WO2013091617A2 - Method for producing and using graphene on polycrystalline silicon carbide - Google Patents

Method for producing and using graphene on polycrystalline silicon carbide Download PDF

Info

Publication number
WO2013091617A2
WO2013091617A2 PCT/DE2012/100374 DE2012100374W WO2013091617A2 WO 2013091617 A2 WO2013091617 A2 WO 2013091617A2 DE 2012100374 W DE2012100374 W DE 2012100374W WO 2013091617 A2 WO2013091617 A2 WO 2013091617A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
graphene
sintered
powder
annealing
Prior art date
Application number
PCT/DE2012/100374
Other languages
German (de)
French (fr)
Other versions
WO2013091617A3 (en
Inventor
Roland Bennewitz
Mesut Aslan
Christian Felix WÄHLISCH
Original Assignee
Leibniz-Institut Für Neue Materialien Gemeinnützige Gesellschaft Mit Beschränkter Haftung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz-Institut Für Neue Materialien Gemeinnützige Gesellschaft Mit Beschränkter Haftung filed Critical Leibniz-Institut Für Neue Materialien Gemeinnützige Gesellschaft Mit Beschränkter Haftung
Publication of WO2013091617A2 publication Critical patent/WO2013091617A2/en
Publication of WO2013091617A3 publication Critical patent/WO2013091617A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00344Materials with friction-reduced moving parts, e.g. ceramics lubricated by impregnation with carbon
    • C04B2111/00353Sliding parts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Definitions

  • the invention relates to a method for producing as well as the use of graphene on polycrystalline silicon carbide.
  • the object of the present invention is to provide a method for producing very low friction surfaces.
  • Graphene at least one of the polished surfaces by annealing at temperatures of 1500 to 1700 ° C for 10 to 20 minutes in flowing argon.
  • a preferred embodiment of the invention is that the polishing of the Siliziumcarbid redesign done by means of diamond suspensions.
  • polishing is carried out with diamond suspensions of ever finer grain size up to a particle size of 1 ⁇ m.
  • a preferred embodiment of the invention is that the annealing is carried out at 1700 ° C for 15 min.
  • the heating and / or cooling rate in the annealing treatment is 10 to 20 K / min, preferably 15 K / min. It is also within the scope of the invention that the production of the silicon carbide bodies comprises the following process steps:
  • Dispersion of silicon carbide powder in an aqueous or organic medium wherein 1 to 5 Gew. - Nanoscale carbon black with opposite surface charge as the silicon carbide powder and 0.3 to 0.5 wt. Boron carbide are used as sintering aids,
  • the silicon carbide body produced by the process according to the invention has a relative density of 97 to 99, preferably 98, on.
  • the silicon carbide body has a mean particle size of 3 to 10 ⁇ , preferably of 5 ⁇ having.
  • the grained silicon carbide produced according to the invention can be used as a bearing element in mechanical engineering, for example as a low-friction and structureless lubricant in planar slide bearings for micropositioning. In principle, it is suitable for all tribological applications.
  • Fine silicon carbide powder (specific surface 15 to 20 m of Ig) is dissolved in an aqueous or organic medium (with an aqueous medium being preferred) in a pH range of 5 to 8, preferably 7 to 8, with the sintering additives boron carbide and a nanoforum quality, which has positive surface charges in this pH range.
  • the soot particles accumulate electrostatically on the silicon carbide particles which are negatively charged in this pH range, as a result of which homogeneous distribution of carbon black in the silicon carbide is achieved.
  • the concentration of Sinteradditve is (based on the silicon carbide 1 to 5 wt. Nanoscale carbon (carbon black, carbon black) and 0.3 to 0.5 wt. Boron carbide.
  • the slip obtained is either formed directly into a green body or first obtained a sintered powder from the resulting slurry and then formed this into a green body.
  • This green body is then sintered at temperatures between 2100 and 2200 ° C to form a sintered body.
  • the graphene layers of the sintered body which has a relative density of about 98% and a mean particle size of 5 ⁇ , brought with a resin-bonded diamond wheel grain 200 ⁇ in shape, for example, a Siliziumcarbidide with a diameter of 45 mm and a height of 4 mm made from the sintered body.
  • This is polished with diamond suspensions of grain size 30, 15, 9, 6, 3 and 1 ⁇ for 30 min and then cleaned by acetone and then ethanol in an ultrasonic bath.
  • the grapheneization of the polished silicon carbide surface (s) is carried out by subsequent annealing at 1700 ° C. for 15 minutes in flowing argon, the heating or cooling rate being 15 K / min.

Abstract

The invention relates to a method for producing and using graphene on polycrystalline silicon carbide. In order to provide a method for producing surfaces having very little friction, the invention includes the following method steps: polishing the surfaces of silicon carbide bodies with a homogeneous distribution of carbon; cleaning the silicon carbide bodies; and graphenizing at least one of the polished surfaces by means of an annealing treatment at temperatures from 1500 to 1700°C for 10 to 20 minutes in flowing argon. Within the scope of the invention, it has unexpectedly been found that it is possible on polished layers of solid phase-sintered silicon carbide to achieve surfaces that are characterised by a very low friction, which is attributable to the presence of graphene layers on the surfaces of silicon carbide grains of different orientation.

Description

BESCHREIBUNG  DESCRIPTION
Verfahren zum Herstellen und Verwendung von Graphen auf polykristallinem Method of making and using graphene on polycrystalline
Siliziumcarbid  silicon carbide
Die Erfindung betrifft ein Verfahren zum Herstellen sowie die Verwendung von Graphen auf polykristallinem Siliziumcarbid. The invention relates to a method for producing as well as the use of graphene on polycrystalline silicon carbide.
Die Reibung zwischen Graphitschichten hängt wesentlich von der relativen Orientierung der Graphitschichten ab. Es wurde experimentell und theoretisch gezeigt, daß lose Graphitflocken immer in eine Ausrichtung mit hoher Reibung rotieren. In „Low friction and rotational dynamics of crystalline flakes in solid lubrication", A. S. de Wijn, A. Fasolino, A. E. Filippov and M. Urbakh, EPL 95 (2011) 66002 wurde vorhergesagt, daß zwei mit Graphen beschichtete Oberflächen, bei dem die fixierten Graphenflocken eine zufällige Orientierung aufweisen, eine sehr geringe Reibung untereinander aufweisen dürften. The friction between graphite layers depends essentially on the relative orientation of the graphite layers. It has been shown experimentally and theoretically that loose graphite flakes always rotate in a high friction orientation. In "Low friction and rotational dynamics of crystalline flakes in solid lubrication", AS de Wijn, A. Fasolino, AE Filippov and M. Urbakh, EPL 95 (2011) 66002 it was predicted that two surfaces coated with graphene would have the fixed ones Graphene flakes have a random orientation, a very low friction among each other should have.
Aus der EP 591 698 A2 ist ein Sinterkörper aus Siliziumcarbid oder Borcarbid mit homogener Verteilung von Kohlenstoff in den Vorstufen, d.h. in den Pulvermischungen, und ein Verfahren zum Herstellen eines solchen Sinterkörpers bekannt. From EP 591 698 A2 a sintered body of silicon carbide or boron carbide with homogeneous distribution of carbon in the precursors, i. in the powder mixtures, and a method for producing such a sintered body.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zum Herstellen von Oberflächen mit sehr geringer Reibung zu schaffen. The object of the present invention is to provide a method for producing very low friction surfaces.
Diese Aufgabe wird im Rahmen der Erfindung durch folgende Verfahrensschritte gelöst: This object is achieved in the context of the invention by the following method steps:
• Polieren der Oberflächen von Siliziumcarbidkörpern mit einer homogenen Verteilung von Kohlenstoff,  Polishing the surfaces of silicon carbide bodies with a homogeneous distribution of carbon,
• Reinigen der Siliziumcarbidkörper und  • Clean the silicon carbide body and
• Graphenisieren mindestens einer der polierten Oberflächen durch eine Glühbehandlung bei Temperaturen von 1500 bis 1700°C während 10 bis 20 min in fließendem Argon.  Graphene at least one of the polished surfaces by annealing at temperatures of 1500 to 1700 ° C for 10 to 20 minutes in flowing argon.
Es hat sich im Rahmen der Erfindung überraschend gezeigt, daß auf polierten Schichten aus festphasengesintertem Siliziumcarbid Oberflächen realisiert werden können, die sich durch eine sehr niedrige Reibung auszeichnen, was auf der Anwesenheit von Graphenflocken auf den Oberflächen aus Siliziumcarbidkörnern unterschiedlicher Orientierung beruht. Die Besonderheit des Substratmaterials Siliziumcarbid liegt in der homogenen Verteilung von Kohlenstoff in den Vorstufen des Substratmaterials, d.h. den zu sinternden Pulvermischungen, das gemäß der EP 591 698 A2 hergestellt wird. Der Kohlenstoff erfüllt dabei Aufgaben wie die Aktivierung der Festphasendiffusion durch die Reduktion der Oxidschicht auf Siliziumcarbidteilchen und die Moderierung des Kornwachstums während des Sinterns. Die zu sinternden Pulvermischungen enthalten bewußt Kohlenstoffmengen über den für die Reduktion der Oxidschicht notwendigen Bedarf hinaus. Dieser Überschuß-Kohlenstoff bewirkt die Entwicklung eines gleichmäßigen Gefüges, welcher während des Sinterprozesses graphitisiert und an den Kornzwickeln bzw. innerhalb der Siliziumcarbidkörner erhalten bleibt. Eine Verminderung der mechanischen Festigkeit des Materials wird durch diese Kohlenstoff- (bzw. Graphit-) Einschlüsse nicht hervorgerufen, da diese dank des Herstellungsverfahrens, wie es aus der EP 591 698 A2 hervorgeht, in gleichmäßiger Verteilung vorliegen. It has surprisingly been found within the scope of the invention that surfaces can be realized on polished layers of solid-phase sintered silicon carbide, which is characterized by a very low friction, which is based on the presence of graphene flakes on the surfaces of Siliziumcarbidkörnern different orientation. The peculiarity of the substrate material silicon carbide lies in the homogeneous distribution of carbon in the precursors of the substrate material, ie the powder mixtures to be sintered, which is prepared according to EP 591 698 A2. The carbon accomplishes tasks such as activating solid phase diffusion by reducing the oxide layer on silicon carbide particles and moderating grain growth during sintering. The powder mixtures to be sintered deliberately contain amounts of carbon beyond the requirements necessary for the reduction of the oxide layer. This excess carbon causes the development of a uniform structure, which is graphitized during the sintering process and retained on the Kornzwickeln or within the Siliziumcarbidkörner. A reduction in the mechanical strength of the material is not caused by these carbon (or graphite) inclusions, as they are present in uniform distribution thanks to the manufacturing process, as is apparent from EP 591 698 A2.
Eine bevorzugte Ausgestaltung der Erfindung besteht darin, daß das Polieren der Siliziumcarbidkörper mittels Diamantsuspensionen erfolgt. A preferred embodiment of the invention is that the polishing of the Siliziumcarbidkörper done by means of diamond suspensions.
Hierbei wird jeweils für einen bestimmten Zeitraum (beispielsweise jeweils 30 min) mit Diamantsuspensionen mit immer feiner werdender Körnung bis hin zu einer Körnung von 1 μιη poliert. In each case for a certain period of time (for example, in each case 30 min) polishing is carried out with diamond suspensions of ever finer grain size up to a particle size of 1 μm.
Es ist vorteilhaft, daß das Reinigen der Siliziumcarbidkörper mittels Aceton und Ethanol im Ultraschallbad erfolgt. It is advantageous that the cleaning of the Siliziumcarbidkörper done by means of acetone and ethanol in an ultrasonic bath.
Eine bevorzugte Ausgestaltung der Erfindung besteht darin, daß die Glühbehandlung bei 1700°C während 15 min erfolgt. A preferred embodiment of the invention is that the annealing is carried out at 1700 ° C for 15 min.
Es ist zweckmäßig, daß die Aufheiz- und/oder Abkühlrate bei der Glühbehandlung 10 bis 20 K/min, vorzugsweise 15 K/min, beträgt. Im Rahmen der Erfindung liegt auch, daß das Herstellen der Siliziumcarbidkörper folgende Verfahrensschritte umfaßt: It is expedient that the heating and / or cooling rate in the annealing treatment is 10 to 20 K / min, preferably 15 K / min. It is also within the scope of the invention that the production of the silicon carbide bodies comprises the following process steps:
• Dispergieren von Siliziumcarbidpulver in einem wäßrigen oder organischen Medium, wobei 1 bis 5 Gew.- nanoskaliger Ruß mit entgegengesetzter Oberflächenladung wie das Siliziumcarbidpulver und 0,3 bis 0,5 Gew.- Borcarbid als Sinterhilfen verwendet werden,  Dispersion of silicon carbide powder in an aqueous or organic medium, wherein 1 to 5 Gew. - Nanoscale carbon black with opposite surface charge as the silicon carbide powder and 0.3 to 0.5 wt. Boron carbide are used as sintering aids,
• Formen des erhaltenen Schlickers zu einem Grünkörper oder Gewinnen eines Sinterpulvers aus dem erhaltenen Schlickers und Formen des Sinterpulvers zu einem Grünkörper durch uniaxiales/isostatisches Trockenpressen, Forming the resulting slurry into a green body or recovering a sintered powder from the resulting slurry and shaping the sintered powder into a green body by uniaxial / isostatic dry pressing,
• Sintern des Grünkörpers zu einem Sinterkörper bei Temperaturen zwischen 2100 und 2200°C, Sintering the green body to a sintered body at temperatures between 2100 and 2200 ° C,
• Planschleifen des Sinterkörpers.  • Surface grinding of the sintered body.
Aufgrund der Tatsache, daß nanoskaliger Ruß mit entgegengesetzter Oberflächenladung wie das Siliziumcarbidpulver verwendet wird und ein einem geeigneten pH-Bereich gearbeitet wird, wird durch eine elektrostatische Anbindung von Rußteilchen auf der Siliziumcarbidoberfläche eine sehr homogene Kohlenstoffverteilung erreicht. Due to the fact that nano-scale soot with opposite surface charge as the silicon carbide powder is used and a suitable pH range is used, a very homogeneous carbon distribution is achieved by an electrostatic attachment of soot particles on the silicon carbide surface.
Der nach dem erfindungsgemäßen Verfahren hergestellte Siliziumcarbidkörper weist eine relative Dichte von 97 bis 99 , vorzugsweise von 98 , auf. The silicon carbide body produced by the process according to the invention has a relative density of 97 to 99, preferably 98, on.
Weiterhin hat es sich als zweckmäßig erwiesen, daß der Siliziumcarbidkörper eine mittlere Korngröße von 3 bis 10 μιη, vorzugsweise von 5 μιη, aufweist. Furthermore, it has proven to be expedient that the silicon carbide body has a mean particle size of 3 to 10 μιη, preferably of 5 μιη having.
Im Rahmen der Erfindung liegt auch die Verwendung des erfindungsgemäß hergestellten, mit Graphen versehenen Siliziumcarbids als reibungsarme Oberfläche. The use of the silicon carbide provided with graphene according to the invention as a low-friction surface is also within the scope of the invention.
Schließlich kann das erfindungsgemäß hergestellte, mit Graphen versehene Siliziumcarbid als Lagerelement im Maschinenbau verwendet werden, beispielsweise als reibungsarmes und strukturloses Schmiermittel in planaren Gleitlagern für die Mikropositionierung. Grundsätzlich kommt es für alle tribologischen Anwendungen in Frage. Finally, the grained silicon carbide produced according to the invention can be used as a bearing element in mechanical engineering, for example as a low-friction and structureless lubricant in planar slide bearings for micropositioning. In principle, it is suitable for all tribological applications.
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert. A. Herstellung eines Sinterkörpers aus polykristallinem Siliziumcarbid The invention will be explained in more detail with reference to an embodiment. A. Preparation of a polycrystalline silicon carbide sintered body
Feines Siliziumcarbidpulver (spezifische Oberfläche 15 bis 20 m Ig) wird in einem wäßrigen oder organischen Medium (wobei ein wäßriges Medium bevorzugt wird) in einem pH-Bereich von 5 bis 8, vorzugsweise von 7 bis 8, mit den Sinteradditiven Borcarbid und einer Nanorußqualität, die in diesem pH-Bereich positive Oberflächenladungen aufweist, dispergiert. Hierbei lagern sich die Rußteilchen elektrostatisch an die in diesem pH-Bereich negativ geladenen Silizmmcarbidteilchen an, wodurch eine homogene Rußverteilung in dem Siliziumcarbid erreicht wird. Die Konzentration der Sinteradditve beträgt (bezogen auf das Siliziumcarbid 1 bis 5 Gew.- nanoskaliger Kohlenstoff (Ruß, carbon black) und 0,3 bis 0,5 Gew.- Borcarbid. Fine silicon carbide powder (specific surface 15 to 20 m of Ig) is dissolved in an aqueous or organic medium (with an aqueous medium being preferred) in a pH range of 5 to 8, preferably 7 to 8, with the sintering additives boron carbide and a nanoforum quality, which has positive surface charges in this pH range. In this case, the soot particles accumulate electrostatically on the silicon carbide particles which are negatively charged in this pH range, as a result of which homogeneous distribution of carbon black in the silicon carbide is achieved. The concentration of Sinteradditve is (based on the silicon carbide 1 to 5 wt. Nanoscale carbon (carbon black, carbon black) and 0.3 to 0.5 wt. Boron carbide.
Der erhaltene Schlicker wird entweder direkt zu einem Grünkörper geformt oder zunächst ein Sinterpulver aus dem erhaltenen Schlicker gewonnen und dieses dann zu einem Grünkörper geformt. The slip obtained is either formed directly into a green body or first obtained a sintered powder from the resulting slurry and then formed this into a green body.
Dieser Grünkörper wird dann bei Temperaturen zwischen 2100 und 2200°C zu einem Sinterkörper gesintert. This green body is then sintered at temperatures between 2100 and 2200 ° C to form a sintered body.
B. Erzeugen der Graphenschichten auf dem Sinterkörper B. producing the graphene layers on the sintered body
Zur Erzeugung der Graphenschichten wird der Sinterkörper, der eine relative Dichte von ca. 98 % und eine mittlere Korngröße von 5 μιη aufweist, mit einer kunstharzgebundenen Diamantscheibe der Körnung 200μιη in Form gebracht, beispielsweise eine Siliziumcarbidscheibe mit einem Durchmesser von 45 mm und einer Höhe von 4 mm aus dem Sinterkörper hergestellt. To produce the graphene layers of the sintered body, which has a relative density of about 98% and a mean particle size of 5 μιη, brought with a resin-bonded diamond wheel grain 200μιη in shape, for example, a Siliziumcarbidscheibe with a diameter of 45 mm and a height of 4 mm made from the sintered body.
Diese wird mit Diamantsuspensionen der Körnung 30, 15, 9, 6, 3 und 1 μιη für jeweils 30 min poliert und danach mittels Aceton und anschließend Ethanol im Ultraschallbad gereinigt. Die Graphenisierung der polierten Siliziumcarbidoberfläche(n) erfolgt durch eine anschließende Glühbehandlung bei 1700°C für 15 min in fließendem Argon, wobei die Aufheiz- bzw. Abkühlrate 15 K/min betrug. This is polished with diamond suspensions of grain size 30, 15, 9, 6, 3 and 1 μιη for 30 min and then cleaned by acetone and then ethanol in an ultrasonic bath. The grapheneization of the polished silicon carbide surface (s) is carried out by subsequent annealing at 1700 ° C. for 15 minutes in flowing argon, the heating or cooling rate being 15 K / min.
Die niedrige Reibung der graphenisierten Siliziumcarbidoberfläche(n) im Vergleich zu lediglich polierten Siliziumcarbidoberflächen wurde durch makroskopische Reibung s versuche gezeigt. The low friction of the graphene silicon carbide surface (s) as compared to polished silicon carbide surfaces was demonstrated by macroscopic friction experiments.
Es wird angenommen, daß neben Graphenschichten auf einzelnen Siliziumcarbidkörnern unterschiedlicher Orientierung auch eingeschlossene und durch das Polieren freigelegte Graphitteilchen zur Verringerung der Reibung beitragen. It is believed that in addition to graphene layers on individual silicon carbide grains of different orientation, trapped and polished graphite particles also contribute to the reduction of friction.

Claims

PATENTANSPRÜCHE
1. Verfahren zum Herstellen von Graphen auf polykristallinem Siliziumcarbid, gekennzeichnet durch folgende Verfahrensschritte: 1. A method for producing graphene on polycrystalline silicon carbide, characterized by the following method steps:
• Polieren der Oberflächen von Siliziumcarbidkörpern mit einer homogenen Verteilung von Kohlenstoff,  Polishing the surfaces of silicon carbide bodies with a homogeneous distribution of carbon,
• Reinigen der Siliziumcarbidkörper und  • Clean the silicon carbide body and
• Graphenisieren mindestens einer der polierten Oberflächen durch eine Glühbehandlung bei Temperaturen von 1500 bis 1700°C während 10 bis 20 min in fließendem Argon.  Graphene at least one of the polished surfaces by annealing at temperatures of 1500 to 1700 ° C for 10 to 20 minutes in flowing argon.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Polieren der Siliziumcarbidkörper mittels Diamantsuspensionen erfolgt. 2. The method according to claim 1, characterized in that the polishing of the silicon carbide body takes place by means of diamond suspensions.
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Reinigen der Siliziumcarbidkörper mittels Aceton und Ethanol im Ultraschallbad erfolgt. 3. The method according to claim 1, characterized in that the cleaning of the silicon carbide body by means of acetone and ethanol in the ultrasonic bath.
4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Glühbehandlung bei 1700°C während 15 min erfolgt. 4. The method according to claim 1, characterized in that the annealing is carried out at 1700 ° C for 15 min.
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Aufheiz- und/oder. 5. The method according to claim 1, characterized in that the heating and / or.
Abkühlrate bei der Glühbehandlung 10 bis 20 K/min, vorzugsweise 15 K/min, beträgt.  Cooling rate in the annealing 10 to 20 K / min, preferably 15 K / min, is.
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Herstellen der Siliziumcarbidkörper folgende Verfahrensschritte umfaßt: 6. The method according to claim 1, characterized in that the production of the silicon carbide body comprises the following method steps:
• Dispergieren von Siliziumcarbidpulver in einem wäßrigen oder organischen Medium, wobei 1 bis 5 Gew.- nanoskaliger Ruß mit entgegengesetzter Oberflächenladung wie das Siliziumcarbidpulver und 0,3 bis 0,5 Gew.- Borcarbid als Sinterhilfen verwendet werden,  Dispersion of silicon carbide powder in an aqueous or organic medium, wherein 1 to 5 Gew. - Nanoscale carbon black with opposite surface charge as the silicon carbide powder and 0.3 to 0.5 wt. Boron carbide are used as sintering aids,
• Formen des erhaltenen Schlickers zu einem Grünkörper oder Gewinnen eines Sinterpulvers aus dem erhaltenen Schlickers und Formen des Sinterpulvers zu einem Grünkörper durch uniaxiales/isostatisches Trockenpressen, • Sintern des Grünkörpers zu einem Sinterkörper bei Temperaturen zwischen 2100 und 2200°C, Forming the resulting slurry into a green body or recovering a sintered powder from the resulting slurry and forming the sintered powder into a green body by uniaxial / isostatic dry pressing, Sintering the green body to a sintered body at temperatures between 2100 and 2200 ° C,
• Planschleifen des Sinterkörpers.  • Surface grinding of the sintered body.
7. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß der Siliziumcarbidkörper eine relative Dichte von 97 bis 99 , vorzugsweise von 98 , aufweist. 7. The method according to claim 6, characterized in that the silicon carbide body has a relative density of 97 to 99, preferably 98, has.
8. Verfahren gemäß Anspruch 6, dadurch gekennzeichnet, daß der Siliziumcarbidkörper eine mittlere Korngröße von 3 bis 10 μιη, vorzugsweise von 5 μιη, aufweist. 8. The method according to claim 6, characterized in that the silicon carbide body has a mean particle size of 3 to 10 μιη, preferably of 5 μιη having.
9. Verwendung des gemäß den Ansprüchen 1 bis 8 hergestellten mit Graphen versehenen Siliziumcarbids als reibungsarme Oberfläche. 9. Use of the prepared according to claims 1 to 8 provided with graphene silicon carbide as low-friction surface.
10. Verwendung gemäß Anspruch 9 als Lagerelement im Maschinenbau. 10. Use according to claim 9 as a bearing element in mechanical engineering.
PCT/DE2012/100374 2011-12-22 2012-12-07 Method for producing and using graphene on polycrystalline silicon carbide WO2013091617A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011056896A DE102011056896A1 (en) 2011-12-22 2011-12-22 Method of making and using graphene on polycrystalline silicon carbide
DE102011056896.4 2011-12-22

Publications (2)

Publication Number Publication Date
WO2013091617A2 true WO2013091617A2 (en) 2013-06-27
WO2013091617A3 WO2013091617A3 (en) 2013-12-27

Family

ID=47713746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2012/100374 WO2013091617A2 (en) 2011-12-22 2012-12-07 Method for producing and using graphene on polycrystalline silicon carbide

Country Status (2)

Country Link
DE (1) DE102011056896A1 (en)
WO (1) WO2013091617A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139881A1 (en) * 2014-03-21 2015-09-24 Eagleburgmann Germany Gmbh & Co. Kg Graphene-containing slide ring
KR101944385B1 (en) * 2017-09-14 2019-02-01 김동호 Mechanical seal
CN111138200A (en) * 2020-01-11 2020-05-12 浙江东新新材料科技有限公司 Multiphase composite reinforced low-friction silicon carbide ceramic sealing material and preparation method thereof
CN111499385A (en) * 2020-03-19 2020-08-07 武汉理工大学 Boron carbide-graphene micro-laminated composite material and preparation method thereof
CN112358322A (en) * 2020-10-13 2021-02-12 西安理工大学 Method for preparing composite material surface graphene coating based on femtosecond laser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017211660B4 (en) * 2017-07-07 2022-10-27 Albert-Ludwigs-Universität Freiburg Process for producing a particulate carrier material coated with a graphene-containing material and a sliding element, as well as a sliding element, a mechanical seal and a bearing arrangement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0591698A2 (en) 1992-10-06 1994-04-13 INSTITUT FÜR NEUE MATERIALIEN gemeinnützige GmbH Sintered bodies of silicon carbide or boron carbide and method of their production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19537714A1 (en) * 1995-10-10 1997-04-17 Inst Neue Mat Gemein Gmbh A method for producing a conductive sintered body based on silicon carbide
FR2788565B1 (en) * 1999-01-15 2001-02-09 Renault Vehicules Ind INTAKE MANIFOLD COMPRISING MEANS OF CONNECTION TO AN EXHAUST GAS RECYCLING CIRCUIT
US8142754B2 (en) * 2010-03-12 2012-03-27 The Regents Of The University Of California Method for synthesis of high quality graphene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0591698A2 (en) 1992-10-06 1994-04-13 INSTITUT FÜR NEUE MATERIALIEN gemeinnützige GmbH Sintered bodies of silicon carbide or boron carbide and method of their production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. S. DE WIJN; A. FASOLINO; A. E. FILIPPOV; M. URBAKH: "Low friction and rotational dynamics of crystalline flakes in solid lubrication", EPL, vol. 95, 2011, pages 66002, XP020209876, DOI: doi:10.1209/0295-5075/95/66002

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139881A1 (en) * 2014-03-21 2015-09-24 Eagleburgmann Germany Gmbh & Co. Kg Graphene-containing slide ring
KR101944385B1 (en) * 2017-09-14 2019-02-01 김동호 Mechanical seal
WO2019054563A1 (en) * 2017-09-14 2019-03-21 김동호 Mechanical seal
CN111138200A (en) * 2020-01-11 2020-05-12 浙江东新新材料科技有限公司 Multiphase composite reinforced low-friction silicon carbide ceramic sealing material and preparation method thereof
CN111499385A (en) * 2020-03-19 2020-08-07 武汉理工大学 Boron carbide-graphene micro-laminated composite material and preparation method thereof
CN112358322A (en) * 2020-10-13 2021-02-12 西安理工大学 Method for preparing composite material surface graphene coating based on femtosecond laser

Also Published As

Publication number Publication date
WO2013091617A3 (en) 2013-12-27
DE102011056896A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
WO2013091617A2 (en) Method for producing and using graphene on polycrystalline silicon carbide
DE102011003254A1 (en) Sliding element, in particular piston ring, with a coating and method for producing a sliding element
EP2574685B1 (en) Sliding element with DLC coating
DE102006004769A1 (en) Surface conditioning for thermal spray coatings
WO2006079444A1 (en) Method and device for grinding ceramic spheres
EP3043972B1 (en) Method for recycling of silicon carbide powder waste products
EP2178664A1 (en) Aluminium-based duplex-aluminium material with a first phase and a second phase and method for producing said duplex-aluminium material
DE102015208491B4 (en) Polycrystalline diamond body, cutting tool, wear-resistant tool, grinding tool and method for producing a polycrystalline diamond body
EP2080936A2 (en) Sintered gear
DE60018634T2 (en) Grinding and polishing tool for diamond, method for polishing diamond and polished diamond, and thus obtained single crystal diamond and sintered diamond press work piece
EP2912207B1 (en) Component having a coating and method for the production thereof
DE112017001964T5 (en) Polycrystalline cubic boron nitride and process for its preparation
EP3402655A1 (en) Molding tool for molten metal or glass
DE10048368B4 (en) Carbon electrode for melting quartz glass and process for its production
EP2582477B1 (en) Structural component made of an iron-based sinter-alloy having reduced metal adhesion and method for its production
DE112017004063T5 (en) Process for producing a thick coating with a layered structure
WO2007056785A1 (en) Metal carbonitride layer and method for the production of a metal carbonitride layer
DE19716330A1 (en) Method for producing a coating on a grinding tool
CN110373564B (en) Preparation method of boron carbide modified superfine crystal/nano-structure metal matrix composite material
DE2418101C2 (en) Process for the production of metal-coated diamond particles
EP4058224A1 (en) Spherical powder for making 3d objects
EP2462080A1 (en) Alpha-al2o3- sintering material, method for producing a high-density and very finely crystalline molded body made of said material, and use thereof
EP2473204B1 (en) Hydroxylapatite material, and method for the production thereof
DE2014863A1 (en) Grinding wheel or tool
WO2016062879A1 (en) Abrasive elements and method for producing said abrasive elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823239

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12823239

Country of ref document: EP

Kind code of ref document: A2