WO2013080341A1 - Electronic board unit and electronic device - Google Patents

Electronic board unit and electronic device Download PDF

Info

Publication number
WO2013080341A1
WO2013080341A1 PCT/JP2011/077707 JP2011077707W WO2013080341A1 WO 2013080341 A1 WO2013080341 A1 WO 2013080341A1 JP 2011077707 W JP2011077707 W JP 2011077707W WO 2013080341 A1 WO2013080341 A1 WO 2013080341A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
heat generating
cooling air
board unit
generating component
Prior art date
Application number
PCT/JP2011/077707
Other languages
French (fr)
Japanese (ja)
Inventor
渡邉 雅之
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2011/077707 priority Critical patent/WO2013080341A1/en
Publication of WO2013080341A1 publication Critical patent/WO2013080341A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the PCB

Definitions

  • the technology disclosed in the present application relates to an electronic board unit and an electronic device.
  • a heat sink provided on the cooling object is known.
  • the technology disclosed in the present application aims at cooling a heat-generating component in contact with a substrate as one aspect.
  • the technology disclosed in the present application is provided on a substrate interposed between a substrate in contact with a heat generating component and a cooling air flow channel that flows toward a cooling target region where the heat generating component is disposed.
  • an electronic board unit including the step member. The position of the step member on the substrate and the height from the substrate are set so that the cooling air peeled off in the height direction from the end of the step member is reattached to the region to be cooled.
  • FIG. 1 It is a top view of an electronic device. It is a perspective view of the electronic substrate unit shown by FIG. It is a figure which illustrates a mode that an electronic component is cooled with cooling air in the electronic substrate unit shown by FIG. It is a figure which shows the relationship between the reattachment point distance L at the time of varying the wind speed of cooling air, and the height H of a step member. It is a figure which shows the modification of arrangement
  • an electronic device 10 includes an electronic board unit 20, a pair of blowers 22 and 24, and a housing 26.
  • the electronic board unit 20 is housed in a casing 26 together with the fans 22 and 24. As shown in FIG. 2, the electronic board unit 20 includes a circuit board 32 and a heat spreader 34 that is an example of a board.
  • the circuit board 32 is formed in a rectangular shape as an example.
  • the circuit board 32 is arranged such that the flow direction of the cooling air blown from blowers 22 and 24 (see FIG. 1), which will be described later, is the longitudinal direction.
  • An electronic component 36 which is an example of a heat generating component, is mounted on the surface 32A of the circuit board 32.
  • the electronic component 36 is disposed in the middle portion of the circuit board 32 in the longitudinal direction.
  • Other electrical components (not shown) are mounted on the surface 32A of the circuit board 32, and the electronic component 36 is connected to the above-described electrical components via a conductive pattern (not shown) formed on the surface 32A of the circuit board 32.
  • the electronic component 36 forms an electronic circuit together with the above-described electrical component.
  • the circuit board 32 is provided with a connector 38 that is electrically connected to the electronic circuit.
  • the heat spreader 34 is formed of a metal plate and has the same rectangular shape as the circuit board 32.
  • the heat spreader 34 is arranged so that the longitudinal directions thereof coincide with the circuit board 32 described above, and is provided on the front side (on the circuit board 32) of the circuit board 32 so as to face the circuit board 32.
  • the back surface 34 ⁇ / b> B of the heat spreader 34 is in contact with the surface 36 ⁇ / b> A of the electronic component 36 provided on the back side of the heat spreader 34.
  • a plurality of step members 40 are spaced at intervals in a direction that intersects the direction of the flow of cooling air when the heat spreader 34 is viewed in plan (that is, the arrow B direction, which is the short direction of the heat spreader 34). Is provided.
  • the plurality of step members 40 are all formed in a substantially square block shape in plan view, and have the same shape.
  • the plurality of step members 40 are provided so as to protrude from the windward end of the heat spreader 34 to the front side of the heat spreader 34.
  • a planar end face 40 ⁇ / b> B along the surface 34 ⁇ / b> A of the heat spreader 34 is formed at the end 40 ⁇ / b> A in the height direction of the plurality of step members 40.
  • the end portion 40A is a portion of the step member 40 on the end surface 40B side including the end surface 40B in the height direction.
  • the plurality of step members 40 may be integrally formed with the heat spreader 34, or may be fixed integrally with the heat spreader 34 after being separated from the heat spreader 34.
  • the plurality of step members 40 are integrally formed with or fixed to the heat spreader 34 in this way, and are connected to the heat spreader 34 so as to be able to transfer heat.
  • the identification codes 1 to 6 are attached to the end of the sign, and when not distinguishing each of the step members 40, the identification codes 1 to 6 from the end of the sign. Explain the explanation.
  • the step members 40-1 to 40-4 are within a range where the electronic component 36 and the heat spreader 34 overlap in the short direction (arrow B direction). Has been placed.
  • the step members 40-5 and 40-6 are arranged so as to be shifted in the short direction of the heat spreader 34 with respect to the electronic component 36 described above.
  • the pair of blowers 22 and 24 shown in FIG. 1 blow the cooling air described above, and are arranged side by side in the short direction (arrow B direction) of the heat spreader 34.
  • the cooling air blown from the pair of blowers 22 and 24 flows toward the electronic component 36 (cooling target region 60) on the front side (on the heat spreader 34) of the heat spreader 34, as indicated by the symbol W in FIG.
  • the plurality of step members 40 described above are interposed in the flow path of the cooling air that flows toward the cooling target region 60 where the electronic component 36 is disposed, and the cooling air W that is made into a laminar flow is supplied to the end portion 40A. On the other hand, it is peeled off in the height direction to make a turbulent flow.
  • the plurality of step members 40 reattach the turbulent cooling air W ⁇ b> 1 to the surface 34 ⁇ / b> A of the heat spreader 34.
  • Step members 40-1 to 40-4 among the plurality of step members 40 shown in FIG. 2 are arranged in a range where the electronic component 36 and the heat spreader 34 overlap in the short direction (arrow B direction) as described above. Has been.
  • the cooling air peeled off by the plurality of step members 40-1 to 40-4 to be turbulent is reattached to the cooling target region 60 where the electronic component 36 is disposed in the heat spreader 34. Since the electronic component 36 is provided on the back side of the heat spreader 34, the cooling target region 60 in this case is a region where the electronic component 36 is disposed on the back side of the surface 34A of the heat spreader 34.
  • the step members 40-5 and 40-6 are arranged so as to be shifted in the short direction (arrow B direction) of the heat spreader 34 with respect to the electronic component 36 as described above.
  • the cooling air peeled off by the step members 40-5 and 40-6 to be turbulent flows is adjacent to the cooling target region 60 in the surface 34A of the heat spreader 34 and the adjacent region 62 adjacent to the heat spreader 34 in the short direction. Reattached to.
  • the reattachment point of the cooling air reattached to the surface 34A of the heat spreader 34 is the point where the Nusselt number is the highest. As the Nusselt number increases, the thermal conductivity also increases (see Reference Document 1 below). For this reason, high thermal conductivity is obtained at the reattachment point.
  • Reference 1 Direct numerical simulation of turbulent heat transfer in a rectangular orifice wake (Soichiro Makino, Satoshi Iwamoto, Hiroshi Kawamura, Japan Society of Heat Transfer (2007)).
  • FIG. 4 shows the relationship between the reattachment point distance L and the height H of the step member when the wind speed of the cooling air is varied.
  • a line graph G1 shows a case where the wind speed of the cooling air is high
  • a line graph G2 shows a case where the air speed of the cooling air is medium
  • a line graph G3 shows a case where the wind speed of the cooling air is low.
  • the reattachment point distance L shown on the vertical axis in FIG. 4 means that the cooling air W1 separated by the step member 40 shown in FIG. 3 and made turbulent is reattached to the surface 34A of the heat spreader 34. This is the distance between the point and the step member 40.
  • the reattachment point distance L changes according to the position of the step member 40 on the heat spreader 34.
  • the height H of the step member shown on the horizontal axis in FIG. 4 is the height from the heat spreader 34 of the step member 40 shown in FIG.
  • the height H of the step member and the reattachment point distance L (that is, on the heat spreader 34 of the step member 40) so that the turbulent cooling air is reattached to a preset region. )
  • the wind speed of the cooling air is set. That is, in the step members 40-1 to 40-4 shown in FIG. 2, the turbulent cooling air flows in response to the wind speed of the cooling air blown from the blowers 22 and 24 (see FIG. 1).
  • the height and the reattachment point distance are set so as to be reattached to the cooling target region 60.
  • the step members 40-5 and 40-6 recirculate the turbulent cooling air to the adjacent region 62 in accordance with the wind speed of the cooling air blown from the blowers 22 and 24 (see FIG. 1).
  • the height and the reattachment point distance are set so that they are attached.
  • this electronic board unit 20 may be arrange
  • the side on which the step member 40 is provided is described as the front side of the heat spreader 34.
  • the cooling air W blown from the pair of blowers 22 and 24 flows on the heat spreader 34 toward the electronic component 36 (cooling target region 60).
  • the cooling air W (laminar flow) is a turbulent flow that separates in the height direction from the end 40A in each of the step members 40-1 to 40-6.
  • the cooling air W1 separated by the plurality of step members 40-1 to 40-4 and turbulent is reattached to the cooling target region 60 where the electronic component 36 is disposed in the heat spreader 34 (See FIG. 3). Therefore, the cooling target area 60 is cooled by the cooling air W1, so that the electronic component 36 provided on the back side of the cooling target area 60 can be cooled.
  • the cooling air peeled off by the step members 40-5 and 40-6 and made into turbulent flow is the short side direction (arrow B direction) of the above-described cooling target region 60 and the heat spreader 34 on the surface 34A of the heat spreader 34. Is reattached to the adjacent region 62 adjacent to. Thereby, the cooling object area
  • the cooling efficiency of the electronic component 36 can be increased by the cooling air locally hitting the cooling target region 60 and the adjacent region 62 in the heat spreader 34. Therefore, it is not necessary to increase the rotational speed of the blowers 22 and 24 or to use a metal material having high thermal conductivity for the heat spreader 34. Thereby, power saving, noise reduction, and cost reduction can be achieved.
  • the cooling air since the cooling air locally hits the cooling target region 60 and the adjacent region 62 in the heat spreader 34, it is possible to eliminate the need to secure the passage of the cooling air between the components in the circuit board 32. As a result, the pitch between the components on the circuit board 32 is allowed to be narrowed, so that the circuit board 32 and thus the electronic board unit 20 can be reduced in size.
  • the electronic board unit 20 is such that the parts are mounted on the circuit board 32 at a narrow pitch, such as a DC / DC converter (DDC), the electronic part 36 can be efficiently cooled.
  • DDC DC / DC converter
  • the plurality of step members 40 are integrally formed with the heat spreader 34 or are integrally fixed to be connected to the heat spreader 34 so that heat can be transferred. Accordingly, since the plurality of step members 40 themselves serve as heat radiating fins, the heat spreader 34 can be cooled. Thereby, the electronic component 36 in contact with the heat spreader 34 can be further cooled.
  • the plurality of step members 40 are arranged at intervals in a short direction of the heat spreader 34, that is, in a direction (arrow B direction) intersecting the direction of the flow of the cooling air when the heat spreader 34 is viewed in plan. . Accordingly, since the cooling air passes between the plurality of step members 40, it is possible to suppress an increase in resistance to the cooling air. Further, the cooling air (laminar flow) passing between the plurality of step members 40 is turbulent by the plurality of step members 40. Therefore, since the thermal diffusion effect by the turbulent cooling air can be obtained, the cooling efficiency of the electronic component 36 and other components can be further improved.
  • the electronic board unit 20 includes the heat spreader 34, but may not include the heat spreader 34.
  • the step member 40 may be provided on the surface 32 ⁇ / b> A (on the circuit board 32) of the circuit board 32 which is an example of the board. Then, the cooling air W1 turbulent by the step member 40 is reattached to the region to be cooled on the circuit board 32 where the electronic component 36 is disposed (that is, in this case, the surface 36A of the electronic component 36). Also good. Even with this configuration, the electronic component 36 can be efficiently cooled.
  • the step member 40 may be provided on the front surface 32A of the circuit board 32 which is an example of the board, and the electronic component 36 may be mounted on the back surface of the circuit board 32. Then, the cooling air made turbulent by the step member 40 causes the electronic component 36 to be placed on the back side of the surface 32A of the circuit board 32 in which the electronic component 36 is disposed on the circuit board 32 (that is, in this case). It may be reattached to the arranged area). Even with this configuration, the electronic component 36 can be efficiently cooled.
  • the electronic board unit 20 may include a plurality of electronic components 36-1 to 36-6 as shown in FIG. Further, in this case, the plurality of electronic components 36-1 to 36-6 are so arranged that the distances along the direction of the flow of the cooling air from each of the plurality of step members 40-1 to 40-6 are different from each other.
  • the step members 40-1 to 40-6 may be arranged on the leeward side. Further, the plurality of step members 40-1 to 40-6 have different heights from the heat spreader 34 depending on the distance from each of the plurality of electronic components 36-1 to 36-6 arranged on the leeward side. Also good.
  • the distance between the electronic component 36 and the step member 40 becomes shorter in the order of the electronic components 36-1 to 36-6. Further, the height from the heat spreader 34 is increased in the order of the step members 40-1 to 40-6 corresponding to the distance between each of the electronic components 36-1 to 36-6 and the step member 40. Yes. As a result, the cooling air separated by the step members 40-1 to 40-6 and turbulently flows into the cooling target region 60- in which the electronic components 36-1 to 36-6 in the heat spreader 34 are arranged. Reattached to each of 1 to 60-6.
  • the plurality of electronic components 36-1 to 36-6 can be appropriately cooled only by changing the height of the plurality of step members 40-1 to 40-6.
  • the degree of freedom of arrangement of the plurality of electronic components 36-1 to 36-6 can be increased. Note that the number of the plurality of electronic components and the plurality of step members can be arbitrarily selected.
  • the electronic board unit 20 may include a plurality of turbulent flow generation units 70-1 to 70-7 as shown in FIG.
  • the plurality of turbulent flow generators 70-1 to 70-7 are provided on the leeward side with respect to the plurality of step members 40, and are arranged so as to be shifted in the direction of the arrow B with respect to each of the plurality of step members 40.
  • the plurality of turbulent flow generating portions 70-1 to 70-5 are located between each of the plurality of step members 40 when viewed along the direction of the flow of the cooling air (the direction of arrow A).
  • the turbulent flow generation units 70-6 and 70-7 are respectively arranged on the outer side in the arrow B direction with respect to the plurality of step members 40. If comprised in this way, the cooling wind which passed between each of the several step members 40 and the outer side, and was made into the turbulent flow can be disturbed further. Thereby, the thermal diffusion effect by cooling air can be improved.
  • the turbulent flow generation units 70-6 and 70-7 may be omitted. In this case, the cooling air that has passed through each of the plurality of step members 40 and has been turbulent can be further disturbed. Further, in the modification shown in FIG. 7, the turbulent flow generation unit 70 may have a convex surface 70A that is convex on the windward side. If comprised in this way, the energy loss of cooling air can be suppressed and the air volume to the electronic component 36 side can be ensured.
  • the convex surface 70A may be a bent surface as shown in FIG. 7, or may be a curved surface as shown in FIG.
  • the step member 40 may also have a convex surface 40C that is convex on the windward side. Even if comprised in this way, the energy loss of cooling air can be suppressed and the air volume to the electronic component 36 side can be ensured.
  • the end portion 40A of the step member 40 may be convex on the side opposite to the circuit board 32 side (arrow C side). That is, in the modification shown in FIG. 10, an inclined surface 40A1 that is inclined so as to be separated from the circuit board 32 toward the leeward side is formed in the windward side portion of the end portion 40A. On the other hand, an inclined surface 40A2 that is inclined so as to approach the circuit board 32 toward the leeward side is formed in the leeward side portion of the end portion 40A.
  • the cooling air flows along the inclined surface 40A1. Therefore, the stagnation of the cooling air can be suppressed, and the energy loss of the cooling air can be suppressed. Thereby, since the air volume to the electronic component 36 side can be increased, the cooling efficiency of the electronic component 36 can be improved.
  • an inclined surface 40 ⁇ / b> D that is inclined so as to be separated from the circuit board 32 toward the leeward side may be formed on the end portion 40 ⁇ / b> A of the step member 40.
  • a curved surface that protrudes on the side opposite to the circuit board 32 side (arrow C side) may be formed on the end portion 40A.
  • an inclined surface 40A1 that is inclined so as to be separated from the circuit board 32 toward the leeward side may be formed in the leeward portion 40A1 of the end portion 40A.
  • the step member 40 was formed in the substantially square by planar view, as FIG. 13 shows, it is the length which makes the direction (arrow A direction) of a flow of cooling air into a longitudinal direction. It may be formed in a scale shape. With this configuration, since the surface area of the step member 40 is increased, the cooling efficiency of the heat spreader 34 and, in turn, the electronic component 36 can be further improved.
  • the distance from the step member 40 to the reattachment point is more influenced by the cooling air velocity and the height of the step member 40 than the length of the step member 40 along the direction of the cooling air flow. For this reason, the fact that the step member 40 is formed in a long shape whose longitudinal direction is the flow direction of the cooling air has little influence on the distance from the step member 40 to the reattachment point.
  • the electronic board unit 20 may be configured as follows. That is, in the modification shown in FIG. 14, the electronic board unit 20 includes a first electronic component 76 and a second electronic component 78.
  • the first electronic component 76 and the second electronic component 78 are examples of the first heat generating component and the second heat generating component, and are arranged side by side in the short direction (arrow B direction) of the heat spreader 34.
  • the second electronic component 78 is set to have a cooling requirement lower than that of the first electronic component 76 defined by at least a heat generation amount and a rated temperature.
  • the heating value of the second electronic component 78 is 10 W and the rated temperature is 40 ° C.
  • the heating value of the first electronic component 76 is 20 W and the rated temperature is 40 ° C.
  • the first electronic component 76 has a higher cooling requirement than the second electronic component 78.
  • the second electronic component 78 has a heating value of 10 W and a rated temperature of 40 ° C.
  • the first electronic component 76 has a heating value of 10 W and a rated temperature of 100 ° C. is there.
  • the first electronic component 76 has a higher cooling requirement than the second electronic component 78.
  • the first electronic component 76 is an example of an electronic component to be cooled by cooling air.
  • a region where the first electronic component 76 is disposed on the back side of the surface 34 ⁇ / b> A of the heat spreader 34 is a first region 80.
  • a region where the second electronic component 78 is disposed on the back side of the surface 34A of the heat spreader 34 is a second region 82.
  • the first region 80 and the second region 82 the first region 80 is a cooling target region to which the turbulent cooling air is reattached.
  • a plurality of step members 40 are provided on the windward side of the first electronic component 76 among the first electronic component 76 and the second electronic component 78.
  • the cooling air that has been peeled off by the plurality of step members 40 to be turbulent is reattached to the first region 80 of the first region 80 and the second region 82.
  • the above-described degree of cooling need only be defined by at least the heat generation amount and the rated temperature, and may be defined by the heat generation amount, the rated temperature, and other required factors.
  • the electronic board unit 20 includes the plurality of step members 40, but the number of step members 40 may be one.
  • the electronic component 36 is in contact with the heat spreader 34 as an example of the heat generating component, other heat generating components may be in contact with the heat spreader 34 as an object to be cooled by the cooling air.
  • the plurality of step members 40 are connected to the heat spreader 34 so as to be capable of transferring heat by being formed integrally with the heat spreader 34 or fixed integrally.
  • the plurality of step members 40 may be provided on the front side of the heat spreader 34 (on the heat spreader 34) so as to be separated from the heat spreader 34.
  • the plurality of step members 40 may have a shape other than the block shape, for example, a plate shape along the surface 34 ⁇ / b> A of the heat spreader 34.

Abstract

The objective of the invention is to cool a heat generating component that is in contact with a board. An electronic board unit (20) comprises: a board (34) that is in contact with a heat generating component (36); and a step member (40) that is disposed on the board (34) and that intervenes in the flow path of a cooling air that flows toward a to-be-cooled area (60) where the heat generating component (36) is located. The position, on the board (34), of the step member (40) and the height, from the board (34), of the step member (40) are established such that the cooling air, which has burbled, relative to an end portion (40A) of the step member (40), in the height direction, re-attaches to the to-be-cooled area (60).

Description

電子基板ユニット、及び、電子機器Electronic board unit and electronic device
 本願の開示する技術は、電子基板ユニット、及び、電子機器に関する。 The technology disclosed in the present application relates to an electronic board unit and an electronic device.
 従来、冷却対象物を冷却する目的で、この冷却対象物に設けられるヒートシンクが知られている。 Conventionally, for the purpose of cooling a cooling object, a heat sink provided on the cooling object is known.
特開平01-204498号公報Japanese Patent Laid-Open No. 01-204498 特開平9-326455号公報JP-A-9-326455 特開2001-332883号公報JP 2001-332883 A
 しかしながら、例えば、基板に設けられた発熱部品を冷却対象物とする場合であっても、基板に上述のようなヒートシンクを設けることが困難な場合がある。 However, for example, even when a heat-generating component provided on the substrate is an object to be cooled, it may be difficult to provide the heat sink as described above on the substrate.
 本願の開示する技術は、一つの側面として、基板と接触された発熱部品を冷却することを目的とする。 The technology disclosed in the present application aims at cooling a heat-generating component in contact with a substrate as one aspect.
 上記目的を達成するために、本願の開示する技術では、発熱部品と接触された基板と、発熱部品が配置された冷却対象領域に向けて流れる冷却風の流路に介在し、基板上に設けられたステップ部材と、を備えた電子基板ユニットが用いられる。ステップ部材の基板上の位置及び基板からの高さは、ステップ部材の端部に対して高さ方向に剥離した冷却風を、冷却対象領域に再付着させるように設定されている。 In order to achieve the above object, the technology disclosed in the present application is provided on a substrate interposed between a substrate in contact with a heat generating component and a cooling air flow channel that flows toward a cooling target region where the heat generating component is disposed. And an electronic board unit including the step member. The position of the step member on the substrate and the height from the substrate are set so that the cooling air peeled off in the height direction from the end of the step member is reattached to the region to be cooled.
 本願の開示する技術によれば、基板と接触された発熱部品を冷却することができる。 According to the technique disclosed in the present application, it is possible to cool the heat-generating component in contact with the substrate.
電子機器の平面図である。It is a top view of an electronic device. 図1に示される電子基板ユニットの斜視図である。It is a perspective view of the electronic substrate unit shown by FIG. 図2に示される電子基板ユニットにおいて電子部品が冷却風により冷却される様子を概略的に説明する図である。It is a figure which illustrates a mode that an electronic component is cooled with cooling air in the electronic substrate unit shown by FIG. 冷却風の風速を異ならせた場合の再付着点距離Lとステップ部材の高さHとの関係を示す図である。It is a figure which shows the relationship between the reattachment point distance L at the time of varying the wind speed of cooling air, and the height H of a step member. 電子部品の配置の変形例を示す図である。It is a figure which shows the modification of arrangement | positioning of an electronic component. 複数のステップ部材の高さを変更した変形例を示す図である。It is a figure which shows the modification which changed the height of several step member. 乱流発生部を追加した変形例を示す図である。It is a figure which shows the modification which added the turbulent flow generation part. 乱流発生部の変形例を示す図である。It is a figure which shows the modification of a turbulent flow generation part. ステップ部材における風上側の側面の変形例を示す図である。It is a figure which shows the modification of the windward side surface in a step member. ステップ部材の端部の第一変形例を示す図である。It is a figure which shows the 1st modification of the edge part of a step member. ステップ部材の端部の第二変形例を示す図である。It is a figure which shows the 2nd modification of the edge part of a step member. ステップ部材の端部の第三変形例を示す図である。It is a figure which shows the 3rd modification of the edge part of a step member. ステップ部材を長尺状にした変形例を示す図である。It is a figure which shows the modification which made the step member the elongate shape. ステップ部材を第一電子部品に対応させて配置した変形例を示す図である。It is a figure which shows the modification which has arrange | positioned the step member corresponding to the 1st electronic component.
 以下、本願の開示する技術の一実施形態を図面に基づいて詳細に説明する。 Hereinafter, an embodiment of the technology disclosed in the present application will be described in detail with reference to the drawings.
 図1に示されるように、本願の開示する技術の一実施形態に係る電子機器10は、電子基板ユニット20、一対の送風機22,24、及び、筐体26を備えている。 As shown in FIG. 1, an electronic device 10 according to an embodiment of the technology disclosed in the present application includes an electronic board unit 20, a pair of blowers 22 and 24, and a housing 26.
 電子基板ユニット20は、送風機22,24と共に筐体26に収容されている。この電子基板ユニット20は、図2に示されるように、回路基板32、及び、基板の一例であるヒートスプレッダ34を備えている。 The electronic board unit 20 is housed in a casing 26 together with the fans 22 and 24. As shown in FIG. 2, the electronic board unit 20 includes a circuit board 32 and a heat spreader 34 that is an example of a board.
 回路基板32は、一例として、矩形状に形成されている。この回路基板32は、後述する送風機22,24(図1参照)から送風された冷却風の流れの方向(矢印A方向)が長手方向となるように配置されている。 The circuit board 32 is formed in a rectangular shape as an example. The circuit board 32 is arranged such that the flow direction of the cooling air blown from blowers 22 and 24 (see FIG. 1), which will be described later, is the longitudinal direction.
 この回路基板32の表面32Aには、発熱部品の一例である電子部品36が実装されている。この電子部品36は、回路基板32における長手方向の中間部に配置されている。この回路基板32の表面32Aには、図示しないその他の電気部品が実装されており、電子部品36は、回路基板32の表面32Aに形成された図示しない導電パターンを介して上述の電気部品と接続されている。そして、この電子部品36は、上述の電気部品と共に電子回路を形成している。また、回路基板32には、この電子回路と電気的に接続されたコネクタ38が設けられている。 An electronic component 36, which is an example of a heat generating component, is mounted on the surface 32A of the circuit board 32. The electronic component 36 is disposed in the middle portion of the circuit board 32 in the longitudinal direction. Other electrical components (not shown) are mounted on the surface 32A of the circuit board 32, and the electronic component 36 is connected to the above-described electrical components via a conductive pattern (not shown) formed on the surface 32A of the circuit board 32. Has been. The electronic component 36 forms an electronic circuit together with the above-described electrical component. The circuit board 32 is provided with a connector 38 that is electrically connected to the electronic circuit.
 ヒートスプレッダ34は、金属製の板材により形成されており、回路基板32と同様の矩形状を成している。このヒートスプレッダ34は、上述の回路基板32と互いの長手方向が一致するように配置されており、回路基板32の表側(回路基板32上)に回路基板32と対向して設けられている。このヒートスプレッダ34の裏面34Bは、このヒートスプレッダ34の裏側に設けられた上述の電子部品36の表面36Aと接触されている。 The heat spreader 34 is formed of a metal plate and has the same rectangular shape as the circuit board 32. The heat spreader 34 is arranged so that the longitudinal directions thereof coincide with the circuit board 32 described above, and is provided on the front side (on the circuit board 32) of the circuit board 32 so as to face the circuit board 32. The back surface 34 </ b> B of the heat spreader 34 is in contact with the surface 36 </ b> A of the electronic component 36 provided on the back side of the heat spreader 34.
 このヒートスプレッダ34上には、ヒートスプレッダ34を平面視した場合における冷却風の流れの方向と交差する方向(つまり、ヒートスプレッダ34の短手方向である矢印B方向)に間隔を空けて複数のステップ部材40が設けられている。この複数のステップ部材40は、いずれも平面視にて略正方形のブロック状に形成されており、互いに同一の形状とされている。 On the heat spreader 34, a plurality of step members 40 are spaced at intervals in a direction that intersects the direction of the flow of cooling air when the heat spreader 34 is viewed in plan (that is, the arrow B direction, which is the short direction of the heat spreader 34). Is provided. The plurality of step members 40 are all formed in a substantially square block shape in plan view, and have the same shape.
 この複数のステップ部材40は、ヒートスプレッダ34における風上側の端部からヒートスプレッダ34の表側に突出して設けられている。この複数のステップ部材40における高さ方向の端部40Aには、図3に示されるように、ヒートスプレッダ34の表面34Aに沿う平面状の端面40Bが形成されている。なお、この場合の端部40Aは、ステップ部材40における高さ方向の端面40Bを含む端面40B側の部分のことである。 The plurality of step members 40 are provided so as to protrude from the windward end of the heat spreader 34 to the front side of the heat spreader 34. As shown in FIG. 3, a planar end face 40 </ b> B along the surface 34 </ b> A of the heat spreader 34 is formed at the end 40 </ b> A in the height direction of the plurality of step members 40. In this case, the end portion 40A is a portion of the step member 40 on the end surface 40B side including the end surface 40B in the height direction.
 この複数のステップ部材40は、ヒートスプレッダ34に一体に形成されても良く、ヒートスプレッダ34と別体とされた上でヒートスプレッダ34に一体に固定されても良い。この複数のステップ部材40は、このようにヒートスプレッダ34に一体に形成されるか又は一体に固定されることにより、ヒートスプレッダ34と伝熱可能に接続されている。なお、以下、ステップ部材40の各々について区別する場合には、符合の末尾に識別符合1~6を付し、ステップ部材40の各々について区別しない場合には、符合の末尾から識別符合1~6を省いて説明する。 The plurality of step members 40 may be integrally formed with the heat spreader 34, or may be fixed integrally with the heat spreader 34 after being separated from the heat spreader 34. The plurality of step members 40 are integrally formed with or fixed to the heat spreader 34 in this way, and are connected to the heat spreader 34 so as to be able to transfer heat. Hereinafter, when distinguishing each of the step members 40, the identification codes 1 to 6 are attached to the end of the sign, and when not distinguishing each of the step members 40, the identification codes 1 to 6 from the end of the sign. Explain the explanation.
 図2に示されるように、この複数のステップ部材40のうちステップ部材40-1~40-4は、上述の電子部品36とヒートスプレッダ34の短手方向(矢印B方向)にオーバーラップする範囲に配置されている。一方、複数のステップ部材40のうちステップ部材40-5,40-6は、上述の電子部品36に対してヒートスプレッダ34の短手方向にずれて配置されている。 As shown in FIG. 2, among the plurality of step members 40, the step members 40-1 to 40-4 are within a range where the electronic component 36 and the heat spreader 34 overlap in the short direction (arrow B direction). Has been placed. On the other hand, among the plurality of step members 40, the step members 40-5 and 40-6 are arranged so as to be shifted in the short direction of the heat spreader 34 with respect to the electronic component 36 described above.
 図1に示される一対の送風機22,24は、上述の冷却風を送風するものであり、ヒートスプレッダ34の短手方向(矢印B方向)に並んで配置されている。この一対の送風機22,24から送風された冷却風は、図3の符合Wで示されるように、ヒートスプレッダ34の表側(ヒートスプレッダ34上)を電子部品36(冷却対象領域60)に向けて流れる。 The pair of blowers 22 and 24 shown in FIG. 1 blow the cooling air described above, and are arranged side by side in the short direction (arrow B direction) of the heat spreader 34. The cooling air blown from the pair of blowers 22 and 24 flows toward the electronic component 36 (cooling target region 60) on the front side (on the heat spreader 34) of the heat spreader 34, as indicated by the symbol W in FIG.
 また、上述の複数のステップ部材40は、電子部品36が配置された冷却対象領域60に向けて流れる冷却風の流路に介在されており、層流とされた冷却風Wを端部40Aに対して高さ方向に剥離させて乱流にさせる。そして、この複数のステップ部材40は、この乱流とされた冷却風W1をヒートスプレッダ34の表面34Aに再付着させる。 Further, the plurality of step members 40 described above are interposed in the flow path of the cooling air that flows toward the cooling target region 60 where the electronic component 36 is disposed, and the cooling air W that is made into a laminar flow is supplied to the end portion 40A. On the other hand, it is peeled off in the height direction to make a turbulent flow. The plurality of step members 40 reattach the turbulent cooling air W <b> 1 to the surface 34 </ b> A of the heat spreader 34.
 図2に示される複数のステップ部材40のうちステップ部材40-1~40-4は、上述のように、電子部品36とヒートスプレッダ34の短手方向(矢印B方向)にオーバーラップする範囲に配置されている。この複数のステップ部材40-1~40-4にて剥離されて乱流とされた冷却風は、ヒートスプレッダ34における電子部品36が配置された冷却対象領域60に再付着される。電子部品36は、ヒートスプレッダ34の裏側に設けられているので、この場合の冷却対象領域60は、ヒートスプレッダ34の表面34Aのうち裏側に電子部品36が配置された領域である。 Step members 40-1 to 40-4 among the plurality of step members 40 shown in FIG. 2 are arranged in a range where the electronic component 36 and the heat spreader 34 overlap in the short direction (arrow B direction) as described above. Has been. The cooling air peeled off by the plurality of step members 40-1 to 40-4 to be turbulent is reattached to the cooling target region 60 where the electronic component 36 is disposed in the heat spreader 34. Since the electronic component 36 is provided on the back side of the heat spreader 34, the cooling target region 60 in this case is a region where the electronic component 36 is disposed on the back side of the surface 34A of the heat spreader 34.
 一方、複数のステップ部材40のうちステップ部材40-5,40-6は、上述のように、電子部品36に対してヒートスプレッダ34の短手方向(矢印B方向)にずれて配置されている。このステップ部材40-5,40-6にて剥離されて乱流とされた冷却風は、ヒートスプレッダ34の表面34Aのうち上述の冷却対象領域60とヒートスプレッダ34の短手方向に隣接する隣接領域62に再付着される。 On the other hand, among the plurality of step members 40, the step members 40-5 and 40-6 are arranged so as to be shifted in the short direction (arrow B direction) of the heat spreader 34 with respect to the electronic component 36 as described above. The cooling air peeled off by the step members 40-5 and 40-6 to be turbulent flows is adjacent to the cooling target region 60 in the surface 34A of the heat spreader 34 and the adjacent region 62 adjacent to the heat spreader 34 in the short direction. Reattached to.
 このヒートスプレッダ34の表面34Aに再付着された冷却風の再付着点は、ヌセルト数が最も高くなる点である。ヌセルト数が高くなると、熱伝導率も高くなる(下記参考文献1参照)。このため、再付着点では高い熱伝導率が得られる。参考文献1:矩形オリフィス後流における乱流熱伝達の直接数値シミュレーション(牧野総一郎、岩本薫、川村洋 日本伝熱学会(2007年))。 The reattachment point of the cooling air reattached to the surface 34A of the heat spreader 34 is the point where the Nusselt number is the highest. As the Nusselt number increases, the thermal conductivity also increases (see Reference Document 1 below). For this reason, high thermal conductivity is obtained at the reattachment point. Reference 1: Direct numerical simulation of turbulent heat transfer in a rectangular orifice wake (Soichiro Makino, Satoshi Iwamoto, Hiroshi Kawamura, Japan Society of Heat Transfer (2007)).
 ここで、図4には、冷却風の風速を異ならせた場合の再付着点距離Lとステップ部材の高さHとの関係が示されている。この図4において、折れ線グラフG1は冷却風の風速が高い場合、折れ線グラフG2は冷却風の風速が中くらいの場合、折れ線グラフG3は冷却風の風速が低い場合を示している。また、図4の縦軸に示される再付着点距離Lとは、図3に示されるステップ部材40にて剥離されて乱流とされた冷却風W1がヒートスプレッダ34の表面34Aに再付着された点とステップ部材40との間の距離のことである。この再付着点距離Lは、ステップ部材40のヒートスプレッダ34上の位置に応じて変化する。また、図4の横軸に示されるステップ部材の高さHとは、図3に示されるステップ部材40のヒートスプレッダ34からの高さのことである。 Here, FIG. 4 shows the relationship between the reattachment point distance L and the height H of the step member when the wind speed of the cooling air is varied. In FIG. 4, a line graph G1 shows a case where the wind speed of the cooling air is high, a line graph G2 shows a case where the air speed of the cooling air is medium, and a line graph G3 shows a case where the wind speed of the cooling air is low. Further, the reattachment point distance L shown on the vertical axis in FIG. 4 means that the cooling air W1 separated by the step member 40 shown in FIG. 3 and made turbulent is reattached to the surface 34A of the heat spreader 34. This is the distance between the point and the step member 40. The reattachment point distance L changes according to the position of the step member 40 on the heat spreader 34. Further, the height H of the step member shown on the horizontal axis in FIG. 4 is the height from the heat spreader 34 of the step member 40 shown in FIG.
 図4に示されるように、ステップ部材の高さHが同じ場合、再付着点距離Lは、冷却風の風速が上がるほど短くなる(下記参考文献2参照)。また、冷却風の風速が同じ場合、再付着点距離Lは、ステップ部材の高さHが高くなるほど短くなる(下記参考文献3参照)。参考文献2:数理解析研究所講究録1018巻1997年50-55「バックステップ流中の渦構造」、参考文献3:ながれ29(2010年)411-416「プラズマアクチュエータを用いた後向きステップ流れの制御に関する実験的研究」。 As shown in FIG. 4, when the height H of the step member is the same, the reattachment point distance L becomes shorter as the cooling air speed increases (see Reference 2 below). Further, when the wind speed of the cooling air is the same, the reattachment point distance L becomes shorter as the height H of the step member increases (see Reference Document 3 below). Reference 2: Mathematical Analysis Laboratory, Vol. 1018, 1997, 50-55, “Vortex structure in backstep flow”, Reference 3: Nagare 29 (2010), 411-416, “Backward step flow using plasma actuator” Experimental study on control ".
 そして、本実施形態では、乱流とされた冷却風が予め設定された領域に再付着されるように、ステップ部材の高さH、再付着点距離L(すなわち、ステップ部材40のヒートスプレッダ34上の位置)、及び、冷却風の風速が設定されている。つまり、図2に示されるステップ部材40-1~40-4は、送風機22,24(図1参照)から送風された冷却風の風速に対応して、乱流とされた冷却風が上述の冷却対象領域60に再付着されるように、上述の高さ及び再付着点距離が設定されている。一方、ステップ部材40-5,40-6は、送風機22,24(図1参照)から送風された冷却風の風速に対応して、乱流とされた冷却風が上述の隣接領域62に再付着されるように、上述の高さ及び再付着点距離が設定されている。 In this embodiment, the height H of the step member and the reattachment point distance L (that is, on the heat spreader 34 of the step member 40) so that the turbulent cooling air is reattached to a preset region. ) And the wind speed of the cooling air is set. That is, in the step members 40-1 to 40-4 shown in FIG. 2, the turbulent cooling air flows in response to the wind speed of the cooling air blown from the blowers 22 and 24 (see FIG. 1). The height and the reattachment point distance are set so as to be reattached to the cooling target region 60. On the other hand, the step members 40-5 and 40-6 recirculate the turbulent cooling air to the adjacent region 62 in accordance with the wind speed of the cooling air blown from the blowers 22 and 24 (see FIG. 1). The height and the reattachment point distance are set so that they are attached.
 なお、この電子基板ユニット20は、水平に配置されても良く、また、鉛直に配置されても良い。電子基板ユニット20が水平に配置された場合及び鉛直に配置された場合のいずれの場合にも、複数のステップ部材40にて剥離されて乱流とされた冷却風は、予め設定された領域に再付着される。 In addition, this electronic board unit 20 may be arrange | positioned horizontally and may be arrange | positioned vertically. In both cases where the electronic board unit 20 is arranged horizontally and vertically, the cooling air separated by the plurality of step members 40 and made turbulent flows into a preset region. Reattached.
 また、本実施形態では、便宜上、ステップ部材40が設けられた側をヒートスプレッダ34の表側と捉えて説明している。 In the present embodiment, for convenience, the side on which the step member 40 is provided is described as the front side of the heat spreader 34.
 次に、本実施形態の作用及び効果について説明する。 Next, functions and effects of this embodiment will be described.
 以上詳述したように、この電子機器10によれば、一対の送風機22,24から送風された冷却風Wは、ヒートスプレッダ34上を電子部品36(冷却対象領域60)に向けて流れる。また、この冷却風W(層流)は、ステップ部材40-1~40-6の各々において端部40Aに対して高さ方向に剥離する乱流とされる。そして、このうち複数のステップ部材40-1~40-4にて剥離されて乱流とされた冷却風W1は、ヒートスプレッダ34における電子部品36が配置された冷却対象領域60に再付着される(図3参照)。従って、この冷却風W1により冷却対象領域60が冷却されることで、この冷却対象領域60の裏側に設けられた電子部品36を冷却することができる。 As described in detail above, according to the electronic device 10, the cooling air W blown from the pair of blowers 22 and 24 flows on the heat spreader 34 toward the electronic component 36 (cooling target region 60). The cooling air W (laminar flow) is a turbulent flow that separates in the height direction from the end 40A in each of the step members 40-1 to 40-6. Of these, the cooling air W1 separated by the plurality of step members 40-1 to 40-4 and turbulent is reattached to the cooling target region 60 where the electronic component 36 is disposed in the heat spreader 34 ( (See FIG. 3). Therefore, the cooling target area 60 is cooled by the cooling air W1, so that the electronic component 36 provided on the back side of the cooling target area 60 can be cooled.
 また、ステップ部材40-5,40-6にて剥離されて乱流とされた冷却風は、ヒートスプレッダ34の表面34Aのうち上述の冷却対象領域60とヒートスプレッダ34の短手方向(矢印B方向)に隣接する隣接領域62に再付着される。これにより、冷却対象領域60、ひいては、電子部品36をより冷却することができる。 In addition, the cooling air peeled off by the step members 40-5 and 40-6 and made into turbulent flow is the short side direction (arrow B direction) of the above-described cooling target region 60 and the heat spreader 34 on the surface 34A of the heat spreader 34. Is reattached to the adjacent region 62 adjacent to. Thereby, the cooling object area | region 60 and by extension, the electronic component 36 can be cooled more.
 また、冷却風がヒートスプレッダ34における冷却対象領域60やその隣接領域62に局所的に当たることで電子部品36の冷却効率を高めることができる。従って、送風機22,24の回転数を増大させたり、ヒートスプレッダ34に熱伝導率の高い金属材料を用いたりすることを不要にできる。これにより、省消費電力化、低騒音化、及び、低コスト化を図ることができる。 Further, the cooling efficiency of the electronic component 36 can be increased by the cooling air locally hitting the cooling target region 60 and the adjacent region 62 in the heat spreader 34. Therefore, it is not necessary to increase the rotational speed of the blowers 22 and 24 or to use a metal material having high thermal conductivity for the heat spreader 34. Thereby, power saving, noise reduction, and cost reduction can be achieved.
 また、上述のように冷却風がヒートスプレッダ34における冷却対象領域60やその隣接領域62に局所的に当たるので、回路基板32における部品間に冷却風の通り道を確保する必要性を無くすことができる。これにより、回路基板32における部品間のピッチを狭くすることが許容されるので、回路基板32、ひいては、電子基板ユニット20を小型化することができる。 Further, as described above, since the cooling air locally hits the cooling target region 60 and the adjacent region 62 in the heat spreader 34, it is possible to eliminate the need to secure the passage of the cooling air between the components in the circuit board 32. As a result, the pitch between the components on the circuit board 32 is allowed to be narrowed, so that the circuit board 32 and thus the electronic board unit 20 can be reduced in size.
 特に、電子基板ユニット20が、例えばDC/DCコンバータ(DDC)のように回路基板32に部品が狭いピッチで実装されたものであっても、電子部品36を効率的に冷却することができる。 In particular, even when the electronic board unit 20 is such that the parts are mounted on the circuit board 32 at a narrow pitch, such as a DC / DC converter (DDC), the electronic part 36 can be efficiently cooled.
 また、複数のステップ部材40は、ヒートスプレッダ34に一体に形成されるか又は一体に固定されることにより、ヒートスプレッダ34と伝熱可能に接続されている。従って、この複数のステップ部材40自体が放熱フィンの役割を果たすので、ヒートスプレッダ34を冷却することができる。これにより、このヒートスプレッダ34と接触された電子部品36をより冷却することができる。 Further, the plurality of step members 40 are integrally formed with the heat spreader 34 or are integrally fixed to be connected to the heat spreader 34 so that heat can be transferred. Accordingly, since the plurality of step members 40 themselves serve as heat radiating fins, the heat spreader 34 can be cooled. Thereby, the electronic component 36 in contact with the heat spreader 34 can be further cooled.
 また、複数のステップ部材40は、ヒートスプレッダ34の短手方向、すなわち、ヒートスプレッダ34を平面視した場合における冷却風の流れの方向と交差する方向(矢印B方向)に間隔を空けて配置されている。従って、この複数のステップ部材40の間を冷却風が通過するので、冷却風に対する抵抗が大きくなることを抑制することができる。また、この複数のステップ部材40の間を通過する冷却風(層流)は、この複数のステップ部材40により乱流とされる。従って、この乱流とされた冷却風による熱拡散効果を得られるので、電子部品36やその他の部品の冷却効率をより向上させることができる。 Further, the plurality of step members 40 are arranged at intervals in a short direction of the heat spreader 34, that is, in a direction (arrow B direction) intersecting the direction of the flow of the cooling air when the heat spreader 34 is viewed in plan. . Accordingly, since the cooling air passes between the plurality of step members 40, it is possible to suppress an increase in resistance to the cooling air. Further, the cooling air (laminar flow) passing between the plurality of step members 40 is turbulent by the plurality of step members 40. Therefore, since the thermal diffusion effect by the turbulent cooling air can be obtained, the cooling efficiency of the electronic component 36 and other components can be further improved.
 次に、本実施形態の変形例について説明する。 Next, a modification of this embodiment will be described.
 上記実施形態において、電子基板ユニット20は、ヒートスプレッダ34を備えていたが、ヒートスプレッダ34を備えていなくても良い。また、この場合には、図5に示されるように、基板の一例である回路基板32の表面32A(回路基板32上)にステップ部材40が設けられても良い。そして、このステップ部材40にて乱流とされた冷却風W1は、回路基板32における電子部品36が配置された冷却対象領域(つまり、この場合、電子部品36の表面36A)に再付着されても良い。このように構成されていても、電子部品36を効率的に冷却することができる。 In the above embodiment, the electronic board unit 20 includes the heat spreader 34, but may not include the heat spreader 34. In this case, as shown in FIG. 5, the step member 40 may be provided on the surface 32 </ b> A (on the circuit board 32) of the circuit board 32 which is an example of the board. Then, the cooling air W1 turbulent by the step member 40 is reattached to the region to be cooled on the circuit board 32 where the electronic component 36 is disposed (that is, in this case, the surface 36A of the electronic component 36). Also good. Even with this configuration, the electronic component 36 can be efficiently cooled.
 また、基板の一例である回路基板32の表面32Aにステップ部材40が設けられ、この回路基板32の裏面に電子部品36が実装されても良い。そして、ステップ部材40にて乱流とされた冷却風は、回路基板32における電子部品36が配置された冷却対象領域(つまり、この場合、回路基板32の表面32Aのうち裏側に電子部品36が配置された領域)に再付着されても良い。このように構成されていても、電子部品36を効率的に冷却することができる。 Further, the step member 40 may be provided on the front surface 32A of the circuit board 32 which is an example of the board, and the electronic component 36 may be mounted on the back surface of the circuit board 32. Then, the cooling air made turbulent by the step member 40 causes the electronic component 36 to be placed on the back side of the surface 32A of the circuit board 32 in which the electronic component 36 is disposed on the circuit board 32 (that is, in this case). It may be reattached to the arranged area). Even with this configuration, the electronic component 36 can be efficiently cooled.
 また、上記実施形態において、電子基板ユニット20は、図6に示されるように、複数の電子部品36-1~36-6を備えていても良い。また、この場合に、複数の電子部品36-1~36-6は、複数のステップ部材40-1~40-6の各々との冷却風の流れの方向に沿った距離が互いに異なるように複数のステップ部材40-1~40-6の各々の風下側にそれぞれ配置されても良い。また、複数のステップ部材40-1~40-6は、風下側に配置された複数の電子部品36-1~36-6の各々との距離に応じてヒートスプレッダ34からの高さが異なっていても良い。 In the above embodiment, the electronic board unit 20 may include a plurality of electronic components 36-1 to 36-6 as shown in FIG. Further, in this case, the plurality of electronic components 36-1 to 36-6 are so arranged that the distances along the direction of the flow of the cooling air from each of the plurality of step members 40-1 to 40-6 are different from each other. The step members 40-1 to 40-6 may be arranged on the leeward side. Further, the plurality of step members 40-1 to 40-6 have different heights from the heat spreader 34 depending on the distance from each of the plurality of electronic components 36-1 to 36-6 arranged on the leeward side. Also good.
 つまり、この図6に示される変形例においては、電子部品36-1~36-6の順に、電子部品36とステップ部材40との間の距離が短くなっている。また、この電子部品36-1~36-6の各々とステップ部材40との間の距離に対応して、ステップ部材40-1~40-6の順に、ヒートスプレッダ34からの高さが高くなっている。そして、これにより、各ステップ部材40-1~40-6にて剥離されて乱流とされた冷却風が、ヒートスプレッダ34における電子部品36-1~36-6が配置された冷却対象領域60-1~60-6のそれぞれに再付着されるようになっている。 That is, in the modified example shown in FIG. 6, the distance between the electronic component 36 and the step member 40 becomes shorter in the order of the electronic components 36-1 to 36-6. Further, the height from the heat spreader 34 is increased in the order of the step members 40-1 to 40-6 corresponding to the distance between each of the electronic components 36-1 to 36-6 and the step member 40. Yes. As a result, the cooling air separated by the step members 40-1 to 40-6 and turbulently flows into the cooling target region 60- in which the electronic components 36-1 to 36-6 in the heat spreader 34 are arranged. Reattached to each of 1 to 60-6.
 このように構成されていると、複数のステップ部材40-1~40-6の高さを変更するだけで、複数の電子部品36-1~36-6を適切に冷却することができるので、複数の電子部品36-1~36-6の配置の自由度を高めることができる。なお、複数の電子部品及び複数のステップ部材の数は、任意に選択可能である。 With this configuration, the plurality of electronic components 36-1 to 36-6 can be appropriately cooled only by changing the height of the plurality of step members 40-1 to 40-6. The degree of freedom of arrangement of the plurality of electronic components 36-1 to 36-6 can be increased. Note that the number of the plurality of electronic components and the plurality of step members can be arbitrarily selected.
 また、上記実施形態において、電子基板ユニット20は、図7に示されるように、複数の乱流発生部70-1~70-7を備えていても良い。この複数の乱流発生部70-1~70-7は、複数のステップ部材40よりも風下側に設けられると共に、複数のステップ部材40の各々に対して上述の矢印B方向にずれて配置されている。また、複数の乱流発生部70-1~70-5は、冷却風の流れの方向(矢印A方向)に沿って見た場合に複数のステップ部材40の各々の間に位置されている。一方、乱流発生部70-6,70-7は、複数のステップ部材40に対して上述の矢印B方向の外側にそれぞれ配置されている。このように構成されていると、複数のステップ部材40の各々の間や外側を通過し乱流とされた冷却風をさらに乱すことができる。これにより、冷却風による熱拡散効果を向上させることができる。 In the above embodiment, the electronic board unit 20 may include a plurality of turbulent flow generation units 70-1 to 70-7 as shown in FIG. The plurality of turbulent flow generators 70-1 to 70-7 are provided on the leeward side with respect to the plurality of step members 40, and are arranged so as to be shifted in the direction of the arrow B with respect to each of the plurality of step members 40. ing. Further, the plurality of turbulent flow generating portions 70-1 to 70-5 are located between each of the plurality of step members 40 when viewed along the direction of the flow of the cooling air (the direction of arrow A). On the other hand, the turbulent flow generation units 70-6 and 70-7 are respectively arranged on the outer side in the arrow B direction with respect to the plurality of step members 40. If comprised in this way, the cooling wind which passed between each of the several step members 40 and the outer side, and was made into the turbulent flow can be disturbed further. Thereby, the thermal diffusion effect by cooling air can be improved.
 なお、この図7に示される変形例において、乱流発生部70-6,70-7は省かれても良い。この場合には、複数のステップ部材40の各々の間を通過し乱流とされた冷却風をさらに乱すことができる。また、この図7に示される変形例において、乱流発生部70は、風上側に凸を成す凸面70Aを有していても良い。このように構成されていると、冷却風のエネルギーロスを抑えることができ、電子部品36の側への風量を確保することができる。この凸面70Aは、図7に示されるように、屈曲面とされていても良く、また、図8に示されるように、湾曲面とされていても良い。 In the modification shown in FIG. 7, the turbulent flow generation units 70-6 and 70-7 may be omitted. In this case, the cooling air that has passed through each of the plurality of step members 40 and has been turbulent can be further disturbed. Further, in the modification shown in FIG. 7, the turbulent flow generation unit 70 may have a convex surface 70A that is convex on the windward side. If comprised in this way, the energy loss of cooling air can be suppressed and the air volume to the electronic component 36 side can be ensured. The convex surface 70A may be a bent surface as shown in FIG. 7, or may be a curved surface as shown in FIG.
 また、図9に示されるように、ステップ部材40も、風上側に凸を成す凸面40Cを有していても良い。このように構成されていても、冷却風のエネルギーロスを抑えることができ、電子部品36の側への風量を確保することができる。 Further, as shown in FIG. 9, the step member 40 may also have a convex surface 40C that is convex on the windward side. Even if comprised in this way, the energy loss of cooling air can be suppressed and the air volume to the electronic component 36 side can be ensured.
 また、図10に示されるように、ステップ部材40の端部40Aは、回路基板32側と反対側(矢印C側)に凸を成していても良い。つまり、この図10に示される変形例において、端部40Aにおける風上側の部分には、風下側に向かうに従って回路基板32から離間するように傾斜する傾斜面40A1が形成されている。一方、端部40Aにおける風下側の部分には、風下側に向かうに従って回路基板32に接近するように傾斜する傾斜面40A2が形成されている。 Further, as shown in FIG. 10, the end portion 40A of the step member 40 may be convex on the side opposite to the circuit board 32 side (arrow C side). That is, in the modification shown in FIG. 10, an inclined surface 40A1 that is inclined so as to be separated from the circuit board 32 toward the leeward side is formed in the windward side portion of the end portion 40A. On the other hand, an inclined surface 40A2 that is inclined so as to approach the circuit board 32 toward the leeward side is formed in the leeward side portion of the end portion 40A.
 このように、端部40Aにおける風上側の部分に風下側に向かうに従って回路基板32から離間するように傾斜する傾斜面40A1が形成されていると、この傾斜面40A1に沿って冷却風が流れる。従って、冷却風の淀みを抑制することができるので、冷却風のエネルギーロスを抑えることができる。これにより、電子部品36の側への風量を増加させることができるので、電子部品36の冷却効率を高めることができる。 As described above, when the inclined surface 40A1 that is inclined so as to be separated from the circuit board 32 toward the leeward side is formed in the leeward portion of the end portion 40A, the cooling air flows along the inclined surface 40A1. Therefore, the stagnation of the cooling air can be suppressed, and the energy loss of the cooling air can be suppressed. Thereby, since the air volume to the electronic component 36 side can be increased, the cooling efficiency of the electronic component 36 can be improved.
 なお、ステップ部材40の端部40Aには、図11に示されるように、その全体に風下側に向かうに従って回路基板32から離間するように傾斜する傾斜面40Dが形成されていても良い。また、図12に示されるように、端部40Aに回路基板32側と反対側(矢印C側)に凸を成す湾曲面が形成されても良い。そして、これにより、端部40Aにおける風上側の部分40A1に風下側に向かうに従って回路基板32から離間するように傾斜する傾斜面40A1が形成されていても良い。このように構成されていても、図10に示される変形例と同様の作用及び効果を奏することができる。 In addition, as shown in FIG. 11, an inclined surface 40 </ b> D that is inclined so as to be separated from the circuit board 32 toward the leeward side may be formed on the end portion 40 </ b> A of the step member 40. Further, as shown in FIG. 12, a curved surface that protrudes on the side opposite to the circuit board 32 side (arrow C side) may be formed on the end portion 40A. Then, an inclined surface 40A1 that is inclined so as to be separated from the circuit board 32 toward the leeward side may be formed in the leeward portion 40A1 of the end portion 40A. Even if comprised in this way, there can exist an effect | action and effect similar to the modification shown by FIG.
 また、上記実施形態において、ステップ部材40は、平面視にて略正方形に形成されていたが、図13に示されるように、冷却風の流れの方向(矢印A方向)を長手方向とする長尺状に形成されていても良い。このように構成されていると、ステップ部材40の表面積が増加されるので、ヒートスプレッダ34、ひいては、電子部品36の冷却効率をより向上させることができる。 Moreover, in the said embodiment, although the step member 40 was formed in the substantially square by planar view, as FIG. 13 shows, it is the length which makes the direction (arrow A direction) of a flow of cooling air into a longitudinal direction. It may be formed in a scale shape. With this configuration, since the surface area of the step member 40 is increased, the cooling efficiency of the heat spreader 34 and, in turn, the electronic component 36 can be further improved.
 なお、ステップ部材40から再付着点までの距離は、冷却風の流れの方向に沿ったステップ部材40の長さよりも、冷却風の風速及びステップ部材40の高さの影響が大きい。このため、ステップ部材40が冷却風の流れの方向を長手方向とする長尺状に形成されたことが、ステップ部材40から再付着点までの距離に及ぼす影響は少ない。 It should be noted that the distance from the step member 40 to the reattachment point is more influenced by the cooling air velocity and the height of the step member 40 than the length of the step member 40 along the direction of the cooling air flow. For this reason, the fact that the step member 40 is formed in a long shape whose longitudinal direction is the flow direction of the cooling air has little influence on the distance from the step member 40 to the reattachment point.
 また、上記実施形態において、電子基板ユニット20は、次のように構成されていても良い。つまり、図14に示される変形例において、電子基板ユニット20は、第一電子部品76と第二電子部品78とを備えている。この第一電子部品76及び第二電子部品78は、第一発熱部品及び第二発熱部品の一例であり、ヒートスプレッダ34の短手方向(矢印B方向)に並んで配置されている。 Further, in the above embodiment, the electronic board unit 20 may be configured as follows. That is, in the modification shown in FIG. 14, the electronic board unit 20 includes a first electronic component 76 and a second electronic component 78. The first electronic component 76 and the second electronic component 78 are examples of the first heat generating component and the second heat generating component, and are arranged side by side in the short direction (arrow B direction) of the heat spreader 34.
 また、第二電子部品78は、少なくとも発熱量及び定格温度により規定される冷却要求度が第一電子部品76よりも低く設定されている。例えば、第二電子部品78の発熱量が10Wで定格温度が40℃であるのに対し、第一電子部品76の発熱量が20Wで定格温度が40℃である場合である。この場合には、第一電子部品76の方が第二電子部品78よりも冷却要求度が高いことになる。 In addition, the second electronic component 78 is set to have a cooling requirement lower than that of the first electronic component 76 defined by at least a heat generation amount and a rated temperature. For example, the heating value of the second electronic component 78 is 10 W and the rated temperature is 40 ° C., whereas the heating value of the first electronic component 76 is 20 W and the rated temperature is 40 ° C. In this case, the first electronic component 76 has a higher cooling requirement than the second electronic component 78.
 また、その他にも、例えば、第二電子部品78の発熱量が10Wで定格温度が40℃であるのに対し、第一電子部品76の発熱量が10Wで定格温度が100℃である場合である。この場合にも、第一電子部品76の方が第二電子部品78よりも冷却要求度が高いことになる。この第一電子部品76及び第二電子部品78のうち第一電子部品76は、冷却風の冷却対象となる電子部品の一例である。 In addition, for example, the second electronic component 78 has a heating value of 10 W and a rated temperature of 40 ° C., whereas the first electronic component 76 has a heating value of 10 W and a rated temperature of 100 ° C. is there. Also in this case, the first electronic component 76 has a higher cooling requirement than the second electronic component 78. Of the first electronic component 76 and the second electronic component 78, the first electronic component 76 is an example of an electronic component to be cooled by cooling air.
 また、この電子基板ユニット20では、ヒートスプレッダ34の表面34Aのうち裏側に第一電子部品76が配置された領域が第一領域80とされている。一方、ヒートスプレッダ34の表面34Aのうち裏側に第二電子部品78が配置された領域が第二領域82とされている。そして、この第一領域80及び第二領域82のうち第一領域80は、乱流とされた冷却風が再付着される冷却対象領域とされている。 In the electronic board unit 20, a region where the first electronic component 76 is disposed on the back side of the surface 34 </ b> A of the heat spreader 34 is a first region 80. On the other hand, a region where the second electronic component 78 is disposed on the back side of the surface 34A of the heat spreader 34 is a second region 82. Of the first region 80 and the second region 82, the first region 80 is a cooling target region to which the turbulent cooling air is reattached.
 つまり、第一電子部品76及び第二電子部品78のうち第一電子部品76の風上側には、複数のステップ部材40が設けられている。そして、この複数のステップ部材40にて剥離されて乱流とされた冷却風が、第一領域80及び第二領域82のうち第一領域80に再付着されるようになっている。 That is, a plurality of step members 40 are provided on the windward side of the first electronic component 76 among the first electronic component 76 and the second electronic component 78. The cooling air that has been peeled off by the plurality of step members 40 to be turbulent is reattached to the first region 80 of the first region 80 and the second region 82.
 このように構成されていると、第二電子部品78よりも冷却要求度の高い第一電子部品76を選択的に冷却することができる。これにより、図1に示される送風機22,24の回転数を増大させたり、ヒートスプレッダ34に熱伝導率の高い金属材料を用いたりすることを不要にできる。これにより、省消費電力化、低騒音化、及び、低コスト化を図ることができる。 With this configuration, it is possible to selectively cool the first electronic component 76 having a higher cooling requirement than the second electronic component 78. Thereby, it is not necessary to increase the rotational speed of the blowers 22 and 24 shown in FIG. 1 or to use a metal material having high thermal conductivity for the heat spreader 34. Thereby, power saving, noise reduction, and cost reduction can be achieved.
 なお、上述の冷却要求度は、少なくとも発熱量及び定格温度により規定されれば良く、発熱量、定格温度、及び、その他の要求因子により規定されても良い。 Note that the above-described degree of cooling need only be defined by at least the heat generation amount and the rated temperature, and may be defined by the heat generation amount, the rated temperature, and other required factors.
 また、上記実施形態において、電子基板ユニット20は、複数のステップ部材40を備えていたが、ステップ部材40は、単数でも良い。 In the above embodiment, the electronic board unit 20 includes the plurality of step members 40, but the number of step members 40 may be one.
 また、ヒートスプレッダ34には、発熱部品の一例として、電子部品36が接触されていたが、冷却風による冷却対象として、その他の発熱部品が接触されていても良い。 In addition, although the electronic component 36 is in contact with the heat spreader 34 as an example of the heat generating component, other heat generating components may be in contact with the heat spreader 34 as an object to be cooled by the cooling air.
 また、複数のステップ部材40は、ヒートスプレッダ34に一体に形成されるか又は一体に固定されることにより、ヒートスプレッダ34と伝熱可能に接続されていた。しかしながら、複数のステップ部材40は、ヒートスプレッダ34の表側(ヒートスプレッダ34上)にヒートスプレッダ34と離間して設けられていても良い。また、この場合に、複数のステップ部材40は、例えば、ヒートスプレッダ34の表面34Aに沿う板状に形成されるなど、ブロック状以外の形状とされていても良い。 In addition, the plurality of step members 40 are connected to the heat spreader 34 so as to be capable of transferring heat by being formed integrally with the heat spreader 34 or fixed integrally. However, the plurality of step members 40 may be provided on the front side of the heat spreader 34 (on the heat spreader 34) so as to be separated from the heat spreader 34. In this case, the plurality of step members 40 may have a shape other than the block shape, for example, a plate shape along the surface 34 </ b> A of the heat spreader 34.
 なお、上記複数の変形例のうち組み合わせ可能な変形例は、適宜、組み合わされて実施可能である。 In addition, the modification which can be combined among the said several modifications can be implemented combining suitably.
 以上、本願の開示する技術の一実施形態について説明したが、本願の開示する技術は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。 As mentioned above, although one embodiment of the technique disclosed in the present application has been described, the technique disclosed in the present application is not limited to the above, and various modifications may be made without departing from the spirit of the present invention. Of course, it is possible.

Claims (11)

  1.  発熱部品と接触された基板と、
     前記発熱部品が配置された冷却対象領域に向けて流れる冷却風の流路に介在し、前記基板上に設けられたステップ部材と、
     を備え、
     前記ステップ部材の前記基板上の位置及び前記基板からの高さは、前記ステップ部材の端部に対して高さ方向に剥離した前記冷却風を、前記冷却対象領域に再付着させるように設定されている、
     電子基板ユニット。
    A substrate in contact with the heat generating component;
    A step member provided on the substrate, interposed in the flow path of the cooling air flowing toward the cooling target region in which the heat generating component is disposed;
    With
    The position of the step member on the substrate and the height from the substrate are set so that the cooling air separated in the height direction from the end of the step member is reattached to the cooling target region. ing,
    Electronic board unit.
  2.  前記ステップ部材は、前記基板と接続されている、
     請求項1に記載の電子基板ユニット。
    The step member is connected to the substrate;
    The electronic board unit according to claim 1.
  3.  前記ステップ部材は、前記冷却風の流れの方向を長手方向とする長尺状に形成されている、
     請求項2に記載の電子基板ユニット。
    The step member is formed in an elongated shape with the direction of the cooling air flow as the longitudinal direction.
    The electronic board unit according to claim 2.
  4.  前記端部における少なくとも風上側の部分には、風下側に向かうに従って前記基板から離間するように傾斜する傾斜面が形成されている、
     請求項1~請求項3のいずれか一項に記載の電子基板ユニット。
    An inclined surface that is inclined so as to be separated from the substrate toward the leeward side is formed at least on the leeward side of the end portion,
    The electronic board unit according to any one of claims 1 to 3.
  5.  前記ステップ部材は、前記基板を平面視した場合における前記冷却風の流れの方向と交差する方向に間隔を空けて複数備えられている、
     請求項1~請求項4のいずれか一項に記載の電子基板ユニット。
    A plurality of the step members are provided at intervals in a direction intersecting the direction of the flow of the cooling air when the substrate is viewed in plan view.
    The electronic board unit according to any one of claims 1 to 4.
  6.  前記発熱部品は、複数の前記ステップ部材の各々との前記冷却風の流れの方向に沿った距離が互いに異なるように複数の前記ステップ部材の各々の風下側にそれぞれ配置され、
     複数の前記ステップ部材は、風下側に配置された複数の前記発熱部品の各々との距離に応じて前記基板からの高さが異なっている、
     請求項5に記載の電子基板ユニット。
    The heat generating components are respectively arranged on the leeward side of each of the plurality of step members such that distances along the direction of the flow of the cooling air with each of the plurality of step members are different from each other.
    The plurality of step members have different heights from the substrate according to the distance to each of the plurality of heat generating components arranged on the leeward side.
    The electronic board unit according to claim 5.
  7.  前記ステップ部材よりも風下側に設けられると共に、前記ステップ部材に対して前記交差する方向にずれて配置された乱流発生部を備えた、
     請求項5又は請求項6に記載の電子基板ユニット。
    The turbulent flow generation unit is provided on the leeward side of the step member, and is arranged to be shifted in the intersecting direction with respect to the step member.
    The electronic board unit according to claim 5 or 6.
  8.  前記発熱部品は、前記ステップ部材が設けられた側を前記基板の表側とした場合に、前記基板の裏側に設けられ、
     前記冷却対象領域は、前記基板の表面のうち裏側に前記発熱部品が配置された領域とされている、
     請求項1~請求項7のいずれか一項に記載の電子基板ユニット。
    The heat generating component is provided on the back side of the substrate when the side on which the step member is provided is the front side of the substrate,
    The cooling target area is an area where the heat generating component is disposed on the back side of the surface of the substrate.
    The electronic board unit according to any one of claims 1 to 7.
  9.  前記発熱部品は、前記ステップ部材が設けられた側を前記基板の表側とした場合に、前記基板の表側に設けられ、
     前記冷却対象領域は、前記発熱部品の表面とされている、
     請求項1~請求項7のいずれか一項に記載の電子基板ユニット。
    The heat generating component is provided on the front side of the substrate when the side on which the step member is provided is the front side of the substrate,
    The cooling target area is the surface of the heat generating component,
    The electronic board unit according to any one of claims 1 to 7.
  10.  前記発熱部品としての第一発熱部品と、
     少なくとも発熱量及び定格温度により規定される冷却要求度が前記第一発熱部品よりも低い第二発熱部品と、
     を備え、
     前記冷却対象領域は、前記基板における前記第一発熱部品が配置された第一領域、及び、前記基板における前記第二発熱部品が配置された第二領域のうち、前記第一領域とされている、
     請求項1~請求項9のいずれか一項に記載の電子基板ユニット。
    A first heat generating component as the heat generating component;
    A second heat generating component having a cooling requirement level defined by at least a heat generation amount and a rated temperature lower than the first heat generating component;
    With
    The cooling target area is the first area among the first area where the first heat generating component is disposed on the substrate and the second area where the second heat generating component is disposed on the substrate. ,
    The electronic board unit according to any one of claims 1 to 9.
  11.  請求項1~請求項10のいずれか一項に記載の電子基板ユニットと、
     前記冷却風を送風する送風機と、
     を備えた電子機器。
    An electronic board unit according to any one of claims 1 to 10,
    A blower for blowing the cooling air;
    With electronic equipment.
PCT/JP2011/077707 2011-11-30 2011-11-30 Electronic board unit and electronic device WO2013080341A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077707 WO2013080341A1 (en) 2011-11-30 2011-11-30 Electronic board unit and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077707 WO2013080341A1 (en) 2011-11-30 2011-11-30 Electronic board unit and electronic device

Publications (1)

Publication Number Publication Date
WO2013080341A1 true WO2013080341A1 (en) 2013-06-06

Family

ID=48534859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077707 WO2013080341A1 (en) 2011-11-30 2011-11-30 Electronic board unit and electronic device

Country Status (1)

Country Link
WO (1) WO2013080341A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015123079A1 (en) * 2014-02-12 2015-08-20 Sandisk Enterprise Ip Llc System and method for redirecting airflow across an electronic assembly
US9158349B2 (en) 2013-10-04 2015-10-13 Sandisk Enterprise Ip Llc System and method for heat dissipation
US9313874B2 (en) 2013-06-19 2016-04-12 SMART Storage Systems, Inc. Electronic system with heat extraction and method of manufacture thereof
US9348377B2 (en) 2014-03-14 2016-05-24 Sandisk Enterprise Ip Llc Thermal isolation techniques
US9470720B2 (en) 2013-03-08 2016-10-18 Sandisk Technologies Llc Test system with localized heating and method of manufacture thereof
US9485851B2 (en) 2014-03-14 2016-11-01 Sandisk Technologies Llc Thermal tube assembly structures
US9497889B2 (en) 2014-02-27 2016-11-15 Sandisk Technologies Llc Heat dissipation for substrate assemblies
US9519319B2 (en) 2014-03-14 2016-12-13 Sandisk Technologies Llc Self-supporting thermal tube structure for electronic assemblies
US9898056B2 (en) 2013-06-19 2018-02-20 Sandisk Technologies Llc Electronic assembly with thermal channel and method of manufacture thereof
US10013033B2 (en) 2013-06-19 2018-07-03 Sandisk Technologies Llc Electronic assembly with thermal channel and method of manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153096A (en) * 1989-11-10 1991-07-01 Hitachi Ltd Cooling structure of electronic parts
JP2003023283A (en) * 2001-07-09 2003-01-24 Hitachi Ltd Cooling device for electronic component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153096A (en) * 1989-11-10 1991-07-01 Hitachi Ltd Cooling structure of electronic parts
JP2003023283A (en) * 2001-07-09 2003-01-24 Hitachi Ltd Cooling device for electronic component

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9470720B2 (en) 2013-03-08 2016-10-18 Sandisk Technologies Llc Test system with localized heating and method of manufacture thereof
US9898056B2 (en) 2013-06-19 2018-02-20 Sandisk Technologies Llc Electronic assembly with thermal channel and method of manufacture thereof
US9313874B2 (en) 2013-06-19 2016-04-12 SMART Storage Systems, Inc. Electronic system with heat extraction and method of manufacture thereof
US10013033B2 (en) 2013-06-19 2018-07-03 Sandisk Technologies Llc Electronic assembly with thermal channel and method of manufacture thereof
US9158349B2 (en) 2013-10-04 2015-10-13 Sandisk Enterprise Ip Llc System and method for heat dissipation
WO2015123079A1 (en) * 2014-02-12 2015-08-20 Sandisk Enterprise Ip Llc System and method for redirecting airflow across an electronic assembly
KR20160119755A (en) * 2014-02-12 2016-10-14 샌디스크 테크놀로지스 엘엘씨 System and method for redirecting airflow across an electronic assembly
KR101992524B1 (en) * 2014-02-12 2019-06-24 샌디스크 테크놀로지스 엘엘씨 System and method for redirecting airflow across an electronic assembly
US9549457B2 (en) 2014-02-12 2017-01-17 Sandisk Technologies Llc System and method for redirecting airflow across an electronic assembly
US9497889B2 (en) 2014-02-27 2016-11-15 Sandisk Technologies Llc Heat dissipation for substrate assemblies
US9848512B2 (en) 2014-02-27 2017-12-19 Sandisk Technologies Llc Heat dissipation for substrate assemblies
US9348377B2 (en) 2014-03-14 2016-05-24 Sandisk Enterprise Ip Llc Thermal isolation techniques
US9519319B2 (en) 2014-03-14 2016-12-13 Sandisk Technologies Llc Self-supporting thermal tube structure for electronic assemblies
US9485851B2 (en) 2014-03-14 2016-11-01 Sandisk Technologies Llc Thermal tube assembly structures

Similar Documents

Publication Publication Date Title
WO2013080341A1 (en) Electronic board unit and electronic device
CN101998812B (en) Heat-dissipating module
JP5581119B2 (en) Cooling device, power converter, railway vehicle
JP2010187504A (en) Inverter device
CN101351109A (en) Radiating device
TW201311129A (en) Electronic device
CN102573383A (en) Air guiding cover and heat radiating device using the same
JP2005012212A (en) Fined device for removing heat from electronic component
KR20090054980A (en) Motor control device
JP2006210516A (en) Cooling structure of electronic equipment
JP2013055332A (en) Heat sink
JPH09307034A (en) Cooling structure of semiconductor device
JP6904389B2 (en) Heat dissipation parts and mounting board
JP2015008225A (en) Electronic apparatus
JP5594784B2 (en) Heat sink cooler
JPWO2013080341A1 (en) Electronic board unit and electronic device
JP2013128048A (en) Cooling device and electronic apparatus using the same
JP2004128439A (en) Heating element cooling device
CN114396662A (en) Electric control box and air conditioner outdoor unit with same
JP2013165120A (en) Cooling component, cooling device, and cooling method for heating element
KR200228898Y1 (en) Heat sink
CN101460036A (en) Heat radiation device
JP2011249496A (en) Cooling structure of electronic apparatus
JP2003282801A (en) Heat sink device
JP6265949B2 (en) heatsink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546908

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876643

Country of ref document: EP

Kind code of ref document: A1