WO2013088868A1 - Solar cell module and method for manufacturing same - Google Patents

Solar cell module and method for manufacturing same Download PDF

Info

Publication number
WO2013088868A1
WO2013088868A1 PCT/JP2012/078967 JP2012078967W WO2013088868A1 WO 2013088868 A1 WO2013088868 A1 WO 2013088868A1 JP 2012078967 W JP2012078967 W JP 2012078967W WO 2013088868 A1 WO2013088868 A1 WO 2013088868A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
photoelectric conversion
power generation
light receiving
conversion element
Prior art date
Application number
PCT/JP2012/078967
Other languages
French (fr)
Japanese (ja)
Inventor
剛人 辻
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013088868A1 publication Critical patent/WO2013088868A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module and a method of manufacturing the same. More particularly, the present invention relates to a solar cell module sealed by a sealing material and a method of manufacturing the same.
  • a solar cell module for a solar cell system is usually a component in which a photoelectric conversion element is enclosed or sealed by a sealant and a surface protective material.
  • the schematic structure of a representative solar cell module 9000 is shown in FIG. 1 by an exploded perspective view.
  • the photoelectric conversion element 900 is protected by surface protection materials 932 and 934.
  • a light transmitting glass substrate or a fluorine resin (for example, ETFE: tetrafluoroethylene-ethylene copolymer) excellent in weather resistance is adopted as the surface protection material 932 on the light receiving surface side on which light is incident.
  • a non-translucent member such as a steel plate may be adopted as the surface protection material 934 on the back side thereof.
  • the sealing materials 922 and 924 are used to seal the surface protection materials 932 and 934 by laminating them on the photoelectric conversion element 900.
  • the roles of the sealing materials 922 and 924 and the surface protection materials 932 and 934 include, for example, protecting the photoelectric conversion element from moisture and impact from the outside in the installation environment and ensuring electrical insulation.
  • the sealing material 924 is required to have a barrier effect because the paint component of the surface coating of the steel plate reaches the photoelectric conversion element 900.
  • the materials of the sealing materials 922 and 924 and the surface protection materials 932 and 934 need to satisfy various requirements.
  • Examples of such requirements include the action of blocking ultraviolet light, humidity, and heat, the action of preventing the entry of impurities from the outside after installation, and the action of preventing the adhesion of dirt on the surface, and the light of the sealing material itself It can be mentioned that the stability, the thermal decomposition and the decrease in transmittance do not occur.
  • an additional sheet or additional film (also not shown), such as a moisture-proof sheet, also called a barrier sheet or barrier film, on either or both the light receiving surface side and the back side viewed from the photoelectric conversion element ) May be disposed and sealed by a sealing material.
  • a moisture-proof sheet also called a barrier sheet or barrier film
  • FIG. 2 shows an interface in a conventional solar cell module.
  • the photoelectric conversion element 900 is, for example, a silicon-based thin film photoelectric conversion element
  • typical bonding interfaces are the following interfaces A to E.
  • additional sheets 942 and 944 such as barrier films not shown in FIG. 1 are adopted will be described as an example.
  • the interface A is an interface between the conductive oxide (typically, an In-based or Zn-based transparent conductive film) of the photoelectric conversion element 900 and the additional sealing material 926A on the light receiving surface.
  • the interface B is an interface with the additional sealing material 926B on the back side of the photoelectric conversion element 900.
  • a member other than the additional sealing material 926B forming the interface B is the substrate when the back surface of the photoelectric conversion element 900 is a substrate, and the metal when the metal film is formed on the substrate. It is a membrane.
  • the additional sealing materials 926A and 926B are films of sealing materials disposed between the additional sheets 942 and 944 and the photoelectric conversion element 900.
  • the interface C is an interface between the sealing material 922 and the surface protective material 932 and between the sealing material 924 and the surface protective material 934.
  • the surface protection material in a light-receiving surface side and a back surface side may differ.
  • the interface between the sealing material 924 on the back side and the surface protective material 934 differs from the interface C in the combination of materials (here, referred to as interface C ′).
  • the interface D is an interface between the additional sheet 942 and the sealing material 922 or the additional sealing material 926A.
  • the interface between the back side additional sheet 944 and the sealing material 924 or the additional sealing material 926B is referred to as interface D '.
  • the interface E is an interface between the additional sealing material 926A and the additional sealing material 926B, an interface between the sealing material 922 and the additional sealing material 926A, and an interface between the sealing material 924 and the additional sealing material 926B.
  • the interfaces A and B are interfaces of the photoelectric conversion element 900 and the sealing material 922 and the photoelectric conversion element 900 and the sealing material 924, respectively.
  • the interface E is an interface between the sealant 922 and the sealant 924.
  • the adhesion at the interface A starts to deteriorate and the reliability decreases.
  • the interface A on the light receiving surface side of the photoelectric conversion element 900 is exposed to light for power generation for a long time.
  • the reduced adhesion of the interface A may cause the above-described delamination, which may adversely affect the reliability of the photovoltaic system.
  • interface D and interface D ′ members adopted as additional sheets 942 and 944, and materials of sealing material 922, sealing material 924, additional sealing material 926A, and additional sealing material 926B.
  • adhesion may be reduced.
  • the present invention has been made to solve at least one of the above-mentioned problems.
  • the present invention contributes to securing the reliability of a photovoltaic power generation system by effectively preventing delamination in a solar cell module sealed with a sealing material.
  • the interface E which is the interface between the sealing material 922 and the sealing material 924 or the additional sealing material 926A and the additional sealing material 926B, maintains the best adhesion among the interfaces A to E for a long time. That is, when the interface E is adhered or bonded by the processing of a laminate under the conditions for protecting the photoelectric conversion element 900 from the outside, the decrease in adhesion is small even after long-term use. This is because at the interface E, since the sealing materials disposed on both sides are the same or substantially the same material, adhesion that is difficult to deteriorate can be obtained.
  • the photoelectric conversion element is a photoelectric conversion element of the SCAF structure
  • the reduction in reliability when viewed as the entire module as described above is suppressed.
  • the interface similar to the interface E at which the sealing materials adhered through the conductive through holes formed in the power generation region, ie, the interface E is deteriorated in adhesion
  • the cause was to play a role in preventing.
  • the number and area of the above-mentioned conductive through holes formed in the power generation region in the SCAF structure are increased by paying attention only to the adhesiveness, the reduction of the area for power generation can not be avoided.
  • the inventor of the present application considered that it is possible to manufacture a solar cell module having a structure that effectively suppresses delamination by more actively using the same interface as this interface E. It has been confirmed that forming an interface similar to interface E in the non-power generation region where power generation operation is not performed can be a solution for securing the adhesiveness of the entire module during long-term use without inhibiting power generation operation. , It came to create the present invention.
  • the back electrode, the photoelectric conversion layer, and the transparent electrode are formed in this order on the light receiving surface which is one surface of the substrate, and in a non-power generation region where power generation operation is not performed.
  • a photoelectric conversion element having a passage communicating between the light receiving surface of the substrate and the back surface which is the other surface to the light receiving surface, and the photoelectric conversion device on the light receiving surface side of the substrate
  • a light receiving surface side surface protecting member and a rear surface side protecting member are respectively laminated to the photoelectric conversion element by adhesion or bonding, and both sides of the photoelectric conversion element pass through the passage in the non-power generation region. Sealants of each other Solar cell module is provided which is glued or bonded together.
  • the back electrode, the photoelectric conversion layer, and the transparent electrode are formed in this order on the light receiving surface, which is one surface of the substrate, in a non-power generation region where power generation operation is not performed.
  • each of the light receiving surface side surface protecting member and the back surface side protecting member is laminated to the photoelectric conversion element by bonding, and the light receiving surface side sealing material sheet and the back surface side sealing material sheet
  • a solar cell module is provided that is less likely to undergo delamination during long-term use and has improved reliability.
  • FIG. 3 is a partially broken plan view of the solar cell module provided in the present embodiment
  • FIG. 4 is a schematic cross-sectional view showing the structure of the solar cell module divided before and after lamination.
  • the solar cell module 1000 which is a solar cell module of an example of the present embodiment, includes the photoelectric conversion element 100, the light receiving surface side sealing material 122, the back surface side sealing material 124, and the light receiving surface side surface protection member 132 and a back surface protection member 134 are provided.
  • the photoelectric conversion element 100 in the photoelectric conversion element 100, the back electrode 10, the photoelectric conversion layer 20 and the transparent electrode 30 are formed in this order on the light receiving surface 8A which is one surface of the substrate 8.
  • the photoelectric conversion element 100 can be generally divided into a power generation region 110 in which a power generation operation is performed and a non-power generation region 112 in which a power generation operation is not performed.
  • the back electrode 10, the photoelectric conversion layer 20, and the transparent electrode 30 are disposed.
  • a passage 104 is formed which communicates between the light receiving surface 8A of the substrate 8 and the back surface 8B which is the other surface.
  • the light receiving surface side sealing material 122 seals the photoelectric conversion element 100 on the side of the light receiving surface 8 A of the substrate 8.
  • the back side sealing material 124 seals the photoelectric conversion element 100 on the side of the back surface 8B which is the other surface of the substrate 8.
  • the light receiving surface side surface protecting member 132 and the back surface protecting member 134 sandwich the light receiving surface side sealing material 122, the photoelectric conversion element 100, and the back surface side sealing material 124, and It is laminated by adhesion or bonding with the face-side sealant 122 and the back-side sealant 124.
  • the sealing materials of the light-receiving surface-side sealing material 122 and the back-side sealing material 124 are bonded or bonded to each other at the interface 102 through the passage 104. This interface 102 can maintain high adhesion for a long period of time as the interface E described in FIG.
  • FIG. 4A shows a state before the lamination in the vicinity of the passage 104 in the solar cell module 1000 of the present embodiment
  • FIG. 4B shows the state after lamination.
  • the light-receiving side sealing material 122 and the back-side sealing material 124 are respectively sheet-like members, that is, the light-receiving surface-side sealing material sheet 122S and the back-side sealing material sheet 124S.
  • the light-receiving side sealing material 122 and the back-side sealing material 124 which are the sealing materials derived from the light-receiving surface-side sealing material sheet 122S and the back-side sealing material sheet 124S are heat press for laminating process In an approach, they are glued or bonded together through the passage 104, thereby forming the interface 102.
  • the photoelectric conversion element 100 that can be employed for the solar cell module 1000 of the present embodiment is an arbitrary thin film photoelectric conversion element, and the structure thereof is not particularly limited.
  • the photoelectric conversion element 100 for example, a photoelectric conversion element having a large number of unit cells connected in series with each other by a so-called monolithic structure or a SCAF structure can be employed.
  • a thin film photoelectric conversion element such as a monolithic structure in which a passage such as a through hole connecting both surfaces is not particularly produced due to operational requirements, a decrease in adhesion at the interface A immediately leads to delamination. For this reason, providing the passage 104 described in the present embodiment is effective in effectively preventing the delamination.
  • a hole (electrically conductive through hole) penetrating the thin film photoelectric conversion element such as a current collection hole or connection hole is formed in the power generation region where power generation operation is performed. It may have been.
  • the passage 104 in this embodiment is the through hole 104T (FIGS. 3 and 4), it does not affect the area for power generation in the power generation region 110 unlike the conductive through hole of the SCAF structure. . This is because the passage 104 is formed in the non-power generation region 112.
  • the passage 104 (the through hole 104T) of the present embodiment is different from the conductive through hole in the thin film photoelectric conversion element of the SCAF structure also in that the passage of current is not expected. .
  • Typical materials of the light-receiving surface side sealing material 122 and the back side sealing material 124 are, for example, a sealing material of olefin resin such as EVA (ethylene-vinyl acetate copolymer) or polyethylene.
  • the light receiving surface side surface protecting member 132 is, for example, a fluorine-based resin film such as ETFE.
  • the back side surface protecting member 134 adopted on the back side has a wide selection range of materials because it is not necessary to transmit light.
  • the same kind of material as the light receiving surface side surface protecting member 132 may be adopted for the back surface side protecting member 134 to make the solar cell module 1000 flexible.
  • a material such as a steel plate that is excellent in physical strength may be adopted.
  • the light-receiving side sealing material 122 and the rear-side sealing material 124 are bonded or bonded through the passage 104.
  • the bonding or bonding through the passage 104 in the present embodiment is most typically bonding or heat welding. That is, when the light-receiving side sealing material 122 and the back-side sealing material 124 are EVA, adhesion or bonding by heat polymerization or thermal welding between the light-receiving surface-side sealing material 122 and the back-side sealing material 124 It is realized through the passage 104.
  • the light-receiving side sealing material 122 and the back side sealing material 124 are polyethylene or the like, adhesion or bonding is mainly realized by thermal welding.
  • the light receiving surface side sealing material 122 and the back surface side sealing material 124 are not necessarily essential to make the light receiving surface side sealing material 122 and the back surface side sealing material 124 into the same kind of material, and in these materials, good bonding property or adhesiveness is obtained for sealing. It is possible to employ a combination of suitable materials.
  • the peripheral portion 1000P of the solar cell module 1000 that is the periphery of the photoelectric conversion element 100 (FIG. 3, FIG. 4B)
  • the light-receiving side sealing material 122 and the back side sealing material 124 are bonded or bonded for sealing. If made in such a structure, the bonding or bonding at the periphery 1000 P and the bonding or bonding through the passage 104 are typically in the same manner.
  • the interface 102 (FIG. 4B) between the light-receiving surface-side sealing material 122 and the back-side sealing material 124 is described and described as a clear boundary for the purpose of explanation, such a boundary It should be noted that is not always easily identifiable. Depending on the practical conditions, the materials on both sides may be mixed or the components may gradually change. Also, the same material may be employed to make it difficult to distinguish one from the other. For these reasons, it may not be easy to identify the interface 102 as a material boundary after being manufactured. Another point to note is that the interface between the light-receiving side sealing material 122 and the back-side sealing material 124 bonded or bonded through the passage 104 may not even be located inside the passage 104 shown in FIG.
  • the material of the light receiving surface sealing material 122 or the material of the back surface sealing material 124 flows through the passage 104 from the light receiving surface 8A to the back surface 8B or in the opposite direction.
  • the interface between the light-receiving side sealing material 122 and the rear side sealing material 124 may be present outside the passage 104. Even such bonding or bonding is included in the bonding or bonding that is performed "through" the passage 104 in the present application.
  • a type that employs, for example, a steel plate as the light receiving surface side surface protection member 132 is also a typical example of the solar cell module 1000 of the present embodiment.
  • various combinations of materials of the light receiving surface side surface protective member 132 and the rear surface side protective member 134 can be selected. For example, even in the case where the light receiving surface side surface protecting member 132 is a glass substrate and the back side surface protecting member 134 is a resin film called a back sheet, the effect of preventing the delamination by adopting the passage 104 can be obtained.
  • a typical passage 104 is a through hole 104T that connects the light receiving surface 8A and the back surface 8B of the substrate 8 as shown in FIGS. 3 and 4.
  • the substrate 8 is, for example, a resin film substrate or a metal foil
  • forming a passage having a shape like the through hole 104T can be easily performed by, for example, a step of punching the substrate 8 with a punch or patterning such as a laser. It is possible to realize. Further, even when the substrate 8 is a rigid substrate such as a glass substrate, the passage 104 is formed by an appropriate processing means.
  • the passage 104 such as the through hole 104T is provided in the peripheral non-power generation region 112P.
  • the peripheral non-power generation region 112P is a region forming the peripheral edge of the photoelectric conversion element 100 in the non-power generation region 112 in which the power generation operation is not performed in the photoelectric conversion element 100. That is, it can be said that the peripheral non-power generation region 112P is a position where there is a high probability that peeling initially occurs when the photoelectric conversion element 100 is delaminated from the light receiving surface side sealing material 122 or the back surface side sealing material 124.
  • non-power generation area 112 is provided between power generation area 110A and power generation area 110B.
  • the passage 104 such as the through hole 104T in the inter-power generation region non-power generation region 112S. That is, in the solar cell module 1000, the area for power generation in the power generation region 110A and the power generation region 110B is secured as large as possible. Therefore, as shown in the plan view of FIG.
  • the arrangement of the non-power generation area 112S between the power generation area 110A and the power generation area 110B is an area equally dividing the entire photoelectric conversion element 100 into several areas. It is often designed to be located at the boundary of For example, the non-power generation region 112S between power generation regions in FIG. 3 is a position where the entire photoelectric conversion element 100 is bisected. Therefore, the inter-power generation region non-power generation region 112S, which is often determined in such an arrangement, is firmly held by the light receiving surface side sealing material 122 and the back side sealing material 124 when the photoelectric conversion element 100 is viewed as a whole. It is because it becomes a desirable position as a target position.
  • the through hole 104T is a typical example of the passage 104.
  • the passage 104 in the present embodiment is not limited to the through hole as long as it is an arbitrary spatial region that allows the light receiving surface 8A and the back surface 8B to communicate with each other.
  • FIG. 5 is an explanatory view illustrating a variation of the passage. For example, it is assumed that the outline forming the edge of the substrate 8 is meandered. Then, the light-receiving surface-side sealing material 122 and the rear-surface-side sealing material 124 can be in contact with each other on the inner side than the outer edge 8L that defines the range of expansion of the photoelectric conversion element 100.
  • the passage 104 in the present embodiment, any space area arranged inside can be adopted as the passage 104 in the present embodiment.
  • the peripheral non-power generation region 112P is disposed near the outer edge 8L, various variations can be adopted as the passage 104 arranged in the peripheral non-power generation region 112P.
  • the through hole 104T (FIG. 5A), which is the typical example described above, is one of the most excellent shapes in the ability to prevent delamination as the passage 104 in the present embodiment.
  • the through holes 104T are formed as window-like openings provided in the substrate 8 as shown in FIG. 5A, for example, in the peripheral non-power generation region 112P and the non-power generation region 112S between the power generation regions.
  • a notch 104R (FIG. 5 (b)) having an outline outline recessed, a concave part 104J (FIG. 5 (c)) with a serpentine outline such as a dividing line between pieces of a jigsaw puzzle
  • a passage of any shape may be employed as the passage 104, such as a recess 104W (FIG. 5 (d)) made by a wave or wave outline. It is also useful to employ multiple types of passages in these combinations.
  • FIG. 6 is a schematic cross-sectional view showing the structure of a solar cell module 1100 manufactured by laminating an additional sheet 140 such as, for example, a moistureproof sheet together with a sealing material.
  • additional sheet 140 such as, for example, a moistureproof sheet together with a sealing material.
  • additional sheets may be added and laminated together in order to be more effective. For these purposes, an additional sheet 140 has been placed, and additional seals 126 (126A and 126B) have also been placed.
  • the material adopted as the additional sheet 140 is, for example, a sheet of glass fiber non-woven fabric, a barrier sheet having excellent moisture barrier properties, or the like. These may be disposed, for example, only on one side of the photoelectric conversion element 100, or may be disposed on both sides of the photoelectric conversion element 100.
  • an additional sheet 140A disposed on the light receiving surface 8A side and an additional sheet 140B disposed on the back surface 8B side. Is arranged.
  • the additional sheet 140A is disposed between the light-receiving surface side sealing material 122 and the photoelectric conversion element 100.
  • the additional sealing materials 126A and 126B described above are disposed between the additional sheet 140A and the light receiving surface 8A of the photoelectric conversion element 100 and between the additional sheet 140B and the back surface 8B of the photoelectric conversion element 100, respectively. It is done.
  • the additional sealing material 126A or the additional sealing material 126B may be a sheet of the same material as that of the light receiving surface side sealing material 122 or the rear surface side sealing material 124, or the light receiving surface side sealing material Although there is adhesiveness between the sealing member 122 and the rear side sealing material 124, the light receiving side sealing material 122 and the rear side sealing material 124 may be a sheet of a different type of material.
  • a sheet passage 144 communicating between both surfaces is provided also for such additional sheet 140A or additional sheet 140B.
  • the additional encapsulants 126A and 126B are bonded or bonded to either the light-receiving surface encapsulant 122 or the back encapsulant 124 through the sheet passage 144.
  • the additional sheet 140A is firmly held by the additional sealing material 126A and the light receiving surface side sealing material 122.
  • the additional sheet 140 B is held by the additional sealing material 126 B and the back side sealing material 124. Therefore, it is possible to reduce the possibility of the occurrence of delamination due to the addition of the additional sheet 140.
  • the position where the sheet passage 144 is provided is an arbitrary position that does not impair the function of the additional sheet 140.
  • the additional sheet 140 is an additional sheet having a function of reducing the influence of moisture on the photoelectric conversion element 100 by preventing moisture permeation
  • the sheet passage 144 is formed in the peripheral portion of the additional sheet 140 ,
  • the position is determined so as not to impair the function in most parts of the additional sheet 140. That is, when the additional sheet 140 is a member having a property that impairs its function due to the sheet passage 144, it is preferable that the position of the sheet path 144 in the additional sheet 140 be determined in consideration of the characteristics. .
  • the position where the sheet passage 144 is provided not to affect the power generation function of the solar cell module 1100 while exerting the function of the additional sheet 140.
  • the additional sheet 140 is a member having a property that impairs its function due to the sheet passage 144
  • the sheet passage 144 corresponds to the non-power generation area 112 outside the power generation area 110 in the additional sheet member 140.
  • it is disposed in a range corresponding to the peripheral portion 1100P which is deviated from the photoelectric conversion element 100 (FIG. 6).
  • the sheet passage 144 is not disposed in the range of the additional sheet 140 corresponding to the power generation area 110.
  • it is also effective to make the additional sheet 140 large in consideration of the size for providing the sheet passage 144 .
  • the additional sheet 140A and the additional sheet 140B are clearly shown in the description based on FIG. 6 described above, either of the additional sheet 140A or the additional sheet 140B in the solar cell module adopting the additional sheet of this embodiment. Only one or the other may be placed.
  • the sealing material adhered or bonded through the passage 104 of the photoelectric conversion element 100 is the additional sealing material 126A, the back side sealing material 124 (when only the additional sheet 140A is provided), the light receiving surface side sealing It becomes material 122 and additional sealing material 126B (when providing only additional sheet 140B).
  • the position of the sheet passage 144 in the additional sheet 140 may be provided in a range corresponding to the power generation area 110 if the additional sheet 140 does not impair its function by the sheet passage 144.
  • FIG. 7 is a flowchart showing a method of manufacturing the solar cell module 1000 in the present embodiment. 3, 4 and 6 will also be described with appropriate reference.
  • the photoelectric conversion element 100 having the passage 104 is prepared (S102).
  • path 104 can be formed. Besides, it is also effective to form a through hole or the like which becomes a passage at an arbitrary timing for manufacturing the photoelectric conversion element 100.
  • the passage 104 is formed in the non-power generation region 112 where the power generation operation is not performed.
  • the back surface electrode, the photoelectric conversion layer, and the transparent electrode are formed in this order on one surface of the substrate.
  • the step of forming a stack S104 is performed.
  • the rear surface protecting member 134, the rear sealing material sheet 124S, the photoelectric conversion element 100, the light receiving surface sealing material sheet 122S, and the light receiving surface protection member 132 are viewed from the rear side. It is a process of forming a stacked body stacked in order.
  • the stack formed in this manner is laminated in the next laminating step S106.
  • the light receiving surface side surface protecting member 132 and the rear surface side protecting member 134 are integrated with the photoelectric conversion element 100 by adhesion or bonding of the light receiving surface side sealing material sheet 122S and the back surface side sealing material sheet 124S. Processing.
  • the sealing materials of the light-receiving surface-side sealing material sheet 122S and the rear-side sealing material sheet 124S are bonded or bonded in the non-power generation region 112 through the passage 104.
  • the solar cell module 1000 manufactured in this manner, as described with reference to FIG. 4, the light-receiving surface-side sealing material 122 and the rear-surface-side sealing material 124 are bonded or bonded through the passage 104.
  • the solar cell module 1000 is manufactured in a structure in which the photoelectric conversion element 100 is firmly held by the light receiving surface side sealing material 122 and the back surface side sealing material 124.
  • seat 140 also applies the manufacturing method of the solar cell module 1000. That is, in the stack formation step S104, sheets of the sealing material to be the additional sheet 140A, the additional sheet 140B, and the additional sealing materials 126A and 126B are added as necessary. At this time, the positions of the additional sheet 140A and the additional sheet 140B are preferably aligned such that the arrangement of the sheet passage 144 is appropriate with respect to the photoelectric conversion element 100.
  • the sheet passage 144 affects the functions of the additional sheet 140A or the additional sheet 140B.
  • the function of the additional sheet 140A or the additional sheet 140B for example, the range where the position of the sheet passage 144 is removed from the power generation area 110 by the above alignment. Place in the range removed from the position of the target to exert.
  • the range is, for example, a range corresponding to the non-power generation region 112 as shown by the structure of the solar cell module 1100 in FIG.
  • the order of the layers in the stack pair is such that, after integration, the stack structure of the solar cell module 1100 shown in FIG. 5 is obtained. Then, the solar cell module 1100 is manufactured through the same laminating process as the laminating process S106.
  • the solar cell module of the present invention can be used to manufacture a highly practical solar power generation system by enhancing the reliability in long-term use.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention reduces the possibility of delamination of a solar cell module. According to an embodiment of the present invention, there is provided a solar cell module (1000) provided with: a photoelectric conversion element (100), a light-receiving-surface side sealing material (122), a rear-surface side sealing material (124), a light-receiving-surface side surface protective member (132), and a rear-surface side surface protective member (134). The light-receiving-surface side sealing material and the rear-surface side sealing material seal the photoelectric conversion element. The light-receiving-surface side surface protective member and the rear-surface side surface protective member are adhered or bonded to the light-receiving-surface side sealing material and the rear-surface side sealing material respectively, and thereby laminate the photoelectric conversion element. The photoelectric conversion element (100) has, in the non-power-generating region (112), a channel (104) which communicates between the light-receiving surface (8A), which is one surface of the substrate (8), and the rear surface (8B), which is the other surface of the substrate. The light-receiving-surface side sealing material and the rear-surface side sealing material are adhered or bonded to each other in the non-power-generating region through the channel.

Description

太陽電池モジュールおよびその製造方法Solar cell module and method of manufacturing the same
 本発明は太陽電池モジュールおよびその製造方法に関する。さらに詳細には本発明は、封止材により封止された太陽電池モジュールおよびその製造方法に関する。 The present invention relates to a solar cell module and a method of manufacturing the same. More particularly, the present invention relates to a solar cell module sealed by a sealing material and a method of manufacturing the same.
 近年、太陽光により発電を行なう太陽電池すなわち太陽電池システムが開発されている。なかでも、製造時に使用される材料が少ない薄膜系の光電変換素子が注目されている。これらの光電変換素子の構造として一般的なものは、フィルム基板やガラス基板の一方の面においてパターニングまたはスクライブを行なって電極層などを分離することにより、個別化された単位セルが直列接続され集積化されているモノリシック構造と呼ばれるものである。別の構造として、フィルム基板の両面をつなぐ貫通孔(通電性貫通孔)を経由し電気的な接続をとるSCAF構造(Series Connection through Apertures formed on Film)と呼ぶ光電変換素子も実用化されている(例えば、特許文献1:特開2006-49541号公報)。 In recent years, a solar cell that generates electricity by solar light, that is, a solar cell system has been developed. Above all, thin film photoelectric conversion elements with a small amount of materials used at the time of manufacture are attracting attention. As a general structure of these photoelectric conversion elements, individualized unit cells are connected in series and integrated by performing patterning or scribing on one surface of a film substrate or a glass substrate to separate electrode layers and the like. It is called a monolithic structure that has been developed. As another structure, a photoelectric conversion element called an SCAF structure (Series Connection through Apertures formed on Film) having an electrical connection via a through hole (electrically conductive through hole) connecting both surfaces of a film substrate has also been put to practical use. (For example, Patent Document 1: Japanese Patent Application Publication No. 2006-49541).
 太陽電池システムのための太陽電池モジュールは、通常、封止材および表面保護材により光電変換素子を内部に封入または封止した部品である。図1に、代表的な太陽電池モジュール9000の概略構造を分解斜視図により示す。ここで、光電変換素子900は、表面保護材932および934により保護されている。光が入射する受光面側の表面保護材932としては、透光性のあるガラス基板や、耐候性に優れたフッ素系樹脂(例えば、ETFE:テトラフルオロエチレン-エチレン共重合体)が採用される。また、その逆の背面側の表面保護材934としては、表面保護材932と同様の材質のほかにも、鋼板などの非透光性の部材が採用されることもある。 A solar cell module for a solar cell system is usually a component in which a photoelectric conversion element is enclosed or sealed by a sealant and a surface protective material. The schematic structure of a representative solar cell module 9000 is shown in FIG. 1 by an exploded perspective view. Here, the photoelectric conversion element 900 is protected by surface protection materials 932 and 934. A light transmitting glass substrate or a fluorine resin (for example, ETFE: tetrafluoroethylene-ethylene copolymer) excellent in weather resistance is adopted as the surface protection material 932 on the light receiving surface side on which light is incident. . In addition to the same material as the surface protection material 932, a non-translucent member such as a steel plate may be adopted as the surface protection material 934 on the back side thereof.
 封止材922および924は、表面保護材932および934を光電変換素子900に対しラミネートすることにより封止するために用いられる。封止材922、924、および表面保護材932、934の役割は、例えば、設置環境における外界の水分や衝撃から光電変換素子を保護したり、電気的な絶縁性を確保したりすることが挙げられる。また、例えば背面側の表面保護材934が鋼板である場合には、封止材924には、鋼板の表面塗装の塗料成分が光電変換素子900に到達することからバリアする作用が求められる。このように、封止材922、924、表面保護材932、934の材質は、様々な要件を満足する必要がある。その要件を例示すれば、紫外線や湿度、熱を遮断する作用、設置後に外界からの不純物が混入することを防止したり、表面に汚れが付着することを防止する作用、封止材自体の光安定性、熱分解や透過率低下が起らないことなどを挙げることができる。 The sealing materials 922 and 924 are used to seal the surface protection materials 932 and 934 by laminating them on the photoelectric conversion element 900. The roles of the sealing materials 922 and 924 and the surface protection materials 932 and 934 include, for example, protecting the photoelectric conversion element from moisture and impact from the outside in the installation environment and ensuring electrical insulation. Be For example, in the case where the back surface side surface protective material 934 is a steel plate, the sealing material 924 is required to have a barrier effect because the paint component of the surface coating of the steel plate reaches the photoelectric conversion element 900. Thus, the materials of the sealing materials 922 and 924 and the surface protection materials 932 and 934 need to satisfy various requirements. Examples of such requirements include the action of blocking ultraviolet light, humidity, and heat, the action of preventing the entry of impurities from the outside after installation, and the action of preventing the adhesion of dirt on the surface, and the light of the sealing material itself It can be mentioned that the stability, the thermal decomposition and the decrease in transmittance do not occur.
 これらの保護性能を強化するために、光電変換素子からみて受光面側と背面側のいずれかまたは両面に、例えば防湿シートなど、バリアシートまたはバリアフィルムとも呼ばれる追加シートまたは追加フィルム(いずれも図示しない)が配置され封止材により封止されることもある。 In order to enhance these protective performances, an additional sheet or additional film (also not shown), such as a moisture-proof sheet, also called a barrier sheet or barrier film, on either or both the light receiving surface side and the back side viewed from the photoelectric conversion element ) May be disposed and sealed by a sealing material.
特開2006-49541号公報JP, 2006-49541, A
 太陽電池モジュールの長期信頼性を確保するためには、光電変換素子と封止材との間の界面や、封止材と表面保護材との間の界面において十分な接着性を長期間維持する必要がある。接着性が不十分であったり時間とともに劣化したりすると、デラミネーション(剥離)を引き起こしその後の耐久性に悪影響を及ぼしかねないためである。図2に、従来の太陽電池モジュールにおける界面を示している。光電変換素子900が例えばシリコン系の薄膜光電変換素子である場合には、典型的な接着界面は、次の界面A~Eである。ここでは、図1に明示していないバリアフィルムなどの追加シート942および944を採用する場合を例に説明する。 In order to ensure long-term reliability of the solar cell module, sufficient adhesion is maintained for a long time at the interface between the photoelectric conversion element and the sealing material, and at the interface between the sealing material and the surface protective material There is a need. Insufficient adhesion or deterioration with time may cause delamination (delamination) and may adversely affect the subsequent durability. FIG. 2 shows an interface in a conventional solar cell module. When the photoelectric conversion element 900 is, for example, a silicon-based thin film photoelectric conversion element, typical bonding interfaces are the following interfaces A to E. Here, the case where additional sheets 942 and 944 such as barrier films not shown in FIG. 1 are adopted will be described as an example.
 界面Aは、受光面における光電変換素子900の導電性酸化物(典型的にはIn系またはZn系の透明導電膜)と追加封止材926Aとの界面である。また、界面Bは、光電変換素子900の背面側における追加封止材926Bとの界面である。界面Bをなす追加封止材926B以外の部材は、光電変換素子900の背面側表面が基板である場合にはその基板であり、その基板に金属膜が形成されている場合には、その金属膜である。ここで、追加封止材926Aおよび926Bは、追加シート942および944と光電変換素子900との間に配置される封止材のフィルムである。界面Cは、封止材922と表面保護材932との間や封止材924と表面保護材934との間の界面である。なお、受光面側と背面側とにおける表面保護材が異なる場合もある。その場合、背面側の封止材924と表面保護材934との界面は界面Cとは材質の組合せが異なる(ここでは、界面C´と記す)。界面Dは、その追加シート942と封止材922または追加封止材926Aとの界面である。受光面側および背面側のバリアフィルムを区別する場合には、背面側の追加シート944と封止材924または追加封止材926Bの界面を界面D´と呼ぶ。界面Eは、追加封止材926Aと追加封止材926Bとの界面や、封止材922と追加封止材926A、封止材924と追加封止材926Bとの界面である。なお、追加シート942および944が採用されない構成では、界面AおよびBは、それぞれ、光電変換素子900と封止材922、光電変換素子900と封止材924の界面となる。その場合、界面Eは封止材922と封止材924の界面となる。 The interface A is an interface between the conductive oxide (typically, an In-based or Zn-based transparent conductive film) of the photoelectric conversion element 900 and the additional sealing material 926A on the light receiving surface. The interface B is an interface with the additional sealing material 926B on the back side of the photoelectric conversion element 900. A member other than the additional sealing material 926B forming the interface B is the substrate when the back surface of the photoelectric conversion element 900 is a substrate, and the metal when the metal film is formed on the substrate. It is a membrane. Here, the additional sealing materials 926A and 926B are films of sealing materials disposed between the additional sheets 942 and 944 and the photoelectric conversion element 900. The interface C is an interface between the sealing material 922 and the surface protective material 932 and between the sealing material 924 and the surface protective material 934. In addition, the surface protection material in a light-receiving surface side and a back surface side may differ. In that case, the interface between the sealing material 924 on the back side and the surface protective material 934 differs from the interface C in the combination of materials (here, referred to as interface C ′). The interface D is an interface between the additional sheet 942 and the sealing material 922 or the additional sealing material 926A. When the barrier films on the light receiving surface side and the back surface side are distinguished, the interface between the back side additional sheet 944 and the sealing material 924 or the additional sealing material 926B is referred to as interface D '. The interface E is an interface between the additional sealing material 926A and the additional sealing material 926B, an interface between the sealing material 922 and the additional sealing material 926A, and an interface between the sealing material 924 and the additional sealing material 926B. Note that in the configuration in which the additional sheets 942 and 944 are not employed, the interfaces A and B are interfaces of the photoelectric conversion element 900 and the sealing material 922 and the photoelectric conversion element 900 and the sealing material 924, respectively. In that case, the interface E is an interface between the sealant 922 and the sealant 924.
 長期間使用した太陽電池モジュール9000を実際に調査したところ、界面Aにおける接着性が劣化し始め、信頼性が低下する事例が多く報告されている。光電変換素子900の受光面側の界面Aは発電のための光に長期間さらされる。しかも、光により発電を行なう原理上、少なくとも受光面側の表面保護材や封止材としては光を遮蔽する材質は使用しがたい。界面Aの接着性が低下すると上述したデラミネーションを引き起こしかねず、太陽光発電システムの信頼性に悪影響を及ぼすことが懸念される。他の界面、例えば、界面Dや界面D´についても、追加シート942および944として採用する部材と、封止材922、封止材924、追加封止材926A、そして追加封止材926Bの材質との組合せや、長期使用時の環境条件によっては、接着力の低下が懸念される。 As a result of actually investigating a solar cell module 9000 used for a long time, there are many reports that the adhesion at the interface A starts to deteriorate and the reliability decreases. The interface A on the light receiving surface side of the photoelectric conversion element 900 is exposed to light for power generation for a long time. Moreover, it is difficult to use a material that shields light at least as a surface protection material and a sealing material on the light receiving surface side on the principle of generating electric power by light. The reduced adhesion of the interface A may cause the above-described delamination, which may adversely affect the reliability of the photovoltaic system. With respect to other interfaces, for example, interface D and interface D ′, members adopted as additional sheets 942 and 944, and materials of sealing material 922, sealing material 924, additional sealing material 926A, and additional sealing material 926B. Depending on the combination with the above, or environmental conditions during long-term use, there is a concern that adhesion may be reduced.
 本発明は上記問題点の少なくともいずれかを解決するためになされたものである。本発明は、封止材により封止された太陽電池モジュールにおいて、デラミネーションを効果的に防止することにより、太陽光発電システムの信頼性の確保に貢献する。 The present invention has been made to solve at least one of the above-mentioned problems. The present invention contributes to securing the reliability of a photovoltaic power generation system by effectively preventing delamination in a solar cell module sealed with a sealing material.
 上記課題を吟味した結果、本願の発明者は、界面Aの接着性の劣化に伴う信頼性の低下を補うために、別の界面を利用することを着想した。より具体的には、上述した各界面のうち界面Eに注目した。封止材922と封止材924、または、追加封止材926Aと追加封止材926Bとの界面である界面Eは、界面A~Eのうち最も良好な接着性が長期間維持される。すなわち、この界面Eは、光電変換素子900を外界から保護する条件でラミネートの処理によって接着または接合されると長期の使用の後においても接着性の低下が少ない。これは、界面Eでは、両側に配置される封止材同士が同種またはほぼ同種の材質であるため、劣化しにくい接着性が得られるためである。 As a result of examining the above problems, the inventor of the present application has conceived of using another interface to compensate for the decrease in reliability associated with the deterioration of the adhesion of the interface A. More specifically, attention was paid to the interface E among the above-described interfaces. The interface E, which is the interface between the sealing material 922 and the sealing material 924 or the additional sealing material 926A and the additional sealing material 926B, maintains the best adhesion among the interfaces A to E for a long time. That is, when the interface E is adhered or bonded by the processing of a laminate under the conditions for protecting the photoelectric conversion element 900 from the outside, the decrease in adhesion is small even after long-term use. This is because at the interface E, since the sealing materials disposed on both sides are the same or substantially the same material, adhesion that is difficult to deteriorate can be obtained.
 さらに、図2に示した太陽電池モジュール9000とは異なり、光電変換素子がSCAF構造の光電変換素子である場合には、上述したようなモジュール全体としてみた場合の信頼性の低下が抑制されていることに本願発明者は気づいた。その理由を調査したところ、SCAF構造の光電変換素子では、発電領域に形成されている通電性貫通孔を通した封止材同士を接着した界面つまり界面Eと同様の界面が、接着性の劣化を防ぐ役割を果たしていることが原因となっていた。ただし、接着性のみに着目し、SCAF構造において発電領域に形成されている上記通電性貫通孔の数や面積を増加させると、発電のための面積の縮小が避けられない。 Furthermore, unlike the solar cell module 9000 shown in FIG. 2, when the photoelectric conversion element is a photoelectric conversion element of the SCAF structure, the reduction in reliability when viewed as the entire module as described above is suppressed. The inventor noticed particularly. When the reason was investigated, in the photoelectric conversion element of the SCAF structure, the interface similar to the interface E at which the sealing materials adhered through the conductive through holes formed in the power generation region, ie, the interface E, is deteriorated in adhesion The cause was to play a role in preventing. However, if the number and area of the above-mentioned conductive through holes formed in the power generation region in the SCAF structure are increased by paying attention only to the adhesiveness, the reduction of the area for power generation can not be avoided.
 そこで、本願の発明者は、この界面Eと同様の界面をより積極的に利用することによって、デラミネーションを効果的に抑制する構造の太陽電池モジュールを作製しうると考えた。発電動作を行なわない非発電領域において界面Eと同様の界面を形成することが、発電動作を阻害せずにモジュール全体の長期使用時における接着性を確保するための解になり得ることを確認し、本発明を創出するに至った。 Therefore, the inventor of the present application considered that it is possible to manufacture a solar cell module having a structure that effectively suppresses delamination by more actively using the same interface as this interface E. It has been confirmed that forming an interface similar to interface E in the non-power generation region where power generation operation is not performed can be a solution for securing the adhesiveness of the entire module during long-term use without inhibiting power generation operation. , It came to create the present invention.
 すなわち、本発明のある態様においては、裏面電極、光電変換層および透明電極が基板の一方の面である受光面の上にこの順に形成されており、発電動作が行なわれない非発電領域に、前記基板の前記受光面と、該受光面とは他方の面である背面との間を連通する通路を有している光電変換素子と、前記基板の前記受光面の側において該光電変換素子を封止する受光面側封止材と、前記基板の前記背面の側において該光電変換素子を封止する背面側封止材と、前記受光面側封止材および前記背面側封止材との接着または接合により、前記光電変換素子に対してそれぞれがラミネートされている受光面側表面保護部材および背面側表面保護部材とを備えており、前記非発電領域において前記通路を通して前記光電変換素子の両面の封止材同士が互いに接着または接合されている太陽電池モジュールが提供される。 That is, in one embodiment of the present invention, the back electrode, the photoelectric conversion layer, and the transparent electrode are formed in this order on the light receiving surface which is one surface of the substrate, and in a non-power generation region where power generation operation is not performed. A photoelectric conversion element having a passage communicating between the light receiving surface of the substrate and the back surface which is the other surface to the light receiving surface, and the photoelectric conversion device on the light receiving surface side of the substrate A light receiving surface side sealing material to be sealed, a back surface side sealing material to seal the photoelectric conversion element on the back surface side of the substrate, and the light receiving surface side sealing material and the back surface side sealing material A light receiving surface side surface protecting member and a rear surface side protecting member are respectively laminated to the photoelectric conversion element by adhesion or bonding, and both sides of the photoelectric conversion element pass through the passage in the non-power generation region. Sealants of each other Solar cell module is provided which is glued or bonded together.
 また、本発明のある態様においては、裏面電極、光電変換層および透明電極が基板の一方の面である受光面の上にこの順に形成されており、発電動作が行なわれない非発電領域に、該基板の前記受光面とは他方の面である背面との間を連通する通路を有している光電変換素子を準備する工程と、受光面側表面保護部材、受光面側封止材シート、該光電変換素子、背面側封止材シート、および背面側表面保護部材をこの順に重ねて積み重ね体を形成する工程と、前記受光面側封止材シートおよび前記背面側封止材シートとの接着または接合により、前記受光面側表面保護部材および前記背面側表面保護部材のそれぞれを前記光電変換素子に対してラミネートするとともに、前記受光面側封止材シートおよび前記背面側封止材シートそれぞれの封止材同士を前記非発電領域において前記通路を通して接着または接合させるラミネート工程とを含む太陽電池モジュールの製造方法が提供される。 In one embodiment of the present invention, the back electrode, the photoelectric conversion layer, and the transparent electrode are formed in this order on the light receiving surface, which is one surface of the substrate, in a non-power generation region where power generation operation is not performed. Preparing a photoelectric conversion element having a passage communicating between the light receiving surface of the substrate and the back surface which is the other surface, a light receiving surface side surface protecting member, a light receiving surface side sealing material sheet, Forming a stack by stacking the photoelectric conversion element, the back side sealing material sheet, and the back side surface protecting member in this order, and bonding the light receiving side sealing material sheet and the back side sealing material sheet Alternatively, each of the light receiving surface side surface protecting member and the back surface side protecting member is laminated to the photoelectric conversion element by bonding, and the light receiving surface side sealing material sheet and the back surface side sealing material sheet Method of manufacturing a solar cell module including a laminating process for bonding or joining through said passageway sealant another in the non-power generation region is provided.
 本発明のいずれかの態様においては、長期使用時においてデラミネーションを起こしにくく信頼性を高めた太陽電池モジュールが提供される。 In any aspect of the present invention, a solar cell module is provided that is less likely to undergo delamination during long-term use and has improved reliability.
従来の太陽電池モジュールの構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the conventional solar cell module. 従来の太陽電池モジュールにおいて剥離が生じうる位置または界面を示す説明図である。It is an explanatory view showing a position or an interface in which exfoliation may occur in a conventional solar cell module. 本発明のある実施形態における太陽電池モジュールの一部破断平面図である。It is a partially broken plan view of a solar cell module in an embodiment of the present invention. 本発明のある実施形態における太陽電池モジュールの構造をラミネート前後に分けて示す概略断面図である。It is a schematic sectional drawing which divides and shows the structure of the solar cell module in one Embodiment of this invention before lamination. 本発明のある実施形態における太陽電池モジュールに採用される通路のバリエーションを例示する説明図である。It is explanatory drawing which illustrates the variation of the channel | path employ | adopted as the solar cell module in one Embodiment of this invention. 本発明のある実施形態における太陽電池モジュールの構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the solar cell module in one Embodiment of this invention. 本発明のある実施形態における太陽電池モジュールの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the solar cell module in one embodiment of this invention.
 以下、本発明に係る太陽電池モジュールの実施形態を図面に基づいて説明する。当該説明に際し特に言及がない限り、全図にわたり共通する部分または要素には共通する参照符号が付されている。また、図中、各実施形態の要素のそれぞれは、必ずしも互いの縮尺比を保って示されてはいない。 Hereinafter, an embodiment of a solar cell module according to the present invention will be described based on the drawings. In the description, unless otherwise stated, common parts or elements throughout the drawings are denoted by common reference numerals. In addition, in the drawings, each of the elements of the respective embodiments is not necessarily shown in scale to one another.
<第1実施形態>
[1 原理構成]
[1-1 非発電領域に設ける通路]
 図3は、本実施形態において提供される太陽電池モジュールの一部破断平面図、図4は太陽電池モジュールの構造をラミネート前後に分けて示す概略断面図である。
First Embodiment
[1 principle configuration]
[1-1 Passage to be provided in non-power generation area]
FIG. 3 is a partially broken plan view of the solar cell module provided in the present embodiment, and FIG. 4 is a schematic cross-sectional view showing the structure of the solar cell module divided before and after lamination.
 本実施形態の一例の太陽電池モジュールである太陽電池モジュール1000は、図3に示すように、光電変換素子100、受光面側封止材122、背面側封止材124、受光面側表面保護部材132および背面側表面保護部材134を備えている。図4(a)に示すように、光電変換素子100は、裏面電極10、光電変換層20および透明電極30が基板8の一方の面である受光面8Aの上にこの順に形成されている。光電変換素子100は、概して、発電動作が行なわれる発電領域110と、発電動作が行なわれない非発電領域112とに分けることができる。発電領域110は、裏面電極10、光電変換層20および透明電極30が配置されている。一方、非発電領域112には、基板8の受光面8Aと、他方の面である背面8Bとの間を連通する通路104が形成されている。受光面側封止材122は、基板8の受光面8Aの側において光電変換素子100を封止している。これに対し背面側封止材124は、基板8の他方の面である背面8Bの側において光電変換素子100を封止している。受光面側表面保護部材132および背面側表面保護部材134は、受光面側封止材122、光電変換素子100、そして背面側封止材124を挟んでおり、光電変換素子100に対して、受光面側封止材122および背面側封止材124との接着または接合によりラミネートされている。本実施形態の太陽電池モジュール1000においては、受光面側封止材122と背面側封止材124との封止材同士が通路104を通して界面102において互いに接着または接合されている。この界面102は図2にて説明した界面Eと同様に高い接着性を長期間維持することが可能である。 As shown in FIG. 3, the solar cell module 1000, which is a solar cell module of an example of the present embodiment, includes the photoelectric conversion element 100, the light receiving surface side sealing material 122, the back surface side sealing material 124, and the light receiving surface side surface protection member 132 and a back surface protection member 134 are provided. As shown in FIG. 4A, in the photoelectric conversion element 100, the back electrode 10, the photoelectric conversion layer 20 and the transparent electrode 30 are formed in this order on the light receiving surface 8A which is one surface of the substrate 8. The photoelectric conversion element 100 can be generally divided into a power generation region 110 in which a power generation operation is performed and a non-power generation region 112 in which a power generation operation is not performed. In the power generation region 110, the back electrode 10, the photoelectric conversion layer 20, and the transparent electrode 30 are disposed. On the other hand, in the non-power generation region 112, a passage 104 is formed which communicates between the light receiving surface 8A of the substrate 8 and the back surface 8B which is the other surface. The light receiving surface side sealing material 122 seals the photoelectric conversion element 100 on the side of the light receiving surface 8 A of the substrate 8. On the other hand, the back side sealing material 124 seals the photoelectric conversion element 100 on the side of the back surface 8B which is the other surface of the substrate 8. The light receiving surface side surface protecting member 132 and the back surface protecting member 134 sandwich the light receiving surface side sealing material 122, the photoelectric conversion element 100, and the back surface side sealing material 124, and It is laminated by adhesion or bonding with the face-side sealant 122 and the back-side sealant 124. In the solar cell module 1000 of the present embodiment, the sealing materials of the light-receiving surface-side sealing material 122 and the back-side sealing material 124 are bonded or bonded to each other at the interface 102 through the passage 104. This interface 102 can maintain high adhesion for a long period of time as the interface E described in FIG.
 図4(a)に示す概略断面図は、本実施形態の太陽電池モジュール1000における通路104の付近のラミネートの前の様子を示しており、図4(b)は、ラミネート後の様子を示している。ラミネート前において、受光面側封止材122および背面側封止材124は、それぞれがシート状の部材すなわち受光面側封止材シート122Sおよび背面側封止材シート124Sである。受光面側封止材シート122Sと背面側封止材シート124Sとに由来する封止材である受光面側封止材122と背面側封止材124が、ラミネート処理のための熱プレスなどの手法により通路104を通して互いに接着または接合され、これにより界面102が形成される。 The schematic cross-sectional view shown in FIG. 4A shows a state before the lamination in the vicinity of the passage 104 in the solar cell module 1000 of the present embodiment, and FIG. 4B shows the state after lamination. There is. Before lamination, the light-receiving side sealing material 122 and the back-side sealing material 124 are respectively sheet-like members, that is, the light-receiving surface-side sealing material sheet 122S and the back-side sealing material sheet 124S. The light-receiving side sealing material 122 and the back-side sealing material 124 which are the sealing materials derived from the light-receiving surface-side sealing material sheet 122S and the back-side sealing material sheet 124S are heat press for laminating process In an approach, they are glued or bonded together through the passage 104, thereby forming the interface 102.
 本実施形態の太陽電池モジュール1000に採用することができる光電変換素子100は、任意の薄膜光電変換素子であり、その構造は特段限定されない。光電変換素子100としては、例えばいわゆるモノリシック構造やSCAF構造により互いに直列接続されている多数の単位セルを有する光電変換素子を採用することができる。特に、動作上の必要性からは特段両面をつなぐ貫通孔のような通路が作製されないモノリシック構造のような薄膜光電変換素子では、界面Aにおける接着力の低下がただちにデラミネーションにつながる。このため、本実施形態にて説明する通路104を設けることが、デラミネーションを効果的に防止することに有効である。なお、SCAF構造の薄膜光電変換素子の場合には、上述したように、発電動作が行なわれる発電領域に集電孔や接続孔といった薄膜光電変換素子を貫通する孔(通電性貫通孔)が形成されている場合がある。しかし、本実施形態の通路104は、それが貫通孔104T(図3および4)であったとしても、SCAF構造の通電性貫通孔とは異なり、発電領域110における発電のための面積に影響しない。これは通路104が非発電領域112に形成されているためである。さらには、本実施形態の通路104(貫通孔104T)は、それを通した通電を期待されていない点においても、SCAF構造の薄膜光電変換素子における通電性貫通孔とは別異のものである。 The photoelectric conversion element 100 that can be employed for the solar cell module 1000 of the present embodiment is an arbitrary thin film photoelectric conversion element, and the structure thereof is not particularly limited. As the photoelectric conversion element 100, for example, a photoelectric conversion element having a large number of unit cells connected in series with each other by a so-called monolithic structure or a SCAF structure can be employed. In particular, in the case of a thin film photoelectric conversion element such as a monolithic structure in which a passage such as a through hole connecting both surfaces is not particularly produced due to operational requirements, a decrease in adhesion at the interface A immediately leads to delamination. For this reason, providing the passage 104 described in the present embodiment is effective in effectively preventing the delamination. In the case of the thin film photoelectric conversion element of the SCAF structure, as described above, a hole (electrically conductive through hole) penetrating the thin film photoelectric conversion element such as a current collection hole or connection hole is formed in the power generation region where power generation operation is performed. It may have been. However, even if the passage 104 in this embodiment is the through hole 104T (FIGS. 3 and 4), it does not affect the area for power generation in the power generation region 110 unlike the conductive through hole of the SCAF structure. . This is because the passage 104 is formed in the non-power generation region 112. Furthermore, the passage 104 (the through hole 104T) of the present embodiment is different from the conductive through hole in the thin film photoelectric conversion element of the SCAF structure also in that the passage of current is not expected. .
 受光面側封止材122および背面側封止材124の典型的な材質は、例えばEVA(エチレン-酢酸ビニル共重合体)やポリエチレンなどのオレフィン系樹脂の封止材である。また、受光面側表面保護部材132は、例えばETFEなどのフッ素系樹脂フィルムである。これに対し、背面側に採用される背面側表面保護部材134は、光を透過させる必要性がないため材質の選択範囲が広い。例えば、受光面側表面保護部材132と同種の材料を背面側表面保護部材134に採用し、太陽電池モジュール1000に可撓性を持たせる場合がある。また、背面側表面保護部材134として、鋼板など、物理的強度に優れた材質を採用する場合もある。 Typical materials of the light-receiving surface side sealing material 122 and the back side sealing material 124 are, for example, a sealing material of olefin resin such as EVA (ethylene-vinyl acetate copolymer) or polyethylene. The light receiving surface side surface protecting member 132 is, for example, a fluorine-based resin film such as ETFE. On the other hand, the back side surface protecting member 134 adopted on the back side has a wide selection range of materials because it is not necessary to transmit light. For example, the same kind of material as the light receiving surface side surface protecting member 132 may be adopted for the back surface side protecting member 134 to make the solar cell module 1000 flexible. Moreover, as the back surface side surface protection member 134, a material such as a steel plate that is excellent in physical strength may be adopted.
 太陽電池モジュール1000においては、通路104を通して受光面側封止材122と背面側封止材124とが接着または接合されている。ここで、本実施形態における通路104を通しての接着または接合とは、最も典型的には、接着や熱溶着である。つまり、受光面側封止材122や背面側封止材124がEVAである場合には、受光面側封止材122と背面側封止材124との熱重合や熱溶着による接着または接合が通路104を通して実現されている。これに対し、受光面側封止材122や背面側封止材124がポリエチレンなどである場合には、主として熱溶着により接着または接合が実現されている。なお、受光面側封止材122と背面側封止材124を同種の材料とすることは必ずしも必須ではなく、これらの材質には、互いに良好な接合性または接着性が得られて封止に適する材料の組合せを採用することが可能である。なお、太陽電池モジュール1000の典型例においては、通路104を通さない位置、例えば、光電変換素子100の周辺となる太陽電池モジュール1000の周縁部1000P(図3、図4(b))においても、封止のために受光面側封止材122と背面側封止材124が接着または接合されている。そのような構造に作製されている場合には、周縁部1000Pにおける接着または接合と通路104を通した接着または接合とは典型的には同一の態様のものとされる。 In the solar cell module 1000, the light-receiving side sealing material 122 and the rear-side sealing material 124 are bonded or bonded through the passage 104. Here, the bonding or bonding through the passage 104 in the present embodiment is most typically bonding or heat welding. That is, when the light-receiving side sealing material 122 and the back-side sealing material 124 are EVA, adhesion or bonding by heat polymerization or thermal welding between the light-receiving surface-side sealing material 122 and the back-side sealing material 124 It is realized through the passage 104. On the other hand, when the light-receiving side sealing material 122 and the back side sealing material 124 are polyethylene or the like, adhesion or bonding is mainly realized by thermal welding. In addition, it is not necessarily essential to make the light receiving surface side sealing material 122 and the back surface side sealing material 124 into the same kind of material, and in these materials, good bonding property or adhesiveness is obtained for sealing. It is possible to employ a combination of suitable materials. In a typical example of the solar cell module 1000, even at a position not passing through the passage 104, for example, the peripheral portion 1000P of the solar cell module 1000 that is the periphery of the photoelectric conversion element 100 (FIG. 3, FIG. 4B), The light-receiving side sealing material 122 and the back side sealing material 124 are bonded or bonded for sealing. If made in such a structure, the bonding or bonding at the periphery 1000 P and the bonding or bonding through the passage 104 are typically in the same manner.
 ここで、受光面側封止材122と背面側封止材124の間の界面102(図4(b))は、説明のために明確な境界として記載して説明したものの、このような境界は常に容易に特定することができるとは限らないことには注意が必要である。実施上の条件によっては、両側の材質が混ざり合ったり、成分が漸次的に変化したりすることがある。また、互いに区別しにくいほどに同質の材質が採用されることもある。これらのために、作製された後に、材質の境界としての界面102の特定が容易ではない場合もある。別の留意点として、通路104を通し接着または接合された受光面側封止材122と背面側封止材124との界面は、図4に示した通路104の内部に位置しないことさえある。例えば、受光面8Aから背面8Bにまで、あるいはその逆方向に、通路104を通し受光面側封止材122または背面側封止材124の材質のいずれかが流動することは実際に起こりうる。その結果、受光面側封止材122と背面側封止材124との界面が通路104の外部に存在することもある。このような接着または接合であっても、本出願における通路104を「通して」行なわれる接着または接合に含まれている。通路104を設けることによって受光面側封止材122と背面側封止材124による光電変換素子100の強固な保持が実現されるためである。 Here, although the interface 102 (FIG. 4B) between the light-receiving surface-side sealing material 122 and the back-side sealing material 124 is described and described as a clear boundary for the purpose of explanation, such a boundary It should be noted that is not always easily identifiable. Depending on the practical conditions, the materials on both sides may be mixed or the components may gradually change. Also, the same material may be employed to make it difficult to distinguish one from the other. For these reasons, it may not be easy to identify the interface 102 as a material boundary after being manufactured. Another point to note is that the interface between the light-receiving side sealing material 122 and the back-side sealing material 124 bonded or bonded through the passage 104 may not even be located inside the passage 104 shown in FIG. For example, it may actually occur that the material of the light receiving surface sealing material 122 or the material of the back surface sealing material 124 flows through the passage 104 from the light receiving surface 8A to the back surface 8B or in the opposite direction. As a result, the interface between the light-receiving side sealing material 122 and the rear side sealing material 124 may be present outside the passage 104. Even such bonding or bonding is included in the bonding or bonding that is performed "through" the passage 104 in the present application. By providing the passage 104, strong holding of the photoelectric conversion element 100 by the light receiving surface side sealing material 122 and the rear surface side sealing material 124 is realized.
 受光面側表面保護部材132として例えば鋼板を採用するタイプのものも本実施形態の太陽電池モジュール1000の典型例である。これら以外にも本実施形態において、受光面側表面保護部材132および背面側表面保護部材134の材質の組合せは種々選択することが可能である。例えば受光面側表面保護部材132をガラス基板として背面側表面保護部材134をバックシートと呼ばれる樹脂フィルムとする場合にも、通路104を採用することによるデラミネーション防止の効果を得ることができる。 A type that employs, for example, a steel plate as the light receiving surface side surface protection member 132 is also a typical example of the solar cell module 1000 of the present embodiment. In addition to these, in the present embodiment, various combinations of materials of the light receiving surface side surface protective member 132 and the rear surface side protective member 134 can be selected. For example, even in the case where the light receiving surface side surface protecting member 132 is a glass substrate and the back side surface protecting member 134 is a resin film called a back sheet, the effect of preventing the delamination by adopting the passage 104 can be obtained.
[1-1-1 通路の典型例:貫通孔]
 典型的な通路104は、図3および図4に示したような基板8の受光面8Aと背面8Bとを繋ぐような貫通孔104Tである。基板8が例えば樹脂フィルム基板または金属箔である場合、貫通孔104Tのような形状の通路を形成することは、例えば基板8にパンチにより穿孔する工程や、レーザーなどのパターニングを行なうことにより容易に実現することが可能である。また、基板8がガラス基板などの剛体基板である場合にも、適当な加工手段により通路104が形成される。
[1-1-1 Typical example of passage: through hole]
A typical passage 104 is a through hole 104T that connects the light receiving surface 8A and the back surface 8B of the substrate 8 as shown in FIGS. 3 and 4. When the substrate 8 is, for example, a resin film substrate or a metal foil, forming a passage having a shape like the through hole 104T can be easily performed by, for example, a step of punching the substrate 8 with a punch or patterning such as a laser. It is possible to realize. Further, even when the substrate 8 is a rigid substrate such as a glass substrate, the passage 104 is formed by an appropriate processing means.
[1-1-2 通路の配置:周縁]
 図3に示すように、貫通孔104Tなどの通路104は、周縁非発電領域112Pに設けられている。この周縁非発電領域112Pは、光電変換素子100において発電動作を行なわない非発電領域112のうち、光電変換素子100の周縁をなす領域である。つまり、周縁非発電領域112Pは、光電変換素子100が受光面側封止材122や背面側封止材124からデラミネーションする際に最初に剥がれが生じる確率が高い位置といえる。このため、発電領域110における発電のための面積を減じることなく効果的にデラミネーションを防止するための位置である周縁非発電領域112Pに通路104を設けることは、可能な限り光を有効活用しようとする光電変換素子の構造として有用である。
[1-1-2 Arrangement of passage: edge]
As shown in FIG. 3, the passage 104 such as the through hole 104T is provided in the peripheral non-power generation region 112P. The peripheral non-power generation region 112P is a region forming the peripheral edge of the photoelectric conversion element 100 in the non-power generation region 112 in which the power generation operation is not performed in the photoelectric conversion element 100. That is, it can be said that the peripheral non-power generation region 112P is a position where there is a high probability that peeling initially occurs when the photoelectric conversion element 100 is delaminated from the light receiving surface side sealing material 122 or the back surface side sealing material 124. Therefore, providing the passage 104 in the peripheral non-power generation area 112P, which is a position for effectively preventing delamination without reducing the area for power generation in the power generation area 110, makes effective use of light as much as possible. It is useful as a structure of the photoelectric conversion element to be
[1-1-3 通路の配置:素子間]
 また、図3に示すように、一片の基板に並べて二つ以上の発電領域110Aおよび発電領域110Bが形成されている場合において、非発電領域112が発電領域110Aおよび発電領域110Bの間に設けられた発電領域間非発電領域112Sを有している場合がある。これは、電気的な接続構成の理由によるものである。その場合、貫通孔104Tなどの通路104を、発電領域間非発電領域112Sに設けることも好適である。というのは、太陽電池モジュール1000においては、発電領域110Aや発電領域110Bにおける発電のための面積が可能な限り大きく確保される。そのため、図3に平面図として示したように発電領域110Aと発電領域110Bとの間となる発電領域間非発電領域112Sの配置は、光電変換素子100全体をいくつかの領域に等分する領域の境界に位置するように設計されることが多い。例えば、図3の発電領域間非発電領域112Sは、光電変換素子100全体を二等分する位置である。したがって、このような配置にしばしば決定される発電領域間非発電領域112Sは、光電変換素子100を全体としてみた場合に、受光面側封止材122および背面側封止材124により強固に保持する目的の位置として好ましい位置となるためである。
[1-1-3 Arrangement of passage: Between elements]
Further, as shown in FIG. 3, when two or more power generation areas 110A and 110B are formed side by side on a single piece of substrate, non-power generation area 112 is provided between power generation area 110A and power generation area 110B. There may be a case where there is a non-power generation region 112S between power generation regions. This is because of the electrical connection configuration. In that case, it is also preferable to provide the passage 104 such as the through hole 104T in the inter-power generation region non-power generation region 112S. That is, in the solar cell module 1000, the area for power generation in the power generation region 110A and the power generation region 110B is secured as large as possible. Therefore, as shown in the plan view of FIG. 3, the arrangement of the non-power generation area 112S between the power generation area 110A and the power generation area 110B is an area equally dividing the entire photoelectric conversion element 100 into several areas. It is often designed to be located at the boundary of For example, the non-power generation region 112S between power generation regions in FIG. 3 is a position where the entire photoelectric conversion element 100 is bisected. Therefore, the inter-power generation region non-power generation region 112S, which is often determined in such an arrangement, is firmly held by the light receiving surface side sealing material 122 and the back side sealing material 124 when the photoelectric conversion element 100 is viewed as a whole. It is because it becomes a desirable position as a target position.
[1-2 通路の変形例]
 上述したように貫通孔104Tが通路104の典型例である。ただし、本実施形態における通路104は、受光面8Aと背面8Bとを連通させるような任意の空間的な領域である限り、貫通孔に限定されるものではない。図5は、通路のバリエーションを例示する説明図である。例えば、基板8の縁部をなす外形線を蛇行させるとする。すると、光電変換素子100の広がりの範囲を定める外縁8Lよりも内側において、受光面側封止材122と背面側封止材124とが互いに接触できることとなる。このように、受光面8Aと背面8Bとを通って受光面側封止材122と背面側封止材124とが接着または接合されるような空間領域のうち、光電変換素子100の外縁8Lよりも内側に配置される任意の空間領域を本実施形態の通路104として採用することができる。特に周縁非発電領域112Pは外縁8Lの付近に配置されるため、周縁非発電領域112Pに配置される通路104としては様々なバリエーションを採用することが可能である。まず、上述した典型例である貫通孔104T(図5(a))は、本実施形態の通路104として、デラミネーションを防止しうる能力に最も優れた形状の一つである。この貫通孔104Tは、例えば周縁非発電領域112Pや発電領域間非発電領域112Sにおいて、図5(a)に示したような基板8に設けた窓状の開口として形成される。また、例えば、外形線を凹ませた切欠部104R(図5(b))、ジグソーパズルのピース間の区分線のような蛇行させた外形線による凹み部104J(図5(c))、のこぎり状波または波線上の外形線により作られる凹み部104W(図5(d))、といった任意の形状の通路を通路104として採用することができる。また、これらの組合せの複数種類の通路を採用することも有用である。
[1-2 Modification of passage]
As described above, the through hole 104T is a typical example of the passage 104. However, the passage 104 in the present embodiment is not limited to the through hole as long as it is an arbitrary spatial region that allows the light receiving surface 8A and the back surface 8B to communicate with each other. FIG. 5 is an explanatory view illustrating a variation of the passage. For example, it is assumed that the outline forming the edge of the substrate 8 is meandered. Then, the light-receiving surface-side sealing material 122 and the rear-surface-side sealing material 124 can be in contact with each other on the inner side than the outer edge 8L that defines the range of expansion of the photoelectric conversion element 100. As described above, from the outer edge 8 L of the photoelectric conversion element 100 in the space region where the light receiving surface side sealing material 122 and the back surface side sealing material 124 are bonded or bonded through the light receiving surface 8 A and the back surface 8 B. Also, any space area arranged inside can be adopted as the passage 104 in the present embodiment. In particular, since the peripheral non-power generation region 112P is disposed near the outer edge 8L, various variations can be adopted as the passage 104 arranged in the peripheral non-power generation region 112P. First, the through hole 104T (FIG. 5A), which is the typical example described above, is one of the most excellent shapes in the ability to prevent delamination as the passage 104 in the present embodiment. The through holes 104T are formed as window-like openings provided in the substrate 8 as shown in FIG. 5A, for example, in the peripheral non-power generation region 112P and the non-power generation region 112S between the power generation regions. Also, for example, a notch 104R (FIG. 5 (b)) having an outline outline recessed, a concave part 104J (FIG. 5 (c)) with a serpentine outline such as a dividing line between pieces of a jigsaw puzzle, A passage of any shape may be employed as the passage 104, such as a recess 104W (FIG. 5 (d)) made by a wave or wave outline. It is also useful to employ multiple types of passages in these combinations.
[1-3 追加シートを有する場合]
 図6は、例えば防湿シートなどの追加シート140を封止材とともにラミネートして作製されている太陽電池モジュール1100の構造を示す概略断面図である。太陽電池モジュールには、例えば光電変換素子100の受光面8Aに対する物理的な衝撃や化学的な作用から光電変換素子100を保護するため、または、太陽電池モジュール1100全体の耐候性を太陽電池モジュール1000よりも高めるために、追加シートが追加されてともにラミネートされる場合がある。これらの目的のために、追加シート140が配置され、かつ、追加封止材126(126Aおよび126B)も配置されている。一方で、デラミネーションの観点からは受光面側封止材122や背面側封止材124、そして追加封止材126と追加シート140との界面すなわち界面Dまたは界面D´(図2)における接着性が問題となり得る。本実施形態の技術思想として上述した通路に類似したシート通路がこの問題に対する解決策を提供する。まず、追加シート140として採用される材質は、追加シート140は、例えば硝子繊維不織布のシートや、水分のバリア性に優れたバリアシートなどである。これらは、例えば光電変換素子100の一方の面のみに配置される場合や、また、光電変換素子100の両面に配置される場合がある。太陽電池モジュール1100には、太陽電池モジュール1000(図3、4)と同様の光電変換素子100に加え、受光面8A側に配置された追加シート140Aと背面8B側に配置された追加シート140Bとが配置されている。追加シート140Aは、受光面側封止材122と光電変換素子100との間に配置されている。そして、追加シート140Aと光電変換素子100の受光面8Aとの間、および、追加シート140Bと光電変換素子100の背面8Bとの間には、それぞれ、上述した追加封止材126Aおよび126Bが配置されている。追加封止材126Aや追加封止材126Bの表面は、図2にて説明した界面Dまたは界面D´となるため、特に長期使用後において、界面Eほどの強い接着力が維持できないことがある。なお、追加封止材126Aまたは追加封止材126Bは、受光面側封止材122や背面側封止材124と同種の材質のシートである場合もあるし、また、受光面側封止材122や背面側封止材124との間で接着性を有するものの、受光面側封止材122や背面側封止材124とは別種の材質のシートである場合もある。
[If you have 1-3 additional sheets]
FIG. 6 is a schematic cross-sectional view showing the structure of a solar cell module 1100 manufactured by laminating an additional sheet 140 such as, for example, a moistureproof sheet together with a sealing material. In the solar cell module, for example, in order to protect the photoelectric conversion element 100 from physical impact or chemical action on the light receiving surface 8A of the photoelectric conversion element 100, or weather resistance of the entire solar cell module 1100 as the solar cell module 1000. Additional sheets may be added and laminated together in order to be more effective. For these purposes, an additional sheet 140 has been placed, and additional seals 126 (126A and 126B) have also been placed. On the other hand, from the viewpoint of delamination, adhesion at the interface between the light-receiving side sealing material 122 and the back side sealing material 124 and the additional sealing material 126 and the additional sheet 140, ie, interface D or interface D '(FIG. 2) Sex can be a problem. A sheet path similar to the path described above as the technical idea of this embodiment provides a solution to this problem. First, the material adopted as the additional sheet 140 is, for example, a sheet of glass fiber non-woven fabric, a barrier sheet having excellent moisture barrier properties, or the like. These may be disposed, for example, only on one side of the photoelectric conversion element 100, or may be disposed on both sides of the photoelectric conversion element 100. In the solar cell module 1100, in addition to the photoelectric conversion element 100 similar to the solar cell module 1000 (FIGS. 3 and 4), an additional sheet 140A disposed on the light receiving surface 8A side and an additional sheet 140B disposed on the back surface 8B side. Is arranged. The additional sheet 140A is disposed between the light-receiving surface side sealing material 122 and the photoelectric conversion element 100. The additional sealing materials 126A and 126B described above are disposed between the additional sheet 140A and the light receiving surface 8A of the photoelectric conversion element 100 and between the additional sheet 140B and the back surface 8B of the photoelectric conversion element 100, respectively. It is done. Since the surfaces of the additional sealing material 126A and the additional sealing material 126B are the interface D or the interface D 'described in FIG. 2, the adhesive strength as high as that of the interface E may not be maintained particularly after long-term use. . The additional sealing material 126A or the additional sealing material 126B may be a sheet of the same material as that of the light receiving surface side sealing material 122 or the rear surface side sealing material 124, or the light receiving surface side sealing material Although there is adhesiveness between the sealing member 122 and the rear side sealing material 124, the light receiving side sealing material 122 and the rear side sealing material 124 may be a sheet of a different type of material.
 本実施形態においては、このような追加シート140Aまたは追加シート140Bに対しても、両面の間を連通するシート通路144を設ける。追加封止材126Aおよび126Bは、シート通路144を通して、受光面側封止材122または背面側封止材124のいずれかと接着または接合される。その結果、追加シート140Aは、追加封止材126Aと受光面側封止材122とにより強固に保持されることとなる。同様に、追加シート140Bは、追加封止材126Bと背面側封止材124とにより保持される。このため、追加シート140を追加したことによるデラミネーションの発生の可能性を低減することが可能となる。なお、シート通路144を設ける位置は、追加シート140の機能を損なわない任意の位置である。例えば、追加シート140が透湿を防止することにより光電変換素子100に対する水分の影響を軽減する機能を有する追加のシートである場合には、追加シート140の周縁部にシート通路144が形成されて、追加シート140の大半の部分における機能を損なわないように位置が決定される。つまり、追加シート140がシート通路144のためにその機能を損なうような特性の部材である場合には、その特性を考慮して、追加シート140におけるシート通路144の位置が決定されることが好ましい。また、シート通路144を設ける位置は、追加シート140の機能を発揮させつつ、太陽電池モジュール1100の発電機能にも影響を与えないところとされることが好ましい。例えば追加シート140がシート通路144のためにその機能を損なう特性の部材である場合には、シート通路144は、追加シート部材140において、発電領域110の外である非発電領域112に対応する範囲や、光電変換素子100からはずれている周縁部1100Pに対応する範囲に配置される(図6)。そして、発電領域110に対応する追加シート140の範囲には、シート通路144は配置されない。この際、シート通路を設けない追加シートと同等のサイズの有効な範囲を得るため、追加シート140のサイズを、シート通路144を設けるためのマージンまで勘案した上で大きく作製することも有効である。 In the present embodiment, a sheet passage 144 communicating between both surfaces is provided also for such additional sheet 140A or additional sheet 140B. The additional encapsulants 126A and 126B are bonded or bonded to either the light-receiving surface encapsulant 122 or the back encapsulant 124 through the sheet passage 144. As a result, the additional sheet 140A is firmly held by the additional sealing material 126A and the light receiving surface side sealing material 122. Similarly, the additional sheet 140 B is held by the additional sealing material 126 B and the back side sealing material 124. Therefore, it is possible to reduce the possibility of the occurrence of delamination due to the addition of the additional sheet 140. The position where the sheet passage 144 is provided is an arbitrary position that does not impair the function of the additional sheet 140. For example, in the case where the additional sheet 140 is an additional sheet having a function of reducing the influence of moisture on the photoelectric conversion element 100 by preventing moisture permeation, the sheet passage 144 is formed in the peripheral portion of the additional sheet 140 , The position is determined so as not to impair the function in most parts of the additional sheet 140. That is, when the additional sheet 140 is a member having a property that impairs its function due to the sheet passage 144, it is preferable that the position of the sheet path 144 in the additional sheet 140 be determined in consideration of the characteristics. . In addition, it is preferable that the position where the sheet passage 144 is provided not to affect the power generation function of the solar cell module 1100 while exerting the function of the additional sheet 140. For example, if the additional sheet 140 is a member having a property that impairs its function due to the sheet passage 144, the sheet passage 144 corresponds to the non-power generation area 112 outside the power generation area 110 in the additional sheet member 140. Or, it is disposed in a range corresponding to the peripheral portion 1100P which is deviated from the photoelectric conversion element 100 (FIG. 6). The sheet passage 144 is not disposed in the range of the additional sheet 140 corresponding to the power generation area 110. At this time, in order to obtain an effective range of the same size as the additional sheet not provided with the sheet passage, it is also effective to make the additional sheet 140 large in consideration of the size for providing the sheet passage 144 .
 なお、上述した図6に基づく説明において、追加シート140A追加シート140Bの両者を明示しているものの、本実施形態の追加シートを採用する太陽電池モジュールにおいては、追加シート140Aまたは追加シート140Bのいずれか一方のみを配置する場合がある。その場合には、光電変換素子100の通路104を通して接着または接合される封止材は、追加封止材126Aと背面側封止材124(追加シート140Aのみ設ける場合)や、受光面側封止材122と追加封止材126B(追加シート140Bのみ設ける場合)となる。また、追加シート140におけるシート通路144の位置は、追加シート140がシート通路144によりその機能を損なうことがない場合、発電領域110に対応する範囲に設けても構わない。 Although both of the additional sheet 140A and the additional sheet 140B are clearly shown in the description based on FIG. 6 described above, either of the additional sheet 140A or the additional sheet 140B in the solar cell module adopting the additional sheet of this embodiment. Only one or the other may be placed. In that case, the sealing material adhered or bonded through the passage 104 of the photoelectric conversion element 100 is the additional sealing material 126A, the back side sealing material 124 (when only the additional sheet 140A is provided), the light receiving surface side sealing It becomes material 122 and additional sealing material 126B (when providing only additional sheet 140B). Further, the position of the sheet passage 144 in the additional sheet 140 may be provided in a range corresponding to the power generation area 110 if the additional sheet 140 does not impair its function by the sheet passage 144.
[2 製造方法]
 次に太陽電池モジュール1000を例として本実施形態の太陽電池モジュールの製造方法について説明する。図7は、本実施形態における太陽電池モジュール1000の製造方法を示すフローチャートである。図3、4、6も適宜参照して説明する。
[2 Manufacturing method]
Next, a method of manufacturing the solar cell module of the present embodiment will be described by taking the solar cell module 1000 as an example. FIG. 7 is a flowchart showing a method of manufacturing the solar cell module 1000 in the present embodiment. 3, 4 and 6 will also be described with appropriate reference.
 まず、本実施形態においては、通路104を有する光電変換素子100が準備される(S102)。この光電変換素子100を作製するためには、任意の製造方法によって光電変換素子を製造した後において、通路104を形成することができる。それ以外にも、光電変換素子100を製造するための任意のタイミングにおいて通路となる貫通孔などを形成することも有効である。特に通路104は発電動作が行なわれない非発電領域112に形成される。なお、一般の光電変換素子と同様に、光電変換素子100は、裏面電極、光電変換層および透明電極が基板の一方の面の上にこの順に形成されている。 First, in the present embodiment, the photoelectric conversion element 100 having the passage 104 is prepared (S102). In order to manufacture this photoelectric conversion element 100, after manufacturing a photoelectric conversion element by arbitrary manufacturing methods, the channel | path 104 can be formed. Besides, it is also effective to form a through hole or the like which becomes a passage at an arbitrary timing for manufacturing the photoelectric conversion element 100. In particular, the passage 104 is formed in the non-power generation region 112 where the power generation operation is not performed. As in the case of a general photoelectric conversion element, in the photoelectric conversion element 100, the back surface electrode, the photoelectric conversion layer, and the transparent electrode are formed in this order on one surface of the substrate.
 次に、積み重ね体の形成工程S104を実施する。積み重ね体の形成工程S104は、背面側表面保護部材134、背面側封止材シート124S、光電変換素子100、受光面側封止材シート122S、そして受光面側表面保護部材132を背面側からこの順に重ねた積み重ね体を形成する工程である。このようにして形成された積み重ね体は、次のラミネート工程S106によってラミネート処理される。このラミネート処理は、受光面側封止材シート122Sおよび背面側封止材シート124Sの接着または接合により受光面側表面保護部材132および背面側表面保護部材134を光電変換素子100に対して一体化する処理である。この際、通路104を通して受光面側封止材シート122Sおよび背面側封止材シート124Sの封止材同士が非発電領域112において接着または接合することとなる。 Next, the step of forming a stack S104 is performed. In the step of forming a stack S104, the rear surface protecting member 134, the rear sealing material sheet 124S, the photoelectric conversion element 100, the light receiving surface sealing material sheet 122S, and the light receiving surface protection member 132 are viewed from the rear side. It is a process of forming a stacked body stacked in order. The stack formed in this manner is laminated in the next laminating step S106. In this lamination process, the light receiving surface side surface protecting member 132 and the rear surface side protecting member 134 are integrated with the photoelectric conversion element 100 by adhesion or bonding of the light receiving surface side sealing material sheet 122S and the back surface side sealing material sheet 124S. Processing. At this time, the sealing materials of the light-receiving surface-side sealing material sheet 122S and the rear-side sealing material sheet 124S are bonded or bonded in the non-power generation region 112 through the passage 104.
 このようにして作製された太陽電池モジュール1000においては、図4を参照して説明したように、受光面側封止材122と背面側封止材124が通路104を通して接着または接合している。こうして、太陽電池モジュール1000は、光電変換素子100が受光面側封止材122および背面側封止材124によって強固に保持される構造に作製される。 In the solar cell module 1000 manufactured in this manner, as described with reference to FIG. 4, the light-receiving surface-side sealing material 122 and the rear-surface-side sealing material 124 are bonded or bonded through the passage 104. Thus, the solar cell module 1000 is manufactured in a structure in which the photoelectric conversion element 100 is firmly held by the light receiving surface side sealing material 122 and the back surface side sealing material 124.
 なお、追加シート140を有する場合の太陽電池モジュール1100の製造方法も太陽電池モジュール1000の製造方法に準じたものである。つまり、積み重ね体の形成工程S104において、追加シート140A、追加シート140B、追加封止材126Aおよび126Bとなる封止材のシートを必要に応じて追加する。この際、追加シート140Aや追加シート140Bの位置は、光電変換素子100に対してシート通路144の配置が適切となるように位置合わせされることが好ましい。例えば、追加シート140Aや追加シート140Bの位置が光電変換素子100の発電領域110に対する透湿を抑制するシートである場合などでは、シート通路144が追加シート140Aや追加シート140Bの機能に影響することがある。このような特性の追加シート140Aや追加シート140Bを採用する場合には、上記位置合わせにより、シート通路144の位置を、例えば発電領域110から外した範囲など、追加シート140Aや追加シート140Bの機能を発揮させる対象の位置から外した範囲に配置する。その範囲は、図6の太陽電池モジュール1100の構造により示せば、一例として、非発電領域112に対応する範囲であり、別例として、光電変換素子100の外の周縁部1100Pに対応する範囲である。積み重ね対における各層の順序は、一体化した後に、図5に示した太陽電池モジュール1100の積層構造が得られる順序になるようにしておく。そして、ラミネート工程S106と同様のラミネート工程を経ることにより、太陽電池モジュール1100が作製される。 In addition, the manufacturing method of the solar cell module 1100 in the case of having the additional sheet | seat 140 also applies the manufacturing method of the solar cell module 1000. That is, in the stack formation step S104, sheets of the sealing material to be the additional sheet 140A, the additional sheet 140B, and the additional sealing materials 126A and 126B are added as necessary. At this time, the positions of the additional sheet 140A and the additional sheet 140B are preferably aligned such that the arrangement of the sheet passage 144 is appropriate with respect to the photoelectric conversion element 100. For example, when the position of the additional sheet 140A or the additional sheet 140B is a sheet that suppresses moisture permeation to the power generation region 110 of the photoelectric conversion element 100, the sheet passage 144 affects the functions of the additional sheet 140A or the additional sheet 140B. There is. When adopting the additional sheet 140A or the additional sheet 140B having such characteristics, the function of the additional sheet 140A or the additional sheet 140B, for example, the range where the position of the sheet passage 144 is removed from the power generation area 110 by the above alignment. Place in the range removed from the position of the target to exert. The range is, for example, a range corresponding to the non-power generation region 112 as shown by the structure of the solar cell module 1100 in FIG. 6, and another range is a range corresponding to the outer peripheral portion 1100 P of the photoelectric conversion element 100. is there. The order of the layers in the stack pair is such that, after integration, the stack structure of the solar cell module 1100 shown in FIG. 5 is obtained. Then, the solar cell module 1100 is manufactured through the same laminating process as the laminating process S106.
 以上、本発明の実施形態を具体的に説明した。上述の各実施形態および実施例は、発明を説明するために記載されたものであり、本出願の発明の範囲は、請求の範囲の記載に基づいて定められるべきものである。また、各実施形態の他の組合せを含む本発明の範囲内に存在する変形例もまた、請求の範囲に含まれるものである。 The embodiments of the present invention have been specifically described above. The above-described embodiments and examples are described to explain the invention, and the scope of the invention of the present application should be determined based on the description of the claims. In addition, modifications within the scope of the present invention, including other combinations of the respective embodiments, are also included in the scope of the claims.
 本発明の太陽電池モジュールは、長期使用時の信頼性を高めることにより、実用性の高い太陽光発電システムの製造に利用することが可能である。 INDUSTRIAL APPLICABILITY The solar cell module of the present invention can be used to manufacture a highly practical solar power generation system by enhancing the reliability in long-term use.
 1000、1100 太陽電池モジュール
 1000P、1100P 周縁部
 100 光電変換素子
 8 基板
 8A 受光面
 8B 背面
 8L 外縁
 10 裏面電極
 20 光電変換層
 30 透明電極
 102 界面
 104 通路
 104T 貫通孔
 104R 切欠部
 104J、104W 凹み部
 110、110A、110B 発電領域
 112 非発電領域
 112P 周縁非発電領域
 112S 発電領域間非発電領域
 122 受光面側封止材
 122S 受光面側封止材シート
 124 背面側封止材
 124S 背面側封止材シート
 126、126A、126B 追加封止材
 132 受光面側表面保護部材
 134 背面側表面保護部材
 140、140A、140B 追加シート
 144 シート通路
 9000 太陽電池モジュール
 900 光電変換素子
 922、924 封止材
 926A、926B 追加封止材
 932、934 表面保護材
 942、944 追加シート
1000, 1100 solar cell module 1000P, 1100P peripheral part 100 photoelectric conversion element 8 substrate 8A light receiving surface 8B back surface 8L outer edge 10 back surface electrode 20 photoelectric conversion layer 30 transparent electrode 102 interface 104 passage 104T through hole 104R notch 104J, 104W recess 110 110A, 110B power generation area 112 non-power generation area 112P peripheral non-power generation area 112S power generation area non-power generation area 122 light receiving surface sealing material 122S light receiving surface sealing material sheet 124 rear surface sealing material 124S rear surface sealing material sheet 126, 126A, 126B Additional sealing material 132 Light receiving surface side surface protection member 134 Back side surface protection member 140, 140A, 140B Additional sheet 144 Sheet passage 9000 Solar cell module 900 Photoelectric conversion element 922, 924 Sealing material 926 , 926B add the sealant 932, 934 surface protective material 942, 944 additional seat

Claims (7)

  1.  裏面電極、光電変換層および透明電極が基板の一方の面である受光面の上にこの順に形成されており、発電動作が行なわれない非発電領域に、前記基板の前記受光面と、該受光面とは他方の面である背面との間を連通する通路を有している光電変換素子と、
     前記基板の前記受光面の側において該光電変換素子を封止する受光面側封止材と、
     前記基板の前記背面の側において該光電変換素子を封止する背面側封止材と、
     前記受光面側封止材および前記背面側封止材との接着または接合により、前記光電変換素子に対してそれぞれがラミネートされている受光面側表面保護部材および背面側表面保護部材と
     を備えており、
     前記非発電領域において前記通路を通して前記光電変換素子の両面の封止材同士が互いに接着または接合されている
     太陽電池モジュール。
    The back surface electrode, the photoelectric conversion layer, and the transparent electrode are formed in this order on the light receiving surface which is one surface of the substrate, and the light receiving surface of the substrate and the light receiving surface are not generated. A photoelectric conversion element having a passage communicating between the surface and the other surface, the back surface;
    A light receiving surface sealing material for sealing the photoelectric conversion element on the light receiving surface side of the substrate;
    A back side sealing material which seals the photoelectric conversion element on the back side of the substrate;
    A light receiving surface side surface protective member and a rear surface side protecting member, each of which is laminated to the photoelectric conversion element by adhesion or bonding with the light receiving surface side sealing material and the rear surface side sealing material; Yes,
    The solar cell module in which the sealing materials on both sides of the photoelectric conversion element are bonded or bonded to each other through the passage in the non-power generation region.
  2.  前記通路が、前記非発電領域における前記基板の前記受光面と前記背面とを繋ぐ貫通孔である
     請求項1に記載の太陽電池モジュール。
    The solar cell module according to claim 1, wherein the passage is a through hole connecting the light receiving surface of the substrate and the back surface in the non-power generation region.
  3.  前記非発電領域が前記光電変換素子の周縁をなす周縁非発電領域を有しており、
     前記通路が該周縁非発電領域に設けられている
     請求項1に記載の太陽電池モジュール。
    The non-power generation region has a peripheral non-power generation region that forms the peripheral edge of the photoelectric conversion element,
    The solar cell module according to claim 1, wherein the passage is provided in the peripheral non-power generation region.
  4.  前記光電変換素子が一片の基板に並べて形成された複数の発電領域を有しており、
     前記非発電領域が該複数の発電領域のいずれか二つの間に設けられた発電領域間非発電領域を有しており、
     前記通路が該発電領域間非発電領域に設けられている
     請求項1に記載の太陽電池モジュール。
    The photoelectric conversion element has a plurality of power generation regions formed by arranging in one piece of substrate;
    The non-power generation region includes a non-power generation region between power generation regions provided between any two of the plurality of power generation regions;
    The solar cell module according to claim 1, wherein the passage is provided in a non-power generation region between the power generation regions.
  5.  前記受光面側封止材および前記背面側封止材のうちの一方の封止材と前記光電変換素子との間に、
     シート状の追加シート部材であって、該追加シート部材の両面の間を連通するシート通路を有する追加シート部材と、
     該追加シート部材および該光電変換素子に挟まれた追加封止材と
     をさらに備え、
     前記シート通路を通して、前記受光面側封止材および前記背面側封止材のうちの前記一方の封止材と前記追加封止材とが接着または接合されている
     請求項1の太陽電池モジュール。
    Between the one of the light receiving surface side sealing material and the back side sealing material and the photoelectric conversion element,
    A sheet-like additional sheet member having a sheet passage communicating between both surfaces of the additional sheet member;
    The additional sheet member and an additional sealing material sandwiched between the photoelectric conversion elements;
    The solar cell module according to claim 1, wherein the one sealing material of the light receiving surface-side sealing material and the back surface-side sealing material and the additional sealing material are bonded or joined through the sheet passage.
  6.  前記シート通路が、前記追加シート部材において、前記非発電領域に対応する範囲と前記光電変換素子より外の太陽電池モジュールの周縁部に対応する範囲とのいずれかまたは両方に配置されており、前記光電変換素子の発電領域に対応する範囲に配置されていない
     請求項5の太陽電池モジュール。
    The sheet passage is disposed, in the additional sheet member, in one or both of a range corresponding to the non-power generation region and a range corresponding to a peripheral portion of the solar cell module outside the photoelectric conversion element, The solar cell module of Claim 5 which is not arrange | positioned in the range corresponding to the electric power generation area | region of a photoelectric conversion element.
  7.  裏面電極、光電変換層および透明電極が基板の一方の面である受光面の上にこの順に形成されており、発電動作が行なわれない非発電領域に、該基板の前記受光面とは他方の面である背面との間を連通する通路を有している光電変換素子を準備する工程と、
     受光面側表面保護部材、受光面側封止材シート、該光電変換素子、背面側封止材シート、および背面側表面保護部材をこの順に重ねて積み重ね体を形成する工程と、
     前記受光面側封止材シートおよび前記背面側封止材シートとの接着または接合により、前記受光面側表面保護部材および前記背面側表面保護部材のそれぞれを前記光電変換素子に対してラミネートするとともに、前記受光面側封止材シートおよび前記背面側封止材シートそれぞれの封止材同士を前記非発電領域において前記通路を通して接着または接合させるラミネート工程と
     を含む
     太陽電池モジュールの製造方法。
    A back electrode, a photoelectric conversion layer, and a transparent electrode are formed in this order on the light receiving surface which is one surface of the substrate, and in a non-power generation region where power generation operation is not performed, the light receiving surface of the substrate is the other. Providing a photoelectric conversion element having a passage communicating with the rear surface, which is a surface;
    Forming a stack by overlapping the light receiving surface side surface protection member, the light receiving surface side sealing material sheet, the photoelectric conversion element, the back surface side sealing material sheet, and the back surface surface protection member in this order;
    Each of the light receiving surface side surface protecting member and the rear surface side protecting member is laminated to the photoelectric conversion element by adhesion or bonding with the light receiving surface side sealing material sheet and the back side sealing material sheet. A method of manufacturing a solar cell module, comprising a laminating step of bonding or bonding the sealing materials of the light receiving surface-side sealing material sheet and the back surface-side sealing material sheet in the non-power generation region through the passage.
PCT/JP2012/078967 2011-12-13 2012-11-08 Solar cell module and method for manufacturing same WO2013088868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011272297 2011-12-13
JP2011-272297 2011-12-13

Publications (1)

Publication Number Publication Date
WO2013088868A1 true WO2013088868A1 (en) 2013-06-20

Family

ID=48612323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078967 WO2013088868A1 (en) 2011-12-13 2012-11-08 Solar cell module and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013088868A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131048A (en) * 1993-05-18 1995-05-19 Canon Inc Solar cell module and installation thereof
JPH1070300A (en) * 1996-08-29 1998-03-10 Fuji Electric Co Ltd Solar cell module
JP2000124491A (en) * 1998-10-14 2000-04-28 Fuji Electric Corp Res & Dev Ltd Solar battery module and its manufacture
JP2001244486A (en) * 2000-02-25 2001-09-07 Sanyo Electric Co Ltd Solar battery module
JP2005235842A (en) * 2004-02-17 2005-09-02 Fuji Electric Holdings Co Ltd Solar cell module
JP2006049541A (en) * 2004-08-04 2006-02-16 Fuji Electric Holdings Co Ltd Solar cell module and its manufacturing method
JP2011222558A (en) * 2010-04-02 2011-11-04 Mitsubishi Chemicals Corp Laying method of light shielding sheet with thin-film solar battery, light shielding sheet with thin-film solar battery, and thin-film solar battery module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07131048A (en) * 1993-05-18 1995-05-19 Canon Inc Solar cell module and installation thereof
JPH1070300A (en) * 1996-08-29 1998-03-10 Fuji Electric Co Ltd Solar cell module
JP2000124491A (en) * 1998-10-14 2000-04-28 Fuji Electric Corp Res & Dev Ltd Solar battery module and its manufacture
JP2001244486A (en) * 2000-02-25 2001-09-07 Sanyo Electric Co Ltd Solar battery module
JP2005235842A (en) * 2004-02-17 2005-09-02 Fuji Electric Holdings Co Ltd Solar cell module
JP2006049541A (en) * 2004-08-04 2006-02-16 Fuji Electric Holdings Co Ltd Solar cell module and its manufacturing method
JP2011222558A (en) * 2010-04-02 2011-11-04 Mitsubishi Chemicals Corp Laying method of light shielding sheet with thin-film solar battery, light shielding sheet with thin-film solar battery, and thin-film solar battery module

Similar Documents

Publication Publication Date Title
US7960643B2 (en) Isolated metallic flexible back sheet for solar module encapsulation
US7829783B2 (en) Isolated metallic flexible back sheet for solar module encapsulation
WO2016005607A1 (en) Solar panel and method of manufacturing such a solar panel
WO2013146414A1 (en) Back contact solar cell module
TW201003948A (en) Photovoltaic modules manufactured using monolithic module assembly techniques
JP2018014542A (en) Solar cell module
WO2012176419A1 (en) Solar cell module and method of manufacturing same
JP2014090160A (en) Solar cell module
TW201218395A (en) Solar cell module and fabricating method thereof
US9379268B2 (en) Solar cell module and method of manufacturing the same
JP2016063019A (en) Sealing material with electric wiring for back contact type battery module and back contact type battery module
JP2010238714A (en) Protection sheet for solar cell module, solar cell module and method of manufacturing solar cell module
WO2014084037A1 (en) Solar-cell module
JP2013125778A (en) Solar cell module and manufacturing method of the same
WO2013088868A1 (en) Solar cell module and method for manufacturing same
JP6312761B2 (en) Solar cell module
JP6029023B2 (en) SOLAR CELL, SOLAR CELL MODULE, AND SOLAR CELL MANUFACTURING METHOD
JP2006173298A (en) Solar cell module
JP2014060209A (en) Thin film solar cell module and manufacturing method of the same
WO2013042683A1 (en) Solar cell module
JP6224696B2 (en) Solar cell module
JP7449156B2 (en) Back protection material for solar cell module and back protection material for solar cell module
JP2015198220A (en) solar cell module
JP7377692B2 (en) solar module
WO2014050078A1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP