WO2013089128A1 - Conductive composition, multilayer ceramic substrate, and method for manufacturing same - Google Patents

Conductive composition, multilayer ceramic substrate, and method for manufacturing same Download PDF

Info

Publication number
WO2013089128A1
WO2013089128A1 PCT/JP2012/082169 JP2012082169W WO2013089128A1 WO 2013089128 A1 WO2013089128 A1 WO 2013089128A1 JP 2012082169 W JP2012082169 W JP 2012082169W WO 2013089128 A1 WO2013089128 A1 WO 2013089128A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
multilayer ceramic
hole conductor
component
powder
Prior art date
Application number
PCT/JP2012/082169
Other languages
French (fr)
Japanese (ja)
Inventor
正人 野宮
洋右 寺下
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013089128A1 publication Critical patent/WO2013089128A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4061Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in inorganic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a conductive composition used for a via-hole conductor in a multilayer ceramic substrate, a multilayer ceramic substrate, and a method for manufacturing the same.
  • Patent Document 1 describes a multilayer ceramic substrate including a via-hole conductor.
  • This multilayer ceramic substrate defines the crystallite diameter of silver powder in the conductive paste used for the via-hole conductor.
  • a main object of the present invention is a multilayer ceramic substrate having a via-hole conductor filled with a conductive composition as a conductive paste, and the multilayer ceramic substrate is formed by, for example, a bulge of the via-hole conductor in the sintering process of the multilayer ceramic substrate. It is an object to provide a conductive composition, a multilayer ceramic substrate, and a method for producing the same, which can suppress warping and undulation.
  • the conductive composition according to the present invention is a conductive composition used for a via hole conductor filled in a via hole in a multilayer ceramic substrate including a plurality of laminated ceramic layers and a via hole formed through the ceramic layer.
  • An electrically conductive composition comprising an electrically conductive powder, a glass powder, a phosphorus-containing powder, and an organic vehicle.
  • glass powder contains more than phosphorus containing powder.
  • a multilayer ceramic substrate according to the present invention is a multilayer ceramic substrate having a via-hole conductor formed in a thickness direction with respect to the ceramic layer, comprising a ceramic layer that does not contain a phosphorus component when unfired, and containing phosphorus in the via-hole conductor
  • a multilayer ceramic substrate comprising a glass compound and a phosphorus component.
  • the phosphorus component is preferably diffused from the via-hole conductor into the ceramic layer.
  • the ceramic layer preferably contains Ba, Al, and Si oxide components as main components.
  • the ceramic layer includes a material obtained by adding a glass component to alumina or barium titanate. Furthermore, in the multilayer ceramic substrate according to the present invention, a constraining layer is preferably formed along the plurality of ceramic layers, and the main component of the constraining layer is preferably Al.
  • a method of manufacturing a multilayer ceramic substrate according to the present invention includes a step of forming a via hole in a ceramic green sheet, a step of filling a via hole with the conductive composition according to the present invention to form a via hole conductor, A plurality of ceramic layers including a step of forming a conductor pattern connected to a via-hole conductor, a step of stacking the obtained ceramic green sheets to prepare a temporary laminate, and a firing step of firing the temporary laminate.
  • a method for manufacturing a multilayer ceramic substrate comprising: a shrinkage behavior of a via-hole conductor follows a shrinkage behavior of a ceramic layer in a firing step.
  • the phosphorus-containing component prevents the glass component contained in the conductive composition from being cured at the time of firing and softens the conductive composition.
  • the electrically conductive composition which can adjust the softening behavior of the glass component at the time with a phosphorus component can be obtained.
  • the conductive composition according to the present invention contains more glass powder than the phosphorus-containing component, the phosphorus component does not diffuse excessively from the via-hole conductor into the ceramic layer. Therefore, since the degree of softening of the glass component in the via-hole conductor in the high temperature range can be promoted, a conductive composition that can suppress the protrusion of the via-hole conductor can be obtained.
  • the phosphorus component is not extremely diffused in the ceramic layer, it is possible to prevent the shrinkage suppressing effect from being exerted on the ceramic layer. Can further promote the softening behavior of the via-hole conductor in the stage where the ceramic layer contracts greatly. Therefore, it is possible to obtain a multilayer ceramic substrate in which the protrusion of the via-hole conductor is suppressed.
  • the phosphorus component is diffused from the via hole conductor to the ceramic layer, the softening behavior of the glass component at the interface between the via hole conductor and the ceramic layer can be adjusted stepwise.
  • the multilayer ceramic substrate according to the present invention contains Ba, Al, Si oxide components as the main component of the ceramic layer, or a glass component added to alumina or barium titanate as the main component of the ceramic layer.
  • the constraining layer is formed along the ceramic layer in the multilayer ceramic substrate according to the present invention, the shrinkage behavior in the thickness direction is particularly large, but it is also effective for the multilayer ceramic substrate including the constraining layer. Raising of the via-hole conductor can be suppressed.
  • the shrinkage behavior of the via-hole conductor can be made to follow the shrinkage behavior of the ceramic layer at the firing temperature at which the ceramic layer is greatly shrunk in the firing step. Therefore, for example, a multilayer ceramic substrate in which the bulge of via-hole conductors formed on the multilayer ceramic substrate is suppressed can be manufactured.
  • a multilayer ceramic substrate including a via-hole conductor filled with a conductive composition as a conductive paste, and warpage or undulation of the multilayer ceramic substrate due to a rise of the via-hole conductor in the sintering process of the multilayer ceramic substrate.
  • a conductive composition, a multilayer ceramic substrate, and a method for producing the same can be obtained.
  • thermomechanical analyzer of the volume change behavior with respect to the temperature change in the conductive paste which is the conductive composition according to the present invention and the conductive paste not including the phosphorus-containing powder is shown.
  • 1 is a schematic cross-sectional view of an embodiment of a multilayer ceramic substrate according to the present invention. It is a cross-sectional schematic diagram of other embodiment of the multilayer ceramic substrate concerning this invention. The shrinkage rate with respect to the firing temperature of the multilayer ceramic substrate used in Experimental Example 1 and the multilayer ceramic substrate used in Experimental Example 2 and the time-series change of the firing temperature are shown. The cross-sectional schematic diagram of the multilayer ceramic substrate used in Experimental example 1 is shown.
  • the example of the analysis result of the composition distribution in the multilayer ceramic substrate of this invention is shown, (a) shows the boundary vicinity of a ceramic layer and a via-hole conductor, (b) shows the copper (Cu) in a via-hole conductor. (C) shows the distribution of phosphorus (P) in the via-hole conductor, and (d) shows the distribution of glass (Si) in the via-hole conductor.
  • the cross-sectional schematic diagram of the multilayer ceramic substrate used in Experimental example 2 is shown.
  • the conductive composition according to the present invention is used for, for example, a via-hole conductor filled in a via-hole formed through a multilayer ceramic substrate.
  • the multilayer ceramic substrate is formed by laminating a plurality of ceramic layers.
  • This conductive composition is produced, for example, as a conductive paste.
  • the conductive paste includes a conductive powder, a glass powder, a phosphorus-containing powder, and an organic vehicle.
  • a metal having excellent electrical conductivity such as Ag, Au, Cu, Ni, an Ag—Pd alloy, or an Ag—Pt alloy is preferably used as a main component.
  • other conductive powders or conductive materials may be used as long as the addition amount is not reversed unless an unnecessary reaction is caused with the ceramic layer or dissolution during firing.
  • Oxide powder may be added.
  • the shape, average particle size, and particle size distribution of the conductive powder are not particularly limited, but the average particle size is preferably about 0.1 ⁇ m to 10 ⁇ m, and is preferably free of coarse powder or extremely agglomerated powder.
  • inorganic components components that are not sintered in the firing step of the ceramic green sheet to be used (hereinafter referred to as inorganic components) are arranged on the surface of the conductive powder with substantially no gap.
  • this inorganic component an oxide containing Al, Si, Zr, Ni, Ti, Nb, Mn, and Mg can be used.
  • These inorganic components need to be selected in consideration of the shrinkage conditions of the multilayer ceramic substrate and the affinity with the glass powder to be added, which will be described later, and the inorganic component materials in the present invention include Al, Si, and Zr. Particularly preferred.
  • these inorganic components need to be disposed on the surface of the conductive powder with substantially no gap.
  • the state in which the surface of the conductive powder in the present embodiment has substantially no gap refers to the conductivity. It is sufficient that the powder does not exhibit the sintering behavior by itself, and does not necessarily indicate that there is no gap at all.
  • the amount of the inorganic component added depends on the state of adhesion of the conductive powder to the surface, but is preferably about 0.5 to 8% by weight with respect to the conductive powder, and more desirably. Is from 1% to 7% by weight.
  • the conductive powder is coated with an organic aluminate such as an alkyl aluminate and then heat-treated, Alternatively, by immersing the conductive powder in an aluminum salt solution and then subjecting it to a dry heat treatment, or treating the fine alumina powder by the microcapsule method and placing the fine alumina powder on the surface of the conductive powder as it is It is possible to get.
  • an organic aluminate such as an alkyl aluminate
  • the conductive powder used for this conductive paste is not particularly dependent on these production methods, but it can realize the above-described sintering behavior suppressing effect with a small amount of coating component, or a coating component with a glass component described later.
  • the glass powder contained in the conductive paste is preferably a glass powder selected from Si—B, more preferably SiO 2 : 40 wt% to 55 wt%, B 2 O 3 : 10
  • a mixture containing 20% by weight to 20% by weight, BaO and / or SrO: 20% by weight to 30% by weight is melted at a predetermined temperature and then vitrified.
  • the glass powder does not show excessive reaction with the multilayer ceramic substrate, and any known one can be used as long as it has a softening point lower by about 150 ° C. to 300 ° C. than the sintering temperature of the ceramic layer. It is.
  • the addition amount of these components into the glass is adjusted in order to ensure the removability of the inorganic components by the glass components described later. It is desirable to keep it. This is because if the coating amount of the inorganic component exceeds the reaction limit with the addition amount of the glass powder, the target inorganic component may not be sufficiently removed.
  • the glass powder does not contain a phosphorus component in the glass state, but it is more desirable to have a composition that promotes a softening tendency in a desired temperature range by reaction with the phosphorus-containing component.
  • the particle size of the glass powder to be added is preferably selected according to the particle size of the conductive powder, but it has an average particle size of about 0.5 ⁇ m to 3 ⁇ m that gives good dispersibility and is coarse. Those without powder or extremely agglomerated powder are desirable.
  • the phosphorus-containing powder contained in the conductive paste is the same product as the conductive powder after decomposition because unnecessary reactions after decomposition can be suppressed.
  • the conductive powder is copper
  • use of copper pyrophosphate or the like is suitable, but it is not particularly limited thereto.
  • any phosphorus-containing component that can be supplied to the glass component can be used.
  • the particle size of the phosphorus-containing powder is preferably selected according to the particle size of the conductive powder, but it has an average particle size of about several ⁇ m, which can provide good dispersibility and decomposability. What does not have an agglomerated powder is desirable.
  • the organic vehicle contained in the conductive paste is a mixture of a binder resin and a solvent, and is not particularly limited.Although alcohols such as terpineol, isopropylene alcohol, butyl carbitol, butyl carbitol acetate, acrylic resin, It can be obtained by dissolving alkyd resin, butyral resin, ethyl cellulose, and the like, and various dispersants, plasticizers, and activators may be added as necessary.
  • alcohols such as terpineol, isopropylene alcohol, butyl carbitol, butyl carbitol acetate, acrylic resin, It can be obtained by dissolving alkyd resin, butyral resin, ethyl cellulose, and the like, and various dispersants, plasticizers, and activators may be added as necessary.
  • the conductive paste may contain a resin component that is insoluble in the solvent component in the organic vehicle.
  • resin components and the like may contain polypropylene, polyethylene, polystyrene, acrylic resin, cellulose resin and the like. These resin components and the like preferably have an average particle size of about 3 ⁇ m to 7 ⁇ m and are free of coarse powder or extremely agglomerated powder.
  • the addition ratio of each component is as follows: conductive powder having non-sintered component on the surface: 60% to 85% by weight, glass powder having a softening point of 700 ° C. or higher selected from Si—B system: 1% to 10% Wt%, phosphorus-containing powder: 0.1 wt% to 0.8 wt% (phosphorus component conversion 0.02 wt% to 0.16 wt%), copper oxide powder: 0 wt% to 40 wt%, organic vehicle: 10 wt% to 25 wt%, preferably resin components insoluble in the solvent component in the organic vehicle: 0 wt% to 7 wt%. That is, in the conductive composition according to the present invention, the glass powder is contained more than the phosphorus-containing powder.
  • the amount of glass powder added is 10% by weight or more, the conduction resistance of the via-hole conductor increases and the glass tends to float on the electrode surface, which can be an obstacle to plating deposition.
  • the lower limit of the amount of glass powder added depends on the amount of the resin component insoluble in the solvent component in the organic vehicle and the softening tendency of the glass component, but even if the maximum amount of resin component is added, the added glass When the added amount of the powder is 1% by weight or less, the amount is not sufficient to remove the non-sintered components on the surface of the particles of the conductive powder, and as a result, an unsintered portion may remain in the via-hole conductor. .
  • the softening point of the glass component glass powder having a softening point lower by 300 ° C. or more than the sintering temperature of the multilayer ceramic substrate starts to be sintered at an earlier stage than the sintering of the multilayer ceramic substrate. Therefore, the object of the present invention of matching the shrinkage behavior between the conductive paste and the ceramic layer of the multilayer ceramic substrate is not achieved, which is not preferable.
  • the difference between the sintering temperature of the ceramic layer of the multilayer ceramic substrate and the softening point of the glass component is less than 150 ° C., the glass component is not sufficiently softened, and as a result, the glass component is incorporated into the conductive paste. Insufficient diffusion may leave unsintered portions in the via-hole conductor.
  • the phosphorus-containing powder is preferably 0.02 wt% to 0.16 wt% in terms of phosphorus component. This is because an excessive addition tends to cause defects in the conductor structure, and the flatness of the ceramic layer itself is impaired by diffusion into the ceramic layer.
  • the addition amount of the phosphorus-containing powder is preferably adjusted to an appropriate amount in consideration of the glass components described above, but is preferably about 1/20 to 1/200 of the addition amount of the glass powder.
  • the resin component and the copper oxide component it is possible to select a relatively free addition amount within the range of the addition amount described above, but both additives can reduce the amount of bulge by increasing the addition amount.
  • the amount of voids inside the conductive layer is also increased, which adversely affects conductivity, reliability, and the like. Therefore, it is preferable to suppress the addition amount.
  • a desired conductive paste can be obtained by mixing the above materials and stirring and kneading them with a laika machine and three rolls. Note that the technique is not particularly limited as long as it can perform sufficient stirring and kneading.
  • the average particle diameter in the various powder mentioned above is a result measured using a micro track.
  • the glass powder and the phosphorus-containing powder are components made of different substances, so that in the firing step, the reaction with the glass component is first performed when the phosphorus-containing component is decomposed. As shown. That is, unlike the phosphorus-containing glass in which the phosphorus-containing component is contained in the glass from the beginning, the reaction can be started after the decomposition of the phosphorus-containing component occurs.
  • FIG. 1 is an example of the measurement result by the thermomechanical analyzer (TMA) of the volume change behavior with respect to the temperature change in the conductive paste which is the conductive composition according to the present invention and the conductive paste not including the phosphorus-containing powder. Indicates.
  • TMA thermomechanical analyzer
  • a ceramic layer particularly shrinks greatly by causing a phosphorus-containing component to act on a glass component in a firing step. It becomes possible to rapidly soften at a high temperature range of ⁇ 1000 ° C. That is, it becomes possible to promote the degree of softening of the glass component in a high temperature range by newly causing the phosphorus component to act on the glass component in a heated state. As a result, even in the multilayer ceramic substrate, the tendency to soften more than in the case of single glass at the stage of contraction of the ceramic layer, so that the removal of the inorganic components formed on the surface of the conductive powder is facilitated. Further, since the hardness of the via hole conductor as a whole is also reduced, the shrinkage of the via hole conductor itself connected to the ceramic layer is promoted by the shrinkage behavior of the ceramic layer, and the via hole conductor is further lowered.
  • the phosphorus-containing component reacts with the glass component, the phosphorus-containing component is not excessively diffused from the via-hole conductor to the ceramic layer side, and there is an adverse effect such as insufficient shrinkage on the ceramic layer around the via-hole conductor. Does not affect. That is, when a phosphorus-containing component is added to the via-hole conductor, the phosphorus-containing component diffuses to the ceramic layer side due to the diffusion behavior, but the phosphorus-containing component is captured by the glass component.
  • reaction with the phosphorus-containing component can be similarly applied to the glass component diffusing from the ceramic layer into the via-hole conductor. That is, since a phosphorus-containing component is separately added to the glass component, the same action can be applied to the inflow glass component in addition to the glass component added in the via-hole conductor.
  • the shrinkage behavior of the via-hole conductor can be adjusted so as to follow the shrinkage behavior of the ceramic layer during firing. Therefore, it is possible to obtain a conductive composition that can suppress the bulge on the surface of the via-hole conductor that occurs during sintering. Moreover, even if the ceramic layer has a large amount of shrinkage near the completion of sintering, or the ceramic layer has a different direction of shrinkage behavior, especially via-hole conductors where the periphery of the via hole is not surrounded by ceramic, the amount of bumps can be suppressed. it can. Therefore, the use of the conductive composition according to the present invention for the via-hole conductor enables planarization on the surface of the multilayer ceramic substrate.
  • FIG. 2 is a cross-sectional view of an embodiment of a multilayer ceramic substrate according to the present invention.
  • a multilayer ceramic substrate 10 includes a plurality of laminated ceramic layers 12 and via-hole conductors 14. Although not shown in FIG. 1, a conductive film is formed on the ceramic layer 12. This conductor film is formed as a surface conductor film on the front and back surfaces of the multilayer ceramic substrate 10 and is formed as an inner conductor film inside.
  • the material of the ceramic layer 12 preferably contains barium oxide, silicon oxide, and alumina as main components.
  • a material that acts as a ceramic filler such as alumina or barium titanate may be added with a glass component that acts as a sintering aid. Good.
  • borosilicate glass or silicon oxide may be added.
  • the via-hole conductor 14 is formed by filling a via hole 16 formed through the ceramic layer 12 with a conductive paste made of the conductive composition according to the present invention.
  • the surface layer conductor film and the inner conductor film are electrically connected to the via-hole conductor 14.
  • the phosphorus component is present at a position substantially close to the glass component, and the diffusion into the ceramic layer 12 is extremely small. That is, the phosphorus component can be retained in the via-hole conductor 14 by reacting the phosphorus-containing component with the glass component. Since the phosphorus-containing component is not diffused in the ceramic layer 12, it is possible to prevent the effect of suppressing shrinkage on the ceramic layer 12 even though the phosphorus-containing component is added in the via-hole conductor 14. It is said. Due to the reaction between the phosphorus-containing component and the glass component, the softening behavior can be further promoted at the stage where the ceramic layer 12 contracts particularly greatly. Since the phosphorus-containing component is added separately from the glass component, the same softening behavior can be promoted for the diffusion glass from the ceramic layer 12.
  • the multilayer ceramic substrate 10 according to the present invention is the multilayer ceramic substrate 10 in which the via-hole conductor 14 is formed of a conductive composition that can rapidly soften the degree of softening in a high temperature range in the firing process, It is possible to obtain the multilayer ceramic substrate 10 that can suppress the protrusion of the via-hole conductor 14.
  • the multilayer ceramic substrate 20 includes a plurality of laminated ceramic layers 12, constraining layers 18, and via-hole conductors 14. That is, in the multilayer ceramic substrate 20 according to this embodiment, the constraining layer 18 is further formed along each of the plurality of ceramic layers 12.
  • the material of the ceramic layer 12 is the same as the material of the ceramic layer 12 in the multilayer ceramic substrate 10.
  • a material of the constraining layer 18 for example, alumina, zirconia, or the like can be used as a main component.
  • a glass component may be added as a sintering aid as needed.
  • the main component of the material of the ceramic layer 12 is barium oxide, silicon oxide, or alumina
  • the main component of the constraining layer 18 is preferably composed mainly of alumina.
  • the multilayer ceramic substrate 20 including the constraining layer 18 according to this embodiment can suppress the shrinkage behavior in the planar direction in the firing process as compared to the multilayer ceramic substrate 10, but even in such a case, A multilayer ceramic substrate in which the bulge of the via-hole conductor 14 is suppressed can be obtained.
  • a ceramic green sheet that becomes the ceramic layer 12 after firing is prepared.
  • This ceramic green sheet can be sintered at a temperature of about 1000 ° C.
  • a ceramic material powder mainly composed of barium oxide, silicon oxide, alumina or the like is used.
  • an organic binder, an organic solvent, etc. are added to the ceramic material powder, and a ceramic slurry is produced.
  • a ceramic green sheet is obtained by forming the ceramic slurry into a sheet.
  • the ceramic green sheet it may replace with this and may use what added the glass component which acts as a sintering aid to the material which acts as a ceramic filler like alumina or barium titanate, for example.
  • the glass component for example, borosilicate glass or silicon oxide may be added.
  • the constraining layer 18 may be formed on the above-described ceramic green sheet. That is, in the present invention, an inorganic material that is not sintered at the firing temperature of the multilayer ceramic substrate 20 is used as the constraining layer 18 between the ceramic layer 12 that can be sintered at a temperature of about 1000 ° C. and each layer in the multilayer ceramic substrate 20. You may arrange.
  • the constraining layer 18 is manufactured as follows. First, an organic binder, an organic solvent, and the like are added to an inorganic material powder that is not substantially sintered at a sintering temperature at which the ceramic material powder contained in the ceramic green sheet can be sintered, and these are mixed together to form a slurry. Make it. The slurry is formed in a thin layer on a ceramic green sheet by a coater or the like.
  • an inorganic material used for the constraining layer 18 mainly alumina is preferably used, but other compositions such as zirconia can be used as long as the ceramic green sheet is not sintered.
  • the constraining layer 18 may be formed first, and then the ceramic layer 12 may be formed. Furthermore, if there is no problem in efficiency, these may be repeated as many times as necessary, and multiple coatings may be performed.
  • the ceramic layer 12 and the constraining layer 18 are separately formed into a sheet shape, and are subjected to pressure bonding in a later step. It does not matter if they are pasted together. Further, in the production of the multilayer ceramic substrate 20 including the ceramic layer 12 and the constraining layer 18, it may be formed by, for example, spray coating, dip coating, thick film printing, etc. without forming into a sheet shape.
  • the conductive paste described above is filled in the via hole 16 previously provided in the ceramic green sheet or the constraining layer 18, and a conductor film having a predetermined shape is screened on the main surface of the ceramic green sheet or the constraining layer 18 as necessary.
  • An unfired temporary laminate is obtained by forming, laminating, and pressure bonding by a printing method, a transfer method, or the like.
  • a desired multilayer ceramic substrate can be obtained by firing the temporary laminate under conditions according to the components of the conductor film and the ceramic layer 12.
  • the firing conditions in the firing step are not particularly limited, and any known method can be used as long as the ceramic green sheet and the conductor film are sufficiently sintered.
  • a temperature keeping region in a specific temperature range or a region in which the temperature rising rate is extremely reduced is provided under firing conditions. In some cases, it is necessary to pay attention to the selection of glass components.
  • a temperature keeping region is provided in the range of 750 ° C. to 900 ° C. and 950 to 990 ° C. according to various conditions, and the maximum temperature is set to 990 ° C.
  • a phosphorus-containing component is allowed to act on the glass component during firing, particularly in a high temperature range. It is possible to rapidly soften the degree of softening. That is, it becomes possible to promote the degree of softening of the glass component in a high temperature range by newly causing the phosphorus component to act on the glass component in a heated state. Therefore, since the shrinkage behavior of the via-hole conductor 14 can be followed in accordance with the shrinkage behavior of the ceramic layer 12, for example, it is possible to obtain the multilayer ceramic substrates 10 and 20 that do not cause the bumps on the surface of the via-hole conductor. .
  • FIG. 4 shows the shrinkage ratio of the multilayer ceramic substrates 30 and 40 used in Experimental Example 1 and Experimental Example 2 with respect to the firing temperature, and time-series changes in the firing temperature.
  • Example 1 In Experimental Example 1, a glass powder having a softening point in a temperature range lower than the sintering temperature of the ceramic green sheet by about 150 to 300 ° C. with respect to the conductive powder, a phosphorus-containing compound, an organic vehicle, and the organic vehicle A conductive paste in which a predetermined amount of a resin component insoluble in the solvent component was added was produced.
  • Example 1 in Examples 1 to 6, the following materials were used as materials contained in the conductive paste. That is, as the conductive powder, alumina-coated copper powder was used, and an average particle size of 0.1 ⁇ m to 10 ⁇ m was used. The conductive powder was used in the range of 60% to 85% by weight. As the glass powder, a glass powder having a softening point of 700 ° C. or higher selected from Si—B system was used, and it was used within a range of 1 wt% to 10 wt%. In addition, copper pyrophosphate was used as the phosphorus-containing compound, and was used within the range of 0.1% to 0.8% by weight (0.02% to 0.16% by weight in terms of phosphorus component).
  • organic vehicle a mixture of ethyl cellulose and terpineol was used and used in the range of 10 wt% to 25 wt%.
  • polypropylene beads were used as necessary as a resin component insoluble in the solvent component of the organic vehicle, and used within the range of 0 to 7% by weight.
  • copper oxide powder was contained as required, and was used within the range of 0 to 40% by weight. The above-mentioned materials were mixed, and the desired paste was obtained by stirring and kneading with a lykai machine and three rolls.
  • Example 1 and Example 2 produced a conductive paste containing glass powder having an addition amount of copper pyrophosphate of 0.1% by weight and glass softening points of 680 ° C. and 830 ° C., respectively.
  • Examples 3 and 4 produced conductive pastes containing glass powders with an addition amount of copper pyrophosphate of 0.4% by weight and glass softening points of 680 ° C. and 830 ° C., respectively.
  • Example 5 and Example 6 produced conductive pastes containing glass powders with an addition amount of copper pyrophosphate of 0.8 wt% and glass softening points of 680 ° C. and 830 ° C., respectively.
  • Comparative Example 3 and Comparative Example 4 produced conductive pastes containing glass powder having an addition amount of copper pyrophosphate of 0.4 wt% and glass softening points of 600 ° C. and 880 ° C., respectively.
  • Comparative Example 5 and Comparative Example 6 produced conductive paste containing glass powder having an addition amount of copper pyrophosphate of 1.2 wt% and glass softening points of 680 ° C. and 830 ° C., respectively.
  • the conductive paste produced in each example and each comparative example was filled in a via hole previously formed in a ceramic green sheet and laminated, pressure-bonded, etc. to obtain an unfired temporary laminated body.
  • the temporary laminate was fired at a maximum temperature of 1000 ° C. with a temperature keeping region.
  • FIG. 5 is a schematic cross-sectional view of the multilayer ceramic substrate 30 used in Experimental Example 1.
  • the serial via-hole conductor 14 ′ shown in (a) is formed in a columnar shape, and has a diameter of 200 ⁇ m and a thickness of 300 ⁇ m. Further, (b) is formed by dividing the via-hole conductor, and each divided via-hole conductor 14′a, 14′b is formed in a rectangular parallelepiped shape having a width of 200 ⁇ m, a depth of 600 ⁇ m, and a thickness of 300 ⁇ m. Is formed.
  • the ceramic material of the ceramic layer used for the multilayer ceramic substrate 30 is mainly composed of barium oxide, silicon oxide, alumina, boron oxide, calcium oxide, and can be sintered at a temperature of 1000 ° C. or less. Using.
  • Table 1 shows the amount of copper pyrophosphate contained in the conductive pastes in Examples 1 to 6 and Comparative Examples 1 to 6 according to Experimental Example 1, the glass softening point of the glass powder, and the via-hole conductor.
  • the experimental result of the amount of upheaval is shown.
  • the height of the protruding amount of the series via-hole conductor 14 'in FIG. 5A is indicated by H1
  • the height of the protruding amount of the divided via-hole conductors 14'a and 14'b in FIG. 5B is indicated by H2.
  • the raised amount of the divided via-hole conductors 14′a and 14′b was an average value of the raised amounts of the two divided divided via-hole conductors 14′a and the divided via-hole conductor 14′b.
  • the protruding amount of the series via-hole conductor 14 ′ was 40 ⁇ m or less, but the protruding amounts of the divided via-hole conductors 14 ′ a and 14 ′ b were, except for Comparative Example 3, It was larger than 40 ⁇ m.
  • the protruding amount of the divided via-hole conductors 14′a and 14′b was 22 ⁇ m and was 40 ⁇ m or less.
  • FIG. 6 shows an example of the analysis result of the composition distribution in the multilayer ceramic substrate of the present invention, (a) shows the vicinity of the boundary between the ceramic layer and the via-hole conductor, and (b) shows the via-hole conductor.
  • C) shows the distribution of phosphorus (P) in the via-hole conductor
  • Si shows the distribution of glass (Si) in the via-hole conductor.
  • the phosphorus component is present at a position substantially close to the glass component, and the diffusion of the phosphorus component into the ceramic layer is extremely small. I understand that.
  • the phosphorus component can be retained in the via-hole conductor by reacting the phosphorus component with the glass component.
  • the phosphorus component is not extremely diffused in the ceramic layer, it is possible to prevent the shrinkage suppression effect on the ceramic layer from being exhibited even though the phosphorus component is added in the via-hole conductor. ing.
  • the softening behavior of the via-hole conductor can be promoted at the stage where the ceramic layer is particularly contracted by the reaction between the phosphorus component and the glass component. Therefore, the experimental results in Experimental Example 1 revealed that the use of the conductive paste made of the conductive composition according to the present invention for the via-hole conductor suppresses the bulge of the via-hole conductor in the multilayer ceramic substrate. .
  • Example 2 Also in Experimental Example 2, as in Experimental Example 1, with respect to the conductive powder, a glass powder having a softening point in a temperature range lower by about 150 to 300 ° C. than the sintering temperature of the ceramic green sheet, a phosphorus-containing compound, an organic vehicle, And the electroconductive paste which added the predetermined amount of resin components insoluble in the solvent component in the said organic vehicle was produced.
  • the following materials were used as materials contained in the conductive paste. That is, as the conductive powder, alumina-coated copper powder was used, and an average particle size of 0.1 ⁇ m to 10 ⁇ m was used. The conductive powder was used in the range of 60% to 85% by weight. As the glass powder, a glass powder having a softening point of 700 ° C. or higher selected from Si—B system was used, and it was used within a range of 1% by weight to 15% by weight. In addition, copper pyrophosphate was used as the phosphorus-containing compound, and was used within the range of 0.1% to 0.8% by weight (0.02% to 0.16% by weight in terms of phosphorus component).
  • organic vehicle a mixture of ethylcellulose and terpineol was used and used in the range of 10 wt% to 20 wt%.
  • polypropylene beads were used as necessary as a resin component insoluble in the solvent component of the organic vehicle, and used within the range of 0 to 7% by weight.
  • copper oxide powder was contained as required, and was used within the range of 0 to 40% by weight. The above-mentioned materials were mixed, and the desired paste was obtained by stirring and kneading with a lykai machine and three rolls.
  • Example 7 and Example 8 produced conductive paste containing glass powder having an addition amount of copper pyrophosphate of 0.1% by weight and glass softening points of 680 ° C. and 830 ° C., respectively.
  • Examples 9 and 10 produced conductive pastes containing glass powders with an addition amount of copper pyrophosphate of 0.4% by weight and glass softening points of 680 ° C. and 830 ° C., respectively.
  • Example 11 and Example 12 produced conductive paste containing glass powder in which the amount of copper pyrophosphate added was 0.8% by weight and the glass softening points were 680 ° C. and 830 ° C., respectively.
  • Comparative Example 7 and Comparative Example 8 produced a conductive paste containing glass powder in which copper pyrophosphate was not added and the softening points of glass were 680 ° C. and 830 ° C., respectively.
  • Comparative Example 9 and Comparative Example 10 produced conductive paste containing glass powder having an addition amount of copper pyrophosphate of 0.4 wt% and glass softening points of 600 ° C. and 880 ° C., respectively.
  • Comparative Example 11 and Comparative Example 12 produced conductive paste containing glass powder having an addition amount of copper pyrophosphate of 1.2% by weight and glass softening points of 680 ° C. and 830 ° C., respectively.
  • the conductive paste produced in each Example and each comparative example is filled in the via hole previously formed in the ceramic green sheet or the constraining layer 18, and laminated
  • the temporary laminate was fired at a maximum temperature of 1000 ° C. with a temperature keeping region.
  • FIG. 7 is a schematic cross-sectional view of the multilayer ceramic substrate 40 used in Experimental Example 2.
  • the serial via-hole conductor 14 ′ shown in (a) is formed in a columnar shape, and has a diameter of 200 ⁇ m and a thickness of 300 ⁇ m. Further, (b) is formed by dividing the via-hole conductor, and each divided via-hole conductor 14′a, 14′b is formed in a rectangular parallelepiped shape having a width of 200 ⁇ m, a depth of 600 ⁇ m, and a thickness of 300 ⁇ m. Is formed.
  • the multilayer ceramic substrate 40 in Experimental Example 2 includes the constraining layer 18.
  • a ceramic material of the ceramic layer 12 used for the multilayer ceramic substrate 40 a material mainly composed of barium oxide, silicon oxide, alumina, boron oxide, and calcium oxide, which can be sintered at a temperature of 1000 ° C. or less. used.
  • Alumina was used as the material of the constraining layer 18.
  • the thickness ratio between the ceramic layer 12 and the constraining layer 18 was set to 2 ⁇ m for the constraining layer 18 with respect to 40 ⁇ m for the ceramic layer 12.
  • Table 2 shows the amount of copper pyrophosphate contained in the conductive pastes in Examples 7 to 12 and Comparative Examples 7 to 12 according to Experimental Example 2, the glass softening point of the glass powder, and the via-hole conductor.
  • the experimental result of the amount of upheaval is shown.
  • the height of the protruding amount of the serial via-hole conductor 14 ′ is indicated by H1
  • the height of the protruding amount of the divided via-hole conductors 14′a and 14′b in FIG. 7B is indicated by H2.
  • the raised amount of the divided via-hole conductors 14′a and 14′b was an average value of the raised amounts of the two divided divided via-hole conductors 14′a and the divided via-hole conductor 14′b.
  • the protruding amount of the series via-hole conductor 14 ′ was 40 ⁇ m or less except for Comparative Example 8, but the protruding amounts of the divided via-hole conductors 14′a and 14′b were compared with Comparative Example 9. The amount of protrusion was larger than 40 ⁇ m. In Comparative Example 9, the protruding amount of the divided via-hole conductors 14′a and 14′b was 36 ⁇ m and was 40 ⁇ m or less.
  • the shrinkage behavior in the thickness direction in the firing process becomes particularly steep. That is, as shown in FIG. 4, the multilayer ceramic substrate 40 of Experimental Example 2 shows a larger shrinkage behavior in the thickness direction than the multilayer ceramic substrate 30 of Experimental Example 1. Thus, it is difficult for the multilayer ceramic substrate including the constraining layer to suppress the protrusion of the via-hole conductor.
  • the conductive paste of the conductive composition according to the present invention is used for the via-hole conductor even in the multilayer ceramic substrate including the constraining layer as used in the experimental example 2. Thus, it was clarified that the bulge of the via-hole conductor in the multilayer ceramic substrate is suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

Provided are: a conductive composition that is capable of suppressing warping or swelling of a multilayer ceramic substrate, which is provided with a via hole conductor that is obtained by filling of a conductive composition that serves as a conductive paste, due to a bulge of the via hole conductor and the like during the sintering step of the multilayer ceramic substrate; a multilayer ceramic substrate; and a method for manufacturing the multilayer ceramic substrate. A conductive composition of the present invention is used for a via hole conductor (14) that is filled into a via hole (16) in a multilayer ceramic substrate (10) which comprises a plurality of laminated ceramic layers (12) and the via hole (16) that is formed so as to penetrate the ceramic layers (12). This conductive composition contains a conductive powder, a glass powder, a phosphorus-containing powder and an organic vehicle. By using this conductive composition for a via hole conductor (14), there can be obtained a multilayer ceramic substrate (10) wherein a bulge of the via hole conductor (14) is suppressed.

Description

導電性組成物、多層セラミック基板およびその製造方法Conductive composition, multilayer ceramic substrate and manufacturing method thereof
 この発明は、多層セラミック基板におけるビアホール導体に用いられる導電性組成物、多層セラミック基板およびその製造方法に関する。 The present invention relates to a conductive composition used for a via-hole conductor in a multilayer ceramic substrate, a multilayer ceramic substrate, and a method for manufacturing the same.
 特許文献1には、ビアホール導体を含む多層セラミック基板が記載されている。この多層セラミック基板は、ビアホール導体に用いられる導電性ペースト内における銀粉の結晶子径を規定している。そのような構造にすることにより、セラミック層の収縮挙動とビアホール導体の収縮挙動とを合わせることで、平坦で、かつ寸法精度のよい多層セラミック基板が実現されるとしたものである。 Patent Document 1 describes a multilayer ceramic substrate including a via-hole conductor. This multilayer ceramic substrate defines the crystallite diameter of silver powder in the conductive paste used for the via-hole conductor. By adopting such a structure, a multilayer ceramic substrate that is flat and has high dimensional accuracy is realized by combining the shrinkage behavior of the ceramic layer and the shrinkage behavior of the via-hole conductor.
特開2007-220856号公報JP 2007-220856 A
 しかしながら、導電性ペースト内における銀粉の量や粒子径を調整しただけでは、セラミック層の収縮挙動とビアホール導体の収縮挙動とを完全に合わせることは難しく、ビアホール導体の表面付近ではセラミックの収縮量の方がビアホール導体よりも大きくなり、ビアホール導体の表面が***するという問題があった。すなわち、この***は、多層セラミック基板の内部および多層セラミック基板の表面におけるビアホール導体の表面において発生するため、セラミック層を積層して多層セラミック基板を形成した場合、ビアホール導体が存在する部分に相当する多層セラミック基板の表面がうねり、多層セラミック基板の表面にチップコンデンサやICなどを実装する際にチップが傾いたり、多層セラミック基板の表面の電極と部品の端子電極とが接合できないなどの問題があった。 However, it is difficult to perfectly match the shrinkage behavior of the ceramic layer with the shrinkage behavior of the via-hole conductor only by adjusting the amount and particle size of the silver powder in the conductive paste. There is a problem that the surface of the via hole conductor is raised and the surface of the via hole conductor is raised. That is, since this bulge occurs inside the multilayer ceramic substrate and the surface of the via hole conductor on the surface of the multilayer ceramic substrate, when the multilayer ceramic substrate is formed by laminating the ceramic layers, it corresponds to a portion where the via hole conductor exists. There are problems such as waviness of the surface of the multilayer ceramic substrate, tilting of the chip when mounting a chip capacitor or IC on the surface of the multilayer ceramic substrate, and failure to join the electrode on the surface of the multilayer ceramic substrate to the terminal electrode of the component It was.
 それゆえに、この発明の主たる目的は、導電性組成物を導電性ペーストとして充填したビアホール導体を備えた多層セラミック基板であって、多層セラミック基板の焼結工程におけるビアホール導体の***などによる多層セラミック基板の反りやうねりを抑制することを可能とする、導電性組成物、多層セラミック基板およびその製造方法を提供することである。 SUMMARY OF THE INVENTION Therefore, a main object of the present invention is a multilayer ceramic substrate having a via-hole conductor filled with a conductive composition as a conductive paste, and the multilayer ceramic substrate is formed by, for example, a bulge of the via-hole conductor in the sintering process of the multilayer ceramic substrate. It is an object to provide a conductive composition, a multilayer ceramic substrate, and a method for producing the same, which can suppress warping and undulation.
 この発明にかかる導電性組成物は、積層された複数のセラミック層と、セラミック層を貫通して形成されたビアホールとを含む多層セラミック基板において、ビアホールに充填されるビアホール導体に用いられる導電性組成物であって、導電性粉末とガラス粉末とリン含有粉末と有機ビヒクルとを含有することを特徴とする、導電性組成物である。
 また、この発明にかかる導電性組成物では、ガラス粉末はリン含有粉末より多く含有されることが好ましい。
 この発明にかかる多層セラミック基板は、未焼成時にはリン成分を含まないセラミック層からなり、セラミック層に対して厚み方向に形成されるビアホール導体を有する多層セラミック基板であって、ビアホール導体内にリン含有ガラス化合物とリン成分とを含むことを特徴とする、多層セラミック基板である。
 また、この発明にかかる多層セラミック基板では、リン成分は、ビアホール導体からセラミック層に拡散していることが好ましい。
 さらに、この発明にかかる多層セラミック基板では、セラミック層は、Ba、Al、Siの酸化物成分を主成分に含むことが好ましい。
 また、この発明にかかる他の多層セラミック基板では、セラミック層が、アルミナまたはチタン酸バリウムにガラス成分を加えたものを含むことが好ましい。
 さらにまた、この発明にかかる多層セラミック基板では、複数のセラミック層に沿って拘束層が形成され、拘束層の主成分は、Alであることが好ましい。
 この発明にかかる多層セラミック基板の製造方法は、セラミックグリーンシートにビアホールを形成する工程と、ビアホールにこの発明にかかる導電性組成物を充填してビアホール導体を形成する工程と、セラミックグリーンシート上にビアホール導体と接続される導体パターンを形成する工程と、得られたセラミックグリーンシートを積層して仮積層体を作製する工程と、仮積層体を焼成する焼成工程とを含む、複数のセラミック層を含む多層セラミック基板の製造方法であって、焼成工程において、セラミック層の収縮挙動にビアホール導体の収縮挙動が追随することを特徴とする、多層セラミック基板の製造方法である。
The conductive composition according to the present invention is a conductive composition used for a via hole conductor filled in a via hole in a multilayer ceramic substrate including a plurality of laminated ceramic layers and a via hole formed through the ceramic layer. An electrically conductive composition comprising an electrically conductive powder, a glass powder, a phosphorus-containing powder, and an organic vehicle.
Moreover, in the electroconductive composition concerning this invention, it is preferable that glass powder contains more than phosphorus containing powder.
A multilayer ceramic substrate according to the present invention is a multilayer ceramic substrate having a via-hole conductor formed in a thickness direction with respect to the ceramic layer, comprising a ceramic layer that does not contain a phosphorus component when unfired, and containing phosphorus in the via-hole conductor A multilayer ceramic substrate comprising a glass compound and a phosphorus component.
In the multilayer ceramic substrate according to the present invention, the phosphorus component is preferably diffused from the via-hole conductor into the ceramic layer.
Furthermore, in the multilayer ceramic substrate according to the present invention, the ceramic layer preferably contains Ba, Al, and Si oxide components as main components.
In another multilayer ceramic substrate according to the present invention, it is preferable that the ceramic layer includes a material obtained by adding a glass component to alumina or barium titanate.
Furthermore, in the multilayer ceramic substrate according to the present invention, a constraining layer is preferably formed along the plurality of ceramic layers, and the main component of the constraining layer is preferably Al.
A method of manufacturing a multilayer ceramic substrate according to the present invention includes a step of forming a via hole in a ceramic green sheet, a step of filling a via hole with the conductive composition according to the present invention to form a via hole conductor, A plurality of ceramic layers including a step of forming a conductor pattern connected to a via-hole conductor, a step of stacking the obtained ceramic green sheets to prepare a temporary laminate, and a firing step of firing the temporary laminate. A method for manufacturing a multilayer ceramic substrate, comprising: a shrinkage behavior of a via-hole conductor follows a shrinkage behavior of a ceramic layer in a firing step.
 この発明にかかる導電性組成物によれば、導電性組成物に含まれるガラス成分が焼成時に硬化するのをリン含有成分が妨げて、導電性組成物を軟化させるため、導電性組成物の硬化時におけるガラス成分の軟化挙動をリン成分により調整することができる導電性組成物を得ることができる。
 また、この発明にかかる導電性組成物は、ガラス粉末がリン含有成分よりも多く含有されているので、ビアホール導体からセラミック層にリン成分が過剰に拡散することがない。したがって、ビアホール導体内のガラス成分の高温域における軟化度合いを促進させることができるので、ビアホール導体の***を抑えることができる導電性組成物を得ることができる。
 この発明にかかる多層セラミック基板では、リン成分がセラミック層に極端に多く拡散していないために、セラミック層に対する収縮抑制効果を発現させないようにすることが可能であることから、リン成分とガラス成分との反応により、セラミック層が特に大きく収縮する段階においてビアホール導体のさらなる軟化挙動を促進させることができる。したがって、ビアホール導体の***が抑制された多層セラミック基板を得ることができる。
 また、この発明にかかる多層セラミック基板は、リン成分がビアホール導体からセラミック層に拡散しているので、ビアホール導体とセラミック層との境界面におけるガラス成分の軟化挙動を段階的に合わせることができる。
 さらに、この発明にかかる多層セラミック基板は、セラミック層の主成分としてBa、Al、Siの酸化物成分を含むか、また、セラミック層の主成分としてアルミナまたはチタン酸バリウムにガラス成分を加えたものを含むと、銀や銅などの低融点金属からなる導電性粉末を用いた導電性ペーストと同時に焼成できるように、比較的低温、たとえば、1000℃以下で焼成することができる。
 また、この発明にかかる多層セラミック基板は、セラミック層に沿って拘束層が形成されるので、特に厚み方向の収縮挙動が大きくなるが、拘束層を含む多層セラミック基板に対しても、効果的にビアホール導体の***を抑制することができる。
 この発明にかかる多層セラミック基板の製造方法では、焼成工程におけるセラミック層が大きく収縮する焼成温度において、セラミック層の収縮挙動にビアホール導体の収縮挙動を追随させることができる。したがって、たとえば、多層セラミック基板に形成されたビアホール導体の***を抑制された多層セラミック基板を製造することができる。
According to the conductive composition of the present invention, the phosphorus-containing component prevents the glass component contained in the conductive composition from being cured at the time of firing and softens the conductive composition. The electrically conductive composition which can adjust the softening behavior of the glass component at the time with a phosphorus component can be obtained.
In addition, since the conductive composition according to the present invention contains more glass powder than the phosphorus-containing component, the phosphorus component does not diffuse excessively from the via-hole conductor into the ceramic layer. Therefore, since the degree of softening of the glass component in the via-hole conductor in the high temperature range can be promoted, a conductive composition that can suppress the protrusion of the via-hole conductor can be obtained.
In the multilayer ceramic substrate according to the present invention, since the phosphorus component is not extremely diffused in the ceramic layer, it is possible to prevent the shrinkage suppressing effect from being exerted on the ceramic layer. Can further promote the softening behavior of the via-hole conductor in the stage where the ceramic layer contracts greatly. Therefore, it is possible to obtain a multilayer ceramic substrate in which the protrusion of the via-hole conductor is suppressed.
In the multilayer ceramic substrate according to the present invention, since the phosphorus component is diffused from the via hole conductor to the ceramic layer, the softening behavior of the glass component at the interface between the via hole conductor and the ceramic layer can be adjusted stepwise.
Furthermore, the multilayer ceramic substrate according to the present invention contains Ba, Al, Si oxide components as the main component of the ceramic layer, or a glass component added to alumina or barium titanate as the main component of the ceramic layer. Can be fired at a relatively low temperature, for example, 1000 ° C. or less, so that it can be fired simultaneously with the conductive paste using the conductive powder made of a low melting point metal such as silver or copper.
Moreover, since the constraining layer is formed along the ceramic layer in the multilayer ceramic substrate according to the present invention, the shrinkage behavior in the thickness direction is particularly large, but it is also effective for the multilayer ceramic substrate including the constraining layer. Raising of the via-hole conductor can be suppressed.
In the method for manufacturing a multilayer ceramic substrate according to the present invention, the shrinkage behavior of the via-hole conductor can be made to follow the shrinkage behavior of the ceramic layer at the firing temperature at which the ceramic layer is greatly shrunk in the firing step. Therefore, for example, a multilayer ceramic substrate in which the bulge of via-hole conductors formed on the multilayer ceramic substrate is suppressed can be manufactured.
 この発明によれば、導電性組成物を導電性ペーストとして充填したビアホール導体を備えた多層セラミック基板であって、多層セラミック基板の焼結工程におけるビアホール導体の***などによる多層セラミック基板の反りやうねりを抑制することを可能とする、導電性組成物、多層セラミック基板およびその製造方法が得られる。 According to the present invention, there is provided a multilayer ceramic substrate including a via-hole conductor filled with a conductive composition as a conductive paste, and warpage or undulation of the multilayer ceramic substrate due to a rise of the via-hole conductor in the sintering process of the multilayer ceramic substrate. A conductive composition, a multilayer ceramic substrate, and a method for producing the same can be obtained.
 この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。 The above-mentioned object, other objects, features, and advantages of the present invention will become more apparent from the following description of the embodiments for carrying out the invention with reference to the drawings.
この発明にかかる導電性組成物である導電性ペーストおよびリン含有粉末を含まない導電性ペーストにおける温度変化に対する体積変化挙動の熱機械分析装置による測定結果の一例を示す。An example of the measurement result by the thermomechanical analyzer of the volume change behavior with respect to the temperature change in the conductive paste which is the conductive composition according to the present invention and the conductive paste not including the phosphorus-containing powder is shown. この発明にかかる多層セラミック基板の一実施の形態の断面模式図である。1 is a schematic cross-sectional view of an embodiment of a multilayer ceramic substrate according to the present invention. この発明にかかる多層セラミック基板の他の実施の形態の断面模式図である。It is a cross-sectional schematic diagram of other embodiment of the multilayer ceramic substrate concerning this invention. 実験例1において用いた多層セラミック基板および実験例2において用いた多層セラミック基板の焼成温度に対する収縮率、および焼成温度の時系列変化、を示す。The shrinkage rate with respect to the firing temperature of the multilayer ceramic substrate used in Experimental Example 1 and the multilayer ceramic substrate used in Experimental Example 2 and the time-series change of the firing temperature are shown. 実験例1において用いた多層セラミック基板の断面模式図を示す。The cross-sectional schematic diagram of the multilayer ceramic substrate used in Experimental example 1 is shown. この発明の多層セラミック基板における組成分布の分析結果の一例を示しており、(a)は、セラミック層とビアホール導体との境界付近を示し、(b)は、ビアホール導体内における銅(Cu)の分布を示し、(c)は、ビアホール導体内におけるリン(P)の分布を示し、(d)は、ビアホール導体内におけるガラス(Si)の分布示す。The example of the analysis result of the composition distribution in the multilayer ceramic substrate of this invention is shown, (a) shows the boundary vicinity of a ceramic layer and a via-hole conductor, (b) shows the copper (Cu) in a via-hole conductor. (C) shows the distribution of phosphorus (P) in the via-hole conductor, and (d) shows the distribution of glass (Si) in the via-hole conductor. 実験例2において用いた多層セラミック基板の断面模式図を示す。The cross-sectional schematic diagram of the multilayer ceramic substrate used in Experimental example 2 is shown.
 本発明にかかる導電性組成物の一実施の形態について説明する。本発明にかかる導電性組成物は、たとえば、多層セラミック基板を貫通して形成されたビアホールに充填されるビアホール導体に用いられる。なお、この多層セラミック基板は、複数のセラミック層が積層されて形成される。この導電性組成物は、たとえば、導電性ペーストとして作製される。この導電性ペーストは、導電性粉末、ガラス粉末、リン含有粉末および有機ビヒクルを含む。 An embodiment of the conductive composition according to the present invention will be described. The conductive composition according to the present invention is used for, for example, a via-hole conductor filled in a via-hole formed through a multilayer ceramic substrate. The multilayer ceramic substrate is formed by laminating a plurality of ceramic layers. This conductive composition is produced, for example, as a conductive paste. The conductive paste includes a conductive powder, a glass powder, a phosphorus-containing powder, and an organic vehicle.
 導電性ペーストに含有される導電性粉末としては、たとえば、Ag、Au、Cu、Ni、Ag-Pd合金、Ag-Pt合金等の電気伝導性に優れた金属を主成分とすることが好ましい。なお、セラミックグリーンシートの焼成工程において、セラミック層との間で無用な反応を起こしたり、焼成中に溶解したりすることがない限り、添加量が逆転しない範囲で他の導電性粉末や導電性酸化物粉末を添加してもかまわない。導電性粉末の形状、平均粒径、粒度分布は特に限定されるものではないが、平均粒径は0.1μm~10μm程度であり、粗大粉や極端な凝集粉がないものが好ましい。 As the conductive powder contained in the conductive paste, for example, a metal having excellent electrical conductivity such as Ag, Au, Cu, Ni, an Ag—Pd alloy, or an Ag—Pt alloy is preferably used as a main component. In addition, in the firing process of the ceramic green sheet, other conductive powders or conductive materials may be used as long as the addition amount is not reversed unless an unnecessary reaction is caused with the ceramic layer or dissolution during firing. Oxide powder may be added. The shape, average particle size, and particle size distribution of the conductive powder are not particularly limited, but the average particle size is preferably about 0.1 μm to 10 μm, and is preferably free of coarse powder or extremely agglomerated powder.
 また、この導電性ペーストは、使用するセラミックグリーンシートの焼成工程では焼結しない成分(以下、無機成分という)が、導電性粉末の表面に実質的に隙間無く配置されている。この無機成分としては、Al、Si、Zr、Ni、Ti、Nb、Mn、Mgを含む酸化物を用いることが可能である。これらの無機成分は、多層セラミック基板の収縮条件や後述する添加するガラス粉末との親和性等を考慮して選定される必要があり、本発明における無機成分の材料は、Al、Si、Zrが特に好適である。 In this conductive paste, components that are not sintered in the firing step of the ceramic green sheet to be used (hereinafter referred to as inorganic components) are arranged on the surface of the conductive powder with substantially no gap. As this inorganic component, an oxide containing Al, Si, Zr, Ni, Ti, Nb, Mn, and Mg can be used. These inorganic components need to be selected in consideration of the shrinkage conditions of the multilayer ceramic substrate and the affinity with the glass powder to be added, which will be described later, and the inorganic component materials in the present invention include Al, Si, and Zr. Particularly preferred.
 なお、これらの無機成分は、導電性粉末の表面に実質的に隙間無く配置される必要があるが、本実施の形態における導電性粉末の表面に実質的に隙間の無い状態とは、導電性粉末が単独での焼結挙動を示さなくなる状態であれば十分であり、必ずしも、全く隙間が存在しないことを示すものではない。また、無機成分の添加量は、導電性粉末の表面への付着状態にもよるが、この導電性粉末に対して0.5重量%~8重量%程度であることが好適であり、さらに望ましくは、1重量%~7重量%である。 Note that these inorganic components need to be disposed on the surface of the conductive powder with substantially no gap. However, the state in which the surface of the conductive powder in the present embodiment has substantially no gap refers to the conductivity. It is sufficient that the powder does not exhibit the sintering behavior by itself, and does not necessarily indicate that there is no gap at all. The amount of the inorganic component added depends on the state of adhesion of the conductive powder to the surface, but is preferably about 0.5 to 8% by weight with respect to the conductive powder, and more desirably. Is from 1% to 7% by weight.
 また、これらの無機成分を導電性粉末の表面に配置する方法としては、たとえば、アルミナに限って記載すれば、導電性粉末をアルキルアルミネート等の有機アルミネートによって被覆した後に熱処理することによって、あるいは、導電性粉末をアルミニウム塩溶液中に浸漬した後に乾燥熱処理することによって、または、微細なアルミナ粉末をマイクロカプセル法によって処理し、微細なアルミナ粉末をそのまま導電性粉末の表面に配置することによって、得ることが可能である。 Moreover, as a method of disposing these inorganic components on the surface of the conductive powder, for example, if only alumina is described, the conductive powder is coated with an organic aluminate such as an alkyl aluminate and then heat-treated, Alternatively, by immersing the conductive powder in an aluminum salt solution and then subjecting it to a dry heat treatment, or treating the fine alumina powder by the microcapsule method and placing the fine alumina powder on the surface of the conductive powder as it is It is possible to get.
 また、この導電性ペーストに用いる導電性粉末は、特にこれらの製法には依存しないが、前述する焼結挙動の抑制効果を少量のコート成分量で実現することや、後述するガラス成分によるコート成分の除去性を容易に得るためには、微細なアルミナ粉末を導電性粉末の表面に概略に均一に配置することが望ましく、特に粒径が数十ナノオーダーの微細アルミナ粉末を1層ないし数層の厚みで配置することが望ましい。 In addition, the conductive powder used for this conductive paste is not particularly dependent on these production methods, but it can realize the above-described sintering behavior suppressing effect with a small amount of coating component, or a coating component with a glass component described later. In order to easily obtain the removability, it is desirable to dispose the fine alumina powder substantially uniformly on the surface of the conductive powder, and in particular, one to several layers of fine alumina powder having a particle size of several tens of nanometers. It is desirable to arrange with the thickness.
 導電性ペーストに含有されるガラス粉末は、Si-B系から選ばれるガラス粉末を使用することが好適であり、さらに望ましくは、SiO2:40重量%~55重量%、B23:10重量%~20重量%、BaOおよび/またはSrO:20重量%~30重量%を含む混合物を所定の温度にて溶解したのちにガラス化したものである。なお、ガラス粉末は、多層セラミック基板と過剰な反応を示さないものであり、セラミック層の焼結温度よりも150℃~300℃程度低い軟化点を有するものであれば、公知のものが使用可能である。 The glass powder contained in the conductive paste is preferably a glass powder selected from Si—B, more preferably SiO 2 : 40 wt% to 55 wt%, B 2 O 3 : 10 A mixture containing 20% by weight to 20% by weight, BaO and / or SrO: 20% by weight to 30% by weight is melted at a predetermined temperature and then vitrified. The glass powder does not show excessive reaction with the multilayer ceramic substrate, and any known one can be used as long as it has a softening point lower by about 150 ° C. to 300 ° C. than the sintering temperature of the ceramic layer. It is.
 また、前述の無機成分がAlやZr、Ti、Nb、Mn、Mg等の場合は、後述するガラス成分による無機成分の除去性を確保するため、ガラス中へのこれらの成分の添加量を調整しておくことが望ましい。なぜなら、無機成分によるコート量がガラス粉末の添加量との反応限界を超える量である場合には、目的とする無機成分の除去が十分に行われない可能性があるためである。 In addition, when the above-mentioned inorganic components are Al, Zr, Ti, Nb, Mn, Mg, etc., the addition amount of these components into the glass is adjusted in order to ensure the removability of the inorganic components by the glass components described later. It is desirable to keep it. This is because if the coating amount of the inorganic component exceeds the reaction limit with the addition amount of the glass powder, the target inorganic component may not be sufficiently removed.
 さらに、ガラス粉末は、ガラス状態ではリン成分を含まないが、リン含有成分との反応により、所望の温度域での軟化傾向が促進される組成のものがさらに望ましい。添加されるガラス粉末の粒径としては、導電性粉末の粒径に応じて選択されることが好ましいが、良好な分散性が得られる平均粒径0.5μm~3μm程度のものであり、粗大粉や極端な凝集粉が無いものが望ましい。 Furthermore, the glass powder does not contain a phosphorus component in the glass state, but it is more desirable to have a composition that promotes a softening tendency in a desired temperature range by reaction with the phosphorus-containing component. The particle size of the glass powder to be added is preferably selected according to the particle size of the conductive powder, but it has an average particle size of about 0.5 μm to 3 μm that gives good dispersibility and is coarse. Those without powder or extremely agglomerated powder are desirable.
 導電性ペーストに含有されるリン含有粉末は、分解後の生成物が導電性粉末と同質のものであることが、分解後の不要な反応を抑制できるため望ましい。たとえば、導電性粉末が銅の場合には、ピロリン酸銅等の使用が好適であるが、特にこれに限定されるものではない。セラミック層の焼成工程において、リン含有成分がガラス成分に対して供給可能であるものであれば使用可能である。 It is desirable that the phosphorus-containing powder contained in the conductive paste is the same product as the conductive powder after decomposition because unnecessary reactions after decomposition can be suppressed. For example, when the conductive powder is copper, use of copper pyrophosphate or the like is suitable, but it is not particularly limited thereto. In the firing process of the ceramic layer, any phosphorus-containing component that can be supplied to the glass component can be used.
 ただし、液状のものはセラミック層への不要な拡散要因となる可能性が高いため導電性ペースト中への直接的な添加は好ましくないが、各種粉末に含浸させたり、粉末表面に付着させたりするなどして使用することは可能である。リン含有粉末の粒径は、導電性粉末の粒径に応じて選択されることが好ましいが、良好な分散性、分解性が得られる平均粒径数μm程度のものであり、粗大粉や極端な凝集粉が無いものが望ましい。 However, since liquid materials are likely to cause unnecessary diffusion into the ceramic layer, direct addition to the conductive paste is not preferred, but they can be impregnated into various powders or adhered to the powder surface. It is possible to use it. The particle size of the phosphorus-containing powder is preferably selected according to the particle size of the conductive powder, but it has an average particle size of about several μm, which can provide good dispersibility and decomposability. What does not have an agglomerated powder is desirable.
 導電性ペーストに含有される有機ビヒクルは、バインダ樹脂と溶剤を混合したもので、特に限定されないが、テルピネオール、イソプロピレンアルコール、ブチルカルビトール、ブチルカルビトールアセテイトなどのアルコール類に、アクリル樹脂、アルキッド樹脂、ブチラール樹脂、エチルセルロース等を溶解させることによって得ることが可能であり、必要に応じて各種分散剤、可塑剤、活性剤を添加してもよい。 The organic vehicle contained in the conductive paste is a mixture of a binder resin and a solvent, and is not particularly limited.Although alcohols such as terpineol, isopropylene alcohol, butyl carbitol, butyl carbitol acetate, acrylic resin, It can be obtained by dissolving alkyd resin, butyral resin, ethyl cellulose, and the like, and various dispersants, plasticizers, and activators may be added as necessary.
 また、導電性ペーストには、有機ビヒクル中の溶剤成分に不溶な樹脂成分等が含有されてもよい。これらの樹脂成分等には、ポリプロピレン、ポリエチレン、ポリスチレン、アクリル樹脂、セルロース樹脂等が含有されてもよい。これらの樹脂成分等は、平均粒径は3μm~7μm程度であって、粗大粉や極端な凝集粉がないものが好ましい。 Further, the conductive paste may contain a resin component that is insoluble in the solvent component in the organic vehicle. These resin components and the like may contain polypropylene, polyethylene, polystyrene, acrylic resin, cellulose resin and the like. These resin components and the like preferably have an average particle size of about 3 μm to 7 μm and are free of coarse powder or extremely agglomerated powder.
 各成分の添加比率は、表面に非焼結成分を有する導電性粉末:60重量%~85重量%、Si-B系から選ばれる700℃以上の軟化点を有するガラス粉末:1重量%~10重量%、リン含有粉末:0.1重量%~0.8重量%(リン成分換算0.02重量%~0.16重量%)、酸化銅粉:0重量%~40重量%、有機ビヒクル:10重量%~25重量%、有機ビヒクル中の溶剤成分に不溶な樹脂成分:0重量%~7重量%、が好ましい。すなわち、本発明にかかる導電性組成物では、ガラス粉末は、リン含有粉末よりも多く含有されている。 The addition ratio of each component is as follows: conductive powder having non-sintered component on the surface: 60% to 85% by weight, glass powder having a softening point of 700 ° C. or higher selected from Si—B system: 1% to 10% Wt%, phosphorus-containing powder: 0.1 wt% to 0.8 wt% (phosphorus component conversion 0.02 wt% to 0.16 wt%), copper oxide powder: 0 wt% to 40 wt%, organic vehicle: 10 wt% to 25 wt%, preferably resin components insoluble in the solvent component in the organic vehicle: 0 wt% to 7 wt%. That is, in the conductive composition according to the present invention, the glass powder is contained more than the phosphorus-containing powder.
 ここで、ガラス粉末の添加量を10重量%以上とすると、ビアホール導体の導通抵抗が増加すると共に、ガラスが電極表面に浮きやすくなり、めっき析出に対する阻害要因となり得るため好ましくない。ガラス粉末の添加量の下限は有機ビヒクル中の溶剤成分に不溶な樹脂成分の量や、ガラス成分の軟化傾向にも依存するが、樹脂成分が最大量添加されていたとしても、添加されるガラス粉末の添加量が1重量%以下では、導電性粉末の粒子の表面の非焼結成分を除去するに十分な量に至らず、結果として、ビアホール導体に未焼結な部分が残ることがある。 Here, if the amount of glass powder added is 10% by weight or more, the conduction resistance of the via-hole conductor increases and the glass tends to float on the electrode surface, which can be an obstacle to plating deposition. The lower limit of the amount of glass powder added depends on the amount of the resin component insoluble in the solvent component in the organic vehicle and the softening tendency of the glass component, but even if the maximum amount of resin component is added, the added glass When the added amount of the powder is 1% by weight or less, the amount is not sufficient to remove the non-sintered components on the surface of the particles of the conductive powder, and as a result, an unsintered portion may remain in the via-hole conductor. .
 また、ガラス成分の軟化点に関して、多層セラミック基板の焼結温度に対して、300℃以上低い軟化点を有するガラス粉末は、多層セラミック基板の焼結に比して早い段階で焼結が開始されてしまうため、導電性ペーストと多層セラミック基板のセラミック層との収縮挙動を一致させるという本発明の目的が達成されなくなるため好ましくない。多層セラミック基板のセラミック層の焼結温度とガラス成分の軟化点との差が150℃未満である場合には、ガラス成分の十分な軟化が行われず、結果としてガラス成分の導電性ペースト内への拡散が不十分となり、ビアホール導体に未焼結な部分が残ることがある。 In addition, regarding the softening point of the glass component, glass powder having a softening point lower by 300 ° C. or more than the sintering temperature of the multilayer ceramic substrate starts to be sintered at an earlier stage than the sintering of the multilayer ceramic substrate. Therefore, the object of the present invention of matching the shrinkage behavior between the conductive paste and the ceramic layer of the multilayer ceramic substrate is not achieved, which is not preferable. When the difference between the sintering temperature of the ceramic layer of the multilayer ceramic substrate and the softening point of the glass component is less than 150 ° C., the glass component is not sufficiently softened, and as a result, the glass component is incorporated into the conductive paste. Insufficient diffusion may leave unsintered portions in the via-hole conductor.
 リン含有粉末に関しては、リン成分換算で、0.02重量%~0.16重量%とすることが好ましい。これは、過剰な添加によって、導体構造の欠陥が生じやすくなることや、セラミック層への拡散によりセラミック層自体の平坦性を損ねることになるためである。リン含有粉末の添加量は、前述のガラス成分を勘案して相応量に調整することが望ましいが、概ねガラス粉末の添加量の1/20~1/200とすることが望ましい。 The phosphorus-containing powder is preferably 0.02 wt% to 0.16 wt% in terms of phosphorus component. This is because an excessive addition tends to cause defects in the conductor structure, and the flatness of the ceramic layer itself is impaired by diffusion into the ceramic layer. The addition amount of the phosphorus-containing powder is preferably adjusted to an appropriate amount in consideration of the glass components described above, but is preferably about 1/20 to 1/200 of the addition amount of the glass powder.
 樹脂成分、酸化銅成分に関しては、上述した添加量の範囲内において比較的自由な添加量を選定することが可能であるが、両添加物共、添加量の増加によって***量を低減することが可能である一方で、導電層内部の空隙量も増加し、導電性、信頼性等の面において悪影響となるため、添加量を抑えることが好ましい。 With regard to the resin component and the copper oxide component, it is possible to select a relatively free addition amount within the range of the addition amount described above, but both additives can reduce the amount of bulge by increasing the addition amount. On the other hand, the amount of voids inside the conductive layer is also increased, which adversely affects conductivity, reliability, and the like. Therefore, it is preferable to suppress the addition amount.
 以上の材料を混合し、ライカイ機、3本ロールで攪拌、混練することにより、所望の導電性ペーストが得られる。なお、十分な攪拌、混練が行える手法であれば、特に前述した手法には限定しない。 A desired conductive paste can be obtained by mixing the above materials and stirring and kneading them with a laika machine and three rolls. Note that the technique is not particularly limited as long as it can perform sufficient stirring and kneading.
 なお、本発明において、上述した種々の粉末における平均粒径は、マイクロトラックを用いて測定される結果である。 In addition, in this invention, the average particle diameter in the various powder mentioned above is a result measured using a micro track.
 導電性組成物におけるガラス成分とリン含有成分とについて、ガラス粉末とリン含有粉末とが別物質からなる成分とすることにより、焼成工程において、リン含有成分が分解した際に初めてガラス成分と反応を示すようになる。すなわち、最初からガラス内にリン含有成分が含まれているリン含有ガラスとは異なり、リン含有成分の分解が生じた後から反応を開始することが可能となる。 Regarding the glass component and the phosphorus-containing component in the conductive composition, the glass powder and the phosphorus-containing powder are components made of different substances, so that in the firing step, the reaction with the glass component is first performed when the phosphorus-containing component is decomposed. As shown. That is, unlike the phosphorus-containing glass in which the phosphorus-containing component is contained in the glass from the beginning, the reaction can be started after the decomposition of the phosphorus-containing component occurs.
 ここで、図1は、この発明にかかる導電性組成物である導電性ペーストおよびリン含有粉末を含まない導電性ペーストにおける温度変化に対する体積変化挙動の熱機械分析装置(TMA)による測定結果の一例を示す。 Here, FIG. 1 is an example of the measurement result by the thermomechanical analyzer (TMA) of the volume change behavior with respect to the temperature change in the conductive paste which is the conductive composition according to the present invention and the conductive paste not including the phosphorus-containing powder. Indicates.
 図1に示すように、本発明にかかる導電性組成物を、ビアホール導体の材料として用いると、焼成工程において、ガラス成分にリン含有成分を作用させることにより、特にセラミック層が大きく収縮する900℃~1000℃における高温域で急激に軟化させることが可能となる。すなわち、ガラス成分に加熱状態で新たにリン含有成分を作用させることによって、ガラス成分の高温域での軟化の度合いを促進させることが可能となる。この結果、多層セラミック基板においてもセラミック層の収縮段階においてガラス単体よりも特に軟化傾向が進むため、導電性粉末の表面に形成されている無機成分の除去が進み易くなる。また、ビアホール導体全体としての硬度も低下するため、セラミック層の収縮挙動によってセラミック層と連結されているビアホール導体自体の収縮も促進され、さらにビアホール導体の低***化が進むようになる。 As shown in FIG. 1, when the conductive composition according to the present invention is used as a material for a via-hole conductor, a ceramic layer particularly shrinks greatly by causing a phosphorus-containing component to act on a glass component in a firing step. It becomes possible to rapidly soften at a high temperature range of ˜1000 ° C. That is, it becomes possible to promote the degree of softening of the glass component in a high temperature range by newly causing the phosphorus component to act on the glass component in a heated state. As a result, even in the multilayer ceramic substrate, the tendency to soften more than in the case of single glass at the stage of contraction of the ceramic layer, so that the removal of the inorganic components formed on the surface of the conductive powder is facilitated. Further, since the hardness of the via hole conductor as a whole is also reduced, the shrinkage of the via hole conductor itself connected to the ceramic layer is promoted by the shrinkage behavior of the ceramic layer, and the via hole conductor is further lowered.
 また、リン含有成分とガラス成分とが反応するため、ビアホール導体からセラミック層側にリン含有成分が過剰に拡散されることがなく、ビアホール導体の周辺のセラミック層に対して収縮量不足などの悪影響を及ぼさない。すなわち、リン含有成分をビアホール導体に添加すると、拡散挙動によりセラミック層側にもリン含有成分が拡散するが、ガラス成分によりリン含有成分が捕捉される。 In addition, since the phosphorus-containing component reacts with the glass component, the phosphorus-containing component is not excessively diffused from the via-hole conductor to the ceramic layer side, and there is an adverse effect such as insufficient shrinkage on the ceramic layer around the via-hole conductor. Does not affect. That is, when a phosphorus-containing component is added to the via-hole conductor, the phosphorus-containing component diffuses to the ceramic layer side due to the diffusion behavior, but the phosphorus-containing component is captured by the glass component.
 さらに、セラミック層からビアホール導体内に拡散してくるガラス成分に対しても、同様に、リン含有成分との反応作用を働かせることが可能である。すなわち、ガラス成分に対してリン含有成分を別添加としているために、ビアホール導体内に添加しているガラス成分の他、流入ガラス成分に対しても、同様の作用を働かせることが可能となる。 Furthermore, the reaction with the phosphorus-containing component can be similarly applied to the glass component diffusing from the ceramic layer into the via-hole conductor. That is, since a phosphorus-containing component is separately added to the glass component, the same action can be applied to the inflow glass component in addition to the glass component added in the via-hole conductor.
 上述した作用により、焼成時に、セラミック層の収縮挙動に追随するように、ビアホール導体の収縮挙動を調整することができる。よって、焼結時に発生するビアホール導体の表面における***を抑えることを可能にした導電性組成物を得ることができる。また、焼結完了付近に示す収縮量が多いセラミック層や、収縮挙動の方向が異なるセラミック層、特に、ビアホールの周囲がセラミックに囲われていないビアホール導体であっても、***量を抑えることができる。したがって、本発明にかかる導電性組成物をビアホール導体に使用することは、多層セラミック基板の表面における平坦化を可能にする。 By the above-described action, the shrinkage behavior of the via-hole conductor can be adjusted so as to follow the shrinkage behavior of the ceramic layer during firing. Therefore, it is possible to obtain a conductive composition that can suppress the bulge on the surface of the via-hole conductor that occurs during sintering. Moreover, even if the ceramic layer has a large amount of shrinkage near the completion of sintering, or the ceramic layer has a different direction of shrinkage behavior, especially via-hole conductors where the periphery of the via hole is not surrounded by ceramic, the amount of bumps can be suppressed. it can. Therefore, the use of the conductive composition according to the present invention for the via-hole conductor enables planarization on the surface of the multilayer ceramic substrate.
 次に、上述した本発明にかかる導電性組成物を使用した多層セラミック基板の一実施の形態について説明する。図2は、この発明にかかる多層セラミック基板の一実施の形態についての断面図である。 Next, an embodiment of a multilayer ceramic substrate using the above-described conductive composition according to the present invention will be described. FIG. 2 is a cross-sectional view of an embodiment of a multilayer ceramic substrate according to the present invention.
 この発明の一実施の形態にかかる多層セラミック基板10は、積層された複数のセラミック層12およびビアホール導体14を含む。なお、図1には図示していないが、セラミック層12には導体膜が形成される。この導体膜は、多層セラミック基板10の表面や裏面において表層導体膜として形成され、内部において内部導体膜として形成される。 A multilayer ceramic substrate 10 according to an embodiment of the present invention includes a plurality of laminated ceramic layers 12 and via-hole conductors 14. Although not shown in FIG. 1, a conductive film is formed on the ceramic layer 12. This conductor film is formed as a surface conductor film on the front and back surfaces of the multilayer ceramic substrate 10 and is formed as an inner conductor film inside.
 セラミック層12の材料は、酸化バリウム、酸化ケイ素、アルミナを主成分として含むのが好ましい。また、セラミック層12の材料として、これに代えて、たとえば、アルミナまたはチタン酸バリウムのようなセラミックフィラーとして作用する材料に、焼結助剤として作用するガラス成分を添加してものを用いてもよい。ガラス成分としては、たとえば、ホウケイ酸ガラスや酸化ケイ素を加えたものでもよい。セラミック層12の材料として、このような材料を用いることで、銀や銅などの低融点金属からなる導電性粉末を用いた導電性ペーストと同時に焼成でき、比較的低温、たとえば、1000℃以下で焼成することができる。 The material of the ceramic layer 12 preferably contains barium oxide, silicon oxide, and alumina as main components. Alternatively, as a material of the ceramic layer 12, instead of this, for example, a material that acts as a ceramic filler such as alumina or barium titanate may be added with a glass component that acts as a sintering aid. Good. As the glass component, for example, borosilicate glass or silicon oxide may be added. By using such a material as the material of the ceramic layer 12, it can be fired simultaneously with a conductive paste using a conductive powder made of a low melting point metal such as silver or copper, and at a relatively low temperature, for example, 1000 ° C. or less. It can be fired.
 ビアホール導体14は、セラミック層12を貫通して形成されるビアホール16に、本発明にかかる導電性組成物による導電性ペーストが充填されることにより形成される。そして、表層導体膜および内部導体膜は、ビアホール導体14と電気的に接続されている。 The via-hole conductor 14 is formed by filling a via hole 16 formed through the ceramic layer 12 with a conductive paste made of the conductive composition according to the present invention. The surface layer conductor film and the inner conductor film are electrically connected to the via-hole conductor 14.
 ここで、セラミック層12とビアホール導体14との境界において、リン成分は、ガラス成分とほぼ近接した位置に存在しており、かつ、セラミック層12への拡散は極端に少ない。すなわち、リン含有成分をガラス成分と反応させることによってリン成分をビアホール導体14内に滞留させることが可能となっている。リン含有成分がセラミック層12に拡散していないために、ビアホール導体14内にリン含有成分を添加しているにもかかわらず、セラミック層12に対する収縮抑制の効果を発現させないようにすることを可能としている。リン含有成分とガラス成分との反応により、セラミック層12が特に大きく収縮する段階において、さらなる軟化挙動の促進が可能となる。リン含有成分をガラス成分とは別に添加しているために、セラミック層12からの拡散ガラスに対しても同様の軟化挙動の促進が可能となる。 Here, at the boundary between the ceramic layer 12 and the via-hole conductor 14, the phosphorus component is present at a position substantially close to the glass component, and the diffusion into the ceramic layer 12 is extremely small. That is, the phosphorus component can be retained in the via-hole conductor 14 by reacting the phosphorus-containing component with the glass component. Since the phosphorus-containing component is not diffused in the ceramic layer 12, it is possible to prevent the effect of suppressing shrinkage on the ceramic layer 12 even though the phosphorus-containing component is added in the via-hole conductor 14. It is said. Due to the reaction between the phosphorus-containing component and the glass component, the softening behavior can be further promoted at the stage where the ceramic layer 12 contracts particularly greatly. Since the phosphorus-containing component is added separately from the glass component, the same softening behavior can be promoted for the diffusion glass from the ceramic layer 12.
 したがって、この発明にかかる多層セラミック基板10は、焼成工程における高温域において軟化度合いを急激に軟化させることが可能である導電性組成物によりビアホール導体14が形成された多層セラミック基板10であるので、ビアホール導体14の***の抑制を可能とする多層セラミック基板10を得ることができる。 Therefore, since the multilayer ceramic substrate 10 according to the present invention is the multilayer ceramic substrate 10 in which the via-hole conductor 14 is formed of a conductive composition that can rapidly soften the degree of softening in a high temperature range in the firing process, It is possible to obtain the multilayer ceramic substrate 10 that can suppress the protrusion of the via-hole conductor 14.
 また、この発明の他の実施の形態にかかる多層セラミック基板について説明する。図3に示すように、この多層セラミック基板20は、積層された複数のセラミック層12、拘束層18およびビアホール導体14を含む。すなわち、この実施の形態にかかる多層セラミック基板20は、複数のセラミック層12の各々に沿って、さらに、拘束層18が形成されている。 A multilayer ceramic substrate according to another embodiment of the present invention will be described. As shown in FIG. 3, the multilayer ceramic substrate 20 includes a plurality of laminated ceramic layers 12, constraining layers 18, and via-hole conductors 14. That is, in the multilayer ceramic substrate 20 according to this embodiment, the constraining layer 18 is further formed along each of the plurality of ceramic layers 12.
 セラミック層12の材料は、多層セラミック基板10におけるセラミック層12の材料と同様である。拘束層18の材料は、たとえば、アルミナ、ジルコニア等を主成分として用いることができる。また、必要に応じて、焼結助剤として、ガラス成分が添加されてもよい。なお、セラミック層12の材料の主成分が、酸化バリウム、酸化ケイ素、アルミナの場合、拘束層18の主成分は、アルミナを主成分とするのが好ましい。 The material of the ceramic layer 12 is the same as the material of the ceramic layer 12 in the multilayer ceramic substrate 10. As a material of the constraining layer 18, for example, alumina, zirconia, or the like can be used as a main component. Moreover, a glass component may be added as a sintering aid as needed. In the case where the main component of the material of the ceramic layer 12 is barium oxide, silicon oxide, or alumina, the main component of the constraining layer 18 is preferably composed mainly of alumina.
 この実施の形態にかかる拘束層18を含む多層セラミック基板20は、多層セラミック基板10に比べて、焼成工程における平面方向の収縮挙動を抑制することができるが、そのような場合であっても、ビアホール導体14の***を抑制した多層セラミック基板を得ることができる。 The multilayer ceramic substrate 20 including the constraining layer 18 according to this embodiment can suppress the shrinkage behavior in the planar direction in the firing process as compared to the multilayer ceramic substrate 10, but even in such a case, A multilayer ceramic substrate in which the bulge of the via-hole conductor 14 is suppressed can be obtained.
 次に、本発明にかかる多層セラミック基板の製造方法の一実施の形態について説明する。 Next, an embodiment of a method for producing a multilayer ceramic substrate according to the present invention will be described.
 まず、焼成後にセラミック層12となるセラミックグリーンシートが用意される。このセラミックグリーンシートは、1000℃前後の温度で焼結可能である。このセラミックグリーンシートの材料として、たとえば、酸化バリウム、酸化ケイ素、アルミナ等を主成分とするセラミック材料粉末が用いられる。そして、そのセラミック材料粉末に、有機バインダおよび有機溶剤等を加えてセラミックスラリーを作製する。そして、そのセラミックスラリーをシート状に形成することによって、セラミックグリーンシートが得られる。 First, a ceramic green sheet that becomes the ceramic layer 12 after firing is prepared. This ceramic green sheet can be sintered at a temperature of about 1000 ° C. As a material of this ceramic green sheet, for example, a ceramic material powder mainly composed of barium oxide, silicon oxide, alumina or the like is used. And an organic binder, an organic solvent, etc. are added to the ceramic material powder, and a ceramic slurry is produced. A ceramic green sheet is obtained by forming the ceramic slurry into a sheet.
 なお、セラミックグリーンシートについて、これに代えて、たとえばアルミナまたはチタン酸バリウムのようなセラミックフィラーとして作用する材料に、焼結助剤として作用するガラス成分を添加したものを用いてもよい。ガラス成分としては、たとえば、ホウケイ酸ガラスや酸化ケイ素を加えたものでもよい。また、導体膜やビアホール導体14の材料特性から、焼成条件において還元雰囲気を必要とする場合には、還元雰囲気中での焼成においても還元されない組成を選定する点に留意する必要がある。 In addition, about the ceramic green sheet, it may replace with this and may use what added the glass component which acts as a sintering aid to the material which acts as a ceramic filler like alumina or barium titanate, for example. As the glass component, for example, borosilicate glass or silicon oxide may be added. In addition, due to the material properties of the conductor film and via-hole conductor 14, when a reducing atmosphere is required under firing conditions, it is necessary to pay attention to the selection of a composition that is not reduced even when firing in a reducing atmosphere.
 また、上述したセラミックグリーンシート上に、拘束層18が形成されもよい。すなわち、本発明においては、1000℃前後の温度で焼結可能なセラミック層12と、多層セラミック基板20内の各層間に、多層セラミック基板20の焼成温度では焼結しない無機材料を拘束層18として配置してもよい。 Further, the constraining layer 18 may be formed on the above-described ceramic green sheet. That is, in the present invention, an inorganic material that is not sintered at the firing temperature of the multilayer ceramic substrate 20 is used as the constraining layer 18 between the ceramic layer 12 that can be sintered at a temperature of about 1000 ° C. and each layer in the multilayer ceramic substrate 20. You may arrange.
 この拘束層18は、以下のように作製される。まず、セラミックグリーンシートに含まれるセラミック材料粉末を焼結させうる焼結温度では実質的に焼結しない無機材料の粉末に、有機バインダおよび有機溶剤等を加え、これらを混合することによって、スラリーを作製する。そして、このスラリーをセラミックグリーンシート上にコータ等によって薄層状に付与することによって形成される。拘束層18に用いられる無機材料として、主としてアルミナが好適に用いられるが、セラミックグリーンシートが焼結しない無機材料であれば、ジルコニア等の他の組成のものも使用可能である。 The constraining layer 18 is manufactured as follows. First, an organic binder, an organic solvent, and the like are added to an inorganic material powder that is not substantially sintered at a sintering temperature at which the ceramic material powder contained in the ceramic green sheet can be sintered, and these are mixed together to form a slurry. Make it. The slurry is formed in a thin layer on a ceramic green sheet by a coater or the like. As an inorganic material used for the constraining layer 18, mainly alumina is preferably used, but other compositions such as zirconia can be used as long as the ceramic green sheet is not sintered.
 また、セラミックグリーンシートおよび拘束層18の成形順序に関しては、上述した順序とは異なり、拘束層18を先に形成し、次に、セラミック層12を形成してもかまわない。さらに、効率面に問題がなければ、これらを必要回数繰り返し、多重コートしてもかまわないし、セラミック層12と拘束層18とを別々にシート状に形成し、後の工程にて圧着等して張り合わせてもかまわない。また、セラミック層12と拘束層18とを含む多層セラミック基板20の作製において、シート状に形成することなく、たとえば、噴霧塗布、浸漬被覆、厚膜印刷等により形成してもかまわない。 Also, regarding the forming order of the ceramic green sheet and the constraining layer 18, unlike the order described above, the constraining layer 18 may be formed first, and then the ceramic layer 12 may be formed. Furthermore, if there is no problem in efficiency, these may be repeated as many times as necessary, and multiple coatings may be performed. The ceramic layer 12 and the constraining layer 18 are separately formed into a sheet shape, and are subjected to pressure bonding in a later step. It does not matter if they are pasted together. Further, in the production of the multilayer ceramic substrate 20 including the ceramic layer 12 and the constraining layer 18, it may be formed by, for example, spray coating, dip coating, thick film printing, etc. without forming into a sheet shape.
 次に、上述した導電性ペーストを、予めセラミックグリーンシートまたは拘束層18に設けたビアホール16内に充填し、必要に応じてセラミックグリーンシートまたは拘束層18の主面に所定形状の導体膜をスクリーン印刷法、転写法等によって形成し、積層、圧着することにより、未焼成の仮積層体を得る。この仮積層体を、導体膜やセラミック層12の成分に応じた条件下で焼成することにより、所望の多層セラミック基板が得られる。 Next, the conductive paste described above is filled in the via hole 16 previously provided in the ceramic green sheet or the constraining layer 18, and a conductor film having a predetermined shape is screened on the main surface of the ceramic green sheet or the constraining layer 18 as necessary. An unfired temporary laminate is obtained by forming, laminating, and pressure bonding by a printing method, a transfer method, or the like. A desired multilayer ceramic substrate can be obtained by firing the temporary laminate under conditions according to the components of the conductor film and the ceramic layer 12.
 なお、焼成工程における焼成条件は、特に制限はなく、セラミックグリーンシートと導体膜とが十分に焼結する条件であれば、公知の手法が利用可能である。ただし、セラミックグリーンシートや導体膜中に含まれる有機成分を十分に分解させるため、焼成条件において特定の温度域での温度キープ領域や極端に昇温速度を低下させている領域などを設けている場合には、ガラス成分の選定に注意する必要がある。本発明中では諸条件に応じて、750℃~900℃、950~990℃の範囲において温度キープ領域を設けており、最高温度を990℃としている。 The firing conditions in the firing step are not particularly limited, and any known method can be used as long as the ceramic green sheet and the conductor film are sufficiently sintered. However, in order to fully decompose the organic components contained in the ceramic green sheet or conductor film, a temperature keeping region in a specific temperature range or a region in which the temperature rising rate is extremely reduced is provided under firing conditions. In some cases, it is necessary to pay attention to the selection of glass components. In the present invention, a temperature keeping region is provided in the range of 750 ° C. to 900 ° C. and 950 to 990 ° C. according to various conditions, and the maximum temperature is set to 990 ° C.
 この多層セラミック基板の製造方法によれば、本発明にかかる導電性組成物を、ビアホール導体14の材料として用いると、焼成時において、ガラス成分にリン含有成分を作用させることにより、特に高温域での軟化度合いを急激に軟化させることが可能となる。すなわち、ガラス成分に加熱状態で新たにリン含有成分を作用させることによって、ガラス成分の高温域での軟化度合いを促進させることが可能となる。したがって、セラミック層12の収縮挙動に対応させてビアホール導体14の収縮挙動を追随させることが可能であることから、たとえば、ビアホール導体の表面における***が発生しない多層セラミック基板10、20を得ることできる。 According to this method for producing a multilayer ceramic substrate, when the conductive composition according to the present invention is used as a material for the via-hole conductor 14, a phosphorus-containing component is allowed to act on the glass component during firing, particularly in a high temperature range. It is possible to rapidly soften the degree of softening. That is, it becomes possible to promote the degree of softening of the glass component in a high temperature range by newly causing the phosphorus component to act on the glass component in a heated state. Therefore, since the shrinkage behavior of the via-hole conductor 14 can be followed in accordance with the shrinkage behavior of the ceramic layer 12, for example, it is possible to obtain the multilayer ceramic substrates 10 and 20 that do not cause the bumps on the surface of the via-hole conductor. .
 次に、この発明にかかる導電性組成物の効果を確認するために実施した実験例について説明する。図4は、実験例1および実験例2において用いた各多層セラミック基板30、40の焼成温度に対する収縮率、および焼成温度の時系列変化を示す。 Next, experimental examples carried out to confirm the effect of the conductive composition according to the present invention will be described. FIG. 4 shows the shrinkage ratio of the multilayer ceramic substrates 30 and 40 used in Experimental Example 1 and Experimental Example 2 with respect to the firing temperature, and time-series changes in the firing temperature.
 (実験例1)
 実験例1では、導電性粉末に対し、セラミックグリーンシートの焼結温度より150~300℃程度低い温度域に軟化点を有するガラス粉末と、リン含有化合物、有機ビヒクル、および、前記有機ビヒクル中の溶剤成分に不溶な樹脂成分を所定量加えた導電性ペーストが作製された。
(Experimental example 1)
In Experimental Example 1, a glass powder having a softening point in a temperature range lower than the sintering temperature of the ceramic green sheet by about 150 to 300 ° C. with respect to the conductive powder, a phosphorus-containing compound, an organic vehicle, and the organic vehicle A conductive paste in which a predetermined amount of a resin component insoluble in the solvent component was added was produced.
 本実験例1について、実施例1ないし実施例6において、導電性ペーストに含有する材料として、以下に示す材料が使用された。すなわち、導電性粉末として、アルミナ被覆銅粉末が使用され、平均粒径が、0.1μm~10μmのものが使用された。導電性粉末は、60重量%~85重量%の範囲内で使用した。ガラス粉末として、Si-B系から選ばれる700℃以上の軟化点を有するガラス粉末が使用され、1重量%~10重量%の範囲内で使用した。また、リン含有化合物として、ピロリン酸銅が使用され、0.1重量%~0.8重量%(リン成分換算で0.02重量%~0.16重量%)の範囲内で使用した。有機ビヒクルとして、エチルセルロースとテルピネオールとの混合物が使用され、10重量%~25重量%の範囲内で使用した。また、この有機ビヒクルの溶剤成分に不溶な樹脂成分として、必要に応じて、ポリプロピレンビーズが使用され、0~7重量%の範囲内で使用した。また、酸化銅粉が必要に応じて含まれており、0~40重量%の範囲内で使用した。以上の材料を混合し、ライカイ機、3本ロールで攪拌、混練することにより、所望のペーストを得た。 For Experimental Example 1, in Examples 1 to 6, the following materials were used as materials contained in the conductive paste. That is, as the conductive powder, alumina-coated copper powder was used, and an average particle size of 0.1 μm to 10 μm was used. The conductive powder was used in the range of 60% to 85% by weight. As the glass powder, a glass powder having a softening point of 700 ° C. or higher selected from Si—B system was used, and it was used within a range of 1 wt% to 10 wt%. In addition, copper pyrophosphate was used as the phosphorus-containing compound, and was used within the range of 0.1% to 0.8% by weight (0.02% to 0.16% by weight in terms of phosphorus component). As the organic vehicle, a mixture of ethyl cellulose and terpineol was used and used in the range of 10 wt% to 25 wt%. In addition, polypropylene beads were used as necessary as a resin component insoluble in the solvent component of the organic vehicle, and used within the range of 0 to 7% by weight. Further, copper oxide powder was contained as required, and was used within the range of 0 to 40% by weight. The above-mentioned materials were mixed, and the desired paste was obtained by stirring and kneading with a lykai machine and three rolls.
 実験例1の各実施例および各比較例において使用した導電性ペーストにおけるピロリン酸銅の含有量および使用したガラス粉末のガラスの軟化点を以下に示す。 The content of copper pyrophosphate in the conductive paste used in each Example of Experimental Example 1 and each Comparative Example and the softening point of the glass powder used are shown below.
 実施例1および実施例2は、ピロリン酸銅の添加量を0.1重量%とし、ガラスの軟化点が、それぞれ680℃および830℃であるガラス粉末を含有した導電性ペーストを作製した。 Example 1 and Example 2 produced a conductive paste containing glass powder having an addition amount of copper pyrophosphate of 0.1% by weight and glass softening points of 680 ° C. and 830 ° C., respectively.
 実施例3および実施例4は、ピロリン酸銅の添加量を0.4重量%とし、ガラスの軟化点が、それぞれ680℃および830℃であるガラス粉末を含有した導電性ペーストを作製した。 Examples 3 and 4 produced conductive pastes containing glass powders with an addition amount of copper pyrophosphate of 0.4% by weight and glass softening points of 680 ° C. and 830 ° C., respectively.
 実施例5および実施例6は、ピロリン酸銅の添加量を0.8重量%とし、ガラスの軟化点が、それぞれ680℃および830℃であるガラス粉末を含有した導電性ペーストを作製した。 Example 5 and Example 6 produced conductive pastes containing glass powders with an addition amount of copper pyrophosphate of 0.8 wt% and glass softening points of 680 ° C. and 830 ° C., respectively.
 比較例1および比較例2は、ピロリン酸銅は添加せず、ガラスの軟化点が、それぞれ680℃および830℃であるガラス粉末を含有した導電性ペーストを作製した。 In Comparative Examples 1 and 2, copper pyrophosphate was not added, and conductive pastes containing glass powders having glass softening points of 680 ° C. and 830 ° C. were prepared.
 比較例3および比較例4は、ピロリン酸銅の添加量を0.4重量%とし、ガラスの軟化点が、それぞれ600℃および880℃であるガラス粉末を含有した導電性ペーストを作製した。 Comparative Example 3 and Comparative Example 4 produced conductive pastes containing glass powder having an addition amount of copper pyrophosphate of 0.4 wt% and glass softening points of 600 ° C. and 880 ° C., respectively.
 比較例5および比較例6は、ピロリン酸銅の添加量を1.2重量%とし、ガラスの軟化点が、それぞれ680℃および830℃であるガラス粉末を含有した導電性ペーストを作製した。 Comparative Example 5 and Comparative Example 6 produced conductive paste containing glass powder having an addition amount of copper pyrophosphate of 1.2 wt% and glass softening points of 680 ° C. and 830 ° C., respectively.
 そして、各実施例および各比較例において作製された導電性ペーストを、予めセラミックグリーンシートに形成されたビアホールに充填し、積層、圧着等することによって未焼成の仮積層体を得た。そして、その仮積層体を最高温度1000℃で温度キープ領域を設けて焼成した。 Then, the conductive paste produced in each example and each comparative example was filled in a via hole previously formed in a ceramic green sheet and laminated, pressure-bonded, etc. to obtain an unfired temporary laminated body. The temporary laminate was fired at a maximum temperature of 1000 ° C. with a temperature keeping region.
 図5は、実験例1において用いた多層セラミック基板30の断面模式図を示す。(a)において示される直列ビアホール導体14´は、円柱状に形成されたものであり、径200μmで、厚みが300μmで形成されている。また、(b)は、ビアホール導体が分割して形成されており、分割されたそれぞれの分割ビアホール導体14´a、14´bが、幅が200μm、奥行きが600μm、厚みが300μmの直方体状に形成されている。 FIG. 5 is a schematic cross-sectional view of the multilayer ceramic substrate 30 used in Experimental Example 1. The serial via-hole conductor 14 ′ shown in (a) is formed in a columnar shape, and has a diameter of 200 μm and a thickness of 300 μm. Further, (b) is formed by dividing the via-hole conductor, and each divided via-hole conductor 14′a, 14′b is formed in a rectangular parallelepiped shape having a width of 200 μm, a depth of 600 μm, and a thickness of 300 μm. Is formed.
 この多層セラミック基板30に使用したセラミック層のセラミック材料は、酸化バリウム、酸化ケイ素、アルミナ、酸化ホウ素、酸化カルシウムを主成分とするものであって、1000℃以下の温度で焼結可能なものを用いた。 The ceramic material of the ceramic layer used for the multilayer ceramic substrate 30 is mainly composed of barium oxide, silicon oxide, alumina, boron oxide, calcium oxide, and can be sintered at a temperature of 1000 ° C. or less. Using.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、本実験例1にかかる実施例1ないし実施例6と、比較例1ないし比較例6における導電性ペーストに含有するピロリン酸銅の添加量、ガラス粉末のガラス軟化点、およびビアホール導体の***量の実験結果を示す。図5(a)における直列ビアホール導体14´の***量の高さはH1で示され、図5(b)における分割ビアホール導体14´a、14´bの***量の高さはH2で示される。なお、分割ビアホール導体14´a、14´bの***量は、分割された2つの分割ビアホール導体14´aと分割ビアホール導体14´bのそれぞれの***量の平均値とした。 Table 1 shows the amount of copper pyrophosphate contained in the conductive pastes in Examples 1 to 6 and Comparative Examples 1 to 6 according to Experimental Example 1, the glass softening point of the glass powder, and the via-hole conductor. The experimental result of the amount of upheaval is shown. The height of the protruding amount of the series via-hole conductor 14 'in FIG. 5A is indicated by H1, and the height of the protruding amount of the divided via-hole conductors 14'a and 14'b in FIG. 5B is indicated by H2. . The raised amount of the divided via-hole conductors 14′a and 14′b was an average value of the raised amounts of the two divided divided via-hole conductors 14′a and the divided via-hole conductor 14′b.
 本実験例1において、図5に示す直列ビアホール導体14´の***量と分割ビアホール導体14´a、14´bの***量のいずれもが40μm以下であるものを良品と判断した。表1に示すように、実施例1ないし実施例6において、直列ビアホール導体14´の***量は40μm以下であり、分割ビアホール導体14´a、14´bの***量も40μm以下であった。一方、比較例1ないし比較例6において、直列ビアホール導体14´の***量は40μm以下であったが、分割ビアホール導体14´a、14´bの***量は比較例3を除き、***量は40μmより大きかった。なお、比較例3は、分割ビアホール導体14´a、14´bの***量は22μmであることから40μm以下であったが、クラックが発生したため不良とした。 In this Experimental Example 1, it was judged that a product in which both of the protruding amount of the series via-hole conductor 14 ′ and the protruding amount of the divided via-hole conductors 14′a and 14′b shown in FIG. As shown in Table 1, in Examples 1 to 6, the series via-hole conductor 14 ′ had a protruding amount of 40 μm or less, and the divided via-hole conductors 14 ′ a and 14 ′ b also had a protruding amount of 40 μm or less. On the other hand, in Comparative Examples 1 to 6, the protruding amount of the series via-hole conductor 14 ′ was 40 μm or less, but the protruding amounts of the divided via-hole conductors 14 ′ a and 14 ′ b were, except for Comparative Example 3, It was larger than 40 μm. In Comparative Example 3, the protruding amount of the divided via-hole conductors 14′a and 14′b was 22 μm and was 40 μm or less.
 ここで、図6において、この発明の多層セラミック基板における組成分布の分析結果の一例を示しており、(a)は、セラミック層とビアホール導体との境界付近を示し、(b)は、ビアホール導体内における銅(Cu)の分布を示し、(c)は、ビアホール導体内におけるリン(P)の分布を示し、(d)は、ビアホール導体内におけるガラス(Si)の分布示す。図6(c)と図6(d)とを比較するとわかるように、リン成分は、ガラス成分とほぼ近接した位置に存在しており、かつ、セラミック層へのリン成分の拡散が極端に少ないことがわかる。 Here, FIG. 6 shows an example of the analysis result of the composition distribution in the multilayer ceramic substrate of the present invention, (a) shows the vicinity of the boundary between the ceramic layer and the via-hole conductor, and (b) shows the via-hole conductor. (C) shows the distribution of phosphorus (P) in the via-hole conductor, and (d) shows the distribution of glass (Si) in the via-hole conductor. As can be seen from a comparison between FIG. 6C and FIG. 6D, the phosphorus component is present at a position substantially close to the glass component, and the diffusion of the phosphorus component into the ceramic layer is extremely small. I understand that.
 このように、リン成分をガラス成分と反応させることによって、リン成分をビアホール導体内に滞留させることが可能となっている。そして、リン成分がセラミック層に極端に拡散していないことから、ビアホール導体内にリン成分を添加しているにもかかわらず、セラミック層に対する収縮抑制効果を発現させないようにすることが可能となっている。そして、リン成分とガラス成分との反応により、セラミック層が特に大きく収縮する段階において、ビアホール導体における軟化挙動の促進が可能となっている。したがって、本実験例1における実験結果により、本発明にかかる導電性組成物による導電性ペーストをビアホール導体に使用することにより、多層セラミック基板におけるビアホール導体の***が抑制されることが明らかとなった。 Thus, the phosphorus component can be retained in the via-hole conductor by reacting the phosphorus component with the glass component. In addition, since the phosphorus component is not extremely diffused in the ceramic layer, it is possible to prevent the shrinkage suppression effect on the ceramic layer from being exhibited even though the phosphorus component is added in the via-hole conductor. ing. The softening behavior of the via-hole conductor can be promoted at the stage where the ceramic layer is particularly contracted by the reaction between the phosphorus component and the glass component. Therefore, the experimental results in Experimental Example 1 revealed that the use of the conductive paste made of the conductive composition according to the present invention for the via-hole conductor suppresses the bulge of the via-hole conductor in the multilayer ceramic substrate. .
 (実験例2)
 実験例2についても実験例1と同様に、導電性粉末に対し、セラミックグリーンシートの焼結温度より150~300℃程度低い温度域に軟化点を有するガラス粉末と、リン含有化合物、有機ビヒクル、および、前記有機ビヒクル中の溶剤成分に不溶な樹脂成分を所定量加えた導電性ペーストが作製された。
(Experimental example 2)
Also in Experimental Example 2, as in Experimental Example 1, with respect to the conductive powder, a glass powder having a softening point in a temperature range lower by about 150 to 300 ° C. than the sintering temperature of the ceramic green sheet, a phosphorus-containing compound, an organic vehicle, And the electroconductive paste which added the predetermined amount of resin components insoluble in the solvent component in the said organic vehicle was produced.
 本実験例2について、実施例7ないし実施例12において、導電性ペーストに含有する材料として、以下に示す材料が使用された。すなわち、導電性粉末として、アルミナ被覆銅粉末が使用され、平均粒径が、0.1μm~10μmのものが使用された。導電性粉末は、60重量%~85重量%の範囲内で使用した。ガラス粉末として、Si-B系から選ばれる700℃以上の軟化点を有するガラス粉末が使用され、1重量%~15重量%の範囲内で使用した。また、リン含有化合物として、ピロリン酸銅が使用され、0.1重量%~0.8重量%(リン成分換算で0.02重量%~0.16重量%)の範囲内で使用した。有機ビヒクルとして、エチルセルロースとテルピネオールとの混合物が使用され、10重量%~20重量%の範囲内で使用した。また、この有機ビヒクルの溶剤成分に不溶な樹脂成分として、必要に応じて、ポリプロピレンビーズが使用され、0~7重量%の範囲内で使用した。また、酸化銅粉が必要に応じて含まれており、0~40重量%の範囲内で使用した。以上の材料を混合し、ライカイ機、3本ロールで攪拌、混練することにより、所望のペーストを得た。 For Experimental Example 2, in Examples 7 to 12, the following materials were used as materials contained in the conductive paste. That is, as the conductive powder, alumina-coated copper powder was used, and an average particle size of 0.1 μm to 10 μm was used. The conductive powder was used in the range of 60% to 85% by weight. As the glass powder, a glass powder having a softening point of 700 ° C. or higher selected from Si—B system was used, and it was used within a range of 1% by weight to 15% by weight. In addition, copper pyrophosphate was used as the phosphorus-containing compound, and was used within the range of 0.1% to 0.8% by weight (0.02% to 0.16% by weight in terms of phosphorus component). As the organic vehicle, a mixture of ethylcellulose and terpineol was used and used in the range of 10 wt% to 20 wt%. In addition, polypropylene beads were used as necessary as a resin component insoluble in the solvent component of the organic vehicle, and used within the range of 0 to 7% by weight. Further, copper oxide powder was contained as required, and was used within the range of 0 to 40% by weight. The above-mentioned materials were mixed, and the desired paste was obtained by stirring and kneading with a lykai machine and three rolls.
 実験例2の各実施例および各比較例において使用した導電性ペーストにおけるピロリン酸銅の含有量と使用したガラス粉末のガラスの軟化点を以下に示す。 The content of copper pyrophosphate in the conductive paste used in each Example of Experimental Example 2 and each Comparative Example and the softening point of the glass powder used are shown below.
 実施例7および実施例8は、ピロリン酸銅の添加量を0.1重量%とし、ガラスの軟化点が、それぞれ680℃および830℃であるガラス粉末を含有した導電性ペーストを作製した。 Example 7 and Example 8 produced conductive paste containing glass powder having an addition amount of copper pyrophosphate of 0.1% by weight and glass softening points of 680 ° C. and 830 ° C., respectively.
 実施例9および実施例10は、ピロリン酸銅の添加量を0.4重量%とし、ガラスの軟化点が、それぞれ680℃および830℃であるガラス粉末を含有した導電性ペーストを作製した。 Examples 9 and 10 produced conductive pastes containing glass powders with an addition amount of copper pyrophosphate of 0.4% by weight and glass softening points of 680 ° C. and 830 ° C., respectively.
 実施例11および実施例12は、ピロリン酸銅の添加量を0.8重量%とし、ガラスの軟化点が、それぞれ680℃および830℃であるガラス粉末を含有した導電性ペーストを作製した。 Example 11 and Example 12 produced conductive paste containing glass powder in which the amount of copper pyrophosphate added was 0.8% by weight and the glass softening points were 680 ° C. and 830 ° C., respectively.
 比較例7および比較例8は、ピロリン酸銅を添加せず、ガラスの軟化点が、それぞれ680℃および830℃であるガラス粉末を含有した導電性ペーストを作製した。 Comparative Example 7 and Comparative Example 8 produced a conductive paste containing glass powder in which copper pyrophosphate was not added and the softening points of glass were 680 ° C. and 830 ° C., respectively.
 比較例9および比較例10は、ピロリン酸銅の添加量を0.4重量%とし、ガラスの軟化点が、それぞれ600℃および880℃であるガラス粉末を含有した導電性ペーストを作製した。 Comparative Example 9 and Comparative Example 10 produced conductive paste containing glass powder having an addition amount of copper pyrophosphate of 0.4 wt% and glass softening points of 600 ° C. and 880 ° C., respectively.
 比較例11および比較例12は、ピロリン酸銅の添加量を1.2重量%とし、ガラスの軟化点が、それぞれ680℃および830℃であるガラス粉末を含有した導電性ペーストを作製した。 Comparative Example 11 and Comparative Example 12 produced conductive paste containing glass powder having an addition amount of copper pyrophosphate of 1.2% by weight and glass softening points of 680 ° C. and 830 ° C., respectively.
 そして、各実施例および各比較例において作製された導電性ペーストを、予めセラミックグリーンシートまたは拘束層18に形成されたビアホールに充填し、積層、圧着等することによって未焼成の仮積層体を得た。そして、その仮積層体を最高温度1000℃で温度キープ領域を設けて焼成した。 And the conductive paste produced in each Example and each comparative example is filled in the via hole previously formed in the ceramic green sheet or the constraining layer 18, and laminated | stacked, crimped | bonded, etc., and an unbaking temporary laminated body is obtained. It was. The temporary laminate was fired at a maximum temperature of 1000 ° C. with a temperature keeping region.
 図7は、実験例2において用いた多層セラミック基板40の断面模式図を示す。(a)において示される直列ビアホール導体14´は、円柱状に形成されたものであり、径200μmで、厚みが300μmで形成されている。また、(b)は、ビアホール導体が分割して形成されており、分割されたそれぞれの分割ビアホール導体14´a、14´bが、幅が200μm、奥行きが600μm、厚みが300μmの直方体状に形成されている。 FIG. 7 is a schematic cross-sectional view of the multilayer ceramic substrate 40 used in Experimental Example 2. The serial via-hole conductor 14 ′ shown in (a) is formed in a columnar shape, and has a diameter of 200 μm and a thickness of 300 μm. Further, (b) is formed by dividing the via-hole conductor, and each divided via-hole conductor 14′a, 14′b is formed in a rectangular parallelepiped shape having a width of 200 μm, a depth of 600 μm, and a thickness of 300 μm. Is formed.
 また、実験例2における多層セラミック基板40は、拘束層18を含んでいる。多層セラミック基板40に使用したセラミック層12のセラミック材料として、酸化バリウム、酸化ケイ素、アルミナ、酸化ホウ素、酸化カルシウムを主成分とするものであって、1000℃以下の温度で焼結可能なものを使用した。拘束層18の材料として、アルミナを使用した。また、セラミック層12と拘束層18との厚み比率は、セラミック層12が40μmに対し、拘束層18が2μmとした。 Further, the multilayer ceramic substrate 40 in Experimental Example 2 includes the constraining layer 18. As a ceramic material of the ceramic layer 12 used for the multilayer ceramic substrate 40, a material mainly composed of barium oxide, silicon oxide, alumina, boron oxide, and calcium oxide, which can be sintered at a temperature of 1000 ° C. or less. used. Alumina was used as the material of the constraining layer 18. The thickness ratio between the ceramic layer 12 and the constraining layer 18 was set to 2 μm for the constraining layer 18 with respect to 40 μm for the ceramic layer 12.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2は、本実験例2にかかる実施例7ないし実施例12と、比較例7ないし比較例12における導電性ペーストに含有するピロリン酸銅の添加量、ガラス粉末のガラス軟化点、およびビアホール導体の***量の実験結果を示す。図7(a)における直列ビアホール導体14´の***量の高さはH1で示され、図7(b)における分割ビアホール導体14´a、14´bの***量の高さはH2で示される。なお、分割ビアホール導体14´a、14´bの***量は、分割された2つの分割ビアホール導体14´aと分割ビアホール導体14´bとのそれぞれの***量の平均値とした。 Table 2 shows the amount of copper pyrophosphate contained in the conductive pastes in Examples 7 to 12 and Comparative Examples 7 to 12 according to Experimental Example 2, the glass softening point of the glass powder, and the via-hole conductor. The experimental result of the amount of upheaval is shown. In FIG. 7A, the height of the protruding amount of the serial via-hole conductor 14 ′ is indicated by H1, and the height of the protruding amount of the divided via-hole conductors 14′a and 14′b in FIG. 7B is indicated by H2. . The raised amount of the divided via-hole conductors 14′a and 14′b was an average value of the raised amounts of the two divided divided via-hole conductors 14′a and the divided via-hole conductor 14′b.
 本実験例2においても実験例1と同様に、図7に示す直列ビアホール導体14´の***量と分割ビアホール導体14´a、14´bの***量のいずれもが40μm以下であるものを良品と判断した。表2に示すように、実施例7ないし実施例12において、直列ビアホール導体14´の***量は40μm以下であり、分割ビアホール導体14´a、14´bの***量も40μm以下であった。一方、比較例7ないし比較例12において、直列ビアホール導体14´の***量は比較例8を除き、40μm以下であったが、分割ビアホール導体14´a、14´bの***量は比較例9を除き、***量は40μmより大きかった。なお、比較例9は、分割ビアホール導体14´a、14´bの***量は36μmであることから40μm以下であったが、クラックが発生したため不良とした。 Also in this experimental example 2, as in experimental example 1, those in which both the protruding amount of the series via-hole conductor 14 ′ and the protruding amount of the divided via-hole conductors 14′a and 14′b shown in FIG. It was judged. As shown in Table 2, in Example 7 to Example 12, the series via-hole conductor 14 ′ had a protruding amount of 40 μm or less, and the divided via-hole conductors 14′a and 14′b also had a protruding amount of 40 μm or less. On the other hand, in Comparative Examples 7 to 12, the protruding amount of the series via-hole conductor 14 ′ was 40 μm or less except for Comparative Example 8, but the protruding amounts of the divided via-hole conductors 14′a and 14′b were compared with Comparative Example 9. The amount of protrusion was larger than 40 μm. In Comparative Example 9, the protruding amount of the divided via-hole conductors 14′a and 14′b was 36 μm and was 40 μm or less.
 図7に示すようにセラミック層の間に拘束層を配置すると、焼成工程における厚み方向の収縮挙動が特に急峻になる。すなわち、図4に示すように、実験例1の多層セラミック基板30よりも実験例2の多層セラミック基板40は、厚み方向に大きな収縮挙動を示している。このように、拘束層を含む多層セラミック基板は、ビアホール導体の***の抑制が困難である。しかしながら、本実験例2における実験結果により、実験例2において用いたような拘束層を含む多層セラミック基板であっても、本発明にかかる導電性組成物による導電性ペーストをビアホール導体に使用することにより、多層セラミック基板におけるビアホール導体の***が抑制されることが明らかとなった。 As shown in FIG. 7, when a constraining layer is disposed between the ceramic layers, the shrinkage behavior in the thickness direction in the firing process becomes particularly steep. That is, as shown in FIG. 4, the multilayer ceramic substrate 40 of Experimental Example 2 shows a larger shrinkage behavior in the thickness direction than the multilayer ceramic substrate 30 of Experimental Example 1. Thus, it is difficult for the multilayer ceramic substrate including the constraining layer to suppress the protrusion of the via-hole conductor. However, according to the experimental results in this experimental example 2, the conductive paste of the conductive composition according to the present invention is used for the via-hole conductor even in the multilayer ceramic substrate including the constraining layer as used in the experimental example 2. Thus, it was clarified that the bulge of the via-hole conductor in the multilayer ceramic substrate is suppressed.
 10、20、30、40 多層セラミック基板
 12 セラミック層
 14 ビアホール導体
 14´ 直列ビアホール導体
 14´a、14´b 分割ビアホール導体
 16 ビアホール
 18 拘束層
10, 20, 30, 40 Multilayer ceramic substrate 12 Ceramic layer 14 Via hole conductor 14 'Series via hole conductor 14'a, 14'b Split via hole conductor 16 Via hole 18 Constraining layer

Claims (8)

  1.  積層された複数のセラミック層と、前記セラミック層を貫通して形成されたビアホールとを含む多層セラミック基板において、前記ビアホールに充填されるビアホール導体に用いられる導電性組成物であって、
     導電性粉末とガラス粉末とリン含有粉末と有機ビヒクルとを含有することを特徴とする、導電性組成物。
    In a multilayer ceramic substrate comprising a plurality of laminated ceramic layers and via holes formed through the ceramic layers, a conductive composition used for via-hole conductors filled in the via holes,
    A conductive composition comprising a conductive powder, a glass powder, a phosphorus-containing powder, and an organic vehicle.
  2.  前記ガラス粉末が前記リン含有粉末より多く含有されることを特徴とする、請求項1に記載の導電性組成物。 The conductive composition according to claim 1, wherein the glass powder is contained in a larger amount than the phosphorus-containing powder.
  3.  未焼成時にはリン成分を含まないセラミック層からなり、前記セラミック層に対して厚み方向に形成されるビアホール導体を有する多層セラミック基板であって、
     ビアホール導体内にリン含有ガラス化合物とリン成分とを含むことを特徴とする、多層セラミック基板。
    A multilayer ceramic substrate having a via-hole conductor formed in a thickness direction with respect to the ceramic layer, comprising a ceramic layer that does not contain a phosphorus component when unfired,
    A multilayer ceramic substrate comprising a via-hole conductor and a phosphorus-containing glass compound and a phosphorus component.
  4.  リン成分が、前記ビアホール導体から前記セラミック層に拡散していることを特徴とする、多層セラミック基板。 A multilayer ceramic substrate, wherein a phosphorus component is diffused from the via-hole conductor into the ceramic layer.
  5.  前記セラミック層は、Ba、Al、Siの酸化物成分を主成分に含むことを特徴とする、請求項3または請求項4に記載の多層セラミック基板。 The multilayer ceramic substrate according to claim 3 or 4, wherein the ceramic layer contains an oxide component of Ba, Al, and Si as a main component.
  6.  前記セラミック層は、アルミナまたはチタン酸バリウムにガラス成分を加えたものを含むことを特徴とする、請求項3または請求項4に記載の多層セラミック基板。 The multilayer ceramic substrate according to claim 3 or 4, wherein the ceramic layer includes alumina or barium titanate added with a glass component.
  7.  複数の前記セラミック層に沿って拘束層が形成され、
     前記拘束層の主成分が、Alの酸化物成分であることを特徴とする、請求項5または請求項6に記載の多層セラミック基板。
    A constraining layer is formed along the plurality of ceramic layers;
    The multilayer ceramic substrate according to claim 5 or 6, wherein a main component of the constraining layer is an oxide component of Al.
  8.  セラミックグリーンシートにビアホールを形成する工程と、
     前記ビアホールに請求項1又は請求項2に記載の導電性組成物を充填してビアホール導体を形成する工程と、
     前記セラミックグリーンシート上に前記ビアホール導体と接続される導体パターンを形成する工程と、
     得られたセラミックグリーンシートを積層して仮積層体を作製する工程と、
     前記仮積層体を焼成する焼成工程と
    を含む、複数のセラミック層を含む多層セラミック基板の製造方法であって、
     前記焼成工程において、
     前記セラミック層の収縮挙動に前記ビアホール導体の収縮挙動が追随することを特徴とする、多層セラミック基板の製造方法。
    Forming a via hole in the ceramic green sheet;
    Filling the via hole with the conductive composition according to claim 1 or 2 to form a via-hole conductor;
    Forming a conductor pattern connected to the via-hole conductor on the ceramic green sheet;
    A step of laminating the obtained ceramic green sheets to produce a temporary laminate,
    A method for producing a multilayer ceramic substrate comprising a plurality of ceramic layers, comprising a firing step of firing the temporary laminate,
    In the firing step,
    A method for producing a multilayer ceramic substrate, wherein the shrinkage behavior of the via-hole conductor follows the shrinkage behavior of the ceramic layer.
PCT/JP2012/082169 2011-12-16 2012-12-12 Conductive composition, multilayer ceramic substrate, and method for manufacturing same WO2013089128A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-276321 2011-12-16
JP2011276321 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013089128A1 true WO2013089128A1 (en) 2013-06-20

Family

ID=48612572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082169 WO2013089128A1 (en) 2011-12-16 2012-12-12 Conductive composition, multilayer ceramic substrate, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013089128A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673726B (en) * 2015-01-07 2019-10-01 日商則武股份有限公司 Conductive composition, semiconductor element and solar cell element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116418A (en) * 1997-06-25 1999-01-22 Kyocera Corp Copper metallized composition and glass ceramic wiring board using it
WO2007032167A1 (en) * 2005-09-16 2007-03-22 Murata Manufacturing Co., Ltd. Ceramic multilayer substrate and process for producing the same
JP2007141978A (en) * 2005-11-16 2007-06-07 Ngk Spark Plug Co Ltd Manufacturing method of conductive paste, and manufacturing method of wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116418A (en) * 1997-06-25 1999-01-22 Kyocera Corp Copper metallized composition and glass ceramic wiring board using it
WO2007032167A1 (en) * 2005-09-16 2007-03-22 Murata Manufacturing Co., Ltd. Ceramic multilayer substrate and process for producing the same
JP2007141978A (en) * 2005-11-16 2007-06-07 Ngk Spark Plug Co Ltd Manufacturing method of conductive paste, and manufacturing method of wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673726B (en) * 2015-01-07 2019-10-01 日商則武股份有限公司 Conductive composition, semiconductor element and solar cell element

Similar Documents

Publication Publication Date Title
JP3669255B2 (en) Method for producing ceramic multilayer substrate and green ceramic laminate
JP4507012B2 (en) Multilayer ceramic substrate
TWI536877B (en) Via-holed ceramic substrate,metallized via-holed ceramic substrate,and method for manufacture thereof
US7122131B2 (en) Conductive paste for via conductor, ceramic wiring board using the same, and method of manufacturing the same
JP2011023762A (en) Method of manufacturing multilayer ceramic substrate
JP2001060767A (en) Method for manufacturing ceramic board and unfired ceramic board
JP2012031040A (en) Low temperature co-firing ceramic composition, low temperature co-fired ceramic substrate comprising the same and method for producing the same
JP5409117B2 (en) Manufacturing method of ceramic green sheet and ceramic multilayer substrate
JP2007201273A (en) Manufacturing method of electronic component and conductor paste for ceramic green sheet with conductor layer
JP4059148B2 (en) Conductive paste and ceramic multilayer substrate
WO2013089128A1 (en) Conductive composition, multilayer ceramic substrate, and method for manufacturing same
JP4562409B2 (en) Manufacturing method of electronic parts
JP2006181737A (en) Composite ceramic green sheet, its manufacturing method and manufacturing method of multilayered ceramic substrate
JP5201974B2 (en) Method for manufacturing metallized substrate
JP2004228410A (en) Wiring board
JP4496529B2 (en) Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate
JP4683891B2 (en) Sheet for forming conductor, method for forming conductor, and method for manufacturing electronic component
JP2007221115A (en) Manufacturing method of conductor paste and multilayer ceramic substrate
JP2002197922A (en) Conductive paste and method for manufacturing of ceramic circuit board
JP2008186908A (en) Manufacturing method for multilayer circuit board
JP2002368421A (en) Multilayer ceramic board and method for manufacturing the same
JP2009252783A (en) Production method of ceramic multilayer substrate, and method for adjusting amount of warpage of ceramic multilayer substrate
JP3811381B2 (en) Manufacturing method of glass ceramic substrate
JP2004281989A (en) Method for manufacturing glass ceramic wiring board
JP3981265B2 (en) Manufacturing method of glass ceramic substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP