WO2013084737A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2013084737A1
WO2013084737A1 PCT/JP2012/080470 JP2012080470W WO2013084737A1 WO 2013084737 A1 WO2013084737 A1 WO 2013084737A1 JP 2012080470 W JP2012080470 W JP 2012080470W WO 2013084737 A1 WO2013084737 A1 WO 2013084737A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
radiator
air
heat exchanger
flows
Prior art date
Application number
PCT/JP2012/080470
Other languages
English (en)
French (fr)
Inventor
鈴木 謙一
秀憲 武居
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to DE112012005123.8T priority Critical patent/DE112012005123T5/de
Priority to US14/363,892 priority patent/US9809081B2/en
Publication of WO2013084737A1 publication Critical patent/WO2013084737A1/ja
Priority to US15/375,456 priority patent/US20170151857A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00064Air flow details of HVAC devices for sending air streams of different temperatures into the passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00092Assembling, manufacturing or layout details of air deflecting or air directing means inside the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/325Cooling devices information from a variable is obtained related to pressure of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/3251Cooling devices information from a variable is obtained related to pressure of the refrigerant at a condensing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3257Cooling devices information from a variable is obtained related to temperature of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/326Cooling devices information from a variable is obtained related to temperature of the refrigerant at a condensing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present invention relates to a vehicle air conditioner applicable to, for example, an electric vehicle.
  • this type of vehicle air conditioner includes a compressor driven by an engine as a power source of the vehicle, a radiator provided outside the passenger compartment, and a heat absorber provided inside the passenger compartment, and is compressed.
  • the refrigerant discharged from the machine dissipates heat in the radiator, absorbs heat in the heat absorber, and supplies the air that has exchanged heat with the refrigerant in the heat absorber into the passenger compartment to perform the cooling operation.
  • a heater core is provided in the vehicle interior, the exhaust heat of the cooling water used for cooling the engine is radiated in the heater core, and the air that has exchanged heat with the cooling water in the heater core is directed toward the vehicle interior. Heating operation is performed by blowing out.
  • the air supplied to the passenger compartment is dehumidified by cooling to the absolute humidity required in the heat absorber, and the air dehumidified by the heat absorber is dehumidified to a desired temperature in the heater core.
  • a dehumidifying and heating operation is performed in which the air is heated toward the passenger compartment after heating.
  • the vehicle air conditioner uses exhaust heat of the engine as a heat source for heating air in heating operation and dehumidifying heating operation.
  • An electric vehicle in which the power source of the vehicle is an electric motor does not generate exhaust heat that can sufficiently heat air like an engine, and thus the vehicle air conditioner cannot be applied.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that radiates the refrigerant
  • a heat absorber that absorbs the refrigerant, and radiates or absorbs heat from the refrigerant.
  • the refrigerant discharged from the outdoor heat exchanger and the compressor is caused to flow into the radiator, the refrigerant flowing through the radiator is caused to flow into the outdoor heat exchanger via the expansion means, and the refrigerant flowing through the outdoor heat exchanger is compressed into the compressor
  • the refrigerant circuit for heating to be sucked into the refrigerant, the refrigerant discharged from the compressor is allowed to flow into the radiator, a part of the refrigerant flowing through the radiator is caused to flow into the heat absorber via the expansion means, and the other refrigerant is supplied to the expansion means.
  • the refrigerant circuit for dehumidifying and heating that causes the compressor to suck the refrigerant that has flowed through the heat absorber and the refrigerant that has flowed through the outdoor heat exchanger, and the refrigerant discharged from the compressor into the radiator Circulated a radiator
  • a refrigerant circuit for cooling and dehumidifying cooling that causes the medium to flow into the outdoor heat exchanger, causes the refrigerant flowing through the outdoor heat exchanger to flow into the heat absorber via the expansion means, and sucks the refrigerant flowing through the heat absorber into the compressor; are known (for example, see Patent Document 1).
  • a supercooling unit is provided for circulating the liquid refrigerant downstream of the outdoor heat exchanger in the refrigerant flow direction to dissipate the heat to the supercooled state. ing.
  • An object of the present invention is to provide a vehicle air conditioner that can reduce pressure loss and improve driving efficiency.
  • the present invention provides a compressor that compresses and discharges a refrigerant, a radiator that radiates heat from the refrigerant, a heat absorber that absorbs heat from the refrigerant, and an outdoor heat exchanger that radiates or absorbs heat from the refrigerant.
  • the outdoor heat exchanger that further dissipates the heat radiated in the outdoor heat exchanger, the refrigerant discharged from the compressor flows into the heat radiator, the refrigerant that flows through the radiator flows into the outdoor heat exchanger, and the outdoor heat exchange Cooling / dehumidifying cooling refrigerant that flows into the outdoor radiator, flows the refrigerant that flows through the outdoor radiator into the heat absorber via the expansion valve, and sucks the refrigerant that flows through the heat absorber into the compressor
  • the refrigerant discharged from the circuit and the compressor flows into the radiator, the refrigerant flowing through the radiator flows into the outdoor heat exchanger via the expansion valve, and the refrigerant flowing through the outdoor heat exchanger is sucked into the compressor A refrigerant circuit for heating, and .
  • the refrigerant flowing through the outdoor radiator flows into the radiator, and in the heating refrigerant circuit, the refrigerant flowing through the outdoor heat exchanger does not flow through the outdoor radiator. Inhaled into the compressor.
  • the refrigerant flowing through the heat absorber becomes supercooled in the outdoor radiator, it is possible to improve the operation efficiency.
  • the refrigerant that does not flow through the heat absorber is sucked into the compressor without flowing through the supercooling radiator, it is possible to reduce the pressure loss and improve the operation efficiency. .
  • A A graph showing the relationship between the valve opening signal on the expansion means side of the first control valve and the opening area
  • C It is a graph which shows the relationship between the valve opening signal which combined the expansion means side of the 1st control valve, and the condensation pressure adjustment means side, and opening area.
  • It is a schematic block diagram of the air conditioning apparatus for vehicles which shows a cooling operation and a dehumidification cooling operation.
  • It is a schematic block diagram of the vehicle air conditioner which shows heating operation.
  • A A graph showing the relationship between the opening degree and the opening area of each of the first control valve on the expansion means side and the condensation pressure adjustment means side, (b) the expansion means side and the condensation of other examples of the first control valve.
  • 1 to 12 show a first embodiment of the present invention.
  • the vehicle air conditioner of the present invention includes an air conditioning unit 10 provided in a vehicle interior, and a refrigerant circuit 20 configured to extend between the vehicle interior and the exterior of the vehicle interior.
  • the air conditioning unit 10 has an air flow passage 11 for circulating the air supplied to the vehicle interior.
  • an outside air intake port 11 a for allowing the air outside the vehicle interior to flow into the air flow passage 11
  • an inside air intake port 11 b for allowing the air inside the vehicle interior to flow into the air flow passage 11, Is provided.
  • a foot outlet 11 c that blows out air flowing through the air flow passage 11 toward the feet of the passengers in the passenger compartment, and air flowing through the air flow passage 11 are supplied to the vehicle.
  • a vent outlet 11d that blows out toward the upper body of the passenger in the room, and a differential outlet 11e that blows out the air flowing through the air flow passage 11 toward the surface of the vehicle windshield toward the vehicle interior side. ing.
  • An indoor blower 12 such as a sirocco fan for circulating air from one end side to the other end side of the air flow passage 11 is provided on one end side in the air flow passage 11.
  • an inlet switching damper 13 that can open one of the outside air inlet 11a and the inside air inlet 11b and close the other is provided.
  • an outside air supply mode in which air flows from the outside air suction port 11a into the air flow passage 11 is set.
  • the inside air circulation mode in which air flows from the inside air suction port 11b into the air flow passage 11 is set.
  • the suction port switching damper 13 when the suction port switching damper 13 is positioned between the outside air suction port 11a and the inside air suction port 11b, and the outside air suction port 11a and the inside air suction port 11b are opened, the outside air suction port 11a by the suction port switching damper 13 is opened. And the inside / outside air suction mode in which air flows into the air flow passage 11 from the outside air suction port 11a and the inside air suction port 11b at a ratio corresponding to the respective opening ratios of the inside air suction port 11b.
  • the outlet switching dampers 13b, 13c, and 13d for opening and closing the outlets 11c, 11d, and 11e are provided at the foot outlet 11c, the vent outlet 11d, and the differential outlet 11e on the other end side of the air flow passage 11, respectively. Is provided.
  • the outlet switching dampers 13b, 13c, and 13d are configured to be interlocked by a link mechanism (not shown).
  • the foot outlet 11c is opened by the outlet switching dampers 13b, 13c, and 13d
  • the vent outlet 11d is closed, and the differential outlet 11e is slightly opened, the air flowing through the air flow passage 11 is reduced. Most of the air is blown from the foot outlet 11c and the remaining air is blown from the differential outlet 11e.
  • the air flow passage 11 and the foot blowing are such that the temperature difference between the air blown from the foot blower outlet 11c is higher than the temperature of the air blown from the vent blower outlet 11d.
  • the positional relationship and structure of the outlet 11c, the vent outlet 11d, a heat absorber and a radiator described later are provided.
  • the air flow passage 11 on the downstream side in the air flow direction of the indoor blower 12 is provided with a heat absorber 14 for cooling and dehumidifying the air flowing through the air flow passage 11.
  • a heat radiator 15 for heating the air flowing through the air flow passage 11 is provided in the air flow passage 11 on the downstream side in the air flow direction of the heat absorber 14.
  • the heat absorber 14 and the heat radiator 15 are heat exchangers including fins and tubes for exchanging heat between the refrigerant flowing through the interior and the air flowing through the air flow passage 11.
  • the air flow path 11 between the heat absorber 14 and the heat radiator 15 is provided with an air mix damper 16 for adjusting the rate of heating in the heat radiator 15 of the air flowing through the air flow path 11. Since the air mix damper 16 is positioned upstream of the radiator 15 in the air flow passage 11, the ratio of air to be heat exchanged in the radiator 15 is reduced, and the air mix damper 16 is disposed on a portion other than the radiator 15 in the air flow passage 11. By moving, the ratio of the air that exchanges heat in the radiator 15 increases.
  • the air mix damper 16 closes the upstream side of the radiator 15 in the air flow passage 11 and opens the portion other than the radiator 15 so that the opening degree becomes 0%, and the upstream side of the radiator 15 in the air flow passage 11. Is opened and the opening is 100% with the portion other than the radiator 15 closed.
  • the refrigerant circuit 20 flows out of the heat absorber 14, the radiator 15, the compressor 21 for compressing the refrigerant, the outdoor heat exchanger 22 for exchanging heat between the refrigerant and the air outside the vehicle compartment, and the outdoor heat exchanger.
  • the receiver tank 23 for storing the liquid refrigerant, the supercooling radiator 24 as the outdoor radiator for setting the liquid refrigerant flowing out from the receiver tank 23 to the supercooled state, and the outflow from the supercooling radiator 24
  • An internal heat exchanger 25 for exchanging heat between the refrigerant that flows and the refrigerant that flows out of the heat absorber 14, expansion means for depressurizing the refrigerant that flows into the outdoor heat exchanger 22 during heating operation and first dehumidifying heating operation, and dehumidification
  • the first control valve 26 as a control valve unit having a condensing pressure adjusting means for controlling the condensing pressure of the refrigerant in the radiator 15 during the cooling operation, adjusts the evaporation pressure of the refriger
  • Second control valve 27 First to fourth solenoid valves 28a, 28b, 28c, 28d, first to fourth check valves 29a, 29b, 29c, 29d, expansion valve 30, gas refrigerant and liquid
  • An accumulator 31 is provided for separating the refrigerant and preventing the liquid refrigerant from being sucked into the compressor 21, and these are connected by a copper tube or an aluminum tube.
  • the refrigerant flow path 20 a is provided by connecting the refrigerant inflow side of the radiator 15 to the refrigerant discharge side of the compressor 21.
  • a refrigerant flow passage 20 b is provided on the refrigerant outflow side of the radiator 15 by connecting the refrigerant inflow side of the first control valve 26.
  • a refrigerant flow passage 20c is provided by connecting the first connection port of the outdoor heat exchanger 22 to the refrigerant outlet side of the first control valve 26 on the expansion means side and the condensation pressure adjustment means side.
  • a refrigerant flow passage 20 d is provided at the second connection port of the outdoor heat exchanger 22 by connecting the refrigerant inflow side of the receiver tank 23.
  • the refrigerant flow passage 20d is provided with a first electromagnetic valve 28a and a first check valve 29a in order from the outdoor heat exchanger 22 side.
  • a refrigerant flow passage 20e is provided on the refrigerant outflow side of the receiver tank 23 by connecting the refrigerant inflow side of the supercooling radiator 24.
  • a refrigerant flow passage 20 f is provided on the refrigerant outflow side of the supercooling radiator 24 by connecting the high-pressure refrigerant inflow side of the internal heat exchanger 25.
  • a refrigerant flow passage 20g is provided on the high-pressure refrigerant outflow side of the internal heat exchanger 25 by connecting the refrigerant inflow side of the heat absorber 14.
  • An expansion valve 30 is provided in the refrigerant flow passage 20g.
  • a refrigerant flow passage 20 h is provided on the refrigerant outflow side of the heat absorber 14 by connecting the low-pressure refrigerant inflow side of the internal heat exchanger 25.
  • a second control valve 27 is provided in the refrigerant flow passage 20h.
  • a refrigerant flow passage 20 i is provided on the low-pressure refrigerant outflow side of the internal heat exchanger 25 by connecting the refrigerant suction side of the compressor 21.
  • a third check valve 29c and an accumulator 31 are provided in the refrigerant flow passage 20i in order from the internal heat exchanger 25 side.
  • the refrigerant flow passage 20b is provided with a refrigerant flow passage 20j by connecting the first check valve 29a of the refrigerant flow passage 20d and the receiver tank 23 to each other.
  • the refrigerant flow passage 20j is provided with a second electromagnetic valve 28b and a second check valve 29b in order from the refrigerant flow passage 20b side.
  • a refrigerant flow passage 20k is provided at the third connection port of the outdoor heat exchanger 22 by connecting the third check valve 29c of the refrigerant flow passage 20i and the accumulator 31.
  • a third electromagnetic valve 28c is provided in the refrigerant flow passage 20k.
  • the refrigerant flow passage 20a is connected to a refrigerant flow passage 20c, thereby providing a refrigerant flow passage 20l as a defrosting circuit.
  • a fourth electromagnetic valve 28d and a fourth check valve 29d are provided in order from the refrigerant flow passage 20a.
  • the compressor 21, the outdoor heat exchanger 22, the receiver tank 23, and the supercooling radiator 24 are disposed outside the passenger compartment.
  • the outdoor heat exchanger 22 is provided with an outdoor blower 32 for exchanging heat between the air outside the vehicle compartment and the refrigerant when the vehicle is stopped.
  • the outdoor heat exchanger 22 includes a receiver tank 23, a supercooling radiator 24, a first control valve 26, a first electromagnetic valve 28a, a second electromagnetic valve 28b, a third electromagnetic valve 28c,
  • An outdoor heat exchanger unit U is configured by being integrally formed with the first check valve 29a and the second check valve 29b.
  • the outdoor heat exchanger 22 and the supercooling radiator 24 include a pair of upper and lower headers 22a extending in the width direction, a plurality of flat tubes 22b connecting the headers 22a with an interval in the width direction, and each flat tube. And a wave-shaped fin 22c provided between the two 22b.
  • the outdoor heat exchanger 22 is provided on one side in the width direction of the pair of headers 22a, and the radiator for supercooling 24 is provided on the other side in the width direction of the pair of headers 22a.
  • Each header 22a is made of a cylindrical member whose both ends in the width direction are closed, and each inside is partitioned in the width direction by a plurality of partition members 22d.
  • a refrigerant flow path extending in the width direction while meandering up and down is formed in the outdoor heat exchanger 22.
  • a refrigerant flow passage 20c is connected to the space on one side in the width direction of the outdoor heat exchanger 22 portion of the lower header 22a.
  • a refrigerant flow passage 20d and a refrigerant flow passage 20k are connected to the space on the other side in the width direction of the outdoor heat exchanger 22 portion of the lower header 22a.
  • a refrigerant flow passage 20e is connected to the space of the supercooling radiator 24 portion of the lower header 22a.
  • a refrigerant flow passage 20f is connected to the space of the supercooling radiator 24 portion of the upper header 22a.
  • the receiver tank 23 is composed of a cylindrical member extending in the vertical direction with both ends closed, and a refrigerant flow passage 20d and a refrigerant flow passage 20e are connected to the lower end side.
  • the receiver tank 23 stores excess refrigerant in the refrigerant circuit 20.
  • the internal heat exchanger 25 is, for example, a double-pipe heat exchanger, and causes the refrigerant flowing through the refrigerant flow passage 20f to flow through the inner pipe and the refrigerant flowing through the refrigerant flow passage 20h to flow through the outer pipe.
  • the refrigerant exchanges heat.
  • the first control valve 26 is provided with a refrigerant passage on the expansion means side and a refrigerant flow path on the condensation pressure adjustment means side for one refrigerant inlet.
  • the first control valve 26 is provided with one refrigerant outlet for the refrigerant passage on the expansion means side and the refrigerant flow path on the condensation pressure adjustment means side.
  • Valve bodies for adjusting the opening degree are provided in the refrigerant passage on the expansion means side and the refrigerant flow path on the condensation pressure adjustment means side, respectively.
  • the first control valve 26 has a function of an electronic expansion valve on the expansion means side and a function of an electromagnetic valve on the condensation pressure adjustment means side.
  • the first control valve 26 can be adjusted between the fully open state and the fully open state of the respective valve openings on the expansion means side and the condensation pressure adjustment means side. As shown in FIG. 3, the first control valve 26 can adjust the opening area of the refrigerant passage between a state where the expansion means side and the condensation pressure adjustment means side are fully closed to a state where it is fully open.
  • the relationship between the valve opening signal and the opening area is shown with the horizontal axis representing the valve opening signal and the vertical axis representing the opening diameter corresponding to the opening area of the refrigerant passage.
  • FIG. 3A shows the relationship between the valve opening signal on the expansion means side and the opening diameter corresponding to the opening area of the refrigerant flow path.
  • FIG. 3B shows the relationship between the valve opening signal on the condensing pressure adjusting means side and the opening diameter corresponding to the opening area of the refrigerant flow path.
  • FIG. 3C shows the relationship between the valve opening signal obtained by combining the expansion means side and the condensation pressure adjustment means side and the opening diameter corresponding to the opening area of the refrigerant flow path.
  • the second control valve 27 is configured to be able to adjust the valve opening stepwise or arbitrarily.
  • the second control valve 27 adjusts the evaporation pressure of the refrigerant in the heat absorber 14 by adjusting the flow rate of the refrigerant flowing through the refrigerant flow passage 20h by adjusting the valve opening degree.
  • the expansion valve 30 is a temperature expansion valve whose valve opening can be adjusted according to the temperature of the refrigerant flowing out of the heat absorber 14.
  • the temperature expansion valve for example, an outflow refrigerant passage through which the refrigerant flowing out from the heat absorber flows, a temperature sensing rod for detecting the temperature through the outflow refrigerant passage, and a diaphragm for moving the valve body, An integrally formed box-type temperature expansion valve is used.
  • the vehicle air conditioner includes the rotation speed of the compressor 21, the valve opening of the first control valve 26, the valve opening of the second control valve 27, and the first to fourth electromagnetics.
  • a controller 40 is provided for controlling the opening and closing of the valves 28a, 28b, 28c and 28d.
  • the compressor 21, the first control valve 26, the second control valve 27, and the first to fourth electromagnetic valves 28a, 28b, 28c, and 28d are connected to the output side of the controller 40. Further, on the input side of the controller 40, a high-pressure refrigerant temperature sensor 41 for detecting the temperature Thp1 of the high-pressure refrigerant flowing through the refrigerant flow passage 20b, and a pressure Php1 of the high-pressure refrigerant flowing through the refrigerant flow passage 20b are detected.
  • a pressure sensor 44, an intake air temperature sensor 45 for detecting the temperature T of air flowing in the upstream side of the heat absorber 14 in the air flow passage 11, and a temperature Tc of air flowing in the downstream side of the heat absorber 14 are detected.
  • a cooling air temperature sensor 46 for detecting the temperature of the refrigerant sucked by the compressor 21 in the refrigerant flow passage 20i, a refrigerant flow
  • a suction refrigerant pressure sensor 48 for detecting the pressure of the refrigerant sucked by the compressor 21 in the passage 20i
  • a discharge refrigerant pressure sensor 49 for detecting the pressure of the refrigerant discharged by the compressor 21 in the refrigerant flow passage 20a
  • Inflow refrigerant temperature sensor 50 for detecting the temperature of the refrigerant flowing into the radiator 15 of the refrigerant flow passage 20a
  • an inflow refrigerant pressure sensor 51 for detecting the pressure of the refrigerant flowing into the radiator 15 of the refrigerant flow passage 20a.
  • a pressure sensor 52 that detects the pressure of the refrigerant flowing through the refrigerant flow passage 20f.
  • the high-pressure refrigerant temperature sensor 41 and the high-pressure refrigerant pressure sensor 42 may be configured integrally without being configured separately.
  • the suction refrigerant temperature sensor 47 and the suction refrigerant pressure sensor 48 may be configured integrally without being configured separately.
  • the inflow refrigerant temperature sensor 50 and the inflow refrigerant pressure sensor 51 may be configured integrally without being configured separately.
  • the cooling operation, the dehumidifying and cooling operation, the heating operation, the first dehumidifying and heating operation as the dehumidifying and heating operation, the second dehumidifying and heating operation as the internal circulation dehumidifying and heating operation, the first A defrosting operation is performed.
  • each operation will be described.
  • the flow path on the expansion means side of the first control valve 26 is closed, the flow path on the condensation pressure adjustment means side is opened, and the first electromagnetic valve 28a is opened.
  • the second, third, and fourth electromagnetic valves 28b, 28c, and 28d are closed, and the compressor 21 is operated.
  • the refrigerant discharged from the compressor 21 is, as shown in FIG. 4, the refrigerant flow passage 20a, the radiator 15, the refrigerant flow passage 20b, the condensation pressure adjusting valve side of the first control valve 26, the refrigerant flow passage 20c.
  • Outdoor heat exchanger 22 refrigerant flow passage 20d, receiver tank 23, refrigerant flow passage 20e, supercooling radiator 24, refrigerant flow passage 20f, high pressure side of internal heat exchanger 25, refrigerant flow passage 20g, heat absorber 14 Then, the refrigerant flow passage 20h, the low-pressure side of the internal heat exchanger 25, and the refrigerant flow passage 20i are circulated in this order and sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 dissipates heat in the outdoor heat exchanger 22 and absorbs heat in the heat absorber 14.
  • the air mix damper 16 is opened as shown in the one-dot chain line in FIG. 4 in the dehumidifying and cooling operation, the refrigerant flowing through the refrigerant circuit 20 also radiates heat in the radiator 15.
  • the air in the air flow passage 11 circulated by operating the indoor blower 12 is cooled by exchanging heat with the refrigerant in the heat absorber 14 to set the temperature in the vehicle interior as a target.
  • the air is blown into the vehicle interior as the target air temperature TAO, which is the temperature of the air to be blown out from the air outlets 11c, 11d, and 11e.
  • the target blowing temperature TAO is calculated based on the detected environmental conditions and the target set temperature Tset by detecting environmental conditions such as the temperature Tam outside the vehicle interior, the temperature Tr inside the vehicle interior, and the amount of solar radiation Ts.
  • the air in the air flow passage 11 circulated by operating the indoor fan 12 is dehumidified by being cooled by exchanging heat with the refrigerant that absorbs heat in the heat absorber 14. .
  • the air dehumidified in the heat absorber 14 is heated by exchanging heat with the refrigerant that dissipates heat in the radiator 15 and is blown into the passenger compartment as air at the target blowing temperature TAO.
  • the refrigerant condensing pressure in the radiator 15 is adjusted by adjusting the valve opening of the first control valve 26 on the condensing pressure adjusting means side. That is, by adjusting the refrigerant condensing pressure in the radiator 15, the heat radiation amount of the radiator 15 can be adjusted. Specifically, the condensing pressure of the refrigerant in the radiator 15 decreases when the valve opening of the condensing pressure adjusting means of the first control valve 26 is increased, and increases when the valve opening is decreased. Thereby, the heat radiation amount of the radiator 15 decreases by decreasing the condensation pressure, and increases by increasing the condensation pressure.
  • the refrigerant flowing through the outdoor heat exchanger 22 flows into the supercooling radiator 24 through the receiver tank 23. Therefore, the refrigerant flowing into the supercooling radiator 24 is in a supercooled state by exchanging heat with the air outside the passenger compartment in a liquid state.
  • the refrigerant flow path on the expansion means side of the first control valve 26 is opened, the refrigerant flow path on the condensation pressure adjustment means side is closed, the third electromagnetic valve 28c is opened, The first, second, and fourth electromagnetic valves 28a, 28b, and 28d are closed, and the compressor 21 is operated.
  • the refrigerant discharged from the compressor 21 is, as shown in FIG. 5, the refrigerant flow path 20a, the radiator 15, the refrigerant flow path 20b, the expansion means side of the first control valve 26, the refrigerant flow path 20c, the outdoor The heat exchanger 22 and the refrigerant flow passages 20k and 20i are circulated in this order and sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 dissipates heat in the radiator 15 and absorbs heat in the outdoor heat exchanger 22.
  • the air in the air flow passage 11 circulated by operating the indoor fan 12 is heated by exchanging heat with the refrigerant in the radiator 15 without exchanging heat with the refrigerant in the heat absorber 14. Then, the air becomes the target blowing temperature TAO and is blown into the passenger compartment.
  • the refrigerant flow path on the expansion means side of the first control valve 26 is opened, the refrigerant flow path on the condensation pressure adjustment means side is closed, and the second and third electromagnetic valves While opening 28b and 28c, the 1st and 4th solenoid valves 28a and 28d are closed, and the compressor 21 is drive
  • coolant discharged from the compressor 21 distribute
  • a part of the refrigerant flowing through the refrigerant flow passage 20b flows through the first control valve 26 on the expansion means side, the refrigerant flow passage 20c, the outdoor heat exchanger 22, and the refrigerant flow passages 20k and 20i in this order, and is sucked into the compressor 21. Is done.
  • Other refrigerants flowing through the refrigerant flow passage 20b are the refrigerant flow passages 20j and 20d, the receiver tank 23, the refrigerant flow passage 20e, the supercooling radiator 24, the refrigerant flow passage 20f, and the high-pressure side of the internal heat exchanger 25.
  • the refrigerant flow passage 20g, the heat absorber 14, the refrigerant flow passage 20h, the low pressure side of the internal heat exchanger 25, and the refrigerant flow passage 20i are circulated in this order and sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 radiates heat in the radiator 15 and absorbs heat in the heat absorber 14 and the outdoor heat exchanger 22.
  • the air in the air flow passage 11 circulated by operating the indoor blower 12 is dehumidified by being cooled by heat exchange with the refrigerant in the heat absorber 14.
  • the air dehumidified in the heat absorber 14 is heated when a part of the air exchanges heat with the refrigerant in the radiator 15, and is blown into the vehicle interior as air at the target blowing temperature TAO.
  • the evaporation temperature of the refrigerant in the heat absorber 14 is adjusted by adjusting the valve opening degree of the second control valve 27. That is, the refrigerant in the heat absorber 14 has a higher evaporation temperature when the opening degree of the second control valve 27 is decreased, and the evaporation temperature is decreased when the valve opening degree of the second control valve 27 is increased.
  • both the refrigerant flow paths on the expansion means side and the condensation pressure adjustment means side of the first control valve 26 are closed, the second electromagnetic valve 28b is opened, The third and fourth electromagnetic valves 28a, 28c, 28d are closed, and the compressor 21 is operated.
  • the refrigerant discharged from the compressor 21 is, as shown in FIG. 7, the refrigerant flow passage 20a, the radiator 15, the refrigerant flow passages 20b, 20j, and 20d, the receiver tank 23, the refrigerant flow passage 20e, and the subcooling.
  • the radiator 24, the refrigerant flow passage 20f, the high pressure side of the internal heat exchanger 25, the refrigerant flow passage 20g, the heat absorber 14, the refrigerant flow passage 20h, the low pressure side of the internal heat exchanger 25, and the refrigerant flow passage 20i are circulated in this order. It is sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 dissipates heat in the radiator 15 and absorbs heat in the heat absorber 14.
  • the air in the air flow passage 11 circulated by operating the indoor blower 12 is cooled by exchanging heat with the refrigerant in the heat absorber 14 as in the first dehumidifying heating operation. Is dehumidified.
  • the air dehumidified in the heat absorber 14 is heated when a part of the air exchanges heat with the refrigerant in the radiator 15, and is blown into the vehicle interior at the target blowing temperature TAO.
  • the air flowing into the air flow passage 11 may be air outside the passenger compartment or air inside the passenger compartment.
  • the refrigerant flow path on the expansion means side of the first control valve 26 is opened and the refrigerant flow path on the condensation pressure adjustment means side is closed, and the third and fourth electromagnetic valves 28c and 28d. Is opened, the first and second solenoid valves 28a and 28b are closed, and the compressor 21 is operated. Thereby, a part of the refrigerant discharged from the compressor 21 is, as shown in FIG. 8, the refrigerant flow passage 20a, the radiator 15, the refrigerant flow passage 20b, the expansion means side of the first control valve 26, the refrigerant flow passage. 20c is circulated in sequence and flows into the outdoor heat exchanger 22.
  • the other refrigerant discharged from the compressor 21 flows through the refrigerant flow paths 20l and 20c and flows into the outdoor heat exchanger 22.
  • the refrigerant flowing out of the outdoor heat exchanger 22 flows through the refrigerant flow passages 20k and 20i and is sucked into the compressor 21.
  • the refrigerant flowing through the refrigerant circuit 20 radiates heat in the radiator 15 and absorbs heat in the outdoor heat exchanger 22 simultaneously with heat radiation.
  • the air in the air flow passage 11 circulated by operating the indoor blower 12 does not exchange heat with the refrigerant in the heat absorber 14, but exchanges heat with the refrigerant that radiates heat in the radiator 15. Is heated and blown into the passenger compartment.
  • the first control valve 26, the second control valve 27, and the first to fourth electromagnetic valves 28a, 28b, 28c, 28d are switched.
  • the cooling operation, the dehumidifying cooling operation, the heating operation, the first dehumidifying heating operation, the second dehumidifying heating operation, and the defrosting operation are performed at the temperature Tam outside the vehicle compartment, Is switched based on the environmental conditions such as the temperature Tr, the humidity outside the passenger compartment, the humidity Th in the passenger compartment, the amount of solar radiation Ts, and the required capacity.
  • the modes of the outlets 11c, 11d, and 11e are switched by the outlet switching dampers 13b, 13c, and 13d.
  • the opening degree of the air mix damper 16 is adjusted so that the temperature of the air blown from the blowout ports 11c, 11d, and 11e becomes the target blowout temperature TAO.
  • the foot mode, vent mode, and bi-level mode of each outlet 11c, 11d, and 11e are switched according to the target outlet temperature TAO.
  • the foot mode is set when the target blowing temperature TAO is a high temperature such as 40 ° C. or higher. Further, when the target blowing temperature TAO is a low temperature such as less than 25 ° C., the vent mode is set. Further, when the target blowing temperature TAO is a temperature between the target blowing temperature TAO for which the foot mode is set and the target blowing temperature TAO for which the vent mode is set, the bi-level mode is set.
  • the controller 40 performs a second dehumidifying and heating operation determination process for determining whether or not to perform the second dehumidifying and heating operation. The operation of the controller 40 at this time will be described using the flowchart of FIG.
  • Step S1 the CPU determines whether or not the settings of the air outlets 11c, 11d, and 11e are in the bi-level mode. If it is determined that the bi-level mode is set, the process proceeds to step S2, and if it is not determined that the bi-level mode is set, the second dehumidifying and heating operation determination process ends.
  • Step S2 When it is determined in step S1 that the bi-level mode is set, in step S2, the CPU determines whether or not the detected temperature T of the intake air temperature sensor 45 is equal to or higher than a first predetermined temperature T1 (for example, 10 to 15 ° C.). judge. If it is determined that the detected temperature T of the intake air temperature sensor 45 is equal to or higher than the first predetermined temperature T1, the process proceeds to step S3, and it is determined that the detected temperature T of the intake air temperature sensor 45 is equal to or higher than the first predetermined temperature T1. If not, the process moves to step S5.
  • a first predetermined temperature T1 for example, 10 to 15 ° C.
  • Step S3 When it is determined in step S2 that the detected temperature T of the intake air temperature sensor 45 is equal to or higher than the first predetermined temperature T1, in step S3, the CPU detects that the detected temperature T of the intake air temperature sensor 45 is the second predetermined temperature T2 (for example, 20 It is determined whether or not it is higher than or equal to ⁇ 25 ° C. If the detected temperature T of the intake air temperature sensor 45 is equal to or higher than the second predetermined temperature T2, the process proceeds to step S5, and if the detected temperature T of the intake air temperature sensor 45 is not determined to be equal to or higher than the second predetermined temperature T2 (T1 ⁇ In T ⁇ T2), the process proceeds to step S4.
  • the second predetermined temperature T2 for example, 20 It is determined whether or not it is higher than or equal to ⁇ 25 ° C.
  • Step S4 If the detected temperature T of the intake air temperature sensor 45 is not determined to be equal to or higher than the second predetermined temperature T2 in step S3, the CPU starts the second dehumidifying heating operation and ends the second dehumidifying heating operation determining process in step S4. To do.
  • Step S5 If it is not determined in step S2 that the detected temperature T of the intake air temperature sensor 45 is equal to or higher than the first predetermined temperature, or if it is determined in step S3 that the detected temperature T is equal to or higher than the second predetermined temperature T2, in step S5 The CPU ends the second dehumidifying and heating operation and ends the second dehumidifying and heating operation determination process.
  • the determination as to whether or not to perform the second dehumidifying heating operation is not limited to the determination based on the temperature T of the air flowing upstream of the heat absorber 14, but may be determined based on the temperature outside the vehicle compartment.
  • the heat absorber 14 is based on the temperature of air after heat exchange with the refrigerant.
  • a second dehumidifying and heating operation switching process for switching to the second dehumidifying and heating operation is performed. The operation of the controller 40 at this time will be described with reference to the flowchart of FIG.
  • step S11 the CPU determines whether or not the dehumidifying and cooling operation is being performed. If it is determined that the dehumidifying and cooling operation is being performed, the process proceeds to step S12. If it is not determined that the dehumidifying and cooling operation is being performed, the process proceeds to step S13.
  • Step S12 When it is determined in step S11 that the dehumidifying and cooling operation is being performed, in step S12, the CPU determines whether or not the detected temperature Tc of the cooling air temperature sensor 46 is equal to or lower than a third predetermined temperature Tc1. When it is determined that the detected temperature Tc of the cooling air temperature sensor 46 is equal to or lower than the third predetermined temperature Tc1, the process proceeds to step S15, and when it is not determined that it is equal to or lower than the third predetermined temperature Tc1, the second dehumidifying heating operation switching process is performed. Exit.
  • Step S13 If it is not determined in step S11 that the dehumidifying and cooling operation is being performed, in step S13, the CPU determines whether or not the first dehumidifying and heating operation is being performed. If it is determined that the first dehumidifying and heating operation is being performed, the process proceeds to step S14. If it is not determined that the first dehumidifying and heating operation is being performed, the second dehumidifying and heating operation switching process is terminated.
  • Step S14 When it is determined in step S13 that the first dehumidifying and heating operation is being performed, in step S14, the CPU determines whether or not the detected temperature Tc of the cooling air temperature sensor 46 is equal to or higher than a fourth predetermined temperature Tc2. When it is determined that the detected temperature Tc of the cooling air temperature sensor 46 is equal to or higher than the fourth predetermined temperature Tc2, the process proceeds to step S15, and when it is not determined higher than the fourth predetermined temperature Tc2, the second dehumidifying heating operation switching process is performed. Exit.
  • Step S15 When it is determined in step S12 that the detected temperature Tc of the cooling air temperature sensor 46 is equal to or lower than the third predetermined temperature Tc1, or when it is determined in step S14 that the detected temperature Tc of the cooling air temperature sensor 46 is equal to or higher than the fourth predetermined temperature Tc2.
  • the CPU switches the operation state to the second dehumidifying and heating operation and ends the second dehumidifying and heating operation switching process.
  • Switching to the second dehumidifying and heating operation is not limited to switching based on the temperature Tc of the air flowing downstream of the heat absorber 14, and is switched based on the predicted value of the air temperature downstream of the radiator 15. Also good.
  • the temperature of the air on the downstream side of the radiator 15 is controlled by adjusting the rotational speed of the compressor 21. Further, during the second dehumidifying and heating operation, since the settings of the air outlets 11c, 11d, and 11e are in the bi-level mode, the air mix damper 16 is supplied into the vehicle interior by adjusting the opening within a predetermined range. The air temperature is controlled so as to become the target blowing temperature TAO.
  • the compressor 21 is one of the pressure on the high pressure side of the refrigerant circuit 20, the temperature on the high pressure side, the temperature of the air flowing through the air flow passage 11, the temperature of the air on the downstream side of the heat absorber 14, or at least
  • the number of rotations is controlled based on some of the combinations.
  • the operation switching control that switches between the first dehumidifying and heating operation, the second dehumidifying and heating operation, and the cooling or dehumidifying and cooling operation. Process. The operation of the controller 40 at this time will be described with reference to the flowchart of FIG.
  • step S21 the CPU determines whether or not the first dehumidifying and heating operation is being performed. If it is determined that the first dehumidifying and heating operation is being performed, the process proceeds to step S22. If it is not determined that the first dehumidifying and heating operation is being performed, the process proceeds to step S24.
  • Step S22 When it is determined in step S21 that the first dehumidifying and heating operation is being performed, in step S22, the CPU determines the difference (Tc) between the detected temperature Tc of the cooling air temperature sensor 46 and the target temperature TEO of the air downstream of the heat absorber 14. Determine whether -TEO) is greater than a predetermined value. If it is determined that the value is greater than the predetermined value, the process proceeds to step S27. If it is not determined that the value is greater than the predetermined value, the process proceeds to step S23.
  • Tc the difference between the detected temperature Tc of the cooling air temperature sensor 46 and the target temperature TEO of the air downstream of the heat absorber 14. Determine whether -TEO) is greater than a predetermined value. If it is determined that the value is greater than the predetermined value, the process proceeds to step S27. If it is not determined that the value is greater than the predetermined value, the process proceeds to step S23.
  • Step S23 When it is not determined in step S22 that the difference between the detected temperature Tc and the target temperature TEO (Tc ⁇ TEO) is greater than a predetermined value, or in step S26 described later, the target temperature TCO of the air downstream of the radiator 15 And the difference between the estimated temperature TH of the air on the downstream side of the radiator 15 (TCO ⁇ TH) is larger than a predetermined value or the detection of the target temperature TEO of the air on the downstream side of the heat absorber 14 and the cooling air temperature sensor 46 When it is determined that the difference (TEO ⁇ Tc) from the temperature Tc is larger than the predetermined value, in step S23, the CPU executes the first dehumidifying heating operation and ends the operation switching control process.
  • Step S24 When it is not determined in step S21 that the first dehumidifying and heating operation is being performed, in step S24, the CPU determines whether or not the second dehumidifying and heating operation is being performed. If it is determined that the second dehumidifying and heating operation is being performed, the process proceeds to step S25. If it is not determined that the second dehumidifying and heating operation is being performed, the process proceeds to step S28.
  • Step S25 If it is determined in step S24 that the second dehumidifying and heating operation is being performed, in step S25, the CPU determines the difference between the detected temperature Tc of the cooling air temperature sensor 46 and the target temperature TEO of the air downstream of the heat absorber 14 (Tc). Determine whether -TEO) is greater than a predetermined value. If it is determined that the value is greater than the predetermined value, the process proceeds to step S30. If it is not determined that the value is greater than the predetermined value, the process proceeds to step S26.
  • Step S26 If it is not determined in step S25 that the difference (Tc ⁇ TEO) between the detected temperature Tc of the cooling air temperature sensor 46 and the target temperature TEO of the air downstream of the heat absorber 14 is greater than a predetermined value, the CPU in step S26 Is the difference (TCO ⁇ TH) between the target temperature TCO of the air downstream of the radiator 15 and the estimated temperature TH of the air downstream of the radiator 15 is greater than a predetermined value, or the heat absorber 14 It is determined whether or not the difference (TEO-Tc) between the target temperature TEO of the downstream air and the detected temperature Tc of the cooling air temperature sensor 46 is greater than a predetermined value. If it is determined that the value is greater than the predetermined value, the process proceeds to step S23. If it is not determined that the value is greater than the predetermined value, the process proceeds to step S27.
  • Step S27 If it is determined in step S22 that the difference between the detected temperature Tc and the target temperature TEO (Tc ⁇ TEO) is greater than a predetermined value, the difference between the target temperature TCO and the estimated temperature TH (TCO ⁇ TH) is greater than the predetermined value in step S26. Is not determined to be larger, it is determined in step S26 that the difference (TEO-Tc) between the target temperature TEO of the air downstream of the heat absorber 14 and the detected temperature Tc of the cooling air temperature sensor 46 is greater than a predetermined value.
  • step S29 If not, or if it is determined in step S29 described later that the difference (TCO-TH) between the target temperature TCO of the radiator 15 and the estimated temperature TH is greater than a predetermined value, the CPU 2 The dehumidifying and heating operation is executed to end the operation switching control process.
  • Step S28 When it is not determined in step S24 that the second dehumidifying operation is being performed, in step S28, the CPU determines whether or not the cooling operation or the dehumidifying and cooling operation is being performed. If it is determined that the cooling operation or the dehumidifying cooling operation is being performed, the process proceeds to step S29. If it is not determined that the cooling operation or the dehumidifying cooling operation is being performed, the operation switching control process is terminated.
  • Step S29 When it is determined in step S28 that the cooling operation or the dehumidifying cooling operation is being performed, in step S29, the CPU determines the difference between the target temperature TCO of the radiator 15 and the estimated temperature TH of the air downstream of the radiator 15 (TCO). It is determined whether or not ( ⁇ TH) is larger than a predetermined value. If it is determined that the value is larger than the predetermined value, the process proceeds to step S27. If it is not determined that the value is larger than the predetermined value, the process proceeds to step S30.
  • Step S30 If the difference (Tc ⁇ TEO) between the detected temperature Tc and the target temperature TEO is larger than a predetermined value in step S25, or the difference (TCO ⁇ TH) between the target temperature TCO and the estimated temperature TH is larger than the predetermined value in step S29. If it is not determined that the value is larger, the CPU executes a cooling operation or a dehumidifying cooling operation in step S30 and ends the operation switching control process.
  • the predetermined value of the difference is set within a range of 2 ° C. to 3 ° C., for example.
  • the predetermined value is calculated based on the detected temperature Tc of the cooling air temperature sensor 46, which is the temperature of the air downstream of the heat absorber 14, but the surface temperature of the heat absorber 14 (between the fins).
  • the predetermined value may be calculated based on the actual measurement value of).
  • the predetermined value is calculated based on the estimated temperature TH of the air downstream of the radiator 15, but the predetermined value is calculated based on the actual measured temperature of the air downstream of the radiator 15. May be.
  • the refrigerant that flows through the outdoor heat exchanger 22 and absorbs heat in the heat absorber 14 is supplied to the supercooling radiator 24. It is distributed. Further, during the heating operation, the refrigerant flowing through the outdoor heat exchanger 22 is sucked into the compressor 21 without flowing through the supercooling radiator 24. Further, during the first dehumidifying and heating operation and the second dehumidifying and heating operation, the refrigerant that circulates the radiator 15 and absorbs heat in the heat absorber 14 is circulated to the supercooling radiator 24.
  • a receiver tank 23 capable of storing a liquid refrigerant is provided upstream of the supercooling radiator 24 in the refrigerant flow direction.
  • excess refrigerant can be stored in the receiver tank 23 during the cooling operation, the dehumidifying and cooling operation, the first dehumidifying and heating operation, and the second dehumidifying and heating operation.
  • the circulation amount can be made an appropriate amount.
  • a refrigerant flow path 20l is provided through which the refrigerant discharged from the compressor 21 can flow directly into the outdoor heat exchanger 22.
  • the refrigerant flows from one end side of the refrigerant passage formed inside, and the inflowing refrigerant flows out from the other end side.
  • the circuit configuration of the refrigerant circuit 20 is simplified, and the manufacturing cost can be reduced.
  • the outdoor heat exchanger 22, the receiver tank 23, the supercooling radiator 24, the first control valve 26, the first electromagnetic valve 28a, the second electromagnetic valve 28b, the third electromagnetic valve 28c, the first check valve 29a, and An outdoor heat exchanger unit U in which the second check valve 29b is integrally formed is configured.
  • the outdoor heat exchanger unit U can be assembled as a single component, so that the number of assembling steps can be reduced.
  • the refrigerant circuit 20 is provided with a first control valve 26 integrally formed with an expansion means having a function of an electronic expansion valve and a condensing pressure adjusting means having a function as an electromagnetic valve, and the refrigerant inflow side and the refrigerant outflow side are respectively provided.
  • a first control valve 26 integrally formed with an expansion means having a function of an electronic expansion valve and a condensing pressure adjusting means having a function as an electromagnetic valve, and the refrigerant inflow side and the refrigerant outflow side are respectively provided.
  • One connection port is possible to assemble two types of functions as one component, and therefore it is possible to reduce the number of assembling steps.
  • the second dehumidifying and heating operation is started and stopped based on the detected temperature T of the intake air temperature sensor 45.
  • the second dehumidifying and heating operation can be performed effectively under the condition that the load of air conditioning is small, so that the energy consumption can be reduced.
  • the operation is switched to the second dehumidifying and heating operation based on the detected temperature Tc of the cooling air temperature sensor 46.
  • the second dehumidifying and heating operation can be performed effectively under the condition that the load of air conditioning is small, so that the energy consumption can be reduced.
  • the temperature of the air on the downstream side of the radiator 15 is adjusted by adjusting the rotational speed of the compressor 21, and the air temperature supplied to the vehicle interior is adjusted by adjusting the opening degree of the air mix damper 16.
  • the blowing temperature TAO is set.
  • the refrigerant circuit 20 of the vehicle air conditioner is provided with a refrigerant flow passage 20m by connecting the refrigerant flow passage 20e and the refrigerant flow passage 20f.
  • a fifth electromagnetic valve 28e is provided in the refrigerant flow passage 20m.
  • a sixth electromagnetic valve 28f is provided downstream of the refrigerant flow passage 20m and the connection portion of the refrigerant flow passage 20e.
  • a fifth check valve 29e is provided on the upstream side of the connection portion between the refrigerant flow passage 20f and the refrigerant flow passage 20m.
  • the cooling operation, the dehumidifying and cooling operation, the heating operation, the first dehumidifying and heating operation, the second dehumidifying and heating operation, and the defrosting operation are shown in the table of FIG.
  • the first control valve 26, the second control valve 27, and the first to sixth electromagnetic valves 28a, 28b, 28c, 28d, 28e, and 28f are switched.
  • the refrigerant flowing through the refrigerant flow passage 20d flows into the receiver tank 23, and then flows into the heat absorber 14 without flowing through the supercooling radiator 24. .
  • the refrigerant flowing through the heat absorber 14 is supercooled in the supercooling radiator 24. Efficiency can be improved. Further, since the refrigerant that does not flow through the heat absorber 14 is sucked into the compressor 21 without flowing through the supercooling radiator 24, it is possible to reduce the pressure loss and improve the operation efficiency. It becomes possible.
  • the refrigerant flowing out of the radiator 15 flows into the heat absorber 14 after flowing through the receiver tank 23 without flowing the supercooling radiator 24. I am letting. Thereby, it is possible to reduce pressure loss even during the first dehumidifying and heating operation and during the second dehumidifying and heating operation. Further, since the surplus refrigerant can be stored in the receiver tank 23, the circulation amount of the refrigerant flowing through the refrigerant circuit 20 can be set to an appropriate amount.
  • the refrigerant circuit 20 of the vehicle air conditioner is provided with a refrigerant flow passage 20m and a third check valve 29c, as in the second embodiment.
  • An electromagnetic three-way valve 28g is provided at a connection portion between the refrigerant flow passage 20e and the refrigerant flow passage 20m.
  • the cooling operation, the dehumidifying and cooling operation, the heating operation, the first dehumidifying and heating operation, the second dehumidifying and heating operation, and the defrosting operation are shown in the table of FIG.
  • the first control valve 26, the second control valve 27, the first to fourth electromagnetic valves 28a, 28b, 28c, 28d, and the electromagnetic three-way valve 28g are switched.
  • the refrigerant flowing through the refrigerant flow passage 20d flows into the receiver tank 23, and then flows into the heat absorber 14 without flowing through the supercooling radiator 24. .
  • the refrigerant flowing through the heat absorber 14 is supercooled in the supercooling radiator 24. Efficiency can be improved. Further, since the refrigerant that does not flow through the heat absorber 14 is sucked into the compressor 21 without flowing through the supercooling radiator 24, it is possible to reduce the pressure loss and improve the operation efficiency. It becomes possible.
  • the refrigerant flowing out of the radiator 15 flows into the heat absorber 14 after flowing through the receiver tank 23 without flowing the supercooling radiator 24. I am letting. Thereby, it is possible to reduce pressure loss even during the first dehumidifying and heating operation and during the second dehumidifying and heating operation. Further, since the surplus refrigerant can be stored in the receiver tank 23, the circulation amount of the refrigerant flowing through the refrigerant circuit 20 can be set to an appropriate amount.
  • the refrigerant circuit 20 of the vehicle air conditioner has an upstream side of the internal heat exchanger of the refrigerant flow passage 20 b and the refrigerant flow passage 20 f instead of the refrigerant flow passage 20 j of the first embodiment.
  • a refrigerant flow passage 20n to be connected is provided.
  • the refrigerant flow passage 20n is provided with a second electromagnetic valve 28b, a receiver tank 23a, and a second check valve 29b in order from the upstream side.
  • the cooling operation, the dehumidifying and cooling operation, the heating operation, the first dehumidifying and heating operation, the second dehumidifying and heating operation, and the defrosting operation are shown in the table of FIG. In this manner, the first control valve 26, the second control valve 27, and the first to fourth electromagnetic valves 28a, 28b, 28c, 28d are switched.
  • the refrigerant flowing through the refrigerant flow passage 20n flows into the receiver tank 23a and then flows into the heat absorber 14 without flowing through the supercooling radiator 24. .
  • the refrigerant flowing through the heat absorber 14 is supercooled in the supercooling radiator 24. Efficiency can be improved. Further, since the refrigerant that does not flow through the heat absorber 14 is sucked into the compressor 21 without flowing through the supercooling radiator 24, it is possible to reduce the pressure loss and improve the operation efficiency. It becomes possible.
  • the refrigerant flowing out of the radiator 15 flows into the heat absorber 14 after flowing through the receiver tank 23a without circulating the supercooling radiator 24. I am letting. Thereby, it is possible to reduce pressure loss even during the first dehumidifying and heating operation and during the second dehumidifying and heating operation. Moreover, since the excess refrigerant
  • This vehicle air conditioner has a refrigerant circuit 60 as shown in FIG.
  • the refrigerant flow path 60 a is provided by connecting the refrigerant inflow side of the radiator 15 to the refrigerant discharge side of the compressor 21.
  • a refrigerant flow passage 60 b is provided on the refrigerant outflow side of the radiator 15 by connecting the refrigerant inflow side of the first control valve 26.
  • a refrigerant flow passage 60c is provided on the refrigerant outflow side of the first control valve 26 on the condensation pressure adjusting means side by connecting the first connection port of the outdoor heat exchanger 22.
  • a refrigerant flow passage 60d is provided on the refrigerant outflow side of the first control valve 26 on the expansion means side by connecting the second connection port of the outdoor heat exchanger 22.
  • a first check valve 29a is provided in the refrigerant flow passage 60d.
  • a refrigerant flow passage 60 e is provided at the third connection port of the outdoor heat exchanger 22 by connecting the refrigerant inflow side of the receiver tank 23.
  • the refrigerant flow passage 60e is provided with a first electromagnetic valve 28a and a second check valve 29b in order from the outdoor heat exchanger 22 side.
  • a refrigerant flow path 60f is provided on the refrigerant outflow side of the receiver tank 23 by connecting the refrigerant inflow side of the supercooling radiator 24.
  • a refrigerant flow passage 60g is provided on the refrigerant outflow side of the supercooling radiator 24 by connecting the high-pressure refrigerant inflow side of the internal heat exchanger 25.
  • a refrigerant flow passage 60 h is provided on the high-pressure refrigerant outflow side of the internal heat exchanger 25 by connecting the refrigerant inflow side of the heat absorber 14.
  • An expansion valve 30 is provided in the refrigerant flow passage 60h.
  • a refrigerant flow passage 60 i is provided on the refrigerant outflow side of the heat absorber 14 by connecting the low-pressure refrigerant inflow side of the internal heat exchanger 25.
  • a second control valve 27 is provided in the refrigerant flow passage 60i.
  • a refrigerant flow passage 60j is provided on the low-pressure refrigerant outflow side of the internal heat exchanger 25 by connecting the refrigerant suction side of the compressor 21.
  • the refrigerant check passage 60j is provided with a fifth check valve 29e and an accumulator 31 in order from the internal heat exchanger 25 side.
  • the refrigerant flow passage 60b is provided with a refrigerant flow passage 60k by being connected between the first check valve 29a of the refrigerant flow passage 60e and the receiver tank 23.
  • the refrigerant flow passage 60k is provided with a second electromagnetic valve 28b and a third check valve 29c in order from the refrigerant flow passage 60b side.
  • the refrigerant flow passage 60c is provided with a refrigerant flow passage 60l by connecting the internal heat exchanger 25 of the refrigerant flow passage 60j and the accumulator 31.
  • a third electromagnetic valve 28c is provided in the refrigerant flow passage 60l.
  • the refrigerant flow passage 60a is provided with a refrigerant flow passage 60m by being connected to the downstream side in the refrigerant flow direction of the first check valve 29a of the refrigerant flow passage 60d.
  • the refrigerant flow passage 60m is provided with a fourth electromagnetic valve 28d and a fourth check valve 29d in order from the refrigerant flow passage 60a side.
  • the outdoor heat exchanger 22 includes a receiver tank 23, a supercooling radiator 24, a first control valve 26, a first electromagnetic valve 28a, a second electromagnetic valve 28b, a third electromagnetic valve 28c,
  • An outdoor heat exchanger unit U is formed integrally with the first check valve 29a, the second check valve 29b, the third check valve 29c, and the fourth check valve 29d.
  • each header 22a has a partition member 22d so that the cross-sectional area of the refrigerant flow path decreases from the connection port side of the refrigerant flow passage 60c toward the connection port side of the refrigerant flow passages 60d and 60e. It is partitioned by.
  • the outdoor heat exchanger 22 functions as a radiator, the refrigerant flowing from the refrigerant flow passage 60c flows through the refrigerant flow path where the cross-sectional area gradually decreases, so that the gaseous refrigerant is reliably condensed. It becomes possible to make it.
  • the refrigerant flowing from the refrigerant flow passage 60d flows through the refrigerant flow path having a gradually increasing cross-sectional area, so that the refrigerant is increased in volume by evaporation.
  • the pressure loss can be reduced without obstructing the flow of the gas.
  • the first control valve 26 is provided with a refrigerant passage on the expansion means side and a refrigerant flow path on the condensation pressure adjustment means side for one refrigerant inlet, and a valve for adjusting the opening degree of each refrigerant flow path.
  • the body is provided.
  • the expansion means side is the electronic expansion valve 26a
  • the condensing pressure adjustment means side is the electromagnetic valve 26b.
  • the first control valve 26 can adjust the valve opening degree of the electronic expansion valve 26a between the fully closed state and the fully open state as shown in the respective valve opening degree tables of FIG.
  • the electromagnetic valve 26b is switched between full open and full open when the valve opening degree is on / off.
  • a small-diameter valve 26c and a large-diameter which can arbitrarily adjust the respective opening degrees of the expansion means side and the condensation pressure adjustment means side. You may comprise from the valve 26d. In this case, the respective valve openings of the small diameter valve 26c and the large diameter valve 26d can be arbitrarily adjusted between fully closed and fully opened.
  • the first control valve 26 includes a small-diameter valve 26e and a large-diameter valve 26f that can rapidly increase the opening degree near the fully open position. May be.
  • the flow rate of the refrigerant can be increased during the defrosting operation, and the time required for the defrosting operation can be shortened.
  • the small-diameter valve 26e includes a valve body 26e1, a valve seat 26e2 that can move up and down with respect to the valve body 26e1, and a needle-like shape that can move up and down with respect to the valve seat 26e2. And a valve body 26e3.
  • the small-diameter valve 26e closes the refrigerant flow path of the valve body in FIG. Moreover, in FIG.22 (b), the valve body 26e3 moves upwards, opens a refrigerant
  • the first control valve 26 may be configured integrally with a first check valve 29a.
  • cooling operation dehumidifying cooling operation
  • heating operation first dehumidifying heating operation
  • second dehumidifying heating operation second dehumidifying heating operation
  • defrosting operation each operation will be described.
  • the flow path on the expansion means side of the first control valve 26 is closed, the flow path on the condensation pressure adjustment means side is opened, and the first electromagnetic valve 28a is opened.
  • the second, third, and fourth electromagnetic valves 28b, 28c, and 28d are closed, and the compressor 21 is operated. Accordingly, the refrigerant discharged from the compressor 21 is, as shown in FIG. 24, the refrigerant flow passage 60a, the radiator 15, the refrigerant flow passage 60b, the condensation pressure adjusting means side of the first control valve 26, the refrigerant flow passage 60c.
  • the refrigerant flowing through the outdoor heat exchanger 22 flows into the supercooling radiator 24 through the receiver tank 23. Therefore, the refrigerant flowing into the supercooling radiator 24 is in a supercooled state by exchanging heat with the air outside the passenger compartment in a liquid state.
  • the refrigerant flow path on the expansion means side of the first control valve 26 is opened, the refrigerant flow path on the condensation pressure adjustment means side is closed, the third electromagnetic valve 28c is opened, The first, second, and fourth electromagnetic valves 28a, 28b, and 28d are closed, and the compressor 21 is operated.
  • the refrigerant discharged from the compressor 21 is, as shown in FIG. 25, the refrigerant flow passage 60a, the radiator 15, the refrigerant flow passage 60b, the expansion means side of the first control valve 26, the refrigerant flow passage 60d, the outdoor The heat exchanger 22 and the refrigerant flow passages 60c and 60l flow in this order and are sucked into the compressor 21.
  • the refrigerant flow path on the expansion means side of the first control valve 26 is opened, the refrigerant flow path on the condensation pressure adjustment means side is closed, and the second and third electromagnetic valves While opening 28b and 28c, the 1st and 4th solenoid valves 28a and 28d are closed, and the compressor 21 is drive
  • coolant discharged from the compressor 21 distribute
  • a part of the refrigerant flowing through the refrigerant flow passage 60b flows through the first control valve 26 on the expansion means side, the refrigerant flow passage 60d, the outdoor heat exchanger 22, and the refrigerant flow passages 60c and 60l in this order, and is sucked into the compressor 21. Is done.
  • Other refrigerants flowing through the refrigerant flow passage 60b are the refrigerant flow passages 60k and 60c, the receiver tank 23, the refrigerant flow passage 60f, the supercooling radiator 24, the refrigerant flow passage 60g, and the high pressure side of the internal heat exchanger 25.
  • the refrigerant flow passage 60h, the heat absorber 14, the refrigerant flow passage 60i, the low-pressure side of the internal heat exchanger 25, and the refrigerant flow passage 60j are sequentially passed through and sucked into the compressor 21.
  • both the refrigerant flow paths on the expansion means side and the condensation pressure adjustment means side of the first control valve 26 are closed, the second electromagnetic valve 28b is opened, and the first, The third and fourth electromagnetic valves 28a, 28c, 28d are closed, and the compressor 21 is operated.
  • the refrigerant discharged from the compressor 21 is, as shown in FIG. 27, the refrigerant flow passage 60a, the radiator 15, the refrigerant flow passages 60b, 60k, 60e, the receiver tank 23, the refrigerant flow passage 60f, and the subcooling.
  • the radiator 24, the refrigerant flow passage 60g, the high pressure side of the internal heat exchanger 25, the refrigerant flow passage 60h, the heat absorber 14, the refrigerant flow passage 60i, the low pressure side of the internal heat exchanger 25, and the refrigerant flow passage 60j are circulated in this order. It is sucked into the compressor 21.
  • the refrigerant flow path on the expansion means side of the first control valve 26 is opened and the refrigerant flow path on the condensation pressure adjustment means side is closed, and the third and fourth electromagnetic valves 28c and 28d. Is opened, the first and second solenoid valves 28a and 28b are closed, and the compressor 21 is operated. As a result, a part of the refrigerant discharged from the compressor 21 is, as shown in FIG. 28, the refrigerant flow passage 60a, the radiator 15, the refrigerant flow passage 60b, the expansion means side of the first control valve 26, the refrigerant flow passage. 30d flows in order and flows into the outdoor heat exchanger 22.
  • the other refrigerant discharged from the compressor 21 flows through the refrigerant flow paths 60m and 60d and flows into the outdoor heat exchanger 22.
  • the refrigerant flowing out of the outdoor heat exchanger 22 flows through the refrigerant flow passages 60c and 60j and is sucked into the compressor 21.
  • the first control valve 26, the second control valve 27, and the first to fourth electromagnetic valves 28a, 28b, 28c, 28d are switched.
  • the refrigerant flowing through the heat absorber 14 is supercooled in the supercooling radiator 24. Efficiency can be improved. Further, since the refrigerant that does not flow through the heat absorber 14 is sucked into the compressor 21 without flowing through the supercooling radiator 24, it is possible to reduce the pressure loss and improve the operation efficiency. It becomes possible.
  • refrigerant that radiates heat from one end side of the refrigerant passage formed therein flows into the outdoor heat exchanger 22, and the refrigerant that flows in and radiates flows out from the other end side, and from the other end side of the refrigerant passage.
  • the refrigerant that absorbs heat flows in, and the refrigerant that flows in and absorbs heat flows out from one end side.
  • the refrigerant circuit 60 of the vehicle air conditioner is an upstream side of the internal heat exchanger 25 of the refrigerant flow passage 60b and the refrigerant flow passage 60g, instead of the refrigerant flow passage 60k of the fifth embodiment.
  • a refrigerant flow passage 60n is provided to connect the two.
  • the refrigerant flow passage 60n is provided with a second electromagnetic valve 28b, a receiver tank 23a, and a second check valve 29b in order from the upstream side.
  • the cooling operation, the dehumidifying and cooling operation, the heating operation, the first dehumidifying and heating operation, the second dehumidifying and heating operation, and the defrosting operation are shown in the table of FIG. In this manner, the first control valve 26, the second control valve 27, and the first to fourth electromagnetic valves 28a, 28b, 28c, 28d are switched.
  • the refrigerant flowing through the refrigerant flow passage 60n flows into the receiver tank 23a, and then flows into the heat absorber 14 without flowing through the supercooling radiator 24. .
  • the refrigerant flowing through the heat absorber 14 is supercooled in the supercooling radiator 24. Efficiency can be improved. Further, since the refrigerant that does not flow through the heat absorber 14 is sucked into the compressor 21 without flowing through the supercooling radiator 24, it is possible to reduce the pressure loss and improve the operation efficiency. It becomes possible.
  • the refrigerant flowing out of the radiator 15 flows into the heat absorber 14 after flowing through the receiver tank 23a without circulating the supercooling radiator 24. I am letting. Thereby, it is possible to reduce pressure loss even during the first dehumidifying and heating operation and during the second dehumidifying and heating operation. Moreover, since the excess refrigerant
  • the refrigerant circuits 20 and 60 are provided with the internal heat exchanger 25.
  • the same effect as the above embodiment is provided. Can be obtained.
  • the 1st control valve 26 showed what integrally formed the expansion means which has a function of an electronic expansion valve, and the condensation pressure adjustment means which has a function as an electromagnetic valve, it is restricted to this. It is not a thing. For example, you may make it comprise from the three-way valve which can switch a refrigerant
  • thermal expansion valve is applied as the expansion valve 30, the present invention is not limited to this, and an electronic expansion valve can be applied.
  • SYMBOLS 10 Air-conditioning unit, 11 ... Air flow path, 14 ... Heat absorber, 15 ... Radiator, 20 ... Refrigerant circuit, 21 ... Compressor, 22 ... Outdoor heat exchanger, 23, 23a ... Receiver tank, 24 ... For supercooling Radiator, 26 ... first control valve, 27 ... second control valve, 28a, 28b, 28c, 28d ... first to fourth solenoid valves, 29a, 29b, 29c, 29d, 29e ... first to fifth check valves Valve, 30 ... expansion valve, 40 ... controller, 60 ... refrigerant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 圧力損失を低減し、運転効率の向上を図ることのできる車両用空気調和装置を提供する。 冷房運転時および除湿冷房運転時には、室外熱交換器22を流通して吸熱器14において吸熱させる冷媒を過冷却用放熱器24に流通させている。また、暖房運転時には、室外熱交換器22を流通した冷媒を過冷却用放熱器24に流通させることなく、圧縮機21に吸入させている。また、第1除湿暖房運転時および第2除湿暖房運転時には、放熱器15を流通して吸熱器14において吸熱させる冷媒を過冷却用放熱器24に流通させている。

Description

車両用空気調和装置
 本発明は、例えば、電気自動車に適用可能な車両用空気調和装置に関するものである。
 従来、この種の車両用空気調和装置では、車両の動力源としてのエンジンによって駆動する圧縮機と、車室外に設けられた放熱器と、車室内に設けられた吸熱器と、を備え、圧縮機が吐出した冷媒を放熱器において放熱させるとともに、吸熱器において吸熱させ、吸熱器において冷媒と熱交換した空気を車室内に供給することで冷房運転を行っている。また、従来の車両用空気調和装置では、車室内にヒータコアを備え、エンジンの冷却に用いた冷却水の排熱をヒータコアにおいて放熱させ、ヒータコアにおいて冷却水と熱交換した空気を車室内に向かって吹出すことで暖房運転を行っている。さらに、従来の車両用空気調和装置では、車室内に供給する空気を吸熱器において要求される絶対湿度まで冷却して除湿し、吸熱器において冷却して除湿された空気をヒータコアにおいて所望の温度まで加熱した後に車室内に向かって吹出す除湿暖房運転を行っている。
 前記車両用空気調和装置では、暖房運転及び除湿暖房運転において空気を加熱する熱源としてエンジンの排熱を利用している。車両の動力源が電動モータである電気自動車は、エンジンのように空気を十分に加熱可能な排熱が発生しないため、前記車両用空気調和装置を適用することができない。
 そこで、電気自動車に適用することができる車両用空気調和装置として、冷媒を圧縮して吐出する圧縮機と、冷媒を放熱させる放熱器と、冷媒を吸熱させる吸熱器と、冷媒を放熱または吸熱させる室外熱交換器と、圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒を膨張手段を介して室外熱交換器に流入させ、室外熱交換器を流通した冷媒を圧縮機に吸入させる暖房用冷媒回路と、圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒の一部を膨張手段を介して吸熱器に流入させ、その他の冷媒を膨張手段を介して室外熱交換器に流入させ、吸熱器を流通した冷媒および室外熱交換器を流通した冷媒を圧縮機に吸入させる除湿暖房用冷媒回路と、圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒を室外熱交換器に流入させ、室外熱交換器を流通した冷媒を膨張手段を介して吸熱器に流入させ、吸熱器を流通した冷媒を圧縮機に吸入させる冷房・除湿冷房用冷媒回路と、を備えたものが知られている(例えば、特許文献1参照)。
特開2001-324237号公報
 前記車両用空気調和装置では、冷房・除湿冷房用冷媒回路において、室外熱交換器において冷媒を凝縮させる際に、過冷却の状態まで放熱させることによって冷房運転および除湿冷房運転の効率を向上させるものが知られている。室外熱交換器において冷媒を過冷却の状態まで放熱させるためには、室外熱交換器の冷媒流通方向下流側に液体の冷媒を流通させて過冷却の状態まで放熱させるための過冷却部を設けている。
 しかし、室外熱交換器に過冷却部を設けた場合には、冷房・除湿冷房用冷媒回路以外の冷媒回路が構成されたときに、過冷却部を冷媒が流通することで圧力損失が増加する原因となるため、冷房運転および除湿冷房運転以外の運転において効率が低下するおそれがある。
 本発明の目的とするところは、圧力損失を低減し、運転効率の向上を図ることのできる車両用空気調和装置を提供することにある。
 本発明は、前記目的を達成するために、冷媒を圧縮して吐出する圧縮機と、冷媒を放熱させる放熱器と、冷媒を吸熱させる吸熱器と、冷媒を放熱または吸熱させる室外熱交換器と、室外熱交換器において放熱させた冷媒をさらに放熱させる室外放熱器と、圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒を室外熱交換器に流入させ、室外熱交換器を流通した冷媒を室外放熱器に流入させ、室外放熱器を流通した冷媒を膨張弁を介して吸熱器に流入させ、吸熱器を流通した冷媒を圧縮機に吸入させる冷房・除湿冷房用冷媒回路と、圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒を膨張弁を介して室外熱交換器に流入させ、室外熱交換器を流通した冷媒を圧縮機に吸入させる暖房用冷媒回路と、を備えている。
 これにより、冷房・除湿冷房用冷媒回路において、室外放熱器を流通した冷媒が放熱器に流入するとともに、暖房用冷媒回路において、室外熱交換器を流通した冷媒が室外放熱器を流通することなく圧縮機に吸入される。
 本発明によれば、吸熱器を流通する冷媒は、室外放熱器において過冷却状態となるので、運転効率を向上させることが可能となる。また、吸熱器を流通しない冷媒は、過冷却用放熱器を流通することなく圧縮機に吸入されるので、圧力損失の低減を図ることが可能となり、運転効率の向上を図ることが可能となる。
本発明の第1実施形態を示す車両用空気調和装置の概略構成図である。 室外熱交換器ユニットを示す図である。 (a)第1制御弁の膨張手段側の弁開度信号と開口面積との関係を示すグラフ、(b)第1制御弁の凝縮圧力調整手段側の弁開度信号と開口面積との関係を示すグラフ、(c)第1制御弁の膨張手段側と凝縮圧力調整手段側とを合わせた弁開度信号と開口面積との関係を示すグラフである。 冷房運転および除湿冷房運転を示す車両用空気調和装置の概略構成図である。 暖房運転を示す車両用空気調和装置の概略構成図である。 第1除湿暖房運転を示す車両用空気調和装置の概略構成図である。 第2除湿暖房運転を示す車両用空気調和装置の概略構成図である。 除霜運転を示す車両用空気調和装置の概略構成図である。 各運転における制御弁の状態を示す表である。 第2除湿暖房運転判定処理を示すフローチャートである。 第2除湿暖房運転切換え処理を示すフローチャートである。 運転切換制御処理を示すフローチャートである。 本発明の第2実施形態を示す車両用空気調和装置の概略構成図である。 各運転における制御弁の状態を示す表である。 本発明の第3実施形態を示す車両用空気調和装置の概略構成図である。 各運転における制御弁の状態を示す表である。 本発明の第4実施形態を示す車両用空気調和装置の概略構成図である。 各運転における制御弁の状態を示す表である。 本発明の第5実施形態を示す車両用空気調和装置の概略構成図である。 室外熱交換器ユニットを示す図である。 (a)第1制御弁の膨張手段側および凝縮圧力調整手段側のそれぞれの弁開度と開口面積との関係を示すグラフ、(b)第1制御弁のその他の例の膨張手段側および凝縮圧力調整手段側のそれぞれの弁開度と開口面積との関係を示すグラフ、(c)第1制御弁のその他の例の膨張手段側および凝縮圧力調整手段側のそれぞれの弁開度と開口面積との関係を示すグラフである。 図21(c)の第1制御弁の膨張手段側の構造および動作説明図である。 逆止弁と一体に形成した第1制御弁を示す図である。 冷房運転および除湿冷房運転を示す車両用空気調和装置の概略構成図である。 暖房運転を示す車両用空気調和装置の概略構成図である。 第1除湿暖房運転を示す車両用空気調和装置の概略構成図である。 第2除湿暖房運転を示す車両用空気調和装置の概略構成図である。 除霜運転を示す車両用空気調和装置の概略構成図である。 各運転における制御弁の状態を示す表である。 本発明の第6実施形態を示す車両用空気調和装置の概略構成図である。 各運転における制御弁の状態を示す表である。
 図1乃至図12は、本発明の第1実施形態を示すものである。
 本発明の車両用空気調和装置は、図1に示すように、車室内に設けられた空調ユニット10と、車室内および車室外に亘って構成された冷媒回路20と、を備えている。
 空調ユニット10は、車室内に供給する空気を流通させるための空気流通路11を有している。空気流通路11の一端側には、車室外の空気を空気流通路11に流入させるための外気吸入口11aと、車室内の空気を空気流通路11に流入させるための内気吸入口11bと、が設けられている。また、空気流通路11の他端側には、空気流通路11を流通する空気を車室内の搭乗者の足元に向かって吹き出させるフット吹出口11cと、空気流通路11を流通する空気を車室内の搭乗者の上半身に向かって吹き出させるベント吹出口11dと、空気流通路11を流通する空気を車両のフロントガラスの車室内側の面に向かって吹き出させるデフ吹出口11eと、が設けられている。
 空気流通路11内の一端側には、空気流通路11の一端側から他端側に向かって空気を流通させるためのシロッコファン等の室内送風機12が設けられている。
 空気流通路11の一端側には、外気吸入口11a及び内気吸入口11bの一方を開放して他方を閉鎖することが可能な吸入口切換えダンパ13が設けられている。吸入口切換えダンパ13によって内気吸入口11bが閉鎖されて外気吸入口11aが開放されると、外気吸入口11aから空気が空気流通路11に流入する外気供給モードとなる。また、吸入口切換えダンパ13によって外気吸入口11aが閉鎖されて内気吸入口11bが開放されると、内気吸入口11bから空気が空気流通路11に流入する内気循環モードとなる。さらに、吸入口切換えダンパ13が外気吸入口11aと内気吸入口11bとの間に位置し、外気吸入口11aと内気吸入口11bがそれぞれ開放されると、吸入口切換えダンパ13による外気吸入口11a及び内気吸入口11bのそれぞれの開口率に応じた割合で、外気吸入口11aと内気吸入口11bとから空気が空気流通路11に流入する内外気吸入モードとなる。
 空気流通路11の他端側のフット吹出口11c、ベント吹出口11d及びデフ吹出口11eのそれぞれには、各吹出口11c,11d,11eを開閉するための吹出口切換えダンパ13b,13c,13dが設けられている。この吹出口切換えダンパ13b,13c,13dは、図示しないリンク機構によって連動するように構成されている。ここで、吹出口切換えダンパ13b,13c,13dによってフット吹出口11cが開放されてベント吹出口11dが閉鎖され、デフ吹出口11eが僅かに開放されると、空気流通路11を流通する空気の大部分がフット吹出口11cから吹き出されると共に残りの空気がデフ吹出口11eから吹き出されるフットモードとなる。また、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びデフ吹出口11eが閉鎖されてベント吹出口11dが開放されると、空気流通路11を流通する空気の全てがベント吹出口11dから吹き出されるベントモードとなる。さらに、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びベント吹出口11dが開放されてデフ吹出口11eが閉鎖されると、空気流通路11を流通する空気がフット吹出口11c及びベント吹出口11dから吹き出されるバイレベルモードとなる。また、吹出口切換えダンパ13b,13c,13dによってフット吹出口11c及びベント吹出口11dが閉鎖されてデフ吹出口11eが開放されると、空気流通路11を流通する空気がデフ吹出口11eから吹き出されるデフモードとなる。また、吹出口切換えダンパ13b,13c,13dによってベント吹出口11dが閉鎖されてフット吹出口11c及びデフ吹出口11eが開放されると、空気流通路11を流通する空気がフット吹出口11c及びデフ吹出口11eから吹き出されるデフフットモードとなる。尚、バイレベルモードにおいては、フット吹出口11cから吹き出される空気の温度がベント吹出口11dから吹き出される空気の温度よりも高温となる温度差が生じるような、空気流通路11、フット吹出口11c、ベント吹出口11d、後述する吸熱器及び放熱器の互いの位置関係や構造となっている。
 室内送風機12の空気流通方向下流側の空気流通路11には、空気流通路11を流通する空気を冷却及び除湿するための吸熱器14が設けられている。また、吸熱器14の空気流通方向下流側の空気流通路11には、空気流通路11を流通する空気を加熱するための放熱器15が設けられている。吸熱器14及び放熱器15は、それぞれ内部を流通する冷媒と空気流通路11を流通する空気とを熱交換させるためのフィンとチューブ等からなる熱交換器である。
 吸熱器14と放熱器15との間の空気流通路11には、空気流通路11を流通する空気の放熱器15において加熱される割合を調整するためのエアミックスダンパ16が設けられている。エアミックスダンパ16は、空気流通路11の放熱器15の上流側に位置することによって、放熱器15において熱交換する空気の割合が減少し、空気流通路11の放熱器15以外の部分側に移動させることによって、放熱器15において熱交換する空気の割合が増加する。エアミックスダンパ16は、空気流通路11の放熱器15の上流側を閉鎖して放熱器15以外の部分を開放した状態で開度が0%となり、空気流通路11の放熱器15の上流側を開放し、放熱器15以外の部分を閉鎖した状態で開度が100%となる。
 冷媒回路20は、前記吸熱器14、前記放熱器15、冷媒を圧縮するための圧縮機21、冷媒と車室外の空気とを熱交換するための室外熱交換器22、室外熱交換器から流出した液体の冷媒を蓄えるためのレシーバタンク23、レシーバタンク23から流出する液体の冷媒を過冷却の状態とするための室外放熱器としての過冷却用放熱器24、過冷却用放熱器24から流出する冷媒と吸熱器14から流出する冷媒とを熱交換させるための内部熱交換器25、暖房運転および第1除湿暖房運転時に室外熱交換器22に流入する冷媒を減圧するための膨張手段と除湿冷房運転時に放熱器15における冷媒の凝縮圧力を制御するための凝縮圧力調整手段とを有する制御弁ユニットとしての第1制御弁26、吸熱器14における冷媒の蒸発圧力を調整するための第2制御弁27、第1~第4電磁弁28a,28b,28c,28d、第1~第4逆止弁29a,29b,29c,29d、膨張弁30、気体の冷媒と液体の冷媒を分離して液冷媒が圧縮機21に吸入されることを防止するためのアキュムレータ31を有し、これらは銅管やアルミニウム管によって接続されている。
 具体的には、圧縮機21の冷媒吐出側に放熱器15の冷媒流入側が接続されることによって、冷媒流通路20aが設けられている。また、放熱器15の冷媒流出側には、第1制御弁26の冷媒流入側が接続されることによって、冷媒流通路20bが設けられている。第1制御弁26の膨張手段側および凝縮圧力調整手段側の冷媒流出側には、室外熱交換器22の第1接続口が接続されることによって、冷媒流通路20cが設けられている。室外熱交換器22の第2接続口には、レシーバタンク23の冷媒流入側が接続されることによって、冷媒流通路20dが設けられている。冷媒流通路20dには、室外熱交換器22側から順に第1電磁弁28a、第1逆止弁29aが設けられている。レシーバタンク23の冷媒流出側には、過冷却用放熱器24の冷媒流入側が接続されることによって、冷媒流通路20eが設けられている。過冷却用放熱器24の冷媒流出側には、内部熱交換器25の高圧冷媒流入側が接続されることによって、冷媒流通路20fが設けられている。内部熱交換器25の高圧冷媒流出側には、吸熱器14の冷媒流入側が接続されることによって、冷媒流通路20gが設けられている。冷媒流通路20gには、膨張弁30が設けられている。吸熱器14の冷媒流出側には、内部熱交換器25の低圧冷媒流入側が接続されることによって、冷媒流通路20hが設けられている。冷媒流通路20hには、第2制御弁27が設けられている。内部熱交換器25の低圧冷媒流出側には、圧縮機21の冷媒吸入側が接続されることによって、冷媒流通路20iが設けられている。冷媒流通路20iには、内部熱交換器25側から順に、第3逆止弁29c、アキュムレータ31が設けられている。また、冷媒流通路20bには、冷媒流通路20dの第1逆止弁29aとレシーバタンク23との間が接続されることによって、冷媒流通路20jが設けられている。冷媒流通路20jには、冷媒流通路20b側から順に第2電磁弁28b、第2逆止弁29bが設けられている。また、室外熱交換器22の第3接続口には、冷媒流通路20iの第3逆止弁29cとアキュムレータ31との間が接続されることによって、冷媒流通路20kが設けられている。冷媒流通路20kには、第3電磁弁28cが設けられている。冷媒流通路20aには、冷媒流通路20cが接続されることによって、除霜回路としての冷媒流通路20lが設けられている。冷媒流通路20lには、冷媒流通路20aから順に、第4電磁弁28d、第4逆止弁29dが設けられている。
 圧縮機21、室外熱交換器22、レシーバタンク23および過冷却用放熱器24は、車室外に配置されている。室外熱交換器22には、車両の停止時に車室外の空気と冷媒とを熱交換させるための室外送風機32が設けられている。
 室外熱交換器22は、図2に示すように、レシーバタンク23、過冷却用放熱器24、第1制御弁26、第1電磁弁28a、第2電磁弁28b、第3電磁弁28c、第1逆止弁29aおよび第2逆止弁29bと一体に形成され、室外熱交換器ユニットUが構成されている。
 室外熱交換器22および過冷却用放熱器24は、幅方向に延びる上下一対のヘッダ22aと、互いに幅方向に間隔をおいて各ヘッダ22a間を接続する複数の扁平チューブ22bと、各扁平チューブ22bの間に設けられた波形状のフィン22cとを有している。室外熱交換器22は一対のヘッダ22aの幅方向一方側に設けられ、過冷却用放熱器24は一対のヘッダ22aの幅方向他方側に設けられている。
 各ヘッダ22aは、幅方向両端部が閉鎖された筒状の部材からなり、それぞれの内部が複数の仕切り部材22dによって幅方向に仕切られている。これにより、室外熱交換器22には、上下に蛇行しながら幅方向に延びる冷媒流路が形成される。下側のヘッダ22aの室外熱交換器22部分の幅方向一方側の空間には、冷媒流通路20cが接続されている。また、下側のヘッダ22aの室外熱交換器22部分の幅方向他方側の空間には、冷媒流通路20dおよび冷媒流通路20kが接続されている。さらに、下側のヘッダ22aの過冷却用放熱器24部分の空間には、冷媒流通路20eが接続されている。上側のヘッダ22aの過冷却用放熱器24部分の空間には、冷媒流通路20fが接続されている。
 レシーバタンク23は、両端が閉鎖された上下方向に延びる筒状の部材からなり、下端側に冷媒流通路20dおよび冷媒流通路20eが接続されている。レシーバタンク23は、冷媒回路20の余剰の冷媒が貯留される。
 内部熱交換器25は、例えば二重管式の熱交換器であり、冷媒流通路20fを流通する冷媒を内管に流通させ、冷媒流通路20hを流通する冷媒を外管に流通させることにより冷媒同士を熱交換させるものである。
 第1制御弁26には、1つの冷媒流入口に対して、膨張手段側の冷媒通路と凝縮圧力調整手段側の冷媒流路が設けられている。また、第1制御弁26には、膨張手段側の冷媒通路と凝縮圧力調整手段側の冷媒流路に対して1つの冷媒流出口が設けられている。膨張手段側の冷媒通路と凝縮圧力調整手段側の冷媒流路には、開度を調整するための弁体がそれぞれ設けられている。第1制御弁26は、膨張手段側が電子膨張弁の機能を有し、凝縮圧力調整手段側が電磁弁の機能を有している。第1制御弁26は、膨張手段側および凝縮圧力調整手段側のそれぞれの弁開度が全閉の状態から全開の状態の間で調整可能である。
 第1制御弁26は、図3に示すように、膨張手段側および凝縮圧力調整手段側を全閉した状態から全開した状態の間で、冷媒通路の開口面積を調整することが可能である。図3では、横軸を弁開度信号、縦軸を冷媒通路の開口面積に相当する開口径として、弁開度信号と開口面積との関係を示している。図3(a)は、膨張手段側の弁開度信号と冷媒流路の開口面積に相当する開口径との関係を示す。図3(b)は、凝縮圧力調整手段側の弁開度信号と冷媒流路の開口面積に相当する開口径との関係を示す。図3(c)は、膨張手段側と凝縮圧力調整手段側とを合わせた弁開度信号と冷媒流路の開口面積に相当する開口径との関係を示す。
 第2制御弁27は、弁開度を段階的または任意に調整することが可能に構成されている。第2制御弁27は、弁開度を調整することによって冷媒流通路20hを流通する冷媒の流量を調整することで、吸熱器14における冷媒の蒸発圧力を調整するものである。
 膨張弁30は、吸熱器14から流出する冷媒の温度に応じて弁開度を調整可能な温度膨張弁である。温度膨張弁としては、例えば、吸熱器から流出する冷媒が流通する流出冷媒流路と、流出冷媒流路を流通する温度を検出する感温棒と、弁体を移動させるためのダイヤフラムと、を一体に形成したボックス型の温度膨張弁が用いられる。
 さらに、車両用空気調和装置は、図1に示すように、圧縮機21の回転数、第1制御弁26の弁開度、第2制御弁27の弁開度、第1~第4の電磁弁28a,28b,28c,28dの開閉を制御するためのコントローラ40を備えている。
 コントローラ40の出力側には、圧縮機21、第1制御弁26、第2制御弁27、第1~第4の電磁弁28a,28b,28c,28dが接続されている。
 また、コントローラ40の入力側には、冷媒流通路20bを流通する高圧冷媒の温度Thp1を検出するための高圧冷媒温度センサ41と、冷媒流通路20bを流通する高圧冷媒の圧力Php1を検出するための高圧冷媒圧力センサ42と、冷媒流通路20kを流通する高圧冷媒の温度Thp2を検出するための低圧冷媒温度センサ43と、冷媒流通路20kを流通する冷媒の圧力Php2を検出するための低圧冷媒圧力センサ44と、空気流通路11の吸熱器14の上流側を流通する空気の温度Tを検出するための吸気温度センサ45と、吸熱器14の下流側を流通する空気の温度Tcを検出するための冷却空気温度センサ46と、冷媒流通路20iの圧縮機21が吸入する冷媒の温度を検出するための吸入冷媒温度センサ47と、冷媒流通路20iの圧縮機21が吸入する冷媒の圧力を検出するための吸入冷媒圧力センサ48と、冷媒流通路20aの圧縮機21が吐出する冷媒の圧力を検出するための吐出冷媒圧力センサ49と、冷媒流通路20aの放熱器15に流入する冷媒の温度を検出するための流入冷媒温度センサ50と、冷媒流通路20aの放熱器15に流入する冷媒の圧力を検出するための流入冷媒圧力センサ51と、冷媒流通路20fを流通する冷媒の圧力を検出する圧力センサ52と、が接続されている。
 ここで、高圧冷媒温度センサ41と高圧冷媒圧力センサ42は、それぞれ別体に構成することなく一体に構成するようにしてもよい。また、吸入冷媒温度センサ47と吸入冷媒圧力センサ48は、それぞれ別体に構成することなく一体に構成するようにしてもよい。さらに、流入冷媒温度センサ50と流入冷媒圧力センサ51は、それぞれ別体に構成することなく一体に構成するようにしてもよい。
 以上のように構成された車両用空気調和装置では、冷房運転、除湿冷房運転、暖房運転、除湿暖房運転としての第1除湿暖房運転、内部循環除湿暖房運転としての第2除湿暖房運転、第1除霜運転が行われる。以下、それぞれの運転について説明する。
 冷房運転及び除湿冷房運転において、冷媒回路20では、第1制御弁26の膨張手段側の流路を閉鎖するとともに、凝縮圧力調整手段側の流路を開放し、第1電磁弁28aを開放するとともに、第2、第3、第4電磁弁28b,28c,28dを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図4に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b,第1制御弁26の凝縮圧力調整弁側、冷媒流通路20c、室外熱交換器22、冷媒流通路20d、レシーバタンク23、冷媒流通路20e、過冷却用放熱器24、冷媒流通路20f、内部熱交換器25の高圧側、冷媒流通路20g、吸熱器14、冷媒流通路20h、内部熱交換器25の低圧側、冷媒流通路20iの順に流通して圧縮機21に吸入される。
 冷媒回路20を流通する冷媒は、冷房運転において、室外熱交換器22において放熱して吸熱器14において吸熱する。除湿冷房運転として図4の一点鎖線に示すようにエアミックスダンパ16が開放されると、冷媒回路20を流通する冷媒は放熱器15においても放熱する。
 このとき、冷房運転中の空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換して冷却され、車室内の温度を目標設定温度Tsetとするために吹出口11c,11d,11eから吹き出すべき空気の温度である目標吹出温度TAOとなって車室内に吹き出される。
 目標吹出温度TAOは、車室外の温度Tam、車室内の温度Tr、日射量Ts等の環境条件を検出し、検出された環境条件と目標設定温度Tsetに基づいて算出されるものである。
 また、除湿冷房運転中の空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において吸熱する冷媒と熱交換して冷却されることによって除湿される。吸熱器14において除湿された空気は、放熱器15おいて放熱する冷媒と熱交換して加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
 除湿冷房運転において、第1制御弁26の凝縮圧力調整手段側の弁開度を調整することによって、放熱器15における冷媒の凝縮圧力が調整される。即ち、放熱器15における冷媒の凝縮圧力を調整することによって、放熱器15の放熱量が調整可能となる。
 具体的には、放熱器15における冷媒の凝縮圧力は、第1制御弁26の凝縮圧力調整手段の弁開度を大きくすると低下し、弁開度を小さくすると上昇する。これにより、放熱器15の放熱量は、凝縮圧力を低下させることによって減少し、凝縮圧力を上昇させることによって増加する。
 冷房運転および除湿冷房運転において、室外熱交換器22を流通した冷媒は、レシーバタンク23を介して過冷却用放熱器24に流入する。したがって、過冷却用放熱器24に流入する冷媒は、液体の状態で車室外の空気と熱交換して過冷却の状態となる。
 暖房運転において、冷媒回路20では、第1制御弁26の膨張手段側の冷媒流路を開放するとともに、凝縮圧力調整手段側の冷媒流路を閉鎖し、第3電磁弁28cを開放するとともに、第1、第2、第4電磁弁28a,28b,28dを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図5に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b、第1制御弁26の膨張手段側、冷媒流通路20c、室外熱交換器22、冷媒流通路20k,20iの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、室外熱交換器22において吸熱する。
 このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換することなく、放熱器15において冷媒と熱交換して加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
 第1除湿暖房運転において、冷媒回路20では、第1制御弁26の膨張手段側の冷媒流路を開放するとともに、凝縮圧力調整手段側の冷媒流路を閉鎖し、第2及び第3電磁弁28b,28cを開放するとともに、第1および第4電磁弁28a,28dを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図6に示すように、冷媒流通路20a、放熱器15、冷媒流通路20bを順に流通する。冷媒流通路20bを流通する冷媒の一部は、第1制御弁26の膨張手段側、冷媒流通路20c、室外熱交換器22、冷媒流通路20k,20iの順に流通して圧縮機21に吸入される。また、冷媒流通路20bを流通するその他の冷媒は、冷媒流通路20j,20d、レシーバタンク23、冷媒流通路20e、過冷却用放熱器24、冷媒流通路20f、内部熱交換器25の高圧側、冷媒流通路20g、吸熱器14、冷媒流通路20h、内部熱交換器25の低圧側、冷媒流通路20i、の順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、吸熱器14及び室外熱交換器22において吸熱する。
 このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換して冷却されることにより除湿される。吸熱器14において除湿された空気は、一部の空気が放熱器15において冷媒と熱交換することによって加熱され、目標吹出温度TAOの空気となって車室内に吹き出される。
 また、吸熱器14における冷媒は、第2制御弁27の弁開度の調整することによって、蒸発温度が調整される。即ち、吸熱器14における冷媒は、第2制御弁27の弁開度を小さくすると蒸発温度が高くなり、第2制御弁27の弁開度を大きくすると蒸発温度が低くなる。
 第2除湿暖房運転において、冷媒回路20では、第1制御弁26の膨張手段側および凝縮圧力調整手段側の両方の冷媒流路を閉鎖し、第2電磁弁28bを開放するとともに、第1、第3、第4電磁弁28a,28c,28dを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図7に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b,20j,20d、レシーバタンク23、冷媒流通路20e、過冷却用放熱器24、冷媒流通路20f、内部熱交換器25の高圧側、冷媒流通路20g、吸熱器14、冷媒流通路20h、内部熱交換器25の低圧側、冷媒流通路20iの順に流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱し、吸熱器14において吸熱する。
 このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、前記第1除湿暖房運転と同様に、吸熱器14において冷媒と熱交換して冷却されることにより除湿される。吸熱器14において除湿された空気は、一部の空気が放熱器15において冷媒と熱交換することによって加熱され、目標吹出温度TAOとなって車室内に吹き出される。ここで、空気流通路11に流入させる空気は、車室外の空気であっても、車室内の空気であってもよい。
 除霜運転において、冷媒回路20では、第1制御弁26の膨張手段側の冷媒流路を開放して凝縮圧力調整手段側の冷媒流路を閉鎖し、第3および第4電磁弁28c,28dを開放するとともに、第1および第2電磁弁28a,28bを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒の一部は、図8に示すように、冷媒流通路20a、放熱器15、冷媒流通路20b、第1制御弁26の膨張手段側、冷媒流通路20cを順に流通して室外熱交換器22に流入する。また、圧縮機21から吐出されたその他の冷媒は、冷媒流路20l,20cを流通して室外熱交換器22に流入する。室外熱交換器22から流出した冷媒は、冷媒流通路20k,20iを流通して圧縮機21に吸入される。冷媒回路20を流通する冷媒は、放熱器15において放熱するとともに、室外熱交換器22において放熱と同時に吸熱する。
 このとき、空調ユニット10において、室内送風機12を運転することによって流通する空気流通路11の空気は、吸熱器14において冷媒と熱交換することなく、放熱器15において放熱する冷媒と熱交換することによって加熱され、車室内に吹き出される。
 前述の各運転時には、図9の表に示すように、第1制御弁26、第2制御弁27、第1~第4電磁弁28a,28b,28c,28dが切換えられる。
 オートエアコンスイッチがオンの状態に設定されている場合に、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転、除霜運転が、車室外の温度Tam、車室内の温度Tr、車室外の湿度、車室内の湿度Th、日射量Ts等の環境条件や、要求される能力に基づいて切換えられる。
 また、吹出口11c,11d,11eのモードは、吹出口切換えダンパ13b,13c,13dによって切換えられる。エアミックスダンパ16の開度は、吹出口11c,11d,11eから吹出される空気の温度が目標吹出温度TAOとなるように調整される。
 また、各運転において、各吹出口11c,11d,11eのフットモード、ベントモード、バイレベルモードの切り替えは、目標吹出温度TAOに応じて行われる。具体的には、目標吹出温度TAOが例えば40℃以上など、高温となる場合にはフットモードに設定される。また、目標吹出温度TAOが例えば25℃未満など、低温となる場合にはベントモードに設定される。さらに、目標吹出温度TAOが、フットモードが設定される目標吹出温度TAOとベントモードが設定される目標吹出温度TAOとの間の温度の場合には、バイレベルモードに設定される。
 また、各吹出口11c,11d,11eの設定がバイレベルモードの場合に、コントローラ40は、第2除湿暖房運転を行うか否かを判定する第2除湿暖房運転判定処理を行う。このときのコントローラ40の動作を図10のフローチャートを用いて説明する。
(ステップS1)
 ステップS1においてCPUは、各吹出口11c,11d,11eの設定がバイレベルモードか否かを判定する。バイレベルモードが設定されていると判定した場合にはステップS2に処理を移し、バイレベルモードが設定されていると判定しなかった場合には第2除湿暖房運転判定処理を終了する。
(ステップS2)
 ステップS1においてバイレベルモードが設定されていると判定した場合に、ステップS2においてCPUは、吸気温度センサ45の検出温度Tが第1所定温度T1(例えば、10~15℃)以上か否かを判定する。吸気温度センサ45の検出温度Tが第1所定温度T1以上であると判定した場合にはステップS3に処理を移し、吸気温度センサ45の検出温度Tが第1所定温度T1以上であると判定しなかった場合にはステップS5に処理を移す。
(ステップS3)
 ステップS2において吸気温度センサ45の検出温度Tが第1所定温度T1以上であると判定した場合に、ステップS3においてCPUは、吸気温度センサ45の検出温度Tが第2所定温度T2(例えば、20~25℃)以上か否かを判定する。吸気温度センサ45の検出温度Tが第2所定温度T2以上の場合にはステップS5に処理を移し、吸気温度センサ45の検出温度Tが第2所定温度T2以上と判定しなかった場合(T1<T<T2)にはステップS4に処理を移す。
(ステップS4)
 ステップS3において吸気温度センサ45の検出温度Tが第2所定温度T2以上と判定しなかった場合に、ステップS4においてCPUは、第2除湿暖房運転を開始して第2除湿暖房運転判定処理を終了する。
(ステップS5)
 ステップS2において吸気温度センサ45の検出温度Tが第1所定温度以上であると判定しなかった場合、または、ステップS3において検出温度Tが第2所定温度T2以上と判定した場合に、ステップS5においてCPUは、第2除湿暖房運転を終了して第2除湿暖房運転判定処理を終了する。
 第2除湿暖房運転を行うか否かの判定は、吸熱器14の上流側を流通する空気の温度Tに基づく判定に限られず、車室外の温度に基づいて判定するようにしてもよい。
 また、除湿冷房運転時または第1除湿暖房運転時において、各吹出口11c,11d,11eの設定がバイレベルモードの場合に、吸熱器14において冷媒と熱交換した後の空気の温度に基づいて第2除湿暖房運転に切換える第2除湿暖房運転切換処理を行う。このときのコントローラ40の動作を図11のフローチャートを用いて説明する。
(ステップS11)
 ステップS11においてCPUは、除湿冷房運転中か否かを判定する。除湿冷房運転中と判定した場合にはステップS12に処理を移し、除湿冷房運転中と判定しなかった場合にはステップS13に処理を移す。
(ステップS12)
 ステップS11において除湿冷房運転中と判定した場合に、ステップS12においてCPUは、冷却空気温度センサ46の検出温度Tcが第3所定温度Tc1以下か否かを判定する。冷却空気温度センサ46の検出温度Tcが第3所定温度Tc1以下と判定した場合にはステップS15に処理を移し、第3所定温度Tc1以下と判定しなかった場合には第2除湿暖房運転切換処理を終了する。
(ステップS13)
 ステップS11において除湿冷房運転中と判定しなかった場合に、ステップS13においてCPUは、第1除湿暖房運転中か否かを判定する。第1除湿暖房運転中と判定した場合にはステップS14に処理を移し、第1除湿暖房運転中と判定しなかった場合には第2除湿暖房運転切換処理を終了する。
(ステップS14)
 ステップS13において第1除湿暖房運転中と判定した場合に、ステップS14においてCPUは、冷却空気温度センサ46の検出温度Tcが第4所定温度Tc2以上か否かを判定する。冷却空気温度センサ46の検出温度Tcが第4所定温度Tc2以上と判定した場合にはステップS15に処理を移し、第4所定温度Tc2以上と判定しなかった場合には第2除湿暖房運転切換処理を終了する。
(ステップS15)
 ステップS12において冷却空気温度センサ46の検出温度Tcが第3所定温度Tc1以下と判定した場合、または、ステップS14において冷却空気温度センサ46の検出温度Tcが第4所定温度Tc2以上と判定した場合に、ステップS15においてCPUは、運転状態を第2除湿暖房運転に切換えて第2除湿暖房運転切換え処理を終了する。
 第2除湿暖房運転への切換えは、吸熱器14の下流側を流通する空気の温度Tcに基づく切換えに限られず、放熱器15の下流側の空気の温度の予測値に基づいて切換えるようにしてもよい。
 また、第2除湿暖房運転時には、放熱器15の下流側の空気の温度を、圧縮機21の回転数を調整することによって制御する。さらに、第2除湿暖房運転時には、吹出口11c,11d,11eの設定がバイレベルモードとなっているため、エアミックスダンパ16を所定の範囲内の開度で調整することによって車室内に供給される空気の温度が目標吹出温度TAOとなるように制御する。
 このとき、圧縮機21は、冷媒回路20の高圧側の圧力、高圧側の温度、空気流通路11を流通する空気の温度、吸熱器14の下流側の空気の温度のいずれか、または、少なくともその内の一部の組み合わせに基づいて回転数が制御される。
 また、各吹出口11c,11d,11eの設定がバイレベルモードで有るか否かにかかわらず、第1除湿暖房運転と、第2除湿暖房運転と、冷房または除湿冷房運転とを切換える運転切換制御処理を行う。このときのコントローラ40の動作を図12のフローチャートを用いて説明する。
(ステップS21)
 ステップS21において、CPUは、第1除湿暖房運転中であるか否かを判定する。第1除湿暖房運転中であると判定した場合にはステップS22に処理を移し、第1除湿暖房運転中であると判定しなかった場合にはステップS24に処理を移す。
(ステップS22)
 ステップS21において第1除湿暖房運転中であると判定した場合に、ステップS22においてCPUは、冷却空気温度センサ46の検出温度Tcと吸熱器14の下流側の空気の目標温度TEOとの差(Tc-TEO)が所定値より大きいか否かを判定する。所定値より大きいと判定した場合にはステップS27に処理を移し、所定値より大きいと判定しなかった場合にはステップS23に処理を移す。
(ステップS23)
 ステップS22において検出温度Tcと目標温度TEOとの差(Tc-TEO)が所定値より大きいと判定しなかった場合に、または、後述するステップS26において放熱器15の下流側の空気の目標温度TCOと放熱器15の下流側の空気の推定温度THとの差(TCO-TH)が所定値よりも大きい、または、吸熱器14の下流側の空気の目標温度TEOと冷却空気温度センサ46の検出温度Tcとの差(TEO-Tc)が所定値よりも大きいと判定した場合に、ステップS23においてCPUは、第1除湿暖房運転を実行して運転切換制御処理を終了する。
(ステップS24)
 ステップS21において第1除湿暖房運転中あると判定しなかった場合に、ステップS24においてCPUは、第2除湿暖房運転中であるか否かを判定する。第2除湿暖房運転中であると判定した場合にはステップS25に処理を移し、第2除湿暖房運転中であると判定しなかった場合にはステップS28に処理を移す。
(ステップS25)
 ステップS24において第2除湿暖房運転中であると判定した場合に、ステップS25においてCPUは、冷却空気温度センサ46の検出温度Tcと吸熱器14の下流側の空気の目標温度TEOとの差(Tc-TEO)が所定値より大きいか否かを判定する。所定値より大きいと判定した場合にはステップS30に処理を移し、所定値より大きいと判定しなかった場合にはステップS26に処理を移す。
(ステップS26)
 ステップS25において冷却空気温度センサ46の検出温度Tcと吸熱器14の下流側の空気の目標温度TEOとの差(Tc-TEO)が所定値より大きいと判定しなかった場合に、ステップS26においてCPUは、放熱器15の下流側の空気の目標温度TCOと放熱器15の下流側の空気の推定温度THとの差(TCO-TH)が所定値よりも大きいか否か、または、吸熱器14の下流側の空気の目標温度TEOと冷却空気温度センサ46の検出温度Tcとの差(TEO-Tc)が所定値よりも大きいか否かを判定する。所定値よりも大きいと判定した場合にはステップS23に処理を移し、所定値よりも大きいと判定しなかった場合にはステップS27に処理を移す。
(ステップS27)
 ステップS22において検出温度Tcと目標温度TEOとの差(Tc-TEO)が所定値より大きいと判定した場合、ステップS26において目標温度TCOと推定温度THとの差(TCO-TH)が所定値よりも大きいと判定しなかった場合、ステップS26において吸熱器14の下流側の空気の目標温度TEOと冷却空気温度センサ46の検出温度Tcとの差(TEO-Tc)が所定値よりも大きいと判定しなかった場合、または、後述するステップS29において放熱器15の目標温度TCOと推定温度THとの差(TCO-TH)が所定値よりも大きいと判定した場合に、ステップS27においてCPUは、第2除湿暖房運転を実行して運転切換制御処理を終了する。
(ステップS28)
 ステップS24において第2除湿運転中であると判定しなかった場合に、ステップS28においてCPUは、冷房運転中または除湿冷房運転中であるか否かを判定する。冷房運転中または除湿冷房運転中であると判定した場合にはステップS29に処理を移し、冷房運転中または除湿冷房運転中であると判定しなかった場合には運転切換制御処理を終了する。
(ステップS29)
 ステップS28において冷房運転中または除湿冷房運転中であると判定した場合に、ステップS29においてCPUは、放熱器15の目標温度TCOと放熱器15の下流側の空気の推定温度THとの差(TCO-TH)が所定値よりも大きいか否かを判定する。所定値よりも大きいと判定した場合にはステップS27に処理を移し、所定値よりも大きいと判定しなかった場合にはステップS30に処理を移す。
(ステップS30)
 ステップS25において検出温度Tcと目標温度TEOとの差(Tc-TEO)が所定値より大きい場合、または、ステップS29において目標温度TCOと推定温度THとの差(TCO-TH)が所定値よりも大きいと判定しなかった場合に、ステップS30においてCPUは、冷房運転または除湿冷房運転を実行して運転切換制御処理を終了する。
 ここで、冷却空気温度センサ46の検出温度Tcと吸熱器14の目標温度TEOとの差の所定値、および、放熱器15の目標温度TCOと放熱器15の下流側の空気の推定温度THとの差の所定値は、それぞれ例えば2℃~3℃の範囲内で設定される。また、ここでは、吸熱器14の下流側の空気の温度である冷却空気温度センサ46の検出温度Tcに基づいて所定値を算出しているが、吸熱器14の表面温度(フィンとフィンの間)の実測値に基づいて所定値を算出してもよい。また、ここでは、放熱器15の下流側の空気の推定温度THに基づいて所定値を算出しているが、放熱器15の下流側の空気の温度の実測値に基づいて所定値を算出してもよい。
 このように、本実施形態の車両用空気調和装置によれば、冷房運転時および除湿冷房運転時には、室外熱交換器22を流通して吸熱器14において吸熱させる冷媒を過冷却用放熱器24に流通させている。また、暖房運転時には、室外熱交換器22を流通した冷媒を過冷却用放熱器24に流通させることなく、圧縮機21に吸入させている。また、第1除湿暖房運転時および第2除湿暖房運転時には、放熱器15を流通して吸熱器14において吸熱させる冷媒を過冷却用放熱器24に流通させている。これにより、吸熱器14を流通する冷媒は、過冷却用放熱器24において過冷却状態となるので、運転効率を向上させることが可能となる。また、吸熱器14を流通しない冷媒は、過冷却用放熱器24を流通することなく圧縮機21に吸入されるので、圧力損失の低減を図ることが可能となり、運転効率の向上を図ることが可能となる。
 また、過冷却用放熱器24の冷媒流通方向上流側に液体の冷媒を貯留可能なレシーバタンク23を設けている。これにより、冷房運転時、除湿冷房運転時、第1除湿暖房運転時および第2除湿暖房運転時において、余剰となる冷媒をレシーバタンク23に貯留することができるので、冷媒回路20を流通する冷媒の循環量を適正量とすることができる。
 また、圧縮機21から吐出された冷媒を直接室外熱交換器22に流入させることが可能な冷媒流通路20lを設けている。これにより、高温の冷媒を室外熱交換器22に流入させることが可能となり、室外熱交換器22に着霜した場合の除霜時間を短縮することが可能となる。
 また、室外熱交換器22には、内部に形成された冷媒通路の一端側から冷媒が流通し、流入した冷媒が他端側から流出するようにしている。これにより、冷媒回路20の回路構成が簡単となり、製造コストの低減を図ることが可能となる。
 また、室外熱交換器22、レシーバタンク23、過冷却用放熱器24、第1制御弁26、第1電磁弁28a、第2電磁弁28b、第3電磁弁28c、第1逆止弁29aおよび第2逆止弁29bを一体に形成した室外熱交換器ユニットUが構成されている。これにより、室外熱交換器ユニットUを一部品として組付けることが可能となるので、組付け工数の低減を図ることが可能となる。
 また、電子膨張弁の機能を有する膨張手段と電磁弁としての機能を有する凝縮圧力調整手段とを一体に形成した第1制御弁26を冷媒回路20に設け、冷媒流入側および冷媒流出側をそれぞれ1つの接続口としている。これにより、2種類の機能を一部品として組付けることが可能となるので、組付け工数の低減を図ることが可能となる。
 また、各吹出口11c,11d,11eの設定がバイレベルモードの場合に、吸気温度センサ45の検出温度Tに基づいて第2除湿暖房運転の開始および停止を行っている。これにより、空調の負荷が小さい条件で有効に第2除湿暖房運転を行うことができるので、エネルギー消費量の低減を図ることが可能となる。
 また、除湿冷房運転時または第1除湿暖房運転時に冷却空気温度センサ46の検出温度Tcに基づいて第2除湿暖房運転に切換えるようにしている。これにより、空調の負荷が小さい条件で有効に第2除湿暖房運転を行うことができるので、エネルギー消費量の低減を図ることが可能となる。
 また、放熱器15の下流側の空気の温度を、圧縮機21の回転数を調整することで調整し、エアミックスダンパ16の開度を調整することによって車室内に供給する空気の温度を目標吹出温度TAOとするようにしている。これにより、車室内に供給する空気を最適な温度とすることが可能となり、車室内の温湿度環境を最適に保持することが可能となる。
 図13および図14は本発明の第2実施形態を示すものである。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。
 この車両用空気調和装置の冷媒回路20は、図13に示すように、冷媒流通路20eと冷媒流通路20fを接続することによって、冷媒流通路20mが設けられている。冷媒流通路20mには、第5電磁弁28eが設けられている。また、冷媒流通路20eの冷媒流通路20mと接続部の下流側に、第6電磁弁28fが設けられている。さらに、冷媒流通路20fの冷媒流通路20mとの接続部の上流側に、第5逆止弁29eが設けられている。
 以上のように構成された車両用空気調和装置において、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転、除霜運転の各運転時には、図14の表に示すように、第1制御弁26、第2制御弁27、第1~第6電磁弁28a,28b,28c,28d,28e,28fが切換えられる。
 第1除湿暖房運転時および第2除湿暖房運転時において、冷媒流通路20dを流通する冷媒は、レシーバタンク23に流入した後、過冷却用放熱器24を流通することなく吸熱器14に流入する。
 このように、本実施形態の車両用空気調和装置によれば、冷房運転時および除湿冷房運転時には、吸熱器14を流通する冷媒は、過冷却用放熱器24において過冷却状態となるので、運転効率を向上させることが可能となる。また、吸熱器14を流通しない冷媒は、過冷却用放熱器24を流通することなく圧縮機21に吸入されるので、圧力損失の低減を図ることが可能となり、運転効率の向上を図ることが可能となる。
 また、第1除湿暖房運転時および第2除湿暖房運転時において、放熱器15を流出した冷媒を、過冷却用放熱器24を流通させることなくレシーバタンク23を流通させた後に吸熱器14に流入させている。これにより、第1除湿暖房運転時および第2除湿暖房運転時においても、圧力損失の低減を図ることが可能となる。また、余剰となる冷媒をレシーバタンク23において貯留することができるので、冷媒回路20を流通する冷媒の循環量を適正量とすることが可能となる。
 図15および図16は本発明の第3実施形態を示すものである。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。
 この車両用空気調和装置の冷媒回路20は、図15に示すように、第2実施形態と同様に、冷媒流通路20mおよび第3逆止弁29cが設けられている。冷媒流通路20eと冷媒流通路20mとの接続部には、電磁三方弁28gが設けられている。
 以上のように構成された車両用空気調和装置において、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転、除霜運転の各運転時には、図16の表に示すように、第1制御弁26、第2制御弁27、第1~第4電磁弁28a,28b,28c,28d、電磁三方弁28gが切換えられる。
 第1除湿暖房運転時および第2除湿暖房運転時において、冷媒流通路20dを流通する冷媒は、レシーバタンク23に流入した後、過冷却用放熱器24を流通することなく吸熱器14に流入する。
 このように、本実施形態の車両用空気調和装置によれば、冷房運転時および除湿冷房運転時には、吸熱器14を流通する冷媒は、過冷却用放熱器24において過冷却状態となるので、運転効率を向上させることが可能となる。また、吸熱器14を流通しない冷媒は、過冷却用放熱器24を流通することなく圧縮機21に吸入されるので、圧力損失の低減を図ることが可能となり、運転効率の向上を図ることが可能となる。
 また、第1除湿暖房運転時および第2除湿暖房運転時において、放熱器15を流出した冷媒を、過冷却用放熱器24を流通させることなくレシーバタンク23を流通させた後に吸熱器14に流入させている。これにより、第1除湿暖房運転時および第2除湿暖房運転時においても、圧力損失の低減を図ることが可能となる。また、余剰となる冷媒をレシーバタンク23において貯留することができるので、冷媒回路20を流通する冷媒の循環量を適正量とすることが可能となる。
 図17および図18は本発明の第4実施形態を示すものである。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。
 この車両用空気調和装置の冷媒回路20は、図17に示すように、第1実施形態の冷媒流通路20jの代わりとして、冷媒流通路20bと冷媒流通路20fの内部熱交換器の上流側を接続する冷媒流通路20nが設けられている。冷媒流通路20nには、上流側から順に第2電磁弁28b、レシーバタンク23a、第2逆止弁29bが設けられている。
 以上のように構成された車両用空気調和装置において、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転、除霜運転の各運転時には、図18の表に示すように、第1制御弁26、第2制御弁27、第1~第4電磁弁28a,28b,28c,28d、が切換えられる。
 第1除湿暖房運転時および第2除湿暖房運転時において、冷媒流通路20nを流通する冷媒は、レシーバタンク23aに流入した後、過冷却用放熱器24を流通することなく吸熱器14に流入する。
 このように、本実施形態の車両用空気調和装置によれば、冷房運転時および除湿冷房運転時には、吸熱器14を流通する冷媒は、過冷却用放熱器24において過冷却状態となるので、運転効率を向上させることが可能となる。また、吸熱器14を流通しない冷媒は、過冷却用放熱器24を流通することなく圧縮機21に吸入されるので、圧力損失の低減を図ることが可能となり、運転効率の向上を図ることが可能となる。
 また、第1除湿暖房運転時および第2除湿暖房運転時において、放熱器15を流出した冷媒を、過冷却用放熱器24を流通させることなくレシーバタンク23aを流通させた後に吸熱器14に流入させている。これにより、第1除湿暖房運転時および第2除湿暖房運転時においても、圧力損失の低減を図ることが可能となる。また、余剰となる冷媒をレシーバタンク23aにおいて貯留することができるので、冷媒回路20を流通する冷媒の循環量を適正量とすることが可能となる。
 図19乃至図29は本発明の第5実施形態を示すものである。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。
 この車両用空気調和装置は、図19に示すように、冷媒回路60が構成されている。
 具体的には、圧縮機21の冷媒吐出側に放熱器15の冷媒流入側が接続されることによって、冷媒流通路60aが設けられている。また、放熱器15の冷媒流出側には、第1制御弁26の冷媒流入側が接続されることによって、冷媒流通路60bが設けられている。第1制御弁26の凝縮圧力調整手段側の冷媒流出側には、室外熱交換器22の第1接続口が接続されることによって、冷媒流通路60cが設けられている。第1制御弁26の膨張手段側の冷媒流出側には、室外熱交換器22の第2接続口が接続されることによって、冷媒流通路60dが設けられている。冷媒流通路60dには、第1逆止弁29aが設けられている。室外熱交換器22の第3接続口には、レシーバタンク23の冷媒流入側が接続されることによって、冷媒流通路60eが設けられている。冷媒流通路60eには、室外熱交換器22側から順に第1電磁弁28a、第2逆止弁29bが設けられている。レシーバタンク23の冷媒流出側には、過冷却用放熱器24の冷媒流入側が接続されることによって、冷媒流通路60fが設けられている。過冷却用放熱器24の冷媒流出側には、内部熱交換器25の高圧冷媒流入側が接続されることによって、冷媒流通路60gが設けられている。内部熱交換器25の高圧冷媒流出側には、吸熱器14の冷媒流入側が接続されることによって、冷媒流通路60hが設けられている。冷媒流通路60hには、膨張弁30が設けられている。吸熱器14の冷媒流出側には、内部熱交換器25の低圧冷媒流入側が接続されることによって、冷媒流通路60iが設けられている。冷媒流通路60iには、第2制御弁27が設けられている。内部熱交換器25の低圧冷媒流出側には、圧縮機21の冷媒吸入側が接続されることによって、冷媒流通路60jが設けられている。冷媒流通路60jには、内部熱交換器25側から順に、第5逆止弁29e、アキュムレータ31が設けられている。また、冷媒流通路60bには、冷媒流通路60eの第1逆止弁29aとレシーバタンク23との間に接続されることによって、冷媒流通路60kが設けられている。冷媒流通路60kには、冷媒流通路60b側から順に第2電磁弁28b、第3逆止弁29cが設けられている。また、冷媒流通路60cには、冷媒流通路60jの内部熱交換器25とアキュムレータ31との間が接続されることによって、冷媒流通路60lが設けられている。冷媒流通路60lには、第3電磁弁28cが設けられている。冷媒流通路60aには、冷媒流通路60dの第1逆止弁29aの冷媒流通方向下流側に接続されることによって、冷媒流通路60mが設けられている。冷媒流通路60mには、冷媒流通路60a側から順に第4電磁弁28d、第4逆止弁29dが設けられている。
 室外熱交換器22は、図20に示すように、レシーバタンク23、過冷却用放熱器24、第1制御弁26、第1電磁弁28a、第2電磁弁28b、第3電磁弁28c、第1逆止弁29a、第2逆止弁29b、第3逆止弁29cおよび第4逆止弁29dと一体に形成され、室外熱交換器ユニットUが構成されている。
 室外熱交換器22は、冷媒流通路60cの接続口側から冷媒流通路60d,60eの接続口側に向かって冷媒の流路の断面積が小さくなるように、各ヘッダ22a内が仕切り部材22dによって仕切られている。これにより、室外熱交換器22が放熱器として機能する場合には、冷媒流通路60cから流入する冷媒が徐々に断面積が小さくなる冷媒流路を流通することから、気体の冷媒の確実に凝縮させることが可能となる。また、室外熱交換器22が蒸発器として機能する場合には、冷媒流通路60dから流入する冷媒が徐々に断面積が大きくなる冷媒流路を流通することから、蒸発して体積が大きくなる冷媒の流通が妨げられることなく、圧力損失の低減が可能となる。
 第1制御弁26は、1つの冷媒流入口に対して、膨張手段側の冷媒通路と凝縮圧力調整手段側の冷媒流路が設けられ、それぞれの冷媒流路に開度を調整するための弁体が設けられている。第1制御弁26は、図21(a)に示すように、膨張手段側が電子膨張弁26aであり、凝縮圧力調整手段側が電磁弁26bである。第1制御弁26は、図21(a)のそれぞれの弁開度の表に示すように、電子膨張弁26aの弁開度を全閉の状態から全開の状態の間で調整可能である。また、電磁弁26bは弁開度がオンオフで全閉と全開が切換えられる。
 第1制御弁26のその他の例としては、図21(b)に示すように、膨張手段側および凝縮圧力調整手段側をそれぞれの開度を任意に調整可能な、小口径弁26cと大口径弁26dとから構成してもよい。この場合、小口径弁26cおよび大口径弁26dのそれぞれの弁開度を全閉から全開の間で任意に調整可能である。
 また、第1制御弁26のその他の例として、図21(c)に示すように、全開の近傍で開度を急拡大させることが可能な小口径弁26eと大口径弁26fとから構成してもよい。この場合には、除霜運転時に冷媒の流量を大きくすることができ、除霜運転に要する時間を短縮することができる。
 小口径弁26eは、図22に示すように、弁本体26e1と、弁本体26e1に対して上下方向に移動可能な弁座26e2と、弁座26e2に対して上下方向に移動可能なニードル状の弁体26e3とを有している。
 小口径弁26eは、図22(a)では弁本体の冷媒流路を閉鎖している。また、図22(b)では、弁体26e3が上方に移動して冷媒流路を開放し、冷媒を流通させる。さらに、図22(c)では、弁体26e3を上方に移動させることによって弁座26e2を上方に移動させ、弁座26e2と弁本体26e1との間を開放して、さらに冷媒を流通させる。
 また、第1制御弁26には、図23に示すように、第1逆止弁29aを一体に構成するようにしてもよい。
 以上のように構成された車両用空気調和装置では、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転、除霜運転が行われる。以下、それぞれの運転について説明する。
 冷房運転及び除湿冷房運転において、冷媒回路60では、第1制御弁26の膨張手段側の流路を閉鎖するとともに、凝縮圧力調整手段側の流路を開放し、第1電磁弁28aを開放するとともに、第2、第3、第4電磁弁28b,28c,28dを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図24に示すように、冷媒流通路60a、放熱器15、冷媒流通路60b,第1制御弁26の凝縮圧力調整手段側、冷媒流通路60c、室外熱交換器22、冷媒流通路60e、レシーバタンク23、冷媒流通路60f、過冷却用放熱器24、内部熱交換器25の高圧側、冷媒流通路60h、吸熱器14、冷媒流通路60i、内部熱交換器25の低圧側、冷媒流通路60jの順に流通して圧縮機21に吸入される。
 冷房運転および除湿冷房運転において、室外熱交換器22を流通した冷媒は、レシーバタンク23を介して過冷却用放熱器24に流入する。したがって、過冷却用放熱器24に流入する冷媒は、液体の状態で車室外の空気と熱交換して過冷却の状態となる。
 暖房運転において、冷媒回路60では、第1制御弁26の膨張手段側の冷媒流路を開放するとともに、凝縮圧力調整手段側の冷媒流路を閉鎖し、第3電磁弁28cを開放するとともに、第1、第2、第4電磁弁28a,28b,28dを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図25に示すように、冷媒流通路60a、放熱器15、冷媒流通路60b、第1制御弁26の膨張手段側、冷媒流通路60d、室外熱交換器22、冷媒流通路60c,60lの順に流通して圧縮機21に吸入される。
 第1除湿暖房運転において、冷媒回路60では、第1制御弁26の膨張手段側の冷媒流路を開放するとともに、凝縮圧力調整手段側の冷媒流路を閉鎖し、第2及び第3電磁弁28b,28cを開放するとともに、第1および第4電磁弁28a,28dを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図26に示すように、冷媒流通路60a、放熱器15、冷媒流通路60bを順に流通する。冷媒流通路60bを流通する冷媒の一部は、第1制御弁26の膨張手段側、冷媒流通路60d、室外熱交換器22、冷媒流通路60c,60lの順に流通して圧縮機21に吸入される。また、冷媒流通路60bを流通するその他の冷媒は、冷媒流通路60k,60c、レシーバタンク23、冷媒流通路60f、過冷却用放熱器24、冷媒流通路60g、内部熱交換器25の高圧側、冷媒流通路60h、吸熱器14、冷媒流通路60i、内部熱交換器25の低圧側、冷媒流通路60j、の順に流通して圧縮機21に吸入される。
 第2除湿暖房運転において、冷媒回路60では、第1制御弁26の膨張手段側および凝縮圧力調整手段側の両方の冷媒流路を閉鎖し、第2電磁弁28bを開放するとともに、第1、第3、第4電磁弁28a,28c,28dを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒は、図27に示すように、冷媒流通路60a、放熱器15、冷媒流通路60b,60k,60e、レシーバタンク23、冷媒流通路60f、過冷却用放熱器24、冷媒流通路60g、内部熱交換器25の高圧側、冷媒流通路60h、吸熱器14、冷媒流通路60i、内部熱交換器25の低圧側、冷媒流通路60jの順に流通して圧縮機21に吸入される。
 除霜運転において、冷媒回路60では、第1制御弁26の膨張手段側の冷媒流路を開放して凝縮圧力調整手段側の冷媒流路を閉鎖し、第3および第4電磁弁28c,28dを開放するとともに、第1および第2電磁弁28a,28bを閉鎖し、圧縮機21を運転する。
 これにより、圧縮機21から吐出された冷媒の一部は、図28に示すように、冷媒流通路60a、放熱器15、冷媒流通路60b、第1制御弁26の膨張手段側、冷媒流通路30dを順に流通して室外熱交換器22に流入する。また、圧縮機21から吐出されたその他の冷媒は、冷媒流路60m,60dを流通して室外熱交換器22に流入する。室外熱交換器22から流出した冷媒は、冷媒流通路60c,60jを流通して圧縮機21に吸入される。
 前述の各運転時には、図29の表に示すように、第1制御弁26、第2制御弁27、第1~第4電磁弁28a,28b,28c,28dが切換えられる。
 このように、本実施形態の車両用空気調和装置によれば、冷房運転時および除湿冷房運転時には、吸熱器14を流通する冷媒は、過冷却用放熱器24において過冷却状態となるので、運転効率を向上させることが可能となる。また、吸熱器14を流通しない冷媒は、過冷却用放熱器24を流通することなく圧縮機21に吸入されるので、圧力損失の低減を図ることが可能となり、運転効率の向上を図ることが可能となる。
 また、室外熱交換器22には、内部に形成された冷媒通路の一端側から放熱させる冷媒が流入し、流入して放熱した冷媒が他端側から流出するとともに、冷媒通路の他端側から吸熱させる冷媒が流入し、流入して吸熱した冷媒が一端側から流出するようにしている。これにより、室外熱交換器22において、冷媒を凝縮させる場合および冷媒を蒸発させる場合のそれぞれにおいて、冷媒が最適な状態で流通する冷媒流路を形成することが可能となる。したがって、室外熱交換器22において冷媒を凝縮させる際の凝縮性能の向上を図ることができる。また、室外熱交換器22において冷媒を蒸発させる際に生じる圧力損失を低減することが可能となる。
 図30および図31は本発明の第6実施形態を示すものである。尚、前記実施形態と同様の構成部分には同一の符号を付して示す。
 この車両用空気調和装置の冷媒回路60は、図30に示すように、第5実施形態の冷媒流通路60kの代わりとして、冷媒流通路60bと冷媒流通路60gの内部熱交換器25の上流側を接続する冷媒流通路60nが設けられている。冷媒流通路60nには、上流側から順に第2電磁弁28b、レシーバタンク23a、第2逆止弁29bが設けられている。
 以上のように構成された車両用空気調和装置において、冷房運転、除湿冷房運転、暖房運転、第1除湿暖房運転、第2除湿暖房運転、除霜運転の各運転時には、図31の表に示すように、第1制御弁26、第2制御弁27、第1~第4電磁弁28a,28b,28c,28d、が切換えられる。
 第1除湿暖房運転時および第2除湿暖房運転時において、冷媒流通路60nを流通する冷媒は、レシーバタンク23aに流入した後、過冷却用放熱器24を流通することなく吸熱器14に流入する。
 このように、本実施形態の車両用空気調和装置によれば、冷房運転時および除湿冷房運転時には、吸熱器14を流通する冷媒は、過冷却用放熱器24において過冷却状態となるので、運転効率を向上させることが可能となる。また、吸熱器14を流通しない冷媒は、過冷却用放熱器24を流通することなく圧縮機21に吸入されるので、圧力損失の低減を図ることが可能となり、運転効率の向上を図ることが可能となる。
 また、第1除湿暖房運転時および第2除湿暖房運転時において、放熱器15を流出した冷媒を、過冷却用放熱器24を流通させることなくレシーバタンク23aを流通させた後に吸熱器14に流入させている。これにより、第1除湿暖房運転時および第2除湿暖房運転時においても、圧力損失の低減を図ることが可能となる。また、余剰となる冷媒をレシーバタンク23aにおいて貯留することができるので、冷媒回路60を流通する冷媒の循環量を適正量とすることが可能となる。
 尚、前記実施形態では、冷媒回路20,60に内部熱交換器25を設けたものを示したが、内部熱交換器25が設けられていないものであっても、前記実施形態と同様の効果を得ることが可能である。
 また、前記実施形態では、第1制御弁26を電子膨張弁の機能を有する膨張手段と電磁弁としての機能を有する凝縮圧力調整手段とを一体に形成したものを示したが、これに限られるものではない。例えば、冷媒流出側を一方または他方に切換え可能な三方弁と、冷媒流出側の一方に設けられた膨張弁とから構成するようにしてもよい。
 また、膨張弁30として温度膨張弁を適用したものを示したが、これに限られるものではなく、電子膨張弁であっても適用可能である。
 10…空調ユニット、11…空気流通路、14…吸熱器、15…放熱器、20…冷媒回路、21…圧縮機、22…室外熱交換器、23,23a…レシーバタンク、24…過冷却用放熱器、26…第1制御弁、27…第2制御弁、28a,28b,28c,28d…第1~第4電磁弁、29a,29b,29c,29d,29e…第1~第5逆止弁、30…膨張弁、40…コントローラ、60…冷媒回路。

Claims (20)

  1.  冷媒を圧縮して吐出する圧縮機と、
     冷媒を放熱させる放熱器と、
     冷媒を吸熱させる吸熱器と、
     冷媒を放熱または吸熱させる室外熱交換器と、
     室外熱交換器において放熱させた冷媒をさらに放熱させる室外放熱器と、
     圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒を室外熱交換器に流入させ、室外熱交換器を流通した冷媒を室外放熱器に流入させ、室外放熱器を流通した冷媒を膨張手段を介して吸熱器に流入させ、吸熱器を流通した冷媒を圧縮機に吸入させる冷房・除湿冷房用冷媒回路と、
     圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒を膨張弁を介して室外熱交換器に流入させ、室外熱交換器を流通した冷媒を圧縮機に吸入させる暖房用冷媒回路と、を備えた
     ことを特徴とする車両用空気調和装置。
  2.  圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒の一部を膨張弁を介して室外熱交換器に流入させ、放熱器を流通したその他の冷媒を室外放熱器に流入させ、室外放熱器を流通した冷媒を膨張弁を介して吸熱器に流入させ、室外熱交換器を流通した冷媒および吸熱器を流通した冷媒を圧縮機に吸入させる除湿暖房用冷媒回路を備えた
     ことを特徴とする請求項1に記載の車両用空気調和装置。
  3.  圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒を室外放熱器に流入させ、室外放熱器を流通した冷媒を膨張手段を介して吸熱器に流入させ、吸熱器を流通した冷媒を圧縮機に吸入させる内部循環除湿暖房用冷媒回路を備えた
     ことを特徴とする請求項2に記載の車両用空気調和装置。
  4.  室外放熱器の冷媒流通方向上流側には、液体の冷媒を貯留可能なレシーバタンクが設けられている
     ことを特徴とする請求項1乃至3のいずれかに記載の車両用空気調和装置。
  5.  液体の冷媒を貯留可能なレシーバタンクを備え、
     圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒の一部を膨張弁を介して室外熱交換器に流入させ、放熱器を流通したその他の冷媒を室外放熱器に流入させることなくレシーバタンクに流入させ、レシーバタンクを流通した冷媒を膨張弁を介して吸熱器に流入させ、室外熱交換器を流通した冷媒および吸熱器を流通した冷媒を圧縮機に吸入させる除湿暖房用冷媒回路を備えた
     ことを特徴とする請求項1に記載の車両用空気調和装置。
  6.  圧縮機が吐出した冷媒を放熱器に流入させ、放熱器を流通した冷媒を室外放熱器に流入させることなくレシーバタンクに流入させ、レシーバタンクを流通した冷媒を膨張弁を介して吸熱器に流入させ、吸熱器を流通した冷媒を圧縮機に吸入させる内部循環除湿暖房用冷媒回路を備えた
     ことを特徴とする請求項5に記載の車両用空気調和装置。
  7.  空気流通方向上流側に吸熱器が配置されるとともに、吸熱器の空気流通方向下流側に放熱器が配置され、車室内に供給する空気を流通させる空気流通路と、
     空気流通路を流通する空気を、車室内の搭乗者の頭部側に向かって吹出させるベントモードと、車室内の搭乗者の足元側に向かって吹出させるフットモードと、車室内の搭乗者の頭部側および足元側のそれぞれに向かって吹出させるバイレベルモードと、を、車室内の温度を目標設定温度とするために車室内に供給すべき空気の温度である目標吹出温度に基づいて切換え可能な吹出口切換部と、
     空気流通路に流入する空気の温度を検出する吸気温度検出部と、
     吹出口切換部によってバイレベルモードが設定されている場合において、吸気温度検出部の検出温度に基づいて内部循環除湿暖房用冷媒回路での運転を開始または停止する内部循環除湿暖房制御部と、を備えた
     ことを特徴とする請求項3または6に記載の車両用空気調和装置。
  8.  空気流通路を流通する空気の温度を検出する空気温度検出部と、
     除湿暖房用冷媒回路または冷房・除湿冷房用冷媒回路での運転時に、空気温度検出部の検出温度に基づいて内部循環除湿暖房用冷媒回路での運転に切換える運転切換部と、を備えた
     ことを特徴とする請求項7に記載の車両用空気調和装置。
  9.  空気流通路の放熱器の下流側の空気の温度を推定する加熱温度推定部と、
     加熱温度推定部による推定温度に基づいて圧縮機の回転数を制御する圧縮機制御部と、
     空気流通路を流通する空気のうち、放熱器を流通する冷媒と熱交換する空気の割合が可変に設けられ、開度が大きくなるに従って放熱器を流通する冷媒と熱交換する空気の割合が大きくなるエアミックスダンパと、
     車室内に供給する空気の温度が目標吹出温度となるようにエアミックスダンパの開度を制御するダンパ開度制御部と、を備えた
     ことを特徴とする請求項7または8に記載の車両用空気調和装置。
  10.  空気流通方向上流側に吸熱器が配置されるとともに、吸熱器の空気流通方向下流側に放熱器が配置され、車室内に供給する空気を流通させる空気流通路と、
     吸熱器の表面温度、または、空気流通路の吸熱器の下流側の空気の温度を検出する吸熱器温度検出部と、
     空気流通路の放熱器の下流側の空気の温度を検出、または、推定する放熱器温度検知部と、
     冷却温度検出部の検出温度および加熱温度推定手段の推定温度に基づいて、冷房・除湿冷房用冷媒回路、除湿暖房用冷媒回路および内部循環除湿暖房用冷媒回路を相互に切換える運転切換制御部と、を備えた
     ことを特徴とする請求項3または6に記載の車両用空気調和装置。
  11.  暖房用冷媒回路において、圧縮機から吐出された冷媒の少なくとも一部を室外熱交換器に直接流入させる除霜回路を備えた
     ことを特徴とする請求項1乃至10のいずれかに記載の車両用空気調和装置。
  12.  室外熱交換器は、内部に形成された冷媒通路の一端側から冷媒が流入し、流入した冷媒が他端側から流出する
     ことを特徴とする請求項1乃至11のいずれかに記載の車両用空気調和装置。
  13.  室外熱交換器は、内部に形成された冷媒通路の一端側から放熱させる冷媒が流入し、流入して放熱した冷媒が他端側から流出するとともに、冷媒通路の他端側から吸熱させる冷媒が流入し、流入して吸熱した冷媒が一端側から流出する
     ことを特徴とする請求項1乃至11のいずれかに記載の車両用空気調和装置。
  14.  室外熱交換器、室外放熱器、レシーバタンク、室外熱交換器とレシーバタンクとを接続する冷媒流通路および冷媒流通路に設けられた弁を有し、それぞれを一体に形成した室外熱交換器ユニットを備えた
     ことを特徴とする請求項4乃至10のいずれかに記載の車両用空気調和装置。
  15.  室外熱交換器ユニットには、室外熱交換器とレシーバタンクとを接続する冷媒流通路に接続される冷媒流通路に設けられた弁が一体に形成されている
     ことを特徴とする請求項14に記載の車両用空気調和装置。
  16.  室外熱交換器ユニットには、室外熱交換器と圧縮機とを接続する冷媒流通路に設けられた弁が一体に形成されている
     ことを特徴とする請求項15に記載の車両用空気調和装置。
  17.  室外熱交換器ユニットには、放熱器と室外熱交換器とを接続する冷媒流通路に設けられた弁が一体に形成されている
     ことを特徴とする請求項16に記載の車両用空気調和装置。
  18.  室外熱交換器において冷媒を吸熱させる際に室外熱交換器に流入する冷媒を減圧する膨張弁と、室外熱交換器において冷媒を放熱させる際に室外熱交換器に流入する冷媒の流量を調整する流量調整部と、を一体に形成した制御弁ユニットを備え、
     制御弁ユニットは、膨張弁及び流量調整部のそれぞれの冷媒流入側および冷媒流出側の少なくとも冷媒流入側のそれぞれと連通する配管接続口を有している
     ことを特徴とする請求項1乃至17のいずれかに記載の車両用空気調和装置。
  19.  制御弁ユニットは、膨張弁が電子式の膨張弁であり、流量調整部が電磁弁である
     ことを特徴とする請求項18に記載の車両用空気調和装置。
  20.  制御弁ユニットは、冷媒流出側を一方または他方に切換え可能な三方弁と、冷媒流出側の一方に設けられた機械式の膨張弁と、からなる
     ことを特徴とする請求項18に記載の車両用空気調和装置。
PCT/JP2012/080470 2011-12-09 2012-11-26 車両用空気調和装置 WO2013084737A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012005123.8T DE112012005123T5 (de) 2011-12-09 2012-11-26 Klimaanlage eines Fahrzeugs
US14/363,892 US9809081B2 (en) 2011-12-09 2012-11-26 Vehicle air conditioning apparatus
US15/375,456 US20170151857A1 (en) 2011-12-09 2016-12-12 Vehicle air conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011270685A JP5944154B2 (ja) 2011-12-09 2011-12-09 車両用空気調和装置
JP2011-270685 2011-12-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/363,892 A-371-Of-International US9809081B2 (en) 2011-12-09 2012-11-26 Vehicle air conditioning apparatus
US15/375,456 Division US20170151857A1 (en) 2011-12-09 2016-12-12 Vehicle air conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2013084737A1 true WO2013084737A1 (ja) 2013-06-13

Family

ID=48574111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080470 WO2013084737A1 (ja) 2011-12-09 2012-11-26 車両用空気調和装置

Country Status (4)

Country Link
US (2) US9809081B2 (ja)
JP (1) JP5944154B2 (ja)
DE (1) DE112012005123T5 (ja)
WO (1) WO2013084737A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128916A (ja) * 2014-01-06 2015-07-16 株式会社デンソー 冷凍サイクル装置
CN104949385A (zh) * 2014-03-31 2015-09-30 汉拿伟世通空调有限公司 车用热泵***

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6073652B2 (ja) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 車両用空気調和装置
US10317116B2 (en) * 2013-11-13 2019-06-11 Panasonic Intellectual Property Management Co., Ltd. Vehicular air-conditioning device, and constituent units of same
JP6277888B2 (ja) * 2014-06-27 2018-02-14 株式会社デンソー 冷凍サイクル装置
US10337626B2 (en) 2014-07-18 2019-07-02 Mitsubishi Electric Corporation Heating medium channel switching device, and air conditioning device including the heating medium channel switching device
US10215452B2 (en) 2014-07-18 2019-02-26 Mitsubishi Electric Corporation Air conditioner
CN106574731B (zh) * 2014-08-22 2019-12-10 三菱电机株式会社 复合阀
JP6432339B2 (ja) * 2014-12-25 2018-12-05 株式会社デンソー 冷凍サイクル装置
JP6323489B2 (ja) * 2015-08-04 2018-05-16 株式会社デンソー ヒートポンプシステム
JP6537928B2 (ja) * 2015-08-19 2019-07-03 三菱重工サーマルシステムズ株式会社 熱交換器及びヒートポンプシステム
JP6710061B2 (ja) * 2016-02-26 2020-06-17 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2017165139A (ja) * 2016-03-14 2017-09-21 カルソニックカンセイ株式会社 空調装置
CN107270579A (zh) * 2016-04-08 2017-10-20 开利公司 热泵机组及其多功能模式控制方法
JP2018165604A (ja) * 2017-03-28 2018-10-25 株式会社デンソー 冷凍サイクル装置
FR3064945B1 (fr) * 2017-04-05 2019-04-19 Valeo Systemes Thermiques Circuit de climatisation inversible indirect de vehicule automobile et procede de gestion en mode degivrage
CN107139685B (zh) * 2017-06-19 2023-05-23 珠海格力电器股份有限公司 汽车、热泵空调***、汽车热泵空调总成及其控制方法
JP6853138B2 (ja) * 2017-08-07 2021-03-31 本田技研工業株式会社 車両用空調装置
JP6900271B2 (ja) * 2017-08-09 2021-07-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US20190351740A1 (en) * 2018-05-18 2019-11-21 Nio Usa, Inc. Use of an inside condenser to maximize total thermal system performance
JP7099899B2 (ja) * 2018-07-25 2022-07-12 三菱重工サーマルシステムズ株式会社 車両用空調装置
JP2020019352A (ja) * 2018-07-31 2020-02-06 サンデンホールディングス株式会社 車両用空気調和装置
JP7263727B2 (ja) * 2018-10-05 2023-04-25 株式会社デンソー 冷凍サイクル装置
CN111380256A (zh) * 2018-12-28 2020-07-07 三花控股集团有限公司 热泵***
KR20200125791A (ko) * 2019-04-25 2020-11-05 현대자동차주식회사 전기차용 열관리시스템
JP2021031026A (ja) * 2019-08-29 2021-03-01 株式会社ヴァレオジャパン 車両用空調装置
CN110920645B (zh) * 2019-11-01 2021-02-26 浙江盾安轨道交通设备有限公司 列车空调机组除湿的***、方法、计算机设备和存储介质
JP2022187408A (ja) * 2021-06-07 2022-12-19 トヨタ自動車株式会社 車両用の熱管理システム
CN113829840A (zh) * 2021-11-09 2021-12-24 上海光裕汽车空调压缩机有限公司 一种电动汽车空调热泵***和温度控制方法
US12017509B2 (en) * 2021-12-14 2024-06-25 Ford Global Technologies, Llc Heat pump for a vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323674A (ja) * 1993-05-11 1994-11-25 Hitachi Ltd 空気調和機
JPH07232547A (ja) * 1994-02-25 1995-09-05 Sanden Corp 車両用空気調和装置
JP2000052757A (ja) * 1998-08-05 2000-02-22 Calsonic Corp 自動車用冷暖房装置
JP2000097521A (ja) * 1998-09-24 2000-04-04 Tgk Co Ltd 膨張弁
JP2002079821A (ja) * 2000-07-06 2002-03-19 Denso Corp 車両用冷凍サイクル装置
JP2011143796A (ja) * 2010-01-13 2011-07-28 Honda Motor Co Ltd 車両用空調システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598887A (en) 1993-10-14 1997-02-04 Sanden Corporation Air conditioner for vehicles
JP3952545B2 (ja) * 1997-07-24 2007-08-01 株式会社デンソー 車両用空調装置
EP1072453B1 (en) * 1999-07-26 2006-11-15 Denso Corporation Refrigeration-cycle device
JP4273613B2 (ja) * 2000-03-06 2009-06-03 株式会社デンソー 空調装置
JP2001324237A (ja) 2000-05-12 2001-11-22 Denso Corp 冷凍サイクル装置
JP3928471B2 (ja) * 2002-04-26 2007-06-13 株式会社デンソー 車両用空調装置
JP4803199B2 (ja) * 2008-03-27 2011-10-26 株式会社デンソー 冷凍サイクル装置
US20110016784A1 (en) * 2009-07-24 2011-01-27 Taber Steve M Modular Wall Planters
WO2011087001A1 (ja) * 2010-01-12 2011-07-21 本田技研工業株式会社 車両用空調システム
JP5488185B2 (ja) * 2010-05-10 2014-05-14 株式会社デンソー 車両用空調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323674A (ja) * 1993-05-11 1994-11-25 Hitachi Ltd 空気調和機
JPH07232547A (ja) * 1994-02-25 1995-09-05 Sanden Corp 車両用空気調和装置
JP2000052757A (ja) * 1998-08-05 2000-02-22 Calsonic Corp 自動車用冷暖房装置
JP2000097521A (ja) * 1998-09-24 2000-04-04 Tgk Co Ltd 膨張弁
JP2002079821A (ja) * 2000-07-06 2002-03-19 Denso Corp 車両用冷凍サイクル装置
JP2011143796A (ja) * 2010-01-13 2011-07-28 Honda Motor Co Ltd 車両用空調システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128916A (ja) * 2014-01-06 2015-07-16 株式会社デンソー 冷凍サイクル装置
CN104949385A (zh) * 2014-03-31 2015-09-30 汉拿伟世通空调有限公司 车用热泵***
CN104949385B (zh) * 2014-03-31 2017-08-25 翰昂汽车零部件有限公司 车用热泵***

Also Published As

Publication number Publication date
US20140373562A1 (en) 2014-12-25
US9809081B2 (en) 2017-11-07
JP2013121763A (ja) 2013-06-20
JP5944154B2 (ja) 2016-07-05
US20170151857A1 (en) 2017-06-01
DE112012005123T5 (de) 2014-11-27

Similar Documents

Publication Publication Date Title
JP5944154B2 (ja) 車両用空気調和装置
JP6088753B2 (ja) 車両用空気調和装置
KR101443645B1 (ko) 전기자동차용 공기조화장치
JP6015636B2 (ja) ヒートポンプシステム
JP5005122B2 (ja) 車両用空調装置
JP5984842B2 (ja) 車両用空気調和装置
JP5750797B2 (ja) 車両用空気調和装置
WO2012118198A1 (ja) 車両用空気調和装置
WO2012108240A1 (ja) 車両用空気調和装置
JPWO2017217099A1 (ja) 冷凍サイクル装置
JP6683076B2 (ja) 冷凍サイクル装置
JP5713316B2 (ja) 車両用空気調和装置
CN107531132B (zh) 车辆用防雾装置
WO2013121844A1 (ja) 車両用空気調和装置
WO2013121843A1 (ja) 車両用空気調和装置
JP5510374B2 (ja) 熱交換システム
CN111033148A (zh) 制冷循环装置
JP5935714B2 (ja) 冷凍サイクル装置
US20210260955A1 (en) Heat pump system
JP6375796B2 (ja) 冷凍サイクル装置
JP5851697B2 (ja) 車両用空気調和装置
JP5984544B2 (ja) 車両用空気調和装置
JP6073587B2 (ja) 車両用空気調和装置
JP2021138209A (ja) 熱管理システム
JP6073588B2 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005123

Country of ref document: DE

Ref document number: 1120120051238

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854599

Country of ref document: EP

Kind code of ref document: A1