WO2013091596A1 - Arrangement and method for the model-based calibration of a robot in a working space - Google Patents

Arrangement and method for the model-based calibration of a robot in a working space Download PDF

Info

Publication number
WO2013091596A1
WO2013091596A1 PCT/DE2011/002143 DE2011002143W WO2013091596A1 WO 2013091596 A1 WO2013091596 A1 WO 2013091596A1 DE 2011002143 W DE2011002143 W DE 2011002143W WO 2013091596 A1 WO2013091596 A1 WO 2013091596A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
robot
radiation pattern
model
calibration objects
Prior art date
Application number
PCT/DE2011/002143
Other languages
German (de)
French (fr)
Other versions
WO2013091596A9 (en
Inventor
Peter KOVÀCS
Original Assignee
Isios Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isios Gmbh filed Critical Isios Gmbh
Priority to US14/365,642 priority Critical patent/US20150002855A1/en
Priority to PCT/DE2011/002143 priority patent/WO2013091596A1/en
Publication of WO2013091596A1 publication Critical patent/WO2013091596A1/en
Publication of WO2013091596A9 publication Critical patent/WO2013091596A9/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39008Fixed camera detects reference pattern held by end effector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39039Two cameras detect same reference on workpiece to define its position in space
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39045Camera on end effector detects reference pattern
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39393Camera detects projected image, compare with reference image, position end effector

Definitions

  • the present invention relates to an arrangement for model-based calibration of a robot in a workspace, comprising at least three calibration objects, which are designed either as directional radiation patterns together with associated radiation pattern generator or as radiation pattern position sensors, wherein position sensors deliver upon measurement of a radiation pattern measured values with position information, which to a Computing be forwarded, which determines the parameters of a mathematical mechanism model using these measurements
  • a mechanism 1 is a system of so-called segments or rigid bodies, which are connected by rotary push or screw joints. Examples are robots, machine tools or hexapods.
  • Robot To simplify the understanding of the present invention, the term robot 1 is used below as a synonym for the term mechanism.
  • Effector (5) is a segment of the mechanism to which a work object (e.g., gripper (with workpiece), miller, camera, etc.) can be mounted for the purpose of carrying out a utility.
  • the aim of the patent is to position the effector with work object exactly in the working space or relative to the robot base.
  • Position summarizes the position and orientation of an object in the 3-dimensional visual space.
  • Joint configuration is the total of all control values of the joints of a robot, which determines the position of all robot segments or rigid bodies including the effector.
  • model-based robot calibration basically consists of three basic steps:
  • the mathematical methods of parameter identification e.g. Gauss-Newton or Levenberg-Marquardt method calculates the parameters of a mathematical model of the robot and the position of the involved calibration objects.
  • Calibration systems differ substantially by the measuring devices used and the respective underlying mathematical mechanism model.
  • a radiation pattern generator 3 generates directional electromagnetic radiation (e.g., lasers, maser, radar) or directional radiation patterns, such as e.g. Single rays 2 or bundles of isolated single rays 8 or line or cross-shaped radiation patterns 9 or any other patterns.
  • directional electromagnetic radiation e.g., lasers, maser, radar
  • directional radiation patterns such as e.g. Single rays 2 or bundles of isolated single rays 8 or line or cross-shaped radiation patterns 9 or any other patterns.
  • Laser For the sake of simplicity, the term laser is used below as a synonym of radiation pattern generator 2.
  • Radiation pattern position sensors 3 can accurately register the position and possibly orientation of an incident radiation pattern 2 relative to a coordinate system permanently assigned to the sensor.
  • the term sensor is used below as a synonym of radiation pattern position sensor.
  • a calibration object is to be understood in the present description as a generic term for sensors and radiation patterns, including the associated laser. Contiguous images of radiation patterns on the sensor surface such as points, lines or crosses 7 are considered as a single calibration object. Unconnected radiation patterns, which are generated by a laser, for example by means of splitting optics 8, are described as several different cables. Librations Meetinge conceived.
  • a calibration object pair is defined as a coherent radiation pattern together with the associated laser and a sensor.
  • Laser sensor systems are robot calibration systems that are based on the following principle: A calibration object of a calibration object pair is mounted on the effector and hereinafter referred to as effector object. The other calibration object of the pair is stationarily positioned in or near the working space and hereinafter referred to as the reference object.
  • the robot moves the effector object into a plurality of positions in which at least one radiation pattern of the laser strikes the sensor.
  • the sensor forwards the measured values to a computing unit which calculates the exact parameters of a mathematical mechanism model from the measured values and associated joint configurations.
  • Calibration object pairs can change in the course of a mechanism calibration or more precisely: each laser can irradiate different sensors and each sensor can be irradiated by different radiation patterns.
  • EP1135237 sets out the basics of industrially applicable laser sensor methods.
  • the present patent is based on EP1135237 without being limited in scope by EP1135237.
  • WO 2010/094949 and the patents cited therein use stationary sensors and effector object lasers to derive information about the position of the effector in several ways over several steps.
  • the device is not used to calibrate robots but to measure isolated effector positions. Purpose, objectives and effect differ from the present patent.
  • the method provides an error amplification by a factor of 12 to 13 under optimum conditions in a typical industrial robot. The method is not used industrially.
  • the object of the present invention is therefore to develop an arrangement and a method of the type mentioned in such a way that the aforementioned disadvantages are eliminated.
  • the object is achieved in that at least two calibration objects are rigidly interconnected.
  • the decisive advantage of this rigid connection is the maximum increase in information or efficiency per measurement as follows:
  • the impact point of a laser beam on a sensor provides two equations for the parameter identification: one for the x and y coordinates of the impact point in the sensor coordinate system.
  • Two equations per measurement are provided by the original laser sensor technology
  • Fig. 2 Standard limited system calibration system with three sensors on a single carrier unit
  • FIG. 4 calibration variant with stationary laser with splitting optics
  • FIG. 5 Measurement of heterogeneous calibration object combinations.
  • FIG. 1 shows a realization according to the invention with a carrier unit 5 on the effector 6, on which four simple lasers 3 are mounted in a rigid position relative to each other and a reference object which consists of a carrier unit 5 with two sensors 4 rigidly connected.
  • suitable (calibration) measuring positions of the Ef- Four laser light spots on the photosensitive surface 7 of the sensor 4 are obtained.
  • the amount of effector positions in which all four beams strike a sensor is limited.
  • a prerequisite for a successful mechanism calibration is a wide range of different measurement positions.
  • the series of measurements are designed so that the sensors are hit by as many laser beams or radiation patterns as possible in some measuring positions and in other measuring positions that result from an optimization of the measuring series (n) result, less rays or in the extreme case only one laser beam hits the sensor.
  • the embodiment in Fig. 2 shows a effector laser with a cross-optic, which projects a cross-shaped beam pattern 9 on sensors and a stationary carrier unit 5 with three sensors 4.
  • the exemplary single carrier unit 5 can be easily transported and installed quickly. If the relative positions of the sensors relative to each other in advance measured exactly, so the carrier unit is u.a. as a length standard with high error attenuation due to the large distance between the sensors. In all measuring positions of the mechanism, only one sensor is irradiated at a time.
  • the calibration method proposed here and the method in EP1135237 do not require that the respective position of the effector or the effector objects can be unambiguously reconstructed from the measured values obtained in a measuring position. Partial information about the respective effector position is sufficient.
  • Fig. 3 shows a linear or translational joint 10 which is representative of more complex mechanisms with multiple linear joints, eg gantry robots or machine tools.
  • Linear joints usually have slight deviations from the straightness, which must be identified and compensated.
  • both effector and reference objects are rigid combinations of a respective laser 3 and a sensor 4.
  • the lasers are aligned approximately parallel to the baffle axis, as shown, and the sensors are positioned so that both are in contact with each other throughout the joint movement Laser to be taken.
  • the information yield is twice as high as in the technique according to EP1135237.
  • With a third, also parallel to the joint aligned Calibration object pair one can obtain the maximum information of six equations per measurement.
  • a laser with splitting optics 8, which emits a plurality of beams 2 at different angles, is mounted stationary on the edge of the working space, and on the effector 6, a carrier unit 5 with two sensors 4 rigidly connected is mounted.
  • the interchange of effector object and reference object in this example gives a different variant of the calibration than the preceding embodiments with other advantageous properties. In some calibration measurement positions, both sensors can be hit simultaneously by different beams of the laser.
  • a laser 3 is rigidly connected to a sensor 4 both at the effector 6 and stationary in the working space.
  • both calibration measurements of the type as in Fig. 1 are possible as well as those in Fig. 4. While in Fig. 3 the measurements are made on the sensors simultaneously, this is not the primary goal in the robot with rotary joints in Fig. 5 ,
  • the rigid connection primarily supports the initial identification of the position of the calibration objects as follows. Be e.g. Assuming the user sets the reference object 3; 4; 5 in Fig. 5 with pre-measured position exactly from laser to sensor in the working space. As soon as the position of the sensor in the robot coordinate system is determined, the position of the rigidly connected laser can be calculated immediately afterwards.
  • the positions of the reference objects relative to the robot base and the effector objects relative to the effector must be approximately determined in laser sensor systems before calibration measurement series can be calculated in which the laser really hits the sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

An arrangement and a method for the model-based calibration of a mechanism (1) in a working space, with at least three calibration objects, which are formed either as directed radiation patterns (2) together with an associated radiation pattern generator (3) or as radiation-pattern position sensors (4), wherein position sensors (4) respond to the impingement of a radiation pattern by providing measured values with positional information, which are passed on to a computing device, which, with the aid of these measured values, determines the parameters of a mathematical mechanism model, characterized in that at least two calibration objects (2; 3) are rigidly connected to one another.

Description

Anordnung und Verfahren zur modellbasierten Kalibration eines Roboters in einem Arbeitsraum  Arrangement and method for model-based calibration of a robot in a workspace
Die vorliegenden Erfindung betrifft eine Anordnung zur modellbasierten Kalibration eines Roboters in einem Arbeitsraum, mit wenigstens drei Kalibrationsobjekten, die entweder als gerichtete Strahlungsmuster samt zugehörigem Strahlungsmustergenerator oder als Strahlungsmuster-Positionssensoren ausgebildet sind, wobei Positionssensoren bei Auftreffen eines Strahlungsmusters Messwerte mit Positionsinformationen liefern, welche an eine Recheneinrichtung weitergeleitet werden, die mit Hilfe dieser Messwerte die Parameter eines mathematischen Mechanismenmodells bestimmt The present invention relates to an arrangement for model-based calibration of a robot in a workspace, comprising at least three calibration objects, which are designed either as directional radiation patterns together with associated radiation pattern generator or as radiation pattern position sensors, wherein position sensors deliver upon measurement of a radiation pattern measured values with position information, which to a Computing be forwarded, which determines the parameters of a mathematical mechanism model using these measurements
Eine solche Anordnung und eine solches Verfahren sind aus dem Stand der Technik allgemein bekannt. Zunächst werden grundlegende Begriffe definiert: Such an arrangement and method are well known in the art. First, basic terms are defined:
1. Mechanismus: ein Mechanismus 1 ist ein System von sogenannten Segmenten bzw. Starrkörpern, welche durch Dreh- Schub- oder Schraubgelenke miteinander verbunden sind. Beispiele sind Roboter, Werkzeugmaschinen oder Hexapoden.1. mechanism: a mechanism 1 is a system of so-called segments or rigid bodies, which are connected by rotary push or screw joints. Examples are robots, machine tools or hexapods.
2. Roboter: Zur Vereinfachung des Verständnisses der vorliegenden Erfindung wird im Folgenden der Begriff Roboter 1 als Synonym für den Begriff Mechanismus verwendet. 2. Robot: To simplify the understanding of the present invention, the term robot 1 is used below as a synonym for the term mechanism.
3. Effektor (5): ist ein Segment des Mechanismus, an den ein Werkobjekt (z.B. Greifer (mit Werkstück), Fräse, Kamera, etc.) zwecks Durchführung einer Nutztätigkeit montiert werden kann. Das Ziel des Patents ist, den Effektor mit Werkobjekt exakt im Arbeitsraum bzw. relativ zur Roboterbasis zu positionieren.  3. Effector (5): is a segment of the mechanism to which a work object (e.g., gripper (with workpiece), miller, camera, etc.) can be mounted for the purpose of carrying out a utility. The aim of the patent is to position the effector with work object exactly in the working space or relative to the robot base.
4. Stellung: bezeichnet zusammenfassend die Position und Orientierung eines Objekts im 3-dimensionalen Anschauungsraum.  4. Position: summarizes the position and orientation of an object in the 3-dimensional visual space.
5. Gelenkkonfiguration: ist die Gesamtheit aller Stellwerte der Gelenke eines Roboters, welche die Stellung aller Robotersegmente bzw. Starrkörper inkl. des Effektors festlegt.  5. Joint configuration: is the total of all control values of the joints of a robot, which determines the position of all robot segments or rigid bodies including the effector.
Damit Roboter im gesamten Arbeitsraum exakt gesteuert werden können, wird der Roboter üblicherweise vorab kalibriert, d.h. alle Parameter eines mathematischen Robotermodells werden exakt identifiziert, die Einfluss auf die Genauigkeit der Effek- torstellung haben. Gemäß Schröer besteht die modellbasierte Roboterkalibration prinzipiell aus drei grundlegenden Schritten: So that robots can be precisely controlled in the entire working space, the robot is usually calibrated in advance, ie all parameters of a mathematical robot model are identified exactly, which influences the accuracy of the effects. have position. According to Schröer, model-based robot calibration basically consists of three basic steps:
- es werden Messungen durchgeführt, die Informationen über die Effektorstellung eines zu kalibrierenden Roboters im Arbeitsraum liefern  Measurements are carried out which provide information about the effector position of a robot to be calibrated in the working space
- zu jeder Messung werden die erhaltenen Messwerte und die dazugehörigen Gelenkkonfigurationen des Roboters durch Gleichungen in Beziehung zueinander gesetzt;  - for each measurement, the obtained measured values and the associated joint configurations of the robot are related by equations;
- aus der Gesamtheit der erhaltenen Gleichungen werden mit mathematischen Methoden der Parameteridentifikation wie z.B. Gauß-Newton- oder Levenberg- Marquardt-Verfahren die Parameter eines mathematischen Modells des Roboters sowie die Stellung der beteiligten Kalibrationsobjekte berechnet.  From the totality of the obtained equations, the mathematical methods of parameter identification, e.g. Gauss-Newton or Levenberg-Marquardt method calculates the parameters of a mathematical model of the robot and the position of the involved calibration objects.
Kalibrationssysteme unterscheiden sich wesentlich durch die eingesetzten Messvorrichtungen sowie das jeweils zugrundeliegende mathematische Mechanismenmodell. Calibration systems differ substantially by the measuring devices used and the respective underlying mathematical mechanism model.
Die folgenden Begriffsdefinitionen erleichtern die gesamte restliche Beschreibung: The following definitions make the rest of the description easier to understand:
6. Ein Strahlungsmustergenerator 3 erzeugt gerichtete elektromagnetische Strahlen (z.B. Laser, Maser, Radar) oder gerichtete Strahlungsmuster wie z.B. Einzelstrahlen 2 oder Bündel isolierter Einzelstrahlen 8 oder linien- oder kreuzförmige Strahlungsmuster 9 oder beliebige andere Muster. 6. A radiation pattern generator 3 generates directional electromagnetic radiation (e.g., lasers, maser, radar) or directional radiation patterns, such as e.g. Single rays 2 or bundles of isolated single rays 8 or line or cross-shaped radiation patterns 9 or any other patterns.
7. Laser: Zwecks Vereinfachung wird im Folgenden der Begriff Laser als Synonym von Strahlungsmustergenerator 2 benutzt.  7. Laser: For the sake of simplicity, the term laser is used below as a synonym of radiation pattern generator 2.
8. Strahlungsmuster-Positionssensoren 3 können die Position und ggf. Orientierung eines auftreffenden Strahlungsmusters 2 relativ zu einem dem Sensor fest zugeordneten Koordinatensystem exakt registrieren. Zwecks Vereinfachung wird im Folgenden der Begriff Sensor als Synonym von Strahlungsmuster- Positionssensor benutzt.  8. Radiation pattern position sensors 3 can accurately register the position and possibly orientation of an incident radiation pattern 2 relative to a coordinate system permanently assigned to the sensor. For the sake of simplicity, the term sensor is used below as a synonym of radiation pattern position sensor.
9. Ein Kalibrationsobjekt ist in der vorliegenden Beschreibung als Oberbegriff für Sensoren sowie Strahlungsmuster samt zugehörigem Laser zu verstehen. Zusammenhängende Abbilder von Strahlungsmustern auf der Sensoroberfläche wie Punkte, Linien oder Kreuze 7 werden als einzelnes Kalibrationsobjekt betrachtet. Unzusammenhängende Strahlungsmuster, die von einem Laser z.B. mittels Aufspaltoptiken 8 erzeugt werden, werden als mehrere unterschiedliche Ka- librationsobjekte aufgefaßt. 9. A calibration object is to be understood in the present description as a generic term for sensors and radiation patterns, including the associated laser. Contiguous images of radiation patterns on the sensor surface such as points, lines or crosses 7 are considered as a single calibration object. Unconnected radiation patterns, which are generated by a laser, for example by means of splitting optics 8, are described as several different cables. Librationsobjekte conceived.
10. Ein Kalibrationsobjektpaar ist definiert als ein zusammenhängendes Strahlungsmuster samt zugehörigem Laser sowie einem Sensor.  10. A calibration object pair is defined as a coherent radiation pattern together with the associated laser and a sensor.
11. Laser-Sensor-Systeme sind Roboterkalibrationssysteme, die auf folgendem Prinzip basieren: Ein Kalibrationsobjekt eines Kalibrationsobjektpaares wird am Effektor montiert und im Folgenden als Effektorobjekt bezeichnet. Das andere Kalibrationsobjekt des Paares wird stationär im oder nahe dem Arbeitsraum positioniert und im Folgenden als Referenzobjekt bezeichnet. Der Roboter bewegt das Effektorobjekt in eine Vielzahl von Stellungen in denen wenigstens ein Strahlungsmuster des Lasers auf den Sensor trifft. Der Sensor leitet die Messwerte an eine Recheneinheit weiter, die aus den Messwerten sowie zugehörigen Gelenkkonfigurationen die exakten Parameter eines mathematischen Mechanismenmodells errechnet. Kalibrationsobjektpaare können im Laufe einer Mechanismenkalibrati- on wechseln oder genauer: jeder Laser kann verschiedene Sensoren bestrahlen und jeder Sensor von verschiedenen Strahlungsmustern bestrahlt werden.  11. Laser sensor systems are robot calibration systems that are based on the following principle: A calibration object of a calibration object pair is mounted on the effector and hereinafter referred to as effector object. The other calibration object of the pair is stationarily positioned in or near the working space and hereinafter referred to as the reference object. The robot moves the effector object into a plurality of positions in which at least one radiation pattern of the laser strikes the sensor. The sensor forwards the measured values to a computing unit which calculates the exact parameters of a mathematical mechanism model from the measured values and associated joint configurations. Calibration object pairs can change in the course of a mechanism calibration or more precisely: each laser can irradiate different sensors and each sensor can be irradiated by different radiation patterns.
In EP1135237 werden die Grundlagen industriell einsetzbarer Laser-Sensor- Verfahren dargelegt. Das vorliegende Patent basiert auf EP1135237 ohne in seinem Umfang durch EP1135237 eingeschränkt zu werden. EP1135237 sets out the basics of industrially applicable laser sensor methods. The present patent is based on EP1135237 without being limited in scope by EP1135237.
In einem wissenschaftlichen Artikel [Gatla] werden u.a. zwei Methoden zur Einbeziehung eines Längennormals bzw. Skalarfaktors in die Kalibrierung präsentiert. Der Artikel enthält keinen Fortschritt gegenüber EP1135237. Die letztlich favorisierte Vorrichtung verfährt den Roboter auf einem mobilen Gestell um einen exakten, definierten Versatz, was i.a. für die industrielle Nutzung wenig geeignet ist. In einem zweiten Vorschlag wird eine starre Kombination von Lasern und Sensoren ausschließlich zum Zweck der Bestimmung eines Skalarfaktors untersucht. Diese Variante wird sofort von den Autoren verworfen und würde in der Praxis zu einer erheblichen Fehlerverstärkung führen. In a scientific article [Gatla] u.a. presented two methods for incorporating a length normal or scalar factor into the calibration. The article contains no progress compared to EP1135237. The ultimately favored device moves the robot on a mobile frame to an exact, defined offset, which i.a. is not very suitable for industrial use. In a second proposal, a rigid combination of lasers and sensors is studied solely for the purpose of determining a scalar factor. This variant is immediately rejected by the authors and would lead in practice to a significant error amplification.
WO 2010/094949 und dort zitierte Vorgängerpatente verwenden stationäre Sensoren und Effektorobjekt-Laser um auf verschiedene Weise über mehrere Schritte Informationen über die Stellung des Effektors herzuleiten. Die Vorrichtung dient nicht der Kalibrierung von Robotern sondern der Vermessung isolierter Effektorstellungen. Zweck, Ziele und Wirkung unterschieden sich vom vorliegenden Patent. Das Verfahren liefert unter optimalen Bedingungen bei einem typischen Industrieroboter eine Fehlerverstärkung um den Faktor 12 bis 13. Das Verfahren wird nicht industriell genutzt. WO 2010/094949 and the patents cited therein use stationary sensors and effector object lasers to derive information about the position of the effector in several ways over several steps. The device is not used to calibrate robots but to measure isolated effector positions. Purpose, objectives and effect differ from the present patent. The method provides an error amplification by a factor of 12 to 13 under optimum conditions in a typical industrial robot. The method is not used industrially.
Die Nachteile bisheriger Laser-Sensor-Verfahren für die modellbasierte Kalibration von Robotern sind vor allem The disadvantages of previous laser sensor methods for the model-based calibration of robots are above all
- sie liefern wenige Informationen pro Messung und erfordern zu viele zeitaufwendige Messungen für kritische Applikationen wie z.B. die sogenannte Temperaturkompensation;  they provide little information per measurement and require too much time consuming measurement for critical applications such as e.g. the so-called temperature compensation;
- durch Verwendung eines einzigen Kalibrationsobjektpaares bleibt die durchschnittliche Stellungsgenauigkeit des kalibrierten Roboters im gesamten Arbeitsraum gering. Mit der Verwendung von mehr als zwei Kalibrationsobjekten hingegen steigt die Zahl der zu identifizierenden Parameter, was die resultierende Effektor-Stellungsgenauigkeit des kalibrierten Mechanismus ebenfalls senkt;  By using a single pair of calibration objects, the average positional accuracy of the calibrated robot throughout the working space remains low. By contrast, with the use of more than two calibration objects, the number of parameters to be identified increases, which also lowers the resulting effector position accuracy of the calibrated mechanism;
- die Installation der Kalibrationsobjektanordnungen bzw. das sogenannte Einmes- sen der Kalibrationsobjekte ist technisch aufwendig und zeitintensiv  The installation of the calibration object arrangements or the so-called calibration of the calibration objects is technically complicated and time-consuming
- der Freiraum in der Arbeitszelle, der für eine Kalibrierung benötigt wird, ist groß.  - The free space in the work cell, which is needed for a calibration, is large.
Die Aufgabe der vorliegenden Erfindung ist daher, eine Anordnung und ein Verfahren der eingangs genannten Art derart weiterzubilden, dass die vorgenannten Nachteile beseitigt sind. Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass wenigstens zwei Kalibrationsobjekte starr miteinander verbunden werden. The object of the present invention is therefore to develop an arrangement and a method of the type mentioned in such a way that the aforementioned disadvantages are eliminated. The object is achieved in that at least two calibration objects are rigidly interconnected.
Entscheidender Vorteil dieser starren Verbindung ist die maximale Informations- bzw. Effizienzsteigerung pro Messung wie folgt: Der Auftreffpunkt eines Laserstrahls auf einem Sensor liefert zwei Gleichungen für die Parameteridentifikation: je eine für die x- und y-Koordinate des Auftreffpunkts im Sensorkoordinatensystem. Zwei Gleichungen pro Messung liefert die ursprüngliche Laser-Sensor-Technik gemäß The decisive advantage of this rigid connection is the maximum increase in information or efficiency per measurement as follows: The impact point of a laser beam on a sensor provides two equations for the parameter identification: one for the x and y coordinates of the impact point in the sensor coordinate system. Two equations per measurement are provided by the original laser sensor technology
EP1135237. Dagegen liefern z. B. die vier starr verbundenen Strahlen des Ausführungsbeispiels in Fig. 1 pro Messung 4 * 2 = 8 Gleichungen. Zwei von ihnen sind abhängig von den restlichen sechs und liefern redundante Information. Sechs unabhängige Gleichungen sind die maximal erhältliche Information pro Messung, da sechs Koordinaten eine Effektorstellung eindeutig bestimmen. Die bekannten ele- mentargeometrischen Zusammenhänge sollen hier nicht näher erläutert werden. EP1135237. In contrast, z. B. the four rigidly connected beams of the embodiment in Fig. 1 per measurement 4 * 2 = 8 equations. Two of them are dependent on the remaining six and provide redundant information. Six independent equations are the maximum information available per measurement since six coordinates uniquely determine one effector position. The known ele- Mentarometric relationships are not explained here.
Im Fall des Beispiels in Fig. 1 mussten bislang bei jeder Roboterkalibratton zusätzlich zu den Robote rparametem 4 * 4 Laserparameter und 2 * 6 Sensorparameter - also zusätzlich insgesamt 28 Parameter identifiziert werden. Wird dagegen die starre, relative Stellung der Kalibrationsobjekte zueinander auf ihren Trägereinheiten z.B. vom Kalibrationssystemhersteller vor Auslieferung der Trägereinheit mit hochgenauen Geräten exakt bestimmt, so muss bei nachfolgenden Roboterkalibrationen nur noch die Stellung der beiden Trägereinheiten bestimmt werden, wozu 6 + 6 = 12 Parameter erforderlich sind. Die geringere Anzahl der zu identifizierenden Parameter reduziert nicht nur den Zeitaufwand der Kalibration sondern bewirkt i.a. auch eine verbesserte resultierende Roboter-Stellungsgenauigkeit nach Kalibration. In the case of the example in FIG. 1, in addition to the robotic parameters, 4 * 4 laser parameters and 2 * 6 sensor parameters - in other words a total of 28 parameters - had to be identified at each robotic calibrattone. If, on the other hand, the rigid, relative position of the calibration objects relative to one another on their carrier units, e.g. determined exactly by the calibration system manufacturer before delivery of the carrier unit with high-precision equipment, then only the position of the two carrier units must be determined in subsequent robot calibration, for which 6 + 6 = 12 parameters are required. The smaller number of parameters to be identified not only reduces the time required for the calibration but i.a. also an improved resulting robot position accuracy after calibration.
Durch die große Informationsausbeute pro Messung können bei entsprechender Optimierung der Kalibrations-Messstellungen ausladende Bewegungen des Mechanismus entfallen ohne Einbußen in der resultierenden Stellungsgenauigkeit. Die Reduktion des erforderlichen Freiraums ist wichtig, da der Platz in Roboterarbeitszellen meist beschränkt ist. Due to the large information yield per measurement, with appropriate optimization of the calibration measurement positions, expansive movements of the mechanism can be eliminated without sacrificing the resulting positional accuracy. Reducing the space required is important because space is usually limited in robot work cells.
Verschiedene Ausführungsformen der vorliegenden Erfindung werden im Folgenden anhand der Zeichnungen näher beschrieben. Es zeigen: Various embodiments of the present invention will be described below with reference to the drawings. Show it:
Fig. 1 Anordnung mit maximaler Information pro Messung; Fig. 1 arrangement with maximum information per measurement;
Fig. 2 Standardkalibrationssystem für begrenzte Anforderungen mit drei Sensoren auf einer einzigen Trägereinheit;  Fig. 2 Standard limited system calibration system with three sensors on a single carrier unit;
Fig. 3 Identifikation der Abweichung von der Geradlinigkeit bei Lineargelenken;  Fig. 3 identification of the deviation from the straightness in linear joints;
Fig. 4 Kalibrationsvariante mit stationärem Laser mit Aufspaltoptik; und FIG. 4 calibration variant with stationary laser with splitting optics; FIG. and
Fig. 5 Einmessung von heterogenen Kalibrationsobjektkombinationen. FIG. 5 Measurement of heterogeneous calibration object combinations.
Fig. 1 zeigt eine erfindungsgemäße Realisierung mit einer Trägereinheit 5 am Effektor 6, an der vier einfache Laser 3 in starrer Stellung relativ zueinander montiert sind sowie einem Referenzobjekt, welches aus einer Trägereinheit 5 mit zwei starr verbundenen Sensoren 4 besteht. In geeigneten (Kalibrations-)Messstellungen des Ef- fektors erhält man vier Laserlichtpunkte auf der lichtempfindlichen Fläche 7 des Sensors 4. Die Menge der Effektorstellungen, in denen alle vier Strahlen einen Sensor treffen ist begrenzt. Voraussetzung für eine erfolgreiche Mechanismenkalibration ist jedoch ein großes Spektrum verschiedenster Messstellungen. Um die Forderungen nach maximaler Information pro Messung sowie nach einem großen Spektrum an Kalibrationsmessstellungen optimal zu kombinieren werden die Messserien so ausgelegt, dass die Sensoren in einigen Messstellungen von möglichst vielen Laserstrahlen bzw. Strahlungsmustern getroffen werden und in anderen Messstellungen, die aus einer Optimierung der Messserie(n) resultieren, weniger Strahlen bzw. im äußersten Fall nur ein Laserstrahl den Sensor trifft. 1 shows a realization according to the invention with a carrier unit 5 on the effector 6, on which four simple lasers 3 are mounted in a rigid position relative to each other and a reference object which consists of a carrier unit 5 with two sensors 4 rigidly connected. In suitable (calibration) measuring positions of the Ef- Four laser light spots on the photosensitive surface 7 of the sensor 4 are obtained. The amount of effector positions in which all four beams strike a sensor is limited. However, a prerequisite for a successful mechanism calibration is a wide range of different measurement positions. In order to optimally combine the demands for maximum information per measurement as well as for a wide range of calibration measurement positions, the series of measurements are designed so that the sensors are hit by as many laser beams or radiation patterns as possible in some measuring positions and in other measuring positions that result from an optimization of the measuring series (n) result, less rays or in the extreme case only one laser beam hits the sensor.
Das Ausführungsbeispiel in Fig. 2 zeigt einen Effektorlaser mit Kreuzoptik, der einen kreuzförmiges Strahlenmuster 9 auf Sensoren projiziert und eine stationäre Trägereinheit 5 mit drei Sensoren 4. Die exemplarische einzige Trägereinheit 5 kann leicht transportiert und schnell installiert werden. Sind die relativen Stellungen der Sensoren zueinander vorab exakt ausgemessen, so eignet sich die Trägereinheit u.a. als Längennormal mit hoher Fehlerdämpfung aufgrund des großen AbStands zwischen den Sensoren. In allen Messstellungen des Mechanismus wird jeweils nur ein Sensor bestrahlt. Das hier vorgeschlagene Kalibrationsverfahren sowie das Verfahren in EP1135237 setzen nicht voraus, dass aus den Messwerten, die in einer Messstellung gewonnen werden, die jeweilige Stellung des Effektors bzw. der Effektorobjekte eindeutig rekonstruierbar ist. Partielle Informationen über die jeweilige Effektorstellung sind ausreichend. The embodiment in Fig. 2 shows a effector laser with a cross-optic, which projects a cross-shaped beam pattern 9 on sensors and a stationary carrier unit 5 with three sensors 4. The exemplary single carrier unit 5 can be easily transported and installed quickly. If the relative positions of the sensors relative to each other in advance measured exactly, so the carrier unit is u.a. as a length standard with high error attenuation due to the large distance between the sensors. In all measuring positions of the mechanism, only one sensor is irradiated at a time. The calibration method proposed here and the method in EP1135237 do not require that the respective position of the effector or the effector objects can be unambiguously reconstructed from the measured values obtained in a measuring position. Partial information about the respective effector position is sufficient.
Fig. 3 zeigt ein Linear- oder Translationsgelenk 10 welches stellvertretend für komplexere Mechanismen mit mehreren Lineargelenken, z.B. Portalroboter oder Werkzeugmaschinen steht. Lineargelenke haben i.a. leichte Abweichungen von der Geradlinigkeit, welche identifiziert und kompensiert werden müssen. In Fig. 3 sind sowohl Effektor- als auch Referenzobjekte starre Kombinationen von je einem Laser 3 und einem Sensor 4. Zwecks effizienter Kalibration werden die Laser gemäß Abbildung annähernd parallel zur Glenkachse ausgerichtet und die Sensoren so positioniert, dass beide während der gesamten Gelenkbewegung vom jeweiligen Laser getroffen werden. Die Informationsausbeute ist doppelt so hoch wie bei der Technik gemäß EP1135237. Mit einem dritten, ebenfalls parallel zum Gelenk ausgerichteten Kalibrationsobjektpaar kann man die maximale Information von sechs Gleichungen pro Messung erhalten. Fig. 3 shows a linear or translational joint 10 which is representative of more complex mechanisms with multiple linear joints, eg gantry robots or machine tools. Linear joints usually have slight deviations from the straightness, which must be identified and compensated. In FIG. 3, both effector and reference objects are rigid combinations of a respective laser 3 and a sensor 4. For efficient calibration, the lasers are aligned approximately parallel to the baffle axis, as shown, and the sensors are positioned so that both are in contact with each other throughout the joint movement Laser to be taken. The information yield is twice as high as in the technique according to EP1135237. With a third, also parallel to the joint aligned Calibration object pair, one can obtain the maximum information of six equations per measurement.
In Fig. 4 ist ein Laser mit Aufspaltungsoptik 8, der mehrere Strahlen 2 in unterschiedlichem Winkel aussendet, stationär am Rand des Arbeitsraums montiert und am Effektor 6 ist eine Trägereinheit 5 mit zwei starr verbundenen Sensoren 4 montiert. Die Vertauschung von Effektorobjekt und Referenzobjekt in diesem Beispiel ergibt eine andere Variante der Kalibration als die vorangehenden Ausführungsbeispiele mit anderen vorteilhaften Eigenschaften. In einigen Kalibrationsmessstellungen können beide Sensoren gleichzeitig von verschiedenen Strahlen des Lasers getroffen werden. 4, a laser with splitting optics 8, which emits a plurality of beams 2 at different angles, is mounted stationary on the edge of the working space, and on the effector 6, a carrier unit 5 with two sensors 4 rigidly connected is mounted. The interchange of effector object and reference object in this example gives a different variant of the calibration than the preceding embodiments with other advantageous properties. In some calibration measurement positions, both sensors can be hit simultaneously by different beams of the laser.
In Fig. 5 ist sowohl am Effektor 6 als auch stationär im Arbeitsraum jeweils ein Laser 3 starr mit einem Sensor 4 verbunden. Bei diesem Ausführungsbeispiel sind sowohl Kalibrationsmessungen des Typs wie in Fig. 1 möglich als auch solche wie in Fig. 4. Während in Fig. 3 die Messungen an den Sensoren gleichzeitig vorgenommen werden ist dies bei dem Roboter mit Rotationsgelenken in Fig 5 nicht das primäre Ziel. Die starre Verbindung unterstützt hier vor allem die initiale Identifikation der Stellung der Kalibrationsobjekte wie folgt. Sei z.B. angenommen, der Anwender stellt das Referenzobjekt 3; 4; 5 in Fig. 5 mit vorab exakt vermessener Stellung von Laser zu Sensor in den Arbeitsraum. Sobald die Stellung des Sensors im Roboterkoordinatensystem bestimmt wird kann danach sofort die Stellung des starr damit verbundenen Lasers berechnet werden. Die Stellungen der Referenzobjekte relativ zur Roboterbasis sowie der Effektorobjekte relativ zum Effektor muss bei Laser-Sensor- Systemen annähernd ermittelt werden bevor Kalibrationsmessserien errechnet werden können, bei denen der Laser den Sensor wirklich trifft. In Fig. 5, a laser 3 is rigidly connected to a sensor 4 both at the effector 6 and stationary in the working space. In this embodiment, both calibration measurements of the type as in Fig. 1 are possible as well as those in Fig. 4. While in Fig. 3 the measurements are made on the sensors simultaneously, this is not the primary goal in the robot with rotary joints in Fig. 5 , The rigid connection primarily supports the initial identification of the position of the calibration objects as follows. Be e.g. Assuming the user sets the reference object 3; 4; 5 in Fig. 5 with pre-measured position exactly from laser to sensor in the working space. As soon as the position of the sensor in the robot coordinate system is determined, the position of the rigidly connected laser can be calculated immediately afterwards. The positions of the reference objects relative to the robot base and the effector objects relative to the effector must be approximately determined in laser sensor systems before calibration measurement series can be calculated in which the laser really hits the sensor.
Literatur literature
[Dynalog] siehe: www.dynalog.com [Dynalog] see: www.dynalog.com
[Gatla] CS. Gatla, R. Lumia, J. Wood, G. Starr, An Automated Method to Calibrate Industrial Robots Using a Virtual Closed Kinematic Chain, IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 6 (2007) [Gatla] CS. Gatla, R. Lumia, J. Wood, G. Starr, An Automated Method to Calibrate Industrial Robots Using a Virtual Closed Kinematic Chain, IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 6 (2007)
[Hollerbach] J.M.Holierbach, "The calibration index and taxonomy for robot kinematic calibration methods," Int. J. Robot. Res., vol. 15, no. 12, pp. 573-591 (1996). [Hollerbach] J. M. Holierbach, "The calibration index and taxonomy for robot kinematic calibration methods," Int. J. Robot. Res., Vol. 15, no. 12, pp. 573-591 (1996).
[Schröer] K. Schröer, Identifikation von Kalibrationsparametern kinematischer Ketten. Hanser Verlag, 1993 [Schröer] K. Schröer, Identification of calibration parameters of kinematic chains. Hanser Verlag, 1993
Bezugszeichenliste LIST OF REFERENCE NUMBERS
1. Roboter 1st robot
2. Strahlungsmuster {punktförmiges Abbild) 2. radiation pattern {punctiform image)
3. Laser (Strahlungsmuster Generator)3. Laser (radiation pattern generator)
4. Sensor (Strahlungsmuster-Positionssensor)4. Sensor (radiation pattern position sensor)
5. Trägereinheit 5. carrier unit
6. Effektor  6. Effector
7. lichtempfindliche Sensorfläche  7. photosensitive sensor surface
8. Laser mit Aufspaltoptik  8. Laser with splitting optics
9. Strahlungsmuster (kreuzförmiges Abbild) 9. Radiation pattern (cross-shaped image)
10. Lineargelenk 10. Linear joint

Claims

Patentansprüche claims
1) Anordnung zur modellbasierten Kalibration eines Mechanismus (1 ) in einem Arbeitsraum, mit wenigstens drei Kalibrationsobjekten, die entweder als gerichtete Strahlungsmuster (2) samt zugehörigem Strahlungsmustergenerator (3) oder als Strahlungsmuster-Positionssensoren (4) ausgebildet sind, wobei Positionssensoren (4) bei Auftreffen eines Strahlungsmusters Messwerte mit Positionsinformationen liefern, welche an eine Recheneinrichtung weitergeleitet werden, die mit Hilfe dieser Messwerte die Parameter eines mathematischen Mechanismenmodells bestimmt 1) Arrangement for the model-based calibration of a mechanism (1) in a workspace, with at least three calibration objects, which are designed either as directional radiation patterns (2) and associated radiation pattern generator (3) or as radiation pattern position sensors (4), position sensors (4) upon irradiation of a radiation pattern, provide measured values with position information, which are forwarded to a computing device which determines the parameters of a mathematical mechanism model with the aid of these measured values
dadurch gekennzeichnet,  characterized,
dass wenigstens zwei Kalibrationsobjekte (2; 3) starr miteinander verbunden sind.  at least two calibration objects (2; 3) are rigidly connected to one another.
2) Anordnung nach Anspruch 1 , 2) Arrangement according to claim 1,
dadurch gekennzeichnet,  characterized,
dass die wenigstens zwei Kalibrationsobjekte (2) über eine Trägereinheit (5) sowie ggf. über die zugehörigen Strahlungsmustergeneratoren (3) starr verbunden sind.  the at least two calibration objects (2) are rigidly connected via a carrier unit (5) and possibly via the associated radiation pattern generators (3).
3) Anordnung nach Anspruch 1 oder 2, 3) Arrangement according to claim 1 or 2,
dadurch gekennzeichnet,  characterized,
dass die wenigstens zwei Kalibrationsobjekte (2; 3) auf einer Trägereinheit (5) in einem vorbestimmten Abstandsbereich oder einem vorbestimmten Orientierungsbereich relativ zueinander befestigt sind, wobei die Bereichsgrenzen von der Art und Weise der Realisierung der spezifischen Anordnung bestimmt werden sowie von dem Robotertyp, der Robotergröße, der spezifischen Aufgabe, die der Roboter ausführen soll, der Größe des Arbeitsraumausschnitts, in welchem hohe Präzision verlangt wird sowie einer anwenderspezifischen Gewichtung von Positionsund Orientierungsfehlern. 4) Anordnung nach Anspruch 1 , in that the at least two calibration objects (2; 3) are mounted on a carrier unit (5) in a predetermined distance range or range relative to each other, the range limits being determined by the manner of realization of the specific arrangement and by the type of robot Robot size, the specific task that the robot should perform, the size of the workspace area, in which high precision is required as well as a user-specific weighting of position and orientation errors. 4) Arrangement according to claim 1,
dadurch gekennzeichnet,  characterized,
dass alle stationären Kalibrationsobjekte (2; 3) auf einer einzigen Trägereinheit (5) montiert werden.  all stationary calibration objects (2, 3) are mounted on a single carrier unit (5).
5) Anordnung nach Anspruch 1 , 5) Arrangement according to claim 1,
dadurch gekennzeichnet,  characterized,
dass zu ( alibrations-Mess)Stellungen des Mechanismus die Kalibrations- Messwerte von höchstens zwei stationären Strahlungsmuster-Positionssensoren aufgezeichnet und an die Recheneinheit weitergeleitet werden.  in that the calibration measured values of at most two stationary radiation pattern position sensors are recorded at (alibration-measurement) positions of the mechanism and forwarded to the arithmetic unit.
6) Verfahren zur modellbasierten Kalibration eines Roboters in einem Arbeitsraum, mit mehreren Kaiibrationsobjekten und einer Recheneinrichtung gemäß Anspruch 1 6) A method for model-based calibration of a robot in a workspace, comprising a plurality of calibration objects and a computing device according to claim 1
dadurch gekennzeichnet  characterized
dass eine starre Verbindung von wenigstens zwei Kaiibrationsobjekten vor der Durchführung der Mechanismenkalibration hergestellt wird und die relative Stellung der starr verbundenen Kalibrationsobjekte zueinander vor der Durchführung der Mechanismenkalibration exakt identifiziert, abgespeichert und bei nachfolgenden Mechanismenkalibrationen zur Berechnung der Parameter eines mathematischen Mechanismenmodells genutzt wird.  a rigid connection of at least two calibration objects is established before the mechanism calibration is carried out, and the relative position of the rigidly connected calibration objects relative to one another before the mechanism calibration is carried out is exactly identified, stored and used in subsequent mechanism calibrations to calculate the parameters of a mathematical mechanism model.
PCT/DE2011/002143 2011-12-19 2011-12-19 Arrangement and method for the model-based calibration of a robot in a working space WO2013091596A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/365,642 US20150002855A1 (en) 2011-12-19 2011-12-19 Arrangement and method for the model-based calibration of a robot in a working space
PCT/DE2011/002143 WO2013091596A1 (en) 2011-12-19 2011-12-19 Arrangement and method for the model-based calibration of a robot in a working space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2011/002143 WO2013091596A1 (en) 2011-12-19 2011-12-19 Arrangement and method for the model-based calibration of a robot in a working space

Publications (2)

Publication Number Publication Date
WO2013091596A1 true WO2013091596A1 (en) 2013-06-27
WO2013091596A9 WO2013091596A9 (en) 2014-09-18

Family

ID=46026570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2011/002143 WO2013091596A1 (en) 2011-12-19 2011-12-19 Arrangement and method for the model-based calibration of a robot in a working space

Country Status (1)

Country Link
WO (1) WO2013091596A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110834320A (en) * 2018-08-16 2020-02-25 株式会社三丰 Auxiliary measurement position coordinate determination system for use with a robot
CN110834322A (en) * 2018-08-16 2020-02-25 株式会社三丰 Robot system with auxiliary measuring position coordinate determination system
CN110936373A (en) * 2018-09-24 2020-03-31 株式会社三丰 Robot system with end tool metrology position coordinate determination system
US11745354B2 (en) 2018-08-16 2023-09-05 Mitutoyo Corporation Supplementary metrology position coordinates determination system including an alignment sensor for use with a robot
WO2023170166A1 (en) * 2022-03-11 2023-09-14 Renishaw Plc System and method for calibration of an articulated robot arm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160243703A1 (en) 2015-02-19 2016-08-25 Isios Gmbh Arrangement and method for the model-based calibration of a robot in a working space

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729236A1 (en) * 1995-01-06 1996-07-12 Thomson Broadband Systems Robot positioning in three-dimensional space by active lighting
US6101455A (en) * 1998-05-14 2000-08-08 Davis; Michael S. Automatic calibration of cameras and structured light sources
EP1135237A1 (en) 1998-11-12 2001-09-26 Alois Knoll Method and device for improving the position exactness of effectors in mechanisms and for measuring objects in a work space
DE202005010299U1 (en) * 2005-06-30 2006-01-12 Beyer, Lukas Measurement device for use with industrial robots has two cameras fixed in given angular relationship and focused on reference object, and has universal adapter plate
WO2010094949A1 (en) 2009-02-17 2010-08-26 Absolute Robotics Limited Measurement of positional information for a robot arm
US20110280472A1 (en) * 2010-05-14 2011-11-17 Wallack Aaron S System and method for robust calibration between a machine vision system and a robot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729236A1 (en) * 1995-01-06 1996-07-12 Thomson Broadband Systems Robot positioning in three-dimensional space by active lighting
US6101455A (en) * 1998-05-14 2000-08-08 Davis; Michael S. Automatic calibration of cameras and structured light sources
EP1135237A1 (en) 1998-11-12 2001-09-26 Alois Knoll Method and device for improving the position exactness of effectors in mechanisms and for measuring objects in a work space
DE202005010299U1 (en) * 2005-06-30 2006-01-12 Beyer, Lukas Measurement device for use with industrial robots has two cameras fixed in given angular relationship and focused on reference object, and has universal adapter plate
WO2010094949A1 (en) 2009-02-17 2010-08-26 Absolute Robotics Limited Measurement of positional information for a robot arm
US20110280472A1 (en) * 2010-05-14 2011-11-17 Wallack Aaron S System and method for robust calibration between a machine vision system and a robot

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C.S. GATLA; R. LUMIA; J. WOOD; G. STARR: "An Automated Method to Calibrate Industrial Robots Using a Virtual Closed Kinematic Chain", IEEE TRANSACTIONS ON ROBOTICS, vol. 23, no. 6, 2007, XP011198633, DOI: doi:10.1109/TRO.2007.909765
J.M.HOLLERBACH: "The calibration index and taxonomy for robot kinematic calibration methods", INT. J. ROBOT. RES., vol. 15, no. 12, 1996, pages 573 - 591, XP000643808
K. SCHRÖER: "Identifikation von Kalibrationsparametem kinematischer Ketten", 1993, HANSER VERLAG

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110834320A (en) * 2018-08-16 2020-02-25 株式会社三丰 Auxiliary measurement position coordinate determination system for use with a robot
CN110834322A (en) * 2018-08-16 2020-02-25 株式会社三丰 Robot system with auxiliary measuring position coordinate determination system
CN110834320B (en) * 2018-08-16 2023-02-24 株式会社三丰 Auxiliary measurement position coordinate determination system for use with a robot
CN110834322B (en) * 2018-08-16 2023-02-28 株式会社三丰 Robot system with auxiliary measuring position coordinate determination system
US11745354B2 (en) 2018-08-16 2023-09-05 Mitutoyo Corporation Supplementary metrology position coordinates determination system including an alignment sensor for use with a robot
CN110936373A (en) * 2018-09-24 2020-03-31 株式会社三丰 Robot system with end tool metrology position coordinate determination system
CN110936373B (en) * 2018-09-24 2023-02-28 株式会社三丰 Robot system with end tool metrology position coordinate determination system
WO2023170166A1 (en) * 2022-03-11 2023-09-14 Renishaw Plc System and method for calibration of an articulated robot arm

Also Published As

Publication number Publication date
WO2013091596A9 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
DE102016115987B4 (en) Coordinate system setting method, coordinate system setting apparatus, and robot system with coordinate system setting apparatus
WO2013091596A1 (en) Arrangement and method for the model-based calibration of a robot in a working space
EP1342050B1 (en) Determination of correction parameters of a rotating swivel unit by means of a measuring sensor (device for measuring co-ordinates) over two parameter fields
EP1189732B1 (en) Method and device for calibrating robot measuring stations, manipulators and associated optical measuring devices
EP0438095B1 (en) Correction procedure for coordinate measuring devices
EP1708828B1 (en) Method for determining the co-ordinates of a workpiece
EP1702727A2 (en) Production assembly with a bending press, a manipulation device and a calibration device
EP3240994B1 (en) Detecting geometric movement guidance deviations in a coordinate measuring device or a machine tool
EP2668468A1 (en) Calibration of laser light section sensors during simultaneous measurement
EP1658471B1 (en) Method for the determination of systematic geometric deviations in technical multi-body systems
DE4426523A1 (en) Apparatus and method for the centring calibration of tools
DE10153049B4 (en) 3D coordination system
DE102012016106A1 (en) Arrangement for model-based calibration of mechanism, particularly a robot in working space, has two different effect groups used to calibrate mechanism and components of different effect groups are rigidly connected to one another
DE102012014312A1 (en) Robot guided measuring arrangement
DE102004023033A1 (en) Device and method for measuring components
EP3418680B1 (en) System and method for position measurement
DE19931676C2 (en) Method for measuring workpieces and processing station
DE112020000438B4 (en) THREE-DIMENSIONAL MEASURING SYSTEM AND THREE-DIMENSIONAL MEASURING METHOD
DE102020204532A1 (en) Position measurement with a positioning device
DE102017003641B4 (en) Method for measuring coordinates or properties of a workpiece surface
DE102019102927A1 (en) Method and device for determining dimensional and / or geometric properties of a measurement object
DE10048096A1 (en) Swivel unit has optical sensor calibration sensor creates coordinate transformations
EP1120204A2 (en) Method for calibrating an industrial robot
DE102007058293A1 (en) Calibrating device for adjusting robot coordinate system of industrial robot, has base carrier and multiple markers which are indirectly fastened to base carrier and lie in level
DE3930109C1 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14365642

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111059760

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11838983

Country of ref document: EP

Kind code of ref document: A1