WO2013080519A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2013080519A1
WO2013080519A1 PCT/JP2012/007594 JP2012007594W WO2013080519A1 WO 2013080519 A1 WO2013080519 A1 WO 2013080519A1 JP 2012007594 W JP2012007594 W JP 2012007594W WO 2013080519 A1 WO2013080519 A1 WO 2013080519A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
chamber side
contact surface
compression chamber
suction chamber
Prior art date
Application number
PCT/JP2012/007594
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 船越
健 苅野
裕文 吉田
鶸田 晃
信吾 大八木
啓晶 中井
竜一 大野
飯田 登
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280042991.9A priority Critical patent/CN103765012A/en
Publication of WO2013080519A1 publication Critical patent/WO2013080519A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a rotary compressor used for an air conditioner, a refrigerator, a blower, a water heater, and the like.
  • a compressor which sucks in gas refrigerant evaporated in an evaporator, compresses the sucked gas refrigerant to a pressure necessary for condensing, and sends out high temperature / high pressure gas refrigerant. It is done.
  • a rotary compressor is known as one of such compressors.
  • a motor and a compression mechanism are connected by a crankshaft and housed in a closed container.
  • the compression mechanism portion is composed of a cylinder, an upper bearing, a lower bearing, and a piston. Both end faces of the cylinder are closed by the end plate of the upper bearing and the end plate of the lower bearing.
  • the crankshaft is supported by the upper bearing and the lower bearing.
  • the eccentric part of the crankshaft is disposed between the upper bearing and the lower bearing.
  • the piston is fitted to the eccentric part of the crankshaft.
  • a compression space is formed by the cylinder, the upper bearing, the lower bearing, and the piston.
  • a vane groove is formed in the cylinder, and a vane is disposed in the vane groove.
  • the vane reciprocates following the eccentric rotation of the piston and divides the compression space into a suction chamber and a compression chamber.
  • the crankshaft is provided with an oil hole in the axial portion, and a wall portion of the crankshaft with respect to the upper bearing and the lower bearing is provided with an oil supply hole communicating with the oil hole. Further, the wall portion of the eccentric portion is provided with a feed hole communicating with the oil hole, and an oil groove is formed on the outer peripheral surface of the eccentric portion.
  • the cylinder is provided with a suction port for sucking the refrigerant gas into the suction chamber.
  • the upper bearing is provided with a discharge port for discharging the refrigerant gas from the compression chamber.
  • the discharge port is formed as a circular hole in a plan view penetrating the upper bearing, and the top surface of the discharge port is provided with a discharge valve which is released when a predetermined pressure is received.
  • the discharge valve is covered by a cup muffler.
  • the suction chamber sucks the refrigerant gas from the suction port by the expansion of the space, and the compression chamber compresses the refrigerant gas to a predetermined pressure or more by the contraction of the space.
  • the compressed refrigerant gas opens the discharge valve, flows out from the discharge port, and is discharged into the closed container via the cup muffler.
  • the vane groove has a spring hole for housing a spring which presses the vane against the piston at the start of the compressor, and the spring hole is filled with lubricating oil or high pressure refrigerant gas. Lubricant oil and high-pressure gas leak into the suction chamber and the compression chamber from the spring hole through the gap between the vane and the vane groove, and the efficiency is lowered.
  • FIG. 11 is a plan view of relevant parts showing a cylinder of a conventional rotary compressor. In FIG. 11, a portion of the cylinder 130 and a portion of the piston 132 disposed in the cylinder 130 are shown. In the cylinder 130, a vane groove 130b is formed.
  • the vanes 133 are disposed in the vane groove 130b.
  • An oil reservoir groove 133 a is formed in the vane 133.
  • a plurality of oil reservoir grooves 133 a are formed at arbitrary intervals in the direction intersecting with the sliding direction of the vanes 133.
  • An oil film is sufficiently formed between the vanes 133 and the vane groove 130b by the oil reservoir groove 133a. The oil film exerts a labyrinth sealing effect, and can prevent leakage of lubricating oil, refrigerant gas and the like (see, for example, Patent Document 1).
  • Patent Document 1 Although the suppression of leakage of lubricating oil, refrigerant gas and the like can be expected by the labyrinth seal effect, when the suction chamber and the compression chamber have the same pressure, the gap between the vane 133 and the vane groove 130b is completely I can not seal.
  • the present invention solves the above-mentioned conventional problems, and in a state where the pressure difference between the suction chamber and the compression chamber is less than a predetermined pressure, the refrigerant gas and the lubricating oil pass through the gap between the vane and the vane groove to form the suction chamber. And a rotary compressor that suppresses leakage into the compression chamber.
  • the present invention provides a cylinder, an eccentric portion of a shaft disposed in the cylinder, a piston fitted to the eccentric portion, and the cylinder following an eccentric rotation of the piston. And reciprocate in a vane groove provided in the cylinder to divide the inside of the cylinder into a suction chamber and a compression chamber, and the vane has a suction chamber side contacting the vane groove on the suction chamber side.
  • a rotary having a contact surface and a compression chamber side contact surface in contact with the vane groove on the compression chamber side, wherein lubricating oil is supplied from an oil reservoir to the suction chamber side contact surface and the compression chamber side contact surface.
  • a differential pressure generating mechanism which is a compressor, wherein a pressure applied to the contact surface on the compression chamber side is larger than that on the contact surface on the suction chamber side when the pressure difference between the suction chamber and the compression chamber is less than a predetermined pressure.
  • Row characterized by being formed It is a re-compressor.
  • the vane is inclined toward the suction chamber
  • the vanes and the vane grooves are brought into contact with each other to suppress the refrigerant gas and the lubricating oil leaking into the suction chamber and the compression chamber, thereby improving the efficiency.
  • the oil can be easily held between the vanes and the vane grooves to improve the sliding condition, and the vanes can be prevented from fluttering in the vane grooves, thereby improving the reliability.
  • the principal part top view which shows the relationship of a cylinder and a vane when the piston of a comparative example is the vane top dead center vicinity
  • Top view showing the relationship of Graph for explaining the efficiency of the contact area ratio difference between the vanes and the vane grooves of the rotary compressor in the embodiment of the present invention
  • A) Principal part top view which shows cylinder of rotary compressor in other embodiment of this invention (b) Principal part side view seen from A direction and B direction shown to the figure
  • the motor and the compression mechanism are connected by a crankshaft and accommodated in the closed container, and the compression mechanism is fitted to the cylinder, the eccentric portion of the shaft disposed in the cylinder, and the eccentric portion Provided on the suction chamber side of the cylinder, which reciprocates in the vane groove provided in the cylinder following the eccentric rotation of the piston, and which divides the inside of the cylinder into a suction chamber and a compression chamber, and And the suction chamber side contact surface contacting the vane groove on the suction chamber side and the compression chamber side contact surface contacting the vane groove on the compression chamber side.
  • a rotary compressor in which lubricating oil is supplied from an oil reservoir to the suction chamber side contact surface and the compression chamber side contact surface, and a pressure difference between the suction chamber and the compression chamber is less than a predetermined pressure.
  • the suction chamber side contact surface A rotary compressor, wherein a pressure applied to the reduced chamber side contact surface to form a larger differential pressure generating mechanism.
  • the vane and the vane groove can be brought into contact to improve the sealing performance, and the refrigerant gas and the lubricating oil can suppress the leakage into the suction chamber and the compression chamber through the gap between the vane and the vane groove. Further, since the differential pressure generating mechanism is in communication with the oil reservoir, the lubricating oil is easily held between the vanes and the vane grooves, and the reliability is also improved.
  • the differential pressure generating mechanism is configured such that the contact area of the suction chamber side contact surface with the vane groove is the vane on the compression chamber side contact surface. It is a rotary compressor characterized in that it is larger than the contact area with the groove.
  • the differential pressure generating mechanism is characterized in that a counterbore in communication with the vane groove is provided in a direction orthogonal to the vane groove. Machine. By this configuration, it can be easily processed by a drill hole, an end mill or the like.
  • a suction chamber side counterbore in communication with the vane groove in the suction chamber side and a vane groove in communication with the compression chamber side
  • a compression chamber side counterbore is provided.
  • the height of the cylinder is about 4 to 6 times the width of the vane groove.
  • the pressure balance in the thickness direction (the contact surface on the suction chamber side and the contact surface on the compression chamber side) on the upper shaft side and the lower shaft side of the vane is lost, leading to a reduction in efficiency.
  • the diameter of the drill hole can be made larger than the vane groove width, so it becomes easy to penetrate in the axial direction in one drilling.
  • the diameter of the drill hole can be increased, the tool life can be extended and the workability can be improved.
  • a ratio of a contact area of the contact surface on the compression chamber side with the vane groove on a contact area of the suction chamber side contact surface with the vane groove. Is 70% or more.
  • the gap between the vane and the compression chamber side of the vane groove is substantially filled with high pressure, and the differential pressure generating mechanism does not function, so the pressure distribution becomes equivalent to that of a common rotary compressor, and the vane and vane groove There is no strong sliding and the reliability does not deteriorate.
  • a single refrigerant comprising a refrigerant based on a hydrofluoroolefin having carbon and carbon-carbon double bond as a working fluid, or A mixed refrigerant containing the refrigerant is used.
  • This refrigerant has a low suction density, for example, it needs about 1.7 times the amount of circulation to achieve the same capacity as R410A, the difference between high and low pressure becomes large, and the influence of leakage of lubricating oil and refrigerant gas is large It is possible to more effectively improve the efficiency of the compressor.
  • this refrigerant since this refrigerant has no ozone destruction and a low global warming potential, it can contribute to the configuration of a climate-friendly air conditioning cycle.
  • FIG. 1 is a longitudinal sectional view of a rotary compressor according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of the compression mechanism portion in the embodiment of the present invention.
  • the motor 2 and the compression mechanism 3 are connected by a crankshaft 31 and accommodated in the sealed container 1.
  • a discharge pipe 5 is provided at the upper part of the closed container 1.
  • An oil reservoir 6 is formed in the lower part of the closed container 1. Since the compressed refrigerant gas is discharged in the closed container 1, the discharge pressure acts on the oil reservoir 6.
  • the motor 2 is composed of a stator 22 and a rotor 24.
  • the compression mechanism portion 3 includes a cylinder 30, an upper bearing 34, a lower bearing 35, and a piston 32. Both end surfaces of the cylinder 30 are closed by the end plate of the upper bearing 34 and the end plate of the lower bearing 35.
  • the crankshaft 31 is supported by the upper bearing 34 and the lower bearing 35.
  • the eccentric portion 31 a of the crankshaft 31 is disposed between the upper bearing 34 and the lower bearing 35.
  • the piston 32 is fitted to the eccentric portion 31 a of the crankshaft 31.
  • a compression space 39 is formed by the cylinder 30, the upper bearing 34, the lower bearing 35, and the piston 32.
  • a suction port 40 is formed in the cylinder 30.
  • An oil hole 41 is provided in the crankshaft 31 in the axial direction.
  • oil supply holes 42 and 43 respectively communicating with the oil hole 41 are provided.
  • the oil supply hole 44 communicating with the oil hole 41 is provided in the wall portion of the eccentric portion 31a, and the oil groove 45 is formed on the outer peripheral surface of the eccentric portion 31a. Lubricating oil is supplied to the oil hole 41 from the oil reservoir 6.
  • the discharge port 38 is formed as a circular hole in a plan view penetrating the upper bearing 34, and the top surface of the discharge port 38 is provided with a discharge valve 36 which is released when receiving a predetermined pressure.
  • the discharge valve 36 is covered by a cup muffler 37.
  • the suction chamber 39a sucks the refrigerant gas from the suction port 40 by the expansion of the space, and the compression chamber 39b compresses the refrigerant gas to a predetermined pressure or more by the contraction of the space.
  • the compressed refrigerant gas opens the discharge valve 36, flows out from the discharge port 38, and is discharged into the closed container 1 via the cup muffler 37.
  • the space 46 is surrounded by the eccentric portion 31 a, the upper bearing 34, and the inner peripheral surface of the piston 32.
  • the space 47 is surrounded by the eccentric portion 31 a, the lower bearing 35, and the inner peripheral surface of the piston 32.
  • the lubricating oil leaks into the space 46 from the oil hole 41 through the oil supply hole 42.
  • the lubricating oil leaks into the space 47 from the oil hole 41 through the oil supply hole 43. Therefore, since the discharge pressure is applied to the spaces 46 and 47, the spaces 46 and 47 are higher than the pressure in the compression space 39.
  • the height of the cylinder 30 is set to be slightly higher than the height of the piston 32 so that the piston 32 can slide therein. As a result, there are gaps between the end face of the piston 32 and the upper bearing 34 and between the end face of the piston 32 and the lower bearing 35. Therefore, the lubricating oil leaks from the spaces 46 and 47 to the compression space 39 through the gap.
  • FIG. 3A is a plan view of relevant parts showing a cylinder of the rotary compressor according to the present embodiment.
  • FIG.3 (b) is the principal part side view seen from the A direction and B direction which are shown to the figure (a).
  • a vane groove 30b is formed in the cylinder 30, a vane groove 30b is formed.
  • the vane 33 shown in FIG. 1 and FIG. 2 is disposed in the vane groove 30b.
  • the inside of the cylinder 30, ie, the compression space 39 forms a suction chamber 39a and a compression chamber 39b with the vane groove 30b interposed therebetween.
  • the suction port 40 communicates with the suction chamber 39a.
  • the spring hole 30c is a hole formed from the outer peripheral surface of the cylinder 30, and is formed in the same direction as the vane groove 30b.
  • a spring 30d shown in FIG. 1 and FIG. 2 is disposed in the spring hole 30c.
  • the spring 30 d presses the vanes 33 in the direction of the piston 32.
  • the spring hole 30c is filled with high pressure refrigerant gas and lubricating oil. Accordingly, the discharge pressure of the refrigerant is applied to the spring hole 30c.
  • FIG. 4A is a plan view of relevant parts showing the relationship between the cylinder 30 and the vane 33 when the piston 32 is located near the top dead center of the vane 33.
  • FIG. 4B is a plan view of relevant parts showing the relationship between the cylinder 30 and the vanes 33 when the compression chamber 39 b has reached a predetermined pressure.
  • the vane 33 has a suction chamber side contact surface 33a in contact with the vane groove 30c on the suction chamber 39a side and a compression chamber side contact surface 33b in contact with the vane groove 30c on the compression chamber 39b side. It is formed.
  • the lubricating oil from the oil reservoir 6 is supplied to the suction chamber side contact surface 33a and the compression chamber side contact surface 33b.
  • FIG.5 (a) is a principal part top view which shows the cylinder of the rotary compressor in a comparative example.
  • FIG.5 (b) is the principal part side view seen from the A direction and B direction which are shown to the figure (a).
  • symbol is attached
  • FIG. 6A is a plan view of relevant parts showing the relationship between the cylinder 130 and the vane 33 when the piston 32 is located near the top dead center of the vane 33.
  • 6B is a plan view of relevant parts showing the relationship between the cylinder 130 and the vanes 33 when the compression chamber 39 b has reached a predetermined pressure.
  • the spring holes 130c in the comparative example have the same length on the suction chamber 39a side and the compression chamber 39b side. Accordingly, the contact area of the suction chamber side contact surface 33 a of the vane 33 with the vane groove 30 b and the contact area of the compression chamber side contact surface 33 b of the vane 33 with the vane groove 30 b become equal.
  • the differential pressure generation mechanism in the present embodiment will be described below.
  • the compression chamber side spring hole 30e located on the compression chamber 39b side is made longer than the suction chamber side spring hole 30f located on the suction chamber 39a side. ing.
  • the contact area of the suction chamber side contact surface 33 a of the vane 33 with the vane groove 30 b is larger than the contact area of the compression chamber side contact surface 33 b of the vane 33 with the vane groove 30 b.
  • the hatched area in FIG. 3B is the contact surface between the vanes 33 and the vane grooves 30b.
  • the spring hole 30c is subjected to a discharge pressure. ing. Therefore, by making the contact area with the vane groove 30b in the suction chamber side contact surface 33a larger than the contact area with the vane groove 30b in the compression chamber side contact surface 33b, the compression chamber side than the suction chamber side contact surface 33a The pressure applied to the contact surface 33b is increased, and the pressure difference can tilt the vanes 33.
  • vanes 33 and the vane grooves 30b are brought into contact with each other to improve the sealing performance, and the refrigerant gas and the lubricating oil are prevented from leaking to the compression space 39 from the suction chamber side contact surface 33a and the compression chamber side contact surface 33b of the vane 33 it can.
  • the lubricating oil is easily held between the vanes 33 and the vane grooves 30b, and the reliability is also improved.
  • the compression chamber 39b has reached a predetermined pressure. Therefore, the oil reservoir 6 and the compression chamber 39b have substantially the same pressure. Therefore, the gap between the compression chamber side contact surface 33b of the vane 33 and the surface of the vane groove 30b on the compression chamber 39b side is substantially filled with high pressure. This is equivalent to the pressure distribution (see FIG. 6) of the vanes 33 and the vane grooves 30b of a general rotary compressor, so the vanes 33 and the vane grooves 30b do not slide strongly, and the reliability is deteriorated. do not do.
  • the ratio of the contact area of the compression chamber side contact surface 33b with the vane groove 30b to the contact area of the suction chamber side contact surface 33a with the vane groove 30b is preferably 70% or more.
  • FIG. 8 is a cylinder of a rotary compressor according to another embodiment of the present invention. Only the difference from the above embodiment will be described, and the description of the same configuration as the above embodiment will be omitted.
  • FIG. 8 (a) is a plan view of relevant parts showing a cylinder of a rotary compressor according to another embodiment of the present invention
  • FIG. 8 (b) is a view from directions A and B shown in FIG. It is a principal part side view.
  • a counterbore 60 communicating with the vane groove 30 b may be provided in the direction orthogonal to the vane groove 30 b as a differential pressure generation mechanism.
  • the contact area between the suction chamber side contact surface 33a of the vane 33 and the suction chamber 39a side surface of the vane groove 30b, and the compression chamber side contact surface 33b of the vane 33 and the compression chamber 39b side surface of the vane groove 30b Contact area can be changed. That is, as shown in FIG. 8B, by providing the counterbore 60 as a differential pressure generation mechanism, the contact area of the vane 33 on the suction chamber side contact surface 33a with the vane groove 30b is the contact on the compression chamber side of the vane 33. It becomes larger than the contact area with the vane groove
  • the shaded area in FIG. 8B is the contact surface between the vanes 33 and the vane grooves 30b.
  • a differential pressure generating mechanism that makes the compression chamber side spring hole 30 e located on the compression chamber 39 b side longer than the suction chamber side spring hole 30 f located on the suction chamber 39 a side.
  • a differential pressure generating mechanism by the counterbore 60 was provided.
  • a differential pressure generating mechanism by the counterbore 60 is provided together with a differential pressure generating mechanism for making the compression chamber side spring hole 30e located on the compression chamber 39b longer than the suction chamber side spring hole 30f located on the suction chamber 39a. It is also good.
  • the counterbore 60 can be easily processed using a drill or an end mill.
  • FIG. 9 shows a cylinder of a rotary compressor according to still another embodiment of the present invention. Only the difference from the above embodiment will be described, and the description of the same configuration as the above embodiment will be omitted.
  • the intersecting portion (edge portion) of the counterbore 60 and the vane groove 30b has an acute angle, and the oil lubricity deteriorates. Therefore, it is preferable to position the center of the counterbore 60 in the vane groove 30b and to make the intersection of the counterbore 60 and the vane groove 30b an obtuse angle (see FIG. 8).
  • FIG. 10 shows a cylinder of a rotary compressor according to still another embodiment of the present invention. Only the difference from the above embodiment will be described, and the description of the same configuration as the above embodiment will be omitted.
  • 10A is a plan view of relevant parts showing a cylinder of a rotary compressor according to still another embodiment of the present invention
  • FIG. 10B is viewed from directions A and B shown in FIG. It is a principal part side view.
  • a suction chamber side counterbore 60a communicating with the vane groove 30b on the suction chamber 39a side and a compression chamber side counterbore 60b communicating with the vane groove 30b on the compression chamber 39b side may be provided. .
  • the height of the cylinder 30 is about 4 to 6 times the width of the vane groove 30b.
  • the pressure balance in the thickness direction on the upper shaft side 34a and the lower shaft side 35a of the vane 33 is broken, leading to a reduction in efficiency.
  • the diameter of the drill hole can be made larger than the width of the vane groove 30b. Become.
  • the diameter of the drill hole can be increased, the tool life can be extended and the workability can be improved.
  • the rotary compressor includes a vane coupled to the outer periphery of the piston in a protruding manner to divide the compression chamber into a low pressure side and a high pressure side, and a swinging bush that swingably supports the vane.
  • a vane coupled to the outer periphery of the piston in a protruding manner to divide the compression chamber into a low pressure side and a high pressure side
  • a swinging bush that swingably supports the vane.
  • a single refrigerant composed of a refrigerant having a hydrofluoroolefin having a double bond between carbon and carbon as a base component or a mixed refrigerant containing the refrigerant is used.
  • This refrigerant has a low suction density, and, for example, requires about 1.7 times the amount of circulation to achieve the same capacity as R410A. Therefore, the difference between the high pressure and the low pressure in the compression becomes large, and the influence of the leakage of the lubricating oil and the refrigerant gas becomes large, so that the efficiency of the compressor can be more effectively improved.
  • this refrigerant since this refrigerant has no ozone destruction and a low global warming potential, it can contribute to the configuration of a climate-friendly air conditioning cycle.
  • a mixed refrigerant may be used as the working refrigerant, in which the hydrofluoroolefin is tetrafluoropropene (HFO 1234yf) and the hydrofluorocarbon is difluoromethane (HFC 32).
  • a mixed refrigerant may be used as the working refrigerant, in which the hydrofluoroolefin is tetrafluoropropene (HFO 1234 yf) and the hydrofluorocarbon is pentafluoroethane (HFC 125).
  • a mixed refrigerant consisting of three components, in which the hydrofluoroolefin is tetrafluoropropene (HFO 1234yf) and the hydrofluorocarbon is pentafluoroethane (HFC 125) or difluoromethane (HFC 32), may be used as the working refrigerant.
  • HFO 1234yf tetrafluoropropene
  • HFC 125 pentafluoroethane
  • difluoromethane HFC 32
  • the rotary compressor of the present invention is provided with a differential pressure generating mechanism that presses the vanes in the direction of the suction chamber side of the vane groove and communicates with the oil reservoir.
  • a differential pressure generating mechanism that presses the vanes in the direction of the suction chamber side of the vane groove and communicates with the oil reservoir.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The rotary compressor of the present invention comprises has a cylinder (30), an eccentric part (31a) of a shaft, a piston (32), and a vane (33), wherein an intake chamber-side contact surface (33a) and a compression chamber-side contact surface (33b) are formed in the vane (33), lubrication oil is supplied to the intake chamber-side contact surface (33a) and the compression chamber-side contact surface (33b) from an oil accumulator (6), and a pressure-difference creation mechanism, which causes the pressure added to the compression chamber-side contact surface (33b) to be greater than that of the intake chamber-side contact surface (33a), is formed in a state in which the pressure difference between an intake chamber (39a) and a compression chamber (39b) is equal to or less than a predetermined pressure, whereby refrigerant gas and the lubrication oil are prevented from leaking into the intake chamber (39a) and the compression chamber (39b) through a gap between the vane (33) and a vane groove (30b).

Description

ロータリ圧縮機Rotary compressor
 本発明は、空調機、冷凍機、ブロワ、給湯機等に使用されるロータリ圧縮機に関するものである。 The present invention relates to a rotary compressor used for an air conditioner, a refrigerator, a blower, a water heater, and the like.
 従来、冷凍装置や空気調和装置などにおいては、蒸発器で蒸発したガス冷媒を吸入し、吸入したガス冷媒を凝縮するために必要な圧力まで圧縮し、高温高圧のガス冷媒を送り出す圧縮機が使用されている。このような圧縮機の一つとして、ロータリ圧縮機が知られている。 Conventionally, in a refrigeration system or an air conditioner, a compressor is used which sucks in gas refrigerant evaporated in an evaporator, compresses the sucked gas refrigerant to a pressure necessary for condensing, and sends out high temperature / high pressure gas refrigerant. It is done. A rotary compressor is known as one of such compressors.
 ロータリ圧縮機は、電動機と圧縮機構部をクランク軸で連結して密閉容器内に収納している。圧縮機構部は、シリンダ、上軸受、下軸受、及びピストンから構成される。シリンダの両端面は、上軸受の端板と下軸受の端板とで閉塞される。クランク軸は、上軸受及び下軸受で支持される。上軸受と下軸受との間には、クランク軸の偏心部が配置される。ピストンはクランク軸の偏心部に嵌合される。シリンダ、上軸受、下軸受、及びピストンによって圧縮空間が形成される。
 シリンダにはベーン溝が形成され、ベーン溝にはベーンが配置される。ベーンは、ピストンの偏心回転に追従して往復運動し、圧縮空間内を吸入室と圧縮室とに仕切る。クランク軸には軸線部に油穴が設けられ、上軸受、下軸受に対するクランク軸の壁部には、それぞれ油穴に連通した給油穴が設けられている。
 また、偏心部の壁部には、油穴に連通した給油穴が設けられ、偏心部の外周面には油溝が形成されている。
In a rotary compressor, a motor and a compression mechanism are connected by a crankshaft and housed in a closed container. The compression mechanism portion is composed of a cylinder, an upper bearing, a lower bearing, and a piston. Both end faces of the cylinder are closed by the end plate of the upper bearing and the end plate of the lower bearing. The crankshaft is supported by the upper bearing and the lower bearing. The eccentric part of the crankshaft is disposed between the upper bearing and the lower bearing. The piston is fitted to the eccentric part of the crankshaft. A compression space is formed by the cylinder, the upper bearing, the lower bearing, and the piston.
A vane groove is formed in the cylinder, and a vane is disposed in the vane groove. The vane reciprocates following the eccentric rotation of the piston and divides the compression space into a suction chamber and a compression chamber. The crankshaft is provided with an oil hole in the axial portion, and a wall portion of the crankshaft with respect to the upper bearing and the lower bearing is provided with an oil supply hole communicating with the oil hole.
Further, the wall portion of the eccentric portion is provided with a feed hole communicating with the oil hole, and an oil groove is formed on the outer peripheral surface of the eccentric portion.
 一方、シリンダには、吸入室に冷媒ガスを吸入する吸入ポートを設けている。上軸受には、圧縮室から冷媒ガスを吐出する吐出ポートを設けている。吐出ポートは、上軸受を貫通する平面視で円形の孔として形成され、吐出ポートの上面には、所定圧力を受けた場合に解放される吐出弁を設けている。この吐出弁はカップマフラーで覆われている。
 吸入室は、空間の拡大によって、吸入ポートから冷媒ガスを吸入し、圧縮室は、空間の縮小によって冷媒ガスを所定圧力以上に圧縮する。圧縮された冷媒ガスは吐出弁を開き、吐出ポートから流出し、カップマフラーを経由して密閉容器内に吐出される。
On the other hand, the cylinder is provided with a suction port for sucking the refrigerant gas into the suction chamber. The upper bearing is provided with a discharge port for discharging the refrigerant gas from the compression chamber. The discharge port is formed as a circular hole in a plan view penetrating the upper bearing, and the top surface of the discharge port is provided with a discharge valve which is released when a predetermined pressure is received. The discharge valve is covered by a cup muffler.
The suction chamber sucks the refrigerant gas from the suction port by the expansion of the space, and the compression chamber compresses the refrigerant gas to a predetermined pressure or more by the contraction of the space. The compressed refrigerant gas opens the discharge valve, flows out from the discharge port, and is discharged into the closed container via the cup muffler.
 また、ベーン溝には、圧縮機の始動時にベーンをピストンに押し付けるバネを収納するバネ孔があり、バネ孔は潤滑油や高圧冷媒ガスで満たされている。このバネ孔から、ベーンとベーン溝の隙間を介して、吸入室と圧縮室に潤滑油や高圧ガスが漏れ込み、効率が低下していた。
 この漏れ込みを低減するために、図11に示す構成がある。
 図11は、従来のロータリ圧縮機のシリンダを示す要部平面図である。
 図11では、シリンダ130の一部と、シリンダ130内に配置されるピストン132の一部を示している。シリンダ130には、ベーン溝130bが形成されている。ベーン溝130bには、ベーン133が配置されている。
 ベーン133には油溜り溝133aが形成されている。油溜り溝133aはベーン133の摺動方向と交差する方向に任意の間隔で複数形成されている。油溜り溝133aによってベーン133とベーン溝130bとの間には油膜が十分に形成される。この油膜は、ラビリンスシール効果を発揮し、潤滑油や冷媒ガス等の漏れを防止できる(例えば、特許文献1参照)。
Further, the vane groove has a spring hole for housing a spring which presses the vane against the piston at the start of the compressor, and the spring hole is filled with lubricating oil or high pressure refrigerant gas. Lubricant oil and high-pressure gas leak into the suction chamber and the compression chamber from the spring hole through the gap between the vane and the vane groove, and the efficiency is lowered.
In order to reduce this leakage, there is a configuration shown in FIG.
FIG. 11 is a plan view of relevant parts showing a cylinder of a conventional rotary compressor.
In FIG. 11, a portion of the cylinder 130 and a portion of the piston 132 disposed in the cylinder 130 are shown. In the cylinder 130, a vane groove 130b is formed. The vanes 133 are disposed in the vane groove 130b.
An oil reservoir groove 133 a is formed in the vane 133. A plurality of oil reservoir grooves 133 a are formed at arbitrary intervals in the direction intersecting with the sliding direction of the vanes 133. An oil film is sufficiently formed between the vanes 133 and the vane groove 130b by the oil reservoir groove 133a. The oil film exerts a labyrinth sealing effect, and can prevent leakage of lubricating oil, refrigerant gas and the like (see, for example, Patent Document 1).
特開平3-185292号公報JP-A-3-185292
 特許文献1で示すように、ベーン133に油溜り溝133aを形成することにより、ラビリンスシール効果を発揮して、冷媒ガス等の漏れが抑制でき圧縮効率が向上する。
 しかし、吸入室と圧縮室が同一圧力の時は、ベーン133の厚み方向に形成される面(吸入室側接触面133bと圧縮室側接触面133c)に加わる圧力に差が発生しないため、ベーン133が吸入室側へ傾かず、ベーン133とベーン溝130bとの接触が生じず、ベーン133とベーン溝130bとの間には隙間が生じる。
 すなわち、特許文献1では、ラビリンスシール効果により、潤滑油や冷媒ガス等の漏れの抑制は期待できるものの、吸入室と圧縮室が同一圧力の時には、ベーン133とベーン溝130bとの間を完全にシールすることができない。
As shown in Patent Document 1, by forming the oil reservoir groove 133a in the vane 133, a labyrinth sealing effect is exhibited, leakage of refrigerant gas and the like can be suppressed, and compression efficiency is improved.
However, when the suction chamber and the compression chamber have the same pressure, no difference occurs in the pressure applied to the surface (the suction chamber side contact surface 133 b and the compression chamber side contact surface 133 c) formed in the thickness direction of the vane 133. The contact between the vane 133 and the vane groove 130b does not occur, and a gap is generated between the vane 133 and the vane groove 130b.
That is, in Patent Document 1, although the suppression of leakage of lubricating oil, refrigerant gas and the like can be expected by the labyrinth seal effect, when the suction chamber and the compression chamber have the same pressure, the gap between the vane 133 and the vane groove 130b is completely I can not seal.
 本発明は、上記従来の課題を解決するもので、吸入室と圧縮室との圧力差が所定圧以下の状態で、冷媒ガス及び潤滑油が、ベーンとベーン溝の隙間を介して、吸入室及び圧縮室に漏れ込むことを抑制するロータリ圧縮機を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and in a state where the pressure difference between the suction chamber and the compression chamber is less than a predetermined pressure, the refrigerant gas and the lubricating oil pass through the gap between the vane and the vane groove to form the suction chamber. And a rotary compressor that suppresses leakage into the compression chamber.
 上記目的を達成するために、本発明はシリンダと、前記シリンダ内に配置される、シャフトの偏心部と、前記偏心部に嵌合されるピストンと、前記ピストンの偏心回転に追従して前記シリンダに設けられたベーン溝内を往復運動し、前記シリンダ内を吸入室と圧縮室とに区分するベーンとを有し、前記ベーンには、前記吸入室側の前記ベーン溝に接触する吸入室側接触面と、前記圧縮室側の前記ベーン溝に接触する圧縮室側接触面とが形成され、前記吸入室側接触面及び前記圧縮室側接触面にはオイル溜まりから潤滑油が供給されるロータリ圧縮機であって、前記吸入室と前記圧縮室との圧力差が所定圧以下の状態で、前記吸入室側接触面よりも前記圧縮室側接触面に加わる圧力が大きくなる差圧発生機構を形成したことを特徴とするロータリ圧縮機である。ベーンをベーン溝の吸入室側の方向に押し付け、かつ、オイル溜まりと連通する差圧発生機構を設けることにより、吸入室と圧縮室が同一圧力の時に、冷媒ガス、潤滑油が、ベーンとベーン溝の隙間を介して、吸入室、圧縮室への漏れ込みを抑制することができる。 In order to achieve the above object, the present invention provides a cylinder, an eccentric portion of a shaft disposed in the cylinder, a piston fitted to the eccentric portion, and the cylinder following an eccentric rotation of the piston. And reciprocate in a vane groove provided in the cylinder to divide the inside of the cylinder into a suction chamber and a compression chamber, and the vane has a suction chamber side contacting the vane groove on the suction chamber side. A rotary having a contact surface and a compression chamber side contact surface in contact with the vane groove on the compression chamber side, wherein lubricating oil is supplied from an oil reservoir to the suction chamber side contact surface and the compression chamber side contact surface. A differential pressure generating mechanism, which is a compressor, wherein a pressure applied to the contact surface on the compression chamber side is larger than that on the contact surface on the suction chamber side when the pressure difference between the suction chamber and the compression chamber is less than a predetermined pressure. Row characterized by being formed It is a re-compressor. By providing a differential pressure generating mechanism that presses the vane in the direction of the suction chamber side of the vane groove and communicates with the oil reservoir, the refrigerant gas and the lubricating oil can flow when the suction chamber and the compression chamber have the same pressure. Leakage into the suction chamber and the compression chamber can be suppressed through the gap of the groove.
 上記構成によれば、吸入室と圧縮室が同一圧力の時のベーンの厚み方向(吸入室側接触面と圧縮室側接触面)に加わる圧力に差を発生させ、ベーンを吸入室側へ傾かせて、ベーンとベーン溝を接触させて、吸入室と圧縮室に漏れ込む冷媒ガス、潤滑油を抑制でき、効率が向上する。さらに、ベーンとベーン溝間に油を保持しやすくなり摺動状態が良化すること、及びベーンがベーン溝内でバタつくことを抑えられるため、信頼性も向上する。 According to the above configuration, a difference is generated in the pressure applied in the thickness direction of the vane (the suction chamber side contact surface and the compression chamber side contact surface) when the suction chamber and the compression chamber have the same pressure, and the vane is inclined toward the suction chamber As a result, the vanes and the vane grooves are brought into contact with each other to suppress the refrigerant gas and the lubricating oil leaking into the suction chamber and the compression chamber, thereby improving the efficiency. In addition, the oil can be easily held between the vanes and the vane grooves to improve the sliding condition, and the vanes can be prevented from fluttering in the vane grooves, thereby improving the reliability.
本発明の実施の形態におけるロータリ圧縮機の縦断面図Longitudinal sectional view of a rotary compressor according to an embodiment of the present invention 本発明の実施の形態におけるロータリ圧縮機の圧縮機構部の拡大断面図An enlarged sectional view of a compression mechanism portion of a rotary compressor according to an embodiment of the present invention (a)本実施の形態におけるロータリ圧縮機圧縮機のシリンダを示す要部平面図(b)同図(a)に示すA方向及びB方向から見た要部側面図(A) Principal part top view which shows the cylinder of the rotary compressor compressor in this Embodiment (b) Principal part side view seen from A direction and B direction shown to the figure (a) (a)本実施形態のピストンがベーン上死点近傍の時のシリンダとベーンの関係を示す要部平面図、(b)本実施形態の圧縮室が所定の圧力まで達している時のシリンダとベーンの関係を示す要部平面図(A) A main part plan view showing the relationship between the cylinder and the vane when the piston of the present embodiment is in the vicinity of the top dead center of the vane, (b) The cylinder when the compression chamber of the present embodiment has reached a predetermined pressure Main part plan view showing the relationship of vanes (a)比較例のロータリ圧縮機のシリンダを示す要部平面図、(b)同図(a)に示すA方向及びB方向から見た要部側面図(A) Principal part plan view showing cylinder of rotary compressor of comparative example, (b) Principal part side view seen from A direction and B direction shown in FIG. 比較例のピストンがベーン上死点近傍の時のシリンダとベーンの関係を示す要部平面図、(b)比較例の本実施形態の圧縮室が所定の圧力まで達している時のシリンダとベーンの関係を示す要部平面図The principal part top view which shows the relationship of a cylinder and a vane when the piston of a comparative example is the vane top dead center vicinity, (b) The cylinder and the vane when the compression chamber of this embodiment of a comparative example reaches predetermined pressure Top view showing the relationship of 本発明の実施の形態におけるロータリ圧縮機のベーンとベーン溝の接触面積比違いの効率を説明するグラフGraph for explaining the efficiency of the contact area ratio difference between the vanes and the vane grooves of the rotary compressor in the embodiment of the present invention (a)本発明の他の実施の形態におけるロータリ圧縮機のシリンダを示す要部平面図(b)同図(a)に示すA方向及びB方向から見た要部側面図(A) Principal part top view which shows cylinder of rotary compressor in other embodiment of this invention (b) Principal part side view seen from A direction and B direction shown to the figure (a) 本発明の更に他の実施の形態におけるロータリ圧縮機のシリンダを示す要部平面図Principal part top view which shows the cylinder of the rotary compressor in other embodiment of this invention (a)本発明の更に他の実施の形態におけるロータリ圧縮機のシリンダを示す要部平面図(b)同図(a)に示すA方向及びB方向から見た要部側面図(A) Principal part top view which shows cylinder of rotary compressor in further another embodiment of this invention (b) Principal part side view seen from A direction and B direction shown to the figure (a) 従来技術におけるベーンおよびシリンダの平面図Plan of vane and cylinder in prior art
 1 密閉容器
 2 電動機
 3 圧縮機構部
 30 シリンダ
 30b ベーン溝
 30c バネ孔
 31 クランク軸
 31a 偏心部
 32 ピストン
 33 ベーン
 34 上軸受
 35 下軸受
 36 吐出弁
 37 カップマフラー
 38 吐出ポート
 39 圧縮空間
 39a 吸入室
 39b 圧縮室
 40 吸入ポート
 41 油穴
 42 給油穴
 44 給油穴
 45 油溝
 46 空間
 47 空間
 60 ザグリ
DESCRIPTION OF SYMBOLS 1 sealed container 2 motor 3 compression mechanism part 30 cylinder 30b vane groove 30c spring hole 31 crank shaft 31a eccentric part 32 piston 33 vane 34 upper bearing 35 lower bearing 36 discharge valve 37 cup muffler 38 discharge port 39 compression space 39a suction chamber 39b compression Chamber 40 Intake port 41 Oil hole 42 Oil supply hole 44 Oil supply hole 45 Oil groove 46 Space 47 Space 60 Counterweight
 第1の発明は、電動機と圧縮機構部をクランク軸で連結して密閉容器内に収納し、圧縮機構部は、シリンダと、シリンダ内に配置される、シャフトの偏心部と、偏心部に嵌合されるピストンと、ピストンの偏心回転に追従して前記シリンダに設けられたベーン溝内を往復運動し、シリンダ内を吸入室と圧縮室とに区分するベーンと、シリンダの吸入室側に設けられる吸入ポートを有し、前記ベーンには、前記吸入室側の前記ベーン溝に接触する吸入室側接触面と、前記圧縮室側の前記ベーン溝に接触する圧縮室側接触面とが形成され、前記吸入室側接触面及び前記圧縮室側接触面にはオイル溜まりから潤滑油が供給されるロータリ圧縮機であって、前記吸入室と前記圧縮室との圧力差が所定圧以下の状態で、前記吸入室側接触面よりも前記圧縮室側接触面に加わる圧力が大きくなる差圧発生機構を形成したことを特徴とするロータリ圧縮機である。この構成により、吸入室と圧縮室が同一圧力の時に、ベーンの厚み方向(吸入室側接触面と圧縮室側接触面)に加わる圧力に差を発生させて、強制的にベーンを傾けることができ、ベーンとベーン溝を接触させてシール性を向上させ、冷媒ガス、潤滑油がベーンとベーン溝の隙間を介して吸入室と圧縮室への漏れ込みを抑制することができる。また、差圧発生機構がオイル溜りと連通しているため、ベーンとベーン溝の間に潤滑油が保持されやすくなり、信頼性も向上する。 In the first invention, the motor and the compression mechanism are connected by a crankshaft and accommodated in the closed container, and the compression mechanism is fitted to the cylinder, the eccentric portion of the shaft disposed in the cylinder, and the eccentric portion Provided on the suction chamber side of the cylinder, which reciprocates in the vane groove provided in the cylinder following the eccentric rotation of the piston, and which divides the inside of the cylinder into a suction chamber and a compression chamber, and And the suction chamber side contact surface contacting the vane groove on the suction chamber side and the compression chamber side contact surface contacting the vane groove on the compression chamber side. A rotary compressor in which lubricating oil is supplied from an oil reservoir to the suction chamber side contact surface and the compression chamber side contact surface, and a pressure difference between the suction chamber and the compression chamber is less than a predetermined pressure. The suction chamber side contact surface A rotary compressor, wherein a pressure applied to the reduced chamber side contact surface to form a larger differential pressure generating mechanism. With this configuration, when the suction chamber and the compression chamber have the same pressure, a difference is generated in the pressure applied to the thickness direction of the vane (the suction chamber side contact surface and the compression chamber side contact surface), and the vane is forcibly inclined. Thus, the vane and the vane groove can be brought into contact to improve the sealing performance, and the refrigerant gas and the lubricating oil can suppress the leakage into the suction chamber and the compression chamber through the gap between the vane and the vane groove. Further, since the differential pressure generating mechanism is in communication with the oil reservoir, the lubricating oil is easily held between the vanes and the vane grooves, and the reliability is also improved.
 第2の発明は、特に、第1の発明のロータリ圧縮機において、前記差圧発生機構は、前記吸入室側接触面における前記ベーン溝との接触面積を、前記圧縮室側接触面における前記ベーン溝との接触面積よりも大きくしたことを特徴とするロータリ圧縮機である。この構成により、差圧発生機構がベーン溝に設けられているため、運動するベーンに設けた時と比べて潤滑油の保持性が向上する。 According to a second invention, in particular, in the rotary compressor of the first invention, the differential pressure generating mechanism is configured such that the contact area of the suction chamber side contact surface with the vane groove is the vane on the compression chamber side contact surface. It is a rotary compressor characterized in that it is larger than the contact area with the groove. With this configuration, since the differential pressure generating mechanism is provided in the vane groove, the retention of the lubricating oil is improved compared to when provided in the moving vane.
 第3の発明は、特に、第2の発明のロータリ圧縮機において、前記差圧発生機構は、前記ベーン溝と連通するザグリを前記ベーン溝に直交する方向に設けたことを特徴とするロータリ圧縮機である。この構成により、ドリル穴やエンドミル等で容易に加工することができる。 According to a third invention, in particular, in the rotary compressor of the second invention, the differential pressure generating mechanism is characterized in that a counterbore in communication with the vane groove is provided in a direction orthogonal to the vane groove. Machine. By this configuration, it can be easily processed by a drill hole, an end mill or the like.
 第4の発明は、特に、第3の発明のロータリ圧縮機において、前記ザグリとして、前記吸入室側の前記ベーン溝に連通する吸入室側ザグリと、前記圧縮室側の前記ベーン溝に連通する圧縮室側ザグリを設けたことを特徴とするロータリ圧縮機である。通常、ベーン溝の幅に対してシリンダの高さは4~6倍程度である。一般的な工具寿命を考慮するとドリル穴径の2~3倍の深さまでしか掘り込むことができないため、ベーン溝の片側のみと連通するザグリでは軸方向に一回の穴加工で貫通させることが困難である。ザグリが軸方向に貫通しない構成では、ベーンの上軸側と下軸側で厚み方向(吸入室側接触面と圧縮室側接触面)の圧力バランスが崩れてしまうため、効率の低下に繋がる。ベーン溝の吸入室側と圧縮室側の両方に連通するザグリでは、ドリル穴の径をベーン溝幅よりも大きく取れるため、一回の穴加工で軸方向に貫通させることが容易となる。また、ドリル穴の径を大きく取れるため工具寿命も伸び、加工性も向上する。 According to a fourth invention, in particular, in the rotary compressor of the third invention, as the counterbore, a suction chamber side counterbore in communication with the vane groove in the suction chamber side and a vane groove in communication with the compression chamber side It is a rotary compressor characterized in that a compression chamber side counterbore is provided. Usually, the height of the cylinder is about 4 to 6 times the width of the vane groove. In consideration of general tool life, it is possible to dig only to a depth 2 to 3 times the drill hole diameter, so in the case of counterbore that communicates with only one side of the vane groove, it is necessary to penetrate in a single hole in the axial direction Have difficulty. In the configuration in which the counterbore does not penetrate in the axial direction, the pressure balance in the thickness direction (the contact surface on the suction chamber side and the contact surface on the compression chamber side) on the upper shaft side and the lower shaft side of the vane is lost, leading to a reduction in efficiency. In the case of counterbore communicating with both the suction chamber side and the compression chamber side of the vane groove, the diameter of the drill hole can be made larger than the vane groove width, so it becomes easy to penetrate in the axial direction in one drilling. In addition, since the diameter of the drill hole can be increased, the tool life can be extended and the workability can be improved.
 第5の発明は、特に、第2の発明のロータリ圧縮機において、前記吸入室側接触面における前記ベーン溝との接触面積に対する、前記圧縮室側接触面における前記ベーン溝との接触面積の比を70%以上としたことを特徴とするロータリ圧縮機である。この構成により、吸入室と圧縮室が同一圧力の時に、ベーンの厚み方向(吸入室側接触面と圧縮室側接触面)に加わる圧力差が過大にならないため、ベーンとベーン溝の吸入室側との接触力を小さくできる。また、ベーンとベーン溝との接触力が最大となる時には、圧縮室が所定の圧力まで達しているため、オイル溜りと圧縮室がほぼ同等の圧力となる。そのため、ベーンとベーン溝の圧縮室側との隙間はほぼ高圧で満たされており、差圧発生機構が機能しないため、一般的なロータリ圧縮機と同等の圧力分布となり、ベーンとベーン溝とが強く摺動することが無く信頼性が悪化しない。 According to a fifth invention, in particular, in the rotary compressor according to the second invention, a ratio of a contact area of the contact surface on the compression chamber side with the vane groove on a contact area of the suction chamber side contact surface with the vane groove. Is 70% or more. With this configuration, when the suction chamber and the compression chamber have the same pressure, the pressure difference applied to the thickness direction of the vane (the suction chamber side contact surface and the compression chamber side contact surface) does not become excessive. Contact force with can be reduced. Further, when the contact force between the vane and the vane groove is maximized, the pressure in the compression chamber reaches a predetermined pressure, so the oil reservoir and the compression chamber have substantially the same pressure. Therefore, the gap between the vane and the compression chamber side of the vane groove is substantially filled with high pressure, and the differential pressure generating mechanism does not function, so the pressure distribution becomes equivalent to that of a common rotary compressor, and the vane and vane groove There is no strong sliding and the reliability does not deteriorate.
 第6の発明は、特に、第1から第5の発明のロータリ圧縮機において、作動流体として、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を使用したものである。この冷媒は、吸入密度が小さく、例えばR410Aと同等の能力を出すには約1.7倍の循環量を必要し、高低圧の差が大きくなり、潤滑油及び冷媒ガスの漏れの影響が大きくなる特性があるため、より効果的に圧縮機の効率を向上させることが可能となる。また、この冷媒に関しては、オゾン破壊が無く、地球温暖化係数が低いため、地球に優しい空調サイクルの構成に寄与することが可能となる。 According to a sixth invention, in particular, in the rotary compressors of the first to fifth inventions, a single refrigerant comprising a refrigerant based on a hydrofluoroolefin having carbon and carbon-carbon double bond as a working fluid, or A mixed refrigerant containing the refrigerant is used. This refrigerant has a low suction density, for example, it needs about 1.7 times the amount of circulation to achieve the same capacity as R410A, the difference between high and low pressure becomes large, and the influence of leakage of lubricating oil and refrigerant gas is large It is possible to more effectively improve the efficiency of the compressor. In addition, since this refrigerant has no ozone destruction and a low global warming potential, it can contribute to the configuration of a climate-friendly air conditioning cycle.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment.
 図1は、本発明の実施の形態におけるロータリ圧縮機の縦断面図である。図2は、本発明の実施の形態における圧縮機構部の拡大図面である。
 図1と図2に示すように、本実施の形態におけるロータリ圧縮機は、電動機2と圧縮機構部3をクランク軸31で連結して密閉容器1内に収納している。密閉容器1の上部には吐出管5を備えている。密閉容器1の下部にはオイル溜まり6が形成される。密閉容器1内は、圧縮された冷媒ガスが吐出されているため、オイル溜まり6には吐出圧力が作用する。
FIG. 1 is a longitudinal sectional view of a rotary compressor according to an embodiment of the present invention. FIG. 2 is an enlarged view of the compression mechanism portion in the embodiment of the present invention.
As shown in FIG. 1 and FIG. 2, in the rotary compressor in the present embodiment, the motor 2 and the compression mechanism 3 are connected by a crankshaft 31 and accommodated in the sealed container 1. A discharge pipe 5 is provided at the upper part of the closed container 1. An oil reservoir 6 is formed in the lower part of the closed container 1. Since the compressed refrigerant gas is discharged in the closed container 1, the discharge pressure acts on the oil reservoir 6.
 電動機2は、ステータ22とロータ24から構成される。
 圧縮機構部3は、シリンダ30、上軸受34、下軸受35、及びピストン32から構成される。シリンダ30の両端面は、上軸受34の端板と下軸受35の端板とで閉塞される。クランク軸31は、上軸受34及び下軸受35で支持される。上軸受34と下軸受35との間には、クランク軸31の偏心部31aが配置される。ピストン32はクランク軸31の偏心部31aに嵌合される。シリンダ30、上軸受34、下軸受35、及びピストン32によって圧縮空間39が形成される。
 シリンダ30には吸入ポート40が形成される。
 クランク軸31には軸線方向に油穴41が設けられている。上軸受34、下軸受35に対するクランク軸31の壁部には、それぞれ油穴41に連通した給油穴42、43が設けられている。また、偏心部31aの壁部には、油穴41に連通した給油穴44が設けられ、偏心部31aの外周面には油溝45が形成されている。油穴41には、オイル溜まり6から潤滑油が供給される。
The motor 2 is composed of a stator 22 and a rotor 24.
The compression mechanism portion 3 includes a cylinder 30, an upper bearing 34, a lower bearing 35, and a piston 32. Both end surfaces of the cylinder 30 are closed by the end plate of the upper bearing 34 and the end plate of the lower bearing 35. The crankshaft 31 is supported by the upper bearing 34 and the lower bearing 35. The eccentric portion 31 a of the crankshaft 31 is disposed between the upper bearing 34 and the lower bearing 35. The piston 32 is fitted to the eccentric portion 31 a of the crankshaft 31. A compression space 39 is formed by the cylinder 30, the upper bearing 34, the lower bearing 35, and the piston 32.
A suction port 40 is formed in the cylinder 30.
An oil hole 41 is provided in the crankshaft 31 in the axial direction. In the wall portion of the crankshaft 31 with respect to the upper bearing 34 and the lower bearing 35, oil supply holes 42 and 43 respectively communicating with the oil hole 41 are provided. Further, the oil supply hole 44 communicating with the oil hole 41 is provided in the wall portion of the eccentric portion 31a, and the oil groove 45 is formed on the outer peripheral surface of the eccentric portion 31a. Lubricating oil is supplied to the oil hole 41 from the oil reservoir 6.
 吐出ポート38は、上軸受34を貫通する平面視で円形の孔として形成され、吐出ポート38の上面には、所定圧力を受けた場合に解放される吐出弁36を設けている。吐出弁36はカップマフラー37で覆われている。
 吸入室39aは、空間の拡大によって、吸入ポート40から冷媒ガスを吸入し、圧縮室39bは、空間の縮小によって冷媒ガスを、所定圧力以上に圧縮する。圧縮された冷媒ガスは吐出弁36を開き、吐出ポート38から流出し、カップマフラー37を経由して密閉容器1内に吐出される。
The discharge port 38 is formed as a circular hole in a plan view penetrating the upper bearing 34, and the top surface of the discharge port 38 is provided with a discharge valve 36 which is released when receiving a predetermined pressure. The discharge valve 36 is covered by a cup muffler 37.
The suction chamber 39a sucks the refrigerant gas from the suction port 40 by the expansion of the space, and the compression chamber 39b compresses the refrigerant gas to a predetermined pressure or more by the contraction of the space. The compressed refrigerant gas opens the discharge valve 36, flows out from the discharge port 38, and is discharged into the closed container 1 via the cup muffler 37.
 空間46は、偏心部31aと上軸受34とピストン32の内周面で囲まれている。空間47は、偏心部31aと下軸受35とピストン32の内周面で囲まれている。空間46には油穴41から給油穴42を経て潤滑油が漏れ込む。空間47には油穴41から給油穴43を経て潤滑油が漏れ込む。従って、空間46、47には、吐出圧力が加わるため、空間46、47は圧縮空間39内部の圧力より高い状態にある。
 また、シリンダ30の高さは、ピストン32が内部で摺動できるように、ピストン32の高さよりやや高めに設定している。その結果として、ピストン32の端面と上軸受34との間、及びピストン32の端面と下軸受35との間には隙間がある。そのため、この隙間を介して空間46、47から圧縮空間39へ潤滑油が漏れる。
The space 46 is surrounded by the eccentric portion 31 a, the upper bearing 34, and the inner peripheral surface of the piston 32. The space 47 is surrounded by the eccentric portion 31 a, the lower bearing 35, and the inner peripheral surface of the piston 32. The lubricating oil leaks into the space 46 from the oil hole 41 through the oil supply hole 42. The lubricating oil leaks into the space 47 from the oil hole 41 through the oil supply hole 43. Therefore, since the discharge pressure is applied to the spaces 46 and 47, the spaces 46 and 47 are higher than the pressure in the compression space 39.
Further, the height of the cylinder 30 is set to be slightly higher than the height of the piston 32 so that the piston 32 can slide therein. As a result, there are gaps between the end face of the piston 32 and the upper bearing 34 and between the end face of the piston 32 and the lower bearing 35. Therefore, the lubricating oil leaks from the spaces 46 and 47 to the compression space 39 through the gap.
 図3及び図4に、本実施の形態におけるロータリ圧縮機のシリンダを示す。
 図3(a)は、本実施の形態におけるロータリ圧縮機圧縮機のシリンダを示す要部平面図である。図3(b)は、同図(a)に示すA方向及びB方向から見た要部側面図である。
 シリンダ30には、ベーン溝30bが形成されている。ベーン溝30bには、図1及び図2に示すベーン33が配置される。シリンダ30内、すなわち圧縮空間39は、ベーン溝30bを挟んで、吸入室39aと圧縮室39bとを形成している。吸入室39aは吸入ポート40が連通する。
 バネ孔30cは、シリンダ30の外周面から形成された孔であり、ベーン溝30bと同じ方向に形成されている。バネ孔30c内には、図1及び図2に示すバネ30dが配置される。バネ30dは、ベーン33をピストン32の方向に押し付ける。バネ孔30cは、高圧冷媒ガスと潤滑油で満たされている。従って、バネ孔30cは、冷媒の吐出圧力が加わっている。
3 and 4 show a cylinder of the rotary compressor in the present embodiment.
FIG. 3A is a plan view of relevant parts showing a cylinder of the rotary compressor according to the present embodiment. FIG.3 (b) is the principal part side view seen from the A direction and B direction which are shown to the figure (a).
In the cylinder 30, a vane groove 30b is formed. The vane 33 shown in FIG. 1 and FIG. 2 is disposed in the vane groove 30b. The inside of the cylinder 30, ie, the compression space 39, forms a suction chamber 39a and a compression chamber 39b with the vane groove 30b interposed therebetween. The suction port 40 communicates with the suction chamber 39a.
The spring hole 30c is a hole formed from the outer peripheral surface of the cylinder 30, and is formed in the same direction as the vane groove 30b. In the spring hole 30c, a spring 30d shown in FIG. 1 and FIG. 2 is disposed. The spring 30 d presses the vanes 33 in the direction of the piston 32. The spring hole 30c is filled with high pressure refrigerant gas and lubricating oil. Accordingly, the discharge pressure of the refrigerant is applied to the spring hole 30c.
 図4(a)は、ピストン32がベーン33上死点近傍に位置する時のシリンダ30とベーン33の関係を示す要部平面図である。図4(b)は、圧縮室39bが所定の圧力まで達している時のシリンダ30とベーン33の関係を示す要部平面図である。
 図4に示すように、ベーン33には、吸入室39a側のベーン溝30cに接触する吸入室側接触面33aと、圧縮室39b側のベーン溝30cに接触する圧縮室側接触面33bとが形成されている。吸入室側接触面33a及び圧縮室側接触面33bにはオイル溜まり6からの潤滑油が供給される。
FIG. 4A is a plan view of relevant parts showing the relationship between the cylinder 30 and the vane 33 when the piston 32 is located near the top dead center of the vane 33. FIG. 4B is a plan view of relevant parts showing the relationship between the cylinder 30 and the vanes 33 when the compression chamber 39 b has reached a predetermined pressure.
As shown in FIG. 4, the vane 33 has a suction chamber side contact surface 33a in contact with the vane groove 30c on the suction chamber 39a side and a compression chamber side contact surface 33b in contact with the vane groove 30c on the compression chamber 39b side. It is formed. The lubricating oil from the oil reservoir 6 is supplied to the suction chamber side contact surface 33a and the compression chamber side contact surface 33b.
 ここで、本発明の実施形態を説明する前に、図5及び図6を用いて、比較例としてのロータリ圧縮機のシリンダにおける課題を説明する。
 図5(a)は、比較例におけるロータリ圧縮機のシリンダを示す要部平面図である。図5(b)は、同図(a)に示すA方向及びB方向から見た要部側面図である。なお、本実施の形態と同一構成による部材には同一符号を付して説明を省略する。図6(a)は、ピストン32がベーン33上死点近傍に位置する時のシリンダ130とベーン33の関係を示す要部平面図である。図6(b)は、圧縮室39bが所定の圧力まで達している時のシリンダ130とベーン33の関係を示す要部平面図である。
 比較例におけるバネ孔130cは、吸入室39a側と圧縮室39b側とで同じ長さである。
 従って、ベーン33の吸入室側接触面33aにおけるベーン溝30bとの接触面積と、ベーン33の圧縮室側接触面33bにおけるベーン溝30bとの接触面積とは同等になる。
Here, before describing the embodiment of the present invention, problems in the cylinder of the rotary compressor as a comparative example will be described using FIGS. 5 and 6.
Fig.5 (a) is a principal part top view which shows the cylinder of the rotary compressor in a comparative example. FIG.5 (b) is the principal part side view seen from the A direction and B direction which are shown to the figure (a). In addition, the same code | symbol is attached | subjected to the member by the same structure as this Embodiment, and description is abbreviate | omitted. FIG. 6A is a plan view of relevant parts showing the relationship between the cylinder 130 and the vane 33 when the piston 32 is located near the top dead center of the vane 33. FIG. FIG. 6B is a plan view of relevant parts showing the relationship between the cylinder 130 and the vanes 33 when the compression chamber 39 b has reached a predetermined pressure.
The spring holes 130c in the comparative example have the same length on the suction chamber 39a side and the compression chamber 39b side.
Accordingly, the contact area of the suction chamber side contact surface 33 a of the vane 33 with the vane groove 30 b and the contact area of the compression chamber side contact surface 33 b of the vane 33 with the vane groove 30 b become equal.
 図6(a)のように、吸入室39aと圧縮室39bが同一圧力、すなわち吸入室39aと圧縮室39bとの圧力差が所定圧以下の低圧の時は、吸入室側接触面33aと圧縮室側接触面33bとには圧力差が発生しない。このため、ベーン33が吸入室39a側へ傾かず、吸入室側接触面33aとベーン溝30bとの接触、及び圧縮室側接触面33bとベーン溝30bとの接触は無く、ベーン33の左右に隙間が生じる。これにより、バネ孔30cに満たされた高圧冷媒ガスや潤滑油がベーン33の左右の隙間を介して圧縮空間39へ漏れ込み、効率が低下する。 As shown in FIG. 6 (a), when the suction chamber 39a and the compression chamber 39b have the same pressure, that is, the pressure difference between the suction chamber 39a and the compression chamber 39b is less than a predetermined pressure, the suction chamber side contact surface 33a and the compression There is no pressure difference with the chamber side contact surface 33b. Therefore, the vanes 33 are not inclined to the suction chamber 39a side, and there is no contact between the suction chamber side contact surface 33a and the vane groove 30b and no contact between the compression chamber side contact surface 33b and the vane groove 30b. There is a gap. As a result, the high-pressure refrigerant gas or lubricating oil filled in the spring holes 30c leaks into the compression space 39 via the left and right gaps of the vanes 33, and the efficiency decreases.
 以下に、本実施の形態における差圧発生機構について説明する。
 図3に示すように、本実施の形態における差圧発生機構は、吸入室39a側に位置する吸入室側バネ孔30fよりも、圧縮室39b側に位置する圧縮室側バネ孔30eを長くしている。これにより、ベーン33の吸入室側接触面33aにおけるベーン溝30bとの接触面積が、ベーン33の圧縮室側接触面33bにおけるベーン溝30bとの接触面積よりも大きくなる。図3(b)における斜線で示す領域は、ベーン33とベーン溝30bとの接触面である。
The differential pressure generation mechanism in the present embodiment will be described below.
As shown in FIG. 3, in the differential pressure generation mechanism according to the present embodiment, the compression chamber side spring hole 30e located on the compression chamber 39b side is made longer than the suction chamber side spring hole 30f located on the suction chamber 39a side. ing. Thus, the contact area of the suction chamber side contact surface 33 a of the vane 33 with the vane groove 30 b is larger than the contact area of the compression chamber side contact surface 33 b of the vane 33 with the vane groove 30 b. The hatched area in FIG. 3B is the contact surface between the vanes 33 and the vane grooves 30b.
 図4(a)に示すように、吸入室39aと圧縮室39bが同一圧力、すなわち吸入室39aと圧縮室39bとの圧力差が所定圧以下の低圧の時には、バネ孔30cは吐出圧力が加わっている。そのため、吸入室側接触面33aにおけるベーン溝30bとの接触面積を、圧縮室側接触面33bにおけるベーン溝30bとの接触面積よりも大きくすることで、吸入室側接触面33aよりも圧縮室側接触面33bに加わる圧力が大きくなり、この圧力差によってベーン33を傾けることができる。これにより、ベーン33とベーン溝30bを接触させてシール性を向上させ、冷媒ガスや潤滑油がベーン33の吸入室側接触面33a及び圧縮室側接触面33bから圧縮空間39に漏れることを防止できる。 As shown in FIG. 4A, when the suction chamber 39a and the compression chamber 39b have the same pressure, that is, the pressure difference between the suction chamber 39a and the compression chamber 39b is a predetermined pressure or less, the spring hole 30c is subjected to a discharge pressure. ing. Therefore, by making the contact area with the vane groove 30b in the suction chamber side contact surface 33a larger than the contact area with the vane groove 30b in the compression chamber side contact surface 33b, the compression chamber side than the suction chamber side contact surface 33a The pressure applied to the contact surface 33b is increased, and the pressure difference can tilt the vanes 33. Thereby, the vanes 33 and the vane grooves 30b are brought into contact with each other to improve the sealing performance, and the refrigerant gas and the lubricating oil are prevented from leaking to the compression space 39 from the suction chamber side contact surface 33a and the compression chamber side contact surface 33b of the vane 33 it can.
 また、ベーン33とベーン溝30bの間に潤滑油が保持されやすくなり、信頼性も向上する。一方、ベーン33の吸入室側接触面33aとベーン溝30bの吸入室39a側の面との接触力が最大となる時には、圧縮室39bが所定の圧力まで達している。そのため、オイル溜り6と圧縮室39bがほぼ同等の圧力となる。よって、ベーン33の圧縮室側接触面33bとベーン溝30bの圧縮室39b側の面との隙間はほぼ高圧で満たされている。これは、一般的なロータリ圧縮機のベーン33とベーン溝30bの圧力分布(図6参照)と同等であるため、ベーン33とベーン溝30bとが強く摺動することが無く、信頼性が悪化しない。 Further, the lubricating oil is easily held between the vanes 33 and the vane grooves 30b, and the reliability is also improved. On the other hand, when the contact force between the suction chamber side contact surface 33a of the vane 33 and the surface of the vane groove 30b on the suction chamber 39a side is maximum, the compression chamber 39b has reached a predetermined pressure. Therefore, the oil reservoir 6 and the compression chamber 39b have substantially the same pressure. Therefore, the gap between the compression chamber side contact surface 33b of the vane 33 and the surface of the vane groove 30b on the compression chamber 39b side is substantially filled with high pressure. This is equivalent to the pressure distribution (see FIG. 6) of the vanes 33 and the vane grooves 30b of a general rotary compressor, so the vanes 33 and the vane grooves 30b do not slide strongly, and the reliability is deteriorated. do not do.
 また、図示していないが、上記構成において、ベーン33側にザグリ等を設けて、潤滑油を導入しても同等の効果が得られる。 Further, although not shown in the drawings, in the above configuration, even if a counterbore or the like is provided on the vane 33 side and the lubricating oil is introduced, the same effect can be obtained.
 次に、図7は、ベーン33の吸入室側接触面33aとベーン溝30bの吸入室39a側の面との接触面積に対する、ベーン33の圧縮室側接触面33bとベーン溝30bの圧縮室39b側の面との接触面積の比と効率の関係を示すグラフである。
 図7より、吸入室側接触面33aにおけるベーン溝30bとの接触面積に対する、圧縮室側接触面33bにおけるベーン溝30bとの接触面積の比を70%以上とすると、吸入室39aと圧縮室39bが同一圧力、すなわち吸入室39aと圧縮室39bとの圧力差が所定圧以下の低圧の時に、吸入室側接触面33a及び圧縮室側接触面33bに加わる圧力差が過大にならない。そのため、吸入室側接触面33aとベーン溝30bの吸入室39a側の面との接触力を小さくしながら、ベーン33とベーン溝30bの隙間からの、吸入室39aと圧縮室39bへの潤滑油及び冷媒ガスの漏れを抑制し、効率が向上する。
 以上のように、吸入室側接触面33aにおけるベーン溝30bとの接触面積に対する、圧縮室側接触面33bにおけるベーン溝30bとの接触面積の比を70%以上とすることが好ましい。
7 shows the compression chamber side contact surface 33b of the vane 33 and the compression chamber 39b of the vane groove 30b with respect to the contact area between the suction chamber side contact surface 33a of the vane 33 and the surface on the suction chamber 39a side of the vane groove 30b. It is a graph which shows the relationship between the ratio of the contact area with the side surface, and efficiency.
From FIG. 7, assuming that the ratio of the contact area with the vane groove 30b in the compression chamber side contact surface 33b to the contact area with the vane groove 30b in the suction chamber side contact surface 33a is 70% or more, the suction chamber 39a and the compression chamber 39b When the pressure difference between the suction chamber 39a and the compression chamber 39b is lower than a predetermined pressure, the pressure difference applied to the suction chamber side contact surface 33a and the compression chamber side contact surface 33b does not become excessive. Therefore, while reducing the contact force between the suction chamber side contact surface 33a and the surface of the vane groove 30b on the suction chamber 39a side, lubricating oil from the gap between the vane 33 and the vane groove 30b to the suction chamber 39a and the compression chamber 39b And, the leakage of the refrigerant gas is suppressed and the efficiency is improved.
As described above, the ratio of the contact area of the compression chamber side contact surface 33b with the vane groove 30b to the contact area of the suction chamber side contact surface 33a with the vane groove 30b is preferably 70% or more.
 図8は、本発明の他の実施の形態におけるロータリ圧縮機のシリンダである。上記の実施の形態との相違点のみを説明し、上記の実施の形態と同一構成については説明を省略する。
 図8(a)は、本発明の他の実施の形態におけるロータリ圧縮機のシリンダを示す要部平面図、図8(b)は、同図(a)に示すA方向及びB方向から見た要部側面図である。
 図8に示すように、差圧発生機構として、ベーン溝30bと連通するザグリ60をベーン溝30bに直交する方向に設けてもよい。これにより、ベーン33の吸入室側接触面33aとベーン溝30bの吸入室39a側の面との接触面積と、ベーン33の圧縮室側接触面33bとベーン溝30bの圧縮室39b側の面との接触面積を変更することができる。すなわち、図8(b)に示すように、差圧発生機構としてザグリ60を設けることで、ベーン33の吸入室側接触面33aにおけるベーン溝30bとの接触面積が、ベーン33の圧縮室側接触面33bにおけるベーン溝30bとの接触面積よりも大きくなる。図8(b)における斜線で示す領域は、ベーン33とベーン溝30bとの接触面である。
FIG. 8 is a cylinder of a rotary compressor according to another embodiment of the present invention. Only the difference from the above embodiment will be described, and the description of the same configuration as the above embodiment will be omitted.
FIG. 8 (a) is a plan view of relevant parts showing a cylinder of a rotary compressor according to another embodiment of the present invention, and FIG. 8 (b) is a view from directions A and B shown in FIG. It is a principal part side view.
As shown in FIG. 8, a counterbore 60 communicating with the vane groove 30 b may be provided in the direction orthogonal to the vane groove 30 b as a differential pressure generation mechanism. Thus, the contact area between the suction chamber side contact surface 33a of the vane 33 and the suction chamber 39a side surface of the vane groove 30b, and the compression chamber side contact surface 33b of the vane 33 and the compression chamber 39b side surface of the vane groove 30b Contact area can be changed. That is, as shown in FIG. 8B, by providing the counterbore 60 as a differential pressure generation mechanism, the contact area of the vane 33 on the suction chamber side contact surface 33a with the vane groove 30b is the contact on the compression chamber side of the vane 33. It becomes larger than the contact area with the vane groove | channel 30b in the surface 33b. The shaded area in FIG. 8B is the contact surface between the vanes 33 and the vane grooves 30b.
 なお、図8に示す実施の形態では、吸入室39a側に位置する吸入室側バネ孔30fよりも、圧縮室39b側に位置する圧縮室側バネ孔30eを長くする差圧発生機構に代えて、ザグリ60による差圧発生機構を設けた。しかし、吸入室39a側に位置する吸入室側バネ孔30fよりも、圧縮室39b側に位置する圧縮室側バネ孔30eを長くする差圧発生機構とともに、ザグリ60による差圧発生機構を設けてもよい。
 ザグリ60は、ドリルやエンドミルを用いて容易に加工することができる。
Note that, in the embodiment shown in FIG. 8, a differential pressure generating mechanism that makes the compression chamber side spring hole 30 e located on the compression chamber 39 b side longer than the suction chamber side spring hole 30 f located on the suction chamber 39 a side. , A differential pressure generating mechanism by the counterbore 60 was provided. However, a differential pressure generating mechanism by the counterbore 60 is provided together with a differential pressure generating mechanism for making the compression chamber side spring hole 30e located on the compression chamber 39b longer than the suction chamber side spring hole 30f located on the suction chamber 39a. It is also good.
The counterbore 60 can be easily processed using a drill or an end mill.
 図9は本発明の更に他の実施の形態におけるロータリ圧縮機のシリンダである。上記の実施の形態との相違点のみを説明し、上記の実施の形態と同一構成については説明を省略する。
 図9に示すように、ザグリ60の中心をベーン溝30bよりも外側に構成すると、ザグリ60とベーン溝30bの交差部(エッジ部)が鋭角になるため、オイルの潤滑性が悪くなる。よって、ザグリ60の中心をベーン溝30bに位置させ、ザグリ60とベーン溝30bの交差部を鈍角(図8参照)にした方が好ましい。
FIG. 9 shows a cylinder of a rotary compressor according to still another embodiment of the present invention. Only the difference from the above embodiment will be described, and the description of the same configuration as the above embodiment will be omitted.
As shown in FIG. 9, when the center of the counterbore 60 is formed outside the vane groove 30b, the intersecting portion (edge portion) of the counterbore 60 and the vane groove 30b has an acute angle, and the oil lubricity deteriorates. Therefore, it is preferable to position the center of the counterbore 60 in the vane groove 30b and to make the intersection of the counterbore 60 and the vane groove 30b an obtuse angle (see FIG. 8).
 図10は本発明の更に他の実施の形態におけるロータリ圧縮機のシリンダである。上記の実施の形態との相違点のみを説明し、上記の実施の形態と同一構成については説明を省略する。
 図10は、(a)本発明の更に他の実施の形態におけるロータリ圧縮機のシリンダを示す要部平面図、図10(b)は、同図(a)に示すA方向及びB方向から見た要部側面図である。
 図10に示すように、ザグリ60として、吸入室39a側のベーン溝30bに連通する吸入室側ザグリ60aと、圧縮室39b側のベーン溝30bに連通する圧縮室側ザグリ60bを設けてもよい。
 通常、ベーン溝30bの幅に対してシリンダ30の高さは4~6倍程度である。一般的な工具寿命を考慮すると、ドリル穴径の2~3倍の深さまでしか掘り込むことができないため、ベーン溝30bの片側のみと連通するザグリ60では軸方向に一回の穴加工で貫通させることが困難である。
FIG. 10 shows a cylinder of a rotary compressor according to still another embodiment of the present invention. Only the difference from the above embodiment will be described, and the description of the same configuration as the above embodiment will be omitted.
10A is a plan view of relevant parts showing a cylinder of a rotary compressor according to still another embodiment of the present invention, and FIG. 10B is viewed from directions A and B shown in FIG. It is a principal part side view.
As shown in FIG. 10, as the counterbore 60, a suction chamber side counterbore 60a communicating with the vane groove 30b on the suction chamber 39a side and a compression chamber side counterbore 60b communicating with the vane groove 30b on the compression chamber 39b side may be provided. .
Usually, the height of the cylinder 30 is about 4 to 6 times the width of the vane groove 30b. Considering general tool life, it is possible to dig only to a depth 2 to 3 times the drill hole diameter, so a counterbore 60 communicating with only one side of the vane groove 30b penetrates in a single hole in the axial direction It is difficult to
 ザグリ60が軸方向に貫通しない構成では、ベーン33の上軸側34aと下軸側35aで厚み方向の圧力バランスが崩れてしまうため、効率の低下に繋がる。ザグリ60として吸入室側ザグリ60aと圧縮室側ザグリ60bとを設けることで、ドリル穴の径をベーン溝30b幅よりも大きく取れるため、一回の穴加工で軸方向に貫通させることが容易となる。また、ドリル穴の径を大きく取れるため工具寿命も伸び、加工性も向上する。 In the configuration in which the counterbore 60 does not penetrate in the axial direction, the pressure balance in the thickness direction on the upper shaft side 34a and the lower shaft side 35a of the vane 33 is broken, leading to a reduction in efficiency. By providing the suction chamber side counterbore 60a and the compression chamber side counterbore 60b as the counterbore 60, the diameter of the drill hole can be made larger than the width of the vane groove 30b. Become. In addition, since the diameter of the drill hole can be increased, the tool life can be extended and the workability can be improved.
 なお、ピストン外周部に突出状に結合されて圧縮室を低圧側と高圧側とに区画するベーンと、ベーンを揺動自在に、かつ進退自在に支持する揺動ブッシュで構成されたロータリ圧縮機においても、上記内容と同等の効果が得られる。また、ピストンと先端部で揺動自由に接続されるベーンで構成されたロータリ圧縮機においても、上記内容と同等の効果が得られる。 The rotary compressor includes a vane coupled to the outer periphery of the piston in a protruding manner to divide the compression chamber into a low pressure side and a high pressure side, and a swinging bush that swingably supports the vane. In the above, the same effect as the above can be obtained. Further, the same effects as those described above can be obtained also in a rotary compressor configured of a piston and a vane that is swingably connected at the tip end portion.
 また、作動流体として炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を用いる。この冷媒は、吸入密度が小さく、例えばR410Aと同等の能力を出すには約1.7倍の循環量を必要とする。従って、圧縮内の高低圧の差が大きくなり、潤滑油及び冷媒ガスの漏れの影響が大きくなる特性があるため、より効果的に圧縮機の効率を向上させることが可能となる。また、この冷媒に関しては、オゾン破壊が無く、地球温暖化係数が低いため、地球に優しい空調サイクルの構成に寄与することが可能となる。 In addition, as a working fluid, a single refrigerant composed of a refrigerant having a hydrofluoroolefin having a double bond between carbon and carbon as a base component or a mixed refrigerant containing the refrigerant is used. This refrigerant has a low suction density, and, for example, requires about 1.7 times the amount of circulation to achieve the same capacity as R410A. Therefore, the difference between the high pressure and the low pressure in the compression becomes large, and the influence of the leakage of the lubricating oil and the refrigerant gas becomes large, so that the efficiency of the compressor can be more effectively improved. In addition, since this refrigerant has no ozone destruction and a low global warming potential, it can contribute to the configuration of a climate-friendly air conditioning cycle.
 また、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yf)とし、ハイドロフルオロカーボンをジフルオロメタン(HFC32)とした、混合冷媒を作動冷媒としてもよい。
 また、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yf)とし、ハイドロフルオロカーボンをペンタフルオロエタン(HFC125)とした、混合冷媒を作動冷媒としてもよい。
 また、ハイドロフルオロオレフィンをテトラフルオロプロペン(HFO1234yf)とし、ハイドロフルオロカーボンをペンタフルオロエタン(HFC125)、ジフルオロメタン(HFC32)とした、3成分からなる混合冷媒を作動冷媒としてもよい。
Alternatively, a mixed refrigerant may be used as the working refrigerant, in which the hydrofluoroolefin is tetrafluoropropene (HFO 1234yf) and the hydrofluorocarbon is difluoromethane (HFC 32).
Alternatively, a mixed refrigerant may be used as the working refrigerant, in which the hydrofluoroolefin is tetrafluoropropene (HFO 1234 yf) and the hydrofluorocarbon is pentafluoroethane (HFC 125).
Alternatively, a mixed refrigerant consisting of three components, in which the hydrofluoroolefin is tetrafluoropropene (HFO 1234yf) and the hydrofluorocarbon is pentafluoroethane (HFC 125) or difluoromethane (HFC 32), may be used as the working refrigerant.
 なお、上記実施の形態では、シリンダが一つの1ピストン型ロータリ圧縮機を例にして説明したが、シリンダ30が複数個あるロータリ圧縮機であってもよい。 Although the above embodiment has been described by way of an example of a one-piston type rotary compressor having one cylinder, it may be a rotary compressor having a plurality of cylinders 30.
 以上のように、本発明のロータリ圧縮機は、ベーンをベーン溝の吸入室側の方向に押し付け、かつ、オイル溜まりと連通する差圧発生機構を設ける。これにより、信頼性を悪化させずに、吸入室と圧縮室が同一圧力の時の、ベーンとベーン溝の隙間からの潤滑油及び冷媒ガスの漏れを低減でき、圧縮機の効率が大幅に向上する。従って、HFC系冷媒やHCFC系冷媒を用いたエアーコンディショナー用圧縮機のほかに、自然冷媒CO2を用いたエアーコンディショナーやヒートポンプ式給湯機などの用途にも適用できる。 As described above, the rotary compressor of the present invention is provided with a differential pressure generating mechanism that presses the vanes in the direction of the suction chamber side of the vane groove and communicates with the oil reservoir. As a result, it is possible to reduce the leakage of lubricating oil and refrigerant gas from the gap between the vane and the vane groove when the suction chamber and the compression chamber have the same pressure without deteriorating the reliability, and the efficiency of the compressor is greatly improved. Do. Therefore, in addition to the compressor for the air conditioner using the HFC refrigerant and the HCFC refrigerant, the invention can be applied to applications such as an air conditioner using a natural refrigerant CO 2 and a heat pump water heater.

Claims (6)

  1.  シリンダと、
    前記シリンダ内に配置される、シャフトの偏心部と、
    前記偏心部に嵌合されるピストンと、
    前記ピストンの偏心回転に追従して前記シリンダに設けられたベーン溝内を往復運動し、前記シリンダ内を吸入室と圧縮室とに区分するベーンとを有し、
    前記ベーンには、前記吸入室側の前記ベーン溝に接触する吸入室側接触面と、前記圧縮室側の前記ベーン溝に接触する圧縮室側接触面とが形成され、
    前記吸入室側接触面及び前記圧縮室側接触面にはオイル溜まりから潤滑油が供給されるロータリ圧縮機であって、
    前記吸入室と前記圧縮室との圧力差が所定圧以下の状態で、前記吸入室側接触面よりも前記圧縮室側接触面に加わる圧力が大きくなる差圧発生機構を形成したことを特徴とするロータリ圧縮機。
    With the cylinder,
    An eccentric portion of a shaft disposed within the cylinder;
    A piston fitted to the eccentric portion;
    A vane which reciprocates in a vane groove provided in the cylinder following an eccentric rotation of the piston and divides the inside of the cylinder into a suction chamber and a compression chamber;
    The vane is formed with a suction chamber side contact surface in contact with the vane groove on the suction chamber side, and a compression chamber side contact surface in contact with the vane groove on the compression chamber side.
    A rotary compressor, wherein lubricating oil is supplied from an oil reservoir to the suction chamber side contact surface and the compression chamber side contact surface,
    A differential pressure generating mechanism is formed, in which the pressure applied to the contact surface on the compression chamber side is larger than that on the contact surface on the suction chamber side in a state where the pressure difference between the suction chamber and the compression chamber is less than a predetermined pressure. Rotary compressor.
  2.  前記差圧発生機構は、前記吸入室側接触面における前記ベーン溝との接触面積を、前記圧縮室側接触面における前記ベーン溝との接触面積よりも大きくしたことを特徴とする請求項1記載のロータリ圧縮機。 The differential pressure generation mechanism is characterized in that a contact area of the suction chamber side contact surface with the vane groove is larger than a contact area of the compression chamber side contact surface with the vane groove. Rotary compressor.
  3.  前記差圧発生機構は、前記ベーン溝と連通するザグリを前記ベーン溝に直交する方向に設けたことを特徴とする請求項2に記載のロータリ圧縮機。 The rotary compressor according to claim 2, wherein the differential pressure generating mechanism is provided with a counterbore in communication with the vane groove in a direction orthogonal to the vane groove.
  4.  前記ザグリとして、前記吸入室側の前記ベーン溝に連通する吸入室側ザグリと、前記圧縮室側の前記ベーン溝に連通する圧縮室側ザグリを設けたことを特徴とする請求項3に記載のロータリ圧縮機。 The suction chamber side counterbore in communication with the vane groove on the suction chamber side and the compression chamber side counterbore in communication with the vane groove on the compression chamber side are provided as the counterbore. Rotary compressor.
  5.  前記吸入室側接触面における前記ベーン溝との接触面積に対する、前記圧縮室側接触面における前記ベーン溝との接触面積の比を70%以上としたことを特徴とする請求項2に記載のロータリ圧縮機。 The rotary according to claim 2, wherein a ratio of a contact area with the vane groove in the compression chamber side contact surface to a contact area with the vane groove in the suction chamber side contact surface is 70% or more. Compressor.
  6.  作動流体として、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または前記冷媒を含む混合冷媒を使用したことを特徴とする請求項1から請求項5のいずれかに記載のロータリ圧縮機。 A single refrigerant comprising a refrigerant comprising a hydrofluoroolefin having a double bond between carbon and carbon as a base component, or a mixed refrigerant containing the refrigerant as the working fluid. The rotary compressor according to any one of the above.
PCT/JP2012/007594 2011-11-28 2012-11-27 Rotary compressor WO2013080519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280042991.9A CN103765012A (en) 2011-11-28 2012-11-27 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011258967 2011-11-28
JP2011-258967 2011-11-28

Publications (1)

Publication Number Publication Date
WO2013080519A1 true WO2013080519A1 (en) 2013-06-06

Family

ID=48535013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007594 WO2013080519A1 (en) 2011-11-28 2012-11-27 Rotary compressor

Country Status (3)

Country Link
JP (1) JPWO2013080519A1 (en)
CN (1) CN103765012A (en)
WO (1) WO2013080519A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105574A (en) * 2013-11-28 2015-06-08 三菱電機株式会社 Rotary compressor
CN106930943A (en) * 2015-12-29 2017-07-07 珠海凌达压缩机有限公司 Compressor, pump assembly and its cylinder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147388U (en) * 1980-04-03 1981-11-06
JPS6186590U (en) * 1984-11-13 1986-06-06
JPS63201390A (en) * 1987-02-18 1988-08-19 Matsushita Refrig Co Rotary type compressor
JP2003307191A (en) * 2002-04-12 2003-10-31 Toshiba Kyaria Kk Rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147388U (en) * 1980-04-03 1981-11-06
JPS6186590U (en) * 1984-11-13 1986-06-06
JPS63201390A (en) * 1987-02-18 1988-08-19 Matsushita Refrig Co Rotary type compressor
JP2003307191A (en) * 2002-04-12 2003-10-31 Toshiba Kyaria Kk Rotary compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105574A (en) * 2013-11-28 2015-06-08 三菱電機株式会社 Rotary compressor
CN106930943A (en) * 2015-12-29 2017-07-07 珠海凌达压缩机有限公司 Compressor, pump assembly and its cylinder

Also Published As

Publication number Publication date
JPWO2013080519A1 (en) 2015-04-27
CN103765012A (en) 2014-04-30

Similar Documents

Publication Publication Date Title
US9482231B2 (en) Rotary compressor having an oil groove in an inner peripheral surface of a bearing
US10233930B2 (en) Rotary compressor having two cylinders
JP5040934B2 (en) Hermetic compressor
JP5542675B2 (en) Rotary compressor
JP5540557B2 (en) Rotary compressor
JP2006022789A (en) Rotary fluid machine
JP5504681B2 (en) Rotary compressor
JP2014240634A (en) Rotary type fluid machine
WO2013080519A1 (en) Rotary compressor
JP2010031732A (en) Rotary compressor
JP2010031733A (en) Rotary compressor
JP2011252475A (en) Rotary compressor
JP5870246B2 (en) Rotary compressor
EP2589810B1 (en) Rotary compressor
JP5879474B2 (en) Rotary compressor
JP6758422B2 (en) Rotating compressor
JP2011163257A (en) Hermetic compressor
JP5168169B2 (en) Hermetic compressor
JP2012017690A (en) Rotary compressor
JPH09158875A (en) Rotary compressor
JP2012225230A (en) Compressor
KR20080099694A (en) Swash plate type compressor
JP6176577B2 (en) Compressor
JP2011179452A (en) Rotary compressor
JP2010242696A (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852693

Country of ref document: EP

Kind code of ref document: A1