WO2013084430A1 - Broadcast system, transmitter and receiver for use in same, broadcast method and broadcast program, reception playback method and reception playback program, and communication method - Google Patents

Broadcast system, transmitter and receiver for use in same, broadcast method and broadcast program, reception playback method and reception playback program, and communication method Download PDF

Info

Publication number
WO2013084430A1
WO2013084430A1 PCT/JP2012/007468 JP2012007468W WO2013084430A1 WO 2013084430 A1 WO2013084430 A1 WO 2013084430A1 JP 2012007468 W JP2012007468 W JP 2012007468W WO 2013084430 A1 WO2013084430 A1 WO 2013084430A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
unit
data
transmission signal
main
Prior art date
Application number
PCT/JP2012/007468
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 靖久
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013084430A1 publication Critical patent/WO2013084430A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/16Arrangements for broadcast or for distribution of identical information repeatedly
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/28Arrangements for simultaneous broadcast of plural pieces of information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/59Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for emergency or urgency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/09Arrangements for device control with a direct linkage to broadcast information or to broadcast space-time; Arrangements for control of broadcast-related services
    • H04H60/11Arrangements for counter-measures when a portion of broadcast information is unavailable
    • H04H60/12Arrangements for counter-measures when a portion of broadcast information is unavailable wherein another information is substituted for the portion of broadcast information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/23608Remultiplexing multiplex streams, e.g. involving modifying time stamps or remapping the packet identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation

Definitions

  • the present invention relates to a broadcasting system to which digital terrestrial broadcasting is applied, a transmitter and a receiver used therefor, a broadcasting method and a broadcasting program, a receiving and reproducing method, a receiving and reproducing program, and a communication method.
  • ISDB-T Integrated Services Digital Emergency broadcasting such as disaster information
  • ISOB-T Integrated Services Digital Emergency broadcasting
  • Area One Seg For example, install transmitters that capture and transmit images at disaster sites, deploy receivers to police, fire, and emergency vehicles so that the images of disaster sites can be checked on those vehicles as needed. Is considered.
  • multimedia broadcasting for mobile terminals and Area One Seg it is assumed that the receiver moves and the reception state temporarily deteriorates, so that it is a problem that video can be stably reproduced by the receiver.
  • multimedia broadcasting for mobile terminals and Area One Seg are applied as emergency broadcasting, it is required that there is little video delay due to the urgency.
  • Patent Document 1 discloses a technique for stabilizing broadcast video.
  • the transmitter multiplexes and transmits video data (main packet) and video data (delay packet) obtained by delaying the video data (main packet) by a time interleave length or more.
  • the main packet is lost due to the deterioration of the reception state, the video is reproduced using the delay packet.
  • Patent Document 1 since the video is played back by the main packet at all times after receiving the delayed packet, or by the delayed packet when the main packet has not been received, Playback will be delayed. In other words, Patent Document 1 does not devise for reproducing video with low delay. Further, Patent Document 1 does not devise a technique for improving the error correction capability itself that prevents the loss of the main packet.
  • the present invention has been made to solve the above-described conventional problems, and an object thereof is to provide a broadcasting system capable of stabilizing an image by improving error correction capability. Another object of the present invention is to provide a broadcasting system capable of reducing video delay. It is another object of the present invention to provide a broadcasting system that can reduce image disturbance.
  • the present invention can provide a broadcast system that can improve the error correction capability by improving the likelihood when determining the route of the data of the main packet, thereby stabilizing the video.
  • the figure explaining the multiplexing in TS remultiplex part of this Embodiment The figure which shows the whole structure of the broadcast system of this Embodiment. The figure which shows the structure of the signal conversion part of the transmitter of this Embodiment. The figure which shows the byte interleaving in the hierarchical parallel processing part of this Embodiment. The figure which shows the structure of TS obtained by performing the byte interleaving of this Embodiment Trellis diagram in Viterbi decoding in decoding section of this embodiment The figure explaining the reproduction
  • a broadcasting system is a broadcasting system that includes a transmitter and a receiver, and performs data transmission in the ISDB-T system from the transmitter to the receiver.
  • the transmitter includes one or more transports.
  • a TS remultiplexing unit that multiplexes the stream into a transport stream including a main packet and a delayed packet obtained by delaying the main packet, and a byte interleaving with respect to the transport stream multiplexed by the TS remultiplexing unit.
  • the receiver includes a processing unit that performs processing including convolutional coding and generates an OFDM transmission signal, and a transmission unit that transmits the OFDM transmission signal. The receiver receives the OFDM transmission signal, and the reception unit receives the OFDM transmission signal.
  • a decoding unit that performs Viterbi decoding on the OFDM transmission signal, and a reproduction unit that reproduces data decoded by the decoding unit There.
  • the TS remultiplexing unit arranges the main packet and the delayed packet alternately in the same repetition unit, and the positional relationship between each main packet and each corresponding delayed packet is a fixed relationship.
  • the decoding unit determines the data of the delayed packet corresponding to the main packet based on the data of the previously decoded main packet, and then the data of the main packet adjacent to the determined delayed packet data Find the route.
  • the TS remultiplexing unit of the transmitter alternates the main packet and the delayed packet in the same repetition unit, and the positional relationship between each main packet and each corresponding delayed packet becomes a fixed relationship.
  • the transport unit multiplexes the transport streams, and the processing unit performs byte interleaving and convolutional coding of the ISDB-T transmission scheme for such transport streams.
  • the data of the delayed packet can be determined by referring to the data of the corresponding main packet that has been previously decoded, and thereby the main packet adjacent to the data of the delayed packet thus determined. Can improve the likelihood of finding the path of the data, and improve the error correction capability. That.
  • the reproducing unit may reproduce the decoded main packet without waiting for the delayed packet corresponding to the decoded main packet after the decoding unit decodes the main packet.
  • a reception unit when a reception unit receives a delayed packet corresponding to a main packet included in an OFDM transmission signal that could not be received when the reception unit could not receive a part of the OFDM transmission signal.
  • the decoding unit may obtain a route for the delayed packet by Viterbi decoding, and the reproducing unit may reproduce the data of the decoded delayed packet.
  • the decoding unit when the decoding unit also decodes the delayed packet because the receiving unit could not receive a part of the OFDM transmission signal, the reproducing unit until the reproduction catches up with the reception of the main packet, Fast forward playback may be performed.
  • the TS remultiplexing unit may alternately arrange the main packet and the delayed packet for each packet.
  • the processing unit performs byte interleaving, the main packet data and the delayed packet data are alternately arranged for each byte in the OFDM transmission signal.
  • the Viterbi decoding of the data is performed, the number of places where the data of the adjacent delayed packets can be used increases, so that the likelihood becomes higher and the error correction capability is further improved.
  • the above broadcasting system may perform multimedia broadcasting for mobile terminals or Area One Seg broadcasting.
  • the transmitter includes a receiving unit that receives an OFDM transmission signal, and a delayed packet corresponding to the main packet based on the data of the main packet that has been previously decoded with respect to the OFDM transmission signal received by the receiving unit
  • a decoding unit that performs Viterbi decoding for obtaining a route of the main packet data adjacent to the determined delayed packet data, and a reproduction unit that reproduces the data decoded by the decoding unit.
  • the TS remultiplexing unit that multiplexes the transport stream arranged in this way, and the transport stream multiplexed by the TS remultiplexing unit, performs processing including byte interleaving and convolutional coding to generate an OFDM transmission signal It has a configuration including a processing unit and a transmission unit that transmits an OFDM transmission signal.
  • the error correction capability can be improved on the receiver side, so that a transmitter capable of stabilizing the video can be realized.
  • one or a plurality of transport streams, a main packet and a delay packet obtained by delaying the main packet are alternately repeated in the same repeating unit, and each main packet and each delay corresponding thereto.
  • TS remultiplexing unit that multiplexes the transport stream arranged so that the positional relationship with the packet is a constant relationship, and byte interleaving and convolutional coding for the transport stream multiplexed by the TS remultiplexing unit
  • Receiver that receives and reproduces an OFDM transmission signal transmitted by the ISDB-T method from a transmitter including a processing unit that generates an OFDM transmission signal and a transmission unit that transmits the OFDM transmission signal Viterbi decoding is performed on the receiving unit that receives the OFDM transmission signal and the OFDM transmission signal received by the receiving unit.
  • It has a configuration including a decoding unit and a playback unit that reproduces data decoded by the decoding unit, and the decoding unit corresponds to the main packet by the data of the main packet that has been previously decoded in Viterbi decoding. After determining the data of the delayed packet to be determined, the route of the data of the main packet adjacent to the determined delayed packet data is obtained.
  • the error correction capability can be improved on the receiver side, so that a receiver capable of stabilizing the video can be realized.
  • the broadcast method includes a receiving unit that receives an OFDM transmission signal, and a delayed packet corresponding to the main packet by the data of the main packet that has been decoded previously with respect to the OFDM transmission signal received by the receiving unit
  • a decoding unit that performs Viterbi decoding for obtaining a route of the main packet data adjacent to the determined delayed packet data, and a reproduction unit that reproduces the data decoded by the decoding unit.
  • the TS remultiplexing step that multiplexes the transport stream arranged in such a manner, and the transport stream that is multiplexed in the TS remultiplexing step is subjected to processing including byte interleaving and convolutional coding, and the OFDM transmission signal is It has a configuration including a processing step of generating and a transmitting step of transmitting an OFDM transmission signal.
  • the error correction capability can be improved on the receiver side, so that a broadcasting method capable of stabilizing the video can be realized.
  • the broadcast program according to the embodiment is executed by a transmitter to cause the transmitter to execute the above-described broadcasting method.
  • the error correction capability can be improved on the receiver side, so that a broadcast program that can stabilize the video can be realized.
  • the reception / reproduction method of the embodiment includes one or a plurality of transport streams, in which main packets and delayed packets obtained by delaying the main packets are alternately repeated in the same repetition unit, and each main packet and each of the corresponding ones.
  • the TS remultiplexing unit that multiplexes the transport stream arranged so that the positional relationship with the delayed packet is a fixed relationship, and the byte interleave and the convolutional code for the transport stream multiplexed by the TS remultiplexing unit Reception that receives and reproduces an OFDM transmission signal transmitted by the ISDB-T method from a transmitter including a processing unit that generates an OFDM transmission signal and a transmission unit that transmits the OFDM transmission signal.
  • a reproduction method comprising: a reception step for receiving an OFDM transmission signal; and an OFDM transmission signal received at the reception step. And a decoding step for performing Viterbi decoding, and a reproduction step for reproducing the data decoded in the decoding step.
  • the decoding step includes data of a main packet previously decoded in Viterbi decoding. Then, after determining the data of the delayed packet corresponding to the main packet, the route of the data of the main packet adjacent to the determined delayed packet data is obtained.
  • the error correction capability can be improved on the receiver side, so that a reception and reproduction method capable of stabilizing the video can be realized.
  • the reception / reproduction program according to the embodiment is executed by the receiver to cause the receiver to execute the reception / reproduction method described above.
  • the error correction capability can be improved on the receiver side, so that a reception / reproduction program capable of stabilizing the video can be realized.
  • the communication method is a communication method for performing data transmission in the ISDB-T system from a transmitter to a receiver, in which one or a plurality of transport streams are delayed by a main packet and a main packet.
  • a TS re-multiplexing step for multiplexing the transport stream including the delayed packet, and a process including byte interleaving and convolutional coding for the transport stream multiplexed in the TS re-multiplexing step,
  • a generating step a transmitting step for transmitting an OFDM transmission signal, a receiving step for receiving an OFDM transmission signal, a decoding step for performing Viterbi decoding on the OFDM transmission signal received in the receiving step, and a decoding step And a playback step for playing back the decoded data, and TS
  • the main packet and the delayed packet are alternately arranged in the same repeating unit, and the positional relationship between each main packet and each corresponding delayed packet is a fixed relationship.
  • decoding after determining the data of the delayed packet
  • the error correction capability can be improved on the receiver side, so that a communication method capable of stabilizing the video can be realized.
  • FIG. 2 is a diagram showing an overall configuration of the broadcasting system of the present embodiment.
  • the broadcast system 100 includes a transmitter 200 and a plurality of receivers 300.
  • the transmitter 200 and the receiver 300 communicate wirelessly.
  • the transmitter 200 can be installed at an arbitrary place, and the receiver 300 can move while receiving a transmission wave from the transmitter 200.
  • the broadcasting system 100 is used as an emergency broadcasting system at the time of a disaster
  • the transmitter 200 is disposed at a disaster site
  • the receiver 300 is disposed in a vehicle such as a police, a fire department, or an emergency.
  • the data transmission method from the transmitter 200 to the receiver 300 is the ISDB-T method compliant with the digital terrestrial television broadcasting transmission method standard (ARIB STD-B31). Therefore, in the following, the technical contents defined in this standard will be briefly described or omitted.
  • the transmitter 200 includes an input unit 201, a signal conversion unit 202, and a transmission unit 203.
  • the input unit 201 inputs a video signal, an audio signal, and a data signal to the signal conversion unit 202.
  • the input unit 201 generates a video signal by shooting and generates an audio signal by recording.
  • the input unit 201 includes an operation unit, and generates a data signal based on a user operation on the operation unit.
  • the input unit 201 may acquire part or all of the video signal, the audio signal, and the data signal from the outside of the transmitter 200.
  • Video signal, audio signal, and data signal are input from the input unit 201 to the signal conversion unit 202.
  • the signal conversion unit 202 transmits an input video signal, audio signal, and data signal from the transmission unit 203 to the receiver 300 as an OFDM (Orthogonal Frequency Division Multiplexing) transmission signal (hereinafter also referred to as “OFDM transmission wave”).
  • OFDM transmission wave Orthogonal Frequency Division Multiplexing
  • the transmission unit 203 wirelessly transmits (broadcasts) the OFDM transmission signal generated by the signal conversion unit 202.
  • the receiver 300 includes a receiving unit 301, a decoding unit 302, and a reproducing unit 303.
  • the receiver 301 receives the OFDM transmission wave transmitted by the transmitter 203 of the transmitter 200.
  • Decoding section 302 decodes the OFDM transmission signal received by receiving section 301.
  • the reproduction unit 303 reproduces the video signal, the audio signal, and the data signal obtained by the decoding in the decoding unit 302.
  • the playback unit 303 includes a display and a speaker. The video signal and the data signal are displayed on the display, and the audio signal is output from the speaker.
  • the decoded data signal may be used for control of the reproduction unit 303.
  • FIG. 3 is a diagram illustrating a configuration of the signal conversion unit 202 of the transmitter 200 according to the present embodiment.
  • the signal conversion unit 202 includes an information source encoding unit 21, an MPEG-2 multiplexing unit 22, and a transmission path encoding unit 23.
  • the information source encoding unit 21 includes a video encoding unit 211 that inputs and encodes a video signal, an audio encoding unit 212 that inputs and encodes an audio signal, and data that is encoded by inputting a data signal And an encoding unit 213.
  • Video encoded data encoded by the video encoding unit 211, audio encoded data encoded by the audio encoding unit 212, and data encoded data encoded by the data encoding unit 213 are MPEG-2 Input to the multiplexing unit 22.
  • the MPEG-2 multiplexing unit 22 multiplexes the video encoded data, the audio encoded data, and the data encoded data, and forms a transport stream (Transport Stream: hereinafter referred to as “TS”) defined by MPEG2 Systems. Output.
  • Transport Stream hereinafter referred to as “TS”
  • the transmission path encoding unit 23 receives one or a plurality of TSs, performs re-multiplexing, performs a plurality of transmission path encodings as one TS according to the service intention, and outputs the result as an OFDM transmission wave .
  • the transmission path encoding unit 23 includes a TS remultiplexing unit 231, a hierarchical parallel processing unit 232, and an IFFT (InverseFFast Fourier Transform) unit 233.
  • the TS remultiplexing unit 231 receives one or a plurality of TSs from the MPEG-2 multiplexing unit 22 and performs remultiplexing.
  • the TS re-multiplexing unit 231 converts a plurality of TSs input from the MPEG-2 multiplexing unit 22 into a burst signal format of 188 bytes using a clock four times the IFFT sample clock, and adds an outer code. Convert to a single TS.
  • the hierarchical parallel processing unit 232 divides the TS input from the TS remultiplexing unit 231 into layers according to the designation of the hierarchical information, and performs processing for each layer.
  • the layer parallel processing unit 232 performs processing including error correction coding, byte interleaving, convolutional coding, and carrier modulation for each layer.
  • the hierarchical parallel processing unit 232 synthesizes the signals that have undergone the above processing for each hierarchy.
  • the hierarchical parallel processing unit 232 performs time interleaving and frequency interleaving processing on the synthesized signal in order to effectively exhibit error correction coding capability against electric field fluctuation and multipath interference in mobile reception. .
  • the hierarchical parallel processing unit 232 adds the synchronous pilot signal, the TMCC (Transmission and Multiplexing Configuration Control) signal, and the AC (Auxiliary Channel) signal to the interleaved signal, and configures and outputs an OFDM frame.
  • TMCC Transmission and Multiplexing Configuration Control
  • AC Advanced Channel
  • the IFFT unit 233 performs an IFFT operation on the OFDM frame generated by the hierarchical parallel processing unit 232, generates an OFDM transmission signal, and outputs the OFDM transmission signal to the transmission unit 203.
  • the combined configuration of the hierarchical parallel processing unit 232 and the IFFT unit 233 corresponds to the processing unit of the present invention.
  • FIG. 1 is a diagram for explaining multiplexing in the TS re-multiplexing unit 231.
  • the TS re-multiplexing unit 231 re-multiplexes TS using a multiplex frame composed of eight transport stream packets (Transport Packet: hereinafter referred to as “TSP”) of the same layer as a basic unit. To do.
  • TSP Transport Packet
  • the TS remultiplexing unit 231 inserts a delayed TSP (delayed packet) between TSPs (main packets) when remultiplexing the TS.
  • the TS remultiplexing unit 231 arranges the main packet and the delayed packet so that the main packet and the delayed packet are located at the same position in the multiplexed frame. That is, in each multiplexed frame, the position where the main packet is arranged and the position where the delayed packet is arranged are fixed.
  • the odd-numbered packet is a delayed packet and the even-numbered packet is a main packet.
  • the position of the main packet is the same and the position of the delayed packet is the same for the frames before the nth and after the (n + 2) th.
  • the position of the delayed packet corresponding to each main packet is fixed.
  • the position of the delayed packet corresponding to the main packet can be specified.
  • the position of the main packet corresponding to the delayed packet can be specified.
  • the delay packet corresponding to the main packet in each frame is arranged at the position immediately before the next frame. In this way, by fixing the positional relationship between the main packet and the delayed packet, for example, the first packet of the (n + 1) th frame in FIG. 1 is a delayed packet with respect to the second packet of the previous nth frame. Identified as being.
  • the TS remultiplexing unit 231 alternately arranges the main packet and the delayed packet in the same repeating unit.
  • main packets and delayed packets are alternately arranged by 1 TSP.
  • the TS remultiplexing unit 231 may alternately arrange the main packet and the delayed packet by 2 TSP.
  • FIG. 4 is a diagram showing byte interleaving in the hierarchical parallel processing unit 232.
  • the packet length of TSP subjected to byte interleaving processing is 204 (12 ⁇ 17) bytes, and the interleaving length I of 64QAM is 12.
  • the data of the first byte is arranged 204 (12 ⁇ 17 ⁇ 1) bytes ahead of each of the 12 bytes, excluding the synchronization pilot signal, and the data of the second byte is 408 (12
  • the data of the third byte is arranged 612 (12 ⁇ 17 ⁇ 3) bytes ahead, and the data is interleaved in units of bytes in the same manner.
  • FIG. 5 is a diagram showing the configuration of a bit string obtained by performing byte interleaving as described above. As shown in FIG. 5, in the bit string after byte interleaving, the data of the main packet and the data of the delayed packet are alternately arranged for each byte.
  • the position of the main packet and the position of the delayed packet are known, and the positions of the main packet and the delayed packet corresponding to each other. Since the relationship is already known, in the bit string of FIG. 5 obtained by performing the byte interleaving process shown in FIG. 4 on such a TS, for each byte, whether it is delayed packet data or main packet data. Is known, and if it is data of a delayed packet, it is also known where the data of the corresponding main packet is.
  • the TS remultiplexing unit 231 alternately arranges the main packet and the delayed packet every two, in the TS after byte interleaving, the data of the main packet and the data of the delayed packet are every two bytes. They will be lined up alternately.
  • the decoding unit 302 of the receiver 300 performs FFT (Fast Fourier Transform), frequency deinterleaving, and time deinterleaving on the received OFDM transmission signal, and then convolves with the hierarchical parallel processing unit 232. Viterbi decoding is performed on the encoded TS.
  • FFT Fast Fourier Transform
  • frequency deinterleaving frequency deinterleaving
  • time deinterleaving time deinterleaving
  • FIG. 6 is an example of a trellis diagram in Viterbi decoding at the decoding unit 302.
  • the decoding unit 302 uses the fact that the same value as the received main packet is received as a delayed packet at a known position to narrow down the maximum likelihood path in the path metric calculation. Specifically, the decoding unit 302 has already received data having the same content as the delayed packet data in the decoding target bit string as the main packet data corresponding to the delayed packet, and the corresponding main packet data. Since the position of is known, the data of the delayed packet can be known by referring to the data of the known position.
  • the decoding unit 302 determines the value of the delayed packet data based on the data of the corresponding main packet that has been previously decoded.
  • the decoding unit 302 determines the value of the delayed packet data based on the data of the corresponding main packet that has been previously decoded.
  • the decoding unit 302 narrows down the possible values of the main packet data before and after the delayed packet data by making the data of the delayed packet before and after the known data. Therefore, as the number of locations where the main packet and the delayed packet are adjacent to each other (the location indicated by the arrow in FIG. 5) increases, in other words, the data of the delayed packet, which is known data, becomes larger The more distributed, the greater the effect of improving the likelihood of path metric calculation using delay packet data that is known data.
  • the TS remultiplexing unit 231 multiplexes so that the main packet and the delayed packet are alternately arranged every 1 TSP. Therefore, by byte interleaving in the hierarchical parallel processing unit 232, The data of the main packet and the data of the delayed packet are alternately arranged for each byte. Therefore, according to the present embodiment, it is possible to sufficiently improve the likelihood of path metric calculation using delay packet data that is known data.
  • the decoding unit 302 determines the data value of the delayed packet with reference to the data of the corresponding main packet that has been decoded previously, but when the data of the main packet cannot be received.
  • the delay packet data corresponding thereto is also decoded by performing path metric calculation. As a result, even if the main packet is not received by the receiver 300, if the delay packet corresponding to the main packet is received, the data of the part can be obtained.
  • the reproduction unit 303 reproduces the video signal, the audio signal, and the data signal obtained by the decoding in the decoding unit 302. At this time, when the decoding unit 302 can decode the main packet, the reproducing unit 303 reproduces the data of the main packet without waiting for the delayed packet corresponding to the main packet. Thereby, the delay of reproduction
  • FIG. 7 is a diagram for explaining a reproduction method when a part of the OFDM transmission signal transmitted from the transmitter 200 to the receiver 300 is lost.
  • FIG. 7 shows a case where one frame is delayed.
  • the receiver 300 can receive the nth OFDM transmission signal, the reception state of the receiver 300 cannot be received for the (n + 1) th OFDM frame, and the reception state is received for the (n + 2) th OFDM frame. Shows a case where the message can be recovered and received.
  • the missing (n + 1) th OFDM frame includes packet # 4, packet # 5, and packet # 6 as main packets. Therefore, the receiver 300 cannot receive the main packets of the packet # 4, the packet # 5, and the packet # 6, and the packet # 1, the packet # 2, and the packet # 3 in which the main packet is included in the nth OFDM frame.
  • the reproduction of the packet # 4, the packet # 4, the packet # 5, and the packet # 6 cannot be reproduced. Therefore, the reproduction is interrupted when the reproduction of packet # 1, packet # 2, and packet # 3 is completed.
  • packet # 4, packet # 5, and packet # 6 Since the data of packet # 4, packet # 5, and packet # 6 is included as a delay packet in the (n + 2) th OFDM frame, the decoding unit 302 decodes this delay packet. At this time, packet # 7, packet # 8, and packet # 9 are also included as main packets in the (n + 2) th OFDM frame. That is, at the time when the n + 2th OFDM frame is decoded, as the packet to be reproduced, the past reproduction content obtained by decoding the delay packet and the content to be currently reproduced obtained by decoding the main packet are: Obtained as content to be reproduced.
  • the reproducing unit 303 reproduces these contents to be reproduced as usual, a delay occurs.
  • a packet in which the main packet is lost can be decoded by the delayed packet, it is also inefficient to discard the decoded data.
  • the decoding unit 302 includes the delayed packet for the data string received after the recovery. Then, the decoding is performed by path metric calculation, and the reproducing unit 303 reproduces the data obtained by the decoding at a faster speed than usual (fast forward reproduction). In the example of FIG. 7, playback is performed at twice the speed.
  • the playback unit 303 When the playback content catches up with reception of the main packet by fast-forward playback, the playback unit 303 returns the playback speed to the normal speed.
  • the fast-forward playback speed may be set according to the delay time (number of delay frames) of the delayed packet with respect to the main packet, or may be automatically adjusted according to the number of missing OFDM frames.
  • the transmitter 200 performs remultiplexing of one or more TSs defined by MPEG-2 Systems by the TS remultiplexing unit 231.
  • a delay packet obtained by delaying the main packet is inserted between the main packets, and the delay packet corresponding to the main packet is arranged at a position having a predetermined relationship with respect to the position of the main packet.
  • the data of the main packet and the data of the delayed packet are alternated for each byte. Therefore, when the OFDM transmission signal convolutionally encoded by the transmitter 200 is Viterbi-decoded by the receiver 300, for the delayed packet data, the previously decoded main packet data may be determined as known data. It is possible to narrow down the possible values of data when obtaining a route by path metric calculation for the data of the main packet adjacent to such a delayed packet. As a result, the accuracy of decoding the main packet data can be improved.
  • the reproduction unit 303 of the receiver 300 receives and decodes the main packet, the decoded main packet is reproduced without waiting for the delay packet corresponding to the main packet, so that the video delay can be reduced.
  • the decoding unit 302 decodes a delayed packet transmitted later, and the reproducing unit 303 reproduces it. Therefore, stable reproduction can be realized against the deterioration of the reception state. Moreover, after resuming after reception is interrupted, fast-forward playback is performed until playback catches up with reception of the main packet, so that it is possible to suppress image disturbance due to deterioration in reception status and to recover video delay early. it can.
  • the input unit 201, the information source encoding unit 21, and the MPEG-2 multiplexing unit 22 of the transmitter 200 are configured as a digital video camera, and the transmission path encoding unit 23 and the transmission unit 203 are digital.
  • You may comprise as a computer connected to a video camera.
  • the transmitter 200 may be configured as a bi-digital video camera that includes all of the input unit 201, the signal conversion unit 202, and the transmission unit 203.
  • the receiver 300 may be incorporated in a mobile phone or a car navigation device.
  • the broadcasting system of the present invention has an effect that video stabilization can be realized, a broadcasting system applying terrestrial digital broadcasting, a transmitter and a receiver used therefor, a broadcasting method and a program, and reception and reproduction. It is useful as a method and program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Error Detection And Correction (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

In a broadcast system (100) of the ISDB-T transmission standard, a transmitter (200) is provided with: a TS remultiplexer (231) for multiplexing a TS; a hierarchical parallel processor (232) for performing processes including byte interleaving and convolutional coding on the multiplexed TS, and generating an OFDM transmission signal; and a transmitting part (203) for transmitting the OFDM transmission signal, while a receiver (300) is provided with a receiving part (301) for receiving an OFDM transmission signal, and a decoder (302) for Viterbi decoding of the received OFDM transmission signal. The TS remultiplexer (231) arranges the core packets and delay packets alternately in identical repeating units, and in such a way that the positional relationship each core packet and the delay packet corresponding thereto is a fixed relationship. During Viterbi decoding, the decoder (302), having determined the data of the delay packet corresponding to a core packet from the data of the core packet in question decoded previously, ascertains the route of the data of the core packet adjacent to the determined data of the delay packet.

Description

放送システム、それに用いる送信機及び受信機、放送方法及び放送プログラム、受信再生方法及び受信再生プログラム、並びに通信方法Broadcast system, transmitter and receiver used therefor, broadcast method and broadcast program, reception / reproduction method, reception / reproduction program, and communication method 関連する出願Related applications
 本出願では、2011年12月8日に日本国に出願された特許出願番号2011-268506の利益を主張し、当該出願の内容は引用することによりここに組み込まれているものとする。 This application claims the benefit of patent application number 2011-268506 filed in Japan on December 8, 2011, the contents of which are incorporated herein by reference.
 本発明は、地上デジタル放送を応用した放送システム、それに用いる送信機及び受信機、放送方法及び放送プログラム、受信再生方法及び受信再生プログラム、並びに通信方法に関するものである。 The present invention relates to a broadcasting system to which digital terrestrial broadcasting is applied, a transmitter and a receiver used therefor, a broadcasting method and a broadcasting program, a receiving and reproducing method, a receiving and reproducing program, and a communication method.
 地上デジタル放送(ISDB-T:Integrated Services Digital
Broadcasting-Terrestrial)の技術を利用した携帯端末向けマルチメディア放送やエリアワンセグによって、災害情報などの緊急放送を行なうことが検討されている。例えば、災害現場に、映像を撮影して送信する送信機を設置し、警察、消防、救急の車両に受信機を配備して、災害現場の映像を随時それらの車両で確認できるようにすることが考えられている。
Terrestrial digital broadcasting (ISDB-T: Integrated Services Digital
Emergency broadcasting such as disaster information is being considered by multimedia broadcasting for mobile terminals using the Broadcasting-Terrestrial technology and Area One Seg. For example, install transmitters that capture and transmit images at disaster sites, deploy receivers to police, fire, and emergency vehicles so that the images of disaster sites can be checked on those vehicles as needed. Is considered.
 携帯端末向けマルチメディア放送やエリアワンセグでは、受信機が移動し、受信状態が一時的に劣化することも想定されるため、受信機にて映像を安定して再生できることが課題となる。また、携帯端末向けマルチメディア放送やエリアワンセグを緊急放送として応用する場合には、その緊急性ゆえに映像の遅延が少ないことが求められる。 In multimedia broadcasting for mobile terminals and Area One Seg, it is assumed that the receiver moves and the reception state temporarily deteriorates, so that it is a problem that video can be stably reproduced by the receiver. In addition, when multimedia broadcasting for mobile terminals and Area One Seg are applied as emergency broadcasting, it is required that there is little video delay due to the urgency.
 映像の遅延を少なくするために、伝送される映像データの搬送波を変調する際の時間インターリーブを浅くすることが考えられる。しかしながら、時間インターリーブを浅くすることで、低遅延とはなるが、その分、フェージングによる一時的な受信状態の劣化によってパケットが欠落し易くなる。その結果、特に受信機が移動する場合には、映像が乱れ易くなる。 In order to reduce the video delay, it is conceivable to reduce the time interleaving when modulating the carrier wave of the video data to be transmitted. However, by reducing the time interleaving, the delay is reduced, but packets are likely to be dropped due to temporary deterioration of the reception state due to fading. As a result, the video is likely to be disturbed, especially when the receiver moves.
 特許文献1では、放送の映像を安定化する技術が開示されている。そこでは、移動体で数秒間の受信状態の劣化が発生するケースが想定されている。送信機は、映像データ(主パケット)と、それを時間インターリーブ長以上遅延させた映像データ(遅延パケット)とを多重化して送信する。受信機では、受信状態の劣化により主パケットが欠落した場合には、遅延パケットを利用して映像を再生する。この構成により、時間インターリーブ長以上の受信状態の劣化が発生しても、パケットを遅延させた時間内であれば、映像の乱れを抑えることができる。 Patent Document 1 discloses a technique for stabilizing broadcast video. In this case, it is assumed that the mobile body is deteriorated in the reception state for several seconds. The transmitter multiplexes and transmits video data (main packet) and video data (delay packet) obtained by delaying the video data (main packet) by a time interleave length or more. In the receiver, when the main packet is lost due to the deterioration of the reception state, the video is reproduced using the delay packet. With this configuration, even if the reception state is deteriorated beyond the time interleave length, the disturbance of the video can be suppressed as long as the packet is delayed.
 しかしながら、特許文献1の技術によれば、受信側では、常に、遅延パケットを受信してから、主パケットによって、又は主パケットを受信していない場合は遅延パケットによって、映像を再生するので、映像の再生が遅れてしまう。即ち、特許文献1では、低遅延で映像を再生するための工夫はされていない。また、特許文献1では、主パケットの欠落を防ぐ誤り訂正能力自体を向上させるという工夫もされていない。 However, according to the technique of Patent Document 1, since the video is played back by the main packet at all times after receiving the delayed packet, or by the delayed packet when the main packet has not been received, Playback will be delayed. In other words, Patent Document 1 does not devise for reproducing video with low delay. Further, Patent Document 1 does not devise a technique for improving the error correction capability itself that prevents the loss of the main packet.
特開2004-140506号公報JP 2004-140506 A
 上記のとおり、従来の技術では、携帯端末向けマルチメディア放送やエリアワンセグにおいて、低遅延かつ映像の安定化を実現することは困難である。 As described above, with the conventional technology, it is difficult to achieve low delay and video stabilization in multimedia broadcasting for mobile terminals and area one segment.
 本発明は、上記従来の問題を解決するためになされたもので、誤り訂正能力を向上して映像を安定化できる放送システムを提供することをと目的とする。本発明は、また、映像の遅延を低減できる放送システムを提供することを目的とする。本発明は、さらに、映像の乱れを低減できる放送システムを提供することを目的とする。 The present invention has been made to solve the above-described conventional problems, and an object thereof is to provide a broadcasting system capable of stabilizing an image by improving error correction capability. Another object of the present invention is to provide a broadcasting system capable of reducing video delay. It is another object of the present invention to provide a broadcasting system that can reduce image disturbance.
 本発明は、主パケットのデータの経路を求める際の尤度を向上させて、誤り訂正能力を向上でき、それによって映像を安定化できる放送システムを提供することができるものである。 The present invention can provide a broadcast system that can improve the error correction capability by improving the likelihood when determining the route of the data of the main packet, thereby stabilizing the video.
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。 As described below, there are other aspects of the present invention. Accordingly, the disclosure of the present invention is intended to provide part of the invention and is not intended to limit the scope of the invention described and claimed herein.
本実施の形態のTS再多重部における多重化を説明する図The figure explaining the multiplexing in TS remultiplex part of this Embodiment 本実施の形態の放送システムの全体構成を示す図The figure which shows the whole structure of the broadcast system of this Embodiment. 本実施の形態の送信機の信号変換部の構成を示す図The figure which shows the structure of the signal conversion part of the transmitter of this Embodiment. 本実施の形態の階層並列処理部におけるバイトインターリーブを示す図The figure which shows the byte interleaving in the hierarchical parallel processing part of this Embodiment 本実施の形態のバイトインターリーブを行なって得られるTSの構成を示す図The figure which shows the structure of TS obtained by performing the byte interleaving of this Embodiment 本実施の形態の復号部でのビタビ復号におけるトレリス線図Trellis diagram in Viterbi decoding in decoding section of this embodiment 本実施の形態のOFDM送信信号の一部が欠落した場合の再生の方法を説明する図The figure explaining the reproduction | regeneration method when a part of OFDM transmission signal of this Embodiment is missing
 以下に、本発明の詳細な説明を述べる。以下に説明する実施の形態は本発明の単なる例であり、本発明は様々な態様に変形することができる。従って、以下に開示する特定の構成および機能は、特許請求の範囲を限定するものではない。 The detailed description of the present invention will be described below. The embodiments described below are merely examples of the present invention, and the present invention can be modified in various ways. Accordingly, the specific configurations and functions disclosed below do not limit the scope of the claims.
 実施の形態の放送システムは、送信機と受信機とを含み、送信機から受信機に対してISDB-T方式のデータ伝送を行う放送システムであって、送信機は、1又は複数のトランスポートストリームを、主パケットと、主パケットを遅延させた遅延パケットとを含むトランスポートストリームに多重化するTS再多重部と、TS再多重部で多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理部と、OFDM送信信号を送信する送信部とを備え、受信機は、OFDM送信信号を受信する受信部と、受信部にて受信したOFDM送信信号に対して、ビタビ復号を行なう復号部と、復号部にて復号されたデータを再生する再生部とを備えた構成を有している。TS再多重部は、主パケットと遅延パケットを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置する。復号部は、ビタビ復号において、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求める。 A broadcasting system according to an embodiment is a broadcasting system that includes a transmitter and a receiver, and performs data transmission in the ISDB-T system from the transmitter to the receiver. The transmitter includes one or more transports. A TS remultiplexing unit that multiplexes the stream into a transport stream including a main packet and a delayed packet obtained by delaying the main packet, and a byte interleaving with respect to the transport stream multiplexed by the TS remultiplexing unit. The receiver includes a processing unit that performs processing including convolutional coding and generates an OFDM transmission signal, and a transmission unit that transmits the OFDM transmission signal. The receiver receives the OFDM transmission signal, and the reception unit receives the OFDM transmission signal. A decoding unit that performs Viterbi decoding on the OFDM transmission signal, and a reproduction unit that reproduces data decoded by the decoding unit There. The TS remultiplexing unit arranges the main packet and the delayed packet alternately in the same repetition unit, and the positional relationship between each main packet and each corresponding delayed packet is a fixed relationship. In the Viterbi decoding, the decoding unit determines the data of the delayed packet corresponding to the main packet based on the data of the previously decoded main packet, and then the data of the main packet adjacent to the determined delayed packet data Find the route.
 この構成により、送信機のTS再多重部が、主パケットと遅延パケットを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置して、トランスポートストリームの多重化を行ない、そのようなトランスポートストリームに対して処理部がISDB-T伝送方式のバイトインターリーブ及び畳み込み符号化を行なうので、受信機の復号部では、ビタビ復号をする際に、遅延パケットのデータについては、先に復号されている対応する主パケットのデータを参照して確定でき、それによって、そのように確定された遅延パケットのデータに隣接する主パケットのデータの経路を求める際の尤度を向上させることができ、誤り訂正能力を向上できるので、映像を安定化できる。 With this configuration, the TS remultiplexing unit of the transmitter alternates the main packet and the delayed packet in the same repetition unit, and the positional relationship between each main packet and each corresponding delayed packet becomes a fixed relationship. The transport unit multiplexes the transport streams, and the processing unit performs byte interleaving and convolutional coding of the ISDB-T transmission scheme for such transport streams. At the time of decoding, the data of the delayed packet can be determined by referring to the data of the corresponding main packet that has been previously decoded, and thereby the main packet adjacent to the data of the delayed packet thus determined. Can improve the likelihood of finding the path of the data, and improve the error correction capability. That.
 上記の放送システムにおいて、再生部は、復号部が主パケットを復号した後、復号された主パケットに対応する遅延パケットを待たずに、復号された主パケットを再生してよい。 In the above broadcasting system, the reproducing unit may reproduce the decoded main packet without waiting for the delayed packet corresponding to the decoded main packet after the decoding unit decodes the main packet.
 この構成により、主パケットが受信できている間は、遅延パケットを待たずに再生がされるので、遅延パケットを受信した後に再生をする場合と比較して、映像の遅延を低減できる。 With this configuration, while the main packet can be received, playback is performed without waiting for the delayed packet, so that the video delay can be reduced as compared with the case where playback is performed after receiving the delayed packet.
 上記の放送システムにおいて、受信部にて一部のOFDM送信信号を受信できなかった場合において、当該受信できなかったOFDM送信信号に含まれる主パケットに対応する遅延パケットを受信部にて受信したときは、復号部は、当該遅延パケットについてもビタビ復号によって経路を求めてよく、再生部は、復号された遅延パケットのデータを再生してよい。 In the above broadcasting system, when a reception unit receives a delayed packet corresponding to a main packet included in an OFDM transmission signal that could not be received when the reception unit could not receive a part of the OFDM transmission signal. The decoding unit may obtain a route for the delayed packet by Viterbi decoding, and the reproducing unit may reproduce the data of the decoded delayed packet.
 この構成により、受信状態の劣化により主パケットが欠落した場合には、欠落した主パケットに対応する遅延パケットによって映像を再生できる。 With this configuration, when the main packet is lost due to the deterioration of the reception state, the video can be reproduced with the delayed packet corresponding to the lost main packet.
 上記の放送システムにおいて、受信部にて一部のOFDM送信信号を受信できなかったことにより、復号部が遅延パケットについても復号したときは、再生部は、再生が主パケットの受信に追いつくまで、早送り再生を行なってよい。 In the above broadcasting system, when the decoding unit also decodes the delayed packet because the receiving unit could not receive a part of the OFDM transmission signal, the reproducing unit until the reproduction catches up with the reception of the main packet, Fast forward playback may be performed.
 この構成により、受信状態が劣化して再生が一時中断した場合にも、再生再開後の映像の遅延及び映像の乱れを低減できる。 With this configuration, even when the reception state deteriorates and playback is temporarily interrupted, it is possible to reduce video delay and video disturbance after restarting playback.
 上記の放送システムにおいて、TS再多重部は、主パケットと遅延パケットを1パケットごとに交互に配置してよい。 In the above broadcasting system, the TS remultiplexing unit may alternately arrange the main packet and the delayed packet for each packet.
 この構成により、処理部がバイトインターリーブを行うことで、OFDM送信信号において、主パケットのデータと遅延パケットのデータとが1バイトごとに交互に配置されるので、受信機の復号部にて主パケットのデータのビタビ復号を行なう際に、隣接する確定した遅延パケットのデータを利用できる箇所が多くなるので、尤度がより高くなり、誤り訂正能力がより向上する。 With this configuration, since the processing unit performs byte interleaving, the main packet data and the delayed packet data are alternately arranged for each byte in the OFDM transmission signal. When the Viterbi decoding of the data is performed, the number of places where the data of the adjacent delayed packets can be used increases, so that the likelihood becomes higher and the error correction capability is further improved.
 上記の放送システムは、携帯端末向けマルチメディア放送又はエリアワンセグの放送を行なってよい。 The above broadcasting system may perform multimedia broadcasting for mobile terminals or Area One Seg broadcasting.
 この構成により、受信機が移動して受信状態が不安定になり得る環境であっても、安定して映像を再生できる。 With this configuration, even in an environment where the receiver may move and the reception state may become unstable, video can be reproduced stably.
 実施の形態の送信機は、OFDM送信信号を受信する受信部と、受信部にて受信したOFDM送信信号に対して、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求めるビタビ復号を行なう復号部と、復号部にて復号されたデータを再生する再生部とを備えた受信機に対してISDB-T方式のデータ伝送を行う送信機であって、1又は複数のトランスポートストリームを、主パケットと、主パケットを遅延させた遅延パケットとを含むとともに、主パケットと遅延パケットを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置したトランスポートストリームに多重化するTS再多重部と、TS再多重部で多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理部と、OFDM送信信号を送信する送信部とを備えた構成を有している。 The transmitter according to the embodiment includes a receiving unit that receives an OFDM transmission signal, and a delayed packet corresponding to the main packet based on the data of the main packet that has been previously decoded with respect to the OFDM transmission signal received by the receiving unit A decoding unit that performs Viterbi decoding for obtaining a route of the main packet data adjacent to the determined delayed packet data, and a reproduction unit that reproduces the data decoded by the decoding unit. A transmitter that performs ISDB-T data transmission to a receiver that includes the main packet, including one or a plurality of transport streams, a main packet, and a delayed packet obtained by delaying the main packet. And delayed packets alternately in the same repeating unit, and the positional relationship between each main packet and each corresponding delayed packet is a fixed relationship. The TS remultiplexing unit that multiplexes the transport stream arranged in this way, and the transport stream multiplexed by the TS remultiplexing unit, performs processing including byte interleaving and convolutional coding to generate an OFDM transmission signal It has a configuration including a processing unit and a transmission unit that transmits an OFDM transmission signal.
 この構成によっても、受信機側で誤り訂正能力を向上できるので、映像を安定化できる送信機を実現できる。 Even with this configuration, the error correction capability can be improved on the receiver side, so that a transmitter capable of stabilizing the video can be realized.
 実施の形態の受信機は、1又は複数のトランスポートストリームを、主パケットと、主パケットを遅延させた遅延パケットとを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置したトランスポートストリームに多重化するTS再多重部と、TS再多重部で多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理部と、OFDM送信信号を送信する送信部とを備えた送信機からISDB-T方式で伝送されたOFDM送信信号を受信して再生する受信機であって、OFDM送信信号を受信する受信部と、受信部にて受信したOFDM送信信号に対して、ビタビ復号を行なう復号部と、復号部にて復号されたデータを再生する再生部とを備えた構成を有し、復号部は、ビタビ復号において、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求める。 In the receiver of the embodiment, one or a plurality of transport streams, a main packet and a delay packet obtained by delaying the main packet, are alternately repeated in the same repeating unit, and each main packet and each delay corresponding thereto. TS remultiplexing unit that multiplexes the transport stream arranged so that the positional relationship with the packet is a constant relationship, and byte interleaving and convolutional coding for the transport stream multiplexed by the TS remultiplexing unit Receiver that receives and reproduces an OFDM transmission signal transmitted by the ISDB-T method from a transmitter including a processing unit that generates an OFDM transmission signal and a transmission unit that transmits the OFDM transmission signal Viterbi decoding is performed on the receiving unit that receives the OFDM transmission signal and the OFDM transmission signal received by the receiving unit. It has a configuration including a decoding unit and a playback unit that reproduces data decoded by the decoding unit, and the decoding unit corresponds to the main packet by the data of the main packet that has been previously decoded in Viterbi decoding. After determining the data of the delayed packet to be determined, the route of the data of the main packet adjacent to the determined delayed packet data is obtained.
 この構成によっても、受信機側で誤り訂正能力を向上できるので、映像を安定化できる受信機を実現できる。 Even with this configuration, the error correction capability can be improved on the receiver side, so that a receiver capable of stabilizing the video can be realized.
 実施の形態の放送方法は、OFDM送信信号を受信する受信部と、受信部にて受信したOFDM送信信号に対して、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求めるビタビ復号を行なう復号部と、復号部にて復号されたデータを再生する再生部とを備えた受信機に対してISDB-T方式のデータ伝送を行う放送方法であって、1又は複数のトランスポートストリームを、主パケットと、主パケットを遅延させた遅延パケットとを含むとともに、主パケットと遅延パケットを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置したトランスポートストリームに多重化するTS再多重ステップと、TS再多重ステップで多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理ステップと、OFDM送信信号を送信する送信ステップとを含む構成を有している。 The broadcast method according to the embodiment includes a receiving unit that receives an OFDM transmission signal, and a delayed packet corresponding to the main packet by the data of the main packet that has been decoded previously with respect to the OFDM transmission signal received by the receiving unit A decoding unit that performs Viterbi decoding for obtaining a route of the main packet data adjacent to the determined delayed packet data, and a reproduction unit that reproduces the data decoded by the decoding unit. A broadcasting method for performing ISDB-T data transmission to a receiver equipped with a main packet including one or a plurality of transport streams including a main packet and a delayed packet obtained by delaying the main packet. And delayed packets alternately in the same repeating unit, and the positional relationship between each main packet and each corresponding delayed packet is a constant relationship. The TS remultiplexing step that multiplexes the transport stream arranged in such a manner, and the transport stream that is multiplexed in the TS remultiplexing step is subjected to processing including byte interleaving and convolutional coding, and the OFDM transmission signal is It has a configuration including a processing step of generating and a transmitting step of transmitting an OFDM transmission signal.
 この構成によっても、受信機側で誤り訂正能力を向上できるので、映像を安定化できる放送方法を実現できる。 Even with this configuration, the error correction capability can be improved on the receiver side, so that a broadcasting method capable of stabilizing the video can be realized.
 実施の形態の放送プログラムは、送信機にて実行されることにより、該送信機に上記の放送方法を実行させる。 The broadcast program according to the embodiment is executed by a transmitter to cause the transmitter to execute the above-described broadcasting method.
 この構成によっても、受信機側で誤り訂正能力を向上できるので、映像を安定化できる放送プログラムを実現できる。 Also with this configuration, the error correction capability can be improved on the receiver side, so that a broadcast program that can stabilize the video can be realized.
 実施の形態の受信再生方法は、1又は複数のトランスポートストリームを、主パケットと、主パケットを遅延させた遅延パケットとを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置したトランスポートストリームに多重化するTS再多重部と、TS再多重部で多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理部と、OFDM送信信号を送信する送信部とを備えた送信機からISDB-T方式で伝送されたOFDM送信信号を受信して再生する受信再生方法であって、OFDM送信信号を受信する受信ステップと、受信ステップにて受信したOFDM送信信号に対して、ビタビ復号を行なう復号ステップと、復号ステップにて復号されたデータを再生する再生ステップとを含む構成を有し、復号ステップは、ビタビ復号において、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求める。 The reception / reproduction method of the embodiment includes one or a plurality of transport streams, in which main packets and delayed packets obtained by delaying the main packets are alternately repeated in the same repetition unit, and each main packet and each of the corresponding ones. The TS remultiplexing unit that multiplexes the transport stream arranged so that the positional relationship with the delayed packet is a fixed relationship, and the byte interleave and the convolutional code for the transport stream multiplexed by the TS remultiplexing unit Reception that receives and reproduces an OFDM transmission signal transmitted by the ISDB-T method from a transmitter including a processing unit that generates an OFDM transmission signal and a transmission unit that transmits the OFDM transmission signal. A reproduction method comprising: a reception step for receiving an OFDM transmission signal; and an OFDM transmission signal received at the reception step. And a decoding step for performing Viterbi decoding, and a reproduction step for reproducing the data decoded in the decoding step. The decoding step includes data of a main packet previously decoded in Viterbi decoding. Then, after determining the data of the delayed packet corresponding to the main packet, the route of the data of the main packet adjacent to the determined delayed packet data is obtained.
 この構成によっても、受信機側で誤り訂正能力を向上できるので、映像を安定化できる受信再生方法を実現できる。 Even with this configuration, the error correction capability can be improved on the receiver side, so that a reception and reproduction method capable of stabilizing the video can be realized.
 実施の形態の受信再生プログラムは、受信機にて実行されることにより、該受信機に上記の受信再生方法を実行させる。 The reception / reproduction program according to the embodiment is executed by the receiver to cause the receiver to execute the reception / reproduction method described above.
 この構成によっても、受信機側で誤り訂正能力を向上できるので、映像を安定化できる受信再生プログラムを実現できる。 Even with this configuration, the error correction capability can be improved on the receiver side, so that a reception / reproduction program capable of stabilizing the video can be realized.
 実施の形態の通信方法は、送信機から受信機に対してISDB-T方式のデータ伝送を行う通信方法であって、1又は複数のトランスポートストリームを、主パケットと、主パケットを遅延させた遅延パケットとを含むトランスポートストリームに多重化するTS再多重ステップと、TS再多重ステップで多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理ステップと、OFDM送信信号を送信する送信ステップと、OFDM送信信号を受信する受信ステップと、受信ステップにて受信したOFDM送信信号に対して、ビタビ復号を行なう復号ステップと、復号ステップにて復号されたデータを再生する再生ステップとを含む構成を有し、TS再多重ステップは、主パケットと遅延パケットを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置し、復号ステップは、ビタビ復号において、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求める。 The communication method according to the embodiment is a communication method for performing data transmission in the ISDB-T system from a transmitter to a receiver, in which one or a plurality of transport streams are delayed by a main packet and a main packet. A TS re-multiplexing step for multiplexing the transport stream including the delayed packet, and a process including byte interleaving and convolutional coding for the transport stream multiplexed in the TS re-multiplexing step, A generating step, a transmitting step for transmitting an OFDM transmission signal, a receiving step for receiving an OFDM transmission signal, a decoding step for performing Viterbi decoding on the OFDM transmission signal received in the receiving step, and a decoding step And a playback step for playing back the decoded data, and TS In the multiplexing step, the main packet and the delayed packet are alternately arranged in the same repeating unit, and the positional relationship between each main packet and each corresponding delayed packet is a fixed relationship. In decoding, after determining the data of the delayed packet corresponding to the main packet based on the previously decoded main packet data, the route of the data of the main packet adjacent to the determined delayed packet data is obtained.
 この構成によっても、受信機側で誤り訂正能力を向上できるので、映像を安定化できる通信方法を実現できる。 Even with this configuration, the error correction capability can be improved on the receiver side, so that a communication method capable of stabilizing the video can be realized.
 以下、本発明の実施の形態の放送システムについて、図面を用いて説明する。図2は、本実施の形態の放送システムの全体構成を示す図である。放送システム100は、送信機200と複数の受信機300とを含んでいる。送信機200と受信機300とは無線で通信を行なう。 Hereinafter, a broadcasting system according to an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a diagram showing an overall configuration of the broadcasting system of the present embodiment. The broadcast system 100 includes a transmitter 200 and a plurality of receivers 300. The transmitter 200 and the receiver 300 communicate wirelessly.
 送信機200は任意の場所に設置可能であり、受信機300は送信機200からの送信波を受信しつつ移動可能である。例えば、この放送システム100が災害時の緊急放送システムとして用いられる場合には、送信機200は災害現場に配置され、受信機300は警察、消防、救急等の車両に配置される。 The transmitter 200 can be installed at an arbitrary place, and the receiver 300 can move while receiving a transmission wave from the transmitter 200. For example, when the broadcasting system 100 is used as an emergency broadcasting system at the time of a disaster, the transmitter 200 is disposed at a disaster site, and the receiver 300 is disposed in a vehicle such as a police, a fire department, or an emergency.
 送信機200から受信機300へのデータの伝送方式は、地上デジタルテレビジョン放送の伝送方式標準規格(ARIB STD-B31)に準拠したISDB-T方式である。よって、以下では、この標準規格において規定されている技術内容については、簡単に説明し、又は説明を省略する。 The data transmission method from the transmitter 200 to the receiver 300 is the ISDB-T method compliant with the digital terrestrial television broadcasting transmission method standard (ARIB STD-B31). Therefore, in the following, the technical contents defined in this standard will be briefly described or omitted.
 図2に示すように、送信機200は、入力部201と、信号変換部202と、送信部203とを備えている。入力部201は、信号変換部202に対して、映像信号、音声信号、データ信号を入力する。入力部201は、撮影により映像信号を生成し、録音により音声信号を生成する。入力部201は、操作部を備えており、操作部に対するユーザの操作に基づいてデータ信号を生成する。また、入力部201は、映像信号、音声信号、及びデータ信号の一部又は全部を送信機200の外部から取得してもよい。 As shown in FIG. 2, the transmitter 200 includes an input unit 201, a signal conversion unit 202, and a transmission unit 203. The input unit 201 inputs a video signal, an audio signal, and a data signal to the signal conversion unit 202. The input unit 201 generates a video signal by shooting and generates an audio signal by recording. The input unit 201 includes an operation unit, and generates a data signal based on a user operation on the operation unit. In addition, the input unit 201 may acquire part or all of the video signal, the audio signal, and the data signal from the outside of the transmitter 200.
 信号変換部202には、入力部201から、映像信号、音声信号、データ信号が入力される。信号変換部202は、入力された映像信号、音声信号、及びデータ信号を、送信部203から受信機300に伝送するためのOFDM(Orthogonal Frequency Division Multiplexing)送信信号(以下、「OFDM送信波」ともいう。)に変換する。送信部203は、信号変換部202にて生成されたOFDM送信信号を無線で送信(ブロードキャスト)する。 Video signal, audio signal, and data signal are input from the input unit 201 to the signal conversion unit 202. The signal conversion unit 202 transmits an input video signal, audio signal, and data signal from the transmission unit 203 to the receiver 300 as an OFDM (Orthogonal Frequency Division Multiplexing) transmission signal (hereinafter also referred to as “OFDM transmission wave”). To say.) The transmission unit 203 wirelessly transmits (broadcasts) the OFDM transmission signal generated by the signal conversion unit 202.
 受信機300は、受信部301と、復号部302と、再生部303とを備えている。受信部301は、送信機200の送信部203によって送信されたOFDM送信波を受信する。復号部302は、受信部301にて受信したOFDM送信信号を復号する。再生部303は、復号部302での復号によって得られた映像信号、音声信号、及びデータ信号を再生する。再生部303は、ディスプレイ及びスピーカを備えており、映像信号及びデータ信号は、ディスプレイで表示され、音声信号はスピーカから出力される。復号されたデータ信号が再生部303の制御に用いられてもよい。 The receiver 300 includes a receiving unit 301, a decoding unit 302, and a reproducing unit 303. The receiver 301 receives the OFDM transmission wave transmitted by the transmitter 203 of the transmitter 200. Decoding section 302 decodes the OFDM transmission signal received by receiving section 301. The reproduction unit 303 reproduces the video signal, the audio signal, and the data signal obtained by the decoding in the decoding unit 302. The playback unit 303 includes a display and a speaker. The video signal and the data signal are displayed on the display, and the audio signal is output from the speaker. The decoded data signal may be used for control of the reproduction unit 303.
 図3は、本実施の形態の送信機200の信号変換部202の構成を示す図である。信号変換部202は、情報源符号化部21と、MPEG-2多重部22と、伝送路符号化部23とを備えている。情報源符号化部21は、映像信号を入力して符号化する映像符号化部211と、音声信号を入力して符号化する音声符号化部212と、データ信号を入力して符号化するデータ符号化部213とを備えている。映像符号化部211で符号化された映像符号化データ、音声符号化部212で符号化された音声符号化データ、及びデータ符号化部213で符号化されたデータ符号化データは、MPEG-2多重部22に入力される。 FIG. 3 is a diagram illustrating a configuration of the signal conversion unit 202 of the transmitter 200 according to the present embodiment. The signal conversion unit 202 includes an information source encoding unit 21, an MPEG-2 multiplexing unit 22, and a transmission path encoding unit 23. The information source encoding unit 21 includes a video encoding unit 211 that inputs and encodes a video signal, an audio encoding unit 212 that inputs and encodes an audio signal, and data that is encoded by inputting a data signal And an encoding unit 213. Video encoded data encoded by the video encoding unit 211, audio encoded data encoded by the audio encoding unit 212, and data encoded data encoded by the data encoding unit 213 are MPEG-2 Input to the multiplexing unit 22.
 MPEG-2多重部22は、映像符号化データ、音声符号化データ、及びデータ符号化データを多重化して、MPEG2Systemsで規定されるトランスポートストリーム(Transport Stream:以下、「TS」と記す。)として出力する。 The MPEG-2 multiplexing unit 22 multiplexes the video encoded data, the audio encoded data, and the data encoded data, and forms a transport stream (Transport Stream: hereinafter referred to as “TS”) defined by MPEG2 Systems. Output.
 伝送路符号化部23は、1つ又は複数のTSを入力して、再多重を行い、1つのTSとして、サービス意図に応じて複数の伝送路符号化を施して、OFDM送信波として出力する。伝送路符号化部23は、TS再多重部231と、階層並列処理部232と、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部233とを備えている。 The transmission path encoding unit 23 receives one or a plurality of TSs, performs re-multiplexing, performs a plurality of transmission path encodings as one TS according to the service intention, and outputs the result as an OFDM transmission wave . The transmission path encoding unit 23 includes a TS remultiplexing unit 231, a hierarchical parallel processing unit 232, and an IFFT (InverseFFast Fourier Transform) unit 233.
 TS再多重部231は、MPEG-2多重部22から1つ又は複数のTSを入力して、再多重を行う。TS再多重部231は、MPEG-2多重部22から入力された複数のTSを、IFFTサンプルクロックの4倍のクロックにより188バイト単位のバースト信号形式に変換し、外符号を付加した上で、単一のTSに変換する。 The TS remultiplexing unit 231 receives one or a plurality of TSs from the MPEG-2 multiplexing unit 22 and performs remultiplexing. The TS re-multiplexing unit 231 converts a plurality of TSs input from the MPEG-2 multiplexing unit 22 into a burst signal format of 188 bytes using a clock four times the IFFT sample clock, and adds an outer code. Convert to a single TS.
 階層並列処理部232は、階層伝送を行う場合に、TS再多重部231から入力されたTSを階層情報の指定に従って階層分割して、階層ごとに処理を行う。階層並列処理部232は、階層ごとに、誤り訂正符号化、バイトインターリーブ、畳み込み符号化、キャリア変調を含む処理を行う。 When performing hierarchical transmission, the hierarchical parallel processing unit 232 divides the TS input from the TS remultiplexing unit 231 into layers according to the designation of the hierarchical information, and performs processing for each layer. The layer parallel processing unit 232 performs processing including error correction coding, byte interleaving, convolutional coding, and carrier modulation for each layer.
 階層並列処理部232は、階層ごとに上記の処理を経た信号を合成する。階層並列処理部232は、合成された信号に対して、移動受信における電界変動やマルチパス妨害に対して誤り訂正符号化の能力を有効に発揮させるために、時間インターリーブ及び周波数インターリーブの処理を行う。 The hierarchical parallel processing unit 232 synthesizes the signals that have undergone the above processing for each hierarchy. The hierarchical parallel processing unit 232 performs time interleaving and frequency interleaving processing on the synthesized signal in order to effectively exhibit error correction coding capability against electric field fluctuation and multipath interference in mobile reception. .
 階層並列処理部232は、インターリーブされた信号に対して、同期パイロット信号、TMCC(Transmission and Multiplexing Configuration Control)信号、及びAC(Auxiliary Channel)信号を付加して、OFDMフレームを構成して出力する。 The hierarchical parallel processing unit 232 adds the synchronous pilot signal, the TMCC (Transmission and Multiplexing Configuration Control) signal, and the AC (Auxiliary Channel) signal to the interleaved signal, and configures and outputs an OFDM frame.
 IFFT部233は、階層並列処理部232で生成されたOFDMフレームに対してIFFT演算を行い、OFDM送信信号を生成し、送信部203に出力する。階層並列処理部232及びIFFT部233を合わせた構成が、本発明の処理部に対応する。 The IFFT unit 233 performs an IFFT operation on the OFDM frame generated by the hierarchical parallel processing unit 232, generates an OFDM transmission signal, and outputs the OFDM transmission signal to the transmission unit 203. The combined configuration of the hierarchical parallel processing unit 232 and the IFFT unit 233 corresponds to the processing unit of the present invention.
 図1は、TS再多重部231における多重化を説明する図である。図1の例では、TS再多重部231は、同一階層の8個のトランスポートストリームパケット(Transport Stream Packet:以下、「TSP」と記す。)からなる多重フレームを基本単位としてTSを再多重化する。TS再多重部231は、TSを再多重する際に、TSP(主パケット)の間に、遅延させたTSP(遅延パケット)を挿入する。 FIG. 1 is a diagram for explaining multiplexing in the TS re-multiplexing unit 231. In the example of FIG. 1, the TS re-multiplexing unit 231 re-multiplexes TS using a multiplex frame composed of eight transport stream packets (Transport Packet: hereinafter referred to as “TSP”) of the same layer as a basic unit. To do. The TS remultiplexing unit 231 inserts a delayed TSP (delayed packet) between TSPs (main packets) when remultiplexing the TS.
 このとき、TS再多重部231は、主パケット及び遅延パケットが多重フレーム内の同じ位置に位置するように、主パケット及び遅延パケットを配置する。即ち、各多重フレームにおいて、主パケットが配置される位置、及び遅延パケットが配置される位置は固定されている。図1の例では、n番目~n+2番目の各フレームにおいて、奇数番目のパケットは遅延パケットであり、偶数番目のパケットは主パケットである。n番目より前、及びn+2番目より後のフレームについても、主パケットの位置は同じであり、遅延パケットの位置も同じである。 At this time, the TS remultiplexing unit 231 arranges the main packet and the delayed packet so that the main packet and the delayed packet are located at the same position in the multiplexed frame. That is, in each multiplexed frame, the position where the main packet is arranged and the position where the delayed packet is arranged are fixed. In the example of FIG. 1, in each of the nth to n + 2th frames, the odd-numbered packet is a delayed packet and the even-numbered packet is a main packet. The position of the main packet is the same and the position of the delayed packet is the same for the frames before the nth and after the (n + 2) th.
 また、各主パケットに対応する遅延パケットの位置も固定されている。これにより、主パケットの位置が特定されれば、その主パケットに対応する遅延パケットの位置が特定でき、遅延パケットの位置が特定されれば、その遅延パケットに対応する主パケットの位置が特定できる。図1の例では、各フレームにおける主パケットに対応する遅延パケットは、次のフレームの一つ前の位置に配置される。このように、主パケットと遅延パケットとの位置関係を固定することで、例えば、図1のn+1番目のフレームの最初のパケットは、その前のn番目のフレームの2番目のパケットに対する遅延パケットであると特定される。 Also, the position of the delayed packet corresponding to each main packet is fixed. Thus, if the position of the main packet is specified, the position of the delayed packet corresponding to the main packet can be specified. If the position of the delayed packet is specified, the position of the main packet corresponding to the delayed packet can be specified. . In the example of FIG. 1, the delay packet corresponding to the main packet in each frame is arranged at the position immediately before the next frame. In this way, by fixing the positional relationship between the main packet and the delayed packet, for example, the first packet of the (n + 1) th frame in FIG. 1 is a delayed packet with respect to the second packet of the previous nth frame. Identified as being.
 また、TS再多重部231は、主パケットと遅延パケットを同一の繰り返し単位で交互に配置する。図1の例では、主パケットと遅延パケットとを1TSPずつ交互に配置している。なお、TS再多重部231は、このほかにも、主パケットと遅延パケットとを2TSPずつ交互に配置してもよい。 Also, the TS remultiplexing unit 231 alternately arranges the main packet and the delayed packet in the same repeating unit. In the example of FIG. 1, main packets and delayed packets are alternately arranged by 1 TSP. In addition, the TS remultiplexing unit 231 may alternately arrange the main packet and the delayed packet by 2 TSP.
 図4は、階層並列処理部232におけるバイトインターリーブを示す図である。バイトインターリーブ処理が施されるTSPのパケット長は204(12×17)バイトであり、64QAMのインターリーブ長Iは12である。このとき、図4に示すように、各12バイト中、同期パイロット信号を除いて1バイト目のデータは204(12×17×1)バイト先に配置され、2バイト目のデータは408(12×17×2)バイト先に配置され、3バイト目のデータは612(12×17×3)バイト先に配置され、以下同様にしてデータがバイト単位でインターリーブされる。 FIG. 4 is a diagram showing byte interleaving in the hierarchical parallel processing unit 232. The packet length of TSP subjected to byte interleaving processing is 204 (12 × 17) bytes, and the interleaving length I of 64QAM is 12. At this time, as shown in FIG. 4, the data of the first byte is arranged 204 (12 × 17 × 1) bytes ahead of each of the 12 bytes, excluding the synchronization pilot signal, and the data of the second byte is 408 (12 The data of the third byte is arranged 612 (12 × 17 × 3) bytes ahead, and the data is interleaved in units of bytes in the same manner.
 図5は、上記のようにバイトインターリーブを行なって得られるビット列の構成を示す図である。図5に示すように、バイトインターリーブ後のビット列では、主パケットのデータと遅延パケットのデータとが、1バイトごとに交互に並ぶことになる。 FIG. 5 is a diagram showing the configuration of a bit string obtained by performing byte interleaving as described above. As shown in FIG. 5, in the bit string after byte interleaving, the data of the main packet and the data of the delayed packet are alternately arranged for each byte.
 ここで注意すべきは、上述のように、図1に示すバイトインターリーブ処理前のTSにおいて、主パケットの位置及び遅延パケットの位置が既知であり、かつ互いに対応する主パケットと遅延パケットとの位置関係が既知であったので、このようなTSに図4に示すバイトインターリーブ処理を行って得られた図5のビット列においても、各バイトについて、それが遅延パケットのデータであるのか主パケットのデータであるのかは既知であり、それが遅延パケットのデータである場合に、それに対応する主パケットのデータがどこにあるかも既知であるということである。 It should be noted here that, as described above, in the TS before the byte interleaving process shown in FIG. 1, the position of the main packet and the position of the delayed packet are known, and the positions of the main packet and the delayed packet corresponding to each other. Since the relationship is already known, in the bit string of FIG. 5 obtained by performing the byte interleaving process shown in FIG. 4 on such a TS, for each byte, whether it is delayed packet data or main packet data. Is known, and if it is data of a delayed packet, it is also known where the data of the corresponding main packet is.
 なお、TS再多重部231が主パケットと遅延パケットとを2つごとに交互に配置した場合には、バイトインターリーブ後のTSでは、主パケットのデータと遅延パケットのデータとが、2バイトごとに交互に並ぶことになる。 When the TS remultiplexing unit 231 alternately arranges the main packet and the delayed packet every two, in the TS after byte interleaving, the data of the main packet and the data of the delayed packet are every two bytes. They will be lined up alternately.
 受信機300の復号部302では、受信したOFDM送信信号に対して、FFT(Fast Fourier Transform:高速フーリエ変換)、周波数デインターリーブ、時間デインターリーブを行なった上で、階層並列処理部232にて畳み込み符号化されているTSに対して、ビタビ(Viterbi)復号を行なう。 The decoding unit 302 of the receiver 300 performs FFT (Fast Fourier Transform), frequency deinterleaving, and time deinterleaving on the received OFDM transmission signal, and then convolves with the hierarchical parallel processing unit 232. Viterbi decoding is performed on the encoded TS.
 図6は、復号部302でのビタビ復号におけるトレリス線図の例である。復号部302は、ビタビ復号において、受信済みの主パケットと同じ値が既知の位置に遅延パケットとして受信されることを利用して、パスメトリック計算における最尤経路を絞り込む。具体的には、復号部302は、復号対象のビット列中の遅延パケットのデータと同じ内容のデータを、当該遅延パケットに対応する主パケットのデータとして既に受信しており、対応する主パケットのデータの位置は既知であるので、その既知の位置のデータを参照することで、当該遅延パケットのデータを知ることができる。 FIG. 6 is an example of a trellis diagram in Viterbi decoding at the decoding unit 302. In Viterbi decoding, the decoding unit 302 uses the fact that the same value as the received main packet is received as a delayed packet at a known position to narrow down the maximum likelihood path in the path metric calculation. Specifically, the decoding unit 302 has already received data having the same content as the delayed packet data in the decoding target bit string as the main packet data corresponding to the delayed packet, and the corresponding main packet data. Since the position of is known, the data of the delayed packet can be known by referring to the data of the known position.
 図6の例において、遅延パケットの値は例えば「1」として既知であるので、経路はt=9で「1」(図6にハッチングで示したいずれか)を通過することになる。よって、パスメトリック計算では、これらの太枠で示したいずれかを通過する経路のみを候補として、そのうちの尤度が最も高い経路を選択すればよい。 In the example of FIG. 6, since the value of the delayed packet is known as “1”, for example, the route passes “1” (any one indicated by hatching in FIG. 6) at t = 9. Therefore, in the path metric calculation, it is only necessary to select a route that passes through one of these bold frames as a candidate and select a route with the highest likelihood.
 即ち、復号部302は、遅延パケットのデータについては、先に復号されている対応する主パケットのデータをもってその値を確定する。このようにして遅延パケットのデータを確定することで、パスメトリック計算において、当該遅延パケットの前後の主パケットのデータとしてとり得る値を絞り込むことができるので、ビタビ復号のパスメトリック計算における尤度を向上できる。例えば、図6の例において、遅延パケットのデータを先に受信した主パケットによって確定せずに、通常通りのパスメトリック計算を行なうとすれば、26(=64)通りの経路から尤度が最も高い経路を選択することになるところ、本実施の形態のように、遅延パケットのデータについては、先に受信した対応する主パケットによって確定することで、経路の選択候補を25(=32)通りとすることができる。 That is, the decoding unit 302 determines the value of the delayed packet data based on the data of the corresponding main packet that has been previously decoded. By determining the data of the delayed packet in this way, possible values for the main packet data before and after the delayed packet can be narrowed down in the path metric calculation. Therefore, the likelihood in the path metric calculation of Viterbi decoding is reduced. It can be improved. For example, in the example of FIG. 6, if the normal path metric calculation is performed without determining the data of the delayed packet based on the previously received main packet, the likelihood is estimated from 2 6 (= 64) paths. Where the highest route is selected, the delay packet data is determined by the corresponding main packet received earlier as in the present embodiment, so that the route selection candidate is 2 5 (= 32 ) Street.
 そして、復号部302は、主パケットのビタビ復号を行なう際には、前後の遅延パケットのデータを既知のデータとすることで、遅延パケットのデータの前後の主パケットのデータとしてとり得る値を絞り込むことができるので、復号対象のデータ列において、主パケットと遅延パケットとが隣接する箇所(図5において矢印で示した箇所)が多いほど、換言すれば、既知のデータである遅延パケットのデータが分散しているほど、既知のデータである遅延パケットのデータを利用したパスメトリック計算の尤度向上の効果が大きくなる。 Then, when performing the Viterbi decoding of the main packet, the decoding unit 302 narrows down the possible values of the main packet data before and after the delayed packet data by making the data of the delayed packet before and after the known data. Therefore, as the number of locations where the main packet and the delayed packet are adjacent to each other (the location indicated by the arrow in FIG. 5) increases, in other words, the data of the delayed packet, which is known data, becomes larger The more distributed, the greater the effect of improving the likelihood of path metric calculation using delay packet data that is known data.
 上述のように、本実施の形態のTS再多重部231は、1TSPごとに主パケットと遅延パケットとが交互に配置されるように多重化を行なうので、階層並列処理部232におけるバイトインターリーブによって、主パケットのデータと遅延パケットのデータとが1バイトごとに交互に並ぶようになる。よって、本実施の形態によれば、既知のデータである遅延パケットのデータを利用して、パスメトリック計算の尤度を十分に向上できる。 As described above, the TS remultiplexing unit 231 according to the present embodiment multiplexes so that the main packet and the delayed packet are alternately arranged every 1 TSP. Therefore, by byte interleaving in the hierarchical parallel processing unit 232, The data of the main packet and the data of the delayed packet are alternately arranged for each byte. Therefore, according to the present embodiment, it is possible to sufficiently improve the likelihood of path metric calculation using delay packet data that is known data.
 復号部302は、上述のように、遅延パケットのデータの値については、先に復号されている対応する主パケットのデータを参照して確定するが、主パケットのデータを受信できなかった場合には、通常通り、それに対応する遅延パケットのデータについてもパスメトリック計算を行なって復号する。これにより、受信機300において、主パケットが受信できていなくても、それに対応する遅延パケットを受信できている場合には、当該部分のデータを得ることができる。 As described above, the decoding unit 302 determines the data value of the delayed packet with reference to the data of the corresponding main packet that has been decoded previously, but when the data of the main packet cannot be received. As usual, the delay packet data corresponding thereto is also decoded by performing path metric calculation. As a result, even if the main packet is not received by the receiver 300, if the delay packet corresponding to the main packet is received, the data of the part can be obtained.
 再生部303は、復号部302での復号によって得られた映像信号、音声信号、及びデータ信号を再生する。このとき、再生部303は、復号部302にて主パケットを復号できた場合には、その主パケットに対応する遅延パケットを待たずに、当該主パケットのデータを再生する。これにより、映像、音声、データの再生の遅延を軽減できる。再生部303は、主パケットが欠落した場合には、当該主パケットの代わりに、復号された遅延パケットを再生する。 The reproduction unit 303 reproduces the video signal, the audio signal, and the data signal obtained by the decoding in the decoding unit 302. At this time, when the decoding unit 302 can decode the main packet, the reproducing unit 303 reproduces the data of the main packet without waiting for the delayed packet corresponding to the main packet. Thereby, the delay of reproduction | regeneration of an image | video, an audio | voice, and data can be reduced. When the main packet is lost, the reproducing unit 303 reproduces the decoded delayed packet instead of the main packet.
 図7は、送信機200から受信機300に送信されるOFDM送信信号の一部が欠落した場合の再生の方法を説明する図である。図7は、1フレーム遅延している場合を示している。図7の例では、受信機300においてn番目のOFDM送信信号は受信でき、n+1番目のOFDMフレームについては受信機300の受信状態が劣化して受信できず、n+2番目のOFDMフレームについては受信状態が回復して受信できる場合を示している。 FIG. 7 is a diagram for explaining a reproduction method when a part of the OFDM transmission signal transmitted from the transmitter 200 to the receiver 300 is lost. FIG. 7 shows a case where one frame is delayed. In the example of FIG. 7, the receiver 300 can receive the nth OFDM transmission signal, the reception state of the receiver 300 cannot be received for the (n + 1) th OFDM frame, and the reception state is received for the (n + 2) th OFDM frame. Shows a case where the message can be recovered and received.
 欠落したn+1番目のOFDMフレームには、主パケットとして、パケット#4、パケット#5、パケット#6が含まれている。よって、受信機300では、パケット#4、パケット#5、パケット#6の主パケットは受信できず、n番目のOFDMフレームに主パケットが含まれていたパケット#1、パケット#2、パケット#3の再生が終わった時点でそれに引き続きパケット#4、パケット#5、パケット#6の再生をすることはできない。よって、パケット#1、パケット#2、パケット#3の再生が終わった時点で再生は中断される。 The missing (n + 1) th OFDM frame includes packet # 4, packet # 5, and packet # 6 as main packets. Therefore, the receiver 300 cannot receive the main packets of the packet # 4, the packet # 5, and the packet # 6, and the packet # 1, the packet # 2, and the packet # 3 in which the main packet is included in the nth OFDM frame. When the reproduction of the packet # 4, the packet # 4, the packet # 5, and the packet # 6 cannot be reproduced. Therefore, the reproduction is interrupted when the reproduction of packet # 1, packet # 2, and packet # 3 is completed.
 パケット#4、パケット#5、パケット#6のデータはn+2番目のOFDMフレームに遅延パケットとして含まれているので、復号部302は、この遅延パケットを復号する。このとき、n+2番目のOFDMフレームには、パケット#7、パケット#8、パケット#9も主パケットとして含まれている。即ち、n+2番目のOFDMフレームを復号した時点では、再生すべきパケットとして、遅延パケットを復号して得られた過去の再生内容と主パケットを復号して得られた現在再生すべき内容とが、再生すべき内容として得られる。 Since the data of packet # 4, packet # 5, and packet # 6 is included as a delay packet in the (n + 2) th OFDM frame, the decoding unit 302 decodes this delay packet. At this time, packet # 7, packet # 8, and packet # 9 are also included as main packets in the (n + 2) th OFDM frame. That is, at the time when the n + 2th OFDM frame is decoded, as the packet to be reproduced, the past reproduction content obtained by decoding the delay packet and the content to be currently reproduced obtained by decoding the main packet are: Obtained as content to be reproduced.
 よって、仮に再生部303がこれらの再生すべき内容を通常通りに再生したのでは、遅延が生じることになる。一方で、主パケットが欠落したパケットについても、遅延パケットによって復号ができたのであるから、この復号されたデータを捨てることも非効率である。 Therefore, if the reproducing unit 303 reproduces these contents to be reproduced as usual, a delay occurs. On the other hand, since a packet in which the main packet is lost can be decoded by the delayed packet, it is also inefficient to discard the decoded data.
 そこで、受信状態が劣化して、OFDMフレーム又はその一部のパケットの欠落が生じた場合において、受信状態が回復したときには、復号部302は、回復後に受信したデータ列については、遅延パケットも含めてパスメトリック計算により復号を行い、再生部303は、復号によって得られたデータを通常よりの速い速度で再生する(早送り再生)。図7の例では、2倍の速度で再生している。 Therefore, when the reception state is deteriorated and the OFDM frame or a part of the packet is lost, when the reception state is recovered, the decoding unit 302 includes the delayed packet for the data string received after the recovery. Then, the decoding is performed by path metric calculation, and the reproducing unit 303 reproduces the data obtained by the decoding at a faster speed than usual (fast forward reproduction). In the example of FIG. 7, playback is performed at twice the speed.
 再生部303は、早送り再生によって、再生内容が主パケットの受信に追いついたら、再生速度を通常の速度に戻す。なお、早送り再生の速度は、主パケットに対する遅延パケットの遅延時間(遅延フレーム数)に応じて設定されてよく、また、欠落したOFDMフレームの数に応じて自動的に調整されてもよい。 When the playback content catches up with reception of the main packet by fast-forward playback, the playback unit 303 returns the playback speed to the normal speed. Note that the fast-forward playback speed may be set according to the delay time (number of delay frames) of the delayed packet with respect to the main packet, or may be automatically adjusted according to the number of missing OFDM frames.
 このようにすることで、OFDMフレームの欠落による受信中断後の再生の再開の際に、出力される映像や音声の乱れを軽減するとともに、映像や音声が遅延した状態を、早急に遅延のない状態に回復できる。 In this way, when playback resumes after interruption of reception due to the loss of an OFDM frame, the disturbance of the video and audio to be output is reduced, and the state where the video and audio are delayed is not immediately delayed. Can recover to the state.
 以上のように、本発明の実施の形態の放送システム100によれば、送信機200では、1つ又は複数のMPEG-2Systemsで規定されるTSをTS再多重部231で再多重化する際に、主パケットの間に主パケットを遅延させた遅延パケットを挿入し、かつ、主パケットに対応する遅延パケットを主パケットの位置に対して所定の関係を有する位置に配置するので、そのようなTSをインターリーブしたときに、主パケットのデータと遅延パケットのデータとが1バイトごとに交互になる。従って、送信機200で畳み込み符号化されたOFDM送信信号を受信機300でビタビ復号する際に、遅延パケットのデータについては先に復号されている主パケットのデータを既知のデータとして確定することができ、そのような遅延パケットに隣接している主パケットのデータについてパスメトリック計算で経路を求める際のデータのとり得る値を絞り込むことができる。これにより、主パケットのデータの復号の精度を向上させることができる。 As described above, according to the broadcasting system 100 of the embodiment of the present invention, the transmitter 200 performs remultiplexing of one or more TSs defined by MPEG-2 Systems by the TS remultiplexing unit 231. , A delay packet obtained by delaying the main packet is inserted between the main packets, and the delay packet corresponding to the main packet is arranged at a position having a predetermined relationship with respect to the position of the main packet. Are interleaved, the data of the main packet and the data of the delayed packet are alternated for each byte. Therefore, when the OFDM transmission signal convolutionally encoded by the transmitter 200 is Viterbi-decoded by the receiver 300, for the delayed packet data, the previously decoded main packet data may be determined as known data. It is possible to narrow down the possible values of data when obtaining a route by path metric calculation for the data of the main packet adjacent to such a delayed packet. As a result, the accuracy of decoding the main packet data can be improved.
 また、受信機300の再生部303では、主パケットを受信して復号したら、それに対応する遅延パケットを待たずに、復号された主パケットを再生するので、映像の遅延を低減できる。 In addition, when the reproduction unit 303 of the receiver 300 receives and decodes the main packet, the decoded main packet is reproduced without waiting for the delay packet corresponding to the main packet, so that the video delay can be reduced.
 さらに、受信機300における受信状態が劣化してOFDM送信信号の一部が欠落した場合には、復号部302が、後に伝送されてくる遅延パケットを復号して、再生部303がそれを再生するので、受信状態の劣化に対して安定した再生を実現できる。しかも、受信が中断した後の再開後には、再生が主パケットの受信に追いつくまで、早送り再生を行なうので、受信状態の劣化に対して映像の乱れを抑制できるとともに、映像の遅延を早期に回復できる。 Further, when the reception state in the receiver 300 deteriorates and a part of the OFDM transmission signal is lost, the decoding unit 302 decodes a delayed packet transmitted later, and the reproducing unit 303 reproduces it. Therefore, stable reproduction can be realized against the deterioration of the reception state. Moreover, after resuming after reception is interrupted, fast-forward playback is performed until playback catches up with reception of the main packet, so that it is possible to suppress image disturbance due to deterioration in reception status and to recover video delay early. it can.
 なお、上記の実施の形態において、送信機200の入力部201、情報源符号化部21、MPEG-2多重部22がデジタルビデオカメラとして構成され、伝送路符号化部23及び送信部203がデジタルビデオカメラに接続されるコンピュータとして構成されてよい。また、送信機200は、入力部201、信号変換部202、及び送信部203をすべて含むビデジタルデオカメラとして構成されてもよい。受信機300は、携帯電話やカーナビゲーション装置に組み込まれてよい。 In the above embodiment, the input unit 201, the information source encoding unit 21, and the MPEG-2 multiplexing unit 22 of the transmitter 200 are configured as a digital video camera, and the transmission path encoding unit 23 and the transmission unit 203 are digital. You may comprise as a computer connected to a video camera. Further, the transmitter 200 may be configured as a bi-digital video camera that includes all of the input unit 201, the signal conversion unit 202, and the transmission unit 203. The receiver 300 may be incorporated in a mobile phone or a car navigation device.
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能であり、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。 Although the presently preferred embodiments of the present invention have been described above, various modifications can be made to the present embodiments, and such modifications are within the true spirit and scope of the present invention. It is intended that the appended claims include all modifications.
 以上のように、本発明の放送システムは、映像の安定化を実現できるという効果を有し、地上デジタル放送を応用した放送システム、それに用いる送信機及び受信機、放送方法及びプログラム、並びに受信再生方法及びプログラム等として有用である。 As described above, the broadcasting system of the present invention has an effect that video stabilization can be realized, a broadcasting system applying terrestrial digital broadcasting, a transmitter and a receiver used therefor, a broadcasting method and a program, and reception and reproduction. It is useful as a method and program.
 21 情報源符号化部
 22 多重部
 23 伝送路符号化部
 100 放送システム
 200 送信機
 201 入力部
 202 信号変換部
 203 送信部
 211 映像符号化部
 212 音声符号化部
 213 データ符号化部
 231 TS再多重部
 232 階層並列処理部
 233 IFFT部
 300 受信機
 301 受信部
 302 復号部
 303 再生部
DESCRIPTION OF SYMBOLS 21 Information source encoding part 22 Multiplexing part 23 Transmission path encoding part 100 Broadcast system 200 Transmitter 201 Input part 202 Signal conversion part 203 Transmitting part 211 Video encoding part 212 Audio | voice encoding part 213 Data encoding part 231 TS remultiplexing Unit 232 hierarchical parallel processing unit 233 IFFT unit 300 receiver 301 receiving unit 302 decoding unit 303 reproducing unit

Claims (13)

  1.  送信機と受信機とを含み、前記送信機から前記受信機に対してISDB-T方式のデータ伝送を行う放送システムであって、
     前記送信機は、
      1又は複数のトランスポートストリームを、主パケットと、前記主パケットを遅延させた遅延パケットとを含むトランスポートストリームに多重化するTS再多重部と、
      前記TS再多重部で多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理部と、
      前記OFDM送信信号を送信する送信部とを備え、
     前記受信機は、
      前記OFDM送信信号を受信する受信部と、
      前記受信部にて受信した前記OFDM送信信号に対して、ビタビ復号を行なう復号部と、
      前記復号部にて復号されたデータを再生する再生部とを備え、
     前記TS再多重部は、前記主パケットと前記遅延パケットを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置し、
     前記復号部は、前記ビタビ復号において、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求めることを特徴とする放送システム。
    A broadcasting system including a transmitter and a receiver, and performing ISDB-T data transmission from the transmitter to the receiver;
    The transmitter is
    A TS remultiplexing unit that multiplexes one or a plurality of transport streams into a transport stream including a main packet and a delayed packet obtained by delaying the main packet;
    A processing unit that performs processing including byte interleaving and convolutional coding on the transport stream multiplexed by the TS remultiplexing unit, and generates an OFDM transmission signal;
    A transmission unit for transmitting the OFDM transmission signal,
    The receiver
    A receiver for receiving the OFDM transmission signal;
    A decoding unit that performs Viterbi decoding on the OFDM transmission signal received by the reception unit;
    A reproducing unit for reproducing the data decoded by the decoding unit,
    The TS remultiplexing unit arranges the main packet and the delayed packet alternately in the same repetition unit, and the positional relationship between each main packet and each delayed packet corresponding thereto is a fixed relationship,
    In the Viterbi decoding, the decoding unit determines the delayed packet data corresponding to the main packet based on the previously decoded main packet data, and then adjoins the determined delayed packet data. A broadcasting system characterized by obtaining a route of data.
  2.  前記再生部は、前記復号部が前記主パケットを復号した後、復号された前記主パケットに対応する遅延パケットを待たずに、復号された主パケットを再生することを特徴とする請求項1に記載の放送システム。 2. The reproduction unit according to claim 1, wherein after the decoding unit decodes the main packet, the reproduction unit reproduces the decoded main packet without waiting for a delayed packet corresponding to the decoded main packet. The described broadcasting system.
  3.  前記受信部にて一部の前記OFDM送信信号を受信できなかった場合において、当該受信できなかったOFDM送信信号に含まれる主パケットに対応する遅延パケットを前記受信部にて受信したときは、前記復号部は、当該遅延パケットについても前記ビタビ復号によって経路を求め、
     前記再生部は、復号された前記遅延パケットのデータを再生することを特徴とする請求項1又は2に記載の放送システム。
    When a part of the OFDM transmission signal cannot be received by the reception unit, when the reception unit receives a delayed packet corresponding to the main packet included in the OFDM transmission signal that could not be received, The decoding unit also obtains a route for the delayed packet by the Viterbi decoding,
    The broadcasting system according to claim 1, wherein the reproduction unit reproduces the decoded data of the delayed packet.
  4.  前記受信部にて一部の前記OFDM送信信号を受信できなかったことにより、前記復号部が前記遅延パケットについても復号したときは、前記再生部は、再生が主パケットの受信に追いつくまで、早送り再生を行なうことを特徴とする請求項3に記載の放送システム。 When the decoding unit also decodes the delayed packet because the receiving unit cannot receive a part of the OFDM transmission signal, the reproducing unit fast forwards until reproduction catches up with reception of the main packet. The broadcast system according to claim 3, wherein reproduction is performed.
  5.  前記TS再多重部は、前記主パケットと前記遅延パケットを1パケットごとに交互に配置することを特徴とする請求項1乃至4のいずれか一項に記載の放送システム。 The broadcasting system according to any one of claims 1 to 4, wherein the TS remultiplexing unit alternately arranges the main packet and the delayed packet for each packet.
  6.  携帯端末向けマルチメディア放送又はエリアワンセグの放送を行なう請求項1乃至5のいずれか一項に記載の放送システム。 The broadcasting system according to any one of claims 1 to 5, which performs multimedia broadcasting for mobile terminals or Area One Seg broadcasting.
  7.  前記OFDM送信信号を受信する受信部と、前記受信部にて受信した前記OFDM送信信号に対して、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求めるビタビ復号を行なう復号部と、前記復号部にて復号されたデータを再生する再生部とを備えた受信機に対してISDB-T方式のデータ伝送を行う送信機であって、
     1又は複数のトランスポートストリームを、主パケットと、前記主パケットを遅延させた遅延パケットとを含むとともに、前記主パケットと前記遅延パケットを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置したトランスポートストリームに多重化するTS再多重部と、
     前記TS再多重部で多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理部と、
     前記OFDM送信信号を送信する送信部と、
     を備えたことを特徴とする送信機。
    The receiving unit that receives the OFDM transmission signal, and the data of the delayed packet corresponding to the main packet is determined based on the data of the main packet that has been previously decoded for the OFDM transmission signal received by the receiving unit. A receiver comprising: a decoding unit that performs Viterbi decoding for obtaining a path of data of a main packet adjacent to the determined delayed packet data; and a reproduction unit that reproduces data decoded by the decoding unit Is a transmitter for performing ISDB-T data transmission,
    One or a plurality of transport streams includes a main packet and a delay packet obtained by delaying the main packet, and the main packet and the delay packet are alternately arranged in the same repetition unit, and each main packet and A TS remultiplexing unit that multiplexes a transport stream arranged so that a positional relationship with each corresponding delayed packet is a fixed relationship;
    A processing unit that performs processing including byte interleaving and convolutional coding on the transport stream multiplexed by the TS remultiplexing unit, and generates an OFDM transmission signal;
    A transmitter for transmitting the OFDM transmission signal;
    A transmitter characterized by comprising:
  8.  1又は複数のトランスポートストリームを、主パケットと、前記主パケットを遅延させた遅延パケットとを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置したトランスポートストリームに多重化するTS再多重部と、前記TS再多重部で多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理部と、前記OFDM送信信号を送信する送信部とを備えた送信機からISDB-T方式で伝送されたOFDM送信信号を受信して再生する受信機であって、
     前記OFDM送信信号を受信する受信部と、
     前記受信部にて受信した前記OFDM送信信号に対して、ビタビ復号を行なう復号部と、
     前記復号部にて復号されたデータを再生する再生部と、
     を含み、
     前記復号部は、前記ビタビ復号において、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求めることを特徴とする受信機。
    In one or more transport streams, main packets and delayed packets obtained by delaying the main packets are alternately repeated in the same repeating unit, and the positional relationship between each main packet and each corresponding delayed packet is constant. The TS remultiplexing unit that multiplexes the transport stream arranged so as to satisfy the relationship, and the transport stream multiplexed by the TS remultiplexing unit performs processing including byte interleaving and convolutional coding, A receiver that receives and reproduces an OFDM transmission signal transmitted by an ISDB-T system from a transmitter including a processing unit that generates an OFDM transmission signal and a transmission unit that transmits the OFDM transmission signal,
    A receiver for receiving the OFDM transmission signal;
    A decoding unit that performs Viterbi decoding on the OFDM transmission signal received by the reception unit;
    A reproducing unit for reproducing the data decoded by the decoding unit;
    Including
    In the Viterbi decoding, the decoding unit determines the delayed packet data corresponding to the main packet based on the previously decoded main packet data, and then adjoins the determined delayed packet data. A receiver characterized by obtaining a data path.
  9.  前記OFDM送信信号を受信する受信部と、前記受信部にて受信した前記OFDM送信信号に対して、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求めるビタビ復号を行なう復号部と、前記復号部にて復号されたデータを再生する再生部とを備えた受信機に対してISDB-T方式のデータ伝送を行う放送方法であって、
     1又は複数のトランスポートストリームを、主パケットと、前記主パケットを遅延させた遅延パケットとを含むとともに、前記主パケットと前記遅延パケットを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置したトランスポートストリームに多重化するTS再多重ステップと、
     前記TS再多重ステップで多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理ステップと、
     前記OFDM送信信号を送信する送信ステップと、
     を含むことを特徴とする放送方法。
    The receiving unit that receives the OFDM transmission signal, and the data of the delayed packet corresponding to the main packet is determined based on the data of the main packet that has been previously decoded for the OFDM transmission signal received by the receiving unit. A receiver comprising: a decoding unit that performs Viterbi decoding for obtaining a path of data of a main packet adjacent to the determined delayed packet data; and a reproduction unit that reproduces data decoded by the decoding unit Is a broadcasting method for performing ISDB-T data transmission for
    One or a plurality of transport streams includes a main packet and a delay packet obtained by delaying the main packet, and the main packet and the delay packet are alternately arranged in the same repetition unit, and each main packet and A TS re-multiplexing step for multiplexing the transport stream arranged so that the positional relationship with each corresponding delayed packet is a fixed relationship;
    Processing steps including performing byte interleaving and convolutional coding on the transport stream multiplexed in the TS remultiplexing step to generate an OFDM transmission signal;
    Transmitting the OFDM transmission signal; and
    A broadcast method comprising:
  10.  送信機にて実行されることにより、該送信機に請求項9の放送方法を実行させることを特徴とする放送プログラム。 A broadcast program that, when executed by a transmitter, causes the transmitter to execute the broadcast method of claim 9.
  11.  1又は複数のトランスポートストリームを、主パケットと、前記主パケットを遅延させた遅延パケットとを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置したトランスポートストリームに多重化するTS再多重部と、前記TS再多重部で多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理部と、前記OFDM送信信号を送信する送信部とを備えた送信機からISDB-T方式で伝送されたOFDM送信信号を受信して再生する受信再生方法であって、
     前記OFDM送信信号を受信する受信ステップと、
     前記受信ステップにて受信した前記OFDM送信信号に対して、ビタビ復号を行なう復号ステップと、
     前記復号ステップにて復号されたデータを再生する再生ステップと、
     を含み、
     前記復号ステップは、前記ビタビ復号において、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求めることを特徴とする受信再生方法。
    In one or more transport streams, main packets and delayed packets obtained by delaying the main packets are alternately repeated in the same repeating unit, and the positional relationship between each main packet and each corresponding delayed packet is constant. The TS remultiplexing unit that multiplexes the transport stream arranged so as to satisfy the relationship, and the transport stream multiplexed by the TS remultiplexing unit performs processing including byte interleaving and convolutional coding, A reception and reproduction method for receiving and reproducing an OFDM transmission signal transmitted by the ISDB-T method from a transmitter including a processing unit that generates an OFDM transmission signal and a transmission unit that transmits the OFDM transmission signal,
    Receiving the OFDM transmission signal; and
    A decoding step of performing Viterbi decoding on the OFDM transmission signal received in the receiving step;
    A reproduction step of reproducing the data decoded in the decoding step;
    Including
    In the Viterbi decoding, the decoding step determines the data of the delayed packet corresponding to the main packet based on the data of the main packet that has been decoded first, and then adjoins the data of the determined delayed packet. A receiving and reproducing method characterized in that a data path is obtained.
  12.  受信機にて実行されることにより、該受信機に請求項11の受信再生方法を実行させることを特徴とする受信再生プログラム。 A reception / playback program which, when executed by a receiver, causes the receiver to execute the reception / playback method according to claim 11.
  13.  送信機から受信機に対してISDB-T方式のデータ伝送を行う通信方法であって、
     1又は複数のトランスポートストリームを、主パケットと、前記主パケットを遅延させた遅延パケットとを含むトランスポートストリームに多重化するTS再多重ステップと、
     前記TS再多重ステップで多重化されたトランスポートストリームに対して、バイトインターリーブ及び畳み込み符号化を含む処理を行い、OFDM送信信号を生成する処理ステップと、
     前記OFDM送信信号を送信する送信ステップと、
     前記OFDM送信信号を受信する受信ステップと、
     前記受信ステップにて受信した前記OFDM送信信号に対して、ビタビ復号を行なう復号ステップと、
     前記復号ステップにて復号されたデータを再生する再生ステップとを備え、
     前記TS再多重ステップは、前記主パケットと前記遅延パケットを、同一の繰り返し単位で交互に、かつ各主パケットとそれに対応する各遅延パケットとの位置関係が一定の関係となるように配置し、
     前記復号ステップは、前記ビタビ復号において、先に復号されている主パケットのデータによって当該主パケットに対応する遅延パケットのデータを確定した上で、当該確定された遅延パケットのデータに隣接する主パケットのデータの経路を求めることを特徴とする通信方法。
    A communication method for performing ISDB-T data transmission from a transmitter to a receiver,
    A TS re-multiplexing step of multiplexing one or a plurality of transport streams into a transport stream including a main packet and a delayed packet obtained by delaying the main packet;
    Processing steps including performing byte interleaving and convolutional coding on the transport stream multiplexed in the TS remultiplexing step to generate an OFDM transmission signal;
    Transmitting the OFDM transmission signal; and
    Receiving the OFDM transmission signal; and
    A decoding step of performing Viterbi decoding on the OFDM transmission signal received in the receiving step;
    A reproduction step of reproducing the data decoded in the decoding step,
    In the TS remultiplexing step, the main packet and the delayed packet are alternately arranged in the same repeating unit, and the positional relationship between each main packet and each corresponding delayed packet is a fixed relationship,
    In the Viterbi decoding, the decoding step determines the data of the delayed packet corresponding to the main packet based on the data of the main packet that has been decoded first, and then adjoins the data of the determined delayed packet. A communication method characterized by obtaining a data path.
PCT/JP2012/007468 2011-12-08 2012-11-21 Broadcast system, transmitter and receiver for use in same, broadcast method and broadcast program, reception playback method and reception playback program, and communication method WO2013084430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-268506 2011-12-08
JP2011268506A JP2013121092A (en) 2011-12-08 2011-12-08 Broadcasting system, transmitter and receiver used therefor, broadcasting method and program, reception reproduction method and program

Publications (1)

Publication Number Publication Date
WO2013084430A1 true WO2013084430A1 (en) 2013-06-13

Family

ID=48573822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007468 WO2013084430A1 (en) 2011-12-08 2012-11-21 Broadcast system, transmitter and receiver for use in same, broadcast method and broadcast program, reception playback method and reception playback program, and communication method

Country Status (2)

Country Link
JP (1) JP2013121092A (en)
WO (1) WO2013084430A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965103B2 (en) * 2016-10-31 2021-11-10 日本放送協会 Remultiplexing equipment, separators and chips
JP7037330B2 (en) * 2016-10-31 2022-03-16 日本放送協会 Remultiplexing equipment, transmitters, chips, and programs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298437A (en) * 1998-04-10 1999-10-29 Sony Corp Demodulation method and demodulator
JP2007208868A (en) * 2006-02-06 2007-08-16 Univ Meijo Error correction apparatus, receiver, error correction method, and error correction program
JP2011182128A (en) * 2010-02-26 2011-09-15 Fujitsu Ten Ltd Broadcast receiver and error correction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298437A (en) * 1998-04-10 1999-10-29 Sony Corp Demodulation method and demodulator
JP2007208868A (en) * 2006-02-06 2007-08-16 Univ Meijo Error correction apparatus, receiver, error correction method, and error correction program
JP2011182128A (en) * 2010-02-26 2011-09-15 Fujitsu Ten Ltd Broadcast receiver and error correction method

Also Published As

Publication number Publication date
JP2013121092A (en) 2013-06-17

Similar Documents

Publication Publication Date Title
US11757962B2 (en) Multimedia streams which use control information to associate audiovisual streams
JP4352976B2 (en) Receiving apparatus and receiving method
US10601445B2 (en) Wireless transport framework with uncoded transport tunneling
JP7494338B2 (en) How to receive
KR20090001359A (en) Telematics terminal capable of receiving broadcast and method of processing broadcast signal
JP2007259050A (en) Mobile communication terminal, and program
JP2011519210A (en) Stagger casting using temporal expansion
JP2007306363A (en) Digital broadcast receiver
KR20090001402A (en) Telematics terminal capable of receiving broadcast and method of processing broadcast signal
WO2013084430A1 (en) Broadcast system, transmitter and receiver for use in same, broadcast method and broadcast program, reception playback method and reception playback program, and communication method
JP2009021900A (en) Simultaneous broadcast receiver
JP2006222557A (en) Receiver
JP6576827B2 (en) Packet transmission method, content reproduction method, packet transmission system and terminal
JP5260731B2 (en) Sending multimedia streams to mobile devices with variable training information
JP4413099B2 (en) Digital broadcast receiver
JP4073863B2 (en) Decoding circuit and digital broadcast receiving apparatus
JP7505613B2 (en) Transmitting device and transmitting method
JP4789206B2 (en) Terrestrial digital broadcast receiver
US20080235748A1 (en) Transmitting and receiving method and apparatus for digital television broadcasting data
KR20120025306A (en) Digital broadcast transmitter and digital broadcast receiver for 3d broadcasting, and methods for processing stream thereof
JP2004336190A (en) Receiving apparatus and receiving method
WO2013132745A1 (en) Broadcast system, transmitter and receiver used therein, reception and replay method and program, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855011

Country of ref document: EP

Kind code of ref document: A1