WO2013094255A1 - エレベーターの制御装置およびその制御方法 - Google Patents

エレベーターの制御装置およびその制御方法 Download PDF

Info

Publication number
WO2013094255A1
WO2013094255A1 PCT/JP2012/073073 JP2012073073W WO2013094255A1 WO 2013094255 A1 WO2013094255 A1 WO 2013094255A1 JP 2012073073 W JP2012073073 W JP 2012073073W WO 2013094255 A1 WO2013094255 A1 WO 2013094255A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
speed
unit
motor
elevator
Prior art date
Application number
PCT/JP2012/073073
Other languages
English (en)
French (fr)
Inventor
酒井 雅也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013550154A priority Critical patent/JP5746373B2/ja
Publication of WO2013094255A1 publication Critical patent/WO2013094255A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor

Definitions

  • This invention relates to an elevator control device or the like that reduces the start shock at the start of elevator travel.
  • a car and a counterweight are suspended in a tang shape via a drive sheave (traction type).
  • traction type traction type
  • the brake is released and the drive sheave is rotated by the electric motor to move up and down.
  • the brake is released, the unbalance torque of the weight difference between the car and the counterweight is transmitted to the motor.
  • the brake is released with the motor torque being zero, the start shock and the car roll back due to a delay in the control response. Etc. occur.
  • Patent Document 1 proposes a control method that reduces the start-up shock by temporarily increasing the response of the speed control amplifier during start-up.
  • Patent Document 2 proposes a control method that reduces the start-up shock by temporarily increasing the response of the speed control amplifier during start-up.
  • the torque response speed of the inverter control device is set higher than the braking torque change speed when the brake is released at the start, and the moving direction and the moving amount of the car at the start are detected, The inverter control device is fed back in a direction to cancel the movement amount.
  • This invention is for solving the above-described problems, and provides an elevator control device and the like that stably reduce the start shock and the rollback of the car regardless of the magnitude of the unbalance torque.
  • a control state determination unit that determines the control state of the control system based on a control signal in the control device is provided, and the control device is switched based on the determined control state.
  • the elevator control device or the like includes a control state determination unit that determines a control state of the control system based on a control signal in the control device, and switches the control unit based on the determined control state.
  • Embodiment 1 of this invention It is a block diagram which shows the control apparatus of the elevator by Embodiment 1 of this invention. It is a figure explaining the determination method of the control state in Embodiment 1 of this invention. It is a block diagram which shows the control apparatus of the elevator by Embodiment 2 of this invention. It is a block diagram which shows the control apparatus of the elevator by Embodiment 3 of this invention. It is a block diagram which shows the control apparatus of the elevator by another example of Embodiment 3 of this invention. It is a block diagram which shows the control apparatus of the elevator by Embodiment 4 of this invention. It is a figure which shows the operation
  • FIG. 1 is a block diagram showing an elevator control apparatus according to Embodiment 1 of the present invention.
  • a car 11 and a counterweight 12 are suspended from both ends of a suspension means 10 hung on a drive sheave 6.
  • the suspension means 10 is configured by, for example, a plurality of ropes or a plurality of belts.
  • the drive sheave 6 is driven by the electric motor 5, and the car 11 and the counterweight 12 are raised and lowered in opposite directions (traction type).
  • the electric motor 5 has a brake 9 for braking the rotation.
  • the brake 9 is braked and released by the brake control unit 20.
  • the brake 9 is constituted by a disc brake or a drum brake, and the brake 9 is in a braking state while the car 11 is stopped.
  • a speed / position detector 8 is connected to the electric motor 5, and a signal corresponding to the amount of rotation of the electric motor 5 is output.
  • the speed calculation unit 21 calculates the rotational speed (calculated value) ⁇ of the electric motor using the signal output from the speed / position detector 8.
  • the speed / position detector 8 and the speed calculator 21 constitute a speed detection calculator.
  • the output change of the speed / position detector 8 is relatively small.
  • the signal change during the calculation cycle in which the speed calculation unit 21 calculates the rotational speed ⁇ is also relatively small, and the error in the calculation speed and the calculation time delay with respect to the actual speed are relatively large compared to when driving at high speed. Become.
  • the control gain is increased in order to increase the response speed of a control system such as speed control, it is likely to become unstable during low-speed traveling.
  • the electric motor 5 is driven by the inverter 4.
  • the inverter 4 is generally a PWM (pulse width modulation) inverter, and outputs a drive voltage for driving the motor 5 to the motor 5.
  • the drive voltage command value is generated by the drive signal generator 13.
  • the AC voltage of the power source 1 is converted to DC by the converter 2, the DC voltage is smoothed by the smoothing capacitor 3, and the smoothed DC voltage is input to the inverter 4.
  • the current of the electric motor 5 is detected by a current detector 7.
  • the electric motor 5 is generally driven and controlled by speed control.
  • a plurality of speed control units are provided, and when the elevator starts, the control state determination unit 17 operates the switching unit 18 according to the control state to switch the plurality of speed control units (15, 16). It is characterized by controlling.
  • FIG. 1 there are two speed controllers A15 and a speed controller B16 that is more responsive than the speed controller A15.
  • the switching unit 18 is a control device that switches between two speed control units A15 and B16.
  • the elevator control apparatus in the present embodiment is indicated by reference numeral 22 in FIG. Hereinafter, these operations will be described.
  • the speed command generator 14 outputs a speed command value ⁇ * obtained by converting the traveling speed pattern of the elevator car 11 into the rotational speed of the electric motor 5.
  • a speed command value for holding the car stationary is output from the speed command generator 14 before the brake 9 is released.
  • This speed command value is normally zero.
  • the speed control unit A15 and the speed control unit B16 perform current control on the torque current command value iq * calculated by the subtracter 30 such that the difference between the rotational speed calculation value ⁇ of the electric motor 5 and the speed command value ⁇ * becomes zero.
  • P control for example, P control, PI control, PID control, etc. are used.
  • the speed control unit B16 has a control gain larger than that of the speed control unit A15. Yes.
  • vector control is generally used.
  • the motor current detected by the current detector 7 is converted into the d-axis and the q-axis, and the q-axis current that contributes to the torque of the motor 5 is controlled to coincide with the torque current command value iq * .
  • the current control unit 19 outputs the voltage command values vd * and vq * of the electric motor 5 to the drive signal generation unit 13.
  • the brake control is switched to the speed control unit B16 before releasing the brake at the time of activation. Thereafter, brake braking is released by the brake control unit 20.
  • brake braking is released by the brake control unit 20.
  • an elevator start command (not shown) is input to the control state determination unit 17
  • the control state determination unit 17 operates the switching unit 18 to switch the speed control unit to the speed control unit B16.
  • the control state determination unit 17 sends an elevator start command to the brake control unit 20 and the brake control unit 20 releases the brake braking.
  • an activation command may be input directly to the brake control unit 20 so that the brake control unit 20 delays the brake braking release for a time corresponding to the speed control unit switching processing time.
  • the control state determination unit 17 monitors the control state by the speed control unit B16, determines whether the speed control has converged, and operates the switching unit 18 if it is determined that the speed control has converged. And switch to the speed control unit A15.
  • the torque current command value iq * becomes discontinuous simply by switching the speed control unit, so that the torque current command value is smoothly connected. This is realized by adding an appropriate offset value to the output of the speed control unit A15 after switching so that the torque current command value is continuous before and after switching.
  • a filter process such as a primary filter may be performed on the torque current command value.
  • These processes include, for example, a function in which the speed control units A15 and B16 output a command value to which a desired offset value is added, or a function to output a command value obtained by performing a predetermined filter process on the output. Each function is executed in accordance with a control signal from the unit 17.
  • the control state determination unit 17 determines the convergence of the speed control based on the torque current command value iq * output from the speed control unit B16.
  • FIG. 2A shows the motor speed
  • FIG. 2B shows the absolute value
  • FIG. 2C shows the differential value of
  • FIG. The output switching trigger is shown.
  • of the torque current command value iq * is used is that the sign of iq * differs depending on the direction of the unbalance torque, but it is not necessary to consider the sign by taking the absolute value, and the mounting is easy. It is to become.
  • the control state determination unit 17 determines that the speed control has converged when the torque current command value (
  • the data is output to the switching unit 18 and switched to the speed control unit A15.
  • the threshold value Di1 is set as a value close to zero considering the variation.
  • the speed control convergence determination is not performed immediately after the brake braking is released (time t1). For example, the convergence determination may not be performed for a certain time immediately after the brake is released, or the convergence determination may be performed after
  • the torque current command value iq * is used for speed control convergence determination in the control state determination unit 17, but the actual torque current value (torque current detection value) detected by the current detector 7 is used. Also good. Furthermore, the voltage command value vd * or vq * output from the current control unit 19 may be used in place of the torque current command value iq * to perform convergence determination based on comparison with the threshold value similar to the above method.
  • FIG. FIG. 3 is a block diagram showing an elevator control apparatus according to Embodiment 2 of the present invention.
  • the parts denoted by the same reference numerals as in the above embodiment basically operate in the same manner as in the above embodiment.
  • the speed control convergence determination operation performed by the control state determination unit 317 is different from that of the first embodiment.
  • the control state determination unit 317 determines the convergence of the speed control based on the signal from the speed / position detector 8.
  • the speed / position detector 8 outputs a signal (pulse or voltage) corresponding to the rotation amount of the electric motor 5 as described above.
  • the control state determination unit 317 counts an output change amount (for example, the number of pulses) per unit time of the output of the speed / position detector 8.
  • the control state determination unit 317 determines that the speed control has converged, and operates the switching unit 18 to move the speed control unit from the speed control unit B16. An operation of switching to the speed control unit A15 is performed. At this time, the control state determination unit 317 may count the output change from the speed / position detector 8 in a time period longer than the calculation period of the speed control unit B16.
  • the convergence of the speed control is determined regardless of the unbalance torque of the car and the counterweight by determining the convergence of the speed control based on the output change amount of the speed / position detector 8. It is possible to quickly switch to the speed control unit A15 later. Therefore, it is possible to avoid that the speed control unit B16 continues to operate in a very low speed state including the state where the speed control is converged and the car is held stationary, and the control system becomes unstable. For this reason, the control response of the speed control unit B16 can be increased, and the starting shock and the rollback can be reduced regardless of the unbalance torque of the car and the counterweight.
  • FIG. FIG. 4 is a block diagram showing an elevator control apparatus according to Embodiment 3 of the present invention.
  • the parts denoted by the same reference numerals as in the above embodiment basically operate in the same manner as in the above embodiment.
  • position control for controlling the rotational position of the electric motor 5 is performed in order to reduce the rollback and the start shock immediately after the brake braking is released.
  • the configuration of this embodiment is a configuration in which a position control loop is added to the outside of the speed control loop, and includes a position control unit 430 and a position command generation unit 431.
  • the speed / position calculation unit 421 calculates the rotation speed ⁇ and the rotation position (calculation value) ⁇ of the electric motor 5 from the output of the speed / position detector 8.
  • the speed / position detector 8 and the speed / position calculation unit 421 constitute a speed / position detection calculation unit.
  • the speed / position detection calculation unit and the speed detection calculation unit including the speed / position detector 8 and the speed calculation unit 21 according to the above-described embodiment are referred to as an electric motor state detection calculation unit.
  • the position command generator 431 outputs a position command value ⁇ * obtained by converting the position command value of the elevator car 11 into the rotational position of the electric motor 5. When the elevator is started, a position command value for holding the car 11 stationary is output before the brake 9 is released. This position command value is normally zero.
  • the position control unit 430 calculates the speed command value ⁇ * calculated by the subtractor 31 so that the difference between the rotational position calculation value ⁇ of the electric motor 5 and the position command value ⁇ * becomes zero. P control, PI control, PID control, etc. are used. The speed control unit A15 and the current control unit 19 perform the same operation as in the first embodiment, and the elevator is controlled.
  • the control state determination unit 17 monitors the control state by the position control unit 430 and the speed control unit A15, determines whether or not the position control has converged, and if it is determined that the position control has converged, The output of the position / speed switching unit 18a is switched to the output of the speed command generating unit 14 in order to operate the speed switching unit 18a and switch from position control to speed control.
  • the response (control gain) of the position control unit 430 can be increased. Regardless of the unbalance torque of the counterweight 12, the starting shock and rollback can be reduced stably.
  • the method of detecting the rotational position of the electric motor 5 has been described as the position control. Good.
  • the configuration shown in FIG. 4 is used, and the configuration of the speed control unit B16 is added to the speed PI control, the speed command value ⁇ * and the rotational speed ( It may be configured as a control unit to which a double integral of the difference of (calculation value) ⁇ is added. In this case, the configuration becomes simpler than that of FIG. 3 and the amount of calculation can be reduced, so that a cheaper control device can be realized.
  • the speed control portion includes a relatively high response speed control unit B16 and a relatively low response speed control unit A15 (speed control unit B16, speed control unit A15). (Which constitutes a speed control means), and a structure for switching from the speed control unit B16 to the speed control unit A15 at the timing of switching from position control to speed control.
  • the control state determination unit 17 of the present embodiment determines that the torque current command value iq * , the torque current detection value detected by the current detector 7, and the voltage command value (vd) to the inverter 4 for motor control. * Or vq * ), the amount of change is determined in advance based on at least one change amount of the rotation amount of the motor detected by the motor state detection calculation unit (which is set as the control state of the motor). It is determined that the position control and speed control have converged when the threshold value is below the threshold value. The same applies hereinafter.
  • FIG. FIG. 6 is a block diagram showing an elevator control apparatus according to Embodiment 4 of the present invention.
  • the parts denoted by the same reference numerals as in the above embodiment basically operate in the same manner as in the above embodiment.
  • the operation of the control state determination unit 517 is different from that of the second embodiment.
  • the present embodiment is characterized in that an appropriate one is selected from speed control units having a plurality of response speeds in accordance with the output change amount of the speed / position detector 8 immediately after the brake braking is released.
  • FIG. 6 shows a case where two types of speed control units are provided, and the operation will be described below with reference to the flowchart of FIG.
  • step S61 an elevator start command is received.
  • the start command is input to at least the brake control unit 20 and the control state determination unit 517.
  • step S62 the brake control unit 20 releases the braking of the brake.
  • the switching unit 18 is switched by the control state determination unit 517, and the speed control unit A15 and the speed control unit B16 are not operated, or one of the speed control unit A15 and the speed control unit B16 is selected.
  • the speed command value ⁇ * output from the speed command generator 14 is zero.
  • step S63 the control state determination unit 517 calculates a change amount per unit time of the rotation amount of the electric motor 5 output from the speed / position detector 8.
  • the control state determination unit 517 selects an appropriate speed control unit based on the absolute value of the change amount.
  • the amount of change depends on the unbalance torque of the car 11 and the counterweight 12 and the overall inertia of the elevator system. The amount of change increases when the overall inertia is small and when the unbalance torque is large.
  • the load capacity of the car 11 changes, the overall inertia and unbalance torque of the elevator system change. Generally, however, the change in the unbalance torque due to the change in the load capacity rather than the change in the overall inertia due to the change in the load capacity.
  • the amount is more dominant than the movement at the time of start-up, that is, the amount of change per unit time of the speed / position detector 8, the amount is The balance torque can be estimated. Based on this idea, if the absolute value of the change amount of the speed / position detector 8 is equal to or smaller than a threshold value set in advance based on the dynamic characteristics of the elevator, it is determined that the unbalance torque is small, and the process proceeds to step S65. Part A15 is selected. If the absolute value of the change amount exceeds the threshold value, it is determined that the unbalance torque is large, the process proceeds to step S66, and the speed control unit B16 having a higher response speed than the speed control unit A15 is selected.
  • the threshold used in step S64 is appropriately set according to the state of the control system when the brake is released in step S62. That is, different values are set according to the case where the speed control is not operated or the type of the selected speed control unit.
  • the response frequency of the speed control system is high, the amount of change per unit time of the speed / position detector 8 is smaller than when the response frequency is low and when the speed control system is not operated. Therefore, when the response frequency of the speed control system selected in step S62 (at the time of brake braking release) is high, the threshold used in step S64 is the case where the response frequency of the speed control system selected in step S62 is low. Compared to a small value.
  • step S67 it is determined in step S67 whether or not the unbalance torque compensation has been completed by the elevator control device and the speed control has converged. This can be determined using the method described in the second embodiment. If it is determined that the speed control has converged, the control is switched to the speed control unit A15 having a relatively low response speed in step S68.
  • the unbalance torque between the car 11 and the counterweight 12 is estimated based on the absolute value of the change amount of the speed / position detector 8 immediately after the brake braking is released, and the unbalance torque is small. It is possible to select the speed controller A15 having a normal response speed and select the speed controller B16 having a relatively high response speed when the unbalance torque is large. That is, the speed control unit B16 can be selected only when the unbalance torque required by the speed control unit B16 is large. Furthermore, when the speed control unit B16 is selected, it is possible to determine that the speed control has converged and to switch to the speed control unit A15 having a normal response speed.
  • the control response of the speed control unit B16 can be increased.
  • the start shock and rollback can be stably reduced regardless of the unbalance torque between the car 11 and the counterweight 12.
  • the configuration of FIG. 6 is a configuration in which the torque current command value iq * is added to the control state determination unit 517 as an input.
  • the speed control unit is switched based on the amount of change per unit time of the speed / position detector 8, but the amount of change of the speed / position detector 8 is set in advance after brake braking is released.
  • the speed control unit may be switched based on the elapsed time until reaching the reference value (for example, 1 to several pulses when the speed / position detector 8 is a pulse encoder). At this time, since the elapsed time becomes shorter as the unbalance torque becomes larger, when the elapsed time is smaller than a preset threshold, switching to the speed control unit B16 is performed, and in other cases, a normal response is performed. Switch to the speed controller A15.
  • step S64 a speed control unit having an appropriate response speed is selected according to the absolute value of the change amount of the speed / position detector 8.
  • step S67 and S68 the speed control unit can be selected more finely according to the unbalance torque, so that the start-up shock and rollback can be further reduced.
  • FIG. FIG. 8 is a block diagram showing an elevator control apparatus according to Embodiment 5 of the present invention.
  • the parts denoted by the same reference numerals as in the above embodiment basically operate in the same manner as in the above embodiment.
  • the operation of the control state determination unit 717 is different from that of the first embodiment.
  • the present embodiment is characterized in that an appropriate one is selected from speed control units having a plurality of response speeds according to the amount of change in the torque current command value iq * immediately after the brake braking is released.
  • FIG. 8 shows a case where two types of speed control units are provided, and the operation will be described below with reference to the flowchart of FIG.
  • step S81 an elevator start command is received.
  • the start command is input to at least the brake control unit 20 and the control state determination unit 717.
  • step S82 the brake control unit 20 releases the braking of the brake.
  • the switching state 18 is switched by the control state determination unit 717, and one of the speed control unit A15 and the speed control unit B16 is selected as the speed control.
  • the speed command value ⁇ * output from the speed command generator 14 is zero.
  • the control state determination unit 717 calculates the amount of change per unit time of the torque current command value iq * output from either the speed control unit A15 or the speed control unit B16.
  • the control state determination unit 717 selects an appropriate speed control unit based on the absolute value of the change amount.
  • the amount of change depends on the unbalance torque of the car 11 and the counterweight 12, and the amount of change increases as the unbalance torque increases. If the absolute value of the change amount of the torque current command value iq * is equal to or smaller than a preset threshold value, the unbalance torque is small, and the process proceeds to step S85, and the speed control unit A15 is selected. When the absolute value of the amount of change exceeds the threshold value, the unbalance torque is large, so that the process proceeds to step S86, and the speed control unit B16 having a higher response speed than the speed control unit A15 is selected.
  • the threshold value used in step S84 is also appropriately set according to the state of the control system at the time of brake braking release in step S82. That is, the threshold value is set differently depending on the type of the speed control unit that is selected when the brake is released.
  • step S87 it is determined in step S87 whether or not the unbalance torque compensation has been completed by the elevator control device and the speed control has converged. This can be determined using the method described in the first embodiment. If it is determined that the speed control has converged, the control is switched to the speed control unit A15 having a low response speed in step S88.
  • the unbalance torque between the car 11 and the counterweight 12 is estimated based on the absolute value of the change amount of the torque current command value iq * immediately after the brake braking is released.
  • the speed control unit B16 having a large response speed can be selected. That is, the speed control unit B16 can be selected only when the unbalance torque required by the speed control unit B16 is large. Furthermore, when the speed control unit B16 is selected, it is possible to determine that the speed control has converged and to switch to the speed control unit A15 having a normal response speed.
  • the control response of the speed control unit B16 can be increased.
  • the start shock and rollback can be stably reduced regardless of the unbalance torque between the car 11 and the counterweight 12.
  • the configuration of FIG. 8 is a configuration in which the output of the speed / position detector 8 is added as an input of the control state determination unit 717.
  • step S84 a speed control unit having an appropriate response speed is selected according to the absolute value of the change amount of the torque current command value iq * .
  • step S87 and S88 the operation proceeds to steps S87 and S88.
  • the control state determination unit performs the torque current command value iq * , the torque current detection value detected by the current detector 7 immediately after the brake is released when the elevator is started, and the motor control. At least one change amount among the voltage command value (vd * or vq * ) to the inverter 4 of the motor, the rotation amount of the motor detected by the motor state detection calculation unit, and (this is the control state of the motor). Based on this, the speed controller is selected. Further, it is determined whether or not the speed control and the position control have converged by comparing each change amount with a predetermined threshold value.
  • the elevator control device can be applied to various traction type elevators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)

Abstract

 トラクション式のエレベーターの制御装置において、アンバランストルクの大きさに関わらず、起動ショック及びかごのロールバック等を安定的に低減するために、エレベーターの起動時の電動機の制御系の制御状態及び制御の収束状態に従って、電動機の速度制御の応答速度を変更するか、電動機の位置制御から速度制御への切り替えを行うか、前記位置制御から速度制御への切り替え及び前記速度制御の応答速度の変更を行う制御状態判定部(17,317,517,717)を設けた。

Description

エレベーターの制御装置およびその制御方法
 この発明は、エレベーターの走行開始時に起動ショックを低減するエレベーターの制御装置等に関する。
 一般にロープ式エレベーターでは、かごと釣合おもりが駆動シーブを介してつるべ状に吊り下げられている(トラクション式:traction type)。かごは静止時には、ブレーキにより静止保持されているが、走行開始時にはブレーキを開放して電動機により駆動シーブを回転させることで昇降を行う。このとき、ブレーキ開放に伴い、かごと釣合おもりの重量差分のアンバランストルクが電動機に伝わるが、電動機トルクがゼロの状態でブレーキを開放すると、制御応答の遅れにより起動ショック及びかごのロールバック等が発生する。このため、起動ショック及びかごのロールバック等を低減するために、かごの積載重量を検出し、アンバランストルクと相殺するトルクを電動機により発生させてからブレーキを開放する起動制御方式が一般的に行われている。
 しかしながら、この方式はかごの積載重量を検出する荷重検出装置が必要になりコストアップとなる。さらに、据付時に荷重検出装置の設置及び調整が必要である。以上のことから、荷重検出装置を用いることなく起動ショック及びロールバック等を低減する制御方式が提案されている。
 例えば下記特許文献1では、起動時に速度制御アンプの応答を一時的に高めることによって起動ショックを低減する制御方式が提案されている。
 また下記特許文献2では、インバータ制御装置のトルク応答速度を、起動時にブレーキを開放したときの制動トルク変化速度より高く設定し、かつ、起動時における乗かごの移動方向及び移動量を検出し、上記インバータ制御装置に対して上記移動量を打ち消す方向の帰還をかけるようにしている。
 一般的に速度制御系、トルク制御系(電流制御系)の応答を高めると、不安定になりやすくなる。特に起動時の微速な領域ではそれが顕著である。速度検出器としては、エンコーダ等のパルス計測により速度検出を行うことが一般的であるが、微速時にはパルス変化が小さいため、マイコン等を用いたデジタル制御を行うと、高速走行時に比べて相対的に速度検出誤差及び速度検出の時間遅れが大きくなる。これが制御が不安定になる原因である。このため、かごの積載状態が空に近い場合及び満員に近い場合のようなアンバランストルクが大きい場合に起動ショックを低減できるように制御応答を十分に大きくしても、かごの積載状態が釣合おもりの重量に近いようなアンバランストルクが小さい場合ではパルス変化が少ないことから不安定化しやすいという問題があった。以上のことから、制御応答を十分に大きくすることができず、アンバランストルクが大きいときには起動ショック及びかごのロールバックを十分に低減することができないという問題があった。
特開昭60-040386号公報 特開昭62-004180号公報
 この発明は上記問題を解決するためのものであり、アンバランストルクの大きさに関わらず、起動ショック及びかごのロールバック等を安定的に低減するエレベーターの制御装置等を提供する。
 制御装置内の制御信号に基づいて制御系の制御状態を判定する制御状態判定部を設け、判定された制御状態に基づいて制御装置を切り替えるようにした。
 この発明のエレベーターの制御装置等は、制御装置内の制御信号に基づいて制御系の制御状態を判定する制御状態判定部を設け、判定された制御状態に基づいて制御部を切り替えるようにしたことにより、アンバランストルクの大きさに関わらず、起動ショック及びかごのロールバック等を安定的に低減することができる。
この発明の実施の形態1によるエレベーターの制御装置を示す構成図である。 この発明の実施の形態1における制御状態の判定方法を説明する図である。 この発明の実施の形態2によるエレベーターの制御装置を示す構成図である。 この発明の実施の形態3によるエレベーターの制御装置を示す構成図である。 この発明の実施の形態3の別の例によるエレベーターの制御装置を示す構成図である。 この発明の実施の形態4によるエレベーターの制御装置を示す構成図である。 この発明の実施の形態4におけるエレベーターの制御装置の動作フローチャートを示す図である。 この発明の実施の形態5によるエレベーターの制御装置を示す構成図である。 この発明の実施の形態5におけるエレベーターの制御装置の動作フローチャートを示す図である。
 以下、この発明によるエレベーターの制御装置を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一もしくは相当する符号で示し、重複する説明は省略する。
 実施の形態1.
 図1はこの発明の実施の形態1によるエレベーターの制御装置を示す構成図である。図において、駆動シーブ6に架けられた懸架手段10の両端にはかご11及び釣合おもり12が吊り下げられている。懸架手段10は、例えば、複数本のロープ又は複数本のベルトにより構成されている。駆動シーブ6は電動機5により駆動され、かご11と釣合おもり12が互いに逆の方向に昇降される(トラクション式)。電動機5は、その回転を制動するためのブレーキ9を有する。ブレーキ9は、ブレーキ制御部20により制動及び制動解除の動作が行われる。ブレーキ9は、ディスクブレーキ又はドラムブレーキ等により構成されており、かご11が停止中はブレーキ9は制動状態となる。
 電動機5には速度・位置検出器8が接続されており、電動機5の回転量に応じた信号が出力される。速度・位置検出器8は、一般的にエンコーダ又はレゾルバが用いられ、回転量に応じたパルス又は電圧が出力される。速度演算部21は、速度・位置検出器8で出力される信号を用いて電動機の回転速度(演算値)ωを演算する。なお、速度・位置検出器8と速度演算部21で速度検出演算部を構成する。
 エレベーターの起動直後のかご11の静止時を含む微速状態においては、速度・位置検出器8の出力変化が相対的に小さくなる。このために、速度演算部21が回転速度ωを演算する演算周期間の信号変化も相対的に小さくなり、高速走行時に比べて実速度に対する演算速度の誤差及び演算の時間遅れが相対的に大きくなる。このため、速度制御等の制御系の応答速度を高めるために制御ゲインを大きくすると、微速走行時に不安定化しやすくなる。
 電動機5は、インバータ4により駆動される。インバータ4は、一般的にPWM(pulse width modulation)インバータが用いられ、電動機5を駆動するための駆動電圧を電動機5に出力する。駆動電圧の指令値は、駆動信号発生部13によって生成される。電源1の交流電圧はコンバータ2により直流化され、直流化された電圧は平滑コンデンサ3によって平滑化され、平滑化された直流電圧がインバータ4に入力される。また、電動機5の電流は電流検出器7によって検出される。
 電動機5は一般的に速度制御により駆動制御される。本発明では速度制御部を複数個備え、エレベーターの起動時に制御状態に応じて制御状態判定部17が切替え部18を操作して複数個の速度制御部(15,16)を切り替え、電動機5を制御することを特徴とする。図1では速度制御部として速度制御部A15と、この速度制御部A15よりも高応答な速度制御部B16の2個を有する。切替え部18は2個の速度制御部A15、速度制御部B16を切り替える制御装置を示している。なお、本実施の形態におけるエレベーターの制御装置は、図1において符号22で示されている。以下ではそれらの動作について説明する。
 速度指令発生部14は、エレベーターのかご11の走行速度パターンを電動機5の回転速度に換算した速度指令値ω*を出力する。エレベーターの起動時には、ブレーキ9の制動解除前に、速度指令発生部14からかごを静止保持するための速度指令値が出力される。この速度指令値は、通常はゼロである。
 速度制御部A15および速度制御部B16は、減算器30で算出される、電動機5の回転速度演算値ωと速度指令値ω*の差分がゼロとなるようなトルク電流指令値iq*を電流制御部19に出力する。これらの速度制御部A15,B16では例えばP制御、PI制御、PID制御等が用いられ、速度制御部B16は制御系の応答速度を高めるために、速度制御部A15より制御ゲインが大きく設定されている。
 電流制御部19では、一般的にベクトル制御が用いられる。ベクトル制御では、電流検出器7で検出した電動機電流をd軸とq軸に変換し、電動機5のトルクに寄与するq軸電流がトルク電流指令値iq*に一致するように制御する。このときの指令電圧として電流制御部19は電動機5の電圧指令値vd*、vq*を駆動信号発生部13に出力する。
 本発明では、起動時のブレーキ制動解除前には速度制御部B16に切り替えられる。その後、ブレーキ制御部20によりブレーキ制動が解除される。例えば、エレベーターの起動指令(図示省略)が制御状態判定部17に入力されると、制御状態判定部17は切替え部18を操作して速度制御部を速度制御部B16に切り替える。制御状態判定部17は速度制御部の切り替えが完了すると、ブレーキ制御部20にエレベーターの起動指令を送り、ブレーキ制御部20によりブレーキ制動が解除される。なお、ブレーキ制御部20に直接、起動指令を入力し、ブレーキ制御部20が速度制御部の切り替え処理時間に相当する時間、ブレーキ制動解除を遅延させて行うようにしてもよい。
 ブレーキ制動が解除されると、かご11と釣合おもり12のアンバランス量に応じて電動機5にアンバランストルクがかかり、速度制御部B16によって前記アンバランストルクと釣り合うように電動機5が制御される。このとき、制御状態判定部17では、速度制御部B16による制御状態を監視し、速度制御が収束したか否かを判定し、速度制御が収束したと判定した場合には切替え部18を操作し、速度制御部A15に切り替える。
 なお、この切り替えの際に、単に速度制御部を切り替えるだけでは、トルク電流指令値iq*が不連続になるため、トルク電流指令値が滑らかに繋がるような処理がなされる。これはトルク電流指令値が切り替え前と切り替え後で連続になるように、切り替え後の速度制御部A15の出力に、適切な値のオフセット値を加えることによって実現する。また、トルク電流指令値に対して1次フィルタ等のフィルタ処理を行ってもよい。
 これらの処理は例えば、速度制御部A15,B16が、所望のオフセット値を加えた指令値を出力する機能、または出力に所定のフィルタ処理を施した指令値を出力する機能を備え、制御状態判定部17からの制御信号に従ってそれぞれの機能を実行するようにする。
 制御状態判定部17は、速度制御部B16が出力するトルク電流指令値iq*に基づいて速度制御の収束判定を行う。以下では図2を用いて速度制御の収束判定方法について説明する。図2の(a)は電動機速度、(b)はトルク電流指令値iq*の絶対値|iq*|、(c)は|iq*|の微分値、(d)は制御状態判定部17から出力される切り替えトリガを示している。トルク電流指令値iq*の絶対値|iq*|を用いる理由は、アンバランストルクの方向によりiq*の符号が異なるが、絶対値をとることによって符合を考慮する必要がなくなり、実装が容易になるためである。
 まず時刻t1でブレーキ制動が解除されると、かご11と釣合おもり12のアンバランストルクに応じた負荷が電動機5にかかり、電動機5が回転を始める。このとき、電動機5の回転をゼロにするため、速度制御部B16によって前記アンバランストルクと釣り合うまで電動機トルクを増加させるため、|iq*|が上昇していく。そして前記アンバランストルクと電動機トルクが釣り合った時点t2でトルク電流指令値(|iq*|)は一定値となる。
 図2では、時刻t2で前記アンバランストルク量と電動機トルクが釣り合った状態となる。制御状態判定部17は、トルク電流指令値(|iq*|)が一定値となったことをもって、速度制御が収束したと判定し、速度制御部A15に切り替える。その判定には|iq*|の変化量、つまり|iq*|の微分値を用いて、その微分値が予め定められた閾値Di1以下となったときに、制御状態判定手段17が切り替えトリガを切替え部18に出力し、速度制御部A15に切り替えている。トルク電流指令値(|iq*|)が一定値になったとき、理想的には|iq*|の微分値はゼロであるが、実際にはトルク電流指令値に微小な変動が含まれることが想定されるため、閾値Di1はその変動を考慮したゼロに近い値として設定する。
 なお、ブレーキ制動解除直後には|iq*|の微分値はDi1以下となるため、ブレーキ制動解除(時刻t1)直後には速度制御の収束判定をしないようにする。これは例えば、ブレーキ制動解除直後の一定時間は収束判定を行わないようにする、或いは|iq*|がDi1を超えてから収束判定を行うようにするなどすればよい。
 このように、トルク電流指令値iq*が一定になる状態を判定することで、かごと釣合おもりのアンバランストルクにかかわらず、速度制御の収束判定を精度良く行うことができる。従って、かごと釣合おもりのアンバランストルクが小さいときにも、速度制御の収束後に速やかに速度制御部A15に切り替えることができる。従って、速度制御が収束し、かごが静止保持されている状態を含む微速状態で速度制御部B16が動作を継続し制御系が不安定化することを回避できるため、速度制御部B16の制御応答を大きくすることができ、かごと釣合おもりのアンバランストルクにかかわらず、起動ショック及びロールバックを低減することができる。
 なお、本実施の形態では制御状態判定部17における速度制御の収束判定にトルク電流指令値iq*を用いたが、電流検出器7で検出した実トルク電流値(トルク電流検出値)を用いてもよい。さらに、電流制御部19の出力する電圧指令値vd*またはvq*をトルク電流指令値iq*の代わりに用いて、上述の方法と同様な閾値との比較に基づく収束判定を行ってもよい。
 実施の形態2.
 図3は本発明の実施の形態2によるエレベーターの制御装置を示す構成図である。図3において、上記実施の形態と同一符号で示した部分は基本的に上記実施の形態と同等の動作をする。
 本実施の形態では、制御状態判定部317によって行われる速度制御の収束判定動作が実施の形態1と異なる。本実施の形態では、制御状態判定部317は速度・位置検出器8の信号に基づいて速度制御の収束判定を行う。その方法として、速度・位置検出器8は上述のように電動機5の回転量に応じた信号(パルス又は電圧)を出力する。制御状態判定部317は、速度・位置検出器8の出力の単位時間あたりの出力変化量(例えばパルス数)をカウントする。その変化量の絶対値が予め定められた閾値以下となった場合に、制御状態判定部317は速度制御が収束したと判定し、切替え部18を操作して速度制御部を速度制御部B16から速度制御部A15に切り替える動作を行う。このとき、制御状態判定部317では、速度制御部B16の演算周期よりも長い時間周期で速度・位置検出器8からの出力変化をカウントするようにしてもよい。
 かご11が速度制御により静止保持された状態ではゼロ速度近辺で電動機5が微小に振動するが、出力変化量をカウントする演算周期を速度制御部B16の演算周期よりも長くすることで、微小な振動が相殺され速度・位置検出器8の出力変化量がほぼゼロに近くなるため、より安定的に速度制御の収束判定を行うことができる。
 以上により、本実施の形態では、速度・位置検出器8の出力変化量に基づいて、速度制御の収束を判定することで、かごと釣合おもりのアンバランストルクにかかわらず、速度制御の収束後に速やかに速度制御部A15に切り替えることができる。従って、速度制御が収束し、かごが静止保持されている状態を含む微速状態で速度制御部B16が動作を継続し制御系が不安定化することを回避できる。このため、速度制御部B16の制御応答を大きくすることができ、かごと釣合おもりのアンバランストルクにかかわらず、起動ショック及びロールバックを低減することができる。
 実施の形態3.
 図4は本発明の実施の形態3によるエレベーターの制御装置を示す構成図である。図4において、上記実施の形態と同一符号で示した部分は基本的に上記実施の形態と同等の動作をする。本実施の形態では、ブレーキ制動解除直後にロールバック及び起動ショックを低減するため、電動機5の回転位置を制御する位置制御を行う。本実施の形態の構成は速度制御ループの外側に位置制御ループを加えた構成であり、位置制御部430と位置指令発生部431を有している。また、速度・位置演算部421は、速度・位置検出器8の出力から電動機5の回転速度ωと回転位置(演算値)θを演算する。なお、速度・位置検出器8と速度・位置演算部421で速度・位置検出演算部を構成する。また、この速度・位置検出演算部と、上記実施の形態の速度・位置検出器8と速度演算部21からなる速度検出演算部とを電動機状態検出演算部とする。位置指令発生部431は、エレベーターのかご11の位置指令値を電動機5の回転位置に換算した位置指令値θ*を出力する。エレベーターの起動時には、ブレーキ9の制動解除前に、かご11を静止保持するための位置指令値が出力される。この位置指令値は、通常はゼロである。
 位置制御部430は、減算器31で算出される、電動機5の回転位置演算値θと位置指令値θ*の差分が、ゼロとなるような速度指令値ω*を速度制御部A15(速度制御手段に相当する)に出力するもので、P制御、PI制御、PID制御等が用いられる。速度制御部A15および電流制御部19は実施の形態1と同様の動作を行い、エレベーターの制御が行われる。
 これにより、ブレーキ9の制動解除後にロールバック及び起動ショックを低減する制御が行われる。このとき、制御状態判定部17では、位置制御部430と速度制御部A15による制御状態を監視し、位置制御が収束したか否かを判定し、位置制御が収束したと判定した場合には位置・速度切替え部18aを操作し、位置制御から速度制御に切り替えるために、位置・速度切替え部18aの出力を速度指令発生部14の出力に切り替える。
 なお、この切り替えの際に、単に切り替えるだけでは、速度指令値ω*が不連続になるため、速度指令値ω*が滑らかに繋がるような処理がなされる。これは、切り替え後の速度指令発生部14の出力に、速度指令値が切り替え前と切り替え後で連続的になるように適切な値のオフセット値を加えることによって実現する。また、速度指令値に対して1次フィルタ等のフィルタ処理を行うようにしてもよい。
 これらの処理は例えば、速度指令発生部14が、所望のオフセット値を加えた指令値を出力する機能、または出力に所定のフィルタ処理を施した指令値を出力する機能を備え、制御状態判定部17からの制御信号に従ってそれぞれの機能を実行するようにする。なお、制御状態判定部17の動作は実施の形態1で述べた方法と同様である。
 以上により、本実施の形態では、位置制御の収束を判定して速やかに速度制御に切り替えることができるため、位置制御部430の応答(制御ゲイン)を大きくすることが可能であり、かご11と釣合おもり12のアンバランストルクに関わらず安定的に起動ショック及びロールバックを低減することができる。
 なお、本実施の形態では位置制御として電動機5の回転位置を検出する方式を説明したが、かご11の位置を昇降路に設けられたセンサS(図4参照)等で直接検出する方式としてもよい。また、位置制御の方法として図4で示した構成以外に、図1の構成とし、この中の速度制御部B16の構成を、速度のPI制御に加えて、速度指令値ω*と回転速度(演算値)ωの差分の2重積分を加えた制御部とした構成としてもよい。この場合、図3よりも構成が簡単になり、演算量も減らすことができるため、より安価な制御装置を実現できる。
 また、本実施の形態を実施の形態1と組み合わせてもよい。つまり、図5に示すように、位置制御に加えて、速度制御部分を相対的に高応答の速度制御部B16と相対的に低応答の速度制御部A15(速度制御部B16、速度制御部A15が速度制御手段を構成する)を切り替える構成とし、位置制御から速度制御に切り替えるタイミングで速度制御部B16から速度制御部A15に切り替える構成としてもよい。このような構成とすることで、起動時の応答をより高めることができるため、さらに起動ショック及びロールバックを低減することができる。
 さらに、本実施の形態の制御状態判定部17を実施の形態2で述べた制御状態判定部317に置き替えても同様の効果を得ることができる。
 なお、上記実施の形態を組み合わせて、制御状態判定部は、トルク電流指令値iq*、電流検出器7で検出されたトルク電流検出値、電動機制御のためのインバータ4への電圧指令値(vd*またはvq*)、電動機状態検出演算部で検出された電動機の回転量、(これらを電動機の制御状態とする)、のうちの少なくとも一つの変化量に基づいて、変化量がそれぞれの予め定めた閾値以下となった場合に位置制御、速度制御が収束したと判定する。以下同様。
 実施の形態4.
 図6は本発明の実施の形態4によるエレベーターの制御装置を示す構成図である。図6において、上記実施の形態と同一符号で示した部分は基本的に上記実施の形態と同等の動作をする。本発明では制御状態判定部517の動作が実施の形態2と異なる。本実施の形態では、ブレーキ制動解除直後の速度・位置検出器8の出力変化量に応じて、複数の応答速度を持つ速度制御部の中から適切なものを選択することを特徴とする。図6では2種類の速度制御部を持つ場合を示しており、以下ではその動作を図7のフローチャートを用いて説明する。
 まず、ステップS61で、エレベーターの起動指令を受ける。起動指令は少なくともブレーキ制御部20と制御状態判定部517に入力される。
 つぎにステップS62では、ブレーキ制御部20により、ブレーキの制動が解除される。この時、制御状態判定部517により切替え部18が切り替えられて、速度制御部A15及び速度制御部B16は動作させないか、又は速度制御部A15及び速度制御部B16のいずれか一方が選択されている。また、速度指令発生部14が出力する速度指令値ω*はゼロである。
 つぎにステップS63では、速度・位置検出器8の出力する電動機5の回転量の、単位時間当たりの変化量が制御状態判定部517により演算される。
 ステップS64~S66では、制御状態判定部517により、前記変化量の絶対値に基づいて適切な速度制御部を選択する。前記変化量はかご11と釣合おもり12のアンバランストルクとエレベーターシステムの全体慣性に依存し、全体慣性が小さい場合、およびアンバランストルクが大きい方が、前記変化量が大きくなる。かご11の積載量が変化すると、エレベーターシステムの全体慣性とアンバランストルクが変化するが、一般的には積載量の変化による全体慣性の変化量よりも、積載量の変化によるアンバランストルクの変化量の方が起動時の動き、つまりは速度・位置検出器8の単位時間当たりの変化量に対して支配的であるため、速度・位置検出器8の単位時間当たりの変化量に基づいてアンバランストルクを推定することができる。この考えに基づき、速度・位置検出器8の変化量の絶対値がエレベーターの動特性に基づいて予め設定した閾値以下であればアンバランストルクが小さいと判定してステップS65へ移行し、速度制御部A15が選択される。また前記変化量の絶対値が前記閾値を超えるとアンバランストルクが大きいと判定してステップS66へ移行し、速度制御部A15よりも応答速度の高い速度制御部B16が選択される。
 なお、ステップS64で用いる閾値は、さらにステップS62でのブレーキ制動解除時の制御系の状態に応じても適切に設定されている。つまり、速度制御を動作させない場合、又は選択されている速度制御部の種類、に応じて異なった値が設定される。なお、一般的には速度制御系の応答周波数が高い方が、応答周波数が低い場合及び速度制御系を動作させない場合よりも、速度・位置検出器8の単位時間当たりの変化量が小さくなる。従って、ステップS62(ブレーキ制動解除時)で選択されている速度制御系の応答周波数が高い場合には、ステップS64で用いる閾値はステップS62で選択されている速度制御系の応答周波数が低い場合と比較して、小さな値となる。
 速度制御部B16が選択された場合には、本エレベーターの制御装置によりアンバランストルクの補償が完了し、速度制御が収束したかをステップS67で判定する。これは、実施の形態2で述べた方法を用いて判定することができる。速度制御が収束したと判定された場合にはステップS68で応答速度の相対的に小さい速度制御部A15に切り替えられる。
 以上により、本実施の形態では、ブレーキ制動解除直後の速度・位置検出器8の変化量の絶対値に基づいてかご11と釣合おもり12のアンバランストルクを推定し、アンバランストルクが小さいときには通常の応答速度の速度制御部A15を選択し、アンバランストルクが大きいときには応答速度の相対的に大きい速度制御部B16を選択することが可能である。つまり、速度制御部B16が必要なアンバランストルクが大きいときにのみ、速度制御部B16を選択することが可能である。さらに、速度制御部B16を選択した場合には速度制御が収束したことを判定して通常の応答速度の速度制御部A15に切り替えることが可能である。
 以上により、かごが静止保持されている状態を含む微速状態で速度制御部B16が動作を継続し制御系が不安定化することを回避できるため、速度制御部B16の制御応答を大きくすることができ、かご11と釣合おもり12のアンバランストルクに関わらず安定的に起動ショック及びロールバックを低減することができる。
 なお、ステップS67の速度制御の収束の判定方法として、実施の形態2で述べた方法を用いる代わりに、実施の形態1で述べた方法を用いても本実施の形態と同等の効果を得ることができる。このとき図6の構成は、制御状態判定部517にトルク電流指令値iq*が入力として追加された構成となる。
 また、ステップS63、S64において、速度・位置検出器8の単位時間当たりの変化量に基づいて速度制御部を切り替えるようにしたが、ブレーキ制動解放後に速度・位置検出器8の変化量が予め設定した基準値(例えば速度・位置検出器8がパルス式エンコーダの場合は1~数パルス)に到達するまでの経過時間に基づいて速度制御部を切り替えるようにしてもよい。このとき、アンバランストルクが大きくなるにつれて前記経過時間が短くなることから、前記経過時間が予め設定した閾値よりも小さい場合には速度制御部B16に切り替えるようにし、それ以外の場合は通常の応答速度の速度制御部A15に切り替える。
 なお、本実施の形態では応答速度(制御ゲイン)が異なる速度制御部を2種類有する構成について述べたが、3種類以上の速度制御部を有する構成としてもよい。このときステップS64において、速度・位置検出器8の変化量の絶対値に応じて、適した応答速度を有する速度制御部を選択する。また、このとき応答速度の大きな速度制御部が選択された場合には、ステップS67とステップS68の動作に移行させる。速度制御部を3種類以上有することで、アンバランストルクに応じてよりきめ細かく速度制御部を選択することができるため、起動ショック及びロールバックをより低減できる。
 実施の形態5.
 図8は本発明の実施の形態5によるエレベーターの制御装置を示す構成図である。図8において、上記実施の形態と同一符号で示した部分は基本的に上記実施の形態と同等の動作をする。本発明では制御状態判定部717の動作が実施の形態1と異なる。本実施の形態では、ブレーキ制動解除直後のトルク電流指令値iq*の変化量に応じて、複数の応答速度を持つ速度制御部の中から適切なものを選択することを特徴とする。図8では2種類の速度制御部を持つ場合を示しており、以下ではその動作を図9のフローチャートを用いて説明する。
 まず、ステップS81で、エレベーターの起動指令を受ける。起動指令は少なくともブレーキ制御部20と制御状態判定部717に入力される。
 つぎにステップS82では、ブレーキ制御部20により、ブレーキの制動が解除される。この時、制御状態判定部717により切替え部18が切り替えられて、速度制御として、速度制御部A15及び速度制御部B16のいずれか一方が選択されている。また、速度指令発生部14が出力する速度指令値ω*はゼロである。
 つぎにステップS83では、速度制御部A15及び速度制御部B16のいずれか一方の出力するトルク電流指令値iq*の単位時間当たりの変化量が制御状態判定部717により演算される。
 ステップS84~S86では、制御状態判定部717により、前記変化量の絶対値に基づいて適切な速度制御部を選択する。前記変化量はかご11と釣合おもり12のアンバランストルクに依存し、アンバランストルクが大きい方が、前記変化量が大きくなる。トルク電流指令値iq*の変化量の絶対値が予め設定した閾値以下であればアンバランストルクが小さいためステップS85へ移行し、速度制御部A15が選択される。また前記変化量の絶対値が前記閾値を超えると、アンバランストルクが大きいためステップS86へ移行し、速度制御部A15よりも応答速度の高い速度制御部B16が選択される。
 なお、ステップS84で用いる閾値は、ステップS82でのブレーキ制動解除時の制御系の状態に応じても適切に設定されている。つまり閾値は、ブレーキ制動解除時に選択されている速度制御部の種類に応じて異なった値が設定される。
 速度制御部B16が選択された場合には、本エレベーターの制御装置によりアンバランストルクの補償が完了し、速度制御が収束したかをステップS87で判定する。これは、実施の形態1で述べた方法を用いて判定することができる。速度制御が収束したと判定された場合にはステップS88で応答速度の小さい速度制御部A15に切り替えられる。
 以上により、本実施の形態ではブレーキ制動解除直後のトルク電流指令値iq*の変化量の絶対値に基づいてかご11と釣合おもり12のアンバランストルクを推定し、アンバランストルクが小さいときには通常の応答速度の速度制御部A15を選択し、アンバランストルクが大きいときには応答速度の大きい速度制御部B16を選択することが可能である。つまり、速度制御部B16が必要なアンバランストルクが大きいときにのみ、速度制御部B16を選択することが可能である。さらに、速度制御部B16を選択した場合には速度制御が収束したことを判定して通常の応答速度の速度制御部A15に切り替えることが可能である。
 以上により、かごが静止保持されている状態を含む微速状態で速度制御部B16が動作を継続し制御系が不安定化することを回避できるため、速度制御部B16の制御応答を大きくすることができ、かご11と釣合おもり12のアンバランストルクに関わらず安定的に起動ショック及びロールバックを低減することができる。
 なおステップS87の速度制御の収束の判定方法として実施の形態1で述べた方法を用いる代わりに実施の形態2で述べた方法を用いても本実施の形態と同等の効果を得ることができる。このとき図8の構成は、速度・位置検出器8の出力が制御状態判定部717の入力として追加された構成となる。
 なお、本実施の形態では応答速度(制御ゲイン)が異なる速度制御部を2種類有する構成について述べたが、3種類以上の速度制御部を有する構成としてもよい。このときステップS84において、トルク電流指令値iq*の変化量の絶対値に応じて、適した応答速度を有する速度制御部を選択する。また、このとき応答速度の大きな速度制御部が選択された場合には、ステップS87とステップS88の動作に移行させる。速度制御部を3種類以上有することで、アンバランストルクに応じてよりきめ細かく速度制御部を選択することができるため、より起動ショック及びロールバックを低減できる。
 なお、この発明は上記各実施の形態に限定されるものではなく、各実施の形態の可能な組み合わせを全て含むことは云うまでもない。
 例えば、上記実施の形態を組み合わせて、制御状態判定部は、エレベーターの起動時のブレーキ開放直後の、トルク電流指令値iq*、電流検出器7で検出されたトルク電流検出値、電動機制御のためのインバータ4への電圧指令値(vd*またはvq*)、電動機状態検出演算部で検出された電動機の回転量、(これらを電動機の制御状態とする)、のうちの少なくとも一つの変化量に基づいて、速度制御部を選択する。そしてさらに、変化量の予め定めたそれぞれの閾値との比較により速度制御、位置制御が収束したか否かを判定する。
産業上の利用の可能性
 この発明によるエレベーターの制御装置は、トラクション式の各種エレベーターに適用可能である。
 4 インバータ、5 電動機、7 電流検出器、8 速度・位置検出器、9 ブレーキ、14 速度指令発生部、15 速度制御部A、16 速度制御部B、17,317,517,717 制御状態判定部、18,18a 切替え部、22 制御装置。

Claims (7)

  1.  エレベーターの起動時の電動機の制御系の制御状態及び制御の収束状態に従って、電動機の速度制御の応答速度を変更するか、電動機の位置制御から速度制御への切り替えを行うか、前記位置制御から速度制御への切り替え及び前記速度制御の応答速度の変更を行う制御状態判定部を備えたことを特徴とするエレベーターの制御装置。
  2.  電動機の回転量を検出して電動機の少なくとも回転速度を演算する電動機状態検出演算部と、
     前記電動機の回転速度指令値を発生する速度指令発生部と、
     前記速度指令発生部と電動機状態検出演算部の出力差に従って前記電動機の回転速度を制御する応答速度の異なる複数の速度制御部と、
     前記複数の速度制御部を切り替える切替え部と、
     前記電動機の制御状態に従って前記切替え部を操作して前記複数の速度制御部を切り替える前記制御状態判定部と、
     を備え、
     前記制御状態判定部が、エレベーターの起動時に前記切替え部を応答速度が相対的に大きい前記速度制御部に切り替え、前記電動機の制御状態に従って速度制御が収束したと判定した場合には、応答速度が相対的に小さい前記速度制御部に切り替えることを特徴とする請求項1に記載のエレベーターの制御装置。
  3.  前記制御状態判定部が、エレベーターの起動時に前記切替え部を応答速度が相対的に大きい前記速度制御部に切り替える代わりに、エレベーターの起動時のブレーキ開放直後の、トルク電流指令値、トルク電流検出値、電動機制御のための電圧指令値、前記電動機状態検出演算部で検出された電動機の回転量のうちの少なくとも一つの変化量に基づいて前記速度制御部を選択することを特徴とする請求項2に記載のエレベーターの制御装置。
  4.  電動機の回転量を検出して電動機の回転速度および回転位置を演算する電動機状態検出演算部と、
     前記電動機の回転位置指令値を発生する位置指令発生部と、
     前記電動機の回転速度指令値を発生する速度指令発生部と、
     前記位置指令発生部と前記電動機状態検出演算部の出力差に従って前記電動機の回転位置を制御する位置制御部と、
     前記位置制御部又は速度指令発生部と前記電動機状態検出演算部の出力差に従って前記電動機の回転速度を制御する速度制御手段と、
     前記速度制御手段へ、前記位置制御部の出力及び前記速度指令発生部の出力のうちの一方に切り替えて入力する位置・速度切替え部と、
     前記電動機の制御状態に従って前記切替え部を操作して前記速度制御手段への入力を切り替える前記制御状態判定部と、
     を備え、
     前記制御状態判定部が、エレベーターの起動時に前記速度制御手段への入力を前記位置制御部の出力に切り替え、前記電動機の制御状態に従って位置制御が収束したと判定した場合には、前記速度制御手段への入力を前記速度指令発生部の出力に切り替えることを特徴とする請求項1に記載のエレベーターの制御装置。
  5.  前記速度制御手段が応答速度の異なる複数の速度制御部を含み、前記エレベーターの制御装置が前記複数の速度制御部を切り替える切替え部をさらに備え、
     前記制御状態判定部が、前記切替え部を操作してエレベーターの起動時に応答速度が相対的に大きい前記速度制御部に切り替え、位置制御が収束したと判定した場合に、応答速度の相対的に小さい前記速度制御部に切り替えることを特徴とする請求項4に記載のエレベーターの制御装置。
  6.  前記制御状態判定部は、トルク電流指令値、トルク電流検出値、電動機制御のための電圧指令値、前記電動機状態検出演算部で検出された電動機の回転量のうちの少なくとも一つの変化量に基づいて、前記変化量それぞれの予め定めた閾値以下となった場合に制御が収束したと判定することを特徴とする請求項1から5までのいずれか1項に記載のエレベーターの制御装置。
  7.  制御状態判定部において、エレベーターの起動時の電動機の制御系の制御状態及び制御の収束状態に従って、電動機の速度制御の応答速度を変更するか、電動機の位置制御から速度制御への切り替えを行うか、前記位置制御から速度制御への切り替え及び前記速度制御の応答速度の変更を行うことを特徴とするエレベーターの制御方法。
PCT/JP2012/073073 2011-12-23 2012-09-10 エレベーターの制御装置およびその制御方法 WO2013094255A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013550154A JP5746373B2 (ja) 2011-12-23 2012-09-10 エレベーターの制御装置およびその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-282444 2011-12-23
JP2011282444 2011-12-23

Publications (1)

Publication Number Publication Date
WO2013094255A1 true WO2013094255A1 (ja) 2013-06-27

Family

ID=48668162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073073 WO2013094255A1 (ja) 2011-12-23 2012-09-10 エレベーターの制御装置およびその制御方法

Country Status (2)

Country Link
JP (1) JP5746373B2 (ja)
WO (1) WO2013094255A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034461A1 (ja) * 2012-08-29 2014-03-06 三菱電機株式会社 エレベータの制御装置およびエレベータの制御方法
JP2021109737A (ja) * 2020-01-10 2021-08-02 株式会社日立製作所 エレベーター制御装置及びエレベーター制御方法
US20220289521A1 (en) * 2019-12-05 2022-09-15 Kone Corporation Drive system and method for controlling a drive system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211829A (ja) * 1999-01-26 2000-08-02 Hitachi Ltd エレベ―タ制御装置
JP2002044975A (ja) * 2000-07-26 2002-02-08 Fuji Electric Co Ltd 誘導電動機の制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492053B2 (ja) * 2010-11-11 2014-05-14 株式会社日立ビルシステム エレベータの荷重検出装置の調整方法ならびにエレベータ監視装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211829A (ja) * 1999-01-26 2000-08-02 Hitachi Ltd エレベ―タ制御装置
JP2002044975A (ja) * 2000-07-26 2002-02-08 Fuji Electric Co Ltd 誘導電動機の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034461A1 (ja) * 2012-08-29 2014-03-06 三菱電機株式会社 エレベータの制御装置およびエレベータの制御方法
JP5738491B2 (ja) * 2012-08-29 2015-06-24 三菱電機株式会社 エレベータの制御装置およびエレベータの制御方法
DE112013004225B4 (de) 2012-08-29 2019-08-01 Mitsubishi Electric Corporation Aufzugs-Steuerungsvorrichtung und Aufzugs-Steuerungsverfahren
US20220289521A1 (en) * 2019-12-05 2022-09-15 Kone Corporation Drive system and method for controlling a drive system
JP2021109737A (ja) * 2020-01-10 2021-08-02 株式会社日立製作所 エレベーター制御装置及びエレベーター制御方法
JP7157772B2 (ja) 2020-01-10 2022-10-20 株式会社日立製作所 エレベーター制御装置及びエレベーター制御方法

Also Published As

Publication number Publication date
JPWO2013094255A1 (ja) 2015-04-27
JP5746373B2 (ja) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5738491B2 (ja) エレベータの制御装置およびエレベータの制御方法
WO2008012895A1 (fr) Dispositif ascenceur
JPH10152270A (ja) エレベータの非常運転制御装置及び制御方法
US7888893B2 (en) Control apparatus and method for linear synchronous motor
JP2000219445A (ja) エレベ―タシステムのレベリング制御装置
JP5036147B2 (ja) エレベータの速度制御装置、速度制御方法、および速度制御プログラム
JP6237474B2 (ja) エレベータのかご移動制御装置およびかご移動制御方法
JP2005289532A (ja) エレベータ制御装置
JP5746373B2 (ja) エレベーターの制御装置およびその制御方法
JP4781853B2 (ja) エレベータ装置
WO2005092764A1 (ja) エレベータ制御装置
WO2011030402A1 (ja) エレベータの制御装置
JP2009113979A (ja) エレベータの制御装置
JP6707707B2 (ja) エレベーター
JP2000211829A (ja) エレベ―タ制御装置
JP2008162766A (ja) エレベータ
WO2010113356A1 (ja) エレベータ装置
JP7184129B1 (ja) エレベーターの制御装置及びエレベーターの制御方法
JP2015016933A (ja) エレベータの駆動制御装置
JP5939358B2 (ja) エレベータの制御装置
JPH1025069A (ja) エレベーターの速度制御装置
JP2005145637A (ja) エレベータの駆動システム
JP5095223B2 (ja) エレベータ装置
JP4949779B2 (ja) エレベータ
JP2004269187A (ja) エレベータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860102

Country of ref document: EP

Kind code of ref document: A1