WO2013093973A1 - Wireless communication system, wireless communication method, and wireless communication device - Google Patents

Wireless communication system, wireless communication method, and wireless communication device Download PDF

Info

Publication number
WO2013093973A1
WO2013093973A1 PCT/JP2011/007186 JP2011007186W WO2013093973A1 WO 2013093973 A1 WO2013093973 A1 WO 2013093973A1 JP 2011007186 W JP2011007186 W JP 2011007186W WO 2013093973 A1 WO2013093973 A1 WO 2013093973A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication device
communication devices
information
transmission
Prior art date
Application number
PCT/JP2011/007186
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 章
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013549956A priority Critical patent/JP5999099B2/en
Priority to PCT/JP2011/007186 priority patent/WO2013093973A1/en
Publication of WO2013093973A1 publication Critical patent/WO2013093973A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to a wireless communication system, a wireless communication method, and a wireless communication apparatus.
  • next-generation wireless communication technologies have been discussed in order to further increase the speed and capacity of wireless communication in wireless communication systems such as mobile phone systems.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • coordinated multipoint (hereinafter also referred to as CoMP) communication is being studied in order to reduce inter-cell interference and improve received signal strength.
  • CoMP coordinated multipoint
  • a plurality of geographically distant points cooperate to perform communication.
  • Each point corresponds to, for example, a base station, an antenna, or a cell formed by these.
  • dynamic adjustment of transmission or reception between multiple points is performed.
  • uplink multipoint cooperative communication a method of combining signals while receiving signals received in a plurality of cells is being studied.
  • the disclosed technology has been made in view of the above, and an object thereof is to provide a wireless communication system, a wireless communication apparatus, and a wireless communication method capable of improving reception characteristics in multipoint cooperative communication. .
  • a wireless communication system disclosed in the present application is a plurality of first wireless communication devices that transmit data transmitted from a second wireless communication device. Receive. A first transmission unit that transmits information related to transmission timing based on information about the plurality of first wireless communication devices to the second wireless communication device, and the plurality of first wireless communication devices from the second wireless communication device. A second transmission unit that transmits the data at the transmission timing.
  • FIG. 1 is a diagram illustrating a configuration of a wireless communication system according to the first embodiment.
  • FIG. 2 is a sequence diagram for explaining the operation of the wireless communication system.
  • FIG. 3 is a diagram for explaining the reception timing in the wireless communication apparatus.
  • FIG. 4 is a diagram for explaining reception characteristics in the wireless communication device.
  • FIG. 5 is a diagram illustrating a configuration of a wireless communication system according to the second embodiment.
  • FIG. 6 is a diagram illustrating a functional configuration of the base station.
  • FIG. 7 is a diagram illustrating a functional configuration of the mobile station.
  • FIG. 8 is a diagram illustrating a hardware configuration of the base station.
  • FIG. 9 is a diagram illustrating a hardware configuration of the mobile station.
  • FIG. 10 is a sequence diagram for explaining the operation of the wireless communication system.
  • FIG. 11 is a sequence diagram for explaining the operation of the wireless communication system.
  • FIG. 12 is a diagram for explaining the reception timing at the base station.
  • FIG. 13 is a diagram for explaining reception characteristics at the base station.
  • FIG. 14 is a diagram illustrating a configuration of a wireless communication system according to the third embodiment.
  • FIG. 15 is a diagram illustrating a functional configuration of RRH (Remote Radio Head).
  • FIG. 16 is a diagram illustrating a configuration of a wireless communication system according to the fourth embodiment.
  • FIG. 1 shows a configuration of a wireless communication system 1 according to the first embodiment.
  • the wireless communication system 1 includes a plurality of wireless communication devices 10 and 20 and a wireless communication device 30.
  • the wireless communication system 1 can be realized by using the wireless communication devices 10 and 20 as a base station and the wireless communication device 30 as a mobile station.
  • the wireless communication devices 10 and 20 form cells C1 and C2, respectively, and the wireless communication device 30 is located in the cell C1.
  • the wireless communication devices 10 and 20 perform communication between the wireless communication devices 10 and 20 via wired connection or wireless connection, and perform CoMP communication with the wireless communication device 30.
  • the radio communication devices 10 and 20 perform uplink CoMP communication, receive data transmitted by the radio communication device 30 by the radio communication devices 10 and 20, and synthesize a reception signal between the radio communication devices 10 and 20. Process. In this way, by combining received signals between the radio communication devices 10 and 20, inter-cell interference is reduced and received signal strength is improved to improve reception characteristics.
  • the wireless communication apparatus 10 includes an antenna 11, a transmission unit 12, a reception unit 13, and a control unit 14 as functional configurations. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • Each component 21 to 24 of the wireless communication device 20 is the same as each component 11 to 14 of the wireless communication device 10.
  • the control unit 14 acquires information and signals from the wireless communication device 20 via a wired connection or a wireless connection.
  • the control unit 14 determines information related to transmission timing that is a reference when data is transmitted from the wireless communication device 30 based on the information related to the wireless communication devices 10 and 20.
  • the information related to the wireless communication devices 10 and 20 includes, for example, information related to reception quality at the wireless communication devices 10 and 20 measured by the wireless communication devices 10 and 20, and distribution of reception timings at the wireless communication devices 10 and 20. Contains information about.
  • the control unit 14 combines the signal received by the wireless communication device 10 and the signal received by the wireless communication device 20 to execute a decoding process or the like, and acquires data transmitted from the wireless communication device 30.
  • the control unit 14 determines a transmission timing serving as an uplink reference so that information regarding the wireless communication apparatuses 10 and 20 satisfies a predetermined condition.
  • control unit 14 determines a transmission timing serving as an uplink reference so that the reception quality of the combined signal is the highest.
  • the control unit 14 corresponds to an example of a determination unit and a processing unit in this case.
  • the information related to the wireless communication devices 10 and 20 may include various information related to the wireless communication devices 10 and 20 such as the type, installation position, arrangement relationship, or operation status of each wireless communication device 10 and 20.
  • the transmission unit 12 transmits information related to transmission timing serving as an uplink reference to the wireless communication device 30 via the antenna 11.
  • the receiving unit 13 receives data transmitted from the wireless communication device 30 at a reference transmission timing via the antenna 11.
  • the antenna 11 may be separated for transmission and reception.
  • the wireless communication device 10 includes, for example, a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), a memory, and an RF (Radio Frequency) circuit including an antenna as hardware components.
  • the memory includes RAM, such as SDRAM (Synchronous Dynamic Random Access Memory), ROM (Read Only Memory), and flash memory, and stores programs, control information, and data.
  • the transmission unit 12 and the reception unit 13 are realized by, for example, an RF circuit.
  • the control unit 14 is realized by an integrated circuit such as a DSP or FPGA.
  • the hardware configuration of the wireless communication device 20 is the same as that of the wireless communication device 10.
  • the wireless communication device 30 includes an antenna 31, a transmission unit 32, a reception unit 33, and a control unit 34 as functional configurations. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the receiving unit 33 receives information related to the reference transmission timing from the wireless communication device 10.
  • the control unit 34 performs processing such as encoding of data to be transmitted.
  • the transmission unit 32 transmits data to the wireless communication devices 10 and 20 at a reference transmission timing.
  • the antenna 31 may be separated for transmission and reception.
  • the wireless communication device 30 includes, as hardware components, for example, a CPU (Central Processing Unit), a memory, and an RF circuit including an antenna.
  • the memory includes RAM such as SDRAM, ROM, and flash memory, for example, and stores programs, control information, and data.
  • the transmission unit 32 and the reception unit 33 are realized by, for example, an RF circuit.
  • the control unit 34 is realized by an integrated circuit such as a CPU, for example.
  • FIG. 2 is a sequence diagram for explaining an operation related to timing control of the wireless communication system 1.
  • the wireless communication devices 10 and 20 each perform reception processing at the control timing of its own device, and the timing synchronization between the reception signal and the reception processing is performed by the uplink from the wireless communication device 30. It has been established by adjusting the transmission timing. For example, when uplink CoMP communication is not performed, the timing synchronization between the radio communication device 30 and the radio communication device 10 corresponding to the serving cell C1 indicates that the uplink transmission timing from the radio communication device 30 is the same as the radio communication device. It is established by adjusting to match the timing of 10 reception processes. Such adjustment is executed, for example, by transmitting a command for adjusting the uplink transmission timing from the wireless communication device 10 to the wireless communication device 30 and performing the next transmission by the wireless communication device 10 in response to this command. Is done.
  • the wireless communication device 30 When performing uplink CoMP communication, the wireless communication device 30 transmits data to the wireless communication devices 10 and 20 using the same channel at the same transmission timing. At this time, depending on the transmission timing serving as an uplink reference, the influence of inter-symbol interference due to the timing difference between the received signal and the reception process may increase, thereby hindering improvement in reception characteristics.
  • the timing difference between the received signal and the received processing is, for example, the position on the time axis of the OFDM (Orthogonal Frequency Division) Multiplexing (OFDM) symbol included in the received signal and the position on the time axis of the FFT (Fast Fourier Transform) window used in the received process. Is the difference. Therefore, in the wireless communication system 1, when performing uplink CoMP communication, timing control is performed as follows.
  • the wireless communication devices 10 and 20 cooperate to acquire information related to the wireless communication devices 10 and 20 (S1).
  • the wireless communication device 10 measures reception quality at the wireless communication device 10.
  • the wireless communication device 10 acquires information such as reception quality measured by the wireless communication device 20 from the wireless communication device 20.
  • the wireless communication devices 10 and 20 cooperate to determine information related to transmission timing that serves as an uplink reference when data is transmitted from the wireless communication device 30 (S2). For example, the wireless communication device 10 uses the information related to the reception quality of the wireless communication devices 10 and 20 to transmit the information related to the transmission timing serving as the uplink reference so that the reception quality of the combined signal satisfies the predetermined condition. decide.
  • standard contains the information which shows the wireless communication apparatus used as the reference
  • the wireless communication device 30 may determine a transmission timing that serves as a reference. Thereby, the transmission timing used as the reference
  • the wireless communication device 10 transmits information related to the reference transmission timing to the wireless communication device 30 (S3).
  • the wireless communication device 10 transmits identification information (cell ID or the like) of a wireless communication device serving as a reference among the wireless communication devices 10 and 20 as information related to a transmission timing serving as a reference.
  • the wireless communication device 30 receives information related to the reference transmission timing, and transmits data to the wireless communication devices 10 and 20 at the reference transmission timing (S4).
  • data is transmitted to the wireless communication devices 10 and 20 at a predetermined transmission timing with respect to the reference wireless communication device.
  • data is transmitted at an appropriate transmission timing adjusted between the wireless communication devices 10 and 20.
  • the data transmitted from the wireless communication device 10 is received by the wireless communication devices 10 and 20, respectively.
  • the wireless communication apparatuses 10 and 20 cooperate to synthesize the signal received by the wireless communication apparatus 10 and the signal received by the wireless communication apparatus 20 to acquire data (S5).
  • the wireless communication device 10 acquires a signal received by the wireless communication device 20 and combines it with the signal received by the wireless communication device 10 to acquire data. Since data is transmitted at the transmission timing adjusted between the radio communication apparatuses 10 and 20, the influence of intersymbol interference in the combined signal is reduced, and reception characteristics are improved.
  • FIG. 3 is a diagram for explaining the reception timing in the wireless communication apparatus.
  • an OFDM signal is received and processed using an FFT window.
  • 3A and 3B time is shown in the horizontal direction, and OFDM symbol reception timing in the wireless communication apparatuses 10 and 20 is shown in order from the top.
  • the transmission timing is determined so that the received OFDM symbol of the wireless communication apparatus 10 fits in the received FFT window.
  • the received OFDM symbol does not fit in the received FFT window, and intersymbol interference occurs in the region A.
  • the transmission timing is determined so that the transmission timing is earlier than the state of FIG. 3 (A) and the received OFDM symbol of the wireless communication device 20 is within the reception FFT window.
  • the received OFDM symbol does not fit in the received FFT window, and intersymbol interference occurs in the region B.
  • FIG. 4 is a diagram for explaining reception characteristics in the wireless communication devices 10 and 20.
  • SINR is used as the reception quality.
  • the vertical axis represents SINR, and the horizontal axis represents reception timing.
  • the timing is shown as a relative value when the effective OFDM symbol length is 1 and the timing T1 in the state where the received OFDM symbol is within the reception FFT window in the wireless communication apparatus 10 is 0.
  • FIG. 4 shows the SINR (indicated by “ ⁇ ” in FIG. 4) of the signal received by the wireless communication device 10 when the transmission timing is changed from the state M to the state N.
  • the SINR of the signal (indicated by “ ⁇ ” in FIG. 4) and the SINR of the combined received signal (indicated by “ ⁇ ” in FIG. 4) are shown. Note that the SINR of each of the wireless communication devices 10 and 20 is measured in a state in which the received OFDM symbol is controlled to be within the reception FFT window by timing control for each of the wireless communication devices 10 and 20.
  • the SINR of the wireless communication apparatus 10 becomes a value R1 in the state of FIG. 3A in which the received OFDM symbol at the timing T1 is within the reception FFT window, and is illustrated from the state of FIG.
  • SINR decreases due to an increase in intersymbol interference.
  • the SINR of the wireless communication device 20 becomes the value R2 ( ⁇ R1) in the state of FIG. 3B in which the received OFDM symbol at the timing T2 is within the reception FFT window, and from the state of FIG.
  • the RINR decreases due to an increase in intersymbol interference.
  • the SINR of the combined received signal takes the maximum value R3 in the state of FIG. 3A at timing T1.
  • the wireless communication device 10 with the highest reception quality among the wireless communication devices 10 and 20 is determined as the reference wireless communication device as the transmission timing that maximizes the reception quality of the combined received signal.
  • the wireless communication device with the highest reception quality is obtained, for example, by obtaining the SINR in each wireless communication device and adding it to all the wireless communication devices.
  • the cell ID of the wireless communication device 10 is transmitted to the wireless communication device 30 as a reference wireless communication device, and a predetermined transmission from the wireless communication device 30 to the wireless communication device 10 as a reference transmission timing.
  • Data is transmitted to the wireless communication devices 10 and 20 at the timing.
  • FIG. 5 is a diagram illustrating a configuration of a wireless communication system 50 according to the second embodiment.
  • the wireless communication system 50 includes a plurality of base stations 60, 80, 90 and a mobile station 100.
  • the base stations 60, 80, and 90 form cells C11, C12, and C13, respectively, and the mobile station 100 is located in the cell C11.
  • Base stations 60, 80, and 90 communicate with each other and perform CoMP communication with mobile station 100.
  • Base station 60 is a serving base station, and base stations 80 and 90 are cooperative base stations.
  • the base stations 60, 80, and 90 perform uplink CoMP communication, and perform processing of receiving and combining the data transmitted by the mobile station 100 in cooperation with the base stations 60, 80, and 90.
  • FIG. 6 is a diagram illustrating a functional configuration of the base station 60.
  • the base station 60 includes a reception antenna 61, a data reception unit 62, a RACH (Random Access Channel) reception unit 63, and an SRS (Sounding Reference Signal) reception unit 64.
  • the base station 60 includes a transmission antenna 65, a control channel transmission unit 66, and a data channel transmission unit 67.
  • the base station 60 includes a data demodulator 68, a data decoder 69, a reception buffer 70, and a transmission buffer 71.
  • the base station 60 includes a timing detection unit 72, a reception quality measurement unit 73, a scheduler unit 74, a UL grant (UpLink grant) generation unit 75, a TA (Timing Advance) command and a RAR (Random Access Response) generation. Part 76.
  • a timing detection unit 72 receives signals and data from the base station 60 and a reception quality measurement unit 73.
  • a scheduler unit 74 receives a UL grant (UpLink grant) generation unit 75
  • TA Timing Advance
  • RAR Random Access Response
  • the data reception unit 62 receives uplink data transmitted from the mobile station 100 via the reception antenna 61.
  • uplink data is transmitted from the mobile station 100 using PUSCH (PhysicalPhysUplink Shared CHannel).
  • the RACH receiving unit 63 receives a random access signal transmitted from the mobile station 100 using the RACH via the receiving antenna 61.
  • Random access is a procedure for transmitting data from one wireless communication device (for example, a mobile station) to the other wireless communication device (for example, a base station) from a state where wireless resources used for data transmission are not allocated. It is.
  • the base station 60 establishes synchronization with the mobile station 100 by receiving the random access signal.
  • the SRS receiving unit 64 receives the SRS from the mobile station 100 via the receiving antenna 61.
  • the SRS is a known signal transmitted by the mobile station 100, and the base station 60 grasps the channel quality and the like by receiving the SRS. Moreover, the base station 60 determines the transmission timing from the mobile station 100 to the base station 60 by receiving SRS.
  • the data demodulator 68 receives the received data from the data receiver 62 and performs a demodulation process.
  • data received from the mobile station 100 is demodulated based on a channel estimation result for PUSCH estimated using DM-RS (DeModulation RS) transmitted from the mobile station 100 as a reference signal.
  • DM-RS Demonulation RS
  • the data decoder 69 receives the data demodulated by the data demodulator 68, performs a decoding process, and stores the acquired data in the reception buffer 70.
  • the timing detector 72 detects the current reception timing of the local station based on the random access signal received by the RACH receiver 63.
  • the timing detection unit 72 detects the current reception timing of the local station based on the SRS received by the SRS reception unit 64.
  • the timing detection unit 72 acquires timing information of the base stations 80 and 90 from the base stations 80 and 90. For example, the timing detector 72 acquires timing information detected by the timing detectors of the base stations 80 and 90 based on the SRS received by the SRS receivers of the base stations 80 and 90.
  • the reception quality measurement unit 73 measures the reception quality of the local station using the SRS received by the SRS reception unit 64. Further, the reception quality measuring unit 73 acquires information indicating the reception quality measured by the reception quality measuring unit of the base stations 80 and 90 from the base stations 80 and 90.
  • the scheduler unit 74 performs scheduling processing such as resource allocation based on the reception quality and timing information of the base stations 60, 80, and 90. For example, the scheduler unit 74 determines SRS resource allocation information for transmitting SRS from the mobile station 100 to the base station 60. For example, the scheduler unit 74 acquires SRS resource allocation information for transmitting SRS from the mobile station 100 to the base stations 80 and 90.
  • the SRS resource allocation information includes, for example, time and frequency at which SRS can be transmitted, and SRS data series information.
  • the scheduler unit 74 may adjust the SRS resource allocation information of the base stations 60, 80, 90 so that the SRSs of the base stations 60, 80, 90 do not collide. Further, for example, the scheduler unit 74 determines a transmission timing serving as an uplink reference from the mobile station 100 to the base stations 60, 80, and 90 during CoMP communication.
  • the UL grant generation unit 75 generates an UL grant indicating a control signal for allocating uplink resources based on the scheduling information by the scheduler unit 74.
  • the UL grant includes SRS resource allocation information from the mobile station 100 to the base stations 60, 80, and 90. Further, UL grant includes information indicating transmission timing that serves as a reference from the mobile station 100 to the base stations 60, 80, and 90. In the second embodiment, the cell ID of the reference base station is used as the information indicating the reference transmission timing.
  • the TA command / RAR generator 76 generates a random access response RAR based on the reception result of the random access signal.
  • the RAR includes timing adjustment information based on the timing information detected by the timing detection unit 72 according to the random access signal.
  • the timing adjustment information includes, for example, the transmission timing of the mobile station 100 from the current time so that the timing at which the signal transmitted from the mobile station 100 is received by the base station 60 is within a predetermined reception window of the base station 60. Indicates whether to make it early or late.
  • the TA command / RAR generator 76 generates a TA command based on the timing information detected by the timing detector 72 according to the SRS received by the SRS receiver 64.
  • the TA command indicates how much the transmission timing from the mobile station 100 should be made earlier or later than the current transmission timing. For example, the base station 60 determines at which timing position in the reception window the SRS is received, and determines the TA command to return to the window center when the reception timing position of the SRS is likely to protrude from the reception window. To do.
  • the control channel transmission unit 66 transmits control information to the mobile station 100 using the control channel via the transmission antenna 65.
  • the control channel includes PDCCH (Physical Downlink Control CHannel).
  • the control information includes a UL custom-character generated by the UL custom-character generating unit 75.
  • the data channel transmission unit 17 transmits data to the mobile station 100 through the transmission antenna 65 using the data channel.
  • the data channel includes PDSCH (Physical Downlink Shared CHannel).
  • the transmission data includes data stored in the transmission buffer 71 and TA command / RAR generated by the TA command / RAR generation unit 76.
  • FIG. 7 is a diagram illustrating a functional configuration of the mobile station 100.
  • the mobile station 100 includes a transmission antenna 101, a data transmission unit 102, an SRS transmission unit 103, and a RACH transmission unit 104.
  • the mobile station 100 includes a reception antenna 105, a control channel reception unit 106, and a data channel reception unit 107.
  • the mobile station 100 includes application processing units 109 and 110, a transmission buffer 108, and a reception buffer 111.
  • the mobile station 100 includes a data sequence generation unit 112, a transmission timing control unit 113, a UL grant analysis unit 114, and an upper layer control information analysis unit 115. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
  • the control channel receiving unit 106 receives control information transmitted from the base station 60 using the control channel via the reception antenna 105.
  • the control channel includes PDCCH (Physical Downlink Control CHannel).
  • the control information includes UL grant.
  • the data channel receiving unit 107 receives data transmitted from the base station 60 using the data channel via the receiving antenna 105.
  • the data channel includes PDSCH (Physical Downlink Shared CHannel).
  • the data channel receiving unit 107 uses the control information received by the control channel 106 to perform demodulation processing, decoding processing, and the like of the received data, and stores in the reception buffer 110 and inputs to the higher layer control information analysis unit 115 I do.
  • the upper layer control information analyzing unit 115 acquires the upper layer control information received by the data channel receiving unit 107.
  • Upper layer control information includes RACH resource allocation information, SRS resource allocation information, and TA commands.
  • the TA command is included in the header area of the decoded received data.
  • the UL grant analysis unit 114 analyzes the UL grant received by the control channel reception unit 106 and acquires information.
  • the acquired information includes information regarding the transmission timing used as a reference.
  • the transmission timing control unit 113 performs transmission via the RACH based on the TA command acquired by the upper layer control information analysis unit 115 and information on the transmission timing used as a reference acquired by the UL grant analysis unit 114, and SRS. The transmission timing of data transmission and data transmission is controlled.
  • the data sequence generation unit 112 generates a data sequence used for the random access preamble and SRS based on the RACH resource allocation information and the SRS resource allocation information.
  • the data transmission unit 102 transmits the data stored in the transmission buffer 108 to the base stations 60, 80, 90 via the transmission antenna 101.
  • the transmission data is transmitted using, for example, PUSCH.
  • the SRS transmission unit 103 transmits the SRS to the base stations 60, 80, 90 using the transmission timing set in the transmission timing control unit 113.
  • the RACH transmission unit 104 transmits a signal using the RACH using the transmission timing set in the transmission timing control unit 113.
  • the application processing unit 109 generates data to be transmitted and stores it in the transmission buffer 108.
  • the application processing unit 110 acquires and processes the reception data stored in the reception buffer 111.
  • FIG. 8 is a diagram illustrating a hardware configuration of the base station 60.
  • the base station 60 includes, as hardware components, for example, a DSP 60A, an FPGA 60B, a memory 60C, an RF circuit 60D including an antenna A1, and a network IF 60E.
  • the DSP 60A and the FPGA 60B are connected so that various signals and data can be input / output via a network IF 60E such as a switch.
  • the memory 60C includes, for example, a RAM such as an SDRAM, a ROM, and a flash memory, and stores programs, control information, and data.
  • the data demodulating unit 68, the data decoding unit 69, the timing detecting unit 72, the reception quality measuring unit 73, the scheduler unit 74, the UL grant generating unit 75, and the TA command / RAR generating unit 76 are, for example, integrated circuits such as a DSP 60A and FPGA 60B. Realized.
  • the data receiving unit 62, the RACH receiving unit 63, the SRS receiving unit 64, the control channel transmitting unit 66, and the data channel transmitting unit 67 are realized by, for example, the RF circuit 60D.
  • the reception buffer 70 and the transmission buffer 71 are realized by the memory 60C, for example.
  • FIG. 9 is a diagram illustrating a hardware configuration of the mobile station 100.
  • the mobile station 100 includes, as hardware components, for example, a CPU 100A, a memory 100B, an RF circuit 100C including an antenna A2, and a display device 100D such as an LCD (Liquid Crystal Display).
  • the memory 100B includes, for example, a RAM such as an SDRAM, a ROM, and a flash memory, and stores programs, control information, and data.
  • the data transmission unit 102, SRS transmission unit 103, RACH transmission unit 104, control channel reception unit 106, and data channel reception unit 107 are realized by, for example, the RF circuit 100C.
  • the application processing units 109 and 110, the data series generation unit 112, the transmission timing control unit 113, the UL grant analysis unit 114, and the higher layer control information analysis unit 115 are realized by an integrated circuit such as the CPU 100A, for example.
  • the transmission buffer 108 and the reception buffer 111 are realized by the memory 100B, for example.
  • 10 and 11 are sequence diagrams for explaining the operation of the wireless communication system 50.
  • the mobile station 100 transmits a random access signal for initial synchronization to the base station 60 (S11).
  • the mobile station 100 uses a signal sequence randomly selected from a plurality of signal sequences by the data sequence generation unit 112 based on system information transmitted using BCH (Broadcast ⁇ ⁇ CHannel) as a random access preamble. Transmit to the base station 60.
  • BCH Broadcast ⁇ ⁇ CHannel
  • a signal transmitted via the RACH is set to have a long CP length, and the allowable range of the reception timing deviation is relatively large. Therefore, it is possible to receive even when the initial timing control is not performed. ing.
  • the base station 60 can grasp the current reception timing of its own station by receiving the random access signal.
  • the base station 60 transmits RAR as a response to the received random access signal (S12).
  • RAR includes timing adjustment information of uplink transmission timing.
  • the mobile station 100 determines the next transmission timing based on this timing adjustment information. As a result, synchronization is established between the base station 60 and the mobile station 100.
  • the base station 60 transmits a message for starting CoMP communication to the mobile station 100 (S13).
  • This message includes cell ID allocation information of the cooperative base stations 80 and 90, for example.
  • the base station 60 notifies the base stations 80 and 90 of information necessary for CoMP communication. Note that the process of selecting a cooperative base station may be performed by the mobile station 100.
  • the mobile station 100 establishes synchronization with the coordinated base stations 80 and 90 (S14 to S17).
  • the mobile station 100 performs random access transmission for initial synchronization to the base station 80 (S14).
  • the RACH resource allocation information uses BCH or PUCCH
  • the base station 80 transmits an RAR including uplink transmission timing adjustment information as a response to the received random access preamble (S15).
  • the mobile station 100 performs random access transmission for initial synchronization to the base station 90 (S16).
  • the base station 90 transmits an RAR including uplink transmission timing adjustment information to the base station 90 as a response to the received random access preamble (S17).
  • initial synchronization of transmission timing is performed between the mobile station 100 and each base station 60, 80, 90, and the initial value of the transmission timing to each base station 60, 80, 90 is stored.
  • the base station 80 notifies the SRS resource allocation information to the base station 60 (S18). Further, the base station 90 notifies the SRS resource allocation information to the base station 60 (S19).
  • the base station 60 transmits the SRS resource allocation information of the base stations 60, 80, 90 to the mobile station 100 (S20).
  • the SRS resource allocation information may be directly transmitted from the base stations 60, 80, 90 to the mobile station 100.
  • the base stations 60, 80, and 90 periodically repeat uplink transmission timing update processing in order (S21 to S28).
  • the uplink transmission timing update process is performed in the transmission cycle of the upper layer control information using the data channel.
  • the upper layer control information is transmitted at a period of 80 [ms], 160 [ms], or 320 [ms], for example.
  • the mobile station 100 transmits an SRS to the base station 60 (S21), and the base station 60 generates a TA command and transmits it to the mobile station 100 (S22). Further, the mobile station 100 transmits an SRS to the base station 80 (S23), the base station 80 generates a TA command and notifies the base station 60 (S24), and the base station 60 transmits the notified TA command. It transmits to the mobile station 100 (S25). Also, the mobile station 100 transmits an SRS to the base station 90 (S26), generates a TA command and notifies the base station 60 (S27), and the base station 60 transmits the notified TA command to the mobile station 100. (S28).
  • the mobile station 100 updates the stored transmission timing to each of the base stations 60, 80, 90 in accordance with the received TA command.
  • the mobile station 100 performs the next transmission to the base stations 60, 80, and 90 using the updated transmission timing.
  • the TA commands may be directly transmitted from the base stations 60, 80, 90 to the mobile station 100.
  • the mobile station 100 transmits SRSs to the base stations 60, 80, and 90, respectively (S29 to S31).
  • the base stations 60, 80, 90 cooperate to measure and acquire the reception quality (S32).
  • the base stations 60, 80, and 90 measure the reception quality using the received SRS as a reference signal.
  • the base station 60 acquires information on the reception quality of the base stations 80 and 90 and timing information from the base stations 80 and 90.
  • the base stations 60, 80, and 90 cooperate to determine information regarding transmission timing that is a reference when data is transmitted from the mobile station 100 (S33). For example, the base station 60 determines a base station serving as a reference for transmission timing based on the information regarding the reception quality of the base stations 60, 80, 90 and the timing information (S33). Thereby, the reference transmission timing is adjusted between the base stations 60, 80, and 90 and appropriately determined.
  • the base station 60 transmits information related to the reference transmission timing to the mobile station 100 (S34). For example, the base station 60 generates a UL custom-character including the cell ID of the base station serving as a reference, and transmits the generated UL custom-character to the mobile station 100.
  • UL grant transmission using the control channel is performed in a shorter cycle than transmission of higher layer control information. For example, UL grant is transmitted at a cycle of 1 [ms]. Since the transmission timing is controlled in such a relatively short cycle, uplink transmission can be performed at a transmission timing that appropriately follows changes in the propagation environment.
  • the mobile station 100 transmits data to the base stations 60, 80, 90 at the transmission timing that is the received reference (S35). Thereby, data is transmitted at an appropriate transmission timing adjusted between the base stations 60, 80 and 90. Data transmitted from the mobile station 100 is received by the base stations 60, 80, and 90, respectively.
  • the base stations 60, 80, 90 cooperate to synthesize signals received at the base stations 60, 80, 90 to acquire data (S36).
  • the base station 60 acquires signals received by the base stations 80 and 90, and combines the signals received by the base stations 60, 80, and 90 to acquire data. Since data is transmitted at the transmission timing adjusted between the base stations 60, 80, 90, the influence of intersymbol interference is reduced in the combined received signal, and reception characteristics are improved.
  • FIG. 12 is a diagram for explaining reception timings at the base stations 60, 80, 90.
  • an OFDM signal is received and processed using an FFT window.
  • the horizontal direction indicates time, and the OFDM symbol reception timing in the base stations 60, 80, and 90 in order from the top.
  • the transmission timing is determined so that the received OFDM symbol of the base station 60 fits in the received FFT window.
  • the received OFDM symbols do not fit in the received FFT window, and intersymbol interference occurs in the regions C and D.
  • the transmission timing is determined so that the transmission timing is advanced from the state of FIG. 12A, and the received OFDM symbol of the base station 80 fits in the reception FFT window. At this time, in the base stations 60 and 90, the received OFDM symbols do not fit in the received FFT window, and intersymbol interference occurs in the regions E and F.
  • the transmission timing is determined so that the transmission timing is earlier than the state of FIG. 12B, and the received OFDM symbol of the base station 90 fits in the reception FFT window.
  • the received OFDM symbol does not fit in the received FFT window, and intersymbol interference occurs in the region G.
  • FIG. 13 is a diagram for explaining the reception characteristics at the base stations 60, 80, 90.
  • SINR is used as the reception quality.
  • the vertical axis represents SINR, and the horizontal axis represents reception timing.
  • the timing is a relative value when the effective OFDM symbol length is 1, and the timing T3 in the state where the received OFDM symbol is within the received FFT window at the base station 60 is 0.
  • FIG. 13 illustrates the SINR (indicated by “ ⁇ ” in FIG. 13) of the signal received by the base station 60 and the SINR of the signal received by the base station 80 when the transmission timing is changed from the state P to the state R. 13, the SINR of the signal received by the base station 90 (indicated by “X” in FIG. 13), and the SINR of the combined received signal (indicated by “ ⁇ ” in FIG. 13). ).
  • the SINR of each of the base stations 60, 80, 90 is measured in a state where the received OFDM symbols are controlled to be within the reception FFT window by the timing control for each of the base stations 60, 80, 90.
  • the SINR of the base station 60 becomes the value R4 in the state of FIG. 12A where the received OFDM symbol at the timing T3 is within the received FFT window, and from the state of FIG. As the state changes to (C), the SINR decreases due to the increase in intersymbol interference.
  • the SINR of the base station 80 is the maximum value R5 ( ⁇ R4) in the state of FIG. 12B in which the received OFDM symbol at the timing T4 is within the received FFT window.
  • the SINR of the base station 90 is a value R6 ( ⁇ R5) in the state of FIG. 12C in which the received OFDM symbol at timing T5 is within the received FFT window.
  • the SINR of the combined received signal is the maximum value R7 in the state of FIG. 12B at timing T4.
  • the base station 80 of the base stations 60, 80, 90 is determined as a reference base station as the transmission timing that maximizes the reception quality of the combined received signal.
  • the reception quality and the distribution of the reception timing it is more possible to make the symbol closer to the timing of the base stations 80 and 90 where the reception timing is densely distributed than to match the timing of the base station 60 having the highest reception quality. The effect of reducing the influence of interfering interference is great.
  • the cell ID of the base station 80 is transmitted as the reference base station to the mobile station 100, and the mobile station 100 transmits the reference transmission timing to the base station 80 at a predetermined transmission timing as the reference transmission timing.
  • Data is transmitted from 100 to the base stations 60, 80, 90. Thereby, when data is acquired by combining the signals received by the base stations 60, 80, 90, the influence of intersymbol interference is reduced in the combined received signal, and reception characteristics are improved.
  • reception characteristics can be improved in the radio communication system 50 that performs uplink CoMP communication.
  • a value obtained by correcting the reception quality with a predetermined value corresponding to the distribution of the reception timing is used as an index value.
  • the transmission timing may be determined.
  • the reception quality is multiplied by a coefficient corresponding to the relative value based on the median or average value of the reception timing, or an offset value corresponding to the relative value based on the median or average value of the reception timing is added to the reception quality. You may do it.
  • the reception quality is multiplied by a coefficient according to the order close to the median or average value of the reception timing, or an offset value according to the order close to the median or average value of the reception timing is added to the reception quality. May be.
  • FIG. 14 is a diagram illustrating a configuration of a wireless communication system 200 according to the third embodiment.
  • the wireless communication system 200 includes a mobile station 100 and base stations that form a cell.
  • the base station includes a plurality of RRHs (Remote Radio Heads) 230A to 230C and a BBU (BaseBand Unit) 220.
  • RRHs Remote Radio Heads
  • BBU BaseBand Unit
  • Each of the RRHs 230A to 230C has an antenna (point) and is arranged at a distant point to form cover areas E21, 22 and 23.
  • the cell of the base station is formed by the cover areas E21, 22 and 23.
  • the BBU 220 is disposed at a point distant from the RRHs 230A to 230C, and is connected to the RRHs 230A to 230C by wired connection.
  • the mobile station 100 is located in the cover area E21 of the RRH 230A.
  • the RRHs 230A to 230C correspond to an example of a first wireless communication device, and perform communication with each other and CoMP communication with the mobile station 100.
  • Cover area E21 of RRH 230A is used as a serving cell, and cover areas E22 and E23 of RRH 230B and 230C are used as cooperative cells.
  • the RRHs 230A to 230C perform uplink CoMP communication, and perform processing of receiving and combining the data transmitted by the mobile station 100 in cooperation with the RRHs 230A to 230C. Since the configuration and operation of the mobile station 100 are the same as those of the mobile station 100 of the second embodiment, the same reference numerals are given and description thereof is omitted.
  • FIG. 15 is a diagram showing a functional configuration of the RRHs 230A to 230C and the BBU 220 of the base station 210.
  • the RRH 230A of the base station 210 includes a reception antenna 231A, a transmission antenna 232A, and a radio unit 233A.
  • the radio unit 233A includes a data receiver 234A, a RACH receiver 235A, an SRS receiver 236A, a control channel transmitter 237A, and a data channel transmitter 238A.
  • the BBU 220 includes a data demodulator 240, a data decoder 241, a timing detector 243, a reception buffer 242, a reception quality measurement unit 244, a scheduler unit 245, a UL grant generation unit 246, a TA command A RAR generator 247 and a transmission buffer 248 are provided. Details of the components of the RRH 230A and the BBU 220 are the same as those of the components of the base station 60 of the second embodiment.
  • the RRH 230B includes a reception antenna 231B, a transmission antenna 232B, and a radio unit 233B.
  • the radio unit 233B includes a data reception unit 234B, a RACH reception unit 235B, an SRS reception unit 236B, a control channel transmission unit 237B, and a data channel transmission unit 238A. Details of each component of the RRH 230B are the same as each component of the RRH 230A.
  • the RRH 230C includes a reception antenna 231C, a transmission antenna 232C, and a radio unit 233C.
  • the radio unit 233C includes a data reception unit 234C, a RACH reception unit 235C, an SRS reception unit 236C, a control channel transmission unit 237C, and a data channel transmission unit 238C. Details of each component of the RRH 230C are the same as each component of the RRH 230A.
  • the operation of the wireless communication system 200 is basically the transmission / reception operation of the base stations 60, 80, 90 of the second embodiment as the operation of the RRHs 230A-230C.
  • the control operation of the base stations 60, 80, 90 Is the operation of the BBU 220.
  • the base station 60 takes the initiative to acquire information from the base stations 80 and 90 and perform cooperative processing (S32, S33, S36), whereas in the third embodiment, the BBU 220 performs information processing. Aggregate and perform cooperative processing.
  • timing control is executed in the same manner as in the description of FIG. 13 of the second embodiment.
  • a reference transmission timing is determined as the transmission timing that maximizes the reception quality of the combined received signal.
  • FIG. 16 is a diagram illustrating a configuration of a wireless communication system 300 according to the fourth embodiment.
  • base stations 310, 320, and 330 and RRHs 340A to 340L are mixed as an example of a first wireless communication apparatus, and at least a part of these perform cooperative communication.
  • a plurality of base stations 310, 320, and 330 form a plurality of cells C31, C32, and C33.
  • a plurality of RRHs 340A to 340L having antennas (points) are arranged in each cell C31, C32, C33.
  • RRHs 340A to 340L each have an antenna and a radio unit, and BBUs including a baseband processing unit and the like are arranged at different positions.
  • RRHs 340A to 340l are arranged at the ends of cells C31, C32, and C33 of base stations 310, 320, and 330, respectively.
  • RRHs 340A to 340l form cover areas E41A to E41L, respectively.
  • BBUs connected to RRHs 340A to 340L are arranged at substantially the same positions as base stations 310, 320, and 330, respectively.
  • the BBUs corresponding to the RRHs 340A to 340L are connected or integrated with the base stations 310, 320, and 330 forming the cells C31, C32, and C33 that are in the area, and between the base stations 310, 320, and 330. Collaborative scheduling is possible.
  • the mobile station 100 is located in the cover area E340A of the RRH 340A under the base station 310. Since the configuration and operation of the mobile station 100 are the same as those of the mobile station 100 of the second embodiment, the same reference numerals are given and description thereof is omitted.
  • the functional configurations and operations of the base stations 310, 320, and 330 are the same as those of the base station 60 of the second embodiment.
  • the functional configurations and operations of the RRHs 340A to 340L are the same as those of the RRH 230A of the third embodiment.
  • timing control is executed in the same manner as in the description of FIG. 13 of the second embodiment. For example, for at least a part of the base stations 310, 320, and 330 that perform uplink CoMP communication and the RRHs 340A to 340L, a transmission timing that serves as a reference is used as a transmission timing that maximizes the reception quality of the combined received signal. It is determined.
  • reception characteristics can be improved in the wireless communication system 300 that performs uplink CoMP communication.
  • the fourth embodiment has been described on the assumption that the cover area of each RRH exists in the same cell, the cover area of each RRH may be present across different cells.
  • the wireless communication systems of the first to fourth embodiments can be realized as, for example, an LTE-A system.
  • the present invention can also be applied to a wireless communication system using a communication method other than LTE-A.
  • wireless communication system for example, it is also possible to apply to a heterogeneous network in which base stations having different transmission powers are mixed or wireless communication devices using different types of communication methods are mixed. .
  • the condition for determining the reference transmission timing is the installation position of each device (wireless communication device, base station, RRH, antenna, etc.), the arrangement relationship with other devices, or They can be updated as appropriate according to the changing factors such as the operation status and radio wave condition of each device.
  • the first to fourth embodiments can be applied to mobile terminals such as mobile phones, smartphones, PDAs (Personal Digital Assistants) as mobile stations.
  • the first to fourth embodiments can be applied to various communication devices that communicate with a base station such as a mobile relay station.
  • first to fourth embodiments can be applied to base stations of various sizes such as macro base stations and femto base stations as base stations.
  • first to fourth embodiments can be applied to various communication devices that communicate with mobile stations such as relay stations.
  • each component of the base station and mobile station is not limited to the mode of the first to fourth embodiments, and all or a part thereof can be used for various loads and usage conditions. Accordingly, it may be configured to be functionally or physically distributed / integrated in an arbitrary unit.
  • the memory may be connected via a network or a cable as an external device of the base station or mobile station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The purpose of the disclosed technology is to provide a wireless communication system, wireless communication device, and wireless communication method with which it is possible to improve reception characteristics in coordinated multipoint communication. A wireless communication system in which data transmitted from a second wireless communication device is received by a plurality of first wireless communication devices, the wireless communication system comprising: a first transmission unit that transmits, to the second wireless communication device, information that is based on information regarding the plurality of first wireless communication devices and relates to a transmission timing; and a second transmission unit that transmits the data from the second wireless communication device to the plurality of first wireless communication devices at the transmission timing.

Description

無線通信システム、無線通信方法、及び無線通信装置Wireless communication system, wireless communication method, and wireless communication apparatus
 本発明は、無線通信システム、無線通信方法、及び無線通信装置に関する。 The present invention relates to a wireless communication system, a wireless communication method, and a wireless communication apparatus.
 近年、携帯電話システム等の無線通信システムにおいて、無線通信の更なる高速化・大容量化等を図るため、次世代の無線通信技術について議論が行われている。例えば、標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)と呼ばれる通信規格や、LTEの無線通信技術をベースとしたLTE-A(LTE - Advanced)と呼ばれる通信規格が提案されている。 In recent years, next-generation wireless communication technologies have been discussed in order to further increase the speed and capacity of wireless communication in wireless communication systems such as mobile phone systems. For example, 3GPP (3rd Generation Partnership Project), a standardization organization, proposes a communication standard called LTE (Long Term Evolution) and a communication standard called LTE-A (LTE-Advanced) based on LTE wireless communication technology. Has been.
 LTE-Aシステム等において、セル間干渉の低減や受信信号強度の改善のため、多地点協調(Coordinated MultiPoint、以下、CoMPともいう)通信が検討されている。多地点協調通信では、地理的に離れた複数のポイントが協調して通信を行う。各ポイントは、例えば、基地局、アンテナ或いはこれらにより形成されるセルに相当する。これにより、多地点間での送信あるいは受信のダイナミックな調整が行われる。例えば、上りリンクの多地点協調通信では、複数のセルで受信された信号をセル間で通信しながら結合処理する方法が検討されている。 In the LTE-A system etc., coordinated multipoint (hereinafter also referred to as CoMP) communication is being studied in order to reduce inter-cell interference and improve received signal strength. In multipoint cooperative communication, a plurality of geographically distant points cooperate to perform communication. Each point corresponds to, for example, a base station, an antenna, or a cell formed by these. Thereby, dynamic adjustment of transmission or reception between multiple points is performed. For example, in uplink multipoint cooperative communication, a method of combining signals while receiving signals received in a plurality of cells is being studied.
 しかしながら、多地点協調通信によりセル間干渉の低減や受信信号強度の改善を実現するためには、制御の遅延やシグナリングの増大の考慮のもとで、セル間での適切な調整が必要である。例えば上りリンクの多地点協調通信で、端末から送信される信号を受信するタイミングがセル毎に異なることが想定される。このとき、セル間の受信タイミングによっては、上りリンクの多地点協調通信の結合処理で、シンボル間干渉の影響が増大して受信特性の向上を阻害する恐れがある。 However, in order to reduce inter-cell interference and improve received signal strength through multipoint coordinated communication, appropriate adjustments between cells are necessary in consideration of control delay and increased signaling. . For example, in uplink multipoint cooperative communication, it is assumed that the timing for receiving a signal transmitted from a terminal is different for each cell. At this time, depending on the reception timing between the cells, there is a possibility that the influence of inter-symbol interference increases and the improvement of the reception characteristics may be hindered by the combination processing of uplink multipoint cooperative communication.
 開示の技術は、上記に鑑みてなされたものであって、多地点協調通信において、受信特性を向上することのできる無線通信システム、無線通信装置、及び無線通信方法を提供することを目的とする。 The disclosed technology has been made in view of the above, and an object thereof is to provide a wireless communication system, a wireless communication apparatus, and a wireless communication method capable of improving reception characteristics in multipoint cooperative communication. .
 上述した課題を解決し、目的を達成するために、本件の開示する無線通信システムは、一つの態様において、複数の第1の無線通信装置で、第2の無線通信装置から送信されるデータを受信する。前記複数の第1の無線通信装置に関する情報に基づく、送信タイミングに関する情報を、前記第2の無線通信装置に送信する第1の送信部と、前記第2の無線通信装置から前記複数の第1の無線通信装置に、前記送信タイミングで前記データを送信する第2の送信部と、を有する。 In order to solve the above-described problems and achieve the object, in one aspect, a wireless communication system disclosed in the present application is a plurality of first wireless communication devices that transmit data transmitted from a second wireless communication device. Receive. A first transmission unit that transmits information related to transmission timing based on information about the plurality of first wireless communication devices to the second wireless communication device, and the plurality of first wireless communication devices from the second wireless communication device. A second transmission unit that transmits the data at the transmission timing.
 本件の開示する無線通信システムの一つの態様によれば、上りリンクの多地点協調通信において、受信特性を向上することができるという効果を奏する。 According to one aspect of the wireless communication system disclosed in the present case, it is possible to improve reception characteristics in uplink multipoint cooperative communication.
図1は、第1実施形態に係る無線通信システムの構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a wireless communication system according to the first embodiment. 図2は、無線通信システムの動作を説明するためのシーケンス図である。FIG. 2 is a sequence diagram for explaining the operation of the wireless communication system. 図3は、無線通信装置での受信タイミングを説明するための図である。FIG. 3 is a diagram for explaining the reception timing in the wireless communication apparatus. 図4は、無線通信装置での受信特性を説明するための図である。FIG. 4 is a diagram for explaining reception characteristics in the wireless communication device. 図5は、第2実施形態に係る無線通信システムの構成を示す図である。FIG. 5 is a diagram illustrating a configuration of a wireless communication system according to the second embodiment. 図6は、基地局の機能的構成を示す図である。FIG. 6 is a diagram illustrating a functional configuration of the base station. 図7は、移動局の機能的構成を示す図である。FIG. 7 is a diagram illustrating a functional configuration of the mobile station. 図8は、基地局のハードウェア構成を示す図である。FIG. 8 is a diagram illustrating a hardware configuration of the base station. 図9は、移動局のハードウェア構成を示す図である。FIG. 9 is a diagram illustrating a hardware configuration of the mobile station. 図10は、無線通信システムの動作を説明するためのシーケンス図である。FIG. 10 is a sequence diagram for explaining the operation of the wireless communication system. 図11は、無線通信システムの動作を説明するためのシーケンス図である。FIG. 11 is a sequence diagram for explaining the operation of the wireless communication system. 図12は、基地局での受信タイミングを説明するための図である。FIG. 12 is a diagram for explaining the reception timing at the base station. 図13は、基地局での受信特性を説明するための図である。FIG. 13 is a diagram for explaining reception characteristics at the base station. 図14は、第3実施形態に係る無線通信システムの構成を示す図である。FIG. 14 is a diagram illustrating a configuration of a wireless communication system according to the third embodiment. 図15は、RRH(Remote Radio Head)の機能的構成を示す図である。FIG. 15 is a diagram illustrating a functional configuration of RRH (Remote Radio Head). 図16は、第4実施形態に係る無線通信システムの構成を示す図である。FIG. 16 is a diagram illustrating a configuration of a wireless communication system according to the fourth embodiment.
 以下に、本件の開示する無線通信システム、無線通信方法、及び無線通信装置の実施例を、図面を参照しながら説明する。なお、以下の実施例により本件の開示する無線通信システム、無線通信方法、及び無線通信装置が限定されるものではない。
[第1実施形態]
 図1は、第1実施形態に係る無線通信システム1の構成を示す。図1に示すように、無線通信システム1は、複数の無線通信装置10,20と、無線通信装置30とを含む。例えば、無線通信システム1は、無線通信装置10,20を基地局、無線通信装置30を移動局として実現できる。無線通信装置10,20は、セルC1、C2をそれぞれ形成しており、無線通信装置30は、セルC1に在圏している。無線通信装置10,20は、無線通信装置10,20間で有線接続あるいは無線接続を介して通信を行うと共に、無線通信装置30に対してCoMP通信を行う。無線通信装置10,20は、上りリンクのCoMP通信を行っており、無線通信装置30が送信するデータを無線通信装置10,20で受信し、受信信号を無線通信装置10,20間で合成する処理を行う。このように受信信号を無線通信装置10,20間で合成することで、セル間干渉の低減や受信信号強度の改善を行い受信特性の向上を図っている。
Embodiments of a wireless communication system, a wireless communication method, and a wireless communication apparatus disclosed in the present application will be described below with reference to the drawings. Note that the wireless communication system, the wireless communication method, and the wireless communication device disclosed in the present application are not limited by the following embodiments.
[First Embodiment]
FIG. 1 shows a configuration of a wireless communication system 1 according to the first embodiment. As shown in FIG. 1, the wireless communication system 1 includes a plurality of wireless communication devices 10 and 20 and a wireless communication device 30. For example, the wireless communication system 1 can be realized by using the wireless communication devices 10 and 20 as a base station and the wireless communication device 30 as a mobile station. The wireless communication devices 10 and 20 form cells C1 and C2, respectively, and the wireless communication device 30 is located in the cell C1. The wireless communication devices 10 and 20 perform communication between the wireless communication devices 10 and 20 via wired connection or wireless connection, and perform CoMP communication with the wireless communication device 30. The radio communication devices 10 and 20 perform uplink CoMP communication, receive data transmitted by the radio communication device 30 by the radio communication devices 10 and 20, and synthesize a reception signal between the radio communication devices 10 and 20. Process. In this way, by combining received signals between the radio communication devices 10 and 20, inter-cell interference is reduced and received signal strength is improved to improve reception characteristics.
 図1に示すように、無線通信装置10は機能的構成として、アンテナ11と、送信部12と、受信部13と、制御部14とを備える。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。無線通信装置20の各構成部分21~24は、無線通信装置10の各構成部分11~14と同様である。 As shown in FIG. 1, the wireless communication apparatus 10 includes an antenna 11, a transmission unit 12, a reception unit 13, and a control unit 14 as functional configurations. Each of these components is connected so that signals and data can be input and output in one direction or in both directions. Each component 21 to 24 of the wireless communication device 20 is the same as each component 11 to 14 of the wireless communication device 10.
 制御部14は、有線接続あるいは無線接続を介して、無線通信装置20から情報や信号を取得する。制御部14は、無線通信装置10,20に関する情報に基づいて、無線通信装置30からデータを送信する際に基準となる送信タイミングに関する情報を決定する。無線通信装置10,20に関する情報とは、例えば、無線通信装置10,20で測定される、無線通信装置10,20での受信品質に関する情報や、無線通信装置10,20での受信タイミングの分布に関する情報を含む。受信品質は、例えば、SIR(Signal to Interference Ratio)、SINR(Signal to Interference and Noise Ratio)、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Power)(=受信電力値/総電力値)を含む。制御部14は、無線通信装置10で受信された信号と、無線通信装置20で受信された信号とを合成して復号処理等を実行し、無線通信装置30から送信されたデータを取得する。制御部14は、無線通信装置10,20に関する情報が所定条件を満たすように、上りリンクの基準となる送信タイミングを決定する。制御部14は、例えば、合成後の信号の受信品質が最も高くなるように、上りリンクの基準となる送信タイミングを決定する。なお、制御部14は、本件の決定部及び処理部の一例に相当する。また、無線通信装置10,20に関する情報は、各無線通信装置10,20の種類、設置位置、配置関係、或いは運用状況等、無線通信装置10,20に関する様々な情報を含み得る。 The control unit 14 acquires information and signals from the wireless communication device 20 via a wired connection or a wireless connection. The control unit 14 determines information related to transmission timing that is a reference when data is transmitted from the wireless communication device 30 based on the information related to the wireless communication devices 10 and 20. The information related to the wireless communication devices 10 and 20 includes, for example, information related to reception quality at the wireless communication devices 10 and 20 measured by the wireless communication devices 10 and 20, and distribution of reception timings at the wireless communication devices 10 and 20. Contains information about. The reception quality is, for example, SIR (Signal-to-Interference-Ratio), SINR (Signal-to-Interference-and-Noise-Ratio), RSRP (Reference-Signal-Received-Power), RSRQ (Reference-Signal-Received-Power) (= received power value / total power value). Including. The control unit 14 combines the signal received by the wireless communication device 10 and the signal received by the wireless communication device 20 to execute a decoding process or the like, and acquires data transmitted from the wireless communication device 30. The control unit 14 determines a transmission timing serving as an uplink reference so that information regarding the wireless communication apparatuses 10 and 20 satisfies a predetermined condition. For example, the control unit 14 determines a transmission timing serving as an uplink reference so that the reception quality of the combined signal is the highest. The control unit 14 corresponds to an example of a determination unit and a processing unit in this case. Further, the information related to the wireless communication devices 10 and 20 may include various information related to the wireless communication devices 10 and 20 such as the type, installation position, arrangement relationship, or operation status of each wireless communication device 10 and 20.
 送信部12は、上りリンクの基準となる送信タイミングに関する情報を、アンテナ11を介して無線通信装置30に送信する。受信部13は、無線通信装置30から基準となる送信タイミングで送信されたデータを、アンテナ11を介して受信する。なお、アンテナ11は送信と受信で別体としてもよい。 The transmission unit 12 transmits information related to transmission timing serving as an uplink reference to the wireless communication device 30 via the antenna 11. The receiving unit 13 receives data transmitted from the wireless communication device 30 at a reference transmission timing via the antenna 11. The antenna 11 may be separated for transmission and reception.
 無線通信装置10は、ハードウェアの構成要素として、例えばDSP(Digital Signal Processor)と、FPGA(Field Programmable Gate Array)と、メモリと、アンテナを備えるRF(Radio Frequency)回路とを有する。メモリは、例えばSDRAM(Synchronous Dynamic Random Access Memory)等のRAM、ROM(Read Only Memory)、及びフラッシュメモリを含み、プログラムや制御情報やデータを格納する。送信部12及び受信部13は、例えばRF回路により実現される。制御部14は、例えばDSP、FPGA等の集積回路により実現される。無線通信装置20のハードウェア構成は、無線通信装置10と同様である。 The wireless communication device 10 includes, for example, a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), a memory, and an RF (Radio Frequency) circuit including an antenna as hardware components. The memory includes RAM, such as SDRAM (Synchronous Dynamic Random Access Memory), ROM (Read Only Memory), and flash memory, and stores programs, control information, and data. The transmission unit 12 and the reception unit 13 are realized by, for example, an RF circuit. The control unit 14 is realized by an integrated circuit such as a DSP or FPGA. The hardware configuration of the wireless communication device 20 is the same as that of the wireless communication device 10.
 また、図1に示すように、無線通信装置30は機能的構成として、アンテナ31と、送信部32と、受信部33と、制御部34とを備える。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。 As shown in FIG. 1, the wireless communication device 30 includes an antenna 31, a transmission unit 32, a reception unit 33, and a control unit 34 as functional configurations. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
 受信部33は、無線通信装置10から、基準となる送信タイミングに関する情報を受信する。制御部34は、送信するデータの符号化処理等を実行する。送信部32は、基準となる送信タイミングでデータを無線通信装置10,20に送信する。なお、アンテナ31は送信と受信で別体としてもよい。 The receiving unit 33 receives information related to the reference transmission timing from the wireless communication device 10. The control unit 34 performs processing such as encoding of data to be transmitted. The transmission unit 32 transmits data to the wireless communication devices 10 and 20 at a reference transmission timing. The antenna 31 may be separated for transmission and reception.
 無線通信装置30は、ハードウェアの構成要素として、例えばCPU(Central Processing Unit)と、メモリと、アンテナを備えるRF回路とを有する。メモリは、例えばSDRAM等のRAM、ROM、及びフラッシュメモリを含み、プログラムや制御情報やデータを格納する。送信部32及び受信部33は、例えばRF回路により実現される。制御部34は、例えばCPU等の集積回路により実現される。 The wireless communication device 30 includes, as hardware components, for example, a CPU (Central Processing Unit), a memory, and an RF circuit including an antenna. The memory includes RAM such as SDRAM, ROM, and flash memory, for example, and stores programs, control information, and data. The transmission unit 32 and the reception unit 33 are realized by, for example, an RF circuit. The control unit 34 is realized by an integrated circuit such as a CPU, for example.
 次に、第1実施形態における無線通信システム1の動作を説明する。図2は、無線通信システム1のタイミング制御に関する動作を説明するためのシーケンス図である。前提として、無線通信システム1では、無線通信装置10,20はそれぞれ自装置の制御タイミングで受信処理を実行しており、受信信号と受信処理とのタイミング同期は、無線通信装置30からの上りリンクの送信タイミングを調整することで確立されている。例えば、上りリンクのCoMP通信を行わない場合、無線通信装置30とサービングセルC1に対応する無線通信装置10との間のタイミング同期が、無線通信装置30からの上りリンクの送信タイミングを、無線通信装置10の受信処理のタイミングに合うように調整することで確立される。このような調整は、例えば、無線通信装置10から無線通信装置30に、上りリンクの送信タイミングを調整するコマンドを送信し、このコマンドに応じて無線通信装置10が次回の送信を行うことで実行される。 Next, the operation of the wireless communication system 1 in the first embodiment will be described. FIG. 2 is a sequence diagram for explaining an operation related to timing control of the wireless communication system 1. As a premise, in the wireless communication system 1, the wireless communication devices 10 and 20 each perform reception processing at the control timing of its own device, and the timing synchronization between the reception signal and the reception processing is performed by the uplink from the wireless communication device 30. It has been established by adjusting the transmission timing. For example, when uplink CoMP communication is not performed, the timing synchronization between the radio communication device 30 and the radio communication device 10 corresponding to the serving cell C1 indicates that the uplink transmission timing from the radio communication device 30 is the same as the radio communication device. It is established by adjusting to match the timing of 10 reception processes. Such adjustment is executed, for example, by transmitting a command for adjusting the uplink transmission timing from the wireless communication device 10 to the wireless communication device 30 and performing the next transmission by the wireless communication device 10 in response to this command. Is done.
 また、上りリンクのCoMP通信を行う場合には、無線通信装置30は無線通信装置10,20に対して、同じ送信タイミングで同じチャネルを用いてデータを送信する。このとき、上りリンクの基準となる送信タイミングによっては、受信信号と受信処理とのタイミング差によるシンボル間干渉の影響が増大して、受信特性の向上を阻害する恐れがある。受信信号と受信処理とのタイミング差とは、例えば、受信信号に含まれるOFDM(Orthogonal Frequency Division Multiplexing)シンボルの時間軸上位置と、受信処理で用いるFFT(Fast Fourier Transform)窓の時間軸上位置との差である。そこで、無線通信システム1では、上りリンクのCoMP通信を行う場合、以下のようにタイミング制御を行う。 When performing uplink CoMP communication, the wireless communication device 30 transmits data to the wireless communication devices 10 and 20 using the same channel at the same transmission timing. At this time, depending on the transmission timing serving as an uplink reference, the influence of inter-symbol interference due to the timing difference between the received signal and the reception process may increase, thereby hindering improvement in reception characteristics. The timing difference between the received signal and the received processing is, for example, the position on the time axis of the OFDM (Orthogonal Frequency Division) Multiplexing (OFDM) symbol included in the received signal and the position on the time axis of the FFT (Fast Fourier Transform) window used in the received process. Is the difference. Therefore, in the wireless communication system 1, when performing uplink CoMP communication, timing control is performed as follows.
 図2に示すように、無線通信装置10,20は連携して、無線通信装置10,20に関する情報を取得する(S1)。例えば、無線通信装置10は、無線通信装置10での受信品質を測定する。また、無線通信装置10は、無線通信装置20から、無線通信装置20で測定される受信品質等の情報を取得する。 As shown in FIG. 2, the wireless communication devices 10 and 20 cooperate to acquire information related to the wireless communication devices 10 and 20 (S1). For example, the wireless communication device 10 measures reception quality at the wireless communication device 10. In addition, the wireless communication device 10 acquires information such as reception quality measured by the wireless communication device 20 from the wireless communication device 20.
 無線通信装置10,20は連携して、無線通信装置30からデータを送信する際の上りリンクの基準となる送信タイミングに関する情報を決定する(S2)。例えば、無線通信装置10は、無線通信装置10,20に関する受信品質等に関する情報に基づいて、合成後の信号の受信品質が所定条件を満たすように、上りリンクの基準となる送信タイミングに関する情報を決定する。基準となる送信タイミングに関する情報は、例えば無線通信装置10,20のうちの基準となる無線通信装置を示す情報を含む。なお、無線通信装置10は基準となる送信タイミングを決定し、基準となる送信タイミングに関する情報として、基準となる送信タイミング自体を無線通信装置30に送信してもよい。また、無線通信装置10から送信される情報に基づいて、無線通信装置30が基準となる送信タイミングを決定してもよい。これにより、上りリンクの基準となる送信タイミングが、無線通信装置10,20間で調整されて適切に決定される。 The wireless communication devices 10 and 20 cooperate to determine information related to transmission timing that serves as an uplink reference when data is transmitted from the wireless communication device 30 (S2). For example, the wireless communication device 10 uses the information related to the reception quality of the wireless communication devices 10 and 20 to transmit the information related to the transmission timing serving as the uplink reference so that the reception quality of the combined signal satisfies the predetermined condition. decide. The information regarding the transmission timing used as a reference | standard contains the information which shows the wireless communication apparatus used as the reference | standard among the wireless communication apparatuses 10 and 20, for example. Note that the wireless communication device 10 may determine a reference transmission timing and transmit the reference transmission timing itself to the wireless communication device 30 as information on the reference transmission timing. Further, based on information transmitted from the wireless communication device 10, the wireless communication device 30 may determine a transmission timing that serves as a reference. Thereby, the transmission timing used as the reference | standard of an uplink is adjusted between the radio | wireless communication apparatuses 10 and 20, and is determined appropriately.
 無線通信装置10は、基準となる送信タイミングに関する情報を、無線通信装置30に送信する(S3)。無線通信装置10は、例えば、基準となる送信タイミングに関する情報として、無線通信装置10,20のうちの基準となる無線通信装置の識別情報(セルID等)を送信する。無線通信装置30は、基準となる送信タイミングに関する情報を受信し、基準となる送信タイミングで無線通信装置10,20にデータを送信する(S4)。例えば、基準となる無線通信装置に対して予め定められた送信タイミングで、無線通信装置10,20にデータが送信される。これにより、無線通信装置10,20間で調整された適切な送信タイミングでデータが送信される。無線通信装置10から送信されたデータは、無線通信装置10,20でそれぞれ受信される。 The wireless communication device 10 transmits information related to the reference transmission timing to the wireless communication device 30 (S3). For example, the wireless communication device 10 transmits identification information (cell ID or the like) of a wireless communication device serving as a reference among the wireless communication devices 10 and 20 as information related to a transmission timing serving as a reference. The wireless communication device 30 receives information related to the reference transmission timing, and transmits data to the wireless communication devices 10 and 20 at the reference transmission timing (S4). For example, data is transmitted to the wireless communication devices 10 and 20 at a predetermined transmission timing with respect to the reference wireless communication device. As a result, data is transmitted at an appropriate transmission timing adjusted between the wireless communication devices 10 and 20. The data transmitted from the wireless communication device 10 is received by the wireless communication devices 10 and 20, respectively.
 無線通信装置10,20は連携して、無線通信装置10で受信された信号と無線通信装置20で受信された信号とを合成してデータを取得する(S5)。例えば、無線通信装置10が、無線通信装置20で受信された信号を取得し、無線通信装置10で受信された信号と合成してデータを取得する。無線通信装置10,20間で調整された送信タイミングでデータが送信されるので、合成後の信号におけるシンボル間干渉の影響が低減され、受信特性が向上される。 The wireless communication apparatuses 10 and 20 cooperate to synthesize the signal received by the wireless communication apparatus 10 and the signal received by the wireless communication apparatus 20 to acquire data (S5). For example, the wireless communication device 10 acquires a signal received by the wireless communication device 20 and combines it with the signal received by the wireless communication device 10 to acquire data. Since data is transmitted at the transmission timing adjusted between the radio communication apparatuses 10 and 20, the influence of intersymbol interference in the combined signal is reduced, and reception characteristics are improved.
 上記の動作について、図3,図4の例を用いて説明する。図3は、無線通信装置での受信タイミングを説明するための図である。図3の例では、OFDM信号が受信され、FFT窓を用いて処理される。図3(A)(B)は、横方向は時間を示し、上から順に無線通信装置10,20におけるOFDMシンボルの受信タイミングを示す。 The above operation will be described with reference to the examples of FIGS. FIG. 3 is a diagram for explaining the reception timing in the wireless communication apparatus. In the example of FIG. 3, an OFDM signal is received and processed using an FFT window. 3A and 3B, time is shown in the horizontal direction, and OFDM symbol reception timing in the wireless communication apparatuses 10 and 20 is shown in order from the top.
 図3(A)の状態では、無線通信装置10の受信OFDMシンボルが受信FFT窓に収まるように、送信タイミングが決定されている。このとき、無線通信装置20では、受信OFDMシンボルが受信FFT窓に収まらず、領域Aでシンボル間干渉が生じる。 In the state of FIG. 3A, the transmission timing is determined so that the received OFDM symbol of the wireless communication apparatus 10 fits in the received FFT window. At this time, in the wireless communication device 20, the received OFDM symbol does not fit in the received FFT window, and intersymbol interference occurs in the region A.
 図3(B)の状態では、送信タイミングが図3(A)の状態より早められ、無線通信装置20の受信OFDMシンボルが受信FFT窓に収まるように、送信タイミングが決定されている。このとき、無線通信装置10では、受信OFDMシンボルが受信FFT窓に収まらず、領域Bでシンボル間干渉が生じる。 In the state of FIG. 3 (B), the transmission timing is determined so that the transmission timing is earlier than the state of FIG. 3 (A) and the received OFDM symbol of the wireless communication device 20 is within the reception FFT window. At this time, in the wireless communication apparatus 10, the received OFDM symbol does not fit in the received FFT window, and intersymbol interference occurs in the region B.
 図4は、無線通信装置10,20での受信特性を説明するための図である。図4の例では、受信品質としてSINRが用いられる。図4において、縦軸はSINRを示し、横軸は受信のタイミングを示す。タイミングは、有効OFDMシンボル長を1として、無線通信装置10で受信OFDMシンボルが受信FFT窓に収まっている状態のタイミングT1を0とした場合の相対値として示す。無線通信装置20は、タイミングT2=0.2で、無線通信装置20で受信OFDMシンボルが受信FFT窓に収まっている状態となる。 FIG. 4 is a diagram for explaining reception characteristics in the wireless communication devices 10 and 20. In the example of FIG. 4, SINR is used as the reception quality. In FIG. 4, the vertical axis represents SINR, and the horizontal axis represents reception timing. The timing is shown as a relative value when the effective OFDM symbol length is 1 and the timing T1 in the state where the received OFDM symbol is within the reception FFT window in the wireless communication apparatus 10 is 0. The wireless communication device 20 is in a state where the received OFDM symbol is within the reception FFT window at the timing T2 = 0.2.
 図4は、送信タイミングを状態Mから状態Nの状態まで変化させた場合の、無線通信装置10で受信した信号のSINR(図4にて「□」で示す)、無線通信装置20で受信した信号のSINR(図4にて「△」で示す)、合成後の受信信号のSINR(図4にて「○」で示す)を示している。なお、各無線通信装置10,20のSINRは、無線通信装置10,20毎のタイミング制御により、受信OFDMシンボルが受信FFT窓に収まるように制御されている状態でそれぞれ測定される。 FIG. 4 shows the SINR (indicated by “□” in FIG. 4) of the signal received by the wireless communication device 10 when the transmission timing is changed from the state M to the state N. The SINR of the signal (indicated by “Δ” in FIG. 4) and the SINR of the combined received signal (indicated by “◯” in FIG. 4) are shown. Note that the SINR of each of the wireless communication devices 10 and 20 is measured in a state in which the received OFDM symbol is controlled to be within the reception FFT window by timing control for each of the wireless communication devices 10 and 20.
 図4に示すように、無線通信装置10のSINRは、タイミングT1の受信OFDMシンボルが受信FFT窓に収まっている図3(A)の状態で値R1となり、図3(A)の状態から図3(B)の状態に変化するにつれて、シンボル間干渉の増大によりSINRが低下している。一方、無線通信装置20のSINRは、タイミングT2の受信OFDMシンボルが受信FFT窓に収まっている図3(B)の状態で値R2(<R1)となり、図3(B)の状態から図3(A)の状態に変化するにつれて、シンボル間干渉の増大によりRINRが低下している。このとき、合成後の受信信号のSINRは、タイミングT1の図3(A)の状態で最大値R3をとる。 As shown in FIG. 4, the SINR of the wireless communication apparatus 10 becomes a value R1 in the state of FIG. 3A in which the received OFDM symbol at the timing T1 is within the reception FFT window, and is illustrated from the state of FIG. As the state changes to 3 (B), SINR decreases due to an increase in intersymbol interference. On the other hand, the SINR of the wireless communication device 20 becomes the value R2 (<R1) in the state of FIG. 3B in which the received OFDM symbol at the timing T2 is within the reception FFT window, and from the state of FIG. As the state changes to (A), the RINR decreases due to an increase in intersymbol interference. At this time, the SINR of the combined received signal takes the maximum value R3 in the state of FIG. 3A at timing T1.
 このとき、例えば、合成後の受信信号の受信品質を最も高くする送信タイミングとして、無線通信装置10,20のうち受信品質が最も高い無線通信装置10が、基準となる無線通信装置として決定される。 At this time, for example, the wireless communication device 10 with the highest reception quality among the wireless communication devices 10 and 20 is determined as the reference wireless communication device as the transmission timing that maximizes the reception quality of the combined received signal. .
 なお、受信品質が最も高い無線通信装置は例えば、各無線通信装置でSINRを求め、全ての無線通信装置に対して加算することにより求められる。また、各無線通信装置10,20のSINRは例えば、信号をS、雑音をN、受信信号のタイミングがFFT窓からはみ出る割合をαとして、次式(1)
 SINR=S×(1-α)/(N+S×α)…(1)
を用いて算出することができる。
Note that the wireless communication device with the highest reception quality is obtained, for example, by obtaining the SINR in each wireless communication device and adding it to all the wireless communication devices. Further, the SINR of each of the wireless communication devices 10 and 20 is, for example, the following equation (1), where S is a signal, N is a noise, and α is a rate at which the timing of the received signal protrudes from the FFT window
SINR = S × (1−α) / (N + S × α) (1)
Can be used to calculate.
 そして、基準となる無線通信装置として、無線通信装置10のセルIDが無線通信装置30に送信され、無線通信装置30から、基準となる送信タイミングとして、無線通信装置10への予め定められた送信タイミングで、無線通信装置10,20へデータが送信される。これにより、無線通信装置10,20で受信された信号を合成してデータを取得する際に、合成後の受信信号においてシンボル間干渉の影響が低減され、受信特性が向上される。 Then, the cell ID of the wireless communication device 10 is transmitted to the wireless communication device 30 as a reference wireless communication device, and a predetermined transmission from the wireless communication device 30 to the wireless communication device 10 as a reference transmission timing. Data is transmitted to the wireless communication devices 10 and 20 at the timing. As a result, when the signals received by the wireless communication devices 10 and 20 are combined to acquire data, the influence of intersymbol interference is reduced in the combined received signal, and the reception characteristics are improved.
 以上により、第1実施形態によれば、上りリンクのCoMP通信を行う無線通信システム1において、受信特性を向上させることができる。
[第2実施形態]
 図5は、第2実施形態に係る無線通信システム50の構成を示す図である。図5に示すように、無線通信システム50は、複数の基地局60,80,90と、移動局100と、を含む。基地局60,80,90は、セルC11、C12、C13をそれぞれ形成しており、移動局100は、セルC11に在圏している。基地局60,80,90は、互いに通信を行うと共に、移動局100に対してCoMP通信を行う。基地局60をサービング基地局とし、基地局80,90を協調基地局とする。基地局60,80,90は、上りリンクのCoMP通信を行っており、移動局100が送信するデータを基地局60,80,90で協調して受信し合成する処理を行う。
As described above, according to the first embodiment, it is possible to improve reception characteristics in the wireless communication system 1 that performs uplink CoMP communication.
[Second Embodiment]
FIG. 5 is a diagram illustrating a configuration of a wireless communication system 50 according to the second embodiment. As shown in FIG. 5, the wireless communication system 50 includes a plurality of base stations 60, 80, 90 and a mobile station 100. The base stations 60, 80, and 90 form cells C11, C12, and C13, respectively, and the mobile station 100 is located in the cell C11. Base stations 60, 80, and 90 communicate with each other and perform CoMP communication with mobile station 100. Base station 60 is a serving base station, and base stations 80 and 90 are cooperative base stations. The base stations 60, 80, and 90 perform uplink CoMP communication, and perform processing of receiving and combining the data transmitted by the mobile station 100 in cooperation with the base stations 60, 80, and 90.
 図6は、基地局60の機能的構成を示す図である。図6に示すように、基地局60は、受信アンテナ61と、データ受信部62と、RACH(Random Access Channel)受信部63と、SRS(Sounding Reference Signal)受信部64とを備える。また、基地局60は、送信アンテナ65と、制御チャネル送信部66と、データチャネル送信部67とを備える。また、基地局60は、データ復調部68と、データ復号部69と、受信バッファ70と、送信バッファ71とを備える。また、基地局60は、タイミング検出部72と、受信品質測定部73と、スケジューラ部74と、UL grant(UpLink grant)生成部75と、TA(Timing Advance)コマンド・RAR(Random Access Response)生成部76とを備える。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。 FIG. 6 is a diagram illustrating a functional configuration of the base station 60. As illustrated in FIG. 6, the base station 60 includes a reception antenna 61, a data reception unit 62, a RACH (Random Access Channel) reception unit 63, and an SRS (Sounding Reference Signal) reception unit 64. The base station 60 includes a transmission antenna 65, a control channel transmission unit 66, and a data channel transmission unit 67. The base station 60 includes a data demodulator 68, a data decoder 69, a reception buffer 70, and a transmission buffer 71. In addition, the base station 60 includes a timing detection unit 72, a reception quality measurement unit 73, a scheduler unit 74, a UL grant (UpLink grant) generation unit 75, a TA (Timing Advance) command and a RAR (Random Access Response) generation. Part 76. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
 データ受信部62は、受信アンテナ61を介して、移動局100から送信される上りリンクのデータを受信する。上りリンクのデータは、例えば移動局100からPUSCH(Physical Uplink Shared CHannel)を用いて送信される。 The data reception unit 62 receives uplink data transmitted from the mobile station 100 via the reception antenna 61. For example, uplink data is transmitted from the mobile station 100 using PUSCH (PhysicalPhysUplink Shared CHannel).
 RACH受信部63は、受信アンテナ61を介して、移動局100からRACHを用いて送信されるランダムアクセス信号を受信する。ランダムアクセスは、一方の無線通信装置(例えば、移動局)が、データ送信に用いる無線リソースが割り当てられていない状態から、他方の無線通信装置(例えば、基地局)にデータを送信するための手続きである。基地局60は、ランダムアクセス信号を受信することで、移動局100との同期を確立する。 The RACH receiving unit 63 receives a random access signal transmitted from the mobile station 100 using the RACH via the receiving antenna 61. Random access is a procedure for transmitting data from one wireless communication device (for example, a mobile station) to the other wireless communication device (for example, a base station) from a state where wireless resources used for data transmission are not allocated. It is. The base station 60 establishes synchronization with the mobile station 100 by receiving the random access signal.
 SRS受信部64は、受信アンテナ61を介して、移動局100からSRSを受信する。SRSは、移動局100が送信する既知信号であり、基地局60は、SRSを受信することで、チャネル品質などを把握する。また、基地局60は、SRSを受信することで、移動局100から基地局60への送信タイミングを決定する。 The SRS receiving unit 64 receives the SRS from the mobile station 100 via the receiving antenna 61. The SRS is a known signal transmitted by the mobile station 100, and the base station 60 grasps the channel quality and the like by receiving the SRS. Moreover, the base station 60 determines the transmission timing from the mobile station 100 to the base station 60 by receiving SRS.
 データ復調部68は、データ受信部62から受信データを入力して、復調処理を行う。復調処理では、例えば、移動局100から送信されるDM-RS(DeModulation RS)を参照信号として推定される、PUSCHに対するチャネル推定結果を基に、移動局100から受信されたデータを復調する。 The data demodulator 68 receives the received data from the data receiver 62 and performs a demodulation process. In the demodulation processing, for example, data received from the mobile station 100 is demodulated based on a channel estimation result for PUSCH estimated using DM-RS (DeModulation RS) transmitted from the mobile station 100 as a reference signal.
 データ復号部69は、データ復調部68により復調されたデータを入力して、復号処理を行い、取得したデータを受信バッファ70に格納する。 The data decoder 69 receives the data demodulated by the data demodulator 68, performs a decoding process, and stores the acquired data in the reception buffer 70.
 タイミング検出部72は、RACH受信部63により受信されたランダムアクセス信号に基づいて、現在の自局の受信タイミングを検出する。また、タイミング検出部72は、SRS受信部64により受信されたSRSに基づいて、現在の自局の受信タイミングを検出する。また、タイミング検出部72は、基地局80,90のタイミング情報を基地局80,90から取得する。例えば、タイミング検出部72は、基地局80,90のSRS受信部により受信されたSRSに基づいて、基地局80,90のタイミング検出部で検出されたタイミング情報を取得する。 The timing detector 72 detects the current reception timing of the local station based on the random access signal received by the RACH receiver 63. The timing detection unit 72 detects the current reception timing of the local station based on the SRS received by the SRS reception unit 64. In addition, the timing detection unit 72 acquires timing information of the base stations 80 and 90 from the base stations 80 and 90. For example, the timing detector 72 acquires timing information detected by the timing detectors of the base stations 80 and 90 based on the SRS received by the SRS receivers of the base stations 80 and 90.
 受信品質測定部73は、SRS受信部64により受信されるSRSを用いて自局の受信品質を測定する。また、受信品質測定部73は、基地局80,90の受信品質測定部により測定される受信品質を示す情報を、基地局80,90から取得する。 The reception quality measurement unit 73 measures the reception quality of the local station using the SRS received by the SRS reception unit 64. Further, the reception quality measuring unit 73 acquires information indicating the reception quality measured by the reception quality measuring unit of the base stations 80 and 90 from the base stations 80 and 90.
 スケジューラ部74は、基地局60,80,90の受信品質やタイミング情報を基に、リソース割当て等のスケジューリング処理を行う。例えば、スケジューラ部74は、移動局100から基地局60にSRSを送信するためのSRSリソース割当情報を決定する。また、例えば、スケジューラ部74は、移動局100から基地局80,90にSRSを送信するためのSRSリソース割当情報を取得する。SRSリソース割当情報は、例えばSRSを送信可能な時間や周波数、SRSのデータ系列情報を含む。なお、スケジューラ部74は、基地局60,80,90のSRSリソース割当情報を、基地局60,80,90のSRSが衝突しないように調整してもよい。また、例えば、スケジューラ部74は、CoMP通信の際に、移動局100から基地局60,80,90への上りリンクの基準となる送信タイミングを決定する。 The scheduler unit 74 performs scheduling processing such as resource allocation based on the reception quality and timing information of the base stations 60, 80, and 90. For example, the scheduler unit 74 determines SRS resource allocation information for transmitting SRS from the mobile station 100 to the base station 60. For example, the scheduler unit 74 acquires SRS resource allocation information for transmitting SRS from the mobile station 100 to the base stations 80 and 90. The SRS resource allocation information includes, for example, time and frequency at which SRS can be transmitted, and SRS data series information. The scheduler unit 74 may adjust the SRS resource allocation information of the base stations 60, 80, 90 so that the SRSs of the base stations 60, 80, 90 do not collide. Further, for example, the scheduler unit 74 determines a transmission timing serving as an uplink reference from the mobile station 100 to the base stations 60, 80, and 90 during CoMP communication.
 UL grant生成部75は、スケジューラ部74によるスケジューリング情報に基づき、上りリンクのリソースを割り当てるための制御信号を示すUL grantを生成する。UL grantは、移動局100から基地局60,80,90へのSRSリソース割当て情報を含む。また、UL grantは、移動局100から基地局60,80,90への基準となる送信タイミングを示す情報を含む。第2実施形態では、基準となる送信タイミングを示す情報として、基準となる基地局のセルIDを用いる。 The UL grant generation unit 75 generates an UL grant indicating a control signal for allocating uplink resources based on the scheduling information by the scheduler unit 74. The UL grant includes SRS resource allocation information from the mobile station 100 to the base stations 60, 80, and 90. Further, UL grant includes information indicating transmission timing that serves as a reference from the mobile station 100 to the base stations 60, 80, and 90. In the second embodiment, the cell ID of the reference base station is used as the information indicating the reference transmission timing.
 TAコマンド・RAR生成部76は、ランダムアクセス信号の受信結果に基づいて、ランダムアクセス応答RARを生成する。RARは、ランダムアクセス信号に応じてタイミング検出部72により検出されたタイミング情報に基づくタイミング調整情報を含む。タイミング調整情報は、例えば、移動局100から送信される信号が基地局60で受信されるタイミングが、基地局60の所定の受信窓内に収まるように、移動局100の送信タイミングを現在よりも早くするか又は遅くするかを示す。また、TAコマンド・RAR生成部76は、SRS受信部64により受信されたSRSに応じてタイミング検出部72により検出されたタイミング情報に基づいて、TAコマンドを生成する。TAコマンドは、移動局100からの送信タイミングについて、現在の送信タイミングよりも次回の送信タイミングをどの程度早くするか又は遅くするかを示す。例えば、基地局60は、SRSを受信窓内のどのタイミング位置で受信したか判断し、SRSの受信タイミング位置が受信窓からはみ出しそうになった場合に窓中心に戻すように、TAコマンドを決定する。 The TA command / RAR generator 76 generates a random access response RAR based on the reception result of the random access signal. The RAR includes timing adjustment information based on the timing information detected by the timing detection unit 72 according to the random access signal. The timing adjustment information includes, for example, the transmission timing of the mobile station 100 from the current time so that the timing at which the signal transmitted from the mobile station 100 is received by the base station 60 is within a predetermined reception window of the base station 60. Indicates whether to make it early or late. Further, the TA command / RAR generator 76 generates a TA command based on the timing information detected by the timing detector 72 according to the SRS received by the SRS receiver 64. The TA command indicates how much the transmission timing from the mobile station 100 should be made earlier or later than the current transmission timing. For example, the base station 60 determines at which timing position in the reception window the SRS is received, and determines the TA command to return to the window center when the reception timing position of the SRS is likely to protrude from the reception window. To do.
 制御チャネル送信部66は、送信アンテナ65を介して、制御チャネルを用いて移動局100に制御情報を送信する。制御チャネルはPDCCH(Physical Downlink Control CHannel)を含む。制御情報はUL grant生成部75により生成されるUL grantを含む。 The control channel transmission unit 66 transmits control information to the mobile station 100 using the control channel via the transmission antenna 65. The control channel includes PDCCH (Physical Downlink Control CHannel). The control information includes a UL custom-character generated by the UL custom-character generating unit 75.
 データチャネル送信部17は、送信アンテナ65を介して、データチャネルを用いて移動局100にデータを送信する。データチャネルはPDSCH(Physical Downlink Shared CHannel)を含む。送信データは、送信バッファ71に格納されたデータや、TAコマンド・RAR生成部76により生成されるTAコマンド・RARを含む。 The data channel transmission unit 17 transmits data to the mobile station 100 through the transmission antenna 65 using the data channel. The data channel includes PDSCH (Physical Downlink Shared CHannel). The transmission data includes data stored in the transmission buffer 71 and TA command / RAR generated by the TA command / RAR generation unit 76.
 なお、基地局60,80,90と移動局100との間で、下りリンクに関してもCoMP通信を行っている場合、各基地局60,80,90から移動局100へデータや制御情報を直接送信することが可能である。この場合、SRSリソース割当情報やTAコマンドは、基地局60からでなく、基地局80,90から移動局100に送信してもよい。 In addition, when CoMP communication is performed between the base stations 60, 80, 90 and the mobile station 100 regarding the downlink, data and control information are directly transmitted from the base stations 60, 80, 90 to the mobile station 100. Is possible. In this case, the SRS resource allocation information and the TA command may be transmitted from the base stations 80 and 90 to the mobile station 100 instead of from the base station 60.
 図7は、移動局100の機能的構成を示す図である。図7に示すように、移動局100は、送信アンテナ101と、データ送信部102と、SRS送信部103と、RACH送信部104とを備える。また、移動局100は、受信アンテナ105と、制御チャネル受信部106と、データチャネル受信部107とを備える。また、移動局100は、アプリケーション処理部109,110と、送信バッファ108と、受信バッファ111とを備える。また、移動局100は、データ系列生成部112と、送信タイミング制御部113と、UL grant解析部114と、上位レイヤ制御情報解析部115とを備える。これら各構成部分は、一方向又は双方向に、信号やデータの入出力が可能なように接続されている。 FIG. 7 is a diagram illustrating a functional configuration of the mobile station 100. As illustrated in FIG. 7, the mobile station 100 includes a transmission antenna 101, a data transmission unit 102, an SRS transmission unit 103, and a RACH transmission unit 104. In addition, the mobile station 100 includes a reception antenna 105, a control channel reception unit 106, and a data channel reception unit 107. The mobile station 100 includes application processing units 109 and 110, a transmission buffer 108, and a reception buffer 111. In addition, the mobile station 100 includes a data sequence generation unit 112, a transmission timing control unit 113, a UL grant analysis unit 114, and an upper layer control information analysis unit 115. Each of these components is connected so that signals and data can be input and output in one direction or in both directions.
 制御チャネル受信部106は、受信アンテナ105を介して、制御チャネルを用いて基地局60から送信される制御情報を受信する。制御チャネルはPDCCH(Physical Downlink Control CHannel)を含む。制御情報はUL grantを含む。 The control channel receiving unit 106 receives control information transmitted from the base station 60 using the control channel via the reception antenna 105. The control channel includes PDCCH (Physical Downlink Control CHannel). The control information includes UL grant.
 データチャネル受信部107は、受信アンテナ105を介して、データチャネルを用いて基地局60から送信されるデータを受信する。データチャネルはPDSCH(Physical Downlink Shared CHannel)を含む。データチャネル受信部107は、制御チャネル106により受信される制御情報を用いて、受信データの復調処理や復号処理等を行い、受信バッファ110への格納や、上位レイヤ制御情報解析部115への入力を行う。 The data channel receiving unit 107 receives data transmitted from the base station 60 using the data channel via the receiving antenna 105. The data channel includes PDSCH (Physical Downlink Shared CHannel). The data channel receiving unit 107 uses the control information received by the control channel 106 to perform demodulation processing, decoding processing, and the like of the received data, and stores in the reception buffer 110 and inputs to the higher layer control information analysis unit 115 I do.
 上位レイヤ制御情報解析部115は、データチャネル受信部107により受信される上位レイヤ制御情報を取得する。上位レイヤ制御情報は、RACHリソース割当情報や、SRSリソース割当情報や、TAコマンドを含む。例えば、TAコマンドは、復号された受信データのヘッダ領域に含まれる。 The upper layer control information analyzing unit 115 acquires the upper layer control information received by the data channel receiving unit 107. Upper layer control information includes RACH resource allocation information, SRS resource allocation information, and TA commands. For example, the TA command is included in the header area of the decoded received data.
 UL grant解析部114は、制御チャネル受信部106により受信されるUL grantを解析して情報を取得する。取得される情報は、基準となる送信タイミングに関する情報を含む。 The UL grant analysis unit 114 analyzes the UL grant received by the control channel reception unit 106 and acquires information. The acquired information includes information regarding the transmission timing used as a reference.
 送信タイミング制御部113は、上位レイヤ制御情報解析部115により取得されるTAコマンドや、UL grant解析部114により取得される基準となる送信タイミングに関する情報に基づいて、RACHを介した送信や、SRSの送信や、データの送信の送信タイミングを制御する。 The transmission timing control unit 113 performs transmission via the RACH based on the TA command acquired by the upper layer control information analysis unit 115 and information on the transmission timing used as a reference acquired by the UL grant analysis unit 114, and SRS. The transmission timing of data transmission and data transmission is controlled.
 データ系列生成部112は、RACHリソース割当情報や、SRSリソース割当情報に基づいて、ランダムアクセスプリアンブルやSRSに用いられるデータ系列を生成する。 The data sequence generation unit 112 generates a data sequence used for the random access preamble and SRS based on the RACH resource allocation information and the SRS resource allocation information.
 データ送信部102は、送信アンテナ101を介して、送信バッファ108に格納されるデータを基地局60,80,90に送信する。送信データは、例えばPUSCHを用いて送信される。 The data transmission unit 102 transmits the data stored in the transmission buffer 108 to the base stations 60, 80, 90 via the transmission antenna 101. The transmission data is transmitted using, for example, PUSCH.
 SRS送信部103は、送信タイミング制御部113に設定される送信タイミングを用いて、基地局60,80,90にSRSを送信する。 The SRS transmission unit 103 transmits the SRS to the base stations 60, 80, 90 using the transmission timing set in the transmission timing control unit 113.
 RACH送信部104は、送信タイミング制御部113に設定される送信タイミングを用いて、RACHを用いて信号を送信する。 The RACH transmission unit 104 transmits a signal using the RACH using the transmission timing set in the transmission timing control unit 113.
 アプリケーション処理部109は、送信するデータを生成し、送信バッファ108に格納される。また、アプリケーション処理部110は、受信バッファ111に格納された受信データを取得して処理する。 The application processing unit 109 generates data to be transmitted and stores it in the transmission buffer 108. In addition, the application processing unit 110 acquires and processes the reception data stored in the reception buffer 111.
 図8は、基地局60のハードウェア構成を示す図である。図8に示すように、基地局60は、ハードウェアの構成要素として、例えば、DSP60Aと、FPGA60Bと、メモリ60Cと、アンテナA1を備えるRF回路60Dと、ネットワークIF60Eとを有する。DSP60Aと、FPGA60Bとは、スイッチ等のネットワークIF60Eを介して各種信号やデータの入出力が可能なように接続されている。メモリ60Cは、例えば、SDRAM等のRAM、ROM、及びフラッシュメモリを含み、プログラムや制御情報やデータを格納する。データ復調部68、データ復号部69、タイミング検出部72、受信品質測定部73、スケジューラ部74、UL grant生成部75、及びTAコマンド・RAR生成部76は、例えばDSP60A、FPGA60B等の集積回路により実現される。データ受信部62、RACH受信部63、SRS受信部64、制御チャネル送信部66及びデータチャネル送信部67は、例えばRF回路60Dにより実現される。受信バッファ70および送信バッファ71は、例えばメモリ60Cにより実現される。以上、基地局60のハードウェア構成を説明したが、他の基地局80,90のハードウェア構成は、基地局60と同様であるので、その詳細な説明は省略する。 FIG. 8 is a diagram illustrating a hardware configuration of the base station 60. As illustrated in FIG. 8, the base station 60 includes, as hardware components, for example, a DSP 60A, an FPGA 60B, a memory 60C, an RF circuit 60D including an antenna A1, and a network IF 60E. The DSP 60A and the FPGA 60B are connected so that various signals and data can be input / output via a network IF 60E such as a switch. The memory 60C includes, for example, a RAM such as an SDRAM, a ROM, and a flash memory, and stores programs, control information, and data. The data demodulating unit 68, the data decoding unit 69, the timing detecting unit 72, the reception quality measuring unit 73, the scheduler unit 74, the UL grant generating unit 75, and the TA command / RAR generating unit 76 are, for example, integrated circuits such as a DSP 60A and FPGA 60B. Realized. The data receiving unit 62, the RACH receiving unit 63, the SRS receiving unit 64, the control channel transmitting unit 66, and the data channel transmitting unit 67 are realized by, for example, the RF circuit 60D. The reception buffer 70 and the transmission buffer 71 are realized by the memory 60C, for example. Although the hardware configuration of the base station 60 has been described above, the hardware configuration of the other base stations 80 and 90 is the same as that of the base station 60, and thus detailed description thereof is omitted.
 また、移動局100は、例えば携帯電話機等の携帯端末によって実現される。図9は、移動局100のハードウェア構成を示す図である。図9に示すように、移動局100は、ハードウェアの構成要素として、例えば、CPU100Aと、メモリ100Bと、アンテナA2を備えるRF回路100Cと、LCD(Liquid Crystal Display)等の表示装置100Dとを有する。メモリ100Bは、例えば、SDRAM等のRAM、ROM、及びフラッシュメモリを含み、プログラムや制御情報やデータを格納する。データ送信部102、SRS送信部103、RACH送信部104、制御チャネル受信部106、及びデータチャネル受信部107は、例えばRF回路100Cにより実現される。また、アプリケーション処理部109,110、データ系列生成部112、送信タイミング制御部113、UL grant解析部114、及び上位レイヤ制御情報解析部115は、例えばCPU100A等の集積回路により実現される。送信バッファ108及び受信バッファ111は、例えばメモリ100Bにより実現される。 Further, the mobile station 100 is realized by a mobile terminal such as a mobile phone. FIG. 9 is a diagram illustrating a hardware configuration of the mobile station 100. As shown in FIG. 9, the mobile station 100 includes, as hardware components, for example, a CPU 100A, a memory 100B, an RF circuit 100C including an antenna A2, and a display device 100D such as an LCD (Liquid Crystal Display). Have. The memory 100B includes, for example, a RAM such as an SDRAM, a ROM, and a flash memory, and stores programs, control information, and data. The data transmission unit 102, SRS transmission unit 103, RACH transmission unit 104, control channel reception unit 106, and data channel reception unit 107 are realized by, for example, the RF circuit 100C. The application processing units 109 and 110, the data series generation unit 112, the transmission timing control unit 113, the UL grant analysis unit 114, and the higher layer control information analysis unit 115 are realized by an integrated circuit such as the CPU 100A, for example. The transmission buffer 108 and the reception buffer 111 are realized by the memory 100B, for example.
 次に、第2実施形態の無線通信システム50の動作を説明する。図10、11は、無線通信システム50の動作を説明するためのシーケンス図である。 Next, the operation of the wireless communication system 50 according to the second embodiment will be described. 10 and 11 are sequence diagrams for explaining the operation of the wireless communication system 50.
 図10に示すように、移動局100は、基地局60に対して初期同期用のランダムアクセス信号の送信を行う(S11)。例えば、移動局100は、BCH(Broadcast CHannel)を用いて送信されるシステム情報に基づいて、データ系列生成部112により複数通りの信号系列の中からランダムに選択した信号系列をランダムアクセスプリアンブルとして、基地局60に送信する。RACHを介して送信される信号は、CP長が長く設定されており、受信タイミングずれの許容範囲が比較的大きいので、初期のタイミング制御が行われていない段階でも受信をすることが可能となっている。基地局60は、ランダムアクセス信号を受信することにより、現在の自局の受信タイミングを把握できる。 As shown in FIG. 10, the mobile station 100 transmits a random access signal for initial synchronization to the base station 60 (S11). For example, the mobile station 100 uses a signal sequence randomly selected from a plurality of signal sequences by the data sequence generation unit 112 based on system information transmitted using BCH (Broadcast 用 い CHannel) as a random access preamble. Transmit to the base station 60. A signal transmitted via the RACH is set to have a long CP length, and the allowable range of the reception timing deviation is relatively large. Therefore, it is possible to receive even when the initial timing control is not performed. ing. The base station 60 can grasp the current reception timing of its own station by receiving the random access signal.
 基地局60は、受信したランダムアクセス信号への応答として、RARを送信する(S12)。RARは、上りリンクの送信タイミングのタイミング調整情報を含む。移動局100は、このタイミング調整情報に基づいて次回の送信タイミングを決定する。これにより、基地局60と移動局100との間で同期が確立される。 The base station 60 transmits RAR as a response to the received random access signal (S12). RAR includes timing adjustment information of uplink transmission timing. The mobile station 100 determines the next transmission timing based on this timing adjustment information. As a result, synchronization is established between the base station 60 and the mobile station 100.
 基地局60は、移動局100にCoMP通信を開始するメッセージを送信する(S13)。このメッセージは、例えば協調基地局80,90のセルID割当情報を含む。また、基地局60は、CoMP通信に必要な情報を基地局80,90に通知する。なお、協調基地局を選定する処理を移動局100主導で行ってもよい。 The base station 60 transmits a message for starting CoMP communication to the mobile station 100 (S13). This message includes cell ID allocation information of the cooperative base stations 80 and 90, for example. The base station 60 notifies the base stations 80 and 90 of information necessary for CoMP communication. Note that the process of selecting a cooperative base station may be performed by the mobile station 100.
 以下、移動局100は、協調基地局80,90との間で同期を確立する(S14~S17)。移動局100は、基地局80に対して、初期同期用のランダムアクセス送信を行う(S14)。RACHリソース割当情報は、BCHやPUCCHを用いて基地局80は、受信したランダムアクセスプリアンブルへの応答として、上りリンクの送信タイミング調整情報を含むRARを送信する(S15)。また、移動局100は、基地局90に対して、初期同期用のランダムアクセス送信を行う(S16)。基地局90は、受信したランダムアクセスプリアンブルへの応答として、基地局90への上りリンクの送信タイミング調整情報を含むRARを送信する(S17)。これにより、移動局100と、各基地局60,80,90との間で、送信タイミングの初期同期が行われ、各基地局60,80,90への送信タイミングの初期値が格納される。 Hereinafter, the mobile station 100 establishes synchronization with the coordinated base stations 80 and 90 (S14 to S17). The mobile station 100 performs random access transmission for initial synchronization to the base station 80 (S14). The RACH resource allocation information uses BCH or PUCCH, and the base station 80 transmits an RAR including uplink transmission timing adjustment information as a response to the received random access preamble (S15). In addition, the mobile station 100 performs random access transmission for initial synchronization to the base station 90 (S16). The base station 90 transmits an RAR including uplink transmission timing adjustment information to the base station 90 as a response to the received random access preamble (S17). Thereby, initial synchronization of transmission timing is performed between the mobile station 100 and each base station 60, 80, 90, and the initial value of the transmission timing to each base station 60, 80, 90 is stored.
 基地局80は、SRSリソース割当情報を基地局60に通知する(S18)。また、基地局90は、SRSリソース割当情報を基地局60に通知する(S19)。基地局60は、基地局60,80,90のSRSリソース割当情報を移動局100に送信する(S20)。なお、基地局60,80,90が下りリンクのCoMP通信を行う場合、基地局60,80,90から移動局100に各SRSリソース割当情報を直接送信してもよい。 The base station 80 notifies the SRS resource allocation information to the base station 60 (S18). Further, the base station 90 notifies the SRS resource allocation information to the base station 60 (S19). The base station 60 transmits the SRS resource allocation information of the base stations 60, 80, 90 to the mobile station 100 (S20). In addition, when the base stations 60, 80, 90 perform downlink CoMP communication, the SRS resource allocation information may be directly transmitted from the base stations 60, 80, 90 to the mobile station 100.
 以下、基地局60,80,90は、順に上りリンクの送信タイミングの更新処理を周期的に繰り返す(S21~S28)。なお、この上りリンクの送信タイミングの更新処理は、データチャネルを用いた上位レイヤ制御情報の伝送周期で行われる。上位レイヤ制御情報は、例えば、80[ms]、160[ms]または320[ms]といった周期で伝送される。 Hereinafter, the base stations 60, 80, and 90 periodically repeat uplink transmission timing update processing in order (S21 to S28). The uplink transmission timing update process is performed in the transmission cycle of the upper layer control information using the data channel. The upper layer control information is transmitted at a period of 80 [ms], 160 [ms], or 320 [ms], for example.
 移動局100は、基地局60にSRSを送信し(S21)、基地局60は、TAコマンドを生成して移動局100に送信する(S22)。また、移動局100は、基地局80にSRSを送信し(S23)、基地局80は、TAコマンドを生成して基地局60に通知し(S24)、基地局60は通知されたTAコマンドを移動局100に送信する(S25)。また、移動局100は、基地局90にSRSを送信し(S26)、TAコマンドを生成して基地局60に通知し(S27)、基地局60は通知されたTAコマンドを移動局100に送信する(S28)。移動局100は、受信したTAコマンドに応じて、格納されている各基地局60,80,90への送信タイミングを更新する。移動局100は、更新された送信タイミングを用いて、基地局60,80,90への次回の送信を行う。なお、基地局60,80,90が下りリンクのCoMP通信を行う場合、基地局60,80,90から移動局100に各TAコマンドを直接送信してもよい。 The mobile station 100 transmits an SRS to the base station 60 (S21), and the base station 60 generates a TA command and transmits it to the mobile station 100 (S22). Further, the mobile station 100 transmits an SRS to the base station 80 (S23), the base station 80 generates a TA command and notifies the base station 60 (S24), and the base station 60 transmits the notified TA command. It transmits to the mobile station 100 (S25). Also, the mobile station 100 transmits an SRS to the base station 90 (S26), generates a TA command and notifies the base station 60 (S27), and the base station 60 transmits the notified TA command to the mobile station 100. (S28). The mobile station 100 updates the stored transmission timing to each of the base stations 60, 80, 90 in accordance with the received TA command. The mobile station 100 performs the next transmission to the base stations 60, 80, and 90 using the updated transmission timing. When the base stations 60, 80, 90 perform downlink CoMP communication, the TA commands may be directly transmitted from the base stations 60, 80, 90 to the mobile station 100.
 次に、図11に示すように、上りリンクのデータ送信を開始する場合、移動局100は、基地局60,80,90に対してそれぞれSRSを送信する(S29~S31)。基地局60,80,90は連携して、受信品質を測定・取得する(S32)。例えば、基地局60,80,90は、受信したSRSを参照信号としてそれぞれ、受信品質を測定する。基地局60は、基地局80,90の受信品質に関する情報と、タイミング情報とを、基地局80,90から取得する。 Next, as shown in FIG. 11, when starting uplink data transmission, the mobile station 100 transmits SRSs to the base stations 60, 80, and 90, respectively (S29 to S31). The base stations 60, 80, 90 cooperate to measure and acquire the reception quality (S32). For example, the base stations 60, 80, and 90 measure the reception quality using the received SRS as a reference signal. The base station 60 acquires information on the reception quality of the base stations 80 and 90 and timing information from the base stations 80 and 90.
 基地局60,80,90は連携して、移動局100からデータを送信する際の基準となる送信タイミングに関する情報を決定する(S33)。例えば、基地局60は、基地局60,80,90の受信品質に関する情報と、タイミング情報とに基づいて、送信タイミングの基準となる基地局を決定する(S33)。これにより、基準となる送信タイミングが、基地局60,80,90間で調整されて適切に決定される。 The base stations 60, 80, and 90 cooperate to determine information regarding transmission timing that is a reference when data is transmitted from the mobile station 100 (S33). For example, the base station 60 determines a base station serving as a reference for transmission timing based on the information regarding the reception quality of the base stations 60, 80, 90 and the timing information (S33). Thereby, the reference transmission timing is adjusted between the base stations 60, 80, and 90 and appropriately determined.
 基地局60は、基準となる送信タイミングに関する情報を、移動局100に送信する(S34)。例えば、基地局60は、基準となる基地局のセルIDを含むUL grantを生成し、生成したUL grantを移動局100に送信する。なお、制御チャネルを用いたUL grantの伝送は、上位レイヤ制御情報の伝送より短い周期で行われる。例えば、UL grantは、1[ms]といった周期で伝送される。このように比較的短い周期で送信タイミングが制御されるので、伝搬環境の変動等に適切に追従した送信タイミングで上りリンクの送信を行うことができる。 The base station 60 transmits information related to the reference transmission timing to the mobile station 100 (S34). For example, the base station 60 generates a UL custom-character including the cell ID of the base station serving as a reference, and transmits the generated UL custom-character to the mobile station 100. Note that UL grant transmission using the control channel is performed in a shorter cycle than transmission of higher layer control information. For example, UL grant is transmitted at a cycle of 1 [ms]. Since the transmission timing is controlled in such a relatively short cycle, uplink transmission can be performed at a transmission timing that appropriately follows changes in the propagation environment.
 移動局100は、受信した基準となる送信タイミングで、基地局60,80,90にデータを送信する(S35)。これにより、基地局60,80,90間で調整された適切な送信タイミングでデータが送信される。移動局100から送信されたデータは、基地局60,80,90でそれぞれ受信される。 The mobile station 100 transmits data to the base stations 60, 80, 90 at the transmission timing that is the received reference (S35). Thereby, data is transmitted at an appropriate transmission timing adjusted between the base stations 60, 80 and 90. Data transmitted from the mobile station 100 is received by the base stations 60, 80, and 90, respectively.
 基地局60,80,90は連携して、基地局60,80,90で受信された信号を合成してデータを取得する(S36)。例えば、基地局60は、基地局80,90で受信された信号を取得し、基地局60,80,90で受信された信号を合成してデータを取得する。基地局60,80,90間で調整された送信タイミングでデータが送信されるので、合成後の受信信号においてシンボル間干渉の影響が低減され、受信特性が向上される。 The base stations 60, 80, 90 cooperate to synthesize signals received at the base stations 60, 80, 90 to acquire data (S36). For example, the base station 60 acquires signals received by the base stations 80 and 90, and combines the signals received by the base stations 60, 80, and 90 to acquire data. Since data is transmitted at the transmission timing adjusted between the base stations 60, 80, 90, the influence of intersymbol interference is reduced in the combined received signal, and reception characteristics are improved.
 上記の動作について、図12,図13の例を用いて説明する。図12は、基地局60,80,90での受信タイミングを説明するための図である。図12の例では、OFDM信号が受信され、FFT窓を用いて処理される。図12(A)(B)(C)はそれぞれ、横方向は時間を示し、上から順に基地局60,80,90におけるOFDMシンボルの受信タイミングを示す。 The above operation will be described with reference to the examples of FIGS. FIG. 12 is a diagram for explaining reception timings at the base stations 60, 80, 90. In the example of FIG. 12, an OFDM signal is received and processed using an FFT window. In each of FIGS. 12A, 12B, and 12C, the horizontal direction indicates time, and the OFDM symbol reception timing in the base stations 60, 80, and 90 in order from the top.
 図12(A)の状態では、基地局60の受信OFDMシンボルが受信FFT窓に収まるように、送信タイミングが決定されている。このとき、基地局80,90では、受信OFDMシンボルが受信FFT窓に収まらず、領域C,Dでシンボル間干渉が生じる。 In the state of FIG. 12 (A), the transmission timing is determined so that the received OFDM symbol of the base station 60 fits in the received FFT window. At this time, in the base stations 80 and 90, the received OFDM symbols do not fit in the received FFT window, and intersymbol interference occurs in the regions C and D.
 図12(B)の状態では、送信タイミングが図12(A)の状態より早められ、基地局80の受信OFDMシンボルが受信FFT窓に収まるように、送信タイミングが決定されている。このとき、基地局60,90では、受信OFDMシンボルが受信FFT窓に収まらず、領域E,Fでシンボル間干渉が生じる。 In the state of FIG. 12B, the transmission timing is determined so that the transmission timing is advanced from the state of FIG. 12A, and the received OFDM symbol of the base station 80 fits in the reception FFT window. At this time, in the base stations 60 and 90, the received OFDM symbols do not fit in the received FFT window, and intersymbol interference occurs in the regions E and F.
 図12(C)の状態では、送信タイミングが図12(B)の状態より早められ、基地局90の受信OFDMシンボルが受信FFT窓に収まるように、送信タイミングが決定されている。このとき、基地局60では、受信OFDMシンボルが受信FFT窓に収まらず、領域Gでシンボル間干渉が生じる。 In the state of FIG. 12C, the transmission timing is determined so that the transmission timing is earlier than the state of FIG. 12B, and the received OFDM symbol of the base station 90 fits in the reception FFT window. At this time, in the base station 60, the received OFDM symbol does not fit in the received FFT window, and intersymbol interference occurs in the region G.
 図13は、基地局60,80,90での受信特性を説明するための図である。図13の例では、受信品質としてSINRが用いられる。図13において、縦軸はSINRを示し、横軸は受信のタイミングを示す。タイミングは、有効OFDMシンボル長を1として、基地局60で受信OFDMシンボルが受信FFT窓に収まっている状態のタイミングT3を0とした場合の相対値とする。基地局80は、タイミングT4=0.18で、基地局80での受信OFDMシンボルが受信FFT窓に収まっている状態となる。基地局90は、タイミングT5=0.2で、基地局90での受信OFDMシンボルが受信FFT窓に収まっている状態となる。 FIG. 13 is a diagram for explaining the reception characteristics at the base stations 60, 80, 90. In the example of FIG. 13, SINR is used as the reception quality. In FIG. 13, the vertical axis represents SINR, and the horizontal axis represents reception timing. The timing is a relative value when the effective OFDM symbol length is 1, and the timing T3 in the state where the received OFDM symbol is within the received FFT window at the base station 60 is 0. The base station 80 enters a state where the received OFDM symbol at the base station 80 is within the received FFT window at timing T4 = 0.18. The base station 90 enters a state in which the received OFDM symbol at the base station 90 is within the received FFT window at timing T5 = 0.2.
 図13は、送信タイミングを状態Pから状態Rまで変化させた場合の、基地局60で受信する信号のSINR(図13にて「□」で示す)、基地局80で受信する信号のSINR(図13にて「△」で示す)、基地局90で受信する信号のSINR(図13にて「×」で示す)、および合成後の受信信号のSINR(図13にて「○」で示す)を示している。なお、各基地局60,80,90のSINRは、基地局60,80,90毎のタイミング制御により、受信OFDMシンボルが受信FFT窓に収まるように制御されている状態でそれぞれ測定される。 FIG. 13 illustrates the SINR (indicated by “□” in FIG. 13) of the signal received by the base station 60 and the SINR of the signal received by the base station 80 when the transmission timing is changed from the state P to the state R. 13, the SINR of the signal received by the base station 90 (indicated by “X” in FIG. 13), and the SINR of the combined received signal (indicated by “◯” in FIG. 13). ). The SINR of each of the base stations 60, 80, 90 is measured in a state where the received OFDM symbols are controlled to be within the reception FFT window by the timing control for each of the base stations 60, 80, 90.
 図13に示すように、基地局60のSINRは、タイミングT3の受信OFDMシンボルが受信FFT窓に収まっている図12(A)の状態で値R4となり、図12(A)の状態から図12(C)の状態に変化するにつれて、シンボル間干渉の増大によりSINRが低下している。また、基地局80のSINRは、タイミングT4の受信OFDMシンボルが受信FFT窓に収まっている図12(B)の状態で最大値R5(<R4)となっている。また、基地局90のSINRは、タイミングT5の受信OFDMシンボルが受信FFT窓に収まっている図12(C)の状態で値R6(<R5)となっている。このとき、合成後の受信信号のSINRは、タイミングT4の図12(B)の状態で最大値R7となっている。 As shown in FIG. 13, the SINR of the base station 60 becomes the value R4 in the state of FIG. 12A where the received OFDM symbol at the timing T3 is within the received FFT window, and from the state of FIG. As the state changes to (C), the SINR decreases due to the increase in intersymbol interference. The SINR of the base station 80 is the maximum value R5 (<R4) in the state of FIG. 12B in which the received OFDM symbol at the timing T4 is within the received FFT window. The SINR of the base station 90 is a value R6 (<R5) in the state of FIG. 12C in which the received OFDM symbol at timing T5 is within the received FFT window. At this time, the SINR of the combined received signal is the maximum value R7 in the state of FIG. 12B at timing T4.
 このとき、合成後の受信信号の受信品質を最も高くする送信タイミングとして、基地局60,80,90のうち基地局80が、基準となる基地局として決定される。この場合、受信品質と、受信タイミングの分布とを考慮すると、受信品質が最も高い基地局60のタイミングに合わせるより、受信タイミングが密に分布する基地局80,90のタイミングに近づける方が、シンボル間干渉の影響を低減する効果が大きい。 At this time, the base station 80 of the base stations 60, 80, 90 is determined as a reference base station as the transmission timing that maximizes the reception quality of the combined received signal. In this case, considering the reception quality and the distribution of the reception timing, it is more possible to make the symbol closer to the timing of the base stations 80 and 90 where the reception timing is densely distributed than to match the timing of the base station 60 having the highest reception quality. The effect of reducing the influence of interfering interference is great.
 そして、基準となる基地局として、基地局80のセルIDが移動局100に送信され、移動局100から、基準となる送信タイミングとして、基地局80への予め定められた送信タイミングで、移動局100から基地局60,80,90へデータが送信される。これにより、基地局60,80,90で受信された信号を合成してデータを取得する際に、合成後の受信信号においてシンボル間干渉の影響が低減され、受信特性が向上される。 Then, the cell ID of the base station 80 is transmitted as the reference base station to the mobile station 100, and the mobile station 100 transmits the reference transmission timing to the base station 80 at a predetermined transmission timing as the reference transmission timing. Data is transmitted from 100 to the base stations 60, 80, 90. Thereby, when data is acquired by combining the signals received by the base stations 60, 80, 90, the influence of intersymbol interference is reduced in the combined received signal, and reception characteristics are improved.
 以上により、第2実施形態によれば、上りリンクのCoMP通信を行う無線通信システム50において、受信特性を向上させることができる。 As described above, according to the second embodiment, reception characteristics can be improved in the radio communication system 50 that performs uplink CoMP communication.
 なお、他の実施形態として、基準となる送信タイミングを決定する際に、受信品質を受信タイミングの分布に応じた所定値で補正した値を指標値とし、この指標値を比較して、基準となる送信タイミングを決定してもよい。例えば、受信タイミングの中央値または平均値に基づいた相対値に応じた係数を受信品質に乗算したり、受信タイミングの中央値または平均値に基づいた相対値に応じたオフセット値を受信品質に加算したりしてもよい。また、例えば、受信タイミングの中央値または平均値から近い順番に応じた係数を受信品質に乗算したり、受信タイミングの中央値または平均値から近い順番に応じたオフセット値を受信品質に加算したりしてもよい。また、例えば、受信タイミングの中央値または平均値に最も近い基地局を選択したり、最も近い基地局に所定係数を乗算したり所定オフセット値を加算したりしてもよい。
[第3実施形態]
 図14は、第3実施形態に係る無線通信システム200の構成を示す図である。図14に示すように、無線通信システム200は、移動局100と、セルを形成する基地局と、を含む。基地局は、複数のRRH(Remote Radio Head)230A~230Cと、BBU(BaseBand Unit)220とを有する。RRH230A~230Cはそれぞれ、アンテナ(ポイント)を有して離れた地点に配設され、カバーエリアE21,22,23を形成している。基地局のセルは、カバーエリアE21,22,23により形成される。BBU220は、RRH230A~230Cと離れた地点に配設され、RRH230A~230Cと有線接続により接続される。移動局100は、RRH230AのカバーエリアE21に在圏している。RRH230A~230Cは、第1の無線通信装置の一例に相当し、互いに通信を行うと共に、移動局100に対してCoMP通信を行う。RRH230AのカバーエリアE21をサービングセルとし、RRH230B,230CのカバーエリアE22,E23を協調セルとする。RRH230A~230Cは、上りリンクのCoMP通信を行っており、移動局100が送信するデータをRRH230A~230Cで協調して受信し合成する処理を行う。移動局100の構成および動作は、第2実施形態の移動局100と同じであるので、同じ符号を付して説明を省略する。
As another embodiment, when determining the reference transmission timing, a value obtained by correcting the reception quality with a predetermined value corresponding to the distribution of the reception timing is used as an index value. The transmission timing may be determined. For example, the reception quality is multiplied by a coefficient corresponding to the relative value based on the median or average value of the reception timing, or an offset value corresponding to the relative value based on the median or average value of the reception timing is added to the reception quality. You may do it. Also, for example, the reception quality is multiplied by a coefficient according to the order close to the median or average value of the reception timing, or an offset value according to the order close to the median or average value of the reception timing is added to the reception quality. May be. Further, for example, the base station closest to the median or average value of the reception timing may be selected, or the nearest base station may be multiplied by a predetermined coefficient or a predetermined offset value may be added.
[Third Embodiment]
FIG. 14 is a diagram illustrating a configuration of a wireless communication system 200 according to the third embodiment. As illustrated in FIG. 14, the wireless communication system 200 includes a mobile station 100 and base stations that form a cell. The base station includes a plurality of RRHs (Remote Radio Heads) 230A to 230C and a BBU (BaseBand Unit) 220. Each of the RRHs 230A to 230C has an antenna (point) and is arranged at a distant point to form cover areas E21, 22 and 23. The cell of the base station is formed by the cover areas E21, 22 and 23. The BBU 220 is disposed at a point distant from the RRHs 230A to 230C, and is connected to the RRHs 230A to 230C by wired connection. The mobile station 100 is located in the cover area E21 of the RRH 230A. The RRHs 230A to 230C correspond to an example of a first wireless communication device, and perform communication with each other and CoMP communication with the mobile station 100. Cover area E21 of RRH 230A is used as a serving cell, and cover areas E22 and E23 of RRH 230B and 230C are used as cooperative cells. The RRHs 230A to 230C perform uplink CoMP communication, and perform processing of receiving and combining the data transmitted by the mobile station 100 in cooperation with the RRHs 230A to 230C. Since the configuration and operation of the mobile station 100 are the same as those of the mobile station 100 of the second embodiment, the same reference numerals are given and description thereof is omitted.
 図15は基地局210のRRH230A~230CとBBU220との機能的構成を示す図である。図15に示すように、基地局210のRRH230Aは、受信アンテナ231Aと、送信アンテナ232Aと、無線部233Aとを備える。無線部233Aは、データ受信部234Aと、RACH受信部235Aと、SRS受信部236Aと、制御チャネル送信部237Aと、データチャネル送信部238Aとを備える。また、BBU220は、データ復調部240と、データ復号部241と、タイミング検出部243と、受信バッファ242と、受信品質測定部244と、スケジューラ部245と、UL grant生成部246と、TAコマンド・RAR生成部247と、送信バッファ248とを備える。RRH230A及びBBU220の各構成部分の詳細は、第2実施形態の基地局60の各構成部分と同様である。 FIG. 15 is a diagram showing a functional configuration of the RRHs 230A to 230C and the BBU 220 of the base station 210. As illustrated in FIG. 15, the RRH 230A of the base station 210 includes a reception antenna 231A, a transmission antenna 232A, and a radio unit 233A. The radio unit 233A includes a data receiver 234A, a RACH receiver 235A, an SRS receiver 236A, a control channel transmitter 237A, and a data channel transmitter 238A. The BBU 220 includes a data demodulator 240, a data decoder 241, a timing detector 243, a reception buffer 242, a reception quality measurement unit 244, a scheduler unit 245, a UL grant generation unit 246, a TA command A RAR generator 247 and a transmission buffer 248 are provided. Details of the components of the RRH 230A and the BBU 220 are the same as those of the components of the base station 60 of the second embodiment.
 RRH230Bは、受信アンテナ231Bと、送信アンテナ232Bと、無線部233Bとを備える。無線部233Bは、データ受信部234Bと、RACH受信部235Bと、SRS受信部236Bと、制御チャネル送信部237Bと、データチャネル送信部238Aとを備える。RRH230Bの各構成部分の詳細は、RRH230Aの各構成部分と同様である。 The RRH 230B includes a reception antenna 231B, a transmission antenna 232B, and a radio unit 233B. The radio unit 233B includes a data reception unit 234B, a RACH reception unit 235B, an SRS reception unit 236B, a control channel transmission unit 237B, and a data channel transmission unit 238A. Details of each component of the RRH 230B are the same as each component of the RRH 230A.
 RRH230Cは、受信アンテナ231Cと、送信アンテナ232Cと、無線部233Cとを備える。無線部233Cは、データ受信部234Cと、RACH受信部235Cと、SRS受信部236Cと、制御チャネル送信部237Cと、データチャネル送信部238Cとを備える。RRH230Cの各構成部分の詳細は、RRH230Aの各構成部分と同様である。 The RRH 230C includes a reception antenna 231C, a transmission antenna 232C, and a radio unit 233C. The radio unit 233C includes a data reception unit 234C, a RACH reception unit 235C, an SRS reception unit 236C, a control channel transmission unit 237C, and a data channel transmission unit 238C. Details of each component of the RRH 230C are the same as each component of the RRH 230A.
 次に、無線通信システム200の動作について説明する。無線通信システム200の動作は、基本的に、第2実施形態の基地局60,80,90の送受信動作を、RRH230A~230Cの動作としたものであり、基地局60,80,90の制御動作を、BBU220の動作としたものである。ただし、第2実施形態では、基地局60を主導で、基地局80,90から情報を取得して協調処理(S32、S33,S36)を行うに対し、第3実施形態では、BBU220で情報を集約して協調処理を行う。 Next, the operation of the wireless communication system 200 will be described. The operation of the wireless communication system 200 is basically the transmission / reception operation of the base stations 60, 80, 90 of the second embodiment as the operation of the RRHs 230A-230C. The control operation of the base stations 60, 80, 90 Is the operation of the BBU 220. However, in the second embodiment, the base station 60 takes the initiative to acquire information from the base stations 80 and 90 and perform cooperative processing (S32, S33, S36), whereas in the third embodiment, the BBU 220 performs information processing. Aggregate and perform cooperative processing.
 無線通信システム200のタイミング制御の動作では、第2実施形態の図13の説明と同様にタイミング制御が実行される。例えば、上りリンクのCoMP通信を行うRRH230A~230Cについて、合成後の受信信号の受信品質を最も高くする送信タイミングとして、基準となる送信タイミングが決定される。 In the timing control operation of the wireless communication system 200, timing control is executed in the same manner as in the description of FIG. 13 of the second embodiment. For example, for RRHs 230A to 230C that perform uplink CoMP communication, a reference transmission timing is determined as the transmission timing that maximizes the reception quality of the combined received signal.
 第3実施形態によれば、第2実施形態と同様に、上りリンクのCoMP通信を行う無線通信システム200において、受信特性を向上させることができる。
[第4実施形態]
 図16は、第4実施形態に係る無線通信システム300の構成を示す図である。無線通信システム300では、第1の無線通信装置の一例として、基地局310、320、330と、RRH340A~340Lとが混在し、これらの少なくとも一部が協調通信を行う。
According to the third embodiment, similarly to the second embodiment, reception characteristics can be improved in the wireless communication system 200 that performs uplink CoMP communication.
[Fourth Embodiment]
FIG. 16 is a diagram illustrating a configuration of a wireless communication system 300 according to the fourth embodiment. In the wireless communication system 300, base stations 310, 320, and 330 and RRHs 340A to 340L are mixed as an example of a first wireless communication apparatus, and at least a part of these perform cooperative communication.
 図16に示すように、無線通信システム300では、複数の基地局310、320、330が、複数のセルC31、C32、C33を形成している。各セルC31、C32、C33内には、アンテナ(ポイント)を有する複数のRRH340A~340Lが配設されている。RRH340A~340Lは、アンテナおよび無線部を有し、ベースバンド処理部等が含まれるBBUがそれぞれ別の位置に配置される。RRH340A~340lは、基地局310、320、330のセルC31、C32、C33の端部にそれぞれ配置される。RRH340A~340lは、それぞれカバーエリアE41A~E41Lを形成する。RRH340A~340Lに接続されるBBUは、基地局310、320、330と略同一の位置にそれぞれ配置される。各RRH340A~340Lに対応するBBUは、在圏するセルC31、C32、C33を形成する基地局310、320、330と有線接続または一体化されており、各基地局310、320、330との間で協調スケジューリングが可能である。また、第4実施形態では、移動局100は、基地局310配下のRRH340AのカバーエリアE340Aに在圏するものとする。移動局100の構成および動作は、第2実施形態の移動局100と同じであるので、同じ符号を付して説明を省略する。 16, in the wireless communication system 300, a plurality of base stations 310, 320, and 330 form a plurality of cells C31, C32, and C33. In each cell C31, C32, C33, a plurality of RRHs 340A to 340L having antennas (points) are arranged. RRHs 340A to 340L each have an antenna and a radio unit, and BBUs including a baseband processing unit and the like are arranged at different positions. RRHs 340A to 340l are arranged at the ends of cells C31, C32, and C33 of base stations 310, 320, and 330, respectively. RRHs 340A to 340l form cover areas E41A to E41L, respectively. BBUs connected to RRHs 340A to 340L are arranged at substantially the same positions as base stations 310, 320, and 330, respectively. The BBUs corresponding to the RRHs 340A to 340L are connected or integrated with the base stations 310, 320, and 330 forming the cells C31, C32, and C33 that are in the area, and between the base stations 310, 320, and 330. Collaborative scheduling is possible. In the fourth embodiment, it is assumed that the mobile station 100 is located in the cover area E340A of the RRH 340A under the base station 310. Since the configuration and operation of the mobile station 100 are the same as those of the mobile station 100 of the second embodiment, the same reference numerals are given and description thereof is omitted.
 基地局310、320、330の機能的構成および動作は、第2実施形態の基地局60と同様である。また、RRH340A~340Lの機能的構成および動作は、第3実施形態のRRH230Aと同様である。 The functional configurations and operations of the base stations 310, 320, and 330 are the same as those of the base station 60 of the second embodiment. The functional configurations and operations of the RRHs 340A to 340L are the same as those of the RRH 230A of the third embodiment.
 無線通信システム300のタイミング制御の動作では、第2実施形態の図13の説明と同様にタイミング制御が実行される。例えば、上りリンクのCoMP通信を行う基地局310、320、330と、RRH340A~340Lとの少なくとも一部について、合成後の受信信号の受信品質を最も高くする送信タイミングとして、基準となる送信タイミングが決定される。 In the timing control operation of the wireless communication system 300, timing control is executed in the same manner as in the description of FIG. 13 of the second embodiment. For example, for at least a part of the base stations 310, 320, and 330 that perform uplink CoMP communication and the RRHs 340A to 340L, a transmission timing that serves as a reference is used as a transmission timing that maximizes the reception quality of the combined received signal. It is determined.
 第4実施形態によれば、第2及び第3実施形態と同様に、上りリンクのCoMP通信を行う無線通信システム300において、受信特性を向上させることができる。 According to the fourth embodiment, similarly to the second and third embodiments, reception characteristics can be improved in the wireless communication system 300 that performs uplink CoMP communication.
 なお、第4実施形態では、各RRHのカバーエリアが同一セル内に存在することを前提として説明したが、各RRHのカバーエリアは、異なるセルを跨いで存在するものとしてもよい。 Although the fourth embodiment has been described on the assumption that the cover area of each RRH exists in the same cell, the cover area of each RRH may be present across different cells.
 また、第1~第4実施形態の無線通信システムは、例えば、LTE-Aシステムとして実現できる。なお、LTE-A以外の通信方式を用いた無線通信システムに適用することも可能である。 Further, the wireless communication systems of the first to fourth embodiments can be realized as, for example, an LTE-A system. Note that the present invention can also be applied to a wireless communication system using a communication method other than LTE-A.
 また、無線通信システムとして、例えば送信電力の異なる基地局が混在していたり、異なる種類の通信方式を用いた無線通信装置が混在しているような、ヘテロジニアスネットワークに適用することも可能である。 Further, as a wireless communication system, for example, it is also possible to apply to a heterogeneous network in which base stations having different transmission powers are mixed or wireless communication devices using different types of communication methods are mixed. .
 また、第1~第4実施形態において、基準となる送信タイミングを決定する条件は、各装置(無線通信装置、基地局、RRH、アンテナなど)の設置位置や他の装置との配置関係、あるいは、各装置の運用状況や電波状態等の変更要因に応じて、適宜更新可能である。 In the first to fourth embodiments, the condition for determining the reference transmission timing is the installation position of each device (wireless communication device, base station, RRH, antenna, etc.), the arrangement relationship with other devices, or They can be updated as appropriate according to the changing factors such as the operation status and radio wave condition of each device.
 また、第1~第4実施形態は、移動局として、携帯電話機、スマートフォン、PDA(Personal Digital Assistant)などの携帯端末に適用可能である。また、第1~第4実施形態は、その他、移動中継局など、基地局との間で通信を行う様々な通信機器に対して適用可能である。 Also, the first to fourth embodiments can be applied to mobile terminals such as mobile phones, smartphones, PDAs (Personal Digital Assistants) as mobile stations. In addition, the first to fourth embodiments can be applied to various communication devices that communicate with a base station such as a mobile relay station.
 また、第1~第4実施形態は、基地局として、マクロ基地局、フェムト基地局など、様々な規模の基地局に適用可能である。また、第1~第4実施形態は、その他、中継局など、移動局との間で通信を行う様々な通信機器に対して適用可能である。 Also, the first to fourth embodiments can be applied to base stations of various sizes such as macro base stations and femto base stations as base stations. In addition, the first to fourth embodiments can be applied to various communication devices that communicate with mobile stations such as relay stations.
 また、基地局、移動局の各構成要素の分散・統合の具体的態様は、第1~第4実施形態の態様に限定されず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することもできる。例えば、メモリを、基地局、移動局の外部装置としてネットワークやケーブル経由で接続するようにしてもよい。 Further, the specific mode of distribution / integration of each component of the base station and mobile station is not limited to the mode of the first to fourth embodiments, and all or a part thereof can be used for various loads and usage conditions. Accordingly, it may be configured to be functionally or physically distributed / integrated in an arbitrary unit. For example, the memory may be connected via a network or a cable as an external device of the base station or mobile station.
 1,50,200,300 無線通信システム
 10,20,30 無線通信装置
 11,21,31 アンテナ
 12,22,32 送信部
 13,23,33 受信部
 14,24,34 制御部
 60,80,90,310,320,330 基地局
 60A DSP
 60B FPGA
 60C メモリ
 60D RF回路
 60E ネットワークIF
 61 受信アンテナ
 62,234A データ受信部
 63,235A RACH受信部
 64,236A SRS受信部
 65 送信アンテナ
 66,237A 制御チャネル送信部
 67,238A データチャネル送信部
 68,240 データ復調部
 69,241 データ復号部
 70,242 受信バッファ
 71,248 送信バッファ
 72,243 タイミング検出部
 73,244 受信品質測定部
 74,245 スケジューラ部
 75,246 UL grant生成部
 76,247 TAコマンド・RAR生成部
 100 移動局
 100A CPU
 100B メモリ
 100C RF回路
 100D 表示装置
 101 送信アンテナ
 102 データ送信部
 103 SRS送信部
 104 RACH送信部
 105 受信アンテナ
 106 制御チャネル受信部
 107 データチャネル受信部
 108 送信バッファ
 109,110 アプリケーション処理部
 111 受信バッファ
 112 データ系列生成部
 113 送信タイミング制御部
 114 UL grant解析部
 115 上位レイヤ制御情報解析部
 220 BBU
 230A~230C,340A~340L RRH
 231A~231C 受信アンテナ
 232A~232C 送信アンテナ
 233A~233C 無線部
 C1,C2,C11,C12,C13,C31,C32,C33 セル
 E21~E23,E41A~E41L RRHのカバーエリア
1, 50, 200, 300 Wireless communication system 10, 20, 30 Wireless communication device 11, 21, 31 Antenna 12, 22, 32 Transmitter 13, 23, 33 Receiver 14, 24, 34 Controller 60, 80, 90 , 310, 320, 330 Base station 60A DSP
60B FPGA
60C memory 60D RF circuit 60E network IF
61 reception antenna 62,234A data reception unit 63,235A RACH reception unit 64,236A SRS reception unit 65 transmission antenna 66,237A control channel transmission unit 67,238A data channel transmission unit 68,240 data demodulation unit 69,241 data decoding unit 70,242 Reception buffer 71,248 Transmission buffer 72,243 Timing detection unit 73,244 Reception quality measurement unit 74,245 Scheduler unit 75,246 UL grant generation unit 76,247 TA command / RAR generation unit 100 Mobile station 100A CPU
100B memory 100C RF circuit 100D display device 101 transmitting antenna 102 data transmitting unit 103 SRS transmitting unit 104 RACH transmitting unit 105 receiving antenna 106 control channel receiving unit 107 data channel receiving unit 108 transmission buffer 109, 110 application processing unit 111 receiving buffer 112 data Sequence generation unit 113 Transmission timing control unit 114 UL grant analysis unit 115 Upper layer control information analysis unit 220 BBU
230A to 230C, 340A to 340L RRH
231A to 231C Reception antenna 232A to 232C Transmission antenna 233A to 233C Radio unit C1, C2, C11, C12, C13, C31, C32, C33 cells E21 to E23, E41A to E41L RRH cover area

Claims (23)

  1.  複数の第1の無線通信装置で、第2の無線通信装置から送信されるデータを受信する無線通信システムにおいて、
     前記複数の第1の無線通信装置に関する情報に基づく、送信タイミングに関する情報を、前記第2の無線通信装置に送信する第1の送信部と、
     前記第2の無線通信装置から前記複数の第1の無線通信装置に、前記送信タイミングで前記データを送信する第2の送信部と、
     を有することを特徴とする無線通信システム。
     
    In a wireless communication system that receives data transmitted from a second wireless communication device by a plurality of first wireless communication devices,
    A first transmission unit configured to transmit information regarding transmission timing to the second wireless communication device based on the information regarding the plurality of first wireless communication devices;
    A second transmission unit that transmits the data at the transmission timing from the second wireless communication device to the plurality of first wireless communication devices;
    A wireless communication system comprising:
  2.  前記送信タイミングに関する情報は、前記複数の第1の無線通信装置のうちの所定の第1の無線通信装置を示す情報であり、
     前記第2の送信部は、前記複数の第1の無線通信装置への複数の送信タイミングのうち、前記所定の第1の無線通信装置への送信タイミングで、前記データを前記複数の第1の無線通信装置に送信する、
     ことを特徴とする請求項1に記載の無線通信システム。
     
    The information regarding the transmission timing is information indicating a predetermined first wireless communication device among the plurality of first wireless communication devices,
    The second transmission unit transmits the data to the plurality of first wireless communication devices at a transmission timing to the predetermined first wireless communication device among a plurality of transmission timings to the plurality of first wireless communication devices. Send to the wireless communication device,
    The wireless communication system according to claim 1.
  3.  前記複数の第1の無線通信装置のうち少なくとも1つは、
     前記複数の第1の無線通信装置に関する情報から、前記送信タイミングに関する情報を決定する決定部を有する
     ことを特徴とする請求項1に記載の無線通信システム。
     
    At least one of the plurality of first wireless communication devices is
    The wireless communication system according to claim 1, further comprising: a determination unit that determines information related to the transmission timing from information related to the plurality of first wireless communication devices.
  4.  前記決定部は、前記複数の第1の無線通信装置のそれぞれの受信品質に関する情報と、前記複数の第1の無線通信装置の受信タイミングの分布に関する情報との少なくともいずれかに基づいて、前記送信タイミングに関する情報を決定する、
     ことを特徴とする請求項3に記載の無線通信システム。
     
    The determination unit is configured to transmit the transmission based on at least one of information on reception quality of each of the plurality of first wireless communication devices and information on reception timing distribution of the plurality of first wireless communication devices. Determine timing information,
    The wireless communication system according to claim 3.
  5.  前記送信タイミングで前記第2の無線通信装置から送信され、前記複数の第1の無線通信装置でそれぞれ受信されるデータを合成する処理部を有し、
     前記決定部は、前記合成後のデータの受信品質を示す値が高まるように、前記送信タイミングに関する情報を決定する、
     ことを特徴とする請求項3又は4に記載の無線通信システム。
     
    A processing unit that combines data transmitted from the second wireless communication device at the transmission timing and received by each of the plurality of first wireless communication devices;
    The determination unit determines information on the transmission timing so that a value indicating reception quality of the combined data is increased.
    The wireless communication system according to claim 3, wherein the wireless communication system is a wireless communication system.
  6.  前記第2の送信部は、前記複数の第1の無線通信装置に、ランダムアクセス信号をそれぞれ送信し、
     前記第2の無線通信装置で、前記ランダムアクセス信号に対する前記複数の第1の無線通信装置からの応答信号から、前記複数の第1の無線通信装置への複数の送信タイミングの初期値をそれぞれ取得する制御部を有する、
     ことを特徴とする請求項2~5のいずれかに記載の無線通信システム。
     
    The second transmission unit transmits a random access signal to each of the plurality of first wireless communication devices,
    The second wireless communication device acquires initial values of a plurality of transmission timings to the plurality of first wireless communication devices from response signals from the plurality of first wireless communication devices to the random access signal, respectively. Having a control unit to
    The wireless communication system according to any one of claims 2 to 5, characterized in that:
  7.  前記第2の送信部は、前記複数の第1の無線通信装置から取得される、リファレンス信号を送信するための無線リソースの割り当て情報、に基づいて、前記複数の第1の無線通信装置に前記リファレンス信号を周期的にそれぞれ送信し、
     前記制御部は、前記リファレンス信号に応じて前記複数の第1の無線通信装置から通知されるタイミング調整情報に基づいて、前記複数の第1の無線通信装置への複数の送信タイミングの値をそれぞれ更新する、
     ことを特徴とする請求項6に記載の無線通信システム。
     
    The second transmission unit transmits the reference information to the plurality of first wireless communication devices based on radio resource allocation information for transmitting a reference signal acquired from the plurality of first wireless communication devices. Send each reference signal periodically,
    The control unit sets a plurality of transmission timing values to the plurality of first wireless communication devices based on timing adjustment information notified from the plurality of first wireless communication devices according to the reference signal, respectively. Update,
    The wireless communication system according to claim 6.
  8.  複数の第1の無線通信装置で、第2の無線通信装置から送信されるデータを受信する無線通信方法であって、
     前記複数の第1の無線通信装置に関する情報に基づく、送信タイミングに関する情報を、前記第2の無線通信装置に送信し、
     前記第2の無線通信装置から前記複数の第1の無線通信装置に、前記送信タイミングで前記データを送信する、
     ことを含む無線通信方法。
     
    A wireless communication method for receiving data transmitted from a second wireless communication device by a plurality of first wireless communication devices,
    Transmitting information related to transmission timing based on the information related to the plurality of first wireless communication devices to the second wireless communication device;
    Transmitting the data from the second wireless communication device to the plurality of first wireless communication devices at the transmission timing;
    A wireless communication method.
  9.  前記送信タイミングに関する情報は、前記複数の第1の無線通信装置のうちの所定の第1の無線通信装置に関する情報であり、
     前記複数の第1の無線通信装置への複数の送信タイミングのうち、前記所定の第1の無線通信装置への送信タイミングで、前記データを前記第2の無線通信装置から前記複数の第1の無線通信装置に送信する、
     ことを含む請求項8に記載の無線通信方法。
     
    The information related to the transmission timing is information related to a predetermined first wireless communication device among the plurality of first wireless communication devices,
    Among the plurality of transmission timings to the plurality of first wireless communication devices, the data is transmitted from the second wireless communication device to the plurality of first timings at the transmission timing to the predetermined first wireless communication device. Send to the wireless communication device,
    The wireless communication method according to claim 8.
  10.  前記複数の第1の無線通信装置のうち少なくとも1つで、前記複数の第1の無線通信装置に関する情報から、前記送信タイミングに関する情報を決定する、
     ことを含む請求項8に記載の無線通信方法。
     
    At least one of the plurality of first wireless communication devices determines information related to the transmission timing from information related to the plurality of first wireless communication devices.
    The wireless communication method according to claim 8.
  11.  前記決定で、前記複数の第1の無線通信装置のそれぞれの受信品質に関する情報と、前記複数の第1の無線通信装置の受信タイミングの分布に関する情報との少なくともいずれかに基づいて、前記送信タイミングに関する情報を決定する、
     ことを含む請求項8に記載の無線通信方法。
     
    In the determination, the transmission timing is based on at least one of information on reception quality of each of the plurality of first wireless communication devices and information on distribution of reception timing of the plurality of first wireless communication devices. Determine information about,
    The wireless communication method according to claim 8.
  12.  前記送信タイミングで前記第2の無線通信装置から送信され、前記複数の第1の無線通信装置でそれぞれ受信されるデータを合成し、
     前記決定で、前記合成後のデータの受信品質を示す値が高まるように、前記送信タイミングに関する情報を決定する、
     ことを含む請求項10又は11に記載の無線通信方法。
     
    Combining the data transmitted from the second wireless communication device at the transmission timing and received by the plurality of first wireless communication devices,
    In the determination, information on the transmission timing is determined so that a value indicating reception quality of the combined data is increased.
    The wireless communication method according to claim 10 or 11, further comprising:
  13.  前記第2の無線通信装置から前記複数の第1の無線通信装置に、ランダムアクセス信号をそれぞれ送信し、
     前記第2の無線通信装置で、前記ランダムアクセス信号に対する前記複数の第1の無線通信装置からの応答信号から、前記複数の第1の無線通信装置への複数の送信タイミングの初期値をそれぞれ取得する、
     ことを含む請求項8~12のいずれかに記載の無線通信方法。
     
    Random access signals are respectively transmitted from the second wireless communication device to the plurality of first wireless communication devices,
    The second wireless communication device acquires initial values of a plurality of transmission timings to the plurality of first wireless communication devices from response signals from the plurality of first wireless communication devices to the random access signal, respectively. To
    The wireless communication method according to claim 8, further comprising:
  14.  前記第2の無線通信装置で、前記複数の第1の無線通信装置にリファレンス信号を送信するための無線リソースの割り当て情報をそれぞれ取得し、
     前記第2の無線通信装置から前記複数の第1の無線通信装置に、前記割り当て情報に基づいてリファレンス信号を周期的にそれぞれ送信し、
     前記第2の無線通信装置で、前記リファレンス信号に応じて前記複数の第1の無線通信装置から通知されるタイミング調整情報に基づいて、前記第1の無線通信装置への複数の送信タイミングの値をそれぞれ更新する、
     ことを含む請求項13に記載の無線通信方法。
     
    Each of the second wireless communication devices acquires radio resource allocation information for transmitting a reference signal to the plurality of first wireless communication devices,
    A reference signal is periodically transmitted from the second wireless communication device to the plurality of first wireless communication devices based on the allocation information,
    A plurality of transmission timing values to the first wireless communication device based on timing adjustment information notified from the plurality of first wireless communication devices according to the reference signal in the second wireless communication device. Update each,
    The wireless communication method according to claim 13.
  15.  他の無線通信装置と協調して、第2の無線通信装置から送信されるデータを受信する無線通信装置において、
     前記無線通信装置及び前記他の無線通信装置に関する情報に基づく、送信タイミングに関する情報を、前記第2の無線通信装置に送信する送信部と、
     前記送信タイミングで前記第2の無線通信装置から送信されるデータを受信する受信部と、
     を有することを特徴とする無線通信装置。
     
    In a wireless communication device that receives data transmitted from the second wireless communication device in cooperation with another wireless communication device,
    A transmission unit that transmits information related to transmission timing to the second wireless communication device based on the information related to the wireless communication device and the other wireless communication device;
    A receiver for receiving data transmitted from the second wireless communication device at the transmission timing;
    A wireless communication apparatus comprising:
  16.  前記送信タイミングに関する情報は、前記無線通信装置及び前記他の無線通信装置のうちの所定の無線通信装置を示す情報であり、
     前記受信部は、前記無線通信装置及び前記他の無線通信装置への複数の送信タイミングのうち、前記所定の無線通信装置への送信タイミングで、前記第2の無線通信装置から送信されるデータを受信する
     ことを特徴とする請求項15に記載の無線通信装置。
     
    The information on the transmission timing is information indicating a predetermined wireless communication device among the wireless communication device and the other wireless communication device,
    The receiving unit receives data transmitted from the second wireless communication device at a transmission timing to the predetermined wireless communication device among a plurality of transmission timings to the wireless communication device and the other wireless communication device. The wireless communication apparatus according to claim 15, wherein the wireless communication apparatus receives the wireless communication apparatus.
  17.  前記無線通信装置及び前記他の無線通信装置に関する情報から、前記送信タイミングに関する情報を決定する決定部を有する
     ことを特徴とする請求項16に記載の無線通信装置。
     
    The wireless communication apparatus according to claim 16, further comprising: a determination unit that determines information regarding the transmission timing from information regarding the wireless communication apparatus and the other wireless communication apparatus.
  18.  前記決定部は、前記無線通信装置及び前記他の無線通信装置のそれぞれの受信品質に関する情報と、前記無線通信装置及び前記他の無線通信装置の受信タイミングの分布に関する情報とに基づいて、前記送信タイミングに関する情報を決定する、
     ことを特徴とする請求項17に記載の無線通信装置。
     
    The determination unit is configured to transmit the transmission based on information on reception quality of each of the wireless communication device and the other wireless communication device and information on distribution of reception timings of the wireless communication device and the other wireless communication device. Determine timing information,
    The wireless communication apparatus according to claim 17.
  19.  前記無線通信装置及び前記他の無線通信装置でそれぞれ受信される、前記送信タイミングで前記第2の無線通信装置から送信されるデータを、合成する処理部を有し、
     前記決定部は、前記合成後のデータの受信品質を示す値が高まるように、前記送信タイミングに関する情報を決定する、
     ことを特徴とする請求項16又は17に記載の無線通信装置。
     
    A processing unit that synthesizes data transmitted from the second wireless communication device at the transmission timing, respectively received by the wireless communication device and the other wireless communication device;
    The determination unit determines information on the transmission timing so that a value indicating reception quality of the combined data is increased.
    The wireless communication apparatus according to claim 16 or 17, characterized in that:
  20.  無線通信装置であって、
     前記無線通信装置から送信されるデータを受信する複数の第1の無線通信装置に関する情報に基づく、送信タイミングに関する情報を、前記第1の無線通信装置の少なくとも1つから受信する受信部と、
     前記複数の第1の無線通信装置に、前記送信タイミングでデータを送信する送信部と、
     を有することを特徴とする無線通信装置。
     
    A wireless communication device,
    A receiving unit that receives information on transmission timing based on information on a plurality of first wireless communication devices that receive data transmitted from the wireless communication device from at least one of the first wireless communication devices;
    A transmitter that transmits data to the plurality of first wireless communication devices at the transmission timing;
    A wireless communication apparatus comprising:
  21.  前記送信タイミングに関する情報は、前記複数の第1の無線通信装置のうちの所定の第1の無線通信装置に関する情報であり、
     前記送信部は、前記複数の第1の無線通信装置への複数の送信タイミングのうち、前記所定の第1の無線通信装置への送信タイミングで、前記データを前記複数の第1の無線通信装置に送信する、
     ことを特徴とする請求項20に記載の無線通信装置。
     
    The information related to the transmission timing is information related to a predetermined first wireless communication device among the plurality of first wireless communication devices,
    The transmission unit transmits the data to the plurality of first wireless communication devices at a transmission timing to the predetermined first wireless communication device among a plurality of transmission timings to the plurality of first wireless communication devices. Send to
    The wireless communication apparatus according to claim 20.
  22.  前記送信部は、前記複数の第1の無線通信装置に、ランダムアクセス信号をそれぞれ送信し、
     前記ランダムアクセス信号に対する前記複数の第1の無線通信装置からの応答信号から、前記複数の第1の無線通信装置への複数の送信タイミングの初期値をそれぞれ取得する制御部を有する、
     ことを特徴とする請求項21に記載の無線通信装置。
     
    The transmitter transmits a random access signal to each of the plurality of first wireless communication devices,
    A controller that acquires initial values of a plurality of transmission timings to the plurality of first wireless communication devices from response signals from the plurality of first wireless communication devices to the random access signal,
    The wireless communication apparatus according to claim 21, wherein:
  23.  前記送信部は、前記複数の第1の無線通信装置から取得される、リファレンス信号を送信するための無線リソースの割り当て情報、に基づいて、前記複数の第1の無線通信装置に前記リファレンス信号を周期的にそれぞれ送信し、
     前記制御部は、前記リファレンス信号に応じて前記複数の第1の無線通信装置から通知されるタイミング調整情報に基づいて、前記複数の第1の無線通信装置への複数の送信タイミングの値をそれぞれ更新する、
     ことを特徴とする請求項21又は22に記載の無線通信装置。
     
    The transmission unit transmits the reference signal to the plurality of first wireless communication devices based on allocation information of a radio resource for transmitting a reference signal acquired from the plurality of first wireless communication devices. Send each periodically,
    The control unit sets a plurality of transmission timing values to the plurality of first wireless communication devices based on timing adjustment information notified from the plurality of first wireless communication devices according to the reference signal, respectively. Update,
    The wireless communication apparatus according to claim 21 or 22,
PCT/JP2011/007186 2011-12-21 2011-12-21 Wireless communication system, wireless communication method, and wireless communication device WO2013093973A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013549956A JP5999099B2 (en) 2011-12-21 2011-12-21 Wireless communication system, wireless communication method, and wireless communication apparatus
PCT/JP2011/007186 WO2013093973A1 (en) 2011-12-21 2011-12-21 Wireless communication system, wireless communication method, and wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/007186 WO2013093973A1 (en) 2011-12-21 2011-12-21 Wireless communication system, wireless communication method, and wireless communication device

Publications (1)

Publication Number Publication Date
WO2013093973A1 true WO2013093973A1 (en) 2013-06-27

Family

ID=48667905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007186 WO2013093973A1 (en) 2011-12-21 2011-12-21 Wireless communication system, wireless communication method, and wireless communication device

Country Status (2)

Country Link
JP (1) JP5999099B2 (en)
WO (1) WO2013093973A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017503396A (en) * 2013-12-13 2017-01-26 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Scheduling method, apparatus, and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084622A1 (en) * 2007-01-09 2008-07-17 Ntt Docomo, Inc. Base station device and communication control method
JP2011004099A (en) * 2009-06-18 2011-01-06 Fujitsu Ltd Mobile station of mobile communication system, transmission timing adjustment device and transmission timing adjustment method
JP2011040832A (en) * 2009-08-06 2011-02-24 Sharp Corp Communication system, communication method and base station

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2294837B1 (en) * 2008-06-18 2019-08-07 InterDigital CE Patent Holdings Contention-based medium reservation methods and apparata for multicast transmissions in wireless local area networks
JP5598023B2 (en) * 2010-03-03 2014-10-01 ソニー株式会社 Wireless communication apparatus, wireless communication system, and wireless communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084622A1 (en) * 2007-01-09 2008-07-17 Ntt Docomo, Inc. Base station device and communication control method
JP2011004099A (en) * 2009-06-18 2011-01-06 Fujitsu Ltd Mobile station of mobile communication system, transmission timing adjustment device and transmission timing adjustment method
JP2011040832A (en) * 2009-08-06 2011-02-24 Sharp Corp Communication system, communication method and base station

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017503396A (en) * 2013-12-13 2017-01-26 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Scheduling method, apparatus, and system
US10165583B2 (en) 2013-12-13 2018-12-25 Huawei Technologies Co., Ltd. Scheduling method, apparatus, and system

Also Published As

Publication number Publication date
JP5999099B2 (en) 2016-09-28
JPWO2013093973A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
US9949255B2 (en) Communication device and communication method for determining a combination of base stations used to communicate with a communication terminal
US10097254B2 (en) Channel state information estimation and channel information reporting
CN105745983B (en) The system and method that network self-adapting is supported in wireless network
US10187843B2 (en) Communication control device, communication control method, and program
WO2018130002A1 (en) Adaptive numerology for beamforming training
WO2017194094A1 (en) Method, system and apparatus of beam selection
CN101867457A (en) Processing method of channel state information and user equipment
CN105636231A (en) Signal channel monitoring method and device
KR101644494B1 (en) Radio communication method, radio communication system, radio station, and radio terminal
US20230262493A1 (en) Cli measurement enabled with aoa estimation
US11362718B2 (en) Sidelink TX power control
EP2903356B1 (en) Network node and method therein
CN110326233B (en) Method and apparatus for reception in a wireless communication system
WO2014112058A1 (en) Base station device, communi cation method, and terminal device
WO2014162357A1 (en) Wireless communication method, wireless communication system, wireless station, and wireless terminal
JP5999099B2 (en) Wireless communication system, wireless communication method, and wireless communication apparatus
US11729761B2 (en) Bandwidth part (BWP) operation and adaptation
WO2013140437A1 (en) Wireless communication method, wireless communication system, wireless station, and wireless terminal
WO2013124881A1 (en) Wireless communication method, wireless communication system, radio station, and radio terminal
KR101742893B1 (en) Wireless communication method, wireless communication system, wireless station, and wireless terminal
WO2014203298A1 (en) Radio communication method, radio communication system, radio station, and radio terminal
WO2013161054A1 (en) Wireless base station, wireless terminal, wireless communication system, and communication control method
RU2574587C2 (en) Communication device, communication method, communication system and base station
JP2013153337A (en) Radio communication system and radio communication device
JP2013093769A (en) Communication system, base station, and communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878215

Country of ref document: EP

Kind code of ref document: A1