WO2013084930A1 - フレーム構造体及び箱状構造体 - Google Patents

フレーム構造体及び箱状構造体 Download PDF

Info

Publication number
WO2013084930A1
WO2013084930A1 PCT/JP2012/081493 JP2012081493W WO2013084930A1 WO 2013084930 A1 WO2013084930 A1 WO 2013084930A1 JP 2012081493 W JP2012081493 W JP 2012081493W WO 2013084930 A1 WO2013084930 A1 WO 2013084930A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer frame
shaped member
frame structure
section
cross
Prior art date
Application number
PCT/JP2012/081493
Other languages
English (en)
French (fr)
Inventor
半谷 公司
清水 信孝
菅野 良一
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2013522019A priority Critical patent/JP5532184B2/ja
Publication of WO2013084930A1 publication Critical patent/WO2013084930A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M5/00Engine beds, i.e. means for supporting engines or machines on foundations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/08Foot or support base

Definitions

  • the present invention relates to a frame structure used as, for example, a bottom plate that supports a heavy object, and a box-like structure including the frame structure.
  • a transport pallet used for transporting or storing luggage is known.
  • This transportation pallet adopts a configuration in which a plurality of reinforcing members are arranged in a right-angled lattice shape inside an outer frame having a rectangular planar shape, thereby ensuring strength against external forces such as load of luggage. It is general (see, for example, Patent Document 1 below).
  • a high-rigidity frame structure that employs a configuration in which a plurality of reinforcing members are arranged in a right-angled lattice pattern inside the outer frame having a rectangular planar shape as described above, as a bottom plate for precision machinery. Often uses the body.
  • the frame structure having such a configuration generally uses a closed cross-section member such as a square steel having a high torsional rigidity instead of an open cross-section member that is weak against torsion, its weight and members The increase in cost becomes a problem.
  • the present invention has been made in view of the above-described problems, and provides a frame structure capable of realizing weight reduction and cost reduction while ensuring required rigidity, and a box-like structure including the frame structure.
  • the purpose is to do.
  • a frame structure according to an aspect of the present invention includes an outer frame having a rectangular planar shape, and a plurality of oblique reinforcing members arranged in an oblique lattice shape inside the outer frame;
  • the reinforcing members are arranged on a pair of diagonal lines of the outer frame, and are arranged so that one or a plurality of quadrilaterals inscribed in the outer frame are formed when viewed in plan.
  • one or more bent portions It may be an open cross-section member having an open cross-section.
  • the open cross-section member may have an L-shaped cross section perpendicular to the length direction.
  • the open cross-section member may have a C-shaped, Z-shaped, U-shaped, or hat-shaped cross section perpendicular to the length direction. good.
  • the outer frame and the oblique reinforcing member are all open-section members having a C-shaped cross section perpendicular to the length direction;
  • the opening of the C-shaped open cross-section member faces the inside of the outer frame;
  • the opening of the C-shaped open cross-section member used for the oblique reinforcing member is in the in-plane direction of the outer frame, respectively. You may be facing.
  • the quadrangle formed by the diagonal reinforcing member is a rhombus; the thickness of the C-shaped open cross-sectional member is the length of the short side of the outer frame
  • the ratio R obtained by dividing by may be set to 0 ⁇ R ⁇ 4/180.
  • each of the oblique reinforcing members may be joined at a location where they intersect each other.
  • a box-like structure according to an aspect of the present invention is a box-like structure that is installed on a predetermined installation surface, and the above-described (1) is provided on at least one of a plurality of surfaces that form a box shape.
  • the frame structure according to any one of (8) to (8) is mounted.
  • the diagonal reinforcing member counteracts by bending against the torsional load acting on the entire frame structure, so that the conventional configuration that counteracts by torsion (with a rectangular planar shape)
  • the torsional rigidity can be increased as compared with a frame structure having a configuration in which a plurality of reinforcing members are arranged in a right-angle lattice shape inside the outer frame. That is, when the same material is used, a frame structure with high torsional rigidity can be realized by a simple configuration in which diagonal reinforcement members are arranged in a diagonal lattice pattern inside the outer frame. It is not necessary to increase the thickness of the diagonal reinforcing member or to reinforce it with another member. Therefore, according to the frame structure according to the above aspect of the present invention, weight reduction and cost reduction can be realized while ensuring required rigidity.
  • the high-rigidity frame structure according to the above aspect of the present invention is mounted on at least one of the plurality of surfaces forming the box shape. It is possible to prevent the box-like structure from being installed in an unstable state. As a result, for example, when the box-shaped structure is a precision mechanical device, it is possible to avoid performance degradation due to the state of the installation surface (such as distortion or protrusions on the installation surface). Further, the rigidity of the box-shaped structure itself can be increased.
  • FIG. 6 is a cross-sectional view of a C-shaped member used for the outer frame 11 and the diagonal reinforcing member 12. It is a schematic diagram which shows the example of joining of C-shaped members (when joining C-shaped member Ca inside C-shaped member Cb). It is a schematic diagram which shows the example of joining of C-shaped members (when joining the protrusions of C-shaped member Ca and C-shaped member Cb).
  • FIG. 6 is a schematic diagram which shows the case where it joins inside or outside of member Cb. It is a perspective view which shows the implementation model by an Example. It is a perspective view which shows the comparison model by a comparative example. 6 is a graph in which the ratio R between the plate thickness and the short side length of the outer frame 11 is on the horizontal axis, and the rigidity ratio (performance ratio) of the implementation model A to the comparison model B is on the vertical axis. It is a figure which shows the relationship between member cross-sectional shape and a rigidity ratio. It is a perspective view which shows the frame structure by the 1st modification of this embodiment. It is sectional drawing of a C-shaped member with a lip. It is sectional drawing of a Z-shaped member.
  • FIG. 1 is a perspective view of the frame structure 1
  • FIG. 2 is a plan view of the frame structure 1.
  • the frame structure 1 includes an outer frame 11 having a rectangular planar shape (in this embodiment, a rectangle as an example), and a region surrounded by the outer frame 11 (that is, the inner side of the outer frame 11). And a plurality of diagonal reinforcing members 12 arranged in a diagonal grid pattern.
  • the outer frame 11 is formed by connecting two long-side members 11a and 11b and two short-side members 11c and 11d so as to be rectangular when viewed in plan.
  • the long side direction of the outer frame 11 be an X-axis direction
  • the short side direction of the outer frame 11 be a Y-axis direction. Therefore, in the following description, the in-plane direction of the outer frame 11 means a direction in the XY plane, and the out-of-plane direction of the outer frame 11 means a direction orthogonal to the XY plane.
  • a direction orthogonal to the XY plane is taken as a Z-axis direction.
  • Part of the diagonal reinforcing member 12 (reference numerals 12 a and 12 b in the figure) is disposed on a pair of diagonal lines of the outer frame 11. Specifically, the diagonal reinforcing member 12a is connected between two corners located on one diagonal line among the four inner corners of the outer frame 11. The diagonal reinforcing member 12b is connected between two corners located on the other diagonal line among the four inner corners of the outer frame 11.
  • the other oblique reinforcing members 12 are arranged so as to form one square that is inscribed in the outer frame 11 when viewed in a plan view.
  • Four vertices of a quadrangle formed by these oblique reinforcing members 12c, 12d, 12e and 12f are connected to the center positions of the side members (long side members 11a and 11b and short side members 11c and 11d) of the outer frame 11, respectively.
  • the quadrangle formed by the diagonal reinforcing members 12c, 12d, 12e, and 12f is a quadrangle having the same length on the four sides, that is, a rhombus.
  • All or a part of the outer frame 11 and the diagonal reinforcing member 12 is an open cross-section member having an open cross-section having one or more bent portions (for example, described later) when the cross-section orthogonal to the length direction is viewed.
  • L-shaped member or the like, or an open cross-sectional member having an open cross-section having two or more bent portions for example, a C-shaped member, a C-shaped member with a lip described later, a Z-shaped member, a U-shaped member (or inverted U) And a hat-shaped member).
  • the material of the outer frame 11 and the diagonal reinforcing member 12 is not particularly limited, and any one of steel, plastic, aluminum, or a combination thereof may be used.
  • the outer frame 11 and the oblique reinforcing member 12 are all configured by members having a C-shaped cross section (C-shaped member) perpendicular to the length direction. ing.
  • the C-shaped member has a pair of plate-like protruding edges 101 and 102 that face each other in parallel when viewed in a cross section orthogonal to the length direction, and these protruding edges 101 and 102.
  • a plate-like connecting portion 103 that connects one end of each other.
  • Both the protruding edges 101 and 102 have the same width dimension, and the connecting part 103 has a larger width dimension than the protruding edges 101 and 102.
  • symbol t has shown the plate
  • the C-shaped member used for the outer frame 11 has a state in which the opening (region sandwiched between the pair of projecting edge portions 101 and 102) faces the inner side of the outer frame 11 (in other words, the width direction of the connecting portion 103). And the out-of-plane direction of the outer frame 11 are parallel to each other).
  • the C-shaped member used for the oblique reinforcing member 12 is arranged in a state in which each opening is directed in an arbitrary direction in the in-plane direction of the outer frame 11. Note that the C-shaped member used for the outer frame 11 may be arranged with its opening directed to the outside of the outer frame 11.
  • the diagonal reinforcing members 12 that intersect with each other are joined at the intersection.
  • the diagonal reinforcing members 12e and 12f, and the diagonal reinforcing members 12f and 12c are joined at each intersection.
  • the outer frame 11 and each diagonal reinforcement member 12 are also joined by each connection part. Examples of the joining method of each member include welding, adhesion, bolt joining, and screw joining.
  • FIG. 4A to 4E are schematic views showing examples of joining between C-shaped members.
  • FIG. 4A illustrates a case where the C-shaped member Ca is joined to the inside of the C-shaped member Cb (the portion surrounded by the protruding edge portions 101b and 102b of the C-shaped member Cb and the connecting portion 103b).
  • the protruding edge portions 101a and 102a of the C-shaped member Ca and the protruding edge portions 101b and 102b of the C-shaped member Cb are overlapped with each other, bolt bonding or screw bonding is performed at this portion. Can do.
  • the C-shaped member Ca and the C-shaped member Cb may be bonded by a bonding method such as welding or adhesion.
  • FIG. 4B illustrates the case where the protruding edges of the C-shaped member Ca and the C-shaped member Cb are joined together. That is, the protruding edge portion 101a of the C-shaped member Ca and the protruding edge portion 101b of the C-shaped member Cb are joined, and the protruding edge portion 102a of the C-shaped member Ca and the protruding edge portion 102b of the C-shaped member Cb are joined.
  • a joining method such as welding or adhesion may be used.
  • FIG. 4C illustrates a case where one end portions of the protruding edge portions 101a and 102a of the C-shaped member Ca are cut out and the connecting portion 103a protruding thereby is inserted into the C-shaped member Cb and joined. Also in this case, a joining method such as welding or adhesion may be used.
  • FIG. 4D illustrates the case where the C-shaped member Ca is joined to the outer surface of the connecting portion 103b of the C-shaped member Cb. Also in this case, a joining method such as welding or adhesion may be used.
  • FIG. 4E shows a state in which one end portion of the projecting edge portions 101a and 102a of the C-shaped member Ca is cut out, and then the connecting portion 103a protruding thereby is bent outward so that the C-shaped member Ca is inside the C-shaped member Cb. Or the case where it joins to the outer side (surface of the outer side of the connection part 103b) is illustrated. Also in this case, since the C-shaped member Ca and the C-shaped member Cb partially overlap, a bonding method such as bolt bonding or screw bonding can be used. Of course, also in this case, the C-shaped member Ca and the C-shaped member Cb may be bonded by a bonding method such as welding or adhesion.
  • the diagonal reinforcing member 12 counteracts by bending against the torsional load acting on the entire frame structure 1, and counteracts by twisting.
  • the torsional rigidity can be increased as compared with a frame structure having a conventional configuration (a configuration in which a plurality of reinforcing members are arranged in a right-angle lattice shape inside an outer frame having a rectangular planar shape).
  • the frame structure 1 with high torsional rigidity can be realized by a simple configuration in which the diagonal reinforcing members 12 are arranged in an oblique lattice shape inside the outer frame 11, and the structural member ( For example, it is not necessary to increase the plate thickness dimension of the C-shaped member) or to reinforce it with another member, so that weight reduction and cost reduction can be realized.
  • a plate material may be bonded to all or a part of at least one of the upper surface and the lower surface of the outer frame 11. Examples of the material of the plate material include, but are not limited to, steel, plastic, or aluminum. Examples of the method for joining the plate materials include, but are not limited to, welding, adhesion, bolt joining, and screw joining.
  • Example 1 In Example 1, an implementation model A which is the frame structure 1 of the present embodiment shown in FIG. 5 and a conventional configuration as shown in FIG. 6 (a C-shaped member inside an outer frame 51 having a rectangular planar shape). And a comparative model B, which is a frame structure having a structure in which reinforcing members 52 are arranged in a right-angle lattice), and FEM elastic analysis is performed to perform vertical displacement ⁇ (mm ) Was calculated and the effectiveness of the frame structure 1 of the present embodiment was confirmed.
  • the long sides of the outer frames 11 and 51 are set to 280 mm
  • the short sides are set to 180 mm
  • the width (height) of the connecting portion 103 of the C-shaped member is set. 10 mm
  • the widths of the projecting edge portions 101 and 102 are set to 5 mm.
  • one corner of the outer frames 11 and 51 of the implementation model A and the comparison model B is set as the loading point P0, and the corner located diagonally to the loading point P0 is the first fixed.
  • point P1 and the remaining two corners be a second fixed point P2 and a third fixed point P3, respectively.
  • the first fixed point P1 indicates a point where the displacements ⁇ x, ⁇ y, and ⁇ z in the XYZ triaxial directions and the rotation angle ⁇ z around the Z axis are fixed.
  • the second fixed point P2 and the third fixed point P3 indicate points where only the displacement ⁇ z in the Z-axis direction (vertical direction) is fixed, respectively.
  • Table 1 shows the analysis results according to the first embodiment.
  • the analysis model weight shown in Table 1 is a value indicating the weight of each model in the FEM analysis model in kilograms.
  • the rigidity per unit weight is a value obtained by dividing the reciprocal of the vertical displacement ⁇ (mm) of the loading point P0 by the analytical model weight (kg).
  • the performance ratio of the implementation model A to the comparison model B is the rigidity ratio of the implementation model A to the comparison model B described above, and indicates that the larger this value, the greater the rigidity (torsional stiffness) of the implementation model A. Yes.
  • the vertical displacement ⁇ of the comparative model B is 18.0 mm when the predetermined load 10N is applied to the loading point P0.
  • the vertical displacement ⁇ is 0.72 mm
  • the vertical displacement ⁇ of the implementation model A is 1/25 of the comparison model B.
  • the weight of the comparative model B is 0.19 kg
  • the weight of the implementation model A is 0.17 kg
  • the rigidity per unit weight is 0. 30
  • the implementation model A is 8.22
  • the performance ratio of the implementation model A to the comparison model B is 27.5 to 2.96. To fall. That is, the performance ratio of the implementation model A with respect to the comparison model B increases as the plate thickness of the C-shaped member decreases, and the configuration of the present embodiment is adopted (the oblique reinforcing member 12 is obliquely disposed inside the outer frame 11). It can be seen that the effect due to the arrangement in the form of a lattice increases.
  • the effect of the implementation model A is greater when the plate thickness is thinner, but even when the plate thickness magnification is 4 times, the performance ratio of the implementation model A to the comparison model B is 10 times or more. Even when the ratio is 16 times, the performance ratio is also about 3 times, so that it can be seen that the effect of adopting the configuration of this embodiment is obtained.
  • the vertical displacement ⁇ of the comparison model B when the plate thickness is 4.0 mm is 0.32 mm
  • the vertical displacement ⁇ of the implementation model A when the plate thickness is 2.0 mm is 0.17 mm. I can confirm that. This result shows that even if the plate thickness of the implementation model A is half the plate thickness of the comparative model B, the torsional deformation caused by the applied load can be improved to about half.
  • the implementation model A (that is, the frame structure 1 of the present embodiment) is superior in torsional rigidity to the comparative model B (that is, the frame structure of the conventional configuration).
  • the plate thickness of the comparison model B is 2.8 mm. That is, it was found that the weight of the comparative model B having a plate thickness of 2.8 mm is 5.6 times that of the working model A having a plate thickness of 0.5 mm. Therefore, when compared with the same rigidity, the frame structure 1 of the present embodiment can realize a significant weight reduction compared to the frame structure of the conventional configuration.
  • FIG. 7 shows the ratio R between the plate thickness of the C-shaped member and the short side length (180 mm) of the outer frame 11 created based on Table 1, and the performance ratio of the implementation model A to the comparison model B. It is a graph which made (rigidity ratio) the vertical axis
  • Example 2 In the second embodiment, a square member having a rectangular closed cross-sectional shape (box cross-section) is used instead of the C-shaped member having a C-shaped open cross-sectional shape in the above-described implementation model A and comparative model B of the first embodiment.
  • the rigidity ratio performance ratio of the implementation model A to the comparison model B
  • the rectangular member when viewed in a cross section orthogonal to the length direction, forms a rectangular cross section by connecting a pair of side walls parallel to the out-of-plane direction of the outer frame 11 and both ends of each side wall. And a pair of connecting portions.
  • Table 2 shows the analysis results according to Example 2.
  • the configuration of Table 2 is almost the same as that of Table 1, but the plate thickness magnification is not shown because all plate thicknesses are 0.5 mm.
  • the box cross section 1 the case where each side wall portion of the box cross section of the square member is not connected is referred to as the box cross section 1, and the whole cross section of the cross section is connected at the cross portion of the square member (the side wall portion and the connecting portion of the box cross section). Box cross section 2 is shown when all are connected).
  • the box cross section 2 tends to be slightly less deformed (the vertical displacement ⁇ tends to be smaller), but the difference is small and there is almost no influence due to the degree of connection of the cross sections. Can be confirmed.
  • the performance ratio of the implementation model A to the comparison model B when the C-shaped member is used is 27.5, whereas the performance ratio with respect to the comparison model B when the square member is used.
  • the performance ratio of the implementation model A is about 2. That is, in the implementation model A, it can be seen that even if the constituent member is changed from the C-shaped member to the square member, the effect of improving the torsional rigidity as much as the C-shaped member cannot be obtained. Therefore, it can be confirmed that it is preferable to use an open cross-sectional member such as a C-shaped member as a constituent member of the frame structure 1 of the present embodiment rather than a closed cross-sectional member such as a square member.
  • the configuration in which the C-shaped member is used for all of the outer frame 11 and the diagonal reinforcing member 12 is illustrated, but the C-shaped member ( Any member having an open cross-sectional shape may be used.
  • an outer frame 11 ⁇ / b> A configured with a closed cross-sectional member such as a square member may be used instead of the outer frame 11 configured with a C-shaped member.
  • the oblique reinforcing member 12 may have a configuration in which an open section member and a closed section member are mixed.
  • a C-shaped member with a lip provided with a lip on the C-shaped member for example, a C-shaped member with a lip provided with a lip on the C-shaped member, a Z-shaped member, a U-shaped member (including an inverted U-shaped member), a hat-shaped member, or an L-shaped member. It is also possible to use it.
  • the C-shaped member with a lip has a connecting portion 103 and a pair of protruding edge portions 101 and 102, as in a normal C-shaped member, when viewed in a cross section perpendicular to the length direction.
  • a lip 104 projecting toward the projecting edge portion 102 in parallel with the connecting portion 103 from the tip of the projecting edge portion 101; and a projecting edge portion 101 in parallel with the connecting portion 103 from the tip of the projecting edge portion 102.
  • a lip 105 protruding toward the top.
  • the Z-shaped member has a plate-like connecting portion 111 extending in the length direction and a connecting portion from one end of the connecting portion 111 when viewed in a cross section orthogonal to the length direction.
  • a plate-like protruding edge portion 112 extending in a direction orthogonal to 111, and a protruding edge portion 113 extending from the other end of the connecting portion 111 to the connecting portion 111 and extending in the opposite direction of the protruding edge portion 112.
  • a lip may be provided at the tip of each of the projecting edge portions 112 and 113.
  • the U-shaped member (or the inverted U-shaped member) includes a pair of plate-like side wall portions 121 and 122 that face each other in parallel when viewed in a cross section perpendicular to the length direction thereof, It has the plate-shaped connection part 123 which connects the end parts of the side wall parts 121 and 122. Both the side wall parts 121 and 122 have the same width dimension (height), and the connecting part 123 has a smaller width dimension than the side wall parts 121 and 122.
  • the cross-sectional shapes of the C-shaped member see FIG. 3) and the U-shaped member are similar, but the C-shaped member has a larger width at the connecting portion 103 than the projecting edge portions 101 and 102.
  • the shape members are greatly different in that the connecting portion 123 has a smaller width than the side wall portions 121 and 122.
  • the inverted U-shaped member is obtained by rotating the U-shaped member by 180 ° and is substantially the same as the U-shaped member.
  • a lip may be provided at the tip of each of the side wall portions 121 and 122.
  • the hat-shaped member includes a pair of plate-like side wall portions 131 and 132 that face each other in parallel, and the side wall portions 131 and 132 when viewed in a cross section orthogonal to the length direction.
  • a plate-like connecting portion 133 that connects one end to each other, and a pair of protruding edge portions 134 and 135 that extend in a direction away from the other end of each side wall portion 131 and 132 are provided.
  • a lip may be provided at the tip of each of the projecting edge portions 134 and 135.
  • the L-shaped member has a plate-like long side portion 141 extending in the length direction and one end of the long side portion 141 when viewed in a cross section orthogonal to the length direction.
  • a plate-like short side portion 142 that extends in a direction orthogonal to the long side portion 141 and has a smaller width than the long side portion 141 is provided.
  • a lip may be provided at the tip of each of the long side portion 141 and the short side portion 142.
  • Table 3 shows an implementation model A and a C-shaped member, a box-shaped member (a rectangular member having a rectangular cross section), a Z-shaped member, a U-shaped member (or an inverted U-shaped member), a hat-shaped member, and an L-shaped member. It is the result of having analyzed the performance ratio of the implementation model A with respect to the vertical direction displacement of the comparison model B, the analysis model weight, the rigidity per unit weight, and the comparison model B. Table 3 shows the analysis results when the plate thickness of each member is set to 0.5 mm.
  • an implementation model A of a box-shaped member is an analysis model of a frame structure 1A including an outer frame 11A of a box-shaped member (square member) and an oblique reinforcing member 12A as shown in FIG. 11A.
  • the box-shaped member comparison model B is a model of a frame structure having a conventional configuration using a box-shaped member (not shown).
  • the implementation model A of the Z-shaped member is an analysis model of the frame structure 1B including the outer frame 11B of the Z-shaped member and the oblique reinforcing member 12B as shown in FIG. 11B.
  • the Z-shaped member comparison model B is a model of a frame structure having a conventional configuration using a Z-shaped member (not shown).
  • the implementation model A of the U-shaped member is the outer frame 11C and the diagonal reinforcing member 12C of the U-shaped member (or inverted U-shaped member) as shown in FIG. 11C. It is an analysis model of the frame structure 1C provided.
  • the U-shaped member (or inverted U-shaped member) comparative model B is a model of a frame structure having a conventional configuration using a U-shaped member (or inverted U-shaped member) (not shown).
  • the implementation model A of the hat-shaped member is an analysis model of the frame structure 1D including the outer frame 11D of the hat-shaped member and the oblique reinforcing member 12D as shown in FIG. 11D.
  • the hat-shaped member comparison model B is a model of a frame structure having a conventional configuration using a hat-shaped member (not shown).
  • the implementation model A of the L-shaped member is an analysis model of the frame structure 1E including the outer frame 11E of the L-shaped member and the oblique reinforcing member 12E as shown in FIG. 11E.
  • the L-shaped member comparison model B is a model of a frame structure having a conventional configuration using an L-shaped member (not shown).
  • a part of the oblique reinforcing member 12 (reference numerals 12c, 12d, 12e, 12f) is arranged so as to form one square (diamond) inscribed in the outer frame 11 when viewed in plan.
  • the present invention is not limited to this, and a part of the diagonal reinforcing member 12 may be arranged so as to form a plurality of quadrilaterals inscribed in the outer frame 11 when viewed in plan. For example, as shown in FIG.
  • the diagonal reinforcing members 12g, 12h, 12i, and 12j are arranged so as to form a first square inscribed in the outer frame 11 when viewed in plan, and the diagonal reinforcing members 12k, 12m , 12n, 12p may be arranged so as to form a second quadrilateral inscribed in the outer frame 11 when viewed in plan.
  • both the first and second quadrangles are parallelograms.
  • the case where a part (symbol 12c, 12d, 12e, 12f) of the diagonal reinforcing member 12 is arranged so as to form a rhombus inscribed in the outer frame 11 when seen in a plan view is illustrated.
  • the shape is not limited to such a rhombus, and may be any quadrilateral shape as long as it is a quadrilateral inscribed in the outer frame 11 when viewed in plan. This can be confirmed in Table 4 and FIGS. 13A to 13D.
  • the vertex (hereinafter referred to as the first vertex) is connected to a position separated from the center position O1 of the short side member 11c by an amount corresponding to 1 ⁇ 4 of the length of the short side member 11c (D1 in the figure). It is a model.
  • the implementation model D shown in FIG. 13B is a position in which the first vertex is separated from the center position O1 of the short side member 11c by an amount corresponding to 1/3 of the length of the short side member 11c (D2 in the figure). It is a model connected to.
  • the vertex (4) of the quadrangular vertices formed by the oblique reinforcing members 12c, 12d, 12e, and 12f is connected to the center position O2 of the long-side member 11a of the outer frame 11 (
  • the second apex) is connected to a position separated from the center position O2 of the long side member 11a by a distance corresponding to 1 ⁇ 4 of the length of the long side member 11a (D3 in the figure).
  • the implementation model F shown in FIG. 13D is a position where the second vertex is separated from the center position O2 of the long side member 11a by an amount corresponding to 1/3 of the length of the long side member 11a (D4 in the figure).
  • the aspect ratio of the outer frame 11 is not particularly limited, but the length of the long side (the length of the long side members 11a and 11b) is the length of the short side (the length of the short side members 11c and 11d). It is preferable that it is 2 times or less. This can be confirmed in Table 5.
  • Table 5 is based on the implementation model A (using a C-shaped member with a plate thickness of 0.5 mm), the implementation model S with its long side shortened from 280 mm to 180 mm, and the implementation model L with the long side extended to 360 mm. Is a comparison of the performance.
  • the comparison model B is a model of a frame structure having a conventional configuration having the same planar dimensions as the implementation model A (using a C-shaped member having a thickness of 0.5 mm).
  • the comparison model T is a model of a frame structure having a conventional configuration having the same planar dimensions as the working model S (using a C-shaped member having a thickness of 0.5 mm).
  • the comparison model M is a model of a frame structure having a conventional configuration having the same plane dimensions as the implementation model L (using a C-shaped member having a thickness of 0.5 mm). As shown in Table 5, the performance ratio of the implementation model S to the comparison model T is 17.5, and the performance ratio of the implementation model L to the comparison model M is 17.7.
  • the ratio of the height of the outer frame 11 (the height of the connecting portion 103 of the C-shaped member) and other dimensions of the outer frame 11 is not particularly limited, but the length of the short side of the outer frame 11 is not limited.
  • FIG. 14 is a graph of Table 6.
  • the horizontal axis represents the ratio of the height Hw of the outer frame 11 to the length of the short side of the outer frame 11 (the horizontal axis represents up to 30%).
  • the vertical axis represents the performance ratio of the implementation model to the respective comparison models.
  • pieces in FIG. 14 has shown the analysis result, and the continuous line which connects those 4 points
  • a preferable range of the height Hw of the outer frame 11 can be determined based on FIG.
  • FIG. 15 is a transparent perspective view of the box-shaped structure 200.
  • the box-shaped structure 200 is a box-shaped structure that is installed on a predetermined installation surface, and among a plurality of surfaces (in this case, six surfaces) that form a box shape,
  • the above-described frame structure 1 is mounted on the lower surface in contact with the installation surface.
  • the box-shaped structure 200 since the high-rigidity frame structure 1 is mounted on the lower surface in contact with the installation surface as described above, the box-shaped structure 200 is installed in an unstable state. Can be prevented. As a result, for example, when the box-shaped structure 200 is a precision mechanical device, it is possible to avoid performance degradation caused by the state of the installation surface (such as distortion or protrusions on the installation surface). . In addition, the rigidity of the box-shaped structure 200 itself can be increased. As shown in FIG. 16, the frame structure 1 may be mounted on a surface (for example, a side surface) other than the lower surface of the box-shaped structure 200.
  • Examples of the box-type structure 200 including the frame structure 1 include a copying machine, a printing machine, a cutting machine, a bookbinding machine, a machine tool, a medical device such as an X-ray irradiation device, a photo developing machine, a television set, and a broadcasting device.
  • Equipment, refrigerators, washing machines, dryers, metal furniture, vending machines, construction equipment, elevators, vehicles, etc. can be applied.
  • the present invention it is possible to provide a frame structure capable of realizing weight reduction and cost reduction while ensuring required rigidity, and a box-shaped structure including the frame structure. Industrial effects can be expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casings For Electric Apparatus (AREA)
  • Package Frames And Binding Bands (AREA)

Abstract

 本発明のフレーム構造体は、矩形の平面形状を有する外枠と、前記外枠の内側に斜め格子状に配置された複数の斜め補強部材とを備え、前記斜め補強部材は、前記外枠の一対の対角線上に配置されていると共に、平面視した場合に前記外枠に内接する1つ又は複数の四角形が形成されるように配置されている。

Description

フレーム構造体及び箱状構造体
 本発明は、例えば重量物を支持する底板等として用いられるフレーム構造体及びこれを備えた箱状構造体に関する。
 本願は、2011年12月05日に、日本に出願された特願2011-265980号に基づき優先権を主張し、その内容をここに援用する。
 この種のフレーム構造体として、荷物を輸送或いは保管するために用いられる輸送用パレットが知られている。この輸送用パレットは、矩形の平面形状を有する外枠の内側に、複数の補強部材を直角格子状に配置するという構成を採用することで、荷物の荷重等の外力に対する強度を確保することが一般的である(例えば下記特許文献1参照)。
日本国特開2005-35650号公報
例えば、精密機械装置の設置面に底板を敷設し、その底板の上に精密機械装置を設置する場合、設置面に存在する歪みや突起物が原因で、底板にねじれ変形が生じると、精密機械装置が不安定な状態で設置されてしまい、その結果、精密機械装置の性能が低下する虞がある。
それ故、精密機械装置用の底板として、上記のような、矩形の平面形状を有する外枠の内側に、複数の補強部材を直角格子状に配置するという構成を採用した、高剛性のフレーム構造体を用いる場合が多い。
しかしながら、このような構成のフレーム構造体は、その構成部材として、ねじれに弱い開断面部材ではなく、ねじれ剛性の高い角形鋼等の閉断面部材を用いることが一般的であるため、重量及び部材コストの増大が問題となる。
 本発明は、上述した問題点に鑑みてなされたものであり、要求される剛性を確保しながら、軽量化及び低コスト化を実現可能なフレーム構造体及びこれを備えた箱状構造体を提供することを目的とする。
本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用する。
すなわち、
(1)本発明の一態様に係るフレーム構造体は、矩形の平面形状を有する外枠と、前記外枠の内側に斜め格子状に配置された複数の斜め補強部材と、を備え;前記斜め補強部材は、前記外枠の一対の対角線上に配置されていると共に、平面視した場合に前記外枠に内接する1つ又は複数の四角形が形成されるように配置されている。
(2)上記(1)に記載のフレーム構造体において、前記外枠及び前記斜め補強部材の全部または一部が、その長さ方向に直交する断面を視た場合に、1つ以上の屈曲箇所が存在する開断面を有する開断面部材であっても良い。
(3)上記(2)に記載のフレーム構造体において、前記開断面部材が、その長さ方向に直交する断面がL形であっても良い。
(4)上記(1)に記載のフレーム構造体において、前記外枠及び前記斜め補強部材の全部または一部が、その長さ方向に直交する断面を視た場合に、2つ以上の屈曲箇所が存在する開断面を有する開断面部材であっても良い。
(5)上記(4)に記載のフレーム構造体において、前記開断面部材が、その長さ方向に直交する断面が、C形、Z形、U形、或いはハット形のいずれかであっても良い。
(6)上記(4)に記載のフレーム構造体において、前記外枠及び前記斜め補強部材の全部は、その長さ方向に直交する断面がC形の開断面部材であり;前記外枠に用いられる前記C形の開断面部材の開口部は、前記外枠の内側を向いており;前記斜め補強部材に用いられる前記C形の開断面部材の開口部は、それぞれ前記外枠の面内方向を向いていても良い。
(7)上記(6)に記載のフレーム構造体において、前記斜め補強部材によって形成される前記四角形が菱形であり;前記C形の開断面部材の板厚を前記外枠の短辺の長さで割って得られる比率Rが、0<R≦4/180に設定されていても良い。
(8)上記(1)~(7)のいずれか一つに記載のフレーム構造体において、前記各斜め補強部材は、互いに交差する箇所で接合されていても良い。
また、
(9)本発明の一態様に係る箱状構造体は、所定の設置面に設置される箱状構造体であって、箱形状を形成する複数の面の少なくとも一つの面に、上記(1)~(8)のいずれか一つに記載のフレーム構造体が装着されている。
 本発明の上記態様に係るフレーム構造体によれば、フレーム構造体の全体に作用するねじれ荷重に対して、斜め補強部材が曲げで対抗するので、ねじれで対抗する従来構成(矩形の平面形状を有する外枠の内側に、複数の補強部材が直角格子状に配置されている構成)のフレーム構造体と比較して、ねじれ剛性を高めることができる。
つまり、同一材料を使用する場合、外枠の内側に斜め補強部材を斜め格子状に配置するという簡単な構成によって、ねじれ剛性の高いフレーム構造体を実現することができ、構成部材(外枠及び斜め補強部材)の板厚寸法を大きくしたり、別の部材で補強することが不要となる。
従って、本発明の上記態様に係るフレーム構造体によれば、要求される剛性を確保しながら、軽量化及び低コスト化を実現できる。
本発明の上記態様に係る箱状構造体によれば、箱形状を形成する複数の面の少なくとも一つの面に、本発明の上記態様に係る高剛性のフレーム構造体が装着されているので、不安定な状態で箱状構造体が設置されることを防止することができる。その結果、例えば箱状構造体が精密機械装置である場合には、その設置面の状態(設置面に歪や突起物が存在する等)に起因する性能低下を回避することが可能となる。また、箱状構造体自体の剛性も高めることができる。
本実施形態におけるフレーム構造体1の斜視図である。 本実施形態におけるフレーム構造体1の平面図である。 外枠11及び斜め補強部材12に用いられるC形部材の断面図である。 C形部材同士の接合例(C形部材CaをC形部材Cbの内部に接合する場合)を示す模式図である。 C形部材同士の接合例(C形部材CaとC形部材Cbの突縁部同士を接合する場合)を示す模式図である。 C形部材同士の接合例(C形部材Caの突縁部101a及び102aの一端部分を切り欠き、これにより突出した連結部103aをC形部材Cbの内部に挿入して接合する場合)を示す模式図である。 C形部材同士の接合例(C形部材Cbの連結部103bの外側の面にC形部材Caを接合する場合)を示す模式図である。 C形部材同士の接合例(C形部材Caの突縁部101a及び102aの一端部分を切り欠いた後に、これにより突出した連結部103aを外側に折り曲げた状態で、C形部材CaをC形部材Cbの内部或いは外側に接合する場合)を示す模式図である。 実施例による実施モデルを示す斜視図である。 比較例による比較モデルを示す斜視図である。 外枠11の板厚と短辺長さとの比率Rを横軸とし、比較モデルBに対する実施モデルAの剛性比率(性能比)を縦軸としたグラフである。 部材断面形状と剛性比率との関係を示す図である。 本実施形態の第1変形例によるフレーム構造体を示す斜視図である。 リップ付C形部材の断面図である。 Z形部材の断面図である。 U形部材(或いは逆U形部材)の断面図である。 ハット形部材の断面図である。 L形部材の断面図である。 角形部材の外枠11A及び斜め補強部材12Aを備えるフレーム構造体1Aの斜視図である。 Z形部材の外枠11B及び斜め補強部材12Bを備えるフレーム構造体1Bの斜視図である。 U形部材(或いは逆U形部材)の外枠11C及び斜め補強部材12Cを備えるフレーム構造体1Cの斜視図である。 ハット形部材の外枠11D及び斜め補強部材12Dを備えるフレーム構造体1Dの斜視図である。 L形部材の外枠11E及び斜め補強部材12Eを備えるフレーム構造体1Eの斜視図である。 本実施形態の第2変形例によるフレーム構造体を示す斜視図である。 本実施形態の第3変形例によるフレーム構造体の実施モデルCを示す斜視図である。 本実施形態の第3変形例によるフレーム構造体の実施モデルDを示す斜視図である。 本実施形態の第3変形例によるフレーム構造体の実施モデルEを示す斜視図である。 本実施形態の第3変形例によるフレーム構造体の実施モデルFを示す斜視図である。 本実施形態の第4変形例による解析結果を示す図である。 本実施形態におけるフレーム構造体1を下面に備えた箱状構造体200の透過斜視図である。 本実施形態におけるフレーム構造体1を側面に備えた箱状構造体200を示す図である。
 以下、本発明の一実施形態について図面を参照しながら説明する。
〔フレーム構造体〕
 まず、本実施形態のフレーム構造体1について説明する。図1は、フレーム構造体1の斜視図であり、図2は、フレーム構造体1の平面図である。これらの図に示すように、フレーム構造体1は、矩形(本実施形態では一例として長方形)の平面形状を有する外枠11と、外枠11で囲まれた領域(つまり外枠11の内側)に斜め格子状に配置された複数の斜め補強部材12とを備える。
 外枠11は、2本の長辺部材11a及び11bと、2本の短辺部材11c及び11dとが、平面視した場合に長方形となるように接続されたものである。以下では、外枠11の長辺方向をX軸方向とし、外枠11の短辺方向をY軸方向とする。従って、以下の記述において、外枠11の面内方向とは、XY平面内の方向を意味し、外枠11の面外方向とは、XY平面に直交する方向を意味する。また、XY平面に直交する方向をZ軸方向とする。
斜め補強部材12の一部(図中の符号12a、12b)は、外枠11の一対の対角線上に配置されている。詳細には、斜め補強部材12aは、外枠11の内側4隅の内、一方の対角線上に位置する2隅の間に接続されている。斜め補強部材12bは、外枠11の内側4隅の内、他方の対角線上に位置する2隅の間に接続されている。
 また、他の斜め補強部材12(図中の符号12c、12d、12e、12f)は、平面視した場合に外枠11に内接する1つの四角形を形成するように配置されている。これら斜め補強部材12c、12d、12e及び12fで形成される四角形の4つの頂点は、それぞれ外枠11の各辺部材(長辺部材11a、11b及び短辺部材11c、11d)の中心位置に接続されている。従って、斜め補強部材12c、12d、12e及び12fで形成される四角形は、4辺の長さが等しい四角形、つまり菱形となる。
外枠11及び斜め補強部材12の全部または一部は、その長さ方向に直交する断面を視た場合に、1つ以上の屈曲箇所が存在する開断面を有する開断面部材(例えば、後述のL形部材など)、或いは、2つ以上の屈曲箇所が存在する開断面を有する開断面部材(例えば、後述のC形部材、リップ付C形部材、Z形部材、U形部材(或いは逆U形部材)、ハット形部材など)であることが好ましい。
外枠11及び斜め補強部材12の材質に特に限定はなく、鋼、プラスチック、或いはアルミニウムなどのいずれか一つ、或いはそれらの組合せを用いても良い。
図1及び図2に示すように、本実施形態では、外枠11及び斜め補強部材12は、全て、その長さ方向に直交する断面の形状がC形の部材(C形部材)で構成されている。図3に示すように、C形部材は、その長さ方向に直交する断面で視た場合に、互いに平行対峙する一対の板状の突縁部101及び102と、これら突縁部101と102との一端同士を連結する板状の連結部103とを有する。突縁部101と102は、ともに幅寸法が等しく、連結部103は、突縁部101及び102より幅寸法が大きい。なお、図3において、符号tは、C形部材の板厚を示している。
外枠11に用いられるC形部材は、その開口部(一対の突縁部101と102で挟まれた領域)を、外枠11の内側に向けた状態(言い換えれば、連結部103の幅方向と外枠11の面外方向とが平行になる状態)で配置されている。斜め補強部材12に用いられるC形部材は、それぞれの開口部を、外枠11の面内方向における任意の方向に向けた状態で配置されている。なお、外枠11に用いられるC形部材は、その開口部が外枠11の外側に向けた状態で配置されていても良い。
互いに交差する斜め補強部材12同士は、その交差する箇所で接合されている。詳細には、斜め補強部材12aと12b、斜め補強部材12aと12c、斜め補強部材12bと12d、斜め補強部材12aと12e、斜め補強部材12bと12f、斜め補強部材12cと12d、斜め補強部材12dと12e、斜め補強部材12eと12f、斜め補強部材12fと12cが、それぞれの交差箇所で接合されている。また、外枠11と各斜め補強部材12も、それぞれの接続部で接合されている。各部材の接合方法としては、溶接、接着、ボルト接合、ネジ接合などが挙げられる。外枠11及び斜め補強部材12として樹脂製部材を用いる場合、一体成形によって、斜め補強部材12同士の交差箇所や、外枠11と各斜め補強部材12との接続部を形成しても良い。
図4A~図4Eは、C形部材同士の接合例を示す模式図である。
図4Aは、C形部材CaをC形部材Cbの内部(C形部材Cbの突縁部101b及び102bと連結部103bとで囲まれた部分)に接合する場合を例示している。この場合、C形部材Caの突縁部101a及び102aと、C形部材Cbの突縁部101b及び102bとが、互いに重なる部分が生じるので、この部分でボルト接合、或いはネジ接合などを行うことができる。勿論、この場合でも、溶接或いは接着等の接合方法によって、C形部材CaとC形部材Cbとを接合しても良い。
図4Bは、C形部材CaとC形部材Cbの突縁部同士を接合する場合を例示している。つまりC形部材Caの突縁部101aとC形部材Cbの突縁部101bとが接合され、C形部材Caの突縁部102aとC形部材Cbの突縁部102bとが接合される。この場合、溶接或いは接着等の接合方法を用いれば良い。
図4Cは、C形部材Caの突縁部101a及び102aの一端部分を切り欠き、これにより突出した連結部103aをC形部材Cbの内部に挿入して接合する場合を例示している。この場合も、溶接或いは接着等の接合方法を用いれば良い。
図4Dは、C形部材Cbの連結部103bの外側の面にC形部材Caを接合する場合を例示している。この場合も、溶接或いは接着等の接合方法を用いれば良い。
図4Eは、C形部材Caの突縁部101a及び102aの一端部分を切り欠いた後に、これにより突出した連結部103aを外側に折り曲げた状態で、C形部材CaをC形部材Cbの内部或いは外側(連結部103bの外側の面)に接合する場合を例示している。この場合も、C形部材CaとC形部材Cbとが一部重なるので、ボルト接合、或いはネジ接合などの接合方法を用いることができる。勿論、この場合でも、溶接或いは接着等の接合方法によって、C形部材CaとC形部材Cbとを接合しても良い。
以上のような構成を採用した本実施形態のフレーム構造体1によれば、フレーム構造体1の全体に作用するねじれ荷重に対して、斜め補強部材12が曲げで対抗するので、ねじれで対抗する従来構成(矩形の平面形状を有する外枠の内側に、複数の補強部材が直角格子状に配置されている構成)のフレーム構造体と比較して、ねじれ剛性を高めることができる。
つまり、同一材料を使用する場合、外枠11の内側に斜め補強部材12を斜め格子状に配置するという簡単な構成によって、ねじれ剛性の高いフレーム構造体1を実現することができ、構成部材(例えばC形部材)の板厚寸法を大きくしたり、別の部材で補強することが不要となり、軽量化及び低コスト化を実現できる。
なお、さらに剛性を高めるために、外枠11の上面及び下面の少なくとも一方の面の全部或いは一部に板材を接合しても良い。この板材の材質は、鋼、プラスチック、或いはアルミニウムなどが挙げられるが、これらに限定されない。板材の接合方法は、溶接、接着、ボルト接合、ネジ接合などが挙げられるが、これらに限定されない。
次に、本実施形態のフレーム構造体1の効果を裏付けるために行った解析例(実施例)について以下説明する。
(実施例1)
本実施例1では、図5に示す本実施形態のフレーム構造体1である実施モデルAと、図6に示すような従来構成(長方形の平面形状を有する外枠51の内側に、C形部材である補強部材52が直角格子状に配置されている構成)のフレーム構造体である比較モデルBと、のそれぞれの解析モデルを作成し、FEM弾性解析を行って載荷点鉛直方向変位δ(mm)を算出し、本実施形態のフレーム構造体1の有効性について確認した。
なお、実施モデルA及び比較モデルBにおいて、外枠11及び51の長辺の長さを280mm、短辺の長さを180mmに設定し、C形部材の連結部103の幅(高さ)を10mm、突縁部101及び102の幅を5mmに設定している。
ここで、図5及び図6において、実施モデルA及び比較モデルBの外枠11及び51の1つの角部を載荷点P0とし、その載荷点P0の対角に位置する角部を第1固定点P1、残りの2つの角部をそれぞれ第2固定点P2、第3固定点P3とする。第1固定点P1は、XYZの3軸方向の変位δx、δy、δzと、Z軸まわりの回転角θzとが固定された点を示している。第2固定点P2及び第3固定点P3は、それぞれZ軸方向(鉛直方向)の変位δzのみが固定された点を示している。
そして、本解析では、実施モデルA及び比較モデルBのそれぞれにおいて、5種類(0.5mm、1mm、2mm、4mm、8mm)のC形部材の板厚寸法t(図3参照)毎に、載荷点P0に10Nの荷重が与えられたときの鉛直方向変位δと、比較モデルBに対する実施モデルAの剛性比率(=実施モデルAの剛性/比較モデルBの剛性)を算出する。
表1は、本実施例1による解析結果を示している。なお、表1において、板厚倍率とは、0.5mmの板厚寸法を標準(=1)としたときの板厚の比率である。表1の中に示す解析モデル重量とは、それぞれのモデルのFEM解析モデルにおける重量をキログラムで示した値である。同じく単位重量当たりの剛性とは、載荷点P0の鉛直方向変位δ(mm)の逆数を、解析モデル重量(kg)で除した値である。さらに比較モデルBに対する実施モデルAの性能比とは、上述した比較モデルBに対する実施モデルAの剛性比率であり、この値が大きいほど、実施モデルAの剛性(ねじれ剛性)が大きいことを示している。
Figure JPOXMLDOC01-appb-T000001
表1に示すように、C形部材の板厚寸法が0.5mmの場合、載荷点P0に所定荷重10Nを加えたとき、比較モデルBの鉛直方向変位δは18.0mm、実施モデルAの鉛直方向変位δは0.72mmとなり、実施モデルAの鉛直方向変位δは、比較モデルBの1/25となる。
また、C形部材の板厚寸法が0.5mmの場合、比較モデルBの重量は0.19kg、実施モデルAの重量は0.17kgとなり、単位重量当たりの剛性は、比較モデルBが0.30、実施モデルAが8.22となり、その結果、重量低減効果を加味した比較モデルBに対する実施モデルAの性能比は27.5となる。
また、C形部材の板厚寸法を0.5mm(標準)から8mm(標準の16倍)へ増大していくと、比較モデルBに対する実施モデルAの性能比は、27.5から2.96まで低下する。すなわち、比較モデルBに対する実施モデルAの性能比は、C形部材の板厚が薄いほど大きくなっており、本実施形態の構成を採用したこと(外枠11の内側に斜め補強部材12を斜め格子状に配置したこと)による効果が大きくなることがわかる。
このように板厚が薄い方が実施モデルAの効果が大きくなるが、板厚倍率が4倍の時でも、比較モデルBに対する実施モデルAの性能比は10倍以上となり、また、板厚倍率が16倍のときでも、同じく性能比は3倍程度となるので、本実施形態の構成を採用したことによる効果が得られていることがわかる。
また、板厚4.0mmのときの比較モデルBの鉛直方向変位δが0.32mmであるのに対し、板厚2.0mmのときの実施モデルAの鉛直方向変位δは0.17mmであることが確認できる。この結果は、実施モデルAの板厚を、比較モデルBの板厚の半分にしても、荷重が与えられたことに起因するねじれ変形を約半分に改善できるということを示すものである。
以上の結果より、実施モデルA(つまり本実施形態のフレーム構造体1)は、比較モデルB(つまり従来構成のフレーム構造体)に対してねじれ剛性が優れていることが確認できる。
また、本願発明者の試算によると、実施モデルAと比較モデルBとの剛性を同一にした場合、比較モデルBの板厚は2.8mmにもなることがわかった。つまり、板厚が0.5mmの実施モデルAに対して、板厚が2.8mmの比較モデルBは、重量が5.6倍になることがわかった。従って、同一の剛性で比較した場合、本実施形態のフレーム構造体1は、従来構成のフレーム構造体に対して、大幅な軽量化を実現できる。
また、図7は、表1を基に作成した、C形部材の板厚と外枠11の短辺長さ(180mm)との比率Rを横軸、比較モデルBに対する実施モデルAの性能比(剛性比率)を縦軸としたグラフである。この図7から、実際に製造可能なC形部材の板厚と必要な剛性を考慮すると、C形部材の板厚を外枠11の短辺長さで割って得られる比率Rを、0<R≦4/180に設定することが好ましい。
(実施例2)
本実施例2では、上述した実施例1の実施モデルAと比較モデルBにおいて、C形の開断面形状を有するC形部材に代えて、矩形の閉断面形状(ボックス断面)を有する角形部材を構成部材として使用した場合の剛性比率(比較モデルBに対する実施モデルAの性能比)を比較し、構成部材として開断面部材を使用することの有効性について確認した。なお、角形部材は、その長さ方向に直交する断面で視た場合に、外枠11の面外方向に平行な一対の側壁部と、各側壁部の両端同士を連結して矩形断面を形成する一対の連結部とを有している。
表2は、本実施例2による解析結果を示している。表2の構成は表1とほぼ同じであるが、板厚はいずれも0.5mmであるため板厚倍率については表示していない。表2において、角形部材の交差箇所ボックス断面の各側壁部を接続していない場合をボックス断面1とし、角形部材の交差箇所で断面全周を接続した場合(ボックス断面の側壁部及び連結部の全てを接続した場合)をボックス断面2としている。ボックス断面1に比べて、ボックス断面2の方が、僅かに変形が小さくなる傾向(鉛直方向変位δが小さくなる傾向)があるが、その差は小さく、断面の接続の度合いによる影響は殆ど無いことが確認できる。すなわち、側壁部を接合せずに連結部のみを接合した場合(ボックス断面1)でも、断面全周を接続した場合(ボックス断面2)でも、ほぼ同様の剛性が得られることがわかる。このことから、フレーム構造体における部材同士(外枠同士、外枠と斜め補強部材、斜め補強部材同士)の接合箇所における接合の程度が、フレーム構造体の剛性に及ぼす影響は限定的であるといえる。すなわち、接合仕様の違いは、本発明の効果に大きな影響を及ぼすものではなく、様々な接合方法や接合ディテールを活用できるといえる。
Figure JPOXMLDOC01-appb-T000002
表2及び図8に示すように、C形部材を用いた場合の比較モデルBに対する実施モデルAの性能比が27.5であるのに対して、角形部材を用いた場合の比較モデルBに対する実施モデルAの性能比は2程度となる。つまり、実施モデルAにおいて、構成部材をC形部材から角形部材に替えても、C形部材ほどのねじれ剛性の改善効果は得られないことがわかる。従って、本実施形態のフレーム構造体1の構成部材としては、角形部材等の閉断面部材よりも、C形部材等の開断面部材を使用する方が好適であることが確認できる。
以上、本実施形態のフレーム構造体1について説明したが、本発明は上記実施形態に限定されず、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記実施形態では、外枠11及び斜め補強部材12の全部にC形部材が用いられている構成を例示したが、外枠11及び斜め補強部材12の全部または一部にC形部材(開断面形状を有する部材)が用いられていれば良い。
例えば、図9に示すように、C形部材で構成された外枠11に替えて、角形部材等の閉断面部材で構成された外枠11Aを使用しても良い。また、斜め補強部材12の中に、開断面部材と閉断面部材が混在する構成でも良い。
また、C形部材以外に、例えばC形部材にリップを設けたリップ付きC形部材や、Z形部材、U形部材(逆U形部材も含む)、ハット形部材、或いはL形部材などを使用することも可能である。
図10Aに示すように、リップ付きC形部材は、その長さ方向に直交する断面で視た場合に、通常のC形部材と同じく、連結部103と一対の突縁部101及び102とを有すると共に、突縁部101の先端から、連結部103と平行して突縁部102へ向かって突出するリップ104と、突縁部102の先端から、連結部103と平行して突縁部101へ向かって突出するリップ105とをさらに有している。
図10Bに示すように、Z形部材は、その長さ方向に直交する断面で視た場合に、長さ方向に延在する板状の連結部111と、その連結部111の一端から連結部111と直交する方向に延びる板状の突縁部112と、連結部111の他端から連結部111と直交し且つ突縁部112の逆方向に延びる突縁部113とを備えている。なお、Z形部材において、突縁部112及び113のそれぞれの先端にリップを設けても良い。
図10Cに示すように、U形部材(或いは逆U形部材)は、その長さ方向に直交する断面で視た場合に、互いに平行対峙する一対の板状の側壁部121及び122と、これら側壁部121と122との一端同士を連結する板状の連結部123とを有する。側壁部121と122は、ともに幅寸法(高さ)が等しく、連結部123は、側壁部121及び122より幅寸法が小さい。
一見すると、C形部材(図3参照)とU形部材の断面形状は似ているが、C形部材が、突縁部101及び102より連結部103の方が幅が大きいのに対し、U形部材は、側壁部121及び122より連結部123の方が幅が小さい点で大きく異なっている。逆U形部材は、U形部材を180°回転させたものであり、実質的にU形部材と同じものである。なお、U形部材において、側壁部121及び122のそれぞれの先端にリップを設けても良い。
図10Dに示すように、ハット形部材は、その長さ方向に直交する断面で視た場合に、互いに平行対峙する一対の板状の側壁部131及び132と、これら側壁部131と132との一端同士を連結する板状の連結部133と、各側壁部131及び132の他端から互いに離れる方向に延びる一対の突縁部134及び135とを備えている。なお、ハット形部材において、突縁部134及び135のそれぞれの先端にリップを設けても良い。
図10Eに示すように、L形部材は、その長さ方向に直交する断面で視た場合に、長さ方向に延在する板状の長辺部141と、その長辺部141の一端から長辺部141と直交する方向に延び、長辺部141より幅の小さい板状の短辺部142とを備えている。なお、L形部材において、長辺部141及び短辺部142のそれぞれの先端にリップを設けても良い。
表3は、C形部材、ボックス形部材(矩形断面の角形部材)、Z形部材、U形部材(或いは逆U形部材)、ハット形部材、及びL形部材のそれぞれについて、実施モデルA及び比較モデルBの鉛直方向変位、解析モデル重量、単位重量当たりの剛性、及び比較モデルBに対する実施モデルAの性能比を解析した結果である。なお、表3は、各部材の板厚を0.5mmに設定した場合の解析結果である。
 表3において、ボックス形部材の実施モデルAとは、図11Aに示すように、ボックス形部材(角形部材)の外枠11A及び斜め補強部材12Aを備えるフレーム構造体1Aの解析モデルである。ボックス形部材の比較モデルBとは、ボックス形部材を用いた従来構成のフレーム構造体のモデルである(図示省略)。
 また、表3において、Z形部材の実施モデルAとは、図11Bに示すように、Z形部材の外枠11B及び斜め補強部材12Bを備えるフレーム構造体1Bの解析モデルである。Z形部材の比較モデルBとは、Z形部材を用いた従来構成のフレーム構造体のモデルである(図示省略)。
 また、表3において、U形部材(或いは逆U形部材)の実施モデルAとは、図11Cに示すように、U形部材(或いは逆U形部材)の外枠11C及び斜め補強部材12Cを備えるフレーム構造体1Cの解析モデルである。U形部材(或いは逆U形部材)の比較モデルBとは、U形部材(或いは逆U形部材)を用いた従来構成のフレーム構造体のモデルである(図示省略)。
 また、表3において、ハット形部材の実施モデルAとは、図11Dに示すように、ハット形部材の外枠11D及び斜め補強部材12Dを備えるフレーム構造体1Dの解析モデルである。ハット形部材の比較モデルBとは、ハット形部材を用いた従来構成のフレーム構造体のモデルである(図示省略)。
 また、表3において、L形部材の実施モデルAとは、図11Eに示すように、L形部材の外枠11E及び斜め補強部材12Eを備えるフレーム構造体1Eの解析モデルである。L形部材の比較モデルBとは、L形部材を用いた従来構成のフレーム構造体のモデルである(図示省略)。
この表3に示すように、本実施形態の構成を採用することで、各部材の断面形状に関わらず、従来構成よりも剛性が向上することが確認された。特に、C形部材或いはU形部材を用いると高い剛性を得られるが、他の断面形状の部材でも十分に剛性向上効果を得られることがわかる。なお、表3には記していないが、リップ付の部材を用いる場合の剛性は、リップ無しの部材を用いる場合の剛性と比較して高くなることがわかった。フレーム構造体1の構成部材として、以上のようなC形部材、Z形部材、U形部材、ハット形部材、或いはL形部材のいずれかが混在する構成を採用しても良い(リップ付でも良いし、リップ無しでも良い)。
Figure JPOXMLDOC01-appb-T000003
また、本実施形態では、斜め補強部材12の一部(符号12c、12d、12e、12f)が、平面視した場合に外枠11に内接する1つの四角形(菱形)を形成するように配置されている場合を例示したが、これに限らず、斜め補強部材12の一部が、平面視した場合に外枠11に内接する複数の四角形を形成するように配置されていても良い。
例えば、図12に示すように、斜め補強部材12g、12h、12i、12jが、平面視した場合に外枠11に内接する第1の四角形を形成するように配置され、斜め補強部材12k、12m、12n、12pが、平面視した場合に外枠11に内接する第2の四角形を形成するように配置された構成を採用することができる。この場合、第1及び第2の四角形は、共に平行四辺形となる。
また、本実施形態では、斜め補強部材12の一部(符号12c、12d、12e、12f)が、平面視した場合に外枠11に内接する菱形を形成するように配置されている場合を例示したが、このような菱形に限らず、平面視した場合に外枠11に内接する四角形であれば、どのような形状の四角形でも良い。
このことは、表4及び図13A~図13Dにおいて確認することができる。ここで、図13Aに示す実施モデルCは、斜め補強部材12c、12d、12e及び12fで形成される四角形の4つの頂点の内、外枠11の短辺部材11cの中心位置O1に接続されていた頂点(以下、第1の頂点と称す)を、短辺部材11cの中心位置O1から短辺部材11cの長さの1/4に相当する分(図中D1)だけ離れた位置に接続したモデルである。
図13Bに示す実施モデルDは、上記の第1の頂点を、短辺部材11cの中心位置O1から短辺部材11cの長さの1/3に相当する分(図中D2)だけ離れた位置に接続したモデルである。
図13Cに示す実施モデルEは、斜め補強部材12c、12d、12e及び12fで形成される四角形の4つの頂点の内、外枠11の長辺部材11aの中心位置O2に接続されていた頂点(以下、第2の頂点と称す)を、長辺部材11aの中心位置O2から長辺部材11aの長さの1/4に相当する分(図中D3)だけ離れた位置に接続したモデルである。
図13Dに示す実施モデルFは、上記の第2の頂点を、長辺部材11aの中心位置O2から長辺部材11aの長さの1/3に相当する分(図中D4)だけ離れた位置に接続したモデルである。
これらの図13A~図13Dにおいて、白抜き矢印は荷重を示しており、同矢印の先の角が載荷点P0となる(図6参照)。
表4に示すように、実施モデルAに対する各実施モデルC~Fの性能比は、それぞれ実施モデルAと比較して、やや低下する傾向(実施モデルAに対して1~2割程度の性能低下)があるが、斜め補強部材12による剛性向上効果が十分に得られていることが確認できる。すなわち、斜め補強部材12によって形成される四角形がどのような形状であっても、剛性向上効果を得ることが可能である。
Figure JPOXMLDOC01-appb-T000004
また、外枠11の縦横比について、特に制限はないが、長辺の長さ(長辺部材11a及び11bの長さ)が短辺の長さ(短辺部材11c及び11dの長さ)の2倍以下であることが好ましい。
このことは表5において確認することができる。表5は、実施モデルA(板厚0.5mmのC形部材を使用)を基本にして、その長辺を280mmから180mmに短縮した実施モデルSと、長辺を360mmに延長した実施モデルLの性能を比較したものである。
比較モデルBは、実施モデルAと同じ平面寸法を有する従来構成のフレーム構造体のモデル(板厚0.5mmのC形部材を使用)である。比較モデルTは、実施モデルSと同じ平面寸法を有する従来構成のフレーム構造体のモデル(板厚0.5mmのC形部材を使用)である。また、比較モデルMは、実施モデルLと同じ平面寸法を有する従来構成のフレーム構造体のモデル(板厚0.5mmのC形部材を使用)である。
この表5に示すように、比較モデルTに対する実施モデルSの性能比は17.5であり、また、比較モデルMに対する実施モデルLの性能比は17.7である。これらの値は、比較モデルBに対する実施モデルAの性能比27.5より小さいが、性能(ねじれ剛性)は十分に大きく、斜め補強部材12による剛性向上効果が十分に得られていることがわかる。
Figure JPOXMLDOC01-appb-T000005
また、外枠11の高さ(C形部材の連結部103の高さ)と、外枠11の他の寸法との比率についても特に制限はないが、外枠11の短辺の長さに対する外枠11の高さHwの比率(=100×短辺長さ/Hw)は、約3~22%の範囲内であることが好ましい。これは、比較モデルに対する実施モデルの性能差が24倍以上となる範囲である。そして、特に高い性能を得るためには、外枠11の短辺の長さに対する外枠11の高さHwの比率を、約5~18%の範囲に収めることが好ましい(比較モデルに対する実施モデルの性能差が27倍以上となる範囲)。
このことは表6および図14において確認することができる。なお、図14のグラフは、表6をグラフ化したものであり、横軸が外枠11の短辺の長さに対する外枠11の高さHwの比率(横軸は30%までを表示)、縦軸がそれぞれの比較モデルに対する実施モデルの性能比を表している。また、図14における4点のプロットは解析結果を示しており、それら4点を結ぶ実線は三次関数による回帰曲線を示している。図14に基づいて、外枠11の高さHwの好ましい範囲を定めることができる。
Figure JPOXMLDOC01-appb-T000006
〔箱状構造体〕
次に、本実施形態の箱状構造体200について説明する。図15は、箱状構造体200の透過斜視図である。この図15に示すように、箱状構造体200は、所定の設置面に設置される箱形状の構造体であって、箱形状を形成する複数の面(この場合、6面)のうち、設置面に接する下面に、上述したフレーム構造体1が装着されている。
このような箱状構造体200によれば、設置面に接する下面に、上述したように高剛性のフレーム構造体1が装着されているので、不安定な状態で箱状構造体200が設置されることを防止することができる。その結果、例えば箱状構造体200が精密機械装置である場合には、その設置面の状態(設置面に歪や突起物が存在する等)に起因する性能低下を回避することが可能となる。また、箱状構造体200自体の剛性も高めることができる。なお、図16に示すように、箱状構造体200の下面以外の表面(例えば側面)にフレーム構造体1を装着しても良い。
フレーム構造体1を備えた箱型構造体200としては、例えば複写機、印刷機、断裁機、製本機、工作機器、X線照射装置をはじめとする医療機器、写真現像機、テレビ、放送用機器、冷蔵庫、洗濯機、乾燥機、金属製家具、自動販売機、建設機器、エレベータ、車両などを適用対象とすることができる。
その他、本発明の趣旨を逸脱しない範囲で、上記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。
 本発明によれば、要求される剛性を確保しながら軽量化及び低コスト化を実現可能なフレーム構造体及びこれを備えた箱状構造体を提供できるので、本発明を実施することにより、大きな産業上の効果を期待できる。
 1        フレーム構造体
 11       外枠
 11a、11b  長辺部材
 11c、11d  短辺部材
 12       斜め補強部材
 12a~12p  斜め補強部材
 200      箱状構造体

Claims (9)

  1.  矩形の平面形状を有する外枠と、
     前記外枠の内側に斜め格子状に配置された複数の斜め補強部材と、
     を備え;
     前記斜め補強部材は、前記外枠の一対の対角線上に配置されていると共に、平面視した場合に前記外枠に内接する1つ又は複数の四角形が形成されるように配置されていることを特徴とするフレーム構造体。
  2.  前記外枠及び前記斜め補強部材の全部または一部は、その長さ方向に直交する断面を視た場合に、1つ以上の屈曲箇所が存在する開断面を有する開断面部材であることを特徴とする請求項1に記載のフレーム構造体。
  3.  前記開断面部材は、その長さ方向に直交する断面がL形であることを特徴とする請求項2に記載のフレーム構造体。
  4.  前記外枠及び前記斜め補強部材の全部または一部は、その長さ方向に直交する断面を視た場合に、2つ以上の屈曲箇所が存在する開断面を有する開断面部材であることを特徴とする請求項1に記載のフレーム構造体。
  5.  前記開断面部材は、その長さ方向に直交する断面が、C形、Z形、U形、或いはハット形のいずれかであることを特徴とする請求項4に記載のフレーム構造体。
  6.  前記外枠及び前記斜め補強部材の全部は、その長さ方向に直交する断面がC形の開断面部材であり;
     前記外枠に用いられる前記C形の開断面部材の開口部は、前記外枠の内側を向いており;
     前記斜め補強部材に用いられる前記C形の開断面部材の開口部は、それぞれ前記外枠の面内方向を向いている;
    ことを特徴とする請求項4に記載のフレーム構造体。
  7.  前記斜め補強部材によって形成される前記四角形が菱形であり;
     前記C形の開断面部材の板厚を前記外枠の短辺の長さで割って得られる比率Rが、0<R≦4/180に設定されている;
    ことを特徴とする請求項6に記載のフレーム構造体。
  8. 前記各斜め補強部材は、互いに交差する箇所で接合されていることを特徴とする請求項1~7のいずれか一項に記載のフレーム構造体。
  9.  所定の設置面に設置される箱状構造体であって、
     箱形状を形成する複数の面の少なくとも一つの面に、請求項1~8のいずれか一項に記載のフレーム構造体が装着されていることを特徴とする箱状構造体。
PCT/JP2012/081493 2011-12-05 2012-12-05 フレーム構造体及び箱状構造体 WO2013084930A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522019A JP5532184B2 (ja) 2011-12-05 2012-12-05 フレーム構造体及び箱状構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011265980 2011-12-05
JP2011-265980 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013084930A1 true WO2013084930A1 (ja) 2013-06-13

Family

ID=48574288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081493 WO2013084930A1 (ja) 2011-12-05 2012-12-05 フレーム構造体及び箱状構造体

Country Status (2)

Country Link
JP (1) JP5532184B2 (ja)
WO (1) WO2013084930A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200336U (ja) * 1985-06-04 1986-12-15
JPH09267836A (ja) * 1996-01-29 1997-10-14 Heiwa Corp 使用済み遊技機運搬用コンテナー
JP2003291969A (ja) * 2002-04-05 2003-10-15 Nippon Zeon Co Ltd 金属製運搬用パレット
JP2005035650A (ja) * 2003-07-18 2005-02-10 Nishida Seikan Kk 輸送用パレット
JP2006144543A (ja) * 2005-12-28 2006-06-08 Kyodo Ky Tec Corp 二重床構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113965A (ja) * 1984-11-09 1986-05-31 清水建設株式会社 壁式構造建築物の構築工法とそれに使用する構築装置
JP2000032775A (ja) * 1998-05-08 2000-01-28 Denso Corp 共振形電力変換装置
JP2000034775A (ja) * 1998-07-16 2000-02-02 Nippon Light Metal Co Ltd 骨組構造体
JP2008274549A (ja) * 2007-04-25 2008-11-13 Misawa Homes Co Ltd 建物躯体の補強構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200336U (ja) * 1985-06-04 1986-12-15
JPH09267836A (ja) * 1996-01-29 1997-10-14 Heiwa Corp 使用済み遊技機運搬用コンテナー
JP2003291969A (ja) * 2002-04-05 2003-10-15 Nippon Zeon Co Ltd 金属製運搬用パレット
JP2005035650A (ja) * 2003-07-18 2005-02-10 Nishida Seikan Kk 輸送用パレット
JP2006144543A (ja) * 2005-12-28 2006-06-08 Kyodo Ky Tec Corp 二重床構造

Also Published As

Publication number Publication date
JPWO2013084930A1 (ja) 2015-04-27
JP5532184B2 (ja) 2014-06-25

Similar Documents

Publication Publication Date Title
US8932700B2 (en) Panel
US8336711B2 (en) Case for rolled object
US8955284B2 (en) Structure including a frame having four sides and a closed cross-section structural member
WO2016076315A1 (ja) T字継手構造
JP2007147269A (ja) ダクトおよびその製造方法
JP6650920B2 (ja) 車体のフロア構造
EP2213592B1 (en) Shock-absorbing member
WO2013084930A1 (ja) フレーム構造体及び箱状構造体
JP5918530B2 (ja) 歯車装置
JP6132893B2 (ja) 歯車装置
JPH1134912A (ja) ブラケット構造
JP7312711B2 (ja) ブラケット
JP4969213B2 (ja) 二重床用パネル
JP2013129261A (ja) 車体後部構造
JP5216057B2 (ja) 乗客コンベア
JP6430588B1 (ja) 建物の壁構造、壁の施工方法、および補強具
JP5303512B2 (ja) 合成樹脂製パレット
JP2019199287A (ja) トレイ及びトレイのブランク
JP6946958B2 (ja) 包装箱
CN216469954U (zh) 一种集装箱的顶板及具有其的集装箱
JP7255365B2 (ja) 壁体補強構造及び筐体
JP4932808B2 (ja) フレーム
TWM641836U (zh) 基板容器之底板強化結構
JP5638831B2 (ja) 燃料タンク
JP3169254U (ja) 角型密閉容器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013522019

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856442

Country of ref document: EP

Kind code of ref document: A1