WO2013082511A1 - Procédés pour surmonter la résistance tumorale aux antagonistes de vegf - Google Patents

Procédés pour surmonter la résistance tumorale aux antagonistes de vegf Download PDF

Info

Publication number
WO2013082511A1
WO2013082511A1 PCT/US2012/067419 US2012067419W WO2013082511A1 WO 2013082511 A1 WO2013082511 A1 WO 2013082511A1 US 2012067419 W US2012067419 W US 2012067419W WO 2013082511 A1 WO2013082511 A1 WO 2013082511A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
vegf
cells
csf
cancer
Prior art date
Application number
PCT/US2012/067419
Other languages
English (en)
Other versions
WO2013082511A9 (fr
Inventor
Napoleone Ferrara
Vernon PHAN
Original Assignee
Genentech, Inc.
F. Hoffmann-La Roche Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech, Inc., F. Hoffmann-La Roche Ag filed Critical Genentech, Inc.
Publication of WO2013082511A1 publication Critical patent/WO2013082511A1/fr
Publication of WO2013082511A9 publication Critical patent/WO2013082511A9/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/243Colony Stimulating Factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies

Definitions

  • the present invention relates generally to the field of molecular biology and clinical oncology.
  • the invention concerns compositions and methods effective for overcoming tumor resistance to treatment with VEGF antagonists.
  • angiogenesis which involves the formation of new blood vessels from preexisting endothelium, plays a significant role in the pathogenesis of a variety of disorders. These include solid tumors and metastasis, atherosclerosis, retrolental fibroplasia, hemangiomas, chronic inflammation, intraocular neovascular syndromes such as proliferative retinopathies, e.g., diabetic retinopathy, age-related macular degeneration (AMD), neovascular glaucoma, immune rejection of transplanted corneal tissue and other tissues, rheumatoid arthritis, and psoriasis.
  • proliferative retinopathies e.g., diabetic retinopathy, age-related macular degeneration (AMD), neovascular glaucoma, immune rejection of transplanted corneal tissue and other tissues, rheumatoid arthritis, and psoriasis.
  • AMD age-related macular degeneration
  • tumor angiogenesis appears to be crucial for the transition from hyperplasia to neoplasia, and for providing nourishment for the growth and metastasis of the tumor.
  • Neovascularization allows the tumor cells to acquire a growth advantage and proliferative autonomy compared to normal cells.
  • a tumor usually begins as a single aberrant cell which can proliferate only to a size of a few cubic millimeters due to the distance from available capillary beds, and it can stay 'dormant' without further growth and dissemination for a long period of time.
  • ERK/MAPK pathway is upregulated in 30% of all tumors and oncogenic activating mutations in K-Ras and B-Raf have been identified in 22% and 18% of all cancers respectively. It has been shown that inhibition of the ERK pathway, and in particular inhibition of MEK kinase activity, results in anti-metastatic effects largely due to a reduction of cell-cell contact and motility.
  • a method of inhibiting proliferation and migration of cells in tumor stroma comprising administering an effective amount of a MEK inhibitor to a human subject having a tumor that is resistant or refractory to treatment with a VEGF antagonist.
  • the cells in tumor stroma are derived from bone marrow, are of hematopoietic lineage or subsets thereof as decribed above.
  • the cells in tumor stroma are tumor-associated fibroblast cells.
  • the VEGF antagonist in the methods of the invention is an anti-VEGF antibody or functional fragment thereof, such as bevacizumab.
  • the MEK inhibitor useful in the methods of the invention is a small molecule compound or a pharmaceutically acceptable salt thereof.
  • the small molecule compound is selected from the group consisting of PD325901, PD-181461, AR Y142886 / AZD6244, ARRY-509, GDC0973 (XL518), GDC0987, JTP- 74057, AS-701255, AS-701173, AZD8330, ARRY162, ARRY300, RDEA436, E6201 , R04987655/R-7167, GSK1120212 and AS-703026.
  • the small molecule compound is an azetidine compound.
  • the human subject in the methods of the invention has been previously treated with chemotherapy, a VEGF antagonist or both.
  • the human subject has been previously treated with bevacizumab but the tumor therein has relapsed.
  • a combination therapy using bevacizumab and GDC-0973 is contemplated.
  • a combination therapy using anti-G-CSF antibody and bevacizumab is contemplated.
  • the invention provides a novel combination of a) a MEK inhibitor and b) a VEGF antagonist for concurrent, separate or sequential use in treating tumor. Also provided is a pharmaceutical preparation comprising an effective amount of the above combination and at least one pharmaceutically acceptable carrier.
  • FIG. 2 depicts the signaling mechanisms controlling G-CSF expression in cancer cells.
  • (2B) Enforced expression of mutant BRAF (V600E) induces G-CSF expression in 67NR cells. *p 0.0004.
  • (2C) MEK inhibitor (GDC-0973) inhibits ERK phosphorylation and G-CSF expression in 4T1 cells. *p ⁇ 0.002.
  • ELISA shows the effects of MEKi and Pi3K inhibitor LY294002 (Pi3Ki) on G-CSF release. *p ⁇ 0.001.
  • Figure 3 depicts growth factors that positively regulate G-CSF secretion in
  • FIG. 4 depicts effects of MEKi, anti-G-CSF, anti-VEGF antibodies and combinations thereof on 4T1 tumor growth.
  • (4A-B) MEKi reduces G-CSF and Bv8 levels in 4T1 tumor-bearing mice, *p ⁇ 0.001.
  • (4F) Reduced angiogenesis in 4T1 tumors treated with MEKi plus anti-VEGF, or anti-G-CSF plus anti-VEGF combination treatments. Treatment groups are indicated in the figure. Tumor sections were stained with anti-CD31 (red). Scale bar is lOOum.
  • (4G) Quantitative analysis of tumor vascular surface area. Whole tumor cross-sections were stained with CD31 and analyzed as described in Methods (n 4, *p ⁇ 0.05).
  • FIG. 5 depicts effects of MEKi, anti-G-CSF, anti-VEGF antibodies and combinations thereof on LLC tumor growth.
  • Figure 6 depicts effects of RAF and MEK inhibitors on G-CSF expression in cancer cells.
  • MEKi GDC-0973 inhibits G-CSF
  • RAFi GDC-0879 induces G-CSF in mouse lung cell lines with KRAS mutation.
  • D DMSO
  • P PI3Ki LY-294002 5uM
  • R RAFi GDC-0879 luM
  • GDC-0973 MEKi: O.OluM, O. luM and l .OuM
  • G-CSF release was analyzed by ELISA.
  • Ten different human cancer cell lines were analyzed for G-CSF release by ELISA.
  • AKT and ERK phosphorylations were assessed in total lysates.
  • Cells were treated with DMSO (D), PBKi LY-294002 5uM (P), RAFi GDC-0879 luM (R), or GDC-0973 (MEKi : O.OluM, O. luM and l .OuM) for 24hrs.
  • FIG. 7 depicts effects of MEKi, anti-VEGF antibody and combination thereof on LLC tumor growth.
  • MEKi plus anti-VEGF combination treatment reduces growth of LLC tumors by approximately 64% at day 26 when compared to either MEKi or anti- VEGF as a single agent.
  • Figure 8 shows a marked reduction in total white blood cells counts in the peripheral blood of the animals that received either the MEKi alone, or MEKi plus anti- VEGF combination treatments compared to controls (8A). Reduction in white blood cells was correlated with a decrease in Cdl lb + Ly6G + cells in peripheral blood and in G-CSF and Bv8 plasma levels in animals that received MEKi as a single agent or MEKi plus anti- VEGF (8B-D).
  • FIG. 9 illustrates results from an Anti-VEGF resistant PDAC allograft mouse model.
  • G-CSFR wild-type (G-CSFR +/+ ) or G-CSFR knockout (G-CSFR 7 ) mice were crossed with RAG2 knockout (RAG2 ⁇ ⁇ ) mice to generate G-CSFR /+ RAG2 ⁇ ⁇ and (G-CSFR ⁇ / ⁇ RAG2 ⁇ / ⁇ .
  • aRAG anti-Ragweed
  • aVEGF anti-VEGF
  • Figure 10 illustrates results from a Kras-driven PDAC GEMM. (10A)
  • Figure 12 illustrates effects of MEKi GDC-0973 on G-CSF release and neutrophil mobilization in a Kras-driven PDAC GEMM.
  • (12A) ELISA analysis of G-CSF release in PDAC mice after received MEKi GDC-0973 at different time points, as indicated. Each number corresponds to an animal (n 5/group).
  • (12B) Cytokines and growth factors changes in plasma were monitored by Luminex. Time points were analyzed at day 7 after MEKi GDC-0973 administration. Wildtype (Naive), PDAC treated with control (Vehicle) or MEKi GDC-0973, (n 5/group) *p ⁇ 0.05. Error bars indicate SD.
  • cancers that are amenable to treatment by the anti-G-CSF antibody, anti-Bv8-antibody, anti-PK l antibody or any combination thereof include breast cancer, colorectal cancer, rectal cancer, non-small cell lung cancer, glioblastoma, non-Hodgkins lymphoma (NHL), renal cell cancer, prostate cancer, melanoma, liver cancer, pancreatic cancer, soft-tissue sarcoma, kaposi's sarcoma, carcinoid carcinoma, head and neck cancer, ovarian cancer and multiple myeloma.
  • breast cancer colorectal cancer, rectal cancer, non-small cell lung cancer, glioblastoma, non-Hodgkins lymphoma (NHL), renal cell cancer, prostate cancer, melanoma, liver cancer, pancreatic cancer, soft-tissue sarcoma, kaposi's sarcoma, carcinoid carcinoma, head and neck cancer, ovarian cancer and multiple myelom
  • the cancer is selected from the group consisting of small cell lung cancer, gliblastoma, neuroblastomas, melanoma, breast carcinoma, gastric cancer, colorectal cancer (CRC), and hepatocellular carcinoma. Yet, in some embodiments, the cancer is selected from the group consisting of non-small cell lung cancer, colorectal cancer, renal cell cancer, ovarian cancer, prostate cancer, glioblastoma and breast carcinoma, including metastatic forms of those cancers.
  • Cancer cells Primary tumors are classified by the type of tissue from which they arise; metastatic tumors are classified by the tissue type from which the cancer cells are derived. Over time, the cells of a malignant tumor become more abnormal and appear less like normal cells. This change in the appearance of cancer cells is called the tumor grade and cancer cells are described as being well-differentiated, moderately-differentiated, poorly-differentiated, or undifferentiated. Well-differentiated cells are quite normal appearing and resemble the normal cells from which they originated. Undifferentiated cells are cells that have become so abnormal that it is no longer possible to determine the origin of the cells.
  • Epithelial cancers generally evolve from a benign tumor to a preinvasive stage
  • adenocarcinoma (PDAC) investigated in the present invention is a type of cancer resistant to anti-VEGF therapy.
  • a cancer refers to cancer, cancerous cells, or a tumor that initially responded to a cancer therapy comprising at least a VEGF antagonist, but eventually reinitiates growth despite ongoing cancer therapy.
  • a cancer is relapse tumor growth or relapse cancer cell growth where the number of cancer cells has not been significantly reduced, or has increased, or tumor size has not been significantly reduced, or has increased, or fails any further reduction in size or in number of cancer cells.
  • sensitizing tumor to treatment with a VEGF antagonist herein is meant a step by which the targeted tumor becomes more sensitive, vulnerable or susceptable to treatment with a VEGF antagonist than a non-sensitized tumor control.
  • Cells in tumor stroma refers to the cell population in stroma, the microenvironment surrounding and supporting a tumor.
  • the cell population in tumor stroma often comprises tumor-associated fibroblasts, pericytes, mesenchymal stem cells and inflammatory-imuune cells.
  • Some cells in tumor stroma are derived from bone marrow and are of hematopoietic lineage, including but not limited to, myeloid cells, granulocytes and neutropils.
  • VEGF -A is part of a gene family including VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F, and P1GF.
  • VEGF -A primarily binds to two high affinity receptor tyrosine kinases, VEGFR-1 (Flt-1) and VEGFR-2 (Flk-l/KDR), the latter being the major transmitter of vascular endothelial cell mitogenic signals of VEGF -A.
  • VEGFR-1 Flt-1
  • VEGFR-2 Flk-l/KDR
  • a "chemotherapeutic agent” refers to a chemical compound useful in the treatment of cancer.
  • chemotherapeutic agents include alkylating agents such as thiotepa and cyclosphosphamide (CYTOXAN®); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylomelamine;
  • alkylating agents such as thiotepa and cyclosphosphamide (CYTOXAN®)
  • alkyl sulfonates such as busulfan, improsulfan and piposulfan
  • aziridines such as benzodopa, carboquone, meturedopa, and ure
  • celecoxib or etoricoxib proteosome inhibitor
  • proteosome inhibitor e.g. PS341
  • bortezomib VELCADE®
  • CCI-779 tipifarnib (Rl 1577); orafenib, ABT510
  • Bcl-2 inhibitor such as oblimersen sodium
  • Sustained-release preparations of MEK inhibitors may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing a MEK inhibitor, which matrices are in the form of shaped articles, e.g., films, or microcapsules.
  • the aqueous phase of the cream base may include a polyhydric alcohol, i.e., an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1 ,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof.
  • the topical formulations may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulfoxide and related analogs.
  • MEKi, anti-G-CSF, combination of MEKi plus anti-VEGF or anti-G-CSF plus anti-VEGF treatment significantly reduced G-CSF and Bv8 levels (Figure 5A and 5B) compared to anti-ragweed or anti-VEGF treated groups.
  • Cdl lb + Ly6G + cells were significantly decreased in the peripheral blood (Figure 5C), accompanied by marked reduction in total white blood cell counts ( Figure 5D).
  • MEKi treatment resulted in approximately 50% inhibition in tumor growth, whereas anti-G-CSF resulted in approximately 25% inhibition compared to anti-ragweed control group (Figure 5E).
  • G-CSF RNA S.E. signaling pathway Detection
  • myofibroblast-like cell fractions (29) that are negative for CD31 were purified to exclude endothelial cell contamination from tumors. Antibody staining confirmed that these cells express aSMA and CD 105 and are negative for CD31. Incubation of aSMA+CD105+CD31- cells with FGFs resulted in G-CSF release in a MEK-dependent manner.

Abstract

La présente invention concerne d'une manière générale l'inhibition de la croissance tumorale. En particulier, l'invention concerne la prévention ou le traitement d'angiogenèse de tumeur et l'inhibition de la croissance tumorale dans des tumeurs résistant au traitement anti-VEGF, à l'aide d'inhibiteurs de MEK ou d'antagonistes de G-CSF, soit individuellement soit en combinaison avec un antagoniste de VEGF.
PCT/US2012/067419 2011-12-02 2012-11-30 Procédés pour surmonter la résistance tumorale aux antagonistes de vegf WO2013082511A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161566428P 2011-12-02 2011-12-02
US61/566,428 2011-12-02

Publications (2)

Publication Number Publication Date
WO2013082511A1 true WO2013082511A1 (fr) 2013-06-06
WO2013082511A9 WO2013082511A9 (fr) 2013-09-06

Family

ID=47324479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/067419 WO2013082511A1 (fr) 2011-12-02 2012-11-30 Procédés pour surmonter la résistance tumorale aux antagonistes de vegf

Country Status (1)

Country Link
WO (1) WO2013082511A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682154B2 (en) 2013-02-04 2017-06-20 Vascular Biogenics Ltd. Methods of inducing responsiveness to anti-angiogenic agent
WO2021108255A1 (fr) * 2019-11-25 2021-06-03 The Regents Of The University Of California Inhibiteurs de vegf à action prolongée pour néovascularisation intraoculaire
US11524053B2 (en) 2018-01-26 2022-12-13 The Regents Of The University Of California Methods and compositions for treatment of angiogenic disorders using anti-VEGF agents

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4120649A (en) 1975-04-10 1978-10-17 Israel Schechter Transplants
US4665077A (en) 1979-03-19 1987-05-12 The Upjohn Company Method for treating rejection of organ or skin grafts with 6-aryl pyrimidine compounds
WO1989006692A1 (fr) 1988-01-12 1989-07-27 Genentech, Inc. Procede de traitement de cellules tumorales par inhibition de la fonction receptrice du facteur de croissance
EP0340109A2 (fr) 1988-04-28 1989-11-02 The Board Of Trustees Of The Leland Stanford Junior University Anti- Déterminants du récepteur de la céllule T pour le traitement des maladies autoimmunes
WO1990008187A1 (fr) 1989-01-19 1990-07-26 Dana Farber Cancer Institute Proteine cd2 soluble a deux domaines
WO1990011294A1 (fr) 1989-03-21 1990-10-04 The Immune Response Corporation Vaccination et procedes contre des maladies resultant des reponses pathogeniques par des populations de cellules t specifiques
EP0404097A2 (fr) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Récepteurs mono- et oligovalents, bispécifiques et oligospécifiques, ainsi que leur production et application
WO1991001133A1 (fr) 1989-07-19 1991-02-07 Arthur Allen Vandenbark Peptides recepteurs de cellules t constituant une therapie contre des maladies autoimmunes et malignes
US5114721A (en) 1988-03-15 1992-05-19 Yeda Research And Development Co. Ltd. Preparation of t-cell and t-cell membrane for use in prevention and treatment of autoimmune diseases
WO1993011161A1 (fr) 1991-11-25 1993-06-10 Enzon, Inc. Proteines multivalentes de fixation aux antigenes
WO1994010202A1 (fr) 1992-10-28 1994-05-11 Genentech, Inc. Antagonistes du facteur de croissance des cellules endotheliales vasculaires
WO1995027062A1 (fr) 1994-04-04 1995-10-12 Genentech, Inc. Anticorps agonistes diriges contre le recepteur flk2/flt3 et leurs utilisations
US5500362A (en) 1987-01-08 1996-03-19 Xoma Corporation Chimeric antibody with specificity to human B cell surface antigen
WO1996030046A1 (fr) 1995-03-30 1996-10-03 Genentech, Inc. Antagonistes de facteurs de croissance des cellules endotheliales vasculaires
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
WO1998045331A2 (fr) 1997-04-07 1998-10-15 Genentech, Inc. Anticorps anti-vegf
WO1998045332A2 (fr) 1997-04-07 1998-10-15 Genentech, Inc. Anticorps humanises et methode permettant de les produire
US6054297A (en) 1991-06-14 2000-04-25 Genentech, Inc. Humanized antibodies and methods for making them
WO2002006213A2 (fr) 2000-07-19 2002-01-24 Warner-Lambert Company Esters oxygenes d'acides 4-iodophenylamino benzhydroxamiques
WO2002076496A1 (fr) * 2001-03-22 2002-10-03 Van Andel Institute Facteur letal de l'anthrax inhibant la croissance tumorale et l'angiogenese
US20030055006A1 (en) 2000-06-23 2003-03-20 Schering Aktiengesellschaft Combinations and compositions which interfere with VEGF/VEGF and angiopoietin/tie receptor function and their use
US6582959B2 (en) 1991-03-29 2003-06-24 Genentech, Inc. Antibodies to vascular endothelial cell growth factor
WO2003077914A1 (fr) 2002-03-13 2003-09-25 Array Biopharma, Inc Utilisation de derives de benzimidazole alkyles n3 en tant qu'inhibiteurs de mek
WO2003077855A2 (fr) 2002-03-13 2003-09-25 Array Biopharma, Inc Derives de benzimidazole n3 alkyles servant d'inhibiteurs de mek
US20030190317A1 (en) 1997-04-07 2003-10-09 Genentech, Inc. Anti-VEGF antibodies
US20030206899A1 (en) 1991-03-29 2003-11-06 Genentech, Inc. Vascular endothelial cell growth factor antagonists
US6703020B1 (en) 1999-04-28 2004-03-09 Board Of Regents, The University Of Texas System Antibody conjugate methods for selectively inhibiting VEGF
WO2005012359A2 (fr) 2003-08-01 2005-02-10 Genentech, Inc. Anticorps anti-vegf
US6884879B1 (en) 1997-04-07 2005-04-26 Genentech, Inc. Anti-VEGF antibodies
WO2005044853A2 (fr) 2003-11-01 2005-05-19 Genentech, Inc. Anticorps anti-vegf
US20050186208A1 (en) 2003-05-30 2005-08-25 Genentech, Inc. Treatment with anti-VEGF antibodies
US20060009360A1 (en) 2004-06-25 2006-01-12 Robert Pifer New adjuvant composition
WO2009039337A2 (fr) 2007-09-21 2009-03-26 Genentech, Inc. Inhibition de l'angiogenèse
WO2009085983A1 (fr) 2007-12-19 2009-07-09 Genentech, Inc. 5-anilinoimidazopyridines et procédés d'utilisation
WO2010006225A1 (fr) 2008-07-11 2010-01-14 Novartis Ag Combinaison de (a) un inhibiteur de phosphoinositide 3-kinase et de (b) un modulateur de voie ras/raf/mek
US7803839B2 (en) 2005-10-07 2010-09-28 Exelixis, Inc. Azetidines as MEK inhibitors for the treatment of proliferative diseases
WO2011014750A1 (fr) 2009-07-31 2011-02-03 Genentech, Inc. Inhibition de métastase tumorale utilisant des antagonistes de bv8 ou de g-csf
WO2011054620A1 (fr) 2009-10-12 2011-05-12 F. Hoffmann-La Roche Ag Combinaisons d'un inhibiteur de pi3k et d'un inhibiteur de mek

Patent Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4120649A (en) 1975-04-10 1978-10-17 Israel Schechter Transplants
US4665077A (en) 1979-03-19 1987-05-12 The Upjohn Company Method for treating rejection of organ or skin grafts with 6-aryl pyrimidine compounds
US5500362A (en) 1987-01-08 1996-03-19 Xoma Corporation Chimeric antibody with specificity to human B cell surface antigen
WO1989006692A1 (fr) 1988-01-12 1989-07-27 Genentech, Inc. Procede de traitement de cellules tumorales par inhibition de la fonction receptrice du facteur de croissance
US5114721A (en) 1988-03-15 1992-05-19 Yeda Research And Development Co. Ltd. Preparation of t-cell and t-cell membrane for use in prevention and treatment of autoimmune diseases
EP0340109A2 (fr) 1988-04-28 1989-11-02 The Board Of Trustees Of The Leland Stanford Junior University Anti- Déterminants du récepteur de la céllule T pour le traitement des maladies autoimmunes
WO1990008187A1 (fr) 1989-01-19 1990-07-26 Dana Farber Cancer Institute Proteine cd2 soluble a deux domaines
WO1990011294A1 (fr) 1989-03-21 1990-10-04 The Immune Response Corporation Vaccination et procedes contre des maladies resultant des reponses pathogeniques par des populations de cellules t specifiques
EP0404097A2 (fr) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Récepteurs mono- et oligovalents, bispécifiques et oligospécifiques, ainsi que leur production et application
WO1991001133A1 (fr) 1989-07-19 1991-02-07 Arthur Allen Vandenbark Peptides recepteurs de cellules t constituant une therapie contre des maladies autoimmunes et malignes
US20030206899A1 (en) 1991-03-29 2003-11-06 Genentech, Inc. Vascular endothelial cell growth factor antagonists
US20030203409A1 (en) 1991-03-29 2003-10-30 Genentech, Inc. Antibodies to vascular endothelial cell growth factor
US6582959B2 (en) 1991-03-29 2003-06-24 Genentech, Inc. Antibodies to vascular endothelial cell growth factor
US6054297A (en) 1991-06-14 2000-04-25 Genentech, Inc. Humanized antibodies and methods for making them
WO1993011161A1 (fr) 1991-11-25 1993-06-10 Enzon, Inc. Proteines multivalentes de fixation aux antigenes
EP0666868B1 (fr) 1992-10-28 2002-04-03 Genentech, Inc. Usage d'anticorps anti-VEGF pour le traitement du cancer
WO1994010202A1 (fr) 1992-10-28 1994-05-11 Genentech, Inc. Antagonistes du facteur de croissance des cellules endotheliales vasculaires
WO1995027062A1 (fr) 1994-04-04 1995-10-12 Genentech, Inc. Anticorps agonistes diriges contre le recepteur flk2/flt3 et leurs utilisations
WO1996030046A1 (fr) 1995-03-30 1996-10-03 Genentech, Inc. Antagonistes de facteurs de croissance des cellules endotheliales vasculaires
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
WO1998045331A2 (fr) 1997-04-07 1998-10-15 Genentech, Inc. Anticorps anti-vegf
US7060269B1 (en) 1997-04-07 2006-06-13 Genentech, Inc. Anti-VEGF antibodies
US20050112126A1 (en) 1997-04-07 2005-05-26 Genentech, Inc. Anti-VEGF antibodies
US6884879B1 (en) 1997-04-07 2005-04-26 Genentech, Inc. Anti-VEGF antibodies
WO1998045332A2 (fr) 1997-04-07 1998-10-15 Genentech, Inc. Anticorps humanises et methode permettant de les produire
US20030190317A1 (en) 1997-04-07 2003-10-09 Genentech, Inc. Anti-VEGF antibodies
US6703020B1 (en) 1999-04-28 2004-03-09 Board Of Regents, The University Of Texas System Antibody conjugate methods for selectively inhibiting VEGF
US20030055006A1 (en) 2000-06-23 2003-03-20 Schering Aktiengesellschaft Combinations and compositions which interfere with VEGF/VEGF and angiopoietin/tie receptor function and their use
WO2002006213A2 (fr) 2000-07-19 2002-01-24 Warner-Lambert Company Esters oxygenes d'acides 4-iodophenylamino benzhydroxamiques
WO2002076496A1 (fr) * 2001-03-22 2002-10-03 Van Andel Institute Facteur letal de l'anthrax inhibant la croissance tumorale et l'angiogenese
WO2003077914A1 (fr) 2002-03-13 2003-09-25 Array Biopharma, Inc Utilisation de derives de benzimidazole alkyles n3 en tant qu'inhibiteurs de mek
WO2003077855A2 (fr) 2002-03-13 2003-09-25 Array Biopharma, Inc Derives de benzimidazole n3 alkyles servant d'inhibiteurs de mek
US20050186208A1 (en) 2003-05-30 2005-08-25 Genentech, Inc. Treatment with anti-VEGF antibodies
WO2005012359A2 (fr) 2003-08-01 2005-02-10 Genentech, Inc. Anticorps anti-vegf
WO2005044853A2 (fr) 2003-11-01 2005-05-19 Genentech, Inc. Anticorps anti-vegf
US20060009360A1 (en) 2004-06-25 2006-01-12 Robert Pifer New adjuvant composition
US7803839B2 (en) 2005-10-07 2010-09-28 Exelixis, Inc. Azetidines as MEK inhibitors for the treatment of proliferative diseases
WO2009039337A2 (fr) 2007-09-21 2009-03-26 Genentech, Inc. Inhibition de l'angiogenèse
WO2009085983A1 (fr) 2007-12-19 2009-07-09 Genentech, Inc. 5-anilinoimidazopyridines et procédés d'utilisation
WO2010006225A1 (fr) 2008-07-11 2010-01-14 Novartis Ag Combinaison de (a) un inhibiteur de phosphoinositide 3-kinase et de (b) un modulateur de voie ras/raf/mek
WO2011014750A1 (fr) 2009-07-31 2011-02-03 Genentech, Inc. Inhibition de métastase tumorale utilisant des antagonistes de bv8 ou de g-csf
WO2011054620A1 (fr) 2009-10-12 2011-05-12 F. Hoffmann-La Roche Ag Combinaisons d'un inhibiteur de pi3k et d'un inhibiteur de mek

Non-Patent Citations (89)

* Cited by examiner, † Cited by third party
Title
"Antitumor effects of sorafenib, bevacizumab and cetuximab as single agents or in combination with an MEK, mTOR or Bcl-2 inhibitor, in a SNU-398 human hepatocellular tumor xenograft model", PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL MEETING, vol. 49, April 2008 (2008-04-01), 99TH ANNUAL MEETING OF THE AMERICAN-ASSOCIATION-FOR-CANCER-RESEARCH; SAN DIEGO, CA, USA; APRIL 12 -16, 2008, pages 312 - 313, XP009168228, ISSN: 0197-016X *
"Remington's Pharmaceutical Sciences", 1995, MACK PUBL. CO.
BEEKMAN; TOUW, BLOOD, vol. 115, 2010, pages 5131 - 6
BELVIN M ET AL: "132 Intermittent dosing of the MEK inhibitor, GDC-0973, and the PI3K inhibitor, GDC-0941, results in prolonged accumulation of Bim and causes strong tumor growth inhibition in vivo", EUROPEAN JOURNAL OF CANCER. SUPPLEMENT, PERGAMON, OXFORD, GB, vol. 8, no. 7, 1 November 2010 (2010-11-01), pages 48, XP027497820, ISSN: 1359-6349, [retrieved on 20101101], DOI: 10.1016/S1359-6349(10)71837-1 *
BERGER; HANAHAN, NAT. RCV. CANCER, vol. 8, 2008, pages 592 - 603
BERKMAN ET AL., J. CLIN. INVEST., vol. 91, 1993, pages 153 - 159
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426
BROWN ET AL., CANCER RES., vol. 53, 1993, pages 4727 - 4735
BROWN ET AL., HUMAN PATHOL., vol. 26, 1995, pages 86 - 91
CAO, ADV. CANCER RES., vol. 100, 2008, pages 113 - 31
CAO, NAT. REV. CLIN. ONCOL., vol. 7, 2010, pages 604 - 8
CARMELIET; JAIN, NATURE, vol. 407, 2000, pages 249 - 257
CIUFFREDA ET AL., NCOPLASIA, vol. 11, 2009, pages 720 - 31
CRAWFORD ET AL., CANCER CELL, vol. 15, 2009, pages 21 - 34
DATABASE EMBASE [online] ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL; 1 September 2010 (2010-09-01), FENTON M S ET AL: "Sunitinib inhibits MEK/ERK and SAPK/JNK pathways and increases sodium/iodide symporter expression in papillary thyroid cancer", XP002694309, Database accession no. EMB-2010493429 *
DOWNWARD, NAT. REV. CANCER, vol. 3, 2003, pages 11 - 22
DUESBERY N S ET AL: "SUPPRESSION OF RAS-MEDIATED TRANSFORMATION AND INHIBITION OF TUMOR GROWTH AND ANGIOGENESIS BY ANTHRAX LETHAL FACTOR, A PROTEOLYTIC INHIBITOR OF MULTIPLE MEK PATHWAYS", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 98, no. 7, 27 March 2001 (2001-03-27), pages 4089 - 4094, XP002952523, ISSN: 0027-8424, DOI: 10.1073/PNAS.061031898 *
DVORAK ET AL., AM. J. PATHOL., vol. 146, 1995, pages 1029 - 1039
ESCUDLIER ET AL., N. ENGL. J. MED., vol. 356, 2007, pages 125 - 34
FENTON M S ET AL: "Sunitinib inhibits MEK/ERK and SAPK/JNK pathways and increases sodium/iodide symporter expression in papillary thyroid cancer", THYROID 20100901 MARY ANN LIEBERT INC. USA, vol. 20, no. 9, 1 September 2010 (2010-09-01), pages 965 - 974, XP055215100, ISSN: 1050-7256, DOI: doi:10.1089/thy.2010.0008 *
FERRARA, ENDOCR. REV., vol. 18, 1997, pages 4 - 25
FERRARA, NATURE REVIEWS:DRUG DISCOVERY, vol. 3, 2004, pages 391 - 400
FERRARA; ALITALO, NATURE MEDICINE, vol. 5, no. 12, 1999, pages 1359 - 1364
FERRARA; DAVIS-SMYTH, ENDOCRINE REV., vol. 18, 1997, pages 4 - 25
FERRARA; KERBEL, NATURE, vol. 438, 2005, pages 967 - 74
FOLKMAN ET AL., J. BIOL. CHEM., vol. 267, 1992, pages 10931 - 10934
FOLKMAN ET AL., NATURE, vol. 339, 1989, pages 58
GABRILOVICH; NAGARAJ, NAT. REV. IMMUNOL., vol. 9, 2009, pages 162 - 74
GUERRIN ET AL., J. CELL PHYSIOL., vol. 164, 1995, pages 385 - 394
HAHN; WEINBERG, NAT. REV. CANCER, vol. 2, 2002, pages 331 - 41
HASEGAWA ET AL., ANN. THORAC. SURG., vol. 83, 2007, pages 308 - 10
HIDALGO, NEW ENG. J. MED., vol. 362, 2010, pages 1605 - 17
HOLLINGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HORAK ET AL., LANCET, vol. 340, 1992, pages 1120 - 1124
HOUCK ET AL., MOL. ENDOCRIN., vol. 5, 1991, pages 1806
HURWITZ ET AL., N. ENG. J. MED., vol. 350, 2004, pages 2335 - 42
HUSTON ET AL., PNAS (USA, vol. 85, 1988, pages 5879 - 5883
HUTSON ET AL: "4510 POSTER A phase 2 trial of sunitinib in bevacizumab-refractory metastatic renal cell carcinoma (mRCC): updated results and analysis of circulating biomarkers", EUROPEAN JOURNAL OF CANCER. SUPPLEMENT, PERGAMON, OXFORD, GB, vol. 5, no. 4, 1 September 2007 (2007-09-01), pages 301, XP022333622, ISSN: 1359-6349, DOI: 10.1016/S1359-6349(07)71141-2 *
IANEWAY, NATURE, vol. 341, 1989, pages 482
JACKSON ET AL., IBID, 2005
KAWAGUCHI ET AL., INT. J. CLIN. ONCOL., vol. 15, 2010, pages 191 - 5
KLAGSBRUN ET AL., ANNU. REV. PHYSIOL., vol. 53, 1991, pages 217 - 239
KLAGSBRUN, D'AMORE, ANNU. REV. PHYSIOL., vol. 53, 1991, pages 217 - 39
KLAGSBRUN; D'AMORE, ANNU. REV. PHYSIOL., vol. 53, 1991, pages 217 - 39
KOWANETZ ET AL., PNAS USA, vol. 107, 2010, pages 21248 - 55
LEUNG ET AL., SCIENCE, vol. 246, 1989, pages 1306
LI ET AL., CANCER RES., vol. 71, 2011, pages 6073 - 83
LI ET AL., IBID, 2011
LIANG ET AL., J. BIOL. CHEM., vol. 281, 2006, pages 951 - 61
LLOVER ET AL., N. ENGL. J. MED., vol. 359, 2008, pages 378 - 90
MACCHIARINI ET AL., LANCET, vol. 340, 1992, pages 145 - 146
MATTERN ET AL., BRIT. J. CANCER, vol. 73, 1996, pages 931 - 934
MILLER ET AL., N. ENGL. J. MED., vol. 357, 2007, pages 2666 - 76
MOTZER ET AL., N. ENGL. J. MED., vol. 356, 2007, pages 115 - 24
MURAKAMI ET AL.: "The Molecular Basis of Cancer", vol. 13, 1995, W.B. SAUNDERS, article "Cell cycle regulation, oncogenes, and antineoplastic drugs"
NICOLAOU ET AL., ANGEW. CHEM INTL. ED. ENGL., vol. 33, 1994, pages 183 - 186
OBERG-WELSH ET AL., MOL. CELL. ENDOCRINOL., vol. 126, 1997, pages 125 - 132
OFFNER ET AL., SCIENCE, vol. 251, 1991, pages 430 - 432
POPKOV ET AL., JOURNAL OF IMMUNOLOGICAL METHODS, vol. 288, 2004, pages 149 - 164
POPKOV ET AL., JOURNAL OFIMMUNOLOGICAL METHODS, vol. 288, 2004, pages 149 - 164
POPKOV, JOURNAL OF LMMUNOLOGICAL METHODS, vol. 288, 2004, pages 149 - 164
PRESTA ET AL., CANCER RES., vol. 57, 1997, pages 4593 - 4599
RCV. CANCER, vol. 8, 2008, pages 579 - 91
ROBINSO; STRINGER, JOURNAL OF CELL SCIENCE, vol. 144, no. 5, 2001, pages 853 - 865
SANDLER, N. ENGL. J. MED., vol. 355, 2006, pages 2542 - 50
SATO INT. J. CLIN. ONCOL., vol. 8, 2003, pages 200 - 206
SATO, INT. J. CLIN. ONCOL., vol. 8, 2003, pages 200 - 206
SATO, LNT..I. CLIN. ONEAL., vol. 8, 2003, pages 200 - 206
SHAOJAEI ET AL., PNAS USA, vol. 106, 2009, pages 6742 - 47
SHCHORS; EVAN, CANCER RES., vol. 67, 2007, pages 7059 - 61
SHOJAEI ET AL., NAT. BIOTECH., vol. 25, 2007, pages 911 - 20
SHOJAEI ET AL., TRENDS IN CELL BIOL., vol. 18, 2008, pages 372 - 8
SHOJAEI FARBOD ET AL: "G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 21 APR 2009, vol. 106, no. 16, 21 April 2009 (2009-04-21), pages 6742 - 6747, XP002694310, ISSN: 1091-6490 *
SHOJAEI FARBOD ET AL: "Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US, vol. 25, no. 8, 1 August 2007 (2007-08-01), pages 911 - 920, XP002507081, ISSN: 1087-0156, DOI: 10.1038/NBT1323 *
SHOJAEI; N. FERRARA, CANCER RES., vol. 68, 2008, pages 5501 - 5504
SIEMEISTER ET AL., CANCER METASTASIS REV., vol. 17, 1998, pages 241 - 248
SINGH ET AL., NATURE BIOTECH., vol. 28, 2010, pages 585 - 93
SONDELL ET AL., J. NEUROSCI., vol. 19, 1999, pages 5731 - 5740
STREIT; DETMAR, ONCOGENE, vol. 22, 2003, pages 3172 - 3179
TALMADGE, SEMIN. CANCER BIOL., vol. 21, 2011, pages 131 - 8
TER ELST ARJA ET AL: "Targeting Multiple Active Kinase Pathways In 11q23 Translocated Pediatric Acute Myeloid Leukemia Using a VEGFR2 Antibody Together with a MEK Inhibitor", BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol. 116, no. 21, 1 November 2010 (2010-11-01), pages 1492, XP009168226, ISSN: 0006-4971 *
TONINI ET AL., ONCOGENE, vol. 22, 2003, pages 6549 - 6556
VISSER ET AL., NAT. REV. CANCER, vol. 6, 2006, pages 24 - 37
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
WEIDNER ET AL., N. ENGL. J. MED, vol. 324, 1991, pages 1 - 6
YAMAMOTO ET AL., J. GASTROENTEROL., vol. 34, 1999, pages 640 - 4
YANG ET AL., CANCER CELL, vol. 13, 2008, pages 23 - 35
YU ET AL., NAT. RCV. CANCER, vol. 9, 2009, pages 798 - 809
ZAPATA ET AL., PROTEIN ENG., vol. 8, no. 10, 1995, pages 1057 1062

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682154B2 (en) 2013-02-04 2017-06-20 Vascular Biogenics Ltd. Methods of inducing responsiveness to anti-angiogenic agent
US11524053B2 (en) 2018-01-26 2022-12-13 The Regents Of The University Of California Methods and compositions for treatment of angiogenic disorders using anti-VEGF agents
WO2021108255A1 (fr) * 2019-11-25 2021-06-03 The Regents Of The University Of California Inhibiteurs de vegf à action prolongée pour néovascularisation intraoculaire
US11382955B2 (en) 2019-11-25 2022-07-12 The Regents Of The University Of California Long-acting VEGF inhibitors for intraocular neovascularization
US11433118B2 (en) 2019-11-25 2022-09-06 The Regents Of The University Of California Long-acting VEGF inhibitors for intraocular neovascularization
US11576948B2 (en) 2019-11-25 2023-02-14 The Regents Of The University Of California Long-acting VEGF inhibitors for intraocular neovascularization

Also Published As

Publication number Publication date
WO2013082511A9 (fr) 2013-09-06

Similar Documents

Publication Publication Date Title
RU2692075C2 (ru) Комбинированная терапия для лечения глиобластомы
AU2011221229B2 (en) Anti-angiogenesis therapy for the treatment of ovarian cancer
RU2531948C2 (ru) Антиангиогенная терапия, применяемая для лечения рака молочной железы
EP3095455A1 (fr) Antagonistes spécifiques de vegf pour thérapie par adjuvant et néoadjuvant et traitement de tumeurs à un stade précoce
US20080199464A1 (en) Combination Therapy with Angiogenesis Inhibitors
US20150224191A1 (en) Combination Treatment with VEGF-C Antagonists
TW201106969A (en) Adjuvant cancer therapy
EP2825558B1 (fr) Polythérapie pour le traitement d'un cancer de l'ovaire
WO2013082511A1 (fr) Procédés pour surmonter la résistance tumorale aux antagonistes de vegf
AU2014201795B2 (en) VEGF-specific antagonists for adjuvant and neoadjuvant therapy and the treatment of early stage tumors
AU2016213830A1 (en) VEGF-specific antagonists for adjuvant and neoadjuvant therapy and the treatment of early stage tumors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12798579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12798579

Country of ref document: EP

Kind code of ref document: A1