WO2013091326A1 - 一种基于igbt串联损耗优化电压自适应控制方法 - Google Patents

一种基于igbt串联损耗优化电压自适应控制方法 Download PDF

Info

Publication number
WO2013091326A1
WO2013091326A1 PCT/CN2012/074005 CN2012074005W WO2013091326A1 WO 2013091326 A1 WO2013091326 A1 WO 2013091326A1 CN 2012074005 W CN2012074005 W CN 2012074005W WO 2013091326 A1 WO2013091326 A1 WO 2013091326A1
Authority
WO
WIPO (PCT)
Prior art keywords
igbt
voltage
phase
switching
adjusting
Prior art date
Application number
PCT/CN2012/074005
Other languages
English (en)
French (fr)
Inventor
温家良
陈中圆
韩健
吴锐
蔚泉清
贾娜
庞宇刚
Original Assignee
中国电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院 filed Critical 中国电力科学研究院
Priority to EP12859323.3A priority Critical patent/EP2797215A4/en
Publication of WO2013091326A1 publication Critical patent/WO2013091326A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/107Modifications for increasing the maximum permissible switched voltage in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Definitions

  • the invention relates to the field of electronic power systems. Specifically, it relates to an optimized voltage adaptive control method based on IGBT series loss.
  • the semiconductor power switching device (Insulated Gate Biploar Transistor), which appeared in the mid-1980s, is a composite device. Its input control part is M0SFET, and the output stage is bipolar junction transistor. It combines the advantages of M0SFET and power transistor: high input impedance, voltage control, low driving power, fast switching speed, operating frequency up to 10-40kHz, saturation voltage reduction, large voltage and current capacity, and wide safe working area.
  • IGBT the disadvantage of IGBT is that the voltage and current allowable values of a single IGBT are difficult to increase. In order to be applied to high voltage and high power fields, the IGBT series method is usually adopted.
  • the IGBT voltage balance control at home and abroad is divided into two categories: load side control and grid side control.
  • the load side control mainly achieves series voltage equalization by connecting parallel buffer circuits at both ends of the IGBT collector stage.
  • the gate side control can be the mainstream method of current IGBT equalization control. While ensuring the IGBT series voltage balance, it will inevitably lead to an increase in IGBT switching loss, which will greatly reduce the working efficiency of high power power electronic devices.
  • This application introduces a voltage adaptive control strategy based on IGBT series loss optimization. Under the premise of ensuring IGBT series voltage balance, the switching speed of IGBT is improved, the switching loss of IGBT is reduced, and a practical point for IGBT series application is pointed out. A new technology path.
  • the IGBT balance control principle proposed by the invention is to let the series IGBT quickly follow the reference voltage waveform to ensure the voltage balance of the series IGBT.
  • the invention provides an optimized voltage adaptive control method based on IGBT series loss, the method includes the following Steps:
  • the adjusting the main switch phase includes adjusting a main turn-on phase and adjusting a main turn-off phase; and the adjusting the pre-switching phase includes adjusting a pre-turn-on phase and adjusting a pre-shutdown phase.
  • each IGBT is controlled by a separate driving circuit; the driving circuit of the IGBT is supplied with a control signal by the same valve-based control unit.
  • step (2) adjusting the time of the main switch phase is divided into the following two steps:
  • step (1) Detecting the IGBT terminal voltage by the above step (1), comparing the voltage change rate dv/dt of the IGBT switch with the reference voltage voltage change rate dv/dt transmitted from the valve base control unit, and judging the two Between the differences, determine the signal to reduce or increase the dv / dt, the valve-based control unit adjusts the reference voltage dv / dt according to the signal transmitted by the driving unit;
  • the IGBTs are independent of each other, the driving unit detects the vout voltage waveform, and compares the detected actual delay time of the IGBT with the pre-switching time given by the reference voltage. , determine to increase or decrease the reference voltage given pre-switching time.
  • the pre-switching phase and the main switching phase are adjusted independently of each other.
  • the reference voltage waveform is shown in Figure 1. It mainly includes the pre-shutdown phase (t0-tl), the main shutdown phase (tl-t2), the pre-open phase (t3-t4), and the main turn-on phase (t4-t5).
  • the pre-shutdown phase and the pre-opening phase control principle are the same, and the main shutdown phase and the main opening phase control principle are the same.
  • the pre-shutdown phase and the main turn-off time When the pre-shutdown phase and the main turn-off time are long, the turn-off loss of the IGBT will increase. When the pre-shutdown phase and the main turn-off time are short, the voltage of the IGBT will be difficult to ensure balance. When the pre-turn-on phase and the main turn-on time are long, the turn-on loss of the IGBT will increase. When the pre-shutdown phase and the main turn-off time are short, the voltage of the IGBT will be difficult to ensure balance.
  • This patent proposes a voltage adaptive control strategy optimized for IGBT series loss.
  • the pre-shutdown phase, the main turn-off phase, the pre-turn-on phase and the main turn-on phase time are reasonably adjusted to ensure the series IGBT.
  • the switching speed is increased and the IGBT switching loss is reduced.
  • the beneficial effects of the invention are: 1.
  • the voltage balance reliability of the IGBT is high in series;
  • the switching loss is low when the IGBT is connected in series
  • IGBT switching voltage stress is controllable.
  • FIG. 1 is a schematic diagram of a IGBT reference voltage waveform of the present invention
  • FIG. 2 is a functional block diagram of the IGBT main switch process loss optimization control strategy of the present invention
  • FIG. 3 is a schematic block diagram showing the function of the loss optimization control strategy of the IGBT pre-switching process of the present invention
  • FIG. 5 is a schematic diagram of the adjustment of the IGBT given voltage turn-off phase of the present invention.
  • FIG. 6 is a schematic diagram of the IGBT turn-off voltage waveform adjustment of the present invention.
  • FIG. 7 is a schematic diagram of the IGBT turn-off voltage waveform adjustment of the present invention.
  • Figure 8 is a schematic diagram of the IGBT given voltage turn-on stage before adjustment
  • Figure 9 is a schematic diagram of the adjustment of the IGBT given voltage turn-on phase of the present invention.
  • Figure 10 is a schematic view of the IGBT turn-on voltage waveform adjustment of the present invention.
  • Fig. 11 is a schematic view showing the adjustment of the IGBT turn-on voltage waveform of the present invention.
  • the reference voltage waveform is shown in Figure 1. It mainly includes the pre-shutdown phase (tO-tl), the main shutdown phase (tl-t2), the pre-open phase (t3-t4), and the main turn-on phase (t4-t5).
  • the pre-shutdown phase and the pre-opening phase control principle are the same, and the main shutdown phase and the main opening phase control principle are the same.
  • FIG. 2 The block diagram of the main shutdown phase (tl-t2) and the main turn-on phase (t4-t5) is shown in Figure 2.
  • Each IGBT is controlled by a separate drive circuit, and the drive circuit of the IGBT on the valve arm is controlled by the same valve-based control unit.
  • Adjustment 1 Detect the IGBT terminal voltage and compare the dv/dt of the IGBT switch with the reference voltage dv/dt transmitted from the valve base control unit. When the difference between the two is greater than the allowable value, the signal lowering dv/dt is transmitted to the superior, and when the difference between the two is less than the allowable value, the signal for increasing dv/dt is transmitted to the superior.
  • the valve-based control unit detects the adjustment signals transmitted by all the drive units.
  • valve-based control unit When all signals are increased dv/dt, the valve-based control unit will increase the dv/dt of the reference voltage; when there is a signal to reduce dv/dt, the valve The base control unit will reduce the dv/dt of the reference voltage, and the adjusted reference voltage will be passed to each drive unit.
  • Adjustment 2 Detect the IGBT terminal voltage, compare the dv/dt of the IGBT switch with the reference voltage dv/dt transmitted from the valve base control unit. When the dv/dt of the IGBT switch is greater than the dv/dt transmitted by the valve base control unit to the reference voltage, the dv/dt of the reference voltage is lowered; when the IGBT is switched, the dv/dt is smaller than the reference voltage transmitted by the valve base control unit. Dv/dt, will increase the dv/dt of the reference voltage.
  • the adjusted reference voltage is passed to the lower stage to participate in the IGBT voltage balance control.
  • FIG. 3 The block diagram of the pre-shutdown phase (tO-tl) and pre-open phase (t3-t4) control is shown in Figure 3. This part is implemented on each drive unit, and each IGBT is independent of each other.
  • the vout voltage waveform is detected on each drive unit to determine the delay time required by the IGBT. Comparing the detected actual delay time of the IGBT with the pre-switching time given by the reference voltage, and increasing the pre-switching time given by the reference voltage when the detected actual delay time of the IGBT is greater than the pre-switching time given by the reference voltage; When the detected actual delay time of the IGBT is less than the pre-switching time given by the reference voltage, the pre-switching time given by the reference voltage is shortened.
  • the voltage adaptive control strategy based on loss optimization proposed by the invention optimizes the pre-switching phase and the main switching phase respectively, and reduces the IGBT switching loss under the premise of ensuring the IGBT voltage balance, wherein the pre-switching phase adjustment is independent of the main switching phase adjustment.
  • Figure 4 and Figure 5 show the waveform comparison before and after adjustment of the reference voltage waveform off phase
  • Figure 6 and Figure 7 show the control before and after the IGBT turn-off waveform adjustment. It can be seen from the figure that after the pre-off time and the main off-time are optimized, the turn-off speed of the IGBT is significantly increased, and the turn-off loss of the IGBT is reduced to a desired value.
  • Figure 8 and Figure 9 show the waveform comparison before and after the adjustment of the reference voltage waveform.
  • Figure 10 and Figure 11 show the control before and after the IGBT turn-on waveform adjustment. It can be seen from the figure that after the pre-opening time and the main turn-on time are optimized, the IGBT turn-on speed is significantly increased, and the IGBT turn-on loss is reduced to a desired value.

Landscapes

  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

一种基于IGBT串联损耗优化电压自适应控制方法。该方法包括以下步骤:(1)检测IGBT端电压;(2)调整主开关阶段时间;(3)调整预开关阶段时间。该方法使得IGBT串联时电压平衡度提高、开关损耗降低、以及开关电压应力可控。

Description

一种基于 IGBT串联损耗优化电压自适应控制方法 技术领域
本发明涉及电子电力***领域。 具体涉及一种基于 IGBT 串联损耗优化电压自适应 控制方法。
背景技术
20 世纪 80 年代中期出现的半导体电力开关器件——绝缘栅双极型功率管 IGBT (Insulated Gate Biploar Transistor)是一种复合器件, 它的输入控制部分为 M0SFET, 输出级为双极结型晶体管, 兼有 M0SFET和电力晶体管的优点: 高输入阻抗, 电压控制, 驱动功率小, 开关速度快, 工作频率可达 10-40kHz, 饱和压降低, 电压、 电 流容量较大, 安全工作区较宽。 但是 IGBT的缺点在于单个 IGBT的电压、 电流允许值很 难再提高, 为了应用于高电压、 大功率的领域, 通常采用 IGBT串联的方法。
随着电力电子技术在电力***中应用的逐步推广,基于 IGBT串联均压技术的高压阀 正在成为各种新型大功率电力电子装置的核心部件。例如 VSC-HVDC、 STATC0M、 UPFC等。 在这些场合中, 由于串联的 IGBT器件运行的频率较高, 开关速度较快, 很容易在串联 的 IGBT器件中产生电压不平衡的情况, 而高电压、 大功率的应用领域决定了一旦出现 严重的电压不平衡, 串联的 IGBT将不可避免的出现失效甚至损坏。 而串联的 IGBT出现 断路失效后, 反过来又会损坏这些大功率电力电子装置, 造成严重的经济损失。
目前国内外对 IGBT电压平衡化控制分为负载侧控制和栅侧控制两大类。负载侧控制 主要通过在 IGBT集射级两端并联缓冲电路实现串联均压, 但只靠缓冲电路均压时, 体 积及损耗较大, 同时可靠性较差。 因此栅侧控制能为当前 IGBT均压控制的主流方法。 而保证 IGBT串联电压平衡化的同时, 不可避免地导致 IGBT开关损耗的增加, 对于大功 率电力电子装置来说将大大降低其工作效率。
本申请介绍一种基于 IGBT串联损耗优化的电压自适应控制策略, 在保证 IGBT串联 电压平衡化的前提下, 提高 IGBT的开关速度, 降低 IGBT的开关损耗, 为 IGBT串联应 用的实用化指出了一条崭新的技术路径。
发明内容
本发明提出的 IGBT平衡化控制原理是让串联的 IGBT快速跟随参考电压波形, 保证 串联 IGBT的电压平衡性。
本发明提供 一种基于 IGBT 串联损耗优化电压自适应控制方法,所述方法包括以下 步骤:
( 1 ) 检测 IGBT端电压;
( 2) 调整主开关阶段的时间;
( 3) 调整预开关阶段的时间。
所述调整主开关阶段包括调整主开通阶段和调整主关断阶段; 所述调整预开关阶段 包括调整预开通阶段和调整预关断阶段。
所述调整主开关阶段中, 由各自独立的驱动电路控制每个 IGBT; IGBT的驱动电路由 同一个阀基控制单元提供控制信号。
所述步骤 (2) 调整主开关阶段的时间分为下述两个步骤:
( 2-1 ) 通过所述步骤 (1 ) 检测 IGBT端电压, 对 IGBT开关时电压变化率 dv/dt与 阀基控制单元传递来的参考电压电压变化率 dv/dt进行比较, 判断两者之间的差异性, 确定向上级传递降低或提高 dv/dt的信号, 阀基控制单元依据驱动单元传递的信号调整 参考电压 dv/dt;
( 2-2) 通过所述步骤 (1 ) 检测 IGBT端电压, 将 IGBT开关时电压变化率 dv/dt与 阀基控制单元传递来的参考电压电压变化率 dv/dt进行比较,确定降低或提高参考电压 dv/dt, 传递至下级参与 IGBT电压平衡控制电压。
在各驱动单元上进行所述步骤 (3) 调整预开关阶段的时间, 各个 IGBT相互独立, 驱动单元检测 vout电压波形,将检测到的 IGBT实际延迟时间与参考电压给定的预开关 时间进行比较, 确定增加或减少参考电压给定的预开关时间。
所述预开关阶段和主开关阶段调整彼此独立。
参考电压波形如图 1所示, 主要包括预关断阶段 (t0-tl )、 主关断阶段 (tl-t2)、 预开通阶段 (t3-t4) 和主开通阶段 (t4-t5)。 其中预关断阶段和预开通阶段控制原理 相同, 主关断阶段和主开通阶段控制原理相同。
预关断阶段及主关断时间较长时, IGBT的关断损耗将会增加; 而预关断阶段及主关 断时间较短时, IGBT的电压将难以保证平衡性。预开通阶段及主开通时间较长时, IGBT 的开通损耗将会增加; 而预关断阶段及主关断时间较短时, IGBT的电压将难以保证平衡 性。
本专利提出了一种于 IGBT串联损耗优化的电压自适应控制策略, 通过检测 IGBT端 电压, 合理地调整预关断阶段、 主关断阶段、 预开通阶段和主开通阶段时间, 在保证串 联 IGBT电压平衡的前提下提高开关速度, 降低 IGBT开关损耗。
与现有技术相比, 本发明的有益效果在于: 1. IGBT串联时电压平衡可靠度高;
2. IGBT串联时开关损耗低;
3. IGBT开关电压应力可控。
附图说明
图 1是: 本发明的 IGBT参考电压波形示意图;
图 2是: 本发明的 IGBT主开关过程损耗优化控制策略功能框图示意图;
图 3是: 本发明的 IGBT预开关过程损耗优化控制策略功能框图示意图;
图 4 是: 本发明的 IGBT给定电压关断阶段调整前示意图;
图 5 是: 本发明的 IGBT给定电压关断阶段调整后示意图;
图 6 是: 本发明的 IGBT关断电压波形调整前示意图;
图 7 是: 本发明的 IGBT关断电压波形调整后示意图;
图 8 是: 本发明的 IGBT给定电压开通阶段调整前示意图;
图 9 是: 本发明的 IGBT给定电压开通阶段调整后示意图;
图 10 是: 本发明的 IGBT开通电压波形调整前示意图;
图 11 是: 本发明的 IGBT开通电压波形调整后示意图。
具体实施方式
参考电压波形如图 1所示, 主要包括预关断阶段 (tO-tl )、 主关断阶段 (tl-t2)、 预开通阶段 (t3-t4) 和主开通阶段 (t4-t5)。 其中预关断阶段和预开通阶段控制原理 相同, 主关断阶段和主开通阶段控制原理相同。
主关断阶段(tl-t2)和主开通阶段(t4-t5 )原理框图如图 2所示。 每个 IGBT由各 自独立的驱动电路控制, 阀臂上 IGBT的驱动电路由同一个阀基控制单元提供控制信号。
主关断阶段和主开通阶段优化控制分为调整 1和调整 2两个部分:
调整 1 : 检测 IGBT端电压, 将 IGBT开关时 dv/dt与阀基控制单元传递来参考电压 dv/dt的进行比较。 当两者差异大于允许值时, 向上级传递降低 dv/dt的信号, 当两者 差异小于允许值时, 向上级传递提高 dv/dt的信号。 阀基控制单元检测所有驱动单元传 递来的调整信号, 当所有信号均为提高 dv/dt 时, 阀基控制单元将提高参考电压的 dv/dt; 当有一个信号为降低 dv/dt时, 阀基控制单元将降低参考电压的 dv/dt, 调整后 的参考电压将传递给各个驱动单元。
调整 2: 检测 IGBT端电压, 将 IGBT开关时 dv/dt与阀基控制单元传递来的参考电 压 dv/dt进行比较。 当 IGBT开关时 dv/dt大于阀基控制单元传递来参考电压的 dv/dt, 将降低参考电压的 dv/dt; 当 IGBT开关时 dv/dt小于阀基控制单元传递来参考电压的 dv/dt, 将提高参考电压的 dv/dt。 调整后的参考电压传递至下级参与 IGBT电压平衡控 制。
预关断阶段 (tO-tl ) 和预开通阶段 (t3-t4) 控制原理框图如图 3所示。 此部分在 个驱动单元上实现, 各个 IGBT相互独立。 在各个驱动单元上检测 vout电压波形, 判断 IGBT所需延迟时间。 将检测到的 IGBT实际延迟时间与参考电压给定的预开关时间进行 比较, 当检测到的 IGBT实际延迟时间大于参考电压给定的预开关时间时, 增加参考电 压给定的预开关时间; 当检测到的 IGBT实际延迟时间小于参考电压给定的预开关时间 时, 减短参考电压给定的预开关时间。
本发明提出的基于损耗优化的电压自适应 控制策略分别优化预开关阶段和主开关 阶段, 保证 IGBT电压平衡的前提下, 降低 IGBT开关损耗, 其中预开关阶段调整与主开 关阶段调整相互独立。
依据上述控制原理, 仿真结果如下图所示:
图 4、 图 5为参考电压波形关断阶段调整前后波形对照;
图 6、 图 7为 IGBT关断波形调整前后对照。 从图中可知预关断时间及主关断时间经 优化后, IGBT关断速度明显增快, IGBT关断损耗降到较理想值。
图 8、 图 9为参考电压波形开通阶段调整前后波形对照;
图 10、 图 11为 IGBT开通波形调整前后对照。 从图中可知预开通时间及主开通时间 经优化后, IGBT开通速度明显增快, IGBT开通损耗降到较理想值。
以上具体实施方式仅用以说明本发明的技术方案而非对其限制, 尽管本领域的技术 人员阅读本申请后,参照上述实施例对本发明进行种种修改或变更,但这些修改和变更, 均在申请待批本发明的权利申请要求保护范围之内。

Claims

权利 要 求
1. 一种基于 IGBT 串联损耗优化电压自适应控制方法,其特征在于, 所述方法包括 以下步骤:
( 1 ) 检测 IGBT端电压;
(2) 调整主开关阶段的时间;
( 3) 调整预开关阶段的时间。
2. 根据权利要求 1所述的方法, 其特征在于, 所述调整主开关阶段包括调整主开 通阶段和调整主关断阶段; 所述调整预开关阶段包括调整预开通阶段和调整预关断阶 段。
3.根据权利要求 2所述的方法, 其特征在于, 所述调整主开关阶段中, 由各自独立 的驱动电路控制每个 IGBT; IGBT的驱动电路由同一个阀基控制单元提供控制信号。
4. 根据权利要求 3所述的方法, 其特征在于, 所述步骤 (2) 调整主开关阶段的时 间分为下述两个步骤:
( 2-1 ) 通过所述步骤 (1 ) 检测 IGBT端电压, 对 IGBT开关时电压变化率 dv/dt 与阀基控制单元传递来的参考电压电压变化率 dv/dt进行比较,判断两者之间的差异性, 确定向上级传递降低或提高 dv/dt的信号, 阀基控制单元依据驱动单元传递的信号调整 参考电压 dv/dt;
( 2-2) 通过所述步骤 (1 ) 检测 IGBT端电压, 将 IGBT开关时电压变化率 dv/dt 与阀基控制单元传递来的参考电压电压变化率 dv/dt进行比较, 确定降低或提高参考电 压 dv/dt, 传递至下级参与 IGBT电压平衡控制电压。
5.根据权利要求 2所述的方法, 其特征在于, 在各驱动单元上进行所述步骤 (3) 调整预开关阶段的时间, 各个 IGBT相互独立, 驱动单元检测 vout电压波形, 将检测到 的 IGBT实际延迟时间与参考电压给定的预开关时间进行比较, 确定增加或减少参考电 压给定的预开关时间。
6.根据权利要求 4-5任一项权利要求所述的方法, 其特征在于, 所述预开关阶段和 主开关阶段调整彼此独立。
PCT/CN2012/074005 2011-12-19 2012-04-13 一种基于igbt串联损耗优化电压自适应控制方法 WO2013091326A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12859323.3A EP2797215A4 (en) 2011-12-19 2012-04-13 METHOD FOR OPTIMIZING SELF-ADAPTATION CONTROL BASED ON IGBT SERIES LOSS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110426588.3 2011-12-19
CN201110426588.3A CN103166435B (zh) 2011-12-19 2011-12-19 一种基于igbt串联损耗优化电压自适应控制方法

Publications (1)

Publication Number Publication Date
WO2013091326A1 true WO2013091326A1 (zh) 2013-06-27

Family

ID=48589235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074005 WO2013091326A1 (zh) 2011-12-19 2012-04-13 一种基于igbt串联损耗优化电压自适应控制方法

Country Status (3)

Country Link
EP (1) EP2797215A4 (zh)
CN (1) CN103166435B (zh)
WO (1) WO2013091326A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013467A1 (fr) * 2013-11-21 2015-05-22 St Microelectronics Tours Sas Systeme d'equilibrage de tension d'elements semi-conducteurs en serie
US10476373B2 (en) 2015-11-02 2019-11-12 General Electric Company Electronic apparatus and system and method for controlling series connected switch modules
US10630068B2 (en) 2016-03-30 2020-04-21 General Electric Company System and switch assembly thereof with fault protection and associated method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991009A (zh) * 2015-02-13 2016-10-05 国家电网公司 一种基于串联压接型igbt的主动均压控制方法
CN104820782A (zh) * 2015-05-06 2015-08-05 华北电力大学(保定) 一种线性igbt模块开关损耗估计方法
CN104967292B (zh) * 2015-06-29 2018-05-01 国网智能电网研究院 一种igbt串联阀段的主动均压控制方法
CN105024531B (zh) * 2015-07-28 2017-12-01 英特格灵芯片(天津)有限公司 一种dv/dt检测与保护装置及方法
CN109347467B (zh) * 2015-11-16 2022-11-29 许继集团有限公司 Igbt导通控制方法和igbt关断控制方法
CN105871179B (zh) * 2016-04-05 2019-08-27 全球能源互联网研究院 一种基于全模拟电路的参考电压曲线获取方法
CN106685195B (zh) * 2017-01-23 2020-04-10 全球能源互联网研究院 一种用于igbt串联的自适应均压电路及电力电子设备
CN108322200B (zh) * 2018-02-26 2021-09-14 武汉英弗耐斯电子科技有限公司 一种用于驱动功率开关器件的驱动电路
US11469754B2 (en) * 2021-01-05 2022-10-11 The Boeing Company Active voltage balancing for power modulation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105163A (zh) * 1993-10-21 1995-07-12 Abb管理有限公司 电子功率变流器电路结构及其驱动的方法
CN101728952A (zh) * 2009-12-02 2010-06-09 浙江大学 基于arm微处理器控制的igbt串联电路
CN201533296U (zh) * 2009-12-04 2010-07-21 深圳青铜剑电力电子科技有限公司 一种单个或多个串联连接的绝缘栅器件的驱动电路
CN101888229A (zh) * 2010-05-25 2010-11-17 中国电力科学研究院 一种新的igbt高压串联阀控制与监测***
WO2011117796A1 (en) * 2010-03-24 2011-09-29 Koninklijke Philips Electronics N.V. Switching circuit for switching electric potentials

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9610098D0 (en) * 1996-05-15 1996-07-17 Palmer Patrick R Insulated gate bipolar transistor control
JP3447949B2 (ja) * 1998-03-31 2003-09-16 株式会社東芝 絶縁ゲート型半導体素子のゲート駆動回路、電力変換装置
JP4764592B2 (ja) * 2000-12-27 2011-09-07 シーティー−コンセプト・ホールディング・アクチェンゲゼルシャフト 直列および並列に接続された電力半導体スイッチを動的に平衡化する方法
GB0617990D0 (en) * 2006-09-13 2006-10-18 Palmer Patrick R Control of power semiconductor devices
CN102098033B (zh) * 2010-11-26 2012-09-26 深圳青铜剑电力电子科技有限公司 一种控制绝缘栅器件开通暂态过程的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105163A (zh) * 1993-10-21 1995-07-12 Abb管理有限公司 电子功率变流器电路结构及其驱动的方法
CN101728952A (zh) * 2009-12-02 2010-06-09 浙江大学 基于arm微处理器控制的igbt串联电路
CN201533296U (zh) * 2009-12-04 2010-07-21 深圳青铜剑电力电子科技有限公司 一种单个或多个串联连接的绝缘栅器件的驱动电路
WO2011117796A1 (en) * 2010-03-24 2011-09-29 Koninklijke Philips Electronics N.V. Switching circuit for switching electric potentials
CN101888229A (zh) * 2010-05-25 2010-11-17 中国电力科学研究院 一种新的igbt高压串联阀控制与监测***

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013467A1 (fr) * 2013-11-21 2015-05-22 St Microelectronics Tours Sas Systeme d'equilibrage de tension d'elements semi-conducteurs en serie
US9541936B2 (en) 2013-11-21 2017-01-10 Stmicroelectronics (Tours) Sas System for balancing the voltage of series-connected semiconductor elements
US10133290B2 (en) 2013-11-21 2018-11-20 Stmicroelectronics (Tours) Sas System for balancing the voltage of series-connected semiconductor elements
US10476373B2 (en) 2015-11-02 2019-11-12 General Electric Company Electronic apparatus and system and method for controlling series connected switch modules
US10630068B2 (en) 2016-03-30 2020-04-21 General Electric Company System and switch assembly thereof with fault protection and associated method

Also Published As

Publication number Publication date
CN103166435A (zh) 2013-06-19
EP2797215A1 (en) 2014-10-29
CN103166435B (zh) 2014-12-03
EP2797215A4 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2013091326A1 (zh) 一种基于igbt串联损耗优化电压自适应控制方法
CN102208800B (zh) 带有过流保护功能的自适应igbt串联均压电路
US8363440B2 (en) Power conversion circuit having off-voltage control circuit
WO2011147055A1 (zh) 一种igbt高压串联阀控制与监测***
CN101617471A (zh) 功率半导体器件的控制方法和电路
CN104967292B (zh) 一种igbt串联阀段的主动均压控制方法
Luo et al. Modern IGBT gate driving methods for enhancing reliability of high-power converters—An overview
CN107809171A (zh) 开关电源及其功率开关管的驱动方法与驱动电路
CN107656567B (zh) 一种平滑igbt结温变化的驱动电压调节装置及方法
CN107248813A (zh) 一种自适应死区时间调控电路
CN109842279A (zh) 一种SiC MOSFET开环主动驱动电路
CN112821730A (zh) 一种新型驱动拓扑及其驱动方法与串扰抑制方法
CN114900167A (zh) 一种适用于SiC/Si混并器件的电流比例调节方法
Zhang et al. Voltage balancing optimization of series-connected IGBTs in solid-state breaker by using driving signal adjustment technique
CN110224688A (zh) 一种氮化镓功率器件驱动***
CN112701893A (zh) 基于Si IGBT/SiC MOS混合并联器件的串联变换器及其故障运行控制方法
CN102075076B (zh) 一种控制绝缘栅器件关断暂态过程的方法
CN106941312A (zh) 一种基于调节igbt关断轨迹的结温平滑方法和电路
CN111600489A (zh) 一种应用于能量路由器的dab开关频率自适应方法
CN207281632U (zh) 一种平滑igbt结温变化的驱动电压调节装置
CN104378097B (zh) 一种绝缘栅双极型晶体管的驱动***及方法
CN102098033B (zh) 一种控制绝缘栅器件开通暂态过程的方法
CN216699815U (zh) 一种新型驱动拓扑
WO2023061149A1 (zh) 可控硅驱动电路、可控硅驱动应用电路及电气/电器设备
CN202435041U (zh) 电网无功补偿智能逻辑控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012859323

Country of ref document: EP