WO2013082858A1 - Single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter - Google Patents

Single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter Download PDF

Info

Publication number
WO2013082858A1
WO2013082858A1 PCT/CN2012/000589 CN2012000589W WO2013082858A1 WO 2013082858 A1 WO2013082858 A1 WO 2013082858A1 CN 2012000589 W CN2012000589 W CN 2012000589W WO 2013082858 A1 WO2013082858 A1 WO 2013082858A1
Authority
WO
WIPO (PCT)
Prior art keywords
power switch
power
filter
drain
source
Prior art date
Application number
PCT/CN2012/000589
Other languages
French (fr)
Chinese (zh)
Inventor
张犁
高峰
常东升
邢岩
Original Assignee
上海康威特吉能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海康威特吉能源技术有限公司 filed Critical 上海康威特吉能源技术有限公司
Publication of WO2013082858A1 publication Critical patent/WO2013082858A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention belongs to the technical field of power electronic converters, and relates to photovoltaic grid-connected power generation technology, and particularly relates to a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter. Background technique
  • Non-isolated PV grid-tied inverters have the absolute advantages of high efficiency, small size, light weight and low cost.
  • the switching action of the grid-connected inverter switching device may generate a high-frequency time-varying voltage acting on the parasitic capacitance, and the resulting leakage current may exceed the allowable range.
  • the generation of high-frequency leakage currents also causes conduction and radiation interference, increased harmonics and losses in the incoming network, and even compromises the safety of equipment and personnel.
  • the unipolar SPWM full-bridge grid-connected inverter has excellent differential model characteristics, such as high input DC voltage utilization and small inductance and current ripple of the filter inductor. But at the same time, the common mode voltage of the switching frequency pulsation (the amplitude of which is the input DC voltage) is generated, so that transformer isolation (low frequency or high frequency) needs to be added in the photovoltaic grid-connected application, but the high frequency pulsating common mode voltage is applied to the transformer. Insulation strength poses a threat, further increasing production costs.
  • the common-mode voltage of the bipolar SPWM full-bridge grid-connected inverter is basically constant, always equal to one-half of the input voltage of the photovoltaic cell, and almost no common-mode leakage current is generated.
  • bipolar SPWM has obvious disadvantages: Switching loss and AC filter inductance loss are twice that of unipolar SPWM, which affects the efficiency of the system. Therefore, one of the purposes of studying non-isolated photovoltaic grid-connected inverters is to construct a new freewheeling loop, and to make the freewheeling phase freewheeling loop disconnected from the photovoltaic cell output, so that the converter has both low leakage current and Excellent performance with high conversion efficiency.
  • Patent EP 1369985 A2 proposes to construct a new freewheeling circuit by adding a bidirectional controllable switch group between the midpoints of the bridge arms of the full bridge circuit (AC side); "Yu W, Lai J, Qian H, Hutchens C, High-efficiency MOSFET” Inverter with H6-type configuration for photovoltaic nonisoltaed ac-module applications, IEEE Trans, on Power Electronics, 2011, vol.26(4): 1253-1260”, proposes a Heric-based deformation topology, which can also achieve the freewheeling phase.
  • the solar cell terminal is disconnected from the grid, but there are always three switching devices in the current path, and the on-state loss is large.
  • the invention provides a single-phase full-bridge non-isolated photovoltaic grid-connected inverter with high conversion efficiency, in view of the problem that the existing non-isolated photovoltaic grid-connected inverter generates leakage current and has large loss.
  • the inverter has low leakage current and high conversion efficiency.
  • the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter has an input end connected to the solar cell and an output end connected to the power grid
  • the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter includes an input capacitor branch (1) and a network filter branch (3)
  • the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter further includes a full-bridge switching unit (2), the input capacitor branch (1),
  • the full bridge switch unit (2) and the network filter branch (3) are sequentially connected
  • the full bridge switch unit (2) includes a first power switch (&), a second power switch (&), and a third Power switch tube (&), fourth power switch tube (&), fifth power switch tube (&), sixth power switch tube (&), first power diode (A), second power diode (D 2 ) .
  • the input capacitor branch (1) includes an input capacitor (C de ); and the network filter branch (3) includes a first filter inductor ( ⁇ ), a second filter inductor ( ⁇ ), a filter capacitor (C:.); a positive terminal of the input capacitor (C dc ) is respectively connected to a positive output terminal of the solar cell, a drain of the first power switch transistor, and a drain of the third power switch transistor (&)
  • the negative terminals of the input capacitors (C dc ) are respectively connected to the negative output terminal of the solar cell, the source of the second power switch transistor (&), and the source of the fourth power switch transistor (&);
  • the source is respectively connected to the drain of the second power switch (&), the emitter of the fifth power switch (&), the anode of the second power diode (D 2 ), and one end of the first filter inductor (Li),
  • the source of the three power switch (&) is respectively connected to the collector of the sixth power switch (&) and the cathode of the second power dio
  • the input capacitance branch (1) includes an input capacitance (c de );
  • the network filter branch (3) includes a first filter inductor, a second filter inductor 2 ), and a filter Capacitor (c.);
  • the positive terminal of the input capacitor (c de ) is respectively connected to the positive output terminal of the solar cell, the drain of the first power switch), the drain of the third power switch (&), and the input capacitor
  • the negative terminals of (c dc ) are respectively connected to the negative output of the solar cell, the source of the second power switch (&), the source of the fourth power switch (&), and the source of the first power switch (&) Connecting the drain of the second power switch (&), the cathode of the first power diode ⁇ ), the anode of the second power diode (/3 ⁇ 4), one end of the first filter inductor ⁇ ,), and the third power switch tube ( The source of the &) is respectively connected to the collector of the sixth power switch (&) and the cathode of
  • the input capacitance branch (1) includes an input capacitance (c de );
  • the network filter branch (3) includes a first filter inductor ( ), a second filter inductor 2 ), and filtering Capacitor (c.);
  • the positive terminal of the input capacitor (c dc ) is respectively connected to the positive output of the solar cell, the drain of the first power switch (&), the drain of the third power switch (&), and the input
  • the negative ends of the capacitors (c de ) are respectively connected to the negative output terminal of the solar cell, the source of the second power switch (&), and the source of the fourth power switch (&);
  • the first power switch (&) The source is respectively connected to the collector of the fifth power switch (&), the cathode of the first power diode, and the drain of the second power switch (&) is respectively connected to the emitter of the fifth power switch (&), the second One end of the anode of the power diode (D 2 ), the first filter inductor, and the source of the third power
  • the input capacitance branch (1) includes an input capacitance (c de );
  • the network filter branch (3) includes a first filter inductor (Zo ), a second filter inductor ( ), a filter capacitor (C.); a positive terminal of the input capacitor (C de ) is respectively connected to a positive output terminal of the solar cell, a drain of the first power switch transistor (& ), and a drain of the third power switch transistor (&)
  • the negative terminals of the input capacitors (C de ) are respectively connected to the negative output terminal of the solar cell, the source of the second power switch transistor (&), and the source of the fourth power switch transistor (&);
  • the source is respectively connected to the collector of the fifth power switch (&), the cathode of the first power diode, and the drain of the second power switch (&) is respectively connected to the emitter of the fifth power switch (&)
  • the input capacitance branch (1) includes an input capacitance (c dc );
  • the network filter branch (3) includes a first filter inductor ( ⁇ ) and a second filter inductor (L 2 Filter capacitor (C.); the positive terminal of the input capacitor (C DC ) is respectively connected to the positive output terminal of the solar cell, the drain of the first power transistor (&), and the third power switch transistor (&) The drain, the negative terminal of the input capacitor (C dc ) is respectively connected to the negative output of the solar cell, the source of the second power switch (&), the source of the fourth power switch (&); the first power switch ( The source of the & ) is respectively connected to the drain of the second power switch (&), the collector of the fifth power switch (&), and the second power diode
  • One end of the cathode of (D 2 ), the first filter inductor, and the source of the third power switch (&) are respectively connected to the cathode of the first power diode (/ ⁇ ) and the set of the sixth power switch (&)
  • One end of the electrode, the second filter inductor 2 ), and the drain of the fourth power switch tube (&) are respectively connected to the anode of the second power diode (/3 ⁇ 4), the emitter of the sixth power switch tube (&), the fifth power
  • the emitter of the switch (&) is connected to the anode of the first power diode ( ⁇ );
  • the other end of the first filter inductor is connected to one end of the filter capacitor (c 0 ), one end of the grid (v g ), and the second filter
  • the other end of the inductor is connected to the other end of the filter capacitor (:.), and the other end of the grid (v g ).
  • the input capacitance branch (1) includes an input capacitance (C DE );
  • the network filter branch (3) includes a first filter inductor ( ⁇ ), a second filter inductor 2 ), a filter capacitor (c.); a positive terminal of the input capacitor (c de ) is respectively connected to a positive output terminal of the solar cell, a drain of the first power switch ( ), a drain of the third power switch (&), and an input
  • the negative ends of the capacitors (c de ) are respectively connected to the negative output of the solar cell, the source of the second power switch (&), the source of the fourth power switch (&), and the source of the first power switch (&)
  • the poles are respectively connected to the drain of the second power switch (&), the anode of the first power diode (A), the cathode of the second power diode (D 2 ), the first filter inductor, and the third power switch
  • the source of (&) is connected to the emitter of the fifth power switch (&), the collector of the sixth power switch
  • the input capacitance branch (1) includes an input capacitance (c dc );
  • the network filter branch (3) includes a first filter inductor ( ⁇ ), a second filter inductor 2 ), a filter capacitor (c 0 ); a positive terminal of the input capacitor (c de ) is respectively connected to a positive output terminal of the solar cell, a drain of the first power switch (&), and a drain of the third power switch (&)
  • the negative terminal of the input capacitor (c dc ) is respectively connected to the negative output of the solar cell, the source of the second power switch (&), and the source of the fourth power switch (&);
  • the first power switch (& The source is connected to the collector of the fifth power switch (&), the cathode of the second power diode (/3 ⁇ 4), the first filter inductor, and the drain of the second power switch (&) respectively Connecting the emitter of the fifth power switch (&), the anode of the first power diode ( ⁇ ), and the source of the third power switch (
  • the input capacitance branch (1) includes an input capacitance (c de );
  • the network filter branch (3) includes a first filter inductor ( ⁇ ), a second filter inductor 2 ), a filter capacitor (c.); a positive terminal of the input capacitor (c dc ) is respectively connected to a positive output terminal of the solar cell, a drain of the first power switch transistor (&), and a drain of the third power switch transistor (&)
  • the negative terminals of the input capacitors (c de ) are respectively connected to the negative output of the solar cell, the source of the second power switch (&), and the source of the fourth power switch (&); the first power switch (&) The source is respectively connected to the collector of the fifth power switch (&), the emitter of the sixth power switch (&), and the first filter inductor
  • the drain of the second power switch (&) is connected to the emitter of the fifth power switch (&), the anode of the first power diode, and the source of the third power switch (&)
  • the poles respectively connect the drain of the fourth power switch (&), the cathode of the first power diode (A), the anode of the second power diode (D 2 ), one end of the second filter inductor, and the sixth power switch (& a collector connected to the cathode of the second power diode (/3 ⁇ 4);
  • the other end of the first filter inductor ( ⁇ ) is connected to one end of the filter capacitor (c.), one end of the grid (v g ), and the second filter inductor 2
  • the other end of the power supply ( Vg ) is connected to the other end of the filter capacitor (:.).
  • FIG. 1 is a first embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology of the present invention
  • Example 2 is a circuit topology implementation of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention Example 2;
  • FIG. 3 is a third embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology of the present invention
  • FIG. 4 is a fourth embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology of the present invention.
  • FIG. 5 is a fifth embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology of the present invention.
  • FIG. 6 is a sixth embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology of the present invention.
  • FIG. 7 is a schematic diagram of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology according to the present invention.
  • FIG. 8 is a circuit topology example of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention
  • FIG. 9 is a driving principle waveform of the first embodiment of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention.
  • Figure 10a is an equivalent circuit diagram of each switch mode 1 of the first embodiment of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention
  • Figure 10b is an equivalent circuit diagram of each switch mode 2 of the first embodiment of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention
  • Figure 10c is an equivalent circuit diagram of each switch mode 3 of the first embodiment of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention
  • Figure 10d is an equivalent circuit diagram of each switch mode 4 of the first embodiment of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention.
  • t/ PV photovoltaic cell voltage
  • 1 input capacitor branch 2—improved full bridge switch unit
  • 3 input filter branch
  • v g grid
  • C de input capacitor
  • S ⁇ S 6 first ⁇ sixth power switch tube
  • Lj a first and second filter inductor, (:. a filter capacitor, v e - modulation signal, v st - triangular carrier signal, Vgsl ⁇ v gs6 - first to sixth power switch Drive voltage, ⁇ a time.
  • the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter provided by the invention is the same as the existing inverter in application, and the input end is connected with the solar battery, and the output end is connected with the power grid.
  • the present invention adds an auxiliary switch to the basic full-bridge circuit to realize the freewheeling phase of the freewheeling phase and the output end of the photovoltaic cell, and the freewheeling circuit potential is at or approximately one-half.
  • the battery voltage thereby suppressing and eliminating the leakage current of the non-isolated photovoltaic grid-connected inverter.
  • the single phase asymmetric full bridge non-isolated photovoltaic grid-connected inverter comprises an input capacitor branch (1), a full bridge switch unit (2) and a network filter branch (3).
  • the input capacitor branch (1), the full bridge switch unit (2), and the network filter branch (3) are sequentially connected, and the full bridge switch unit (2) includes the first power switch (&), the second power Switching tube (&), third power switch tube (&), fourth power switch tube (&), fifth power switch tube (&), sixth power switch tube ( ⁇ 3 ⁇ 4), first power diode (/ ⁇ ), the second power diode ( ⁇ 3 ⁇ 4).
  • a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 1 is shown, and the circuit composition is: input capacitor C de , first to sixth power switch tubes & ⁇ & first and second power diode A ⁇ / 3 ⁇ 4, a first, a second filter inductance L, L 2 and filter capacitor (: configuration; input capacitance C de forms an input capacitance branch (1), first to sixth.
  • Power switch tube & ⁇ S 6 , first and second power diodes D to D 2 form a full bridge switch unit (2), first and second filter inductors, ⁇ 2 and filter capacitors (:. Road (3).
  • the positive ends of the input capacitors C de are respectively connected to the positive output terminal of the solar cell, the drain of the first power switch tube & the drain of the third power switch tube, and the negative terminals of the input capacitor C de are respectively connected to the negative output of the solar cell End, the second power switch tube & the source, the fourth power switch tube & the source; the first power switch tube & the source are respectively connected to the second power switch tube & the drain, the fifth power switch tube & emitter, anode of the second power diode / 3 ⁇ 4, the end of the first filtering inductor, the third power switch & power source are connected to a cathode collector of the sixth diode and a second power switch S 6, the fourth The drain of the power switch tube & is connected to the anode of the first power diode A, the emitter of the sixth power switch tube, and one end of the second filter inductor, and the collector of the fifth power switch tube S 5 is connected to the first power diode A.
  • first filter inductor Li The other end is connected to the filter capacitor C.
  • One end, one end of the power grid v g , and the other end of the second filter inductor 2 are respectively connected to the filter capacitor c.
  • FIG. 2 there is shown a second embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit.
  • the circuit composition is the same as that of the first embodiment shown in FIG. 1, except that the first power diode is different.
  • emission cathode connected to a first end a of the filter inductor, the anode a is connected to a first power diode fifth power pole switch S 5, S fifth power switch connected to the collector of the second filtering inductor 5 / ⁇ end.
  • FIG. 3 a three-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 3 is shown.
  • the circuit composition is the same as that of the first embodiment shown in FIG. 1, but the circuit connection relationship is input.
  • the positive ends of the capacitor C de are respectively connected to the positive output terminal of the solar cell, the drain of the first power switch tube, the drain of the third power switch tube, and the negative terminal of the input capacitor C de are respectively connected to the negative output terminal of the solar cell, a source of the second power switch tube and a source of the fourth power switch tube; a source of the first power switch tube & a collector connected to the fifth power switch tube S 5 and a cathode of the first power diode A, respectively
  • the drains of the second power switch tube are respectively connected to the emitter of the fifth power switch tube, the anode of the second power diode D 2 , one end of the first filter inductor, and the source of the third power switch tube are respectively connected to the fourth power a switch transistor & a drain, a first power diode D, an anode, a sixth power switch tube & an emitter, a second filter inductor / ⁇ , a sixth power switch tube S 6 collector connected to a second power diode
  • FIG. 4 there is shown a fourth embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology, the circuit composition of which is the same as that of the third embodiment shown in FIG. 3, but the sixth power switch tube
  • the collector is connected to one end of the first filter inductor
  • the emitter of the sixth power switch tube is connected to the anode of the second power diode /3 ⁇ 4
  • the cathode of the second power diode D 2 is connected to one end of the second filter inductor 2 .
  • FIG. 5 a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 5 is shown, the circuit composition of which is the same as that of the first embodiment shown in FIG. 1, but the circuit connection relationship is
  • the positive ends of the capacitor C de are respectively connected to the positive output terminal of the solar cell, the drain of the first power switch tube, the drain of the third power switch tube, and the negative terminal of the input capacitor C de are respectively connected to the negative output terminal of the solar cell,
  • the source of the power switch tube & is connected to the drain of the second power switch tube, the collector of the fifth power switch tube, the cathode of the second power diode, the end of the first filter inductor, the third power switch tube &
  • the sources are respectively connected to the cathode of the first power diode A, the collector of the sixth power switch tube, and one end of the second filter inductor, and the drains of the fourth
  • FIG. 6 which is a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 6, the circuit composition is the same as that of the fifth embodiment shown in FIG. 5, but the anode of the first power diode A.
  • One end of the first filter inductor is connected, the cathode of the first power diode is connected to the collector of the fifth power switch tube, and the emitter of the fifth power switch tube is connected to one end of the second filter inductor.
  • FIG. 7 a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 7 is shown, the circuit composition of which is the same as that of the first embodiment shown in FIG. 1, but the circuit connection relationship is
  • the positive ends of the capacitor C de are respectively connected to the positive output terminal of the solar cell, the drain of the first power switch tube, the drain of the third power switch tube, and the negative terminal of the input capacitor C de are respectively connected to the negative output terminal of the solar cell, & second power source switch, the fourth switch & power source;
  • the first power source switch are respectively connected & fifth power switch & collector, a second power diode D the cathode 2, the first One end of the filter inductor ⁇ , the drain of the second power switch tube & is respectively connected to the emitter of the fifth power switch tube, the first power diode!
  • the anode, the third power switch tube & the source are respectively connected to the fourth power switch tube & the drain, the cathode of the first power diode A, the sixth power switch tube & the collector, the second filter inductor , sixth transmit power switch S 6 is connected to the anode of the second power diode ⁇ 3 ⁇ 4; the other end of the first filter inductance connected filter capacitor C.
  • One end, one end of the grid v g , and the other end of the second filter inductor are respectively connected to the filter capacitor C. On the other end, the other end of the grid v g .
  • a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 8 is shown, the circuit composition of which is the same as that of the seventh embodiment shown in FIG. 7, but the fifth power switch tube
  • the collector is connected to one end of the first filter inductor Li
  • the emitter of the fifth power switch tube is connected to the anode of the first power diode
  • the cathode of the first power diode A is connected to the second filter inductor L 2 One end.
  • the first power switch tube & the fourth power switch tube & drive signal are the same,
  • the positive half cycle is unipolar SPWM mode high frequency operation, negative half cycle off;
  • the second power switch tube & the third power switch tube & drive signal is the same, the grid current is turned off in the positive half cycle, the negative half cycle is unipolar SPWM
  • the mode is high frequency operation;
  • the driving signal of the fifth power switch tube is turned on in the positive half cycle, and is turned off in the negative half cycle;
  • the driving signal of the sixth power switch tube is turned on in the negative half cycle, and is turned off in the positive half cycle.
  • Figure 10 is a diagram showing the equivalent circuit diagrams of the switching modes of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 1.
  • Modal 1 The equivalent circuit is shown in Figure 10a.
  • the first, fourth, and fifth power switches are turned on, the other power switches are turned off, and the fifth power switch has a drive signal, but no current flows.
  • the incoming current flows through the first power switch tube &, the first filter inductor ⁇ , the grid v g , the second filter inductor 2 , the fourth power switch tube &,
  • Modal 2 The equivalent circuit is shown in Figure 10b.
  • the fifth power switch is turned on, the other power switch is turned off, and the fifth power switch tube & the first power diode A constitute a freewheeling circuit, and the freewheeling circuit potential Approximate to half of the photovoltaic cell voltage ⁇ / ⁇ ;
  • Modal 3 The equivalent circuit is shown in Figure 10c.
  • the second, third, and sixth power switch tubes are turned on, the other power switch tubes are turned off, and the incoming current flows through the third power switch tube & the sixth power.
  • Switch tube &, second filter inductor 2 , grid v g , first filter inductor ⁇ , second power switch tube & modal 4 equivalent circuit as shown in Figure 10d, sixth power switch tube & conduction, other The power switch tube is turned off, and the sixth power switch tube & the second power diode 23 ⁇ 4 constitute a freewheeling circuit, and the freewheeling circuit potential is approximately half of the photovoltaic cell voltage t PV .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter consists of an input capacitor branch (1), an improved full-bridge switch unit (2) and a grid-connected filter branch (3). The inverter adds an auxiliary switch on the basis of a full-bridge circuit to realize disengaging of a follow current loop at a follow current stage from an output of a photovoltaic battery, and the potential of the follow current loop is half or about half of the battery voltage, thus suppressing and eliminating the leak current of a non-isolated photovoltaic grid-connected inverter. As compared to the existing non-isolated photovoltaic grid-connected inverter topology, it has the following advantages: the number of switch tubes of the current flow passage is reduced, thus reducing on-state loss and improving the conversion efficiency; and it is suitable for a photovoltaic grid connection scenario without inverter isolation.

Description

单相不对称全桥非隔离光伏并网逆变器 技术领域  Single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter
本发明属于电力电子变换器技术领域, 涉及光伏并网发电技术, 具体 涉及一种单相不对称全桥非隔离光伏并网逆变器。 背景技术  The invention belongs to the technical field of power electronic converters, and relates to photovoltaic grid-connected power generation technology, and particularly relates to a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter. Background technique
非隔离型光伏并网逆变器拥有效率高、 体积小、 重量轻和成本低等绝 对优势。 但由于光伏电池板对地寄生电容的存在, 使得并网逆变器开关器 件的开关动作可能产生高频时变电压作用在寄生电容之上, 由此产生的漏 电流可能超出允许范围。 高频漏电流的产生还会带来传导和辐射干扰、 进 网电流谐波及损耗的增加, 甚至危及设备和人员的安全。  Non-isolated PV grid-tied inverters have the absolute advantages of high efficiency, small size, light weight and low cost. However, due to the presence of parasitic capacitance of the photovoltaic panel to the ground, the switching action of the grid-connected inverter switching device may generate a high-frequency time-varying voltage acting on the parasitic capacitance, and the resulting leakage current may exceed the allowable range. The generation of high-frequency leakage currents also causes conduction and radiation interference, increased harmonics and losses in the incoming network, and even compromises the safety of equipment and personnel.
单极性 SPWM全桥并网逆变器的差模特性优良,如输入直流电压利用 率高和滤波电感电流脉动量小等受到广泛关注。 但同时产生了开关频率脉 动的共模电压(其幅值为输入直流电压), 使得在光伏并网应用场合需要加 入变压器隔离(低频或高频), 但高频脉动的共模电压对变压器的绝缘强度 构成威胁, 进一步增加了制作成本。双极性 SPWM全桥并网逆变器共模电 压基本恒定, 始终等于光伏电池输入电压的二分之一, 几乎不会产生共模 漏电流。 然而与单极性 SPWM相比, 双极性 SPWM存在明显不足: 开关 损耗和交流滤波电感损耗均是单极性 SPWM的两倍, 影响了***的效率。 因此,研究非隔离光伏并网逆变器的目的之一就是如何构成新的续流回路, 且使得续流阶段续流回路与光伏电池输出端断开, 从而使得变换器同时具 有低漏电流和高变换效率的优良性能。  The unipolar SPWM full-bridge grid-connected inverter has excellent differential model characteristics, such as high input DC voltage utilization and small inductance and current ripple of the filter inductor. But at the same time, the common mode voltage of the switching frequency pulsation (the amplitude of which is the input DC voltage) is generated, so that transformer isolation (low frequency or high frequency) needs to be added in the photovoltaic grid-connected application, but the high frequency pulsating common mode voltage is applied to the transformer. Insulation strength poses a threat, further increasing production costs. The common-mode voltage of the bipolar SPWM full-bridge grid-connected inverter is basically constant, always equal to one-half of the input voltage of the photovoltaic cell, and almost no common-mode leakage current is generated. However, compared with unipolar SPWM, bipolar SPWM has obvious disadvantages: Switching loss and AC filter inductance loss are twice that of unipolar SPWM, which affects the efficiency of the system. Therefore, one of the purposes of studying non-isolated photovoltaic grid-connected inverters is to construct a new freewheeling loop, and to make the freewheeling phase freewheeling loop disconnected from the photovoltaic cell output, so that the converter has both low leakage current and Excellent performance with high conversion efficiency.
专利 EP 1369985 A2提出在全桥电路的桥臂中点间 (交流侧) 加入双 向可控开关组构造新的续流回路; 文献" Yu W, Lai J, Qian H, Hutchens C, High-efficiency MOSFET inverter with H6-type configuration for photovoltaic nonisoltaed ac-module applications, IEEE Trans, on Power Electronics, 2011, vol.26(4): 1253-1260", 提出一种基于 Heric的变形拓扑, 同样可以实现续 流阶段太阳能电池端与电网脱离, 但电流通路始终存在三个开关器件, 通 态损耗大。 文献"张兴, 孙龙林, 许颇, 赵为, 曹仁贤, 单相非隔离型光伏 并网***中共模电流抑制的研究,太阳能学报, 2009, vol.30(9): 1202-1208", 同样提出一种基于 Heric 的变形拓扑, 但电流通路始终也存在三个开关器 件, 通态损耗大。 发明内容 Patent EP 1369985 A2 proposes to construct a new freewheeling circuit by adding a bidirectional controllable switch group between the midpoints of the bridge arms of the full bridge circuit (AC side); "Yu W, Lai J, Qian H, Hutchens C, High-efficiency MOSFET" Inverter with H6-type configuration for photovoltaic nonisoltaed ac-module applications, IEEE Trans, on Power Electronics, 2011, vol.26(4): 1253-1260", proposes a Heric-based deformation topology, which can also achieve the freewheeling phase. The solar cell terminal is disconnected from the grid, but there are always three switching devices in the current path, and the on-state loss is large. Literature "Zhang Xing, Sun Longlin, Xu Pan, Zhao Wei, Cao Renxian, Single-phase non-isolated photovoltaic Research on common mode current suppression in grid-connected systems, Journal of Solar Energy, 2009, vol.30(9): 1202-1208", also proposes a deformation topology based on Heric, but there are always three switching devices in the current path. The loss is large.
本发明针对现有非隔离型光伏并网逆变器产生漏电流且损耗大等问 题, 而提供一种具有较高变换效率的单相全桥非隔离光伏并网逆变器。 该 逆变器具有低漏电流和高变换效率的性能。  The invention provides a single-phase full-bridge non-isolated photovoltaic grid-connected inverter with high conversion efficiency, in view of the problem that the existing non-isolated photovoltaic grid-connected inverter generates leakage current and has large loss. The inverter has low leakage current and high conversion efficiency.
为了达到上述目的, 本发明采用如下的技术方案:  In order to achieve the above object, the present invention adopts the following technical solutions:
单相不对称全桥非隔离光伏并网逆变器,其输入端与太阳能电池连接, 输出端与电网连接, 所述单相不对称全桥非隔离光伏并网逆变器包括输入 电容支路(1 )和进网滤波器支路(3 ), 所述单相不对称全桥非隔离光伏并 网逆变器还包括全桥开关单元 (2), 所述输入电容支路 (1 )、 全桥开关单 元 (2)、 进网滤波器支路 (3 ) 依次连接, 所述全桥开关单元 (2 ) 包括第 一功率开关管 (& )、 第二功率开关管 (&)、 第三功率开关管 ( &)、 第四 功率开关管 (&)、 第五功率开关管 ( &)、 第六功率开关管 (&)、 第一功 率二极管 (A )、 第二功率二极管 (D2)。 The single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter has an input end connected to the solar cell and an output end connected to the power grid, and the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter includes an input capacitor branch (1) and a network filter branch (3), the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter further includes a full-bridge switching unit (2), the input capacitor branch (1), The full bridge switch unit (2) and the network filter branch (3) are sequentially connected, and the full bridge switch unit (2) includes a first power switch (&), a second power switch (&), and a third Power switch tube (&), fourth power switch tube (&), fifth power switch tube (&), sixth power switch tube (&), first power diode (A), second power diode (D 2 ) .
作为本发明的一实例, 所述输入电容支路 (1 ) 包括输入电容 (Cde); 进网滤波器支路 (3 ) 包括第一滤波电感 (^)、 第二滤波电感 (^)、 滤波 电容 (C:。); 所述输入电容 ( Cdc ) 的正端分别连接太阳能电池正输出端、 第一功率开关管( )的漏极、第三功率开关管(&)的漏极,输入电容(Cdc) 的负端分别连接太阳能电池负输出端、 第二功率开关管 (&) 的源极、 第 四功率开关管(&)的源极; 第一功率开关管(& ) 的源极分别连接第二功 率开关管(&) 的漏极、 第五功率开关管(&)的发射极、 第二功率二极管 (D2 ) 的阳极、 第一滤波电感 (Li )的一端, 第三功率开关管(&)的源极 分别连接第六功率开关管 (&) 的集电极和第二功率二极管 (D2 ) 的阴极, 第四功率开关管 (&) 的漏极分别连接第一功率二极管 (/^ ) 的阳极、 第 六功率开关管(&) 的发射极、 第二滤波电感 2)的一端, 第五功率开关 管 (&) 的集电极连接第一功率二极管 (Α ) 的阴极; 第一滤波电感 (L、) 的另一端分别连接滤波电容 ( :。) 的一端、 电网 g) 的一端, 第二滤波 电感 2) 的另一端分别连接滤波电容( 。) 的另一端、 电网 (Vg) 的另一 顺。 As an example of the present invention, the input capacitor branch (1) includes an input capacitor (C de ); and the network filter branch (3) includes a first filter inductor (^), a second filter inductor (^), a filter capacitor (C:.); a positive terminal of the input capacitor (C dc ) is respectively connected to a positive output terminal of the solar cell, a drain of the first power switch transistor, and a drain of the third power switch transistor (&) The negative terminals of the input capacitors (C dc ) are respectively connected to the negative output terminal of the solar cell, the source of the second power switch transistor (&), and the source of the fourth power switch transistor (&); The source is respectively connected to the drain of the second power switch (&), the emitter of the fifth power switch (&), the anode of the second power diode (D 2 ), and one end of the first filter inductor (Li), The source of the three power switch (&) is respectively connected to the collector of the sixth power switch (&) and the cathode of the second power diode (D 2 ), and the drains of the fourth power switch (&) are respectively connected to the first The anode of the power diode (/^), the emitter of the sixth power switch (&), and the second filter At one end of the sense 2 ), the collector of the fifth power switch (&) is connected to the cathode of the first power diode (Α); the other end of the first filter inductor (L,) is connected to one end of the filter capacitor (:.), One end of the grid g ), the second filter The other end of the inductor 2 ) is connected to the other end of the filter capacitor (.), and the other end of the grid ( Vg ).
作为本发明的另一实例, 所述输入电容支路(1)包括输入电容(cde); 进网滤波器支路 (3) 包括第一滤波电感 , )、 第二滤波电感 2)、 滤波 电容 (c。); 所述输入电容 (cde) 的正端分别连接太阳能电池正输出端、 第一功率开关管 )的漏极、第三功率幵关管(&)的漏极,输入电容 (cdc) 的负端分别连接太阳能电池负输出端、 第二功率开关管 (&) 的源极、 第 四功率开关管(&) 的源极; 第一功率开关管(& ) 的源极分别连接第二功 率开关管 (&) 的漏极、 第一功率二极管 ^) 的阴极、 第二功率二极管 (/¾) 的阳极、 第一滤波电感 α、)的一端, 第三功率开关管(&)的源极 分别连接第六功率开关管 (&) 的集电极、 第二功率二极管 ω2) 的阴极, 第四功率开关管 (s4) 的漏极分别连接第五功率开关管(&)的集电极、 第 六功率幵关管(&) 的发射极、 第二滤波电感 2) 的一端, 第五功率开关 管 (&) 的发射极连接第一功率二极管 (A) 的阳极; 第一滤波电感 (^ ) 的另一端分别连接滤波电容 ( C0 ) 的一端、 电网 (Vg) 的一端, 第二滤波 电感 2) 的另一端分别连接滤波电容( :。) 的另一端、 电网 (Vg) 的另一 端。 As another example of the present invention, the input capacitance branch (1) includes an input capacitance (c de ); the network filter branch (3) includes a first filter inductor, a second filter inductor 2 ), and a filter Capacitor (c.); the positive terminal of the input capacitor (c de ) is respectively connected to the positive output terminal of the solar cell, the drain of the first power switch), the drain of the third power switch (&), and the input capacitor The negative terminals of (c dc ) are respectively connected to the negative output of the solar cell, the source of the second power switch (&), the source of the fourth power switch (&), and the source of the first power switch (&) Connecting the drain of the second power switch (&), the cathode of the first power diode ^), the anode of the second power diode (/3⁄4), one end of the first filter inductor α,), and the third power switch tube ( The source of the &) is respectively connected to the collector of the sixth power switch (&) and the cathode of the second power diode ω 2 ), and the drains of the fourth power switch (s 4 ) are respectively connected to the fifth power switch (& ) collector, a sixth power switch tube Jian (&) emitter, a second filter inductor 2) a Transmitting, fifth power switch (&) of a first power diode connected to an anode electrode (A); and another end of the first filtering inductor (^) are connected to the filter capacitor (C 0), the end of the grid (Vg) of The other end of the second filter inductor 2 ) is connected to the other end of the filter capacitor (:.) and the other end of the grid ( Vg ).
作为本发明的又一实例, 所述输入电容支路(1)包括输入电容(cde); 进网滤波器支路 (3) 包括第一滤波电感 ( )、 第二滤波电感 2)、 滤波 电容 (c。); 所述输入电容 ( cdc) 的正端分别连接太阳能电池正输出端、 第一功率开关管(& )的漏极、第三功率开关管(&)的漏极,输入电容(cde) 的负端分别连接太阳能电池负输出端、 第二功率幵关管 (&) 的源极、 第 四功率开关管(&) 的源极; 第一功率开关管(& ) 的源极分别连接第五功 率开关管 (&) 的集电极、 第一功率二极管 的阴极, 第二功率开关 管(&)的漏极分别连接第五功率开关管(&)的发射极、 第二功率二极管 (D2) 的阳极、 第一滤波电感 ,)的一端, 第三功率开关管(&) 的源极 分别连接第四功率开关管 (&) 的漏极、 第一功率二极管 的阳极、 第六功率开关管(&) 的发射极、 第二滤波电感 (L 的一端, 第六功率开 关管(&)的集电极连接第二功率二极管(i¾)的阴极; 第一滤波电感 的另一端分别连接滤波电容 ( :。) 的一端、 电网 (Vg) 的一端, 第二滤波 电感( 2) 的另一端分别连接滤波电容 ( c0) 的另一端、 电网 (Vg) 的另一 而。 As still another example of the present invention, the input capacitance branch (1) includes an input capacitance (c de ); the network filter branch (3) includes a first filter inductor ( ), a second filter inductor 2 ), and filtering Capacitor (c.); the positive terminal of the input capacitor (c dc ) is respectively connected to the positive output of the solar cell, the drain of the first power switch (&), the drain of the third power switch (&), and the input The negative ends of the capacitors (c de ) are respectively connected to the negative output terminal of the solar cell, the source of the second power switch (&), and the source of the fourth power switch (&); the first power switch (&) The source is respectively connected to the collector of the fifth power switch (&), the cathode of the first power diode, and the drain of the second power switch (&) is respectively connected to the emitter of the fifth power switch (&), the second One end of the anode of the power diode (D 2 ), the first filter inductor, and the source of the third power switch (&) are respectively connected to the drain of the fourth power switch (&), the anode of the first power diode, The sixth power switch tube (&) emitter, the second filter inductor (one end of L, the first The collector of the six power switch (&) is connected to the cathode of the second power diode (i3⁄4); the other end of the first filter inductor is connected to one end of the filter capacitor (:.), one end of the grid ( Vg ), and the second filter The other end of the inductor ( 2 ) is connected to the other end of the filter capacitor ( c 0 ) and the other end of the grid ( Vg ).
作为本发明的又一实例, 所述输入电容支路(1 )包括输入电容(cde); 进网滤波器支路 (3 ) 包括第一滤波电感 (Zo )、 第二滤波电感 ( )、 滤波 电容 (C。); 所述输入电容 (Cde) 的正端分别连接太阳能电池正输出端、 第一功率开关管(& )的漏极、第三功率开关管(&)的漏极,输入电容(Cde) 的负端分别连接太阳能电池负输出端、 第二功率开关管 (&) 的源极、 第 四功率开关管(&) 的源极; 第一功率开关管(& ) 的源极分别连接第五功 率开关管 (&) 的集电极、 第一功率二极管 的阴极, 第二功率开关 管(&) 的漏极分别连接第五功率幵关管(&)的发射极、 第六功率开关管 (S6) 的集电极、 第一滤波电感 (L、) 的一端, 第三功率开关管 (&) 的源 极分别连接第四功率幵关管 (&) 的漏极、 第一功率二极管 ( ) 的阳极、 第二功率二极管 (z¾) 的阴极、 第二滤波电感 2) 的一端, 第六功率开 关管(&)的发射极连接第二功率二极管(i¾)的阳极;第一滤波电感 的另一端分别连接滤波电容 (c。) 的一端、 电网 (vg) 的一端, 第二滤波 电感 2) 的另一端分别连接滤波电容(c:。) 的另一端、 电网 (Vg) 的另一 端。 As still another example of the present invention, the input capacitance branch (1) includes an input capacitance (c de ); the network filter branch (3) includes a first filter inductor (Zo ), a second filter inductor ( ), a filter capacitor (C.); a positive terminal of the input capacitor (C de ) is respectively connected to a positive output terminal of the solar cell, a drain of the first power switch transistor (& ), and a drain of the third power switch transistor (&) The negative terminals of the input capacitors (C de ) are respectively connected to the negative output terminal of the solar cell, the source of the second power switch transistor (&), and the source of the fourth power switch transistor (&); The source is respectively connected to the collector of the fifth power switch (&), the cathode of the first power diode, and the drain of the second power switch (&) is respectively connected to the emitter of the fifth power switch (&) The collector of the six power switch tube (S 6 ), one end of the first filter inductor (L,), and the source of the third power switch tube (&) are respectively connected to the drain of the fourth power switch (&), An anode of a power diode ( ), a cathode of a second power diode (z3⁄4), a second filter One end of the inductor 2 ), the emitter of the sixth power switch (&) is connected to the anode of the second power diode (i3⁄4); the other end of the first filter inductor is connected to one end of the filter capacitor (c.), the grid (v g At one end, the other end of the second filter inductor 2 ) is connected to the other end of the filter capacitor (c:.) and the other end of the grid ( Vg ).
作为本发明的又一实例, 所述输入电容支路(1 )包括输入电容(cdc); 进网滤波器支路 (3 ) 包括第一滤波电感 (^)、 第二滤波电感 (L2)、 滤波 电容 (C。); 所述输入电容 ( CDC) 的正端分别连接太阳能电池正输出端、 第一功率幵关管(& )的漏极、第三功率开关管(&)的漏极,输入电容(Cdc) 的负端分别连接太阳能电池负输出端、 第二功率开关管 (&) 的源极、 第 四功率开关管(&) 的源极; 第一功率开关管(& ) 的源极分别连接第二功 率开关管(&) 的漏极、 第五功率幵关管(&)的集电极、 第二功率二极管As still another example of the present invention, the input capacitance branch (1) includes an input capacitance (c dc ); the network filter branch (3) includes a first filter inductor (^) and a second filter inductor (L 2 Filter capacitor (C.); the positive terminal of the input capacitor (C DC ) is respectively connected to the positive output terminal of the solar cell, the drain of the first power transistor (&), and the third power switch transistor (&) The drain, the negative terminal of the input capacitor (C dc ) is respectively connected to the negative output of the solar cell, the source of the second power switch (&), the source of the fourth power switch (&); the first power switch ( The source of the & ) is respectively connected to the drain of the second power switch (&), the collector of the fifth power switch (&), and the second power diode
(D2) 的阴极、 第一滤波电感 , )的一端, 第三功率开关管(&) 的源极 分别连接第一功率二极管 (/^) 的阴极、 第六功率开关管 (&) 的集电极、 第二滤波电感 2)的一端, 第四功率开关管(&)的漏极分别连接第二功 率二极管 (/¾) 的阳极、 第六功率开关管 (&) 的发射极, 第五功率开关 管 (&) 的发射极连接第一功率二极管 (Α) 的阳极; 第一滤波电感 的另一端分别连接滤波电容 ( c0) 的一端、 电网 (vg ) 的一端, 第二滤波 电感 的另一端分别连接滤波电容(:。) 的另一端、 电网 (vg) 的另一 顺。 One end of the cathode of (D 2 ), the first filter inductor, and the source of the third power switch (&) are respectively connected to the cathode of the first power diode (/^) and the set of the sixth power switch (&) One end of the electrode, the second filter inductor 2 ), and the drain of the fourth power switch tube (&) are respectively connected to the anode of the second power diode (/3⁄4), the emitter of the sixth power switch tube (&), the fifth power The emitter of the switch (&) is connected to the anode of the first power diode (Α); the other end of the first filter inductor is connected to one end of the filter capacitor (c 0 ), one end of the grid (v g ), and the second filter The other end of the inductor is connected to the other end of the filter capacitor (:.), and the other end of the grid (v g ).
作为本发明的又一实例, 所述输入电容支路(1 )包括输入电容(CDE); 进网滤波器支路 (3) 包括第一滤波电感 (^ )、 第二滤波电感 2)、 滤波 电容 (c。); 所述输入电容 (cde) 的正端分别连接太阳能电池正输出端、 第一功率开关管( )的漏极、第三功率开关管(&)的漏极,输入电容(cde) 的负端分别连接太阳能电池负输出端、 第二功率开关管 (&) 的源极、 第 四功率开关管(&) 的源极; 第一功率开关管(& ) 的源极分别连接第二功 率开关管 (&) 的漏极、 第一功率二极管 (A) 的阳极、 第二功率二极管 (D2 ) 的阴极、 第一滤波电感 ,) 的一端, 第三功率开关管(&) 的源极 分别连接第五功率开关管(&)的发射极、第六功率开关管(&)的集电极、 第二滤波电感 (L2)的一端, 第四功率开关管(&)的漏极分别连接第二功 率二极管 (z¾) 的阳极、 第六功率开关管 (&) 的发射极, 第五功率开关 管 (&) 的集电极连接第一功率二极管 (A) 的阴极; 第一滤波电感 ( ) 的另一端分别连接滤波电容 (c。) 的一端、 电网 (vg) 的一端, 第二滤波 电感 2) 的另一端分别连接滤波电容 (c0) 的另一端、 电网 (Vg) 的另一 端。 ' As still another example of the present invention, the input capacitance branch (1) includes an input capacitance (C DE ); the network filter branch (3) includes a first filter inductor (^), a second filter inductor 2 ), a filter capacitor (c.); a positive terminal of the input capacitor (c de ) is respectively connected to a positive output terminal of the solar cell, a drain of the first power switch ( ), a drain of the third power switch (&), and an input The negative ends of the capacitors (c de ) are respectively connected to the negative output of the solar cell, the source of the second power switch (&), the source of the fourth power switch (&), and the source of the first power switch (&) The poles are respectively connected to the drain of the second power switch (&), the anode of the first power diode (A), the cathode of the second power diode (D 2 ), the first filter inductor, and the third power switch The source of (&) is connected to the emitter of the fifth power switch (&), the collector of the sixth power switch (&), the end of the second filter inductor (L 2 ), and the fourth power switch (& The drain of the second power diode (z3⁄4) is connected to the anode of the second power diode (z3⁄4) &) the emitter, the collector of the fifth power switch (&) is connected to the cathode of the first power diode (A); the other end of the first filter inductor ( ) is connected to one end of the filter capacitor (c.), the grid ( One end of v g ), the other end of the second filter inductor 2 ) is connected to the other end of the filter capacitor (c 0 ) and the other end of the power grid ( Vg ). '
作为本发明的又一实例, 所述输入电容支路(1 )包括输入电容(cdc); 进网滤波器支路 (3) 包括第一滤波电感 (^ )、 第二滤波电感 2)、 滤波 电容 ( c0); 所述输入电容 (cde) 的正端分别连接太阳能电池正输出端、 第一功率幵关管(& )的漏极、第三功率开关管(&)的漏极,输入电容(cdc) 的负端分别连接太阳能电池负输出端、 第二功率开关管 (&) 的源极、 第 四功率幵关管(&)的源极; 第一功率开关管(& ) 的源极分别连接第五功 率开关管 (&) 的集电极、 第二功率二极管 (/¾) 的阴极、 第一滤波电感 ,)的一端, 第二功率开关管(&)的漏极分别连接第五功率开关管(&) 的发射极、 第一功率二极管 (Α ) 的阳极, 第三功率开关管 (&) 的源极 分别连接第四功率开关管 (&) 的漏极、 第一功率二极管 (D 的阴极、 第六功率开关管(&) 的集电极、 第二滤波电感 2) 的一端, 第六功率开 关管(&)的发射极连接第二功率二极管(Α)的阳极; 第一滤波电感 !) 的另一端分别连接滤波电容 (c:。) 的一端、 电网 (vg) 的一端, 第二滤波 电感 2) 的另一端分别连接滤波电容(c。) 的另一端、 电网 (Vg) 的另一 端。 As still another example of the present invention, the input capacitance branch (1) includes an input capacitance (c dc ); the network filter branch (3) includes a first filter inductor (^), a second filter inductor 2 ), a filter capacitor (c 0 ); a positive terminal of the input capacitor (c de ) is respectively connected to a positive output terminal of the solar cell, a drain of the first power switch (&), and a drain of the third power switch (&) The negative terminal of the input capacitor (c dc ) is respectively connected to the negative output of the solar cell, the source of the second power switch (&), and the source of the fourth power switch (&); the first power switch (& The source is connected to the collector of the fifth power switch (&), the cathode of the second power diode (/3⁄4), the first filter inductor, and the drain of the second power switch (&) respectively Connecting the emitter of the fifth power switch (&), the anode of the first power diode (Α), and the source of the third power switch (&) are respectively connected to the drain of the fourth power switch (&), first Power diode (the cathode of D, the collector of the sixth power switch (&), the second filter inductor 2 ) At one end, the emitter of the sixth power switch (&) is connected to the anode of the second power diode (Α); the other end of the first filter inductor!) is connected to one end of the filter capacitor (c:.), the grid (v g One end, the second filter The other end of the inductor 2) are connected to the other end of the filter capacitor (C.), And the other end of the grid (Vg) of.
作为本发明的又一实例, 所述输入电容支路(1 )包括输入电容(cde); 进网滤波器支路 (3) 包括第一滤波电感 (^ )、 第二滤波电感 2)、 滤波 电容 (c。); 所述输入电容 (cdc) 的正端分别连接太阳能电池正输出端、 第一功率开关管(& )的漏极、第三功率开关管(&)的漏极,输入电容(cde) 的负端分别连接太阳能电池负输出端、 第二功率开关管 (&) 的源极、 第 四功率开关管(&) 的源极; 第一功率开关管(& ) 的源极分别连接第五功 率开关管(&) 的集电极、 第六功率开关管(&) 的发射极、 第一滤波电感As still another example of the present invention, the input capacitance branch (1) includes an input capacitance (c de ); the network filter branch (3) includes a first filter inductor (^), a second filter inductor 2 ), a filter capacitor (c.); a positive terminal of the input capacitor (c dc ) is respectively connected to a positive output terminal of the solar cell, a drain of the first power switch transistor (&), and a drain of the third power switch transistor (&) The negative terminals of the input capacitors (c de ) are respectively connected to the negative output of the solar cell, the source of the second power switch (&), and the source of the fourth power switch (&); the first power switch (&) The source is respectively connected to the collector of the fifth power switch (&), the emitter of the sixth power switch (&), and the first filter inductor
(!, )的一端, 第二功率开关管(&)的漏极分别连接第五功率开关管(&) 的发射极、 第一功率二极管 ( 的阳极, 第三功率开关管 (&) 的源极 分别连接第四功率开关管 (&) 的漏极、 第一功率二极管 (A ) 的阴极、 第二功率二极管 (D2) 的阳极、 第二滤波电感 的一端, 第六功率开 关管(&)的集电极连接第二功率二极管(/¾)的阴极; 第一滤波电感(^ ) 的另一端分别连接滤波电容 (c。) 的一端、 电网 (vg ) 的一端, 第二滤波 电感 2) 的另一端分别连接滤波电容( :。) 的另一端、 电网 (Vg) 的另一 端。 At one end of (!, ), the drain of the second power switch (&) is connected to the emitter of the fifth power switch (&), the anode of the first power diode, and the source of the third power switch (&) The poles respectively connect the drain of the fourth power switch (&), the cathode of the first power diode (A), the anode of the second power diode (D 2 ), one end of the second filter inductor, and the sixth power switch (& a collector connected to the cathode of the second power diode (/3⁄4); the other end of the first filter inductor (^) is connected to one end of the filter capacitor (c.), one end of the grid (v g ), and the second filter inductor 2 The other end of the power supply ( Vg ) is connected to the other end of the filter capacitor (:.).
本发明采用上述技术方案, 具有以下有益效果:  The invention adopts the above technical solution and has the following beneficial effects:
( 1 )在基本全桥电路基础上加入辅助开关实现续流阶段续流回路与光 伏电池输出端脱离,且续流回路电位处于或近似处于二分之一的电池电压, 从而抑制和消除非隔离光伏并网逆变器的漏电流;  (1) Adding an auxiliary switch to the basic full-bridge circuit to realize the freewheeling phase, the freewheeling circuit is separated from the output end of the photovoltaic cell, and the freewheeling circuit potential is at or approximately one-half of the battery voltage, thereby suppressing and eliminating non-isolation. Leakage current of photovoltaic grid-connected inverter;
(2)相对于现有非隔离光伏并网逆变器拓扑, 具有如下优点: 减少了 电流通路的开关管数量, 从而降低了通态损耗, 提高了变换效率;  (2) Compared with the existing non-isolated photovoltaic grid-connected inverter topology, the following advantages are obtained: the number of switching tubes of the current path is reduced, thereby reducing the on-state loss and improving the conversion efficiency;
(3 ) 适用于无变压器隔离的光伏并网场合。 附图说明  (3) Applicable to photovoltaic grid-connected applications without transformer isolation. DRAWINGS
以下结合附图和具体实施方式来进一步说明本发明。  The invention is further described below in conjunction with the drawings and specific embodiments.
图 1 是本发明的单相不对称全桥非隔离光伏并网逆变器电路拓扑实施 例一;  1 is a first embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology of the present invention;
图 2是本发明的单相不对称全桥非隔离光伏并网逆变器电路拓扑实施 例二; 2 is a circuit topology implementation of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention Example 2;
图 3是本发明的单相不对称全桥非隔离光伏并网逆变器电路拓扑实施 例三;  3 is a third embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology of the present invention;
图 4是本发明的单相不对称全桥非隔离光伏并网逆变器电路拓扑实施 例四;  4 is a fourth embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology of the present invention;
图 5是本发明的单相不对称全桥非隔离光伏并网逆变器电路拓扑实施 例五;  5 is a fifth embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology of the present invention;
图 6是本发明的单相不对称全桥非隔离光伏并网逆变器电路拓扑实施 例六;  6 is a sixth embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology of the present invention;
图 7是本发明的单相不对称全桥非隔.离光伏并网逆变器电路拓扑实施 例七;  7 is a schematic diagram of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology according to the present invention;
图 8是本发明的单相不对称全桥非隔离光伏并网逆变器电路拓扑实施 例八;  8 is a circuit topology example of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention;
图 9是本发明的单相不对称全桥非隔离光伏并网逆变器实施例一的驱 动原理波形;  9 is a driving principle waveform of the first embodiment of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention;
图 10a是本发明的单相不对称全桥非隔离光伏并网逆变器实施例一的 各开关模态 1的等效电路图;  Figure 10a is an equivalent circuit diagram of each switch mode 1 of the first embodiment of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention;
图 10b是本发明的单相不对称全桥非隔离光伏并网逆变器实施例一的 各开关模态 2的等效电路图;  Figure 10b is an equivalent circuit diagram of each switch mode 2 of the first embodiment of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention;
图 10c是本发明的单相不对称全桥非隔离光伏并网逆变器实施例一的 各开关模态 3的等效电路图;  Figure 10c is an equivalent circuit diagram of each switch mode 3 of the first embodiment of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention;
图 10d是本发明的单相不对称全桥非隔离光伏并网逆变器实施例一的 各开关模态 4的等效电路图。  Figure 10d is an equivalent circuit diagram of each switch mode 4 of the first embodiment of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter of the present invention.
图中符号说明:  The symbols in the figure indicate:
t/PV—光伏电池电压, 1一输入电容支路, 2—改进全桥开关单元, 3— 进网滤波器支路, vg—电网, Cde—输入电容, S^S6—第一〜第六功率开关 管, Lj 一第一、 第二滤波电感, (:。一滤波电容, ve—调制信号, vst—三 角载波信号, Vgsl~vgs6—第一〜第六功率开关管的驱动电压, ί一时间。 具体实施方式 为了使本发明实现的技术手段、 创作特征、 达成目的与功效易于明白 了解, 下面结合具体图示, 进一步阐述本发明。 t/ PV — photovoltaic cell voltage, 1 input capacitor branch, 2—improved full bridge switch unit, 3—input filter branch, v g —grid, C de —input capacitor, S^S 6 —first ~ sixth power switch tube, Lj a first and second filter inductor, (:. a filter capacitor, v e - modulation signal, v st - triangular carrier signal, Vgsl ~ v gs6 - first to sixth power switch Drive voltage, ί a time. In order to make the technical means, creative features, achievement goals and effects achieved by the present invention easy to understand, the present invention will be further described below in conjunction with specific illustrations.
本发明提供的单相不对称全桥非隔离光伏并网逆变器, 其在应用时与 现有逆变器相同, 将输入端与太阳能电池连接, 而输出端与电网连接。  The single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter provided by the invention is the same as the existing inverter in application, and the input end is connected with the solar battery, and the output end is connected with the power grid.
为解决现有技术所存在的缺陷, 本发明在基本全桥电路基础上加入辅 助开关实现续流阶段续流回路与光伏电池输出端脱离, 且续流回路电位处 于或近似处于二分之一的电池电压, 从而抑制和消除非隔离光伏并网逆变 器的漏电流。  In order to solve the defects existing in the prior art, the present invention adds an auxiliary switch to the basic full-bridge circuit to realize the freewheeling phase of the freewheeling phase and the output end of the photovoltaic cell, and the freewheeling circuit potential is at or approximately one-half. The battery voltage, thereby suppressing and eliminating the leakage current of the non-isolated photovoltaic grid-connected inverter.
为此, 本发明提供的单相不对称全桥非隔离光伏并网逆变器包括输入 电容支路 (1 )、 全桥开关单元(2)和进网滤波器支路(3)。 其中输入电容 支路 (1 )、 全桥开关单元(2)、 进网滤波器支路(3 ) 依次连接, 而全桥开 关单元 (2) 包括第一功率开关管 (& )、 第二功率开关管 (&)、 第三功率 开关管 ( &)、 第四功率开关管 (&)、 第五功率开关管 (&)、 第六功率开 关管 (·¾)、 第一功率二极管 (/^ )、 第二功率二极管 (Ζ¾)。  To this end, the single phase asymmetric full bridge non-isolated photovoltaic grid-connected inverter provided by the present invention comprises an input capacitor branch (1), a full bridge switch unit (2) and a network filter branch (3). The input capacitor branch (1), the full bridge switch unit (2), and the network filter branch (3) are sequentially connected, and the full bridge switch unit (2) includes the first power switch (&), the second power Switching tube (&), third power switch tube (&), fourth power switch tube (&), fifth power switch tube (&), sixth power switch tube (·3⁄4), first power diode (/^ ), the second power diode (Ζ3⁄4).
基于上述原理, 本发明的具体实施如下:  Based on the above principles, the specific implementation of the present invention is as follows:
参见图 1,其所示为单相不对称全桥非隔离光伏并网逆变器电路拓扑实 施例一, 其电路组成是: 由输入电容 Cde, 第一至第六功率开关管&〜&, 第一、 第二功率二极管 A〜/¾, 第一、 第二滤波电感 L、 L2和滤波电容 (:。构成;输入电容 Cde形成输入电容支路(1 ),第一至第六功率开关管&〜 S6, 第一、 第二功率二极管 D〜D2 形成全桥开关单元 (2), 第一、 第二 滤波电感 、 Ζ2和滤波电容 (:。形成进网滤波器支路 (3 )。 Referring to FIG. 1, a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 1 is shown, and the circuit composition is: input capacitor C de , first to sixth power switch tubes &~& first and second power diode A~ / ¾, a first, a second filter inductance L, L 2 and filter capacitor (: configuration; input capacitance C de forms an input capacitance branch (1), first to sixth. Power switch tube & ~ S 6 , first and second power diodes D to D 2 form a full bridge switch unit (2), first and second filter inductors, Ζ 2 and filter capacitors (:. Road (3).
其中,输入电容 Cde的正端分别连接太阳能电池正输出端、第一功率开 关管&的漏极、 第三功率开关管&的漏极, 输入电容 Cde的负端分别连接 太阳能电池负输出端、 第二功率开关管&的源极、 第四功率开关管 &的源 极; 第一功率开关管&的源极分别连接第二功率开关管&的漏极、第五功 率开关管 &的发射极、 第二功率二极管/ ¾的阳极、 第一滤波电感 的一 端,第三功率开关管 &的源极分别连接第六功率开关管 S6的集电极和第二 功率二极管 的阴极,第四功率开关管 &的漏极分别连接第一功率二极管 A的阳极、第六功率开关管 &的发射极、第二滤波电感 的一端, 第五功 率开关管 S5的集电极连接第一功率二极管 A的阴极; 第一滤波电感 Li的 另一端分别连接滤波电容 C。的一端、 电网 vg的一端, 第二滤波电感 2的 另一端分别连接滤波电容 c。的另一端、 电网 Vg的另一端。 Wherein, the positive ends of the input capacitors C de are respectively connected to the positive output terminal of the solar cell, the drain of the first power switch tube & the drain of the third power switch tube, and the negative terminals of the input capacitor C de are respectively connected to the negative output of the solar cell End, the second power switch tube & the source, the fourth power switch tube & the source; the first power switch tube & the source are respectively connected to the second power switch tube & the drain, the fifth power switch tube & emitter, anode of the second power diode / ¾, the end of the first filtering inductor, the third power switch & power source are connected to a cathode collector of the sixth diode and a second power switch S 6, the fourth The drain of the power switch tube & is connected to the anode of the first power diode A, the emitter of the sixth power switch tube, and one end of the second filter inductor, and the collector of the fifth power switch tube S 5 is connected to the first power diode A. Cathode; first filter inductor Li The other end is connected to the filter capacitor C. One end, one end of the power grid v g , and the other end of the second filter inductor 2 are respectively connected to the filter capacitor c. The other end, the other end of the grid Vg .
参见图 2,其所示为单相不对称全桥非隔离光伏并网逆变器电路拓扑实 施例二, 其电路组成与附图 1所示实施例一相同, 不同之处在于第一功率 二极管 A的阴极连接第一滤波电感 的一端, 第一功率二极管 A的阳极 连接第五功率开关管 S5的发射极,第五功率开关管 S5的集电极连接第二滤 波电感 /^的一端。 Referring to FIG. 2, there is shown a second embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit. The circuit composition is the same as that of the first embodiment shown in FIG. 1, except that the first power diode is different. emission cathode connected to a first end a of the filter inductor, the anode a is connected to a first power diode fifth power pole switch S 5, S fifth power switch connected to the collector of the second filtering inductor 5 / ^ end.
参见图 3,其所示为单相不对称全桥非隔离光伏并网逆变器电路拓扑实 施例三, 其电路组成与附图 1所示实施例一相同, 但其电路连接关系是, 输入电容 Cde的正端分别连接太阳能电池正输出端、 第一功率开关管 &的 漏极、 第三功率开关管 &的漏极, 输入电容 Cde的负端分别连接太阳能电 池负输出端、 第二功率开关管&的源极、 第四功率开关管&的源极; 第一 功率开关管 &的源极分别连接第五功率开关管 S5的集电极、第一功率二极 管 A的阴极, 第二功率开关管 &的漏极分别连接第五功率开关管 &的发 射极、第二功率二极管 D2的阳极、第一滤波电感 的一端, 第三功率开关 管 &的源极分别连接第四功率开关管 &的漏极、 第一功率二极管 D、的阳 极、 第六功率开关管 &的发射极、 第二滤波电感 /^的一端, 第六功率开关 管 S6的集电极连接第二功率二极管 D2的阴极; 第一滤波电感 L、的另一端 分别连接滤波电容 C。的一端、 电网 vg的一端, 第二滤波电感 的另一端 分别连接滤波电容 C。的另一端、 电网 vg的另一端。 Referring to FIG. 3, a three-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 3 is shown. The circuit composition is the same as that of the first embodiment shown in FIG. 1, but the circuit connection relationship is input. The positive ends of the capacitor C de are respectively connected to the positive output terminal of the solar cell, the drain of the first power switch tube, the drain of the third power switch tube, and the negative terminal of the input capacitor C de are respectively connected to the negative output terminal of the solar cell, a source of the second power switch tube and a source of the fourth power switch tube; a source of the first power switch tube & a collector connected to the fifth power switch tube S 5 and a cathode of the first power diode A, respectively The drains of the second power switch tube are respectively connected to the emitter of the fifth power switch tube, the anode of the second power diode D 2 , one end of the first filter inductor, and the source of the third power switch tube are respectively connected to the fourth power a switch transistor & a drain, a first power diode D, an anode, a sixth power switch tube & an emitter, a second filter inductor / ^, a sixth power switch tube S 6 collector connected to a second power diode Cathode of D 2 ; first The other end of the filter inductor L is connected to the filter capacitor C. One end, one end of the grid v g , and the other end of the second filter inductor are respectively connected to the filter capacitor C. On the other end, the other end of the grid v g .
参见图 4,其所示为单相不对称全桥非隔离光伏并网逆变器电路拓扑实 施例四, 其电路组成与附图 3所示实施例三相同, 但第六功率开关管&的 集电极连接第一滤波电感 的一端,第六功率开关管 &的发射极连接第二 功率二极管 /¾的阳极, 第二功率二极管 D2的阴极连接第二滤波电感 2的 一端。 Referring to FIG. 4, there is shown a fourth embodiment of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology, the circuit composition of which is the same as that of the third embodiment shown in FIG. 3, but the sixth power switch tube The collector is connected to one end of the first filter inductor, the emitter of the sixth power switch tube is connected to the anode of the second power diode /3⁄4, and the cathode of the second power diode D 2 is connected to one end of the second filter inductor 2 .
参见图 5,其所示为单相不对称全桥非隔离光伏并网逆变器电路拓扑实 施例五, 其电路组成与附图 1所示实施例一相同, 但其电路连接关系是, 输入电容 Cde的正端分别连接太阳能电池正输出端、 第一功率开关管 &的 漏极、 第三功率开关管&的漏极, 输入电容 Cde的负端分别连接太阳能电 池负输出端、 第二功率开关管&的源极、 第四功率幵关管&的源极; 第一 功率幵关管 &的源极分别连接第二功率开关管 &的漏极、第五功率开关管 &的集电极、第二功率二极管 的阴极、第一滤波电感 的一端, 第三功 率开关管 &的源极分别连接第一功率二极管 A的阴极、 第六功率开关管 &的集电极、第二滤波电感 的一端, 第四功率开关管 S4的漏极分别连接 第二功率二极管/ ¾的阳极、第六功率开关管 &的发射极,第五功率开关管 S5的发射极连接第一功率二极管 的阳极;第一滤波电感 的另一端分别 连接滤波电容 C。的一端、 电网 Vg的一端, 第二滤波电感 £2的另一端分别 连接滤波电容 c。的另一端、 电网 Vg的另一端。 Referring to FIG. 5, a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 5 is shown, the circuit composition of which is the same as that of the first embodiment shown in FIG. 1, but the circuit connection relationship is The positive ends of the capacitor C de are respectively connected to the positive output terminal of the solar cell, the drain of the first power switch tube, the drain of the third power switch tube, and the negative terminal of the input capacitor C de are respectively connected to the negative output terminal of the solar cell, Two power switch tube & source, fourth power switch tube &source; first The source of the power switch tube & is connected to the drain of the second power switch tube, the collector of the fifth power switch tube, the cathode of the second power diode, the end of the first filter inductor, the third power switch tube & The sources are respectively connected to the cathode of the first power diode A, the collector of the sixth power switch tube, and one end of the second filter inductor, and the drains of the fourth power switch tube S 4 are respectively connected to the anode of the second power diode / 3⁄4 The emitter of the sixth power switch tube & the emitter of the fifth power switch tube S 5 is connected to the anode of the first power diode; the other end of the first filter inductor is respectively connected to the filter capacitor C. One end, one end of the power grid Vg , and the other end of the second filter inductor £ 2 are respectively connected to the filter capacitor c. The other end, the other end of the grid Vg .
参见图 6,其所示为单相不对称全桥非隔离光伏并网逆变器电路拓扑实 施例六, 其电路组成与附图 5所示实施例五相同, 但第一功率二极管 A的 阳极连接第一滤波电感 的一端,第一功率二极管 的阴极连接第五功率 开关管 &的集电极,第五功率开关管 &的发射极连接第二滤波电感 的一 端。  Referring to FIG. 6, which is a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 6, the circuit composition is the same as that of the fifth embodiment shown in FIG. 5, but the anode of the first power diode A. One end of the first filter inductor is connected, the cathode of the first power diode is connected to the collector of the fifth power switch tube, and the emitter of the fifth power switch tube is connected to one end of the second filter inductor.
参见图 7,其所示为单相不对称全桥非隔离光伏并网逆变器电路拓扑实 施例七, 其电路组成与附图 1所示实施例一相同, 但其电路连接关系是, 输入电容 Cde的正端分别连接太阳能电池正输出端、 第一功率开关管 &的 漏极、 第三功率开关管&的漏极, 输入电容 Cde的负端分别连接太阳能电 池负输出端、 第二功率开关管&的源极、 第四功率开关管&的源极; 第一 功率开关管 &的源极分别连接第五功率开关管 &的集电极、第二功率二极 管 D2的阴极、 第一滤波电感 ^的一端, 第二功率开关管 &的漏极分别连 接第五功率开关管 &的发射极、第一功率二极管!) ,的阳极,第三功率开关 管 &的源极分别连接第四功率开关管 &的漏极、 第一功率二极管 A的阴 极、 第六功率开关管 &的集电极、 第二滤波电感 的一端, 第六功率开关 管 S6的发射极连接第二功率二极管 Ζ¾的阳极; 第一滤波电感 的另一端 分别连接滤波电容 C。的一端、 电网 vg的一端, 第二滤波电感 的另一端 分别连接滤波电容 C。的另一端、 电网 vg的另一端。 Referring to FIG. 7, a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 7 is shown, the circuit composition of which is the same as that of the first embodiment shown in FIG. 1, but the circuit connection relationship is The positive ends of the capacitor C de are respectively connected to the positive output terminal of the solar cell, the drain of the first power switch tube, the drain of the third power switch tube, and the negative terminal of the input capacitor C de are respectively connected to the negative output terminal of the solar cell, & second power source switch, the fourth switch & power source; the first power source switch are respectively connected & fifth power switch & collector, a second power diode D the cathode 2, the first One end of the filter inductor ^, the drain of the second power switch tube & is respectively connected to the emitter of the fifth power switch tube, the first power diode! , the anode, the third power switch tube & the source are respectively connected to the fourth power switch tube & the drain, the cathode of the first power diode A, the sixth power switch tube & the collector, the second filter inductor , sixth transmit power switch S 6 is connected to the anode of the second power diode Ζ¾; the other end of the first filter inductance connected filter capacitor C. One end, one end of the grid v g , and the other end of the second filter inductor are respectively connected to the filter capacitor C. On the other end, the other end of the grid v g .
参见图 8,其所示为单相不对称全桥非隔离光伏并网逆变器电路拓扑实 施例八, 其电路组成与附图 7所示实施例七相同, 但第五功率开关管&的 集电极连接第一滤波电感 Li的一端,第五功率开关管 &的发射极连接第一 功率二极管 的阳极, 第一功率二极管 A的阴极连接第二滤波电感 L2的 一端。 Referring to FIG. 8, a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 8 is shown, the circuit composition of which is the same as that of the seventh embodiment shown in FIG. 7, but the fifth power switch tube The collector is connected to one end of the first filter inductor Li, the emitter of the fifth power switch tube is connected to the anode of the first power diode, and the cathode of the first power diode A is connected to the second filter inductor L 2 One end.
附图 9是单相不对称全桥非隔离光伏并网逆变器电路拓扑实施例一的 驱动原理工作波形,第一功率开关管&与第四功率开关管&驱动信号相同, 在进网电流正半周按单极性 SPWM方式高频工作, 负半周关断; 第二功率 开关管&与第三功率开关管&驱动信号相同, 在进网电流正半周关断, 负 半周按单极性 SPWM方式高频工作;第五功率开关管 &的驱动信号在正半 周长通, 负半周关断; 第六功率开关管&的驱动信号在负半周长通, 正半 周关断。  9 is a driving principle waveform of a single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment, the first power switch tube & the fourth power switch tube & drive signal are the same, The positive half cycle is unipolar SPWM mode high frequency operation, negative half cycle off; the second power switch tube & the third power switch tube & drive signal is the same, the grid current is turned off in the positive half cycle, the negative half cycle is unipolar SPWM The mode is high frequency operation; the driving signal of the fifth power switch tube is turned on in the positive half cycle, and is turned off in the negative half cycle; the driving signal of the sixth power switch tube is turned on in the negative half cycle, and is turned off in the positive half cycle.
附图 10是单相不对称全桥非隔离光伏并网逆变器电路拓扑实施例一的 各开关模态等效电路图。  Figure 10 is a diagram showing the equivalent circuit diagrams of the switching modes of the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter circuit topology embodiment 1.
模态 1 : 等效电路如图 10a所示, 第一、 第四、 第五功率开关管导通, 其它功率开关管关断, 第五功率开关管&有驱动信号, 但没有电流流过, 进网电流依次流过第一功率开关管&、 第一滤波电感^、 电网 vg、 第二滤 波电感 2、 第四功率幵关管 &、; Modal 1 : The equivalent circuit is shown in Figure 10a. The first, fourth, and fifth power switches are turned on, the other power switches are turned off, and the fifth power switch has a drive signal, but no current flows. The incoming current flows through the first power switch tube &, the first filter inductor ^, the grid v g , the second filter inductor 2 , the fourth power switch tube &,
模态 2: 等效电路如图 10b所示,第五功率开关管导通,其它功率开关 管关断, 由第五功率开关管 &和第一功率二极管 A构成续流回路,续流回 路电位近似为光伏电池电压 ί/Ρν的一半; Modal 2: The equivalent circuit is shown in Figure 10b. The fifth power switch is turned on, the other power switch is turned off, and the fifth power switch tube & the first power diode A constitute a freewheeling circuit, and the freewheeling circuit potential Approximate to half of the photovoltaic cell voltage ί/ Ρν ;
模态 3: 等效电路如图 10c所示, 第二、 第三、 第六功率开关管导通, 其它功率开关管关断, 进网电流依次流过第三功率开关管 &、 第六功率开 关管&、第二滤波电感 2、 电网 vg、第一滤波电感 ^、第二功率开关管&; 模态 4: 等效电路如图 10d所示, 第六功率开关管&导通, 其它功率 开关管关断, 由第六功率开关管 &和第二功率二极管 2¾构成续流回路,续 流回路电位近似为光伏电池电压 t PV的一半。 Modal 3: The equivalent circuit is shown in Figure 10c. The second, third, and sixth power switch tubes are turned on, the other power switch tubes are turned off, and the incoming current flows through the third power switch tube & the sixth power. Switch tube &, second filter inductor 2 , grid v g , first filter inductor ^, second power switch tube & modal 4: equivalent circuit as shown in Figure 10d, sixth power switch tube & conduction, other The power switch tube is turned off, and the sixth power switch tube & the second power diode 23⁄4 constitute a freewheeling circuit, and the freewheeling circuit potential is approximately half of the photovoltaic cell voltage t PV .
以上显示和描述了本发明的基本原理、 主要特征和本发明的优点。 本 行业的技术人员应该了解, 本发明不受上述实施例的限制, 上述实施例和 说明书中描述的只是说明本发明的原理, 在不脱离本发明精神和范围的前 提下, 本发明还会有各种变化和改进, 这些变化和改进都落入要求保护的 本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。  The basic principles, main features and advantages of the present invention are shown and described above. It should be understood by those skilled in the art that the present invention is not limited by the foregoing embodiments, and that the present invention is only described in the foregoing embodiments and the description of the present invention, without departing from the spirit and scope of the invention. Various changes and modifications are intended to fall within the scope of the invention as claimed. The scope of the invention is defined by the appended claims and their equivalents.

Claims

权 利 要 求 Rights request
1、单相不对称全桥非隔离光伏并网逆变器, 其输入端与太阳能电池连 接, 输出端与电网连接, 所述单相不对称全桥非隔离光伏并网逆变器包括 输入电容支路(1)和进网滤波器支路(3), 其特征在于, 所述单相不对称 全桥非隔离光伏并网逆变器还包括全桥开关单元 (2), 所述输入电容支路 (1)、 全桥开关单元(2)、 进网滤波器支路(3)依次连接, 所述全桥开关 单元 (2) 包括第一功率开关管 (&)、 第二功率开关管 (S2)、 第三功率开 关管 (&)、 第四功率开关管 (&)、 第五功率开关管 (&)、 第六功率开关 管 ( &)、 第一功率二极管 (^)、 第二功率二极管 (/¾)。 1. Single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter, whose input end is connected with a solar cell, and the output end is connected to a power grid, and the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter includes an input capacitor a branch circuit (1) and a network filter branch (3), wherein the single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter further comprises a full-bridge switching unit (2), the input capacitor The branch circuit (1), the full bridge switch unit (2), and the network filter branch (3) are sequentially connected, and the full bridge switch unit (2) includes a first power switch tube (&) and a second power switch tube (S 2 ), a third power switch (&), a fourth power switch (&), a fifth power switch (&), a sixth power switch (&), a first power diode (^), Two power diodes (/3⁄4).
2、根据权利要求 1所述的单相不对称全桥非隔离光伏并网逆变器, 其 特征在于, 所述输入电容支路 (1) 包括输入电容 (Cde); 进网滤波器支路2 . The single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter according to claim 1 , wherein the input capacitor branch (1) comprises an input capacitor (C de ); road
(3)包括第一滤波电感 、 第二滤波电感( )、 滤波电容(C。); 所述 输入电容(Cde)的正端分别连接太阳能电池正输出端、第一功率开关管(&) 的漏极、 第三功率开关管 (&) 的漏极, 输入电容 (Cdc) 的负端分别连接 太阳能电池负输出端、第二功率开关管(&)的源极、第四功率开关管(&) 的源极; 第一功率开关管(&) 的源极分别连接第二功率开关管(&) 的漏 极、 第五功率开关管 (&) 的发射极、 第二功率二极管 (D2) 的阳极、 第 一滤波电感 、 的一端, 第三功率开关管(&)的源极分别连接第六功率 开关管 (&) 的集电极和第二功率二极管 (D2) 的阴极, 第四功率开关管(3) comprising a first filter inductor, a second filter inductor ( ), a filter capacitor (C.); a positive terminal of the input capacitor (C de ) is respectively connected to a positive output terminal of the solar cell, and a first power switch transistor The drain, the drain of the third power switch (&), and the negative terminal of the input capacitor (C dc ) are respectively connected to the negative output of the solar cell, the source of the second power switch (&), and the fourth power switch (&) the source; the source of the first power switch (&) is connected to the drain of the second power switch (&), the emitter of the fifth power switch (&), and the second power diode (D) 2 ) the anode, the first filter inductor, one end, the source of the third power switch (&) is respectively connected to the collector of the sixth power switch (&) and the cathode of the second power diode (D 2 ), Four power switch
(¾)的漏极分别连接第一功率二极管(A)的阳极、第六功率开关管(&) 的发射极、 第二滤波电感 α2)的一端, 第五功率开关管(&)的集电极连 接第一功率二极管 (Α)的阴极; 第一滤波电感 的另一端分别连接 滤波电容 (C0) 的一端、 电网 (vg) 的一端, 第二滤波电感 (L2) 的另一端 分别连接滤波电容 (C0) 的另一端、 电网 (Vg) 的另一端。 The drain of (3⁄4) is connected to the anode of the first power diode (A), the emitter of the sixth power switch (&), the end of the second filter inductor α 2 ), and the set of the fifth power switch (&) The electrode is connected to the cathode of the first power diode (Α); the other end of the first filter inductor is respectively connected to one end of the filter capacitor (C 0 ), one end of the power grid (v g ), and the other end of the second filter inductor (L 2 ) Connect the other end of the filter capacitor (C 0 ) to the other end of the grid (V g ).
3、根据权利要求 1所述的单相不对称全桥非隔离光伏并网逆变器, 其 特征在于, 所述输入电容支路 (1) 包括输入电容 (cde);进网滤波器支路The single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter according to claim 1, wherein the input capacitor branch (1) comprises an input capacitor (c de ); road
(3)包括第一滤波电感( )、 第二滤波电感 2)、 滤波电容(c。); 所述 输入电容(cde)的正端分别连接太阳能电池正输出端、第一功率开关管( ) 的漏极、 第三功率开关管 (&) 的漏极, 输入电容 (cde)的负端分别连接 太阳能电池负输出端、第二功率开关管(&)的源极、第四功率开关管(&) 的源极; 第一功率开关管( ) 的源极分别连接第二功率开关管(&)的漏 极、 第一功率二极管 (A) 的阴极、 第二功率二极管 ω2) 的阳极、 第一 滤波电感 (Li )的一端, 第三功率开关管(&)的源极分别连接第六功率开 关管(&)的集电极、第二功率二极管(D2)的阴极, 第四功率开关管(&) 的漏极分别连接第五功率开关管(&)的集电极、 第六功率开关管(&)的 发射极、 第二滤波电感 2)的一端, 第五功率开关管(&) 的发射极连接 第一功率二极管 (A) 的阳极; 第一滤波电感 (i ) 的另一端分别连接滤 波电容((:。) 的一端、 电网 (Vg) 的一端, 第二滤波电感 (L2) 的另一端分 别连接滤波电容 (c。) 的另一端、 电网 (Vg) 的另一端。 (3) comprising a first filter inductor ( ), a second filter inductor 2 ), a filter capacitor (c.); a positive terminal of the input capacitor (c de ) is respectively connected to a positive output terminal of the solar cell and a first power switch tube ( The drain of the third power switch (&) and the negative terminal of the input capacitor (c de ) are respectively connected The negative output of the solar cell, the source of the second power switch (&), the source of the fourth power switch (&); the source of the first power switch ( ) is connected to the second power switch (&) The drain, the cathode of the first power diode (A), the anode of the second power diode ω 2 ), one end of the first filter inductor (Li ), and the source of the third power switch (&) are respectively connected to the sixth power The collector of the switching transistor (&), the cathode of the second power diode (D 2 ), and the drain of the fourth power switching transistor (&) are respectively connected to the collector of the fifth power switching transistor (&), and the sixth power switching transistor (&) the emitter, the second filter inductor 2 ), the emitter of the fifth power switch (&) is connected to the anode of the first power diode (A); the other end of the first filter inductor (i) is respectively connected One end of the filter capacitor ((:.), one end of the grid ( Vg ), and the other end of the second filter inductor (L 2 ) are connected to the other end of the filter capacitor (c.), and the other end of the grid ( Vg ).
4、根据权利要求 1所述的单相不对称全桥非隔离光伏并网逆变器, 其 特征在于, 所述输入电容支路 (1 ) 包括输入电容 (cde); 进网滤波器支路The single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter according to claim 1, wherein the input capacitor branch (1) comprises an input capacitor (c de ); road
( 3 )包括第一滤波电感 ( )、 第二滤波电感 2)、 滤波电容(c。); 所述 输入电容(cde)的正端分别连接太阳能电池正输出端、第一功率开关管(& ) 的漏极、 第三功率开关管 (&) 的漏极, 输入电容 (cdc) 的负端分别连接 太阳能电池负输出端、第二功率开关管(&)的源极、第四功率开关管(&) 的源极; 第一功率开关管(& ) 的源极分别连接第五功率开关管(&)的集 电极、 第一功率二极管 (A) 的阴极, 第二功率开关管 (&) 的漏极分别 连接第五功率开关管 (&) 的发射极、 第二功率二极管 (/¾) 的阳极、 第 一滤波电感 、)的一端, 第三功率开关管(&)的源极分别连接第四功率 开关管(s4)的漏极、第一功率二极管(A)的阳极、第六功率开关管(&) 的发射极、 第二滤波电感 2) 的一端, 第六功率开关管(&)的集电极连 接第二功率二极管 (/¾) 的阴极; 第一滤波电感 (Li ) 的另一端分别连接 滤波电容(c。) 的一端、 电网 (Vg) 的一端, 第二滤波电感( 2) 的另一端 分别连接滤波电容 (c0) 的另一端、 电网 (Vg) 的另一端。 (3) including a first filter inductor ( ), a second filter inductor 2 ), and a filter capacitor (c.); a positive terminal of the input capacitor (c de ) is respectively connected to a positive output terminal of the solar cell and a first power switch tube ( & D), the drain of the third power switch (&), the negative terminal of the input capacitor (c dc ) is connected to the negative output of the solar cell, the source of the second power switch (&), and the fourth power The source of the switch (&); the source of the first power switch (& ) is respectively connected to the collector of the fifth power switch (&), the cathode of the first power diode (A), and the second power switch ( The drain of the &) is connected to the emitter of the fifth power switch (&), the anode of the second power diode (/3⁄4), the end of the first filter inductor, and the source of the third power switch (&) Connecting the drain of the fourth power switch (s 4 ), the anode of the first power diode (A), the emitter of the sixth power switch (&), the end of the second filter inductor 2 ), and the sixth power switch The collector of the tube (&) is connected to the cathode of the second power diode (/3⁄4); the first filter One end of the other end (Li) are connected to the other end of the filter capacitor (c.), The end of the grid (Vg) and the other end of the second filter inductance (2) are connected to the filter capacitor (c 0), the grid (Vg) The other end.
5、根据权利要求 1所述的单相不对称全桥非隔离光伏并网逆变器, 其 特征在于, 所述输入电容支路 (1) 包括输入电容 (cde); 进网滤波器支路The single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter according to claim 1, wherein the input capacitor branch (1) comprises an input capacitor (c de ); road
(3 )包括第一滤波电感 、)、 第二滤波电感 2)、 滤波电容( :。); 所述 输入电容(cde)的正端分别连接太阳能电池正输出端、第一功率开关管(&) 的漏极、 第三功率开关管 (&) 的漏极, 输入电容 (cde) 的负端分别连接 太阳能电池负输出端、第二功率开关管(&)的源极、第四功率开关管(&) 的源极; 第一功率开关管(& ) 的源极分别连接第五功率开关管(&)的集 电极、 第一功率二极管 (A) 的阴极, 第二功率开关管 (&) 的漏极分别 连接第五功率开关管 (&) 的发射极、 第六功率开关管(&) 的集电极、 第 一滤波电感 ,) 的一端, 第三功率开关管(&)的源极分别连接第四功率 开关管(&)的漏极、第一功率二极管(A)的阳极、第二功率二极管( >2) 的阴极、 第二滤波电感 2)的一端, 第六功率开关管(&) 的发射极连接 第二功率二极管 (/¾) 的阳极; 第一滤波电感 ( ) 的另一端分别连接滤 波电容 (c0) 的一端、 电网 (Vg) 的一端, 第二滤波电感 2) 的另一端分 别连接滤波电容 (c0) 的另一端、 电网 (Vg) 的另一端。 (3) including a first filter inductor, a second filter inductor 2 ), a filter capacitor (:.); a positive terminal of the input capacitor ( cde ) is respectively connected to a positive output terminal of the solar cell and a first power switch tube ( &) the drain, the drain of the third power switch (&), and the negative terminals of the input capacitor (c de ) are respectively connected The negative output of the solar cell, the source of the second power switch (&), the source of the fourth power switch (&); the source of the first power switch (&) is connected to the fifth power switch The collector, the cathode of the first power diode (A), and the drain of the second power switch (&) are respectively connected to the emitter of the fifth power switch (&) and the sixth power switch (&) One end of the electrode, the first filter inductor, and the source of the third power switch (&) are respectively connected to the drain of the fourth power switch (&), the anode of the first power diode (A), and the second power diode ( > 2 ) the cathode, the second filter inductor 2 ), the emitter of the sixth power switch (&) is connected to the anode of the second power diode (/3⁄4); the other end of the first filter inductor ( ) is connected One end of the filter capacitor (c 0 ), one end of the grid ( Vg ), and the other end of the second filter inductor 2 ) are respectively connected to the other end of the filter capacitor (c 0 ) and the other end of the grid ( Vg ).
6、根据权利要求 1所述的单相不对称全桥非隔离光伏并网逆变器, 其 特征在于, 所述输入电容支路 (1 ) 包括输入电容 (cde); 进网滤波器支路The single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter according to claim 1, wherein the input capacitor branch (1) comprises an input capacitor (c de ); road
(3)包括第一滤波电感 L、 、 第二滤波电感( 2)、 滤波电容(c。); 所述 输入电容(cde)的正端分别连接太阳能电池正输出端、第一功率开关管(&) 的漏极、 第三功率开关管 (&) 的漏极, 输入电容 (cdc) 的负端分别连接 太阳能电池负输出端、第二功率开关管(&)的源极、第四功率开关管 c¾) 的源极; 第一功率开关管(&)的源极分别连接第二功率开关管(&)的漏 极、 第五功率开关管 (&) 的集电极、 第二功率二极管 (D2) 的阴极、 第 一滤波电感 ,) 的一端, 第三功率开关管(&)的源极分别连接第一功率 二极管 ω、)的阴极、第六功率开关管(&)的集电极、第二滤波电感 2) 的一端, 第四功率开关管 (&) 的漏极分别连接第二功率二极管 (/¾) 的 阳极、 第六功率幵关管(&) 的发射极, 第五功率开关管(&) 的发射极连 接第一功率二极管 ω、) 的阳极; 第一滤波电感 (^ ) 的另一端分别连接 滤波电容 ( C0) 的一端、 电网 (vg) 的一端, 第二滤波电感 (L2) 的另一端 分别连接滤波电容 (:。) 的另一端、 电网'(vg) 的另一端。 (3) comprising a first filter inductor L, a second filter inductor ( 2 ), and a filter capacitor (c.); a positive terminal of the input capacitor ( cde ) is respectively connected to a positive output terminal of the solar cell and a first power switch tube (&) the drain, the drain of the third power switch (&), the negative terminal of the input capacitor (c dc ) is connected to the negative output of the solar cell, the source of the second power switch (&), and the fourth The source of the power switch tube c3⁄4); the source of the first power switch (&) is respectively connected to the drain of the second power switch (&), the collector of the fifth power switch (&), and the second power diode One end of the cathode of (D 2 ), the first filter inductor, and the source of the third power switch (&) are respectively connected to the cathode of the first power diode ω, and the collector of the sixth power switch (&) One end of the second filter inductor 2 ), the drain of the fourth power switch transistor (&) is respectively connected to the anode of the second power diode (/3⁄4), the emitter of the sixth power switch (&), the fifth power The emitter of the switch (&) is connected to the anode of the first power diode ω,); the first filter The other end of the inductor (^) is connected to one end of the filter capacitor (C 0 ) and one end of the grid (v g ), and the other end of the second filter inductor (L 2 ) is connected to the other end of the filter capacitor (:.), respectively. The other end of '(v g ).
7、根据权利要求 1所述的单相不对称全桥非隔离光伏并网逆变器, 其 特征在于, 所述输入电容支路 (1 ) 包括输入电容 (cde); 进网滤波器支路The single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter according to claim 1, wherein the input capacitor branch (1) comprises an input capacitor (c de ); road
(3)包括第一滤波电感( )、 第二滤波电感 2)、 滤波电容 (c0); 所述 输入电容(cde)的正端分别连接太阳能电池正输出端、第一功率开关管(&) 的漏极、 第三功率开关管 (&) 的漏极, 输入电容 (cde) 的负端分别连接 太阳能电池负输出端、第二功率开关管(&)的源极、第四功率开关管(&) 的源极; 第一功率开关管(& ) 的源极分别连接第二功率开关管(&) 的漏 极、 第一功率二极管 (A) 的阳极、 第二功率二极管 ω2) 的阴极、 第一 滤波电感 、) 的一端, 第三功率开关管(&)的源极分别连接第五功率开 关管(&)的发射极、 第六功率开关管(&)的集电极、第二滤波电感( 2) 的一端, 第四功率开关管 (s4) 的漏极分别连接第二功率二极管 ω2) 的 阳极、 第六功率开关管(&) 的发射极, 第五功率开关管(&) 的集电极连 接第一功率二极管 (Α) 的阴极; 第一滤波电感 (^ ) 的另一端分别连接 滤波电容 (c0) 的一端、 电网 (Vg) 的一端, 第二滤波电感 2) 的另一端 分别连接滤波电容 (c。) 的另一端、 电网 (Vg) 的另一端。 (3) comprising a first filter inductor ( ), a second filter inductor 2 ), and a filter capacitor (c 0 ); the positive ends of the input capacitors (c de ) are respectively connected to the positive output terminal of the solar cell and the first power switch tube ( &) the drain, the drain of the third power switch (&), and the negative terminals of the input capacitor (c de ) are respectively connected The negative output of the solar cell, the source of the second power switch (&), and the source of the fourth power switch (&); the source of the first power switch (&) is respectively connected to the second power switch (& a drain of the first power diode (A), a cathode of the second power diode ω 2 ), one end of the first filter inductor, and a source of the third power switch (&) are respectively connected to the fifth power the emitter of switch transistor (&) of the electrode, the sixth power switch (&), the end of the second filter inductance (2), the fourth drain of the power switch tube (s 4) are connected to a second power diode ω 2 ) the anode, the emitter of the sixth power switch (&), the collector of the fifth power switch (&) is connected to the cathode of the first power diode (Α); the other end of the first filter inductor (^) One end of the filter capacitor (c 0 ), one end of the grid ( Vg ), and the other end of the second filter inductor 2 ) are respectively connected to the other end of the filter capacitor (c.) and the other end of the grid ( Vg ).
8、根据权利要求 1所述的单相不对称全桥非隔离光伏并网逆变器, 其 特征在于, 所述输入电容支路 (1) 包括输入电容 (cde); 进网滤波器支路The single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter according to claim 1, wherein the input capacitor branch (1) comprises an input capacitor (c de ); road
( 3 )包括第一滤波电感(Z )、 第二滤波电感 2)、 滤波电容(c。); 所述 输入电容(cde)的正端分别连接太阳能电池正输出端、第一功率幵关管(&) 的漏极、 第三功率开关管 (&) 的漏极, 输入电容 (cde) 的负端分别连接 太阳能电池负输出端、第二功率开关管(&)的源极、第四功率开关管(&) 的源极; 第一功率开关管(& )的源极分别连接第五功率开关管(&)的集 电极、 第二功率二极管 (z¾) 的阴极、 第一滤波电感 ( ) 的一端, 第二 功率开关管(&) 的漏极分别连接第五功率开关管(&) 的发射极、 第一功 率二极管 (A) 的阳极, 第三功率开关管 (&) 的源极分别连接第四功率 开关管(&)的漏极、第一功率二极管(A)的阴极、第六功率开关管(&) 的集电极、 第二滤波电感 2) 的一端, 第六功率开关管(&) 的发射极连 接第二功率二极管 (D2) 的阳极; 第一滤'波电感 (^ ) 的另一端分别连接 滤波电容(C。) 的一端、 电网 (vg) 的一端, 第二滤波电感 (L2) 的另一端 分别连接滤波电容 (:。) 的另一端、 电网 (vg) 的另一端。 (3) including a first filter inductor (Z), a second filter inductor 2 ), and a filter capacitor (c.); a positive terminal of the input capacitor ( cde ) is respectively connected to a positive output terminal of the solar cell, and the first power is turned off. The drain of the tube (&), the drain of the third power switch (&), and the negative terminal of the input capacitor (c de ) are respectively connected to the negative output of the solar cell, the source of the second power switch (&), and the The source of the fourth power switch (&); the source of the first power switch (& ) is respectively connected to the collector of the fifth power switch (&), the cathode of the second power diode (z3⁄4), and the first filter inductor At one end of ( ), the drain of the second power switch (&) is connected to the emitter of the fifth power switch (&), the anode of the first power diode (A), and the source of the third power switch (&) The poles respectively connect the drain of the fourth power switch (&), the cathode of the first power diode (A), the collector of the sixth power switch (&), the end of the second filter inductor 2 ), and the sixth power switch The emitter of the tube (&) is connected to the anode of the second power diode (D 2 ); the first filter 'wave The other end of the inductor (^) is connected to one end of the filter capacitor (C.), one end of the grid (v g ), and the other end of the second filter inductor (L 2 ) is connected to the other end of the filter capacitor (:.), respectively. The other end of (v g ).
9、根据权利要求 1所述的单相不对称全桥非隔离光伏并网逆变器, 其 特征在于, 所述输入电容支路 (1) 包括输入电容 (cde); 进网滤波器支路 o)包括第一滤波电感( )、 第二滤波电感 2)、 滤波电容(c。); 所述 输入电容(cde)的正端分别连接太阳能电池正输出端、第一功率开关管(&) 的漏极、 第三功率幵关管 (&) 的漏极, 输入电容 (cdc) 的负端分别连接 太阳能电池负输出端、第二功率开关管(&)的源极、第四功率开关管(&) 的源极; 第一功率开关管( ) 的源极分别连接第五功率开关管(&) 的集 电极、 第六功率开关管(&) 的发射极、 第一滤波电感 (Li ) 的一端, 第二 功率开关管(&) 的漏极分别连接第五功率开关管(&) 的发射极、 第一功 率二极管 (A) 的阳极, 第三功率开关管 (&) 的源极分别连接第四功率 开关管(&)的漏极、第一功率二极管(A)的阴极、第二功率二极管 C¾) 的阳极、 第二滤波电感 2)的一端, 第六功率开关管(&) 的集电极连接 第二功率二极管 (/¾) 的阴极; 第一滤波电感 的另一端分别连接滤 波电容(c。) 的一端、 电网 (Vg) 的一端, 第二滤波电感 2) 的另一端分 别连接滤波电容 ( :。) 的另一端、 电网 (vg) 的另一端。 The single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter according to claim 1, wherein the input capacitor branch (1) comprises an input capacitor (c de ); The path o) includes a first filter inductor ( ), a second filter inductor 2 ), and a filter capacitor (c.); the positive ends of the input capacitors (c de ) are respectively connected to the positive output terminal of the solar cell and the first power switch tube ( &) the drain, the drain of the third power transistor (&), and the negative terminals of the input capacitor (c dc ) are connected The negative output of the solar cell, the source of the second power switch (&), the source of the fourth power switch (&); the source of the first power switch ( ) is connected to the fifth power switch (&) The collector, the emitter of the sixth power switch (&), one end of the first filter inductor (Li), and the drain of the second power switch (&) are respectively connected to the emitter of the fifth power switch (&) The anode of the first power diode (A), the source of the third power switch (&) is respectively connected to the drain of the fourth power switch (&), the cathode of the first power diode (A), and the second power diode C3⁄4) anode, second filter inductor 2 ), collector of the sixth power switch (&) is connected to the cathode of the second power diode (/3⁄4); the other end of the first filter inductor is connected to the filter capacitor (c One end of the grid, one end of the grid ( Vg ), and the other end of the second filter inductor 2 ) are respectively connected to the other end of the filter capacitor (:.) and the other end of the grid (v g ).
PCT/CN2012/000589 2011-12-09 2012-05-02 Single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter WO2013082858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110410196.8 2011-12-09
CN2011104101968A CN103166495A (en) 2011-12-09 2011-12-09 Single phase asymmetrical full-bridge non-isolated photovoltaic grid-connected inverter

Publications (1)

Publication Number Publication Date
WO2013082858A1 true WO2013082858A1 (en) 2013-06-13

Family

ID=48573527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000589 WO2013082858A1 (en) 2011-12-09 2012-05-02 Single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter

Country Status (2)

Country Link
CN (1) CN103166495A (en)
WO (1) WO2013082858A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186912A (en) * 2015-09-28 2015-12-23 河海大学 Two-stage non-isolated full-bridge grid-connected inverter
CN106712527A (en) * 2017-03-29 2017-05-24 天津瑞能电气有限公司 Isolated type photovoltaic array simulator system based on calculation method
CN107086602A (en) * 2017-05-25 2017-08-22 河南迎基太阳能科技有限公司 A kind of solar charging/discharging manages grid-connected system
CN107994798A (en) * 2018-01-11 2018-05-04 福州大学 A kind of two-way double buck inverters and its method of work containing on-line fault diagnosis
CN110071651A (en) * 2019-06-13 2019-07-30 河北工业大学 A kind of non-isolation type boost inverter circuit of symmetrical configuration
CN111900890A (en) * 2020-05-29 2020-11-06 国网江苏省电力有限公司江阴市供电分公司 Novel single-phase NPC non-isolated photovoltaic grid-connected inverter circuit and modulation method
CN112054708A (en) * 2020-09-02 2020-12-08 青岛理工大学 Unipolar boost inverter of integrated switched capacitor circuit
CN113708651A (en) * 2021-09-30 2021-11-26 哈尔滨理工大学 Isolated Delta rectifier based on phase-shifted full bridge

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105471296B (en) * 2015-11-27 2019-01-11 深圳市美克能源科技股份有限公司 Inverter circuit
CN108631639A (en) * 2017-03-17 2018-10-09 深圳耐斯特思新能源科技有限公司 Two-way DC-AC translation circuits for energy storage inverter
CN110601160B (en) * 2019-09-19 2021-10-29 散裂中子源科学中心 High-energy feedback type load energy backflow discharge circuit and energy discharge method thereof
CN112290792A (en) * 2020-11-09 2021-01-29 哈尔滨理工大学 Photovoltaic grid-connected inverter based on flexible switching
CN117318454B (en) * 2023-11-28 2024-02-02 锦浪科技股份有限公司 Low-frequency common-mode leakage current suppression method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201515320U (en) * 2009-10-12 2010-06-23 深圳科士达科技股份有限公司 Grid-connected inverter
CN102158110A (en) * 2011-04-07 2011-08-17 江苏斯达工业科技有限公司 Main circuit of non-isolated photovoltaic grid inverter and control realizing method thereof
CN202004681U (en) * 2011-03-31 2011-10-05 上海美科新能源股份有限公司 Topological structure of photovoltaic grid-connected inverter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201515320U (en) * 2009-10-12 2010-06-23 深圳科士达科技股份有限公司 Grid-connected inverter
CN202004681U (en) * 2011-03-31 2011-10-05 上海美科新能源股份有限公司 Topological structure of photovoltaic grid-connected inverter
CN102158110A (en) * 2011-04-07 2011-08-17 江苏斯达工业科技有限公司 Main circuit of non-isolated photovoltaic grid inverter and control realizing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186912A (en) * 2015-09-28 2015-12-23 河海大学 Two-stage non-isolated full-bridge grid-connected inverter
CN106712527A (en) * 2017-03-29 2017-05-24 天津瑞能电气有限公司 Isolated type photovoltaic array simulator system based on calculation method
CN106712527B (en) * 2017-03-29 2023-09-29 天津瑞能电气有限公司 Isolated photovoltaic array simulator system based on calculation method
CN107086602B (en) * 2017-05-25 2023-05-02 沈阳清能院清洁能源有限公司 Solar charge-discharge management grid-connected system
CN107086602A (en) * 2017-05-25 2017-08-22 河南迎基太阳能科技有限公司 A kind of solar charging/discharging manages grid-connected system
CN107994798A (en) * 2018-01-11 2018-05-04 福州大学 A kind of two-way double buck inverters and its method of work containing on-line fault diagnosis
CN107994798B (en) * 2018-01-11 2024-03-12 福州大学 Bidirectional double-buck inverter with online fault diagnosis function and working method thereof
CN110071651B (en) * 2019-06-13 2023-05-12 河北工业大学 Non-isolated boost inverter circuit with symmetrical structure
CN110071651A (en) * 2019-06-13 2019-07-30 河北工业大学 A kind of non-isolation type boost inverter circuit of symmetrical configuration
CN111900890A (en) * 2020-05-29 2020-11-06 国网江苏省电力有限公司江阴市供电分公司 Novel single-phase NPC non-isolated photovoltaic grid-connected inverter circuit and modulation method
CN112054708A (en) * 2020-09-02 2020-12-08 青岛理工大学 Unipolar boost inverter of integrated switched capacitor circuit
CN112054708B (en) * 2020-09-02 2024-05-17 南京信息工程大学 Monopole boost inverter integrated with switched capacitor circuit
CN113708651A (en) * 2021-09-30 2021-11-26 哈尔滨理工大学 Isolated Delta rectifier based on phase-shifted full bridge

Also Published As

Publication number Publication date
CN103166495A (en) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2013082858A1 (en) Single-phase asymmetric full-bridge non-isolated photovoltaic grid-connected inverter
CN102223097B (en) Transformerless inverter circuit
CN103051233B (en) Non-isolated single-phase photovoltaic grid-connected inverter and on-off control timing sequence thereof
WO2012119451A1 (en) Single-phase three-level inverter
CN102005954B (en) Single-phase non-isolated photovoltaic grid-connected inverter and control method
WO2013127230A1 (en) Bridgeless inverter circuit and solar bridgeless inverter
CN205647288U (en) Non - isolated form photovoltaic grid -connected inverter
CN102185480B (en) Bidirectional isolation direct-current converter
CN102185511B (en) Noninsulated type converting circuit from direct-current voltage to alternating-current voltage
CN102739101A (en) Forward-flyback inverter
CN102163935A (en) Photovoltaic grid-connected converter with alternating bypass unit
CN102361408A (en) Non-isolated photovoltaic grid-connected inverter and switching control time sequence thereof
CN102255544A (en) DC (direct current)/AC (alternating current) inverter circuit
CN111049182A (en) Five-level common-ground type single-phase non-isolated photovoltaic grid-connected inverter circuit and modulation method thereof
CN103956927A (en) Voltage-active-clamping non-transformer-type single-phase photovoltaic inverter
CN109194175A (en) A kind of non-isolated grid-connected inverter circuit of type leakage current and control method altogether
Chen et al. Current distortion correction in dual buck photovoltaic inverter with a novel PWM modulation and control method
CN104410310A (en) Neutral point clamped H-bridge photovoltaic inverter and method for inhibiting common mode leakage current
WO2013163779A1 (en) Multi-input flyback photovoltaic grid-connected inverter
CN201994871U (en) Photovoltaic grid six-switch tube bridge inverter
CN105656077A (en) Efficient low-leakage current seven-switch photovoltaic grid-connected inverter circuit and modulation method thereof
CN107404249B (en) Low-leakage-current grid-connected inverter circuit and control method thereof
CN206790354U (en) The two-way charging device of the more level of high-frequency isolation series resonance
CN107222111A (en) The two-way charging device of many level of high-frequency isolation series resonance
CN102437743B (en) Boost conversion circuit, solar inverter and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856409

Country of ref document: EP

Kind code of ref document: A1