
 集電電極4が緻密な構造をなす場合、複数の小孔が集電電極4に形成されていることが好ましい。ここで、複数の小孔は、キャリア輸送材料のパスとして機能する。つまり、電荷輸送層5に含まれるキャリア輸送材料は、集電電極4に形成された複数の小孔の内部を通って、光電変換層3の多孔性半導体層と対極6との間を移動できる。小孔の径は、0.1μm~100μm程度が好ましく、1μm~50μm程度がさらに好ましい。小孔と小孔との間隔は、1μm~200μm程度が好ましく、10μm~300μm程度がさらに好ましい。このような小孔は、物理接触またはレーザー加工により形成され得る。なお、小孔の形成が困難な場合には、ストライプ状の開口部を集電電極4に形成すれば良い。これにより、小孔を形成した場合と同様の効果が得られる。ストライプ状の開口部の間隔は1μm~300μm程度が好ましく、10μm~200μm程度がさらに好ましい。 When the current collecting electrode 4 has a dense structure, a plurality of small holes are preferably formed in the current collecting electrode 4. Here, the plurality of small holes function as paths for the carrier transport material. That is, the carrier transport material contained in the charge transport layer 5 can move between the porous semiconductor layer of the photoelectric conversion layer 3 and the counter electrode 6 through the inside of the plurality of small holes formed in the current collecting electrode 4. . The diameter of the small holes is preferably about 0.1 μm to 100 μm, more preferably about 1 μm to 50 μm. The distance between the small holes is preferably about 1 μm to 200 μm, and more preferably about 10 μm to 300 μm. Such small holes can be formed by physical contact or laser processing. If it is difficult to form a small hole, a striped opening may be formed in the current collecting electrode 4. Thereby, the same effect as the case where a small hole is formed is acquired. The interval between the stripe-shaped openings is preferably about 1 μm to 300 μm, and more preferably about 10 μm to 200 μm.
 <電荷輸送層>
 本発明において、「電荷輸送層」とは、透光性支持体1と対極支持体7と封止部8とによって囲まれた空間の中にキャリア輸送材料が充填されて構成されたものである。キャリア輸送材料は、イオンを輸送できる導電性材料で構成されていれば良く、好適な材料として、たとえば液体電解質、固体電解質、ゲル電解質、または溶融塩ゲル電解質などが挙げられる。
<Charge transport layer>
In the present invention, the “charge transport layer” is configured by filling a space surrounded by the translucent support 1, the counter electrode support 7, and the sealing portion 8 with a carrier transport material. . The carrier transport material only needs to be composed of a conductive material capable of transporting ions, and suitable materials include, for example, a liquid electrolyte, a solid electrolyte, a gel electrolyte, or a molten salt gel electrolyte.
 液体電解質は、酸化還元種を含む液状物であればよく、一般に電池または太陽電池などにおいて使用できるものであれば特に限定されない。具体的には、液体電解質としては、酸化還元種と酸化還元種を溶解可能な溶剤とからなるもの、酸化還元種と酸化還元種を溶解可能な溶融塩とからなるもの、または酸化還元種と上記溶剤と上記溶融塩とからなるものが挙げられる。 The liquid electrolyte is not particularly limited as long as it is a liquid substance containing a redox species and can generally be used in a battery or a solar battery. Specifically, the liquid electrolyte includes a redox species and a solvent capable of dissolving the redox species, a redox species and a molten salt capable of dissolving the redox species, or a redox species. What consists of the said solvent and the said molten salt is mentioned.
 酸化還元種としては、たとえばI-/I3-系、Br2-/Br3-系、Fe2+/Fe3+系、またはキノン/ハイドロキノン系などが挙げられる。具体的には、酸化還元種は、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、またはヨウ化カルシウム(CaI2)などの金属ヨウ化物とヨウ素(I2)との組み合わせであっても良い。酸化還元種は、テトラエチルアンモニウムアイオダイド(TEAI)、テトラプロピルアンモニウムアイオダイド(TPAI)、テトラブチルアンモニウムアイオダイド(TBAI)、またはテトラヘキシルアンモニウムアイオダイド(THAI)などのテトラアルキルアンモニウム塩とヨウ素との組み合わせであっても良い。酸化還元種は、臭化リチウム(LiBr)、臭化ナトリウム(NaBr)、臭化カリウム(KBr)、または臭化カルシウム(CaBr2)などの金属臭化物と臭素との組み合わせであっても良い。これらの中でも、LiIとI2との組み合わせが特に好ましい。 Examples of the redox species include I / I 3− , Br 2− / Br 3 − , Fe 2+ / Fe 3+ , or quinone / hydroquinone. Specifically, the redox species include metal iodide such as lithium iodide (LiI), sodium iodide (NaI), potassium iodide (KI), or calcium iodide (CaI 2 ) and iodine (I 2 ). It may be a combination. The redox species includes tetraalkylammonium iodide (TEAI), tetrapropylammonium iodide (TPAI), tetrabutylammonium iodide (TBAI), or tetraalkylammonium iodide (THAI) and iodine It may be a combination. The redox species may be a combination of bromide with a metal bromide such as lithium bromide (LiBr), sodium bromide (NaBr), potassium bromide (KBr), or calcium bromide (CaBr 2 ). Among these, a combination of LiI and I 2 is particularly preferable.
 酸化還元種を溶解可能な溶媒としては、たとえば、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物、エタノールなどのアルコール類、水、または非プロトン極性物質などが挙げられる。これらの中でも、カーボネート化合物またはニトリル化合物が特に好ましい。これらの溶媒を2種類以上混合して用いることもできる。 Examples of the solvent capable of dissolving the redox species include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, and aprotic polar substances. Among these, carbonate compounds or nitrile compounds are particularly preferable. Two or more kinds of these solvents can be mixed and used.
 固体電解質は、電子、ホール、またはイオンを輸送できる導電性材料であり、光電変換素子の電解質として用いることができ、且つ流動性がないものであればよい。具体的には、固体電解質は、ポリカルバゾールなどのホール輸送材、テトラニトロフロオルレノンなどの電子輸送材、ポリロールなどの導電性ポリマー、液体電解質を高分子化合物により固体化した高分子電解質、ヨウ化銅、チオシアン酸銅などのp型半導体、または溶融塩を含む液体電解質を微粒子により固体化した電解質などが挙げられる。 The solid electrolyte is a conductive material that can transport electrons, holes, or ions, and may be any material that can be used as an electrolyte of a photoelectric conversion element and has no fluidity. Specifically, a solid electrolyte includes a hole transport material such as polycarbazole, an electron transport material such as tetranitrofluororenone, a conductive polymer such as polyroll, a polymer electrolyte obtained by solidifying a liquid electrolyte with a polymer compound, iodine Examples thereof include p-type semiconductors such as copper halide and copper thiocyanate, or electrolytes obtained by solidifying liquid electrolytes containing molten salts with fine particles.
 ゲル電解質は、通常、電解質とゲル化剤からなる。電解質は、たとえば上記液体電解質であっても良いし、上記固体電解質であっても良い。 Gel electrolyte usually consists of electrolyte and gelling agent. The electrolyte may be, for example, the liquid electrolyte or the solid electrolyte.
 ゲル化剤としては、たとえば、架橋ポリアクリル樹脂誘導体、架橋ポリアクリロニトリル誘導体、ポリアルキレンオキシド誘導体、シリコーン樹脂類、または側鎖に含窒素複素環式四級化合物塩構造を有するポリマーなどの高分子ゲル化剤などが挙げられる。 Examples of the gelling agent include polymer gels such as cross-linked polyacrylic resin derivatives, cross-linked polyacrylonitrile derivatives, polyalkylene oxide derivatives, silicone resins, or polymers having a nitrogen-containing heterocyclic quaternary compound salt structure in the side chain. And the like.
 溶融塩ゲル電解質は、通常、上記のようなゲル電解質と常温型溶融塩からなる。
 常温型溶融塩としては、たとえばピリジニウム塩類またはイミダゾリウム塩類などの含窒素複素環式四級アンモニウム塩類などが挙げられる。
The molten salt gel electrolyte is usually composed of the gel electrolyte as described above and a room temperature molten salt.
Examples of the room temperature molten salt include nitrogen-containing heterocyclic quaternary ammonium salts such as pyridinium salts and imidazolium salts.
 電荷輸送層は、必要に応じて、次に示す添加剤を含んでいても良い。添加剤としては、t-ブチルピリジン(TBP)などの含窒素芳香族化合物であっても良いし、ジメチルプロピルイミダゾールアイオダイド(DMPII)、メチルプロピルイミダゾールアイオダイド(MPII)、エチルメチルイミダゾールアイオダイド(EMII)、エチルイミダゾールアイオダイド(EII)、またはヘキシルメチルイミダゾールアイオダイド(HMII)などのイミダゾール塩であっても良い。 The charge transport layer may contain the following additives as required. The additive may be a nitrogen-containing aromatic compound such as t-butylpyridine (TBP), dimethylpropylimidazole iodide (DMPII), methylpropylimidazole iodide (MPII), ethylmethylimidazole iodide ( It may be an imidazole salt such as EMII), ethylimidazole iodide (EII), or hexylmethylimidazole iodide (HMII).
 電解質の濃度は、0.001~1.5モル/リットルの範囲が好ましく、0.01~0.7モル/リットルの範囲が特に好ましい。ただし、本発明に係る光電変換素子において受光面側に触媒層(対極6)がある場合には、入射光は、電荷輸送層5内の電解液を通って、光増感剤が吸着された多孔性半導体層に達する。これにより、キャリアが励起される。 The concentration of the electrolyte is preferably in the range of 0.001 to 1.5 mol / liter, particularly preferably in the range of 0.01 to 0.7 mol / liter. However, when the photoelectric conversion element according to the present invention has a catalyst layer (counter electrode 6) on the light receiving surface side, incident light passes through the electrolytic solution in the charge transport layer 5 and the photosensitizer is adsorbed. Reach the porous semiconductor layer. Thereby, a carrier is excited.
 <対極>
 対極6は、対極支持体7上に設けられており、電荷輸送層5に接している。対極6は、集電電極4とは反対側の極である。対極6を構成する材料は、集電電極4を構成する材料と同様であっても良いし、対極支持体7を受光面とするときには光透過性を有する材料からなることが好ましい。
<Counter electrode>
The counter electrode 6 is provided on the counter electrode support 7 and is in contact with the charge transport layer 5. The counter electrode 6 is a pole on the opposite side to the collecting electrode 4. The material constituting the counter electrode 6 may be the same as the material constituting the current collecting electrode 4, or is preferably made of a light transmissive material when the counter electrode support 7 is a light receiving surface.
 また、対極6は、触媒層と導電層との積層体であることが好ましい。ここで、触媒層は、電荷輸送層5と導電層との間に設けられていることが好ましく、電解質の酸化還元反応を活性化させる働きを有することが好ましく、たとえば、白金、カーボンブラック、ケッチェンブラック、カーボンナノチューブ、またはフラーレンなどからなることが好ましい。なお、このように触媒層が導電性を有する場合には、対極6は触媒層のみで構成されていても良い。 The counter electrode 6 is preferably a laminate of a catalyst layer and a conductive layer. Here, the catalyst layer is preferably provided between the charge transport layer 5 and the conductive layer, and preferably has a function of activating the oxidation-reduction reaction of the electrolyte, such as platinum, carbon black, kettle. It is preferably made of chain black, carbon nanotube, fullerene or the like. In addition, when the catalyst layer has conductivity as described above, the counter electrode 6 may be formed only of the catalyst layer.
 対極6の形成方法は、集電電極4の形成方法と同様であれば良い。対極6として白金を用いる場合には、スパッタ法、塩化白金酸の熱分解、または電着などの公知の方法により対極6を対極支持体7上に形成できる。対極6の膜厚は、特に限定されず、たとえば0.5nm~1000nm程度が適当である。 The method for forming the counter electrode 6 may be the same as the method for forming the collecting electrode 4. When platinum is used as the counter electrode 6, the counter electrode 6 can be formed on the counter electrode support 7 by a known method such as sputtering, thermal decomposition of chloroplatinic acid, or electrodeposition. The film thickness of the counter electrode 6 is not particularly limited, and for example, about 0.5 nm to 1000 nm is appropriate.
 対極6としてはカーボンブラック、ケッチェンブラック、カーボンナノチューブ、またはフラーレンなどのカーボンを用いる場合には、溶剤に分散してペースト状にしたカーボンをスクリーン印刷法などにより対極支持体7上に塗布するという方法を用いることができる。 When carbon such as carbon black, ketjen black, carbon nanotube, or fullerene is used as the counter electrode 6, carbon dispersed in a solvent and pasted is applied onto the counter electrode support 7 by a screen printing method or the like. The method can be used.
 <対極支持体>
 対極支持体7は、対極6を支持する。対極支持体7を構成する材料は、一般に光電変換素子の支持体に使用可能で、かつ本発明の効果を発揮し得る材料であれば、特に限定されない。対極支持体7は、受光面として使用される場合には光透過性が必要となるので、上記<透光性支持体>で列挙した何れかの材料で構成されていることが好ましい。しかし、対極支持体7は、基本的には、光透過性を有していても良いし、光透過性を有していなくても良い。対極支持体7は、光透過性を必要としない場合には、たとえば金属などの無機材料からなる板または膜であっても良いし、プラスチックなどの有機材料からなる板または膜であっても良い。
<Counter electrode support>
The counter electrode support 7 supports the counter electrode 6. The material which comprises the counter electrode support body 7 will not be specifically limited if it is a material which can generally be used for the support body of a photoelectric conversion element, and can exhibit the effect of this invention. When the counter electrode support 7 is used as a light receiving surface, it needs to be light transmissive. Therefore, the counter electrode support 7 is preferably made of any of the materials listed in the above <Translucent support>. However, the counter electrode support 7 may basically have light transmission properties or may not have light transmission properties. The counter electrode support 7 may be, for example, a plate or a film made of an inorganic material such as a metal, or a plate or a film made of an organic material such as a plastic when light transparency is not required. .
 透光性支持体1と同じく、完成した光電変換素子を他の構造体に取り付けるときに、対極支持体7を利用できる。すなわち、金属加工部品とねじとを用いて、対極支持体7の周辺部を他の支持体に容易に取り付けることができる。 As with the translucent support 1, the counter electrode support 7 can be used when the completed photoelectric conversion element is attached to another structure. That is, the peripheral part of the counter electrode support body 7 can be easily attached to another support body using a metal processed part and a screw.
 対極支持体7は、その厚みに特に限定されないが、厚みが0.2~5mm程度のものが好ましい。 The thickness of the counter electrode support 7 is not particularly limited, but is preferably about 0.2 to 5 mm.
 <封止部>
 封止部8は、透光性支持体1と対極支持体7とを保持し、電荷輸送層5の漏えい防止機能を有し、落下物または応力(衝撃)を吸収する機能を有し、長期にわたる使用時において透光性支持体1および対極支持体7のそれぞれに作用するたわみなどを吸収する機能を有する。
<Sealing part>
The sealing portion 8 holds the translucent support 1 and the counter electrode support 7, has a function of preventing leakage of the charge transport layer 5, has a function of absorbing falling objects or stress (impact), and has a long-term It has a function of absorbing the deflection acting on each of the translucent support 1 and the counter electrode support 7 during the use.
 封止部8を構成する材料は、一般に光電変換素子に使用可能で、かつ上述の機能を発揮し得る材料であれば、特に限定されない。このような材料としては、紫外線硬化性樹脂または熱硬化性樹脂などが挙げられ、具体的にはシリコーン樹脂、エポキシ樹脂、ポリイソブチレン系樹脂、ホットメルト樹脂、またはガラスフリットなどが挙げられる。これらを単独で用いて封止部8を形成しても良いし、これら2種類以上の材料を2層以上に積層して封止部8を形成しても良い。 The material which comprises the sealing part 8 will not be specifically limited if it is a material which can generally be used for a photoelectric conversion element, and can exhibit the above-mentioned function. Examples of such a material include an ultraviolet curable resin or a thermosetting resin, and specifically include a silicone resin, an epoxy resin, a polyisobutylene resin, a hot melt resin, or a glass frit. The sealing part 8 may be formed by using these alone, or the sealing part 8 may be formed by laminating two or more kinds of these materials in two or more layers.
 紫外線硬化性樹脂としては、スリーボンド社製、型番:31X-101を用いることができる。熱硬化性樹脂としては、スリーボンド社製、型番:31X-088、または一般に市販されているエポキシ樹脂などを用いることができる。 As the ultraviolet curable resin, model number: 31X-101 manufactured by Three Bond Co., Ltd. can be used. As the thermosetting resin, a model manufactured by Three Bond Co., Ltd., model number: 31X-088, or a commercially available epoxy resin can be used.
 封止部8を構成する材料としてシリコーン樹脂、エポキシ樹脂、またはガラスフリットを使用する場合には、封止部8のパターンは、ディスペンサーを用いて形成できる。封止部8を構成する材料としてホットメルト樹脂を使用する場合には、封止部8のパターンは、シート状のホットメルト樹脂にパターニングした穴を開けることにより形成できる。 When silicone resin, epoxy resin, or glass frit is used as a material constituting the sealing portion 8, the pattern of the sealing portion 8 can be formed using a dispenser. In the case where a hot melt resin is used as a material constituting the sealing portion 8, the pattern of the sealing portion 8 can be formed by making a hole patterned in the sheet-like hot melt resin.
 <色素増感型太陽電池>
 本発明に係る色素増感型太陽電池は、本発明に係る光電変換素子を含む電極と、対電極と、本発明に係る光電変換素子を含む電極と対電極との間に設けられたキャリア輸送層とを備えている。よって、本発明では、Jscの増加が期待された色素増感型太陽電池を提供できる。
<Dye-sensitized solar cell>
The dye-sensitized solar cell according to the present invention includes an electrode including the photoelectric conversion element according to the present invention, a counter electrode, and carrier transport provided between the electrode including the photoelectric conversion element according to the present invention and the counter electrode. With layers. Therefore, the present invention can provide a dye-sensitized solar cell expected to increase Jsc.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下において、特に断りのない限り、各層の膜厚は表面粗さ形状測定機(株式会社東京精密製、商品名:サーフコム1400A)を用いて測定され、シート抵抗値はシート抵抗測定装置(ナプソン株式会社製、商品名RT-3000/RG-80N)を用いて測定され、ヘイズ率はヘイズメータ(スガ試験機株式会社製、商品名:HZ-1)を用いて測定され、屈折率値はエリプソメータ(大塚電子株式会社製、商品名:FE-5000)を用いて測定された。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In the following, unless otherwise specified, the film thickness of each layer is measured using a surface roughness shape measuring instrument (trade name: Surfcom 1400A, manufactured by Tokyo Seimitsu Co., Ltd.), and the sheet resistance value is measured by a sheet resistance measuring device ( Measured using a product name RT-3000 / RG-80N manufactured by Napson Co., Ltd., and haze ratio was measured using a haze meter (trade name: HZ-1 manufactured by Suga Test Instruments Co., Ltd.). The measurement was performed using an ellipsometer (trade name: FE-5000, manufactured by Otsuka Electronics Co., Ltd.).
 <実施例1>
 図1に示される光電変換素子を製造した。透光性支持体1として、51mm×70mm×厚さ1mmのガラス基板(コーニング社7059)を用意した。このガラス基板の屈折率値は1.53であった。
<Example 1>
The photoelectric conversion element shown in FIG. 1 was manufactured. A glass substrate (Corning 7059) of 51 mm × 70 mm × thickness 1 mm was prepared as the translucent support 1. The refractive index value of this glass substrate was 1.53.
 <絶縁層の形成>
 5mm×5mmの開口部を複数有するメタルマスクを用意し、このメタルマスクをガラス基板の上に設置した。電子ビーム蒸着機(アルバック製 ei-5)を用いて、Al23(京都薄膜材料研究所製、屈折率値が1.63)をターゲットとし、蒸着速度を1Å/sとして、絶縁層2をガラス基板上に形成した。得られた絶縁層2の厚みは1nmであり、そのシート抵抗値は10MΩ/sq以上(シート抵抗測定装置の測定限界を超えた)であった。絶縁層2がガラス基板上に形成されてなる支持基材のヘイズ率は15%であった。
<Formation of insulating layer>
A metal mask having a plurality of openings of 5 mm × 5 mm was prepared, and this metal mask was placed on a glass substrate. Using an electron beam vapor deposition machine (ULBAC ei-5), Al 2 O 3 (manufactured by Kyoto Thin Film Materials Laboratory, with a refractive index value of 1.63) is used as the target, the vapor deposition rate is 1 Å / s, and the insulating layer 2 Was formed on a glass substrate. The thickness of the obtained insulating layer 2 was 1 nm, and the sheet resistance value was 10 MΩ / sq or more (exceeding the measurement limit of the sheet resistance measuring device). The haze rate of the support base material in which the insulating layer 2 was formed on the glass substrate was 15%.
 <封止部の形成>
 絶縁層を形成したガラス基板の上であって多孔性半導体層が形成される箇所の周囲に、開口部の幅が0.5mmであるスクリーン版を設置した。スクリーン印刷機(ニューロング精密工業株式会社製、型式:LS-34TVA)を用いてガラスフリットをガラス基板の上に塗布し、室温で1時間のレべリングを行った。得られた塗布膜を80℃で20分予備乾燥した後、450度で一時間焼成した。これにより、封止部8を形成した。
<Formation of sealing part>
A screen plate having an opening width of 0.5 mm was placed on the glass substrate on which the insulating layer was formed and around the portion where the porous semiconductor layer was formed. A glass frit was applied on a glass substrate using a screen printing machine (Neurong Seimitsu Kogyo Co., Ltd., model: LS-34TVA), and leveling was performed for 1 hour at room temperature. The obtained coating film was pre-dried at 80 ° C. for 20 minutes and then baked at 450 ° C. for 1 hour. Thereby, the sealing part 8 was formed.
 <多孔性半導体層の形成>
 焼成後の多孔性半導体層の大きさが5mm×5mm×12μmとなるように、1cm間隔でスクリーン版をガラス基板の上に設置した。スクリーン印刷機(ニューロング精密工業株式会社製、型式:LS-34TVA)を用いて酸化チタンペースト(Solaronix社製、商品名:Ti-Nanoxide D/SP、平均粒径13nm)を絶縁層2上に塗布し、室温で1時間のレベリングを行った。
<Formation of porous semiconductor layer>
Screen plates were placed on the glass substrate at 1 cm intervals so that the size of the fired porous semiconductor layer was 5 mm × 5 mm × 12 μm. Using a screen printing machine (Neurong Seimitsu Kogyo Co., Ltd., model: LS-34TVA), a titanium oxide paste (Solaronix, trade name: Ti-Nanoxide D / SP, average particle size 13 nm) is applied on the insulating layer 2. It was applied and leveled for 1 hour at room temperature.
 得られた塗膜を80℃で20分間予備乾燥した後450℃で1時間焼成し、この一連の工程を2回繰り返した。これにより、多孔性半導体層(酸化チタン膜)3を形成した。酸化チタン膜の屈折率値は、2.52であった。 The obtained coating film was pre-dried at 80 ° C. for 20 minutes and then baked at 450 ° C. for 1 hour, and this series of steps was repeated twice. Thereby, a porous semiconductor layer (titanium oxide film) 3 was formed. The refractive index value of the titanium oxide film was 2.52.
 <集電電極の形成>
 6mm×10mmの開口部が形成されたメタルマスクを用意し、多孔性半導体層の上面がメタルマスクの開口部から露出するように上記メタルマスクをガラス基板の上に設置した。電子ビーム蒸着器ei-5(アルバック株式会社製)を用いて、ターゲットをチタンとし、蒸着速度を5Å/Sとして、チタンからなる集電電極4を形成した。集電電極4の膜厚は約500nmであった。
<Formation of current collecting electrode>
A metal mask having an opening of 6 mm × 10 mm was prepared, and the metal mask was placed on the glass substrate so that the upper surface of the porous semiconductor layer was exposed from the opening of the metal mask. Using an electron beam vapor deposition device ei-5 (manufactured by ULVAC, Inc.), a current collector electrode 4 made of titanium was formed with a target of titanium and a vapor deposition rate of 5 Å / S. The film thickness of the collector electrode 4 was about 500 nm.
 <光増感剤の吸着>
 濃度4×10-4モル/リットルになるように光増感剤(Solaronix社製、商品名:Ruthenium620-1H3TBA)をアセトニトリル(Aldrich Chemical Company製)とt-ブチルアルコール(Aldrich Chemical Company製)との混合溶剤(体積比1:1)に溶解させて、色素吸着用溶液を得た。
<Adsorption of photosensitizer>
A photosensitizer (manufactured by Solaronix, trade name: Ruthenium 620-1H3TBA) was mixed with acetonitrile (manufactured by Aldrich Chemical Company) and t-butyl alcohol (manufactured by Aldrich Chemical Company) to a concentration of 4 × 10 −4 mol / liter. It was dissolved in a mixed solvent (volume ratio 1: 1) to obtain a dye adsorption solution.
 上記<集電電極の形成>で得られたガラス基板を所望の大きさに切断した。このガラス基板を色素吸着用溶液に40℃の温度条件で20時間浸漬し、光増感剤を多孔性半導体層に吸着させた。得られた積層体をエタノール(Aldrich Chemical Company製)で洗浄し、約80℃で約10分間乾燥させた。 The glass substrate obtained in the above <formation of current collecting electrode> was cut into a desired size. This glass substrate was immersed in a dye adsorption solution at 40 ° C. for 20 hours to adsorb the photosensitizer to the porous semiconductor layer. The obtained laminate was washed with ethanol (manufactured by Aldrich Chemical Company) and dried at about 80 ° C. for about 10 minutes.
 <対極および対極支持体の形成>
 対極支持体7として、SnO2膜が形成されたガラス板(日本板硝子社製)を用意した。このガラス板の表面に白金を蒸着させて、膜厚が300nmの白金膜からなる対極6を形成した。
<Formation of counter electrode and counter electrode support>
A glass plate (manufactured by Nippon Sheet Glass Co., Ltd.) on which an SnO 2 film was formed was prepared as the counter electrode support 7. Platinum was vapor-deposited on the surface of the glass plate to form a counter electrode 6 made of a platinum film having a thickness of 300 nm.
 紫外線硬化剤(スリーボンド社製、型番:31X-101)を先に形成した封止部8の上に塗布し、この紫外線硬化剤を介して対極6と集電電極4とを重ね合わせてから紫外線を照射した。 An ultraviolet curing agent (manufactured by ThreeBond Co., Ltd., model number: 31X-101) is applied on the previously formed sealing portion 8, and the counter electrode 6 and the collecting electrode 4 are overlapped with each other via the ultraviolet curing agent, and then ultraviolet rays are applied. Was irradiated.
 <電荷輸送層の調製>
 溶剤としてのアセトニトリルに、濃度が0.1モル/リットルとなるようにLiI(酸化還元種、Aldrich Chemical Company製)を溶解させ、濃度が0.01モル/リットルとなるようにI2(酸化還元種、東京化成工業株式会社製)を溶解させた。さらに、上記アセトニトリルに、濃度0.5モル/リットルとなるようにt-ブチルピリジン(添加剤、TBP(4-tert-butylpyridine)、Aldrich Chemical Company製)を溶解させ、濃度0.6モル/リットルとなるようにジメチルプロピルイミダゾールアイオダイド(DMPII、四国化成工業株式会社製)を溶解させた。これにより、電解質を得た。
<Preparation of charge transport layer>
LiI (redox species, manufactured by Aldrich Chemical Company) is dissolved in acetonitrile as a solvent so that the concentration becomes 0.1 mol / liter, and I2 (redox species) so that the concentration becomes 0.01 mol / liter. , Manufactured by Tokyo Chemical Industry Co., Ltd.). Further, t-butylpyridine (additive, TBP (4-tert-butylpyridine), manufactured by Aldrich Chemical Company) was dissolved in acetonitrile so as to have a concentration of 0.5 mol / liter, and the concentration was 0.6 mol / liter. Dimethylpropylimidazole iodide (DMPII, manufactured by Shikoku Chemicals Co., Ltd.) was dissolved so that Thereby, an electrolyte was obtained.
 対極6および対極支持体7に予め空けておいた電解液注入用孔から上記電解質を注入してから、紫外線硬化性樹脂(スリーボンド社製、型番:31X-101 229)を用いて電解液注入用孔を封止した。これにより、本実施例1における光電変換素子を得た。 After injecting the electrolyte from the electrolyte injection hole previously formed in the counter electrode 6 and the counter electrode support 7, the electrolyte solution injection is performed using an ultraviolet curable resin (manufactured by ThreeBond, model number: 31X-101, 229). The hole was sealed. Thereby, the photoelectric conversion element in the present Example 1 was obtained.
 得られた光電変換素子に1kW/m2の強度の光(AM1.5ソーラーシミュレータ)を照射して、光電変換素子の特性を測定した。短絡電流密度18mA/cm2を得た。 The obtained photoelectric conversion element was irradiated with light having an intensity of 1 kW / m 2 (AM1.5 solar simulator), and the characteristics of the photoelectric conversion element were measured. A short circuit current density of 18 mA / cm 2 was obtained.
 <実施例2>
 Y23をターゲットとし蒸着速度を2Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は1.87であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は12%であった。
<Example 2>
A photoelectric conversion element was produced in the same manner as in Example 1 except that the insulating layer 2 was formed using Y 2 O 3 as a target and a deposition rate of 2 Å / s. The refractive index value of the insulating layer 2 was 1.87, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 12%.
 <実施例3>
 HfOをターゲットとし蒸着速度を3Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は1.95であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は10%であった。
<Example 3>
A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using HfO as a target and a deposition rate of 3 Å / s. The refractive index value of the insulating layer 2 was 1.95, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 10%.
 <実施例4>
 MgOをターゲットとし蒸着速度を3Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は1.74であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は10%であった。
<Example 4>
A photoelectric conversion element was produced in the same manner as in Example 1 except that the insulating layer 2 was formed using MgO as a target and a deposition rate of 3 Å / s. The refractive index value of the insulating layer 2 was 1.74, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 10%.
 <実施例5>
 CeO2をターゲットとし蒸着速度を2Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.2であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は13%であった。
<Example 5>
A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using CeO 2 as a target and a deposition rate of 2 Å / s. The refractive index value of the insulating layer 2 was 2.2, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 13%.
 <実施例6>
 WO3をターゲットとし蒸着速度を2Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.2であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は15%であった。
<Example 6>
A photoelectric conversion element was produced in the same manner as in Example 1 except that the insulating layer 2 was formed using WO 3 as a target and a deposition rate of 2 Å / s. The refractive index value of the insulating layer 2 was 2.2, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 15%.
 <実施例7>
 Ti35をターゲットとし蒸着速度を2Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.3であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は15%であった。
<Example 7>
A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using Ti 3 O 5 as a target and a deposition rate of 2 Å / s. The refractive index value of the insulating layer 2 was 2.3, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 15%.
 <実施例8>
 ZrO2をターゲットとし蒸着速度を2Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.05であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は13%であった。
<Example 8>
A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using ZrO 2 as a target and a deposition rate of 2 Å / s. The refractive index value of the insulating layer 2 was 2.05, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 13%.
 <実施例9>
 SnO2をターゲットとし蒸着速度を2Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.0であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は15%であった。
<Example 9>
A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using SnO 2 as a target and a deposition rate of 2 Å / s. The refractive index value of the insulating layer 2 was 2.0, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 15%.
 <実施例10>
 ZnOをターゲットとし蒸着速度を2Å/sとして絶縁層2を形成したこと、および成膜装置としてスパッタリング装置を使用したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.1であり、そのシート抵抗値は10MΩ/sq以上であり、その膜厚は10nmであった。支持基材のヘイズ率は10%であった。
<Example 10>
A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using ZnO as the target and the deposition rate was 2 Å / s, and that the sputtering apparatus was used as the film forming apparatus. The refractive index value of the insulating layer 2 was 2.1, the sheet resistance value was 10 MΩ / sq or more, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 10%.
 <実施例11>
 絶縁層2を形成するときの蒸着速度を2Å/sとしたこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は1.63であり、そのシート抵抗値は10MΩ/sq以上であり、その膜厚は0.5μmであった。支持基材のヘイズ率は18%であった。
<Example 11>
A photoelectric conversion element was produced in the same manner as in Example 1 except that the vapor deposition rate when forming the insulating layer 2 was 2 Å / s. The refractive index value of the insulating layer 2 was 1.63, the sheet resistance value was 10 MΩ / sq or more, and the film thickness was 0.5 μm. The haze ratio of the supporting substrate was 18%.
 <実施例12>
 フッ化ランタン(LaF3)をターゲットとし蒸着速度を2Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は1.59であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は10%であった。
<Example 12>
A photoelectric conversion element was produced in the same manner as in Example 1 except that the insulating layer 2 was formed using lanthanum fluoride (LaF 3 ) as a target and a deposition rate of 2 Å / s. The refractive index value of the insulating layer 2 was 1.59, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 10%.
 <実施例13>
 フッ化セリウム(CeF3)をターゲットとし蒸着速度を2Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は1.63であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は10%であった。
<Example 13>
A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using cerium fluoride (CeF 3 ) as a target and a deposition rate of 2 Å / s. The refractive index value of the insulating layer 2 was 1.63, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 10%.
 <実施例14>
 フッ化ネオジム(NdF3)をターゲットとし蒸着速度を2Å/sとして絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は1.61であり、そのシート抵抗値は10MΩ/sq以上であった。支持基材のヘイズ率は10%であった。
<Example 14>
A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed using neodymium fluoride (NdF 3 ) as a target and a deposition rate of 2 Å / s. The refractive index value of the insulating layer 2 was 1.61, and the sheet resistance value was 10 MΩ / sq or more. The haze ratio of the supporting substrate was 10%.
 <実施例15>
 ZnOおよびAlをターゲットとし、蒸着速度を3Å/sとし、且つシート抵抗値が10000Ω/sqとなるように調整して、絶縁層2をスパッタリング装置で形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.1であり、その膜厚は10nmであった。支持基材のヘイズ率は10%であった。
<Example 15>
Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 3 Å / s, and the sheet resistance value was adjusted to 10,000 Ω / sq, the same as in Example 1 above. Thus, a photoelectric conversion element was manufactured. The refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 10%.
 <実施例16>
 ZnOおよびAlをターゲットとし、蒸着速度を4Å/sとし、且つシート抵抗値が1000Ω/sqとなるように調整して、絶縁層2をスパッタリング装置で形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.1であり、その膜厚は10nmであった。支持基材のヘイズ率は10%であった。
<Example 16>
Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 4 Å / s, and the sheet resistance value was adjusted to 1000 Ω / sq. Thus, a photoelectric conversion element was manufactured. The refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 10%.
 <実施例17>
 ZnOおよびAlをターゲットとし、蒸着速度を5Å/sとし、且つシート抵抗値が500Ω/sqとなるように調整して、絶縁層2をスパッタリング装置で形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.1であり、その膜厚は10nmであった。支持基材のヘイズ率は12%であった。
<Example 17>
Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 5 Å / s, and the sheet resistance value was adjusted to 500 Ω / sq, the same as in Example 1 above. Thus, a photoelectric conversion element was manufactured. The refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 12%.
 <実施例18>
 ZnOおよびAlをターゲットとし、蒸着速度を5Å/sとし、且つシート抵抗値が300Ω/sqとなるように調整して、絶縁層2をスパッタリング装置で形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.1であり、その膜厚は10nmであった。支持基材のヘイズ率は12%であった。
<Example 18>
Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 5 Å / s, and the sheet resistance value was adjusted to 300 Ω / sq. Thus, a photoelectric conversion element was manufactured. The refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 12%.
 <実施例19>
 ZnOおよびAlをターゲットとし、蒸着速度を5Å/sとし、且つシート抵抗値が100Ω/sqとなるように調整して、絶縁層2をスパッタリング装置で形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.1であり、その膜厚は10nmであった。支持基材のヘイズ率は12%であった。
<Example 19>
Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 5 Å / s, and the sheet resistance value was adjusted to 100 Ω / sq, the same as in Example 1 above. Thus, a photoelectric conversion element was manufactured. The refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 12%.
 <実施例20>
 SnO2およびSb23(SnO2:Sb23=95:5(質量比))をターゲットとし、蒸着速度を3Å/sとし、且つシート抵抗値が1000Ω/sqとなるように調整して、絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.0であり、その膜厚は10nmであった。支持基材のヘイズ率は12%であった。
<Example 20>
The target was SnO 2 and Sb 2 O 3 (SnO 2 : Sb 2 O 3 = 95: 5 (mass ratio)), the deposition rate was adjusted to 3 s / s, and the sheet resistance value was adjusted to 1000 Ω / sq. A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed. The refractive index value of the insulating layer 2 was 2.0, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 12%.
 <実施例21>
 SnO2およびSb23(SnO2:Sb23=93:7(質量比))をターゲットとし、蒸着速度を3Å/sとし、且つシート抵抗値が500Ω/sqとなるように調整して、絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.0であり、その膜厚は10nmであった。支持基材のヘイズ率は11%であった。
<Example 21>
The target was SnO 2 and Sb 2 O 3 (SnO 2 : Sb 2 O 3 = 93: 7 (mass ratio)), the deposition rate was adjusted to 3 s / s, and the sheet resistance value was adjusted to 500 Ω / sq. A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed. The refractive index value of the insulating layer 2 was 2.0, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 11%.
 <実施例22>
 SnO2およびSb23(SnO2:Sb23=92:8(質量比))をターゲットとし、蒸着速度を3Å/sとし、且つシート抵抗値が100Ω/sqとなるように調整して、絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.0であり、その膜厚は10nmであった。支持基材のヘイズ率は11%であった。
<Example 22>
The target was SnO 2 and Sb 2 O 3 (SnO 2 : Sb 2 O 3 = 92: 8 (mass ratio)), the deposition rate was 3 Å / s, and the sheet resistance value was adjusted to 100 Ω / sq. A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed. The refractive index value of the insulating layer 2 was 2.0, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 11%.
 <比較例1>
 絶縁層2を形成しなかったこと以外は上記実施例1と同様にして、光電変換素子を製造した。具体的には、図4に示すように、透明導電膜42が形成された透光性支持体41上に光電変換層43を形成した。次に、対極46が形成された対極支持体47を用意し、封止部48を用いて透光性支持体41と対極支持体47とを支持した。その後、対極46および対極支持体47に予め形成された注入孔(不図示)から電解質を注入して、電荷輸送層45を形成した。図4は、比較例1における光電変換素子の概略断面図である。
<Comparative Example 1>
A photoelectric conversion element was produced in the same manner as in Example 1 except that the insulating layer 2 was not formed. Specifically, as shown in FIG. 4, the photoelectric conversion layer 43 was formed on the translucent support body 41 in which the transparent conductive film 42 was formed. Next, a counter electrode support 47 on which the counter electrode 46 was formed was prepared, and the translucent support 41 and the counter electrode support 47 were supported using the sealing portion 48. Thereafter, the charge transport layer 45 was formed by injecting an electrolyte from an injection hole (not shown) formed in the counter electrode 46 and the counter electrode support 47 in advance. FIG. 4 is a schematic cross-sectional view of the photoelectric conversion element in Comparative Example 1.
 <比較例2>
 ZnOおよびAlをターゲットとし、蒸着速度を7Å/sとし、且つシート抵抗値が10Ω/sqとなるように調整して、絶縁層2をスパッタリング装置で形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.1であり、その膜厚は10nmであった。支持基材のヘイズ率は10%であった。
<Comparative example 2>
Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 7 速度 / s, and the sheet resistance value was adjusted to 10 Ω / sq. Thus, a photoelectric conversion element was manufactured. The refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 10%.
 <比較例3>
 ZnOおよびAlをターゲットとし、蒸着速度を7Å/sとし、且つシート抵抗値が80Ω/sqとなるように調整して、絶縁層2をスパッタリング装置で形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.1であり、その膜厚は10nmであった。支持基材のヘイズ率は12%であった。
<Comparative Example 3>
Except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 7 Å / s, and the sheet resistance value was adjusted to 80 Ω / sq. Thus, a photoelectric conversion element was manufactured. The refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 12%.
 <比較例4>
 ZnOおよびAlをターゲットとし、蒸着速度を7Å/sとし、且つシート抵抗値が50Ω/sqとなるように調整して、絶縁層2をスパッタリング装置で形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.1であり、その膜厚は10nmであった。支持基材のヘイズ率は10%であった。
<Comparative Example 4>
The same as in Example 1 except that the insulating layer 2 was formed by a sputtering apparatus with ZnO and Al as targets, the deposition rate was adjusted to 7 Å / s, and the sheet resistance value was adjusted to 50 Ω / sq. Thus, a photoelectric conversion element was manufactured. The refractive index value of the insulating layer 2 was 2.1, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 10%.
 <比較例5>
 SnO2およびSb23(SnO2:Sb23=90:10(質量比))をターゲットとし、蒸着速度を5Å/sとし、且つシート抵抗値が90Ω/sqとなるように調整して、絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.0であり、その膜厚は10nmであった。支持基材のヘイズ率は10%であった。
<Comparative Example 5>
The target was SnO 2 and Sb 2 O 3 (SnO 2 : Sb 2 O 3 = 90: 10 (mass ratio)), the deposition rate was adjusted to 5 Å / s, and the sheet resistance value was adjusted to 90 Ω / sq. A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed. The refractive index value of the insulating layer 2 was 2.0, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 10%.
 <比較例6>
 SnO2およびSb23(SnO2:Sb23=88:12(質量比))をターゲットとし、蒸着速度を5Å/sとし、且つシート抵抗値が50Ω/sqとなるように調整して、絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.0であり、その膜厚は10nmであった。支持基材のヘイズ率は10%であった。
<Comparative Example 6>
The target is SnO 2 and Sb 2 O 3 (SnO 2 : Sb 2 O 3 = 88: 12 (mass ratio)), the deposition rate is 5 Å / s, and the sheet resistance value is adjusted to 50 Ω / sq. A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed. The refractive index value of the insulating layer 2 was 2.0, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 10%.
 <比較例7>
 SnO2およびSb23(SnO2:Sb23=87:13(質量比))をターゲットとし、蒸着速度を5Å/sとし、且つシート抵抗値が30Ω/sqとなるように調整して、絶縁層2を形成したこと以外は上記実施例1と同様にして、光電変換素子を製造した。絶縁層2の屈折率値は2.0であり、その膜厚は10nmであった。支持基材のヘイズ率は10%であった。
<Comparative Example 7>
The target is SnO 2 and Sb 2 O 3 (SnO 2 : Sb 2 O 3 = 87: 13 (mass ratio)), the deposition rate is 5 Å / s, and the sheet resistance value is adjusted to 30 Ω / sq. A photoelectric conversion element was manufactured in the same manner as in Example 1 except that the insulating layer 2 was formed. The refractive index value of the insulating layer 2 was 2.0, and the film thickness was 10 nm. The haze ratio of the supporting substrate was 10%.
 実施例1~22および比較例1~7の結果を表1~表2に示す。実施例1~22、比較例2~7の結果を図3に示す。図3は、シート抵抗値とJscとの関係を示すグラフである。 Tables 1 and 2 show the results of Examples 1 to 22 and Comparative Examples 1 to 7. The results of Examples 1 to 22 and Comparative Examples 2 to 7 are shown in FIG. FIG. 3 is a graph showing the relationship between the sheet resistance value and Jsc.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~22の結果と比較例1の結果とから、透光性支持体よりも大きく多孔性半導体層よりも小さな屈折率を有する絶縁層を透光性支持体と光電変換層との間に設けることにより、Jscが増加することが示された。 From the results of Examples 1 to 22 and the result of Comparative Example 1, an insulating layer having a refractive index larger than that of the translucent support and smaller than that of the porous semiconductor layer is formed between the translucent support and the photoelectric conversion layer. It was shown that Jsc increases when it is provided.
 実施例15~19の結果と比較例3~4の結果とから、および20~22の結果と比較例5~7の結果とから、絶縁層のシート抵抗値を100Ω/sq以上とすることによりJscが劇的に増加することが示された。 From the results of Examples 15 to 19 and the results of Comparative Examples 3 to 4, and from the results of 20 to 22 and the results of Comparative Examples 5 to 7, the sheet resistance value of the insulating layer was set to 100 Ω / sq or more. Jsc was shown to increase dramatically.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 透光性支持体、2 絶縁層、3 光電変換層、4 集電電極、5 電荷輸送層、6 対極、7 対極支持体、8 封止部、11 支持基材、22 絶縁層、31 透光性支持体、41 透光性支持体、42 透明導電膜、43 光電変換層、45 電荷輸送層、46 対極、47 対極支持体、48封止部。 DESCRIPTION OF SYMBOLS 1 Translucent support body, 2 insulation layer, 3 photoelectric conversion layer, 4 current collection electrode, 5 charge transport layer, 6 counter electrode, 7 counter electrode support body, 8 sealing part, 11 support base material, 22 insulation layer, 31 transparency 41, translucent support, 42 transparent conductive film, 43 photoelectric conversion layer, 45 charge transport layer, 46 counter electrode, 47 counter electrode support, 48 sealing part.

Claims (9)

  1.  集電電極を支持する透光性支持体の上に、多孔性半導体層を有する光電変換層と、前記光電変換層に接する前記集電電極と、電荷輸送層と、対極と、前記対極を支持する対極支持体とが順に設けられた光電変換素子であって、
     前記透光性支持体と前記光電変換層との間に設けられ、前記透光性支持体よりも大きく且つ前記多孔性半導体層よりも小さな屈折率値を有し、100Ω/sq以上のシート抵抗値を有する絶縁層を備えている光電変換素子。
    On the translucent support that supports the collector electrode, the photoelectric conversion layer having a porous semiconductor layer, the collector electrode in contact with the photoelectric conversion layer, the charge transport layer, the counter electrode, and the counter electrode are supported. A photoelectric conversion element provided with a counter electrode support in order,
    A sheet resistance which is provided between the translucent support and the photoelectric conversion layer, has a refractive index value larger than the translucent support and smaller than the porous semiconductor layer, and is 100Ω / sq or more. A photoelectric conversion element including an insulating layer having a value.
  2.  前記絶縁層のシート抵抗値は、1000Ω/sq以上である請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein a sheet resistance value of the insulating layer is 1000 Ω / sq or more.
  3.  前記絶縁層の屈折率値は、1.5よりも大きく2.52よりも小さい請求項1または2に記載の光電変換素子。 The photoelectric conversion element according to claim 1 or 2, wherein a refractive index value of the insulating layer is larger than 1.5 and smaller than 2.52.
  4.  前記絶縁層は、酸化物材料およびフッ化物材料のうちの少なくとも一つを含む請求項1~3のいずれかに記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 3, wherein the insulating layer includes at least one of an oxide material and a fluoride material.
  5.  前記絶縁層は、酸化アルミニウム、酸化セリウム、酸化ハフニウム、酸化マグネシウム、酸化イットリウム、五酸化チタン、酸化タングステン、酸化亜鉛、酸化ジルコニウム、酸化すず、フッ化ランタン、フッ化セリウム、およびフッ化ネオジムのうちの少なくとも一つを含む請求項4に記載の光電変換素子。 The insulating layer is made of aluminum oxide, cerium oxide, hafnium oxide, magnesium oxide, yttrium oxide, titanium pentoxide, tungsten oxide, zinc oxide, zirconium oxide, tin oxide, lanthanum fluoride, cerium fluoride, and neodymium fluoride. The photoelectric conversion element of Claim 4 containing at least one of these.
  6.  前記絶縁層は、1nm以上0.5μm以下の膜厚を有する請求項1~5のいずれかに記載の光電変換素子。 6. The photoelectric conversion element according to claim 1, wherein the insulating layer has a film thickness of 1 nm or more and 0.5 μm or less.
  7.  前記透光性支持体と前記絶縁層とで支持基材を構成し、
     前記支持基材のヘイズ率が、20%以下である請求項1~6のいずれかに記載の光電変換素子。
    A supporting substrate is constituted by the translucent support and the insulating layer,
    7. The photoelectric conversion element according to claim 1, wherein the supporting substrate has a haze ratio of 20% or less.
  8.  前記光電変換層は、前記多孔性半導体層と、前記多孔性半導体層に吸着された光増感剤と、前記多孔性半導体層に充填されたキャリア輸送材料とを含む請求項1~7のいずれかに記載の光電変換素子。 The photoelectric conversion layer includes the porous semiconductor layer, a photosensitizer adsorbed on the porous semiconductor layer, and a carrier transport material filled in the porous semiconductor layer. The photoelectric conversion element of crab.
  9.  請求項1~8のいずれか1つに記載の光電変換素子を備えた色素増感太陽電池。 A dye-sensitized solar cell comprising the photoelectric conversion element according to any one of claims 1 to 8.
PCT/JP2012/081898 2011-12-22 2012-12-10 Photoelectric conversion element and dye-sensitized solar cell WO2013094448A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011281697A JP2013131456A (en) 2011-12-22 2011-12-22 Photoelectric conversion element and dye-sensitized solar cell
JP2011-281697 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094448A1 true WO2013094448A1 (en) 2013-06-27

Family

ID=48668342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081898 WO2013094448A1 (en) 2011-12-22 2012-12-10 Photoelectric conversion element and dye-sensitized solar cell

Country Status (2)

Country Link
JP (1) JP2013131456A (en)
WO (1) WO2013094448A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243055A (en) * 2002-02-21 2003-08-29 Toppan Printing Co Ltd Pigment sensitizing solar cell
JP2005142087A (en) * 2003-11-07 2005-06-02 Dainippon Printing Co Ltd Electrode board for dye-sensitized solar cell, its manufacturing method and the dye-sensitized solar cell
JP2007200559A (en) * 2006-01-23 2007-08-09 Sony Corp Photoelectric converter
WO2010109785A1 (en) * 2009-03-23 2010-09-30 新日鐵化学株式会社 Dye-sensitized solar cell and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243055A (en) * 2002-02-21 2003-08-29 Toppan Printing Co Ltd Pigment sensitizing solar cell
JP2005142087A (en) * 2003-11-07 2005-06-02 Dainippon Printing Co Ltd Electrode board for dye-sensitized solar cell, its manufacturing method and the dye-sensitized solar cell
JP2007200559A (en) * 2006-01-23 2007-08-09 Sony Corp Photoelectric converter
WO2010109785A1 (en) * 2009-03-23 2010-09-30 新日鐵化学株式会社 Dye-sensitized solar cell and method for manufacturing same

Also Published As

Publication number Publication date
JP2013131456A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP4523549B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5422645B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
US9607772B2 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP3717506B2 (en) Dye-sensitized solar cell module
JP5273709B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
WO2010044445A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5118233B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
WO2013164967A1 (en) Photoelectric conversion element and photoelectric conversion module
JP6104177B2 (en) Photoelectric conversion element
JP5758400B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
WO2013077209A1 (en) Wet-type solar cell and wet-type solar-cell module
WO2013114733A1 (en) Photoelectric conversion element module
WO2013094448A1 (en) Photoelectric conversion element and dye-sensitized solar cell
JP5956929B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2013251229A (en) Photoelectric conversion element and dye-sensitized solar cell
JP2014026903A (en) Photoelectric conversion element and dye-sensitized solar cell
WO2012117995A1 (en) Photoelectric conversion element and photoelectric conversion element module
JP6062376B2 (en) Photoelectric conversion element
JP5480234B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP2014229434A (en) Photoelectric conversion element and dye-sensitized solar cell
JP2013251228A (en) Photoelectric conversion element and dye-sensitized solar cell
WO2013094447A1 (en) Photoelectric conversion element
JP2014053150A (en) Photoelectric conversion element and photoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858758

Country of ref document: EP

Kind code of ref document: A1