WO2013080297A1 - Air conditioning/hot water supply system - Google Patents

Air conditioning/hot water supply system Download PDF

Info

Publication number
WO2013080297A1
WO2013080297A1 PCT/JP2011/077531 JP2011077531W WO2013080297A1 WO 2013080297 A1 WO2013080297 A1 WO 2013080297A1 JP 2011077531 W JP2011077531 W JP 2011077531W WO 2013080297 A1 WO2013080297 A1 WO 2013080297A1
Authority
WO
WIPO (PCT)
Prior art keywords
water supply
hot water
air conditioning
refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2011/077531
Other languages
French (fr)
Japanese (ja)
Inventor
小谷 正直
陽子 國眼
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013546876A priority Critical patent/JP5788526B2/en
Priority to EP11876541.1A priority patent/EP2787304A4/en
Priority to PCT/JP2011/077531 priority patent/WO2013080297A1/en
Publication of WO2013080297A1 publication Critical patent/WO2013080297A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0292Control issues related to reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the present invention relates to an air conditioning and hot water supply system that performs air conditioning and hot water supply.
  • Patent Document 1 describes an air conditioner (air conditioning hot water supply system) in which a refrigerant circuit is configured by connecting a main cycle and a sub cycle with a cascade condenser (intermediate heat exchanger).
  • the main cycle is configured by connecting a first compressor, a first four-way valve, an outdoor heat exchanger, a first electronic expansion valve, and an indoor heat exchanger, and the subcycle Connects the second compressor, the second four-way valve and the third four-way valve, the hot water heat exchanger, the auxiliary heat exchanger, the second electronic expansion valve and the third electronic expansion valve. It is constituted by.
  • the primary side (main cycle side) of the cascade condenser functions as a condenser during cooling operation
  • the secondary side Function as an evaporator
  • the air conditioning apparatus air conditioning and hot water supply system
  • the air conditioning apparatus allows the main cycle responsible for the air conditioning operation and the subcycle responsible for the hot water supply operation to function independently during the heating operation, and the cascade condenser (intermediate heat exchanger) ) Is not exchanging heat. Therefore, for example, when the room air to be air-conditioned is close to the set temperature during the heating operation, the intermittent operation is performed in the main cycle, and there is a problem that the efficiency of the entire system is deteriorated.
  • an object of the present invention is to provide an air conditioning and hot water supply system that can improve the efficiency of the entire air conditioning and hot water supply system.
  • the present invention is an air-conditioning hot-water supply system comprising an air-conditioning refrigerant circuit in which a first refrigerant circulates and a hot-water supply refrigerant circuit in which a second refrigerant circulates, wherein the air-conditioning refrigerant circuit Includes an air conditioning compressor that compresses the first refrigerant, an air conditioning heat source side heat exchanger that can exchange heat with the air conditioning heat source, an intermediate heat exchanger that exchanges heat between the first refrigerant and the second refrigerant, An air-conditioning decompression device that decompresses the refrigerant, an air-conditioning use-side heat exchanger that functions as an evaporator during cooling operation, and that functions as a condenser during heating operation, and the air-conditioning use-side heat exchanger in cooling operation and heating operation.
  • the air-conditioning refrigerant circuit Includes an air conditioning compressor that compresses the first refrigerant, an air conditioning heat source side heat exchanger that can exchange heat with the air
  • First switching means for switching the direction of the first refrigerant flowing therethrough, and second switching means connected to the first switching means, wherein the second switching means is on the side of the air conditioning heat source according to the operation mode.
  • the direction of the first refrigerant flowing through the heat exchanger and the intermediate heat exchanger By switching the, characterized in that to function the intermediate heat exchanger as a condenser for the first refrigerant.
  • an air conditioning and hot water supply system that can improve the efficiency of the entire air conditioning and hot water supply system.
  • FIG. 1 is a system diagram of a hot water supply air conditioning system according to the present embodiment.
  • the air conditioning and hot water supply system S includes a heat pump unit 1 installed outside the room (outside the air-conditioned space), an indoor unit 2 installed inside the room (in the air-conditioned space), and a hot water tank unit 3.
  • the control device 4 is provided.
  • the air conditioning and hot water supply system S heats the liquid to be heated (for example, water), “cooling operation” for cooling the room where the indoor unit 2 is installed, “heating operation” for heating the room where the indoor unit 2 is installed, and A function of performing a “hot water supply operation” for supplying a high temperature heated liquid to the tank 52, a “cooling hot water supply operation” for performing a cooling operation and a hot water supply operation, and a “heating hot water supply operation” for performing a heating operation and a hot water supply operation. have.
  • a hot water supply operation for supplying a high temperature heated liquid to the tank 52
  • a “cooling hot water supply operation” for performing a cooling operation and a hot water supply operation
  • a “heating hot water supply operation” for performing a heating operation and a hot water supply operation.
  • the air conditioning and hot water supply system S includes an air conditioning refrigerant circuit 10 through which a first refrigerant circulates, a hot water supply refrigerant circuit 30 through which a second refrigerant circulates, an air conditioning heat transfer medium circulation circuit 40 through which a heat transfer medium circulates, A hot water supply circuit 50 through which the liquid to be heated flows.
  • the air conditioning refrigerant circuit 10 provided in the heat pump unit 1 includes an air conditioning compressor 11, a first four-way valve 12, a second four-way valve 14, an air conditioning heat source side heat exchanger 15, and an air conditioning second.
  • the expansion valve 16, the primary heat transfer pipe 21 a of the intermediate heat exchanger 21, the air conditioning first expansion valve 18, and the secondary heat transfer pipe 19 b of the air conditioning utilization side heat exchanger 19 are annularly connected by piping. ing.
  • the upper port on the page is “upper port” and the right port on the page is “right port”.
  • the port on the lower side of the page may be referred to as “lower port”, and the port on the left side of the page may be referred to as “left port”.
  • the right port of the first four-way valve 12 is connected to the discharge side of the compressor 11, and the upper port is connected to the upper port of the second four-way valve 14 via a pipe 13a. Is connected to the suction side of the compressor, and the lower port is connected to the secondary heat transfer pipe 19b of the air-conditioning utilization side heat exchanger 19 via a pipe 12a.
  • the right port of the second four-way valve 14 is connected to the primary heat transfer pipe 21a of the intermediate heat exchanger 21 via the pipe 14a, and the lower port is connected to the air conditioning first expansion valve 18 via the pipe 17a.
  • the left port is connected to the air conditioning heat source side heat exchanger 15 via a pipe 15a.
  • the air conditioning compressor 11 is a compressor that compresses the first refrigerant into a high-temperature and high-pressure refrigerant.
  • the first four-way valve 12 is a four-way valve that switches the direction of the first refrigerant flowing through the secondary side heat transfer pipe 19b of the air conditioning utilization side heat exchanger 19 between the cooling operation and the heating operation. That is, by switching the first four-way valve 12, the low temperature and low pressure first refrigerant expanded by the air conditioning first expansion valve 18 flows into the secondary side heat transfer pipe 19 b of the air conditioning utilization side heat exchanger 19 during the cooling operation. It is like that. Further, during the heating operation, the high-temperature and high-pressure first refrigerant compressed by the air-conditioning compressor 11 flows into the secondary-side heat transfer tube 19 b of the air-conditioning use side heat exchanger 19.
  • the second four-way valve 14 is a four-way valve that switches the direction of the first refrigerant flowing through the air conditioning heat source side heat exchanger 15 and the intermediate heat exchanger 21 according to the operation mode. Details of the operation mode will be described later.
  • the air conditioning heat source side heat exchanger 15 is a heat exchanger that performs heat exchange between the air (outdoor air) sent from the air conditioning fan 15f and the first refrigerant.
  • the air conditioning first expansion valve 18 and the air conditioning second expansion valve 16 function as a decompression device that decompresses the first refrigerant according to the operation mode.
  • one of the air conditioning first expansion valve 18 and the air conditioning second expansion valve 16 functions as a decompression device that decompresses the first refrigerant.
  • the air-conditioning utilization side heat exchanger 19 is a heat exchanger that performs heat exchange between the heat transfer medium that flows through the primary side heat transfer tube 19a and the first refrigerant that flows through the secondary side heat transfer tube 19b.
  • the intermediate heat exchanger 21 is a heat exchanger that performs heat exchange between the first refrigerant flowing through the primary heat transfer tube 21a and the second refrigerant flowing through the secondary heat transfer tube 21b.
  • the first refrigerant HFC, HFO-1234yf, HFO-1234ze, natural refrigerant (for example, CO 2 refrigerant), or the like can be used.
  • the hot water supply refrigerant circuit 30 provided in the heat pump unit 1 includes a hot water supply compressor 31, a hot water use side heat exchanger 32, a primary heat transfer pipe 32 a, a hot water supply first expansion valve 33, and a hot water supply three-way valve 34.
  • a hot water supply heat source side heat exchanger 35, a hot water supply second expansion valve 36, a secondary heat transfer pipe 21b of the intermediate heat exchanger 21, and a hot water supply three-way valve 37 are connected in an annular shape by piping. .
  • the hot water supply three-way valve 34 and the hot water supply three-way valve 37 are connected to each other via a pipe 38a.
  • the hot water supply refrigerant circuit 30 includes a hot water supply refrigerant control valve 39.
  • One end of the hot water supply refrigerant control valve 39 is connected to a pipe branched from the pipe 35a, and the other end is connected to a pipe branched from the pipe 38a.
  • the hot water supply compressor 11 is a compressor that compresses the second refrigerant into a high-temperature and high-pressure refrigerant.
  • the hot water supply side heat exchanger 32 is a heat exchanger that performs heat exchange between the second refrigerant flowing through the primary side heat transfer tube 32a and the heated liquid flowing through the secondary side heat transfer tube 32b.
  • the first hot water supply expansion valve 33 and the second hot water supply expansion valve 36 function as a decompression device that decompresses the second refrigerant in accordance with the operation mode.
  • one of the hot water supply first expansion valve 33 and the hot water supply second expansion valve 36 functions as a pressure reducing device that depressurizes the second refrigerant.
  • the hot water supply heat source side heat exchanger 35 is a heat exchanger that performs heat exchange between the air (outdoor air) sent from the hot water supply fan 35f and the second refrigerant.
  • the hot water supply three-way valves 34 and 37 are three-way valves configured to be capable of adjusting the flow rate ratio of the second refrigerant flowing therethrough.
  • the hot water supply refrigerant control valve 39 is an open / close valve configured to be openable / closable.
  • the second refrigerant HFC, HFO-1234yf, HFO-1234ze, natural refrigerant (for example, CO 2 refrigerant), or the like can be used.
  • the second refrigerant is preferably a refrigerant having a higher critical point (temperature, pressure) than the first refrigerant.
  • An air conditioning heat transfer medium circulation circuit 40 provided from the heat pump unit 1 to the indoor unit 2 includes a first pump 41, a heat transfer medium four-way valve 42, and a primary side heat transfer tube 19a of the air conditioning utilization side heat exchanger 19. And the indoor heat exchanger 43 are annularly connected by piping.
  • the first pump 41 is a pump that pumps the heat transfer medium flowing in from the indoor heat exchanger 43 toward the heat transfer medium four-way valve 42.
  • the heat transfer medium flowing through the primary heat transfer pipe 19a of the air conditioning utilization side heat exchanger 19 and the first refrigerant flowing through the secondary heat transfer pipe 19b are opposed to each other.
  • the four-way valve switches the flow direction of the heat transfer medium between the cooling operation and the heating operation.
  • the indoor heat exchanger 43 is a heat exchanger that performs heat exchange between the air (indoor air) sent from the indoor fan 43f and the heat transfer medium.
  • brine (antifreeze) such as ethylene glycol, water, or the like can be used as the heat transfer medium.
  • a hot water supply circuit 50 provided from the heat pump unit 1 to the hot water supply tank unit 3 includes a second pump 51, a secondary heat transfer pipe 32 b of the hot water supply side heat exchanger 32, and a tank 52 in a ring shape. Connected and configured.
  • the second pump 51 is a pump that pumps up the liquid to be heated from the tank 52 and pumps it toward the secondary heat transfer pipe 32 b of the hot water supply side heat exchanger 32.
  • the tank 52 stores the liquid to be heated and is covered with a heat insulating material (not shown). In the following description, it is assumed that the liquid to be heated uses water.
  • the hot water supply tank unit 3 includes a water supply fitting 53, a hot water supply fitting 55, and three-way valves 54 and 56.
  • One end of the water supply fitting 53 is connected to the three-way valve 54, and the other end is connected to a water supply terminal (not shown).
  • the hot water supply terminal not shown
  • the liquid to be heated flows into the lower portion of the tank 52 via the water supply fitting 53 due to the pressure from the water supply source. Yes.
  • the three-way valves 54 and 56 are three-way valves configured to be able to adjust the flow rate ratio of the liquid to be heated to flow therethrough, and are connected to each other via a pipe 57a. Then, the heated liquid (water) having a flow rate corresponding to the opening degree of each of the three-way valves 54 and 56 is caused to flow through the pipe 57a, thereby adjusting the high-temperature heated liquid supplied from the tank 52 to an appropriate temperature. It is supposed to be.
  • One end of the hot water metal fitting 55 is connected to the three-way valve 56 and the other end is connected to a hot water supply terminal (not shown). When the user opens the hot water supply terminal, the heated liquid (hot water) whose temperature has been adjusted is supplied to the hot water supply terminal via the hot water supply fitting 55.
  • the air conditioning and hot water supply system S includes a control device 4.
  • the control device 4 determines the operation mode of the air conditioning and hot water supply system S, and according to the determined operation mode, various valves (first four-way valve 12, second four-way valve 14, first expansion valve 18 for air conditioning, second air conditioning system).
  • Expansion valve 16 hot water supply first expansion valve 33, hot water supply three-way valves 34, 37, hot water supply second expansion valve 36, hot water supply refrigerant control valve 39, three-way valves 54, 56) (opening), compressor Rotational speed of (air conditioning compressor 11, hot water supply compressor 31), rotational speed of fans (air conditioning fan 15f, hot water supply fan 35f, indoor fan 43f) of each heat exchanger, pump (first pump 41, second The rotational speed of the two pumps 51) is controlled to control various operations of the air conditioning and hot water supply system S.
  • FIG.2 and FIG.3 is a flowchart which shows the procedure of the determination process of the operation mode of the air-conditioning hot-water supply system S which concerns on this embodiment.
  • the control device 4 determines whether there is an air conditioning cycle operation request.
  • the air-conditioning cycle operation request is an operation request for air-conditioning (cooling / heating) the room (air-conditioned space) in which the indoor unit 2 is installed.
  • the air conditioning cycle operation request may be input to the control device 4 by a user operating a remote controller (not shown) installed in the room, for example, and an indoor temperature detector (not shown) that detects the room temperature. May be determined based on the detected temperature (room temperature) and the indoor set temperature. If there is an air conditioning cycle operation request (S101 ⁇ Yes), the process of the control device 4 proceeds to step S105. If there is no air conditioning cycle operation request (S101 ⁇ No), the process of the control device 4 proceeds to step S102.
  • control device 4 determines whether or not there is a hot water supply cycle operation request.
  • the hot water supply cycle operation request is a request to execute the hot water supply operation of the air conditioning hot water supply system S.
  • the hot water supply cycle operation request may be input to the control device 4 by a user operating a remote controller (not shown) installed in the room, for example, or the high temperature stored in the tank 52 of the hot water supply tank unit 3.
  • a “hot water supply cycle operation request” may be made when the amount of liquid to be heated is equal to or less than a predetermined amount, and a “hot water supply cycle operation request” may be made when a predetermined time zone is reached.
  • S102 ⁇ Yes the process of the control device 4 proceeds to step S104.
  • the process of the control device 4 proceeds to step S103.
  • step S103 the control device 4 determines the operation mode of the air conditioning and hot water supply system S to be “standby mode”.
  • the standby mode is a mode in which the air-conditioning operation (cooling operation / heating operation) and the hot-water supply operation of the air-conditioning hot-water supply system S are stopped and an operation command is waited for.
  • step S104 the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “hot water supply operation mode”.
  • the hot water supply operation mode is a mode in which the hot water supply operation of the air conditioning hot water supply system S is executed. The operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
  • step S105 control device 4 determines whether or not there is a hot water supply cycle operation request.
  • the hot water supply cycle operation request in step S105 is the same as the hot water supply cycle operation request in step S102, and a description thereof will be omitted.
  • S105 ⁇ Yes the process of the control device 4 proceeds to step S111.
  • S105 ⁇ No the process of the control device 4 proceeds to step S106.
  • step S ⁇ b> 106 the control device 4 determines whether or not the air conditioning cycle operation request is “cooling operation”. When the air conditioning cycle operation request is “cooling operation” (S106 ⁇ Yes), the process of the control device 4 proceeds to step S107. When the air conditioning cycle operation request is not “cooling operation” (S106 ⁇ No), the process of the control device 4 proceeds to step S110.
  • step S107 the control device 4 determines whether or not the air conditioning load Qac is greater than or equal to a predetermined threshold value Q1.
  • the air conditioning load Qac is estimated based on the outdoor temperature Tao, the indoor temperature Tai, the indoor set temperature Tac_set, and the indoor air volume Vac_set.
  • the threshold value Q1 is a threshold value for determining whether or not the air conditioning load is overloaded, and is determined in advance by experiments or simulations and stored in the control device 4.
  • step S107 when the air conditioning load Qac is equal to or greater than the threshold value Q1 (S107 ⁇ Yes), the process of the control device 4 proceeds to step S108.
  • the process of the control device 4 proceeds to step S109.
  • step S108 the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “cooling operation (normal) mode”.
  • the cooling operation (normal) mode is a mode in which the cooling operation of the air conditioning and hot water supply system S is executed, and is a mode in which natural circulation is not performed in the hot water supply refrigerant circuit 30.
  • the operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
  • step S109 the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “cooling operation (natural circulation) mode”.
  • the cooling operation (natural circulation) mode is a mode in which the cooling operation of the air conditioning and hot water supply system S is executed, and is a mode in which natural circulation is performed in the hot water supply refrigerant circuit 30.
  • the operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
  • step S110 the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “heating operation mode”.
  • the heating operation mode is a mode in which the heating operation of the air conditioning and hot water supply system S is executed.
  • the operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
  • step S111 the control device 4 determines whether or not the air-conditioning cycle operation request is “cooling operation”.
  • the air conditioning cycle operation request is “cooling operation” (S111 ⁇ Yes)
  • the process of the control device 4 proceeds to step S112.
  • the air conditioning cycle operation request is not “cooling operation” (S111 ⁇ No)
  • the processing of the control device 4 proceeds to step S201 in FIG.
  • step S112 the control device 4 estimates the air conditioning exhaust heat amount Qac_ex and the hot water supply heat absorption amount Qec_ex.
  • the air conditioning exhaust heat amount Qac_ex is the amount of exhaust heat to the heat source required for the cooling operation when the air conditioning refrigerant circuit 10 and the hot water supply refrigerant circuit 30 are independently operated.
  • the hot water supply heat absorption amount Qec_ex is the heat supply amount from the heat source required for the hot water supply operation when the air conditioning refrigerant circuit 10 and the hot water supply refrigerant circuit 30 are operated independently.
  • step S113 the control device 4 determines whether or not the air conditioning exhaust heat amount Qac_ex is larger than the hot water supply heat absorption amount Qec_ex.
  • the process of the control device 4 proceeds to step S114.
  • the air conditioning exhaust heat amount Qac_ex is equal to or less than the hot water supply heat absorption amount Qec_ex (S113 ⁇ No)
  • the process of the control device 4 proceeds to Step S115.
  • step S114 the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “cooling hot water supply operation (exhaust heat recovery A) mode”.
  • the cooling hot water supply operation (exhaust heat recovery A) mode is a kind of mode for performing the cooling operation and the hot water supply operation of the air conditioning hot water supply system S, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30. Drive.
  • the operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
  • step S115 the control device 4 determines whether or not the air conditioning exhaust heat amount Qac_ex is equal to the hot water supply heat absorption amount Qec_ex.
  • the process of the control device 4 proceeds to step S116.
  • the process of the control device 4 proceeds to step S117.
  • step S116 the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “cooling hot water supply operation (exhaust heat recovery B) mode”.
  • the cooling hot water supply operation (exhaust heat recovery B) mode is a kind of mode for performing the cooling operation and the hot water supply operation of the air conditioning hot water supply system S, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30. Drive.
  • the operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
  • step S117 the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “cooling hot water supply operation (exhaust heat recovery C) mode”.
  • the cooling / hot water supply operation (exhaust heat recovery C) mode is a kind of mode for performing the cooling operation and the hot water supply operation of the air conditioning and hot water supply system S, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30. Drive.
  • the operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
  • step S111 the case where the air-conditioning cycle operation request is not “cooling operation” in step S111 (S111 ⁇ No) will be described with reference to FIG. That is, a case where there is a hot water supply cycle operation request (see S105 ⁇ Yes) and the air conditioning cycle operation request is “heating operation” will be described.
  • step S201 the control device 4 estimates the single total power consumption Wsys1 and the surplus heat operation power consumption Wsys2.
  • the single total power consumption Wsys1 is the estimated power consumption when the air conditioning and hot water supply system S is operated in the heating and hot water supply operation (independent) mode (see FIG. 13 to be described later).
  • the surplus heat operation power consumption Wsys2 is the estimated power consumption when the air conditioning hot water supply system S is operated in the heating hot water supply operation (air conditioning surplus heating) mode (see FIG. 14 described later). Note that the process of estimating the single total power consumption Wsys1 and the surplus heat operation power consumption Wsys2 will be described later with reference to FIG.
  • step S202 the control device 4 determines whether or not the single total power consumption Wsys1 is equal to or less than the surplus heat operation power consumption Wsys2.
  • the process of the control device 4 proceeds to step S203.
  • the processing of the control device 4 proceeds to step S204.
  • step S203 the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “heating and hot water supply operation (independent) mode”.
  • the heating and hot water supply operation (independent) mode is a type of mode for performing the heating operation and the hot water supply operation of the air conditioning and hot water supply system S.
  • the air conditioning refrigerant circuit 10 and the hot water supply refrigerant circuit 30 are operated independently, The intermediate heat exchanger 21 is not used.
  • the operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
  • step S204 the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “heating and hot water supply operation (air conditioning surplus heating) mode”.
  • the heating hot water supply operation (air conditioning surplus heating) mode is a mode in which the heating operation of the air conditioning hot water supply system S is executed, and the surplus heat of the air conditioning refrigerant circuit 10 is collected by the hot water supply refrigerant circuit 30 to perform the hot water supply operation.
  • the operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
  • FIG. 4 is a flowchart showing a procedure for estimating the air conditioning exhaust heat amount Qac_ex and the hot water supply heat absorption amount Qec_ex in step S112 of FIG.
  • the control device 4 estimates the air conditioning load Qac.
  • the air conditioning load Qac is estimated based on the outdoor temperature Tao, the indoor temperature Tai, the indoor set temperature Tac_set, and the indoor air volume Vac_set.
  • the outdoor temperature Tao is detected by, for example, a temperature sensor (not shown) provided at the outside air intake port of the air conditioning fan 15f or the hot water supply fan 35f of the heat pump unit 1.
  • the indoor temperature Tai is detected by, for example, a temperature sensor (not shown) provided at the indoor air intake port of the indoor fan 43f of the indoor unit 2.
  • the indoor air volume Vac_set for example, the air volume (air flow rate) is calculated by detecting the rotational speed of the indoor fan 43f. Alternatively, it is calculated from the set air volume set by the user with a remote controller (not shown) installed in the room.
  • the indoor set temperature Tac_set is input to the control device 4 when the user operates a remote controller (not shown) installed indoors, for example.
  • step S302 the control device 4 estimates the air conditioning power consumption Wac.
  • the air conditioning power consumption Wac is estimated based on the air conditioning load Qac, the outdoor temperature Tao, and the indoor set temperature Tac_set estimated in step S301.
  • step S303 the control device 4 estimates the air conditioning exhaust heat quantity Qac_ex.
  • the air conditioning exhaust heat quantity Qac_ex is estimated based on the air conditioning load Qac estimated in step S301 and the air conditioning power consumption Wac estimated in step S302.
  • step S304 the control device 4 estimates the hot water supply load Qec.
  • the hot water supply load Qec is estimated based on the outdoor temperature Tao, the water supply temperature Twi, the hot water supply temperature Two, and the water supply flow rate Vw.
  • the feed water temperature Twi is detected by, for example, a temperature sensor (not shown) provided on the inlet side of the secondary heat transfer tube 32b of the hot water use side heat exchanger 32 of the heat pump unit 1.
  • the hot water supply temperature Two is a set temperature of hot water (liquid to be heated) boiled by the heat pump unit 1, and is input to the control device 4 when the user operates a remote controller (not shown) installed indoors, for example. Is done.
  • the feed water flow rate Vw is calculated by detecting the rotational speed of the second pump 51 of the heat pump unit 1, for example.
  • control device 4 estimates hot water supply power consumption Wec.
  • Hot water supply power consumption Wec is estimated based on hot water supply load Qec, outdoor temperature Tao, and hot water supply temperature Two estimated in step S304.
  • the control device 4 estimates the hot water supply heat absorption amount Qec_ex.
  • the hot water supply heat absorption amount Qec_ex is estimated based on the hot water supply load Qec estimated in step S304 and the hot water supply power consumption Wec estimated in step S305.
  • control device 4 estimates the air conditioning exhaust heat quantity Qac_ex (see S303), estimates the hot water supply heat absorption quantity Qec_ex (see S306), ends the process of step S112 in FIG. 2, and proceeds to step S113.
  • FIG. 5 is a flowchart showing a procedure for estimating the single total power consumption Wsys1 and the surplus heat operation power consumption Wsys2 in step S201 of FIG.
  • the control device 4 estimates the air conditioning load Qac.
  • the air conditioning load Qac is estimated based on the outdoor temperature Tao, the indoor temperature Tai, the indoor set temperature Tac_set, and the indoor air volume Vac_set.
  • step S402 the control device 4 estimates the air conditioning compressor target rotational speed Ncp_ac.
  • the air conditioning compressor target rotational speed Ncp_ac is estimated based on the air conditioning load Qac, the outdoor temperature Tao, the indoor set temperature Tac_set, and the indoor air volume Vac_set estimated in step S401.
  • step S403 the control device 4 determines whether or not the air conditioning compressor target rotational speed Ncp_ac estimated in step S402 is equal to or higher than the air conditioning compressor minimum rotational speed Ncp_acmin.
  • the minimum rotation speed Ncp_acmin of the air conditioning compressor is the lower limit of the rotation speed at which the air conditioning compressor 11 of the air conditioning refrigerant circuit 10 can be controlled.
  • step S404 If the air conditioning compressor target rotational speed Ncp_ac is equal to or higher than the air conditioning compressor minimum rotational speed Ncp_acmin (S403 ⁇ Yes), the process of the control device 4 proceeds to step S404.
  • the air conditioning compressor target rotation speed Ncp_ac is less than the air conditioning compressor minimum rotation speed Ncp_acmin (S403 ⁇ No)
  • the process of the control device 4 proceeds to step S409.
  • step S404 the control device 4 estimates the air conditioning power consumption Wac.
  • the air conditioning power consumption Wac is estimated based on the air conditioning load Qac, the outdoor temperature Tao, and the indoor set temperature Tac_set estimated in step S401.
  • step S405 the control device 4 estimates the hot water supply load Qec.
  • the hot water supply load Qec is estimated based on the outdoor temperature Tao, the water supply temperature Twi, the hot water supply temperature Two, and the water supply flow rate Vw.
  • control device 4 estimates hot water supply power consumption Wec.
  • Hot water supply power consumption Wec is estimated based on hot water supply load Qec, outdoor temperature Tao, and hot water supply temperature Two estimated in step S405.
  • the control device 4 estimates the single total power consumption Wsys1.
  • the air conditioning compressor rotation speed Ncp_ac is less than the air conditioning compressor minimum rotation speed Ncp_acmin in step S403 of FIG. 5 (S403 ⁇ No)
  • the air conditioning compressor target rotational speed Ncp_ac estimated from the air conditioning load Qac is the minimum air conditioning compressor rotational speed.
  • the compressor rotation speed is Ncp_acmin.
  • the control device 4 since the air-conditioning capability actually output becomes larger than the air-conditioning load Qac by Ncp_acmin / Ncp_ac, the control device 4 performs intermittent operation in which the operation and stop of the air-conditioning compressor 11 are repeated. Therefore, in this case, the efficiency of the air conditioning and hot water supply system S deteriorates.
  • step S409 the control device 4 estimates the air-conditioning power consumption deterioration rate ⁇ during intermittent operation. And air-conditioning power consumption Wac1 which considered intermittent operation is estimated.
  • the air conditioning power consumption deterioration rate ⁇ is estimated based on the air conditioning compressor target rotation speed Ncp_ac and the air conditioning compressor minimum rotation speed Ncp_acmin.
  • the air-conditioning power consumption Wac1 considering the intermittent operation is estimated based on the air-conditioning load Qac, the outdoor temperature Tao, the indoor set temperature Tac_set, and the air-conditioning power consumption deterioration rate ⁇ estimated in step S401.
  • control device 4 estimates hot water supply load Qec.
  • the hot water supply load Qec is estimated based on the outdoor temperature Tao, the water supply temperature Twi, the hot water supply temperature Two, and the water supply flow rate Vw.
  • control device 4 estimates hot water supply power consumption Wec. Hot water supply power consumption Wec is estimated based on hot water supply load Qec, outdoor temperature Tao, and hot water supply temperature Two estimated in step S304.
  • step S412 the control device 4 estimates the single total power consumption Wsys1.
  • step S413 the control device 4 estimates the air conditioning pseudo load Qac_ec.
  • the air conditioning pseudo load Qac_ec is estimated based on the outdoor temperature Tao, the feed water temperature Twi, the hot water supply temperature Two, and the feed water flow rate Vw.
  • the air conditioning use side heat exchanger 19 of the air conditioning refrigerant circuit 10 functions as a condenser
  • the intermediate heat exchanger 21 of the air conditioning refrigerant circuit 10 is also caused to function as a condenser. Therefore, the air conditioning pseudo load Qac_ec is estimated using the hot water supply heat absorption amount in the intermediate heat exchanger 21 of the hot water supply refrigerant circuit 30 as the air conditioning pseudo load in the intermediate heat exchanger 21 of the air conditioning refrigerant circuit 10.
  • step S414 the control device 4 estimates the air conditioning load Qac2 in consideration of the air conditioning pseudo load Qac_ec.
  • step S415 the control device 4 estimates the air conditioning power consumption Wac2 in consideration of the pseudo load.
  • the air conditioning power consumption Wac2 is estimated based on the air conditioning load Qac2, the outdoor temperature Tao, and the indoor set temperature Tac_set estimated in step S414.
  • step S416 the control device 4 estimates the hot water supply power consumption Wec2 in consideration of the air conditioning pseudo load Qac_ec.
  • Hot water supply power consumption Wec2 is estimated based on air conditioning load Qac2 estimated in step S414, hot water supply load Qec estimated in step S410, outdoor temperature Tao, hot water supply temperature Two, and indoor set temperature Tac_set.
  • step S417 the control device 4 estimates surplus heat operation power consumption Wsys2.
  • control device 4 estimates the single total power consumption Wsys1 (see S407 and S412), estimates the surplus heat operation power consumption Wsys2 (see S408 and S417), and ends the process of step S201 in FIG. Then, the process proceeds to step S202.
  • each operation mode of the air conditioning and hot water supply system S executed by the control device 4 determines the operation mode of the air conditioning and hot water supply system S (see FIGS. 2 and 3), and controls the air conditioning and hot water supply system S according to the determined operation mode to perform various operations.
  • a pipe through which the first refrigerant, the second refrigerant, the heat transfer medium, and the liquid to be heated flow is indicated by a bold line, and the flow direction is indicated by an arrow.
  • various valves three-way valves for hot water supply 34 and 37, a second hot water supply expansion valve 36, and a hot water supply refrigerant control valve 39
  • the side where the flow is closed is shown in black.
  • Step S103 In this mode, the air conditioning refrigerant circuit 10, the hot water supply refrigerant circuit 30, the air conditioning heat transfer medium circulation circuit 40, and the hot water supply circuit 50 are stopped.
  • the control device 4 waits for an input of an operation command.
  • the operation mode of the air conditioning and hot water supply system S is determined (see FIGS. 2 and 3).
  • FIG. 6 is a system diagram showing the flow of the refrigerant and the liquid to be heated in the heat pump unit 1 in the hot water supply operation mode.
  • the air conditioning refrigerant circuit 10 and the air conditioning heat transfer medium circulation circuit 40 are stopped. Further, the flow of the refrigerant to the intermediate heat exchanger 21 is closed in the hot water supply refrigerant circuit 30.
  • the hot water supply refrigerant circuit 30 will be described.
  • the control device 4 fully opens the hot water supply refrigerant control valve 39 so that the refrigerant in the hot water supply refrigerant circuit 30 flows through the hot water supply heat source side heat exchanger 35 and bypasses the intermediate heat exchanger 21.
  • the hot water supply second expansion valve 36 is closed, and the hot water supply three-way valves 34 and 37 are controlled.
  • the control apparatus 4 controls the opening degree (throttle) of the 1st expansion valve 33 for hot water supply. Further, the control device 4 controls the rotation speeds of the hot water supply compressor 31 and the hot water supply fan 35f.
  • the high-temperature and high-pressure second refrigerant discharged from the hot water supply compressor 31 flows into the primary side heat transfer tube 32a of the hot water supply side heat exchanger 32 that functions as a condenser.
  • the second refrigerant flowing through the primary side heat transfer pipe 32a of the hot water supply side heat exchanger 32 exchanges heat with the heated liquid flowing through the secondary side heat transfer pipe 32b of the hot water supply side heat exchanger 32.
  • the medium-temperature and high-pressure second refrigerant that has flowed out of the primary-side heat transfer pipe 32a of the hot-water use side heat exchanger 32 is depressurized by the hot-water supply first expansion valve 33, and becomes a low-temperature and low-pressure second refrigerant.
  • the low-temperature and low-pressure second refrigerant flows into the hot water supply heat source side heat exchanger 35 functioning as an evaporator via the hot water supply three-way valve 34.
  • the second refrigerant flowing through the hot water supply heat source side heat exchanger 35 exchanges heat with the air (outdoor air) sent by the hot water supply fan 35f, thereby pumping up heat (absorbing heat) from the air.
  • the absorbed second refrigerant is sent from the hot water supply heat source side heat exchanger 35 to the hot water supply compressor 31 through the hot water supply refrigerant control valve 39 and the hot water supply three-way valve 37 and circulates in the hot water supply refrigerant circuit 30.
  • the control device 4 controls the rotation speed of the second pump 51.
  • the liquid to be heated that has flowed out from the lower portion of the tank 52 flows into the secondary heat transfer pipe 32 b of the hot water supply side heat exchanger 32.
  • the liquid to be heated that flows through the secondary heat transfer pipe 32b of the hot water use side heat exchanger 32 absorbs heat by exchanging heat with the second refrigerant that flows through the primary side heat transfer pipe 32a of the hot water use side heat exchanger 32. Thus, it becomes a high-temperature liquid to be heated.
  • the hot liquid to be heated is returned to the upper part of the tank 52 from the secondary heat transfer tube 32b of the hot water supply side heat exchanger 32 and stored.
  • FIG. 7 is a system diagram showing the flow of the refrigerant and heat transfer medium of the heat pump unit 1 in the cooling operation (normal) mode.
  • the hot water supply refrigerant circuit 30 and the hot water supply circuit 50 are stopped. Further, the flow of the refrigerant to the intermediate heat exchanger 21 is closed in the hot water supply refrigerant circuit 30.
  • the control device 4 controls the switching means (not shown) in the first four-way valve 12 and the second four-way valve 14 to be in the cooling operation position. That is, the control device 4 controls the first four-way valve 12 so that the first refrigerant flowing out from the secondary side heat transfer pipe 19b of the air conditioning utilization side heat exchanger 19 flows into the air conditioning compressor 11, and the air conditioning The second four-way valve 14 is controlled so that the first refrigerant discharged from the compressor 11 flows into the air conditioning heat source side heat exchanger 15.
  • control device 4 controls the second expansion valve 16 for air conditioning to be fully opened, and controls the opening degree (throttle) of the first expansion valve 18 for air conditioning. Further, the control device 4 controls the rotational speeds of the air conditioning compressor 11 and the air conditioning fan 15f. As shown in FIG. 7, by controlling the second four-way valve 14, the high-temperature and high-pressure first refrigerant discharged from the air-conditioning compressor 11 is supplied to the air-conditioning heat source side heat exchanger before the intermediate heat exchanger 21. 15 can be introduced. Incidentally, in the opposite case (when the first refrigerant flows into the intermediate heat exchanger 21 before the air conditioning heat source side heat exchanger 15), the high temperature and high pressure discharged from the air conditioning compressor 11 is used.
  • the first refrigerant flowing through the air-conditioning heat source side heat exchanger 15 dissipates heat (exhaust heat) by exchanging heat with the air (outdoor air) sent by the air-conditioning fan 15f.
  • the medium-temperature and high-pressure first refrigerant flowing out of the air-conditioning heat source side heat exchanger 15 passes through the air conditioning second expansion valve 16, the intermediate heat exchanger 21, the primary side heat transfer pipe 21 a, and the second four-way valve 14. It flows into one expansion valve 18.
  • the medium-temperature and high-pressure first refrigerant is reduced in pressure by the air conditioning first expansion valve 18, becomes a low-temperature and low-pressure first refrigerant, and flows into the secondary-side heat transfer tube 19b of the air-conditioning use side heat exchanger 19 functioning as an evaporator. .
  • the first refrigerant flowing through the secondary side heat transfer tube 19b of the air conditioning use side heat exchanger 19 exchanges heat with the heat transfer medium flowing through the primary side heat transfer tube 19a of the air conditioning use side heat exchanger 19, Pumps heat from the heat transfer medium (absorbs heat). Then, the absorbed first refrigerant is sent from the air-conditioning utilization side heat exchanger 19 to the air-conditioning compressor 11 via the first four-way valve 12 and circulates through the air-conditioning refrigerant circuit 10.
  • the control device 4 controls the rotation speeds of the first pump 41 and the indoor fan 43f.
  • the control device 4 includes a heat transfer medium that flows through the primary side heat transfer pipe 19a of the air conditioning utilization side heat exchanger 19 and a first refrigerant that flows through the secondary side heat transfer pipe 19b of the air conditioning utilization side heat exchanger 19.
  • the heat transfer medium four-way valve 42 is controlled so that becomes a counter flow.
  • the heat transfer medium flows into the secondary side heat transfer tube 19 b of the air conditioning utilization side heat exchanger 19.
  • the heat transfer medium flowing through the secondary side heat transfer pipe 19b of the air conditioning use side heat exchanger 19 exchanges heat with the first refrigerant flowing through the secondary side heat transfer pipe 19b of the air conditioning use side heat exchanger 19. It dissipates heat (exhaust heat) and becomes a low-temperature heat transfer medium.
  • the low-temperature heat transfer medium flows into the indoor heat exchanger 43 of the indoor unit 2.
  • the heat transfer medium flowing through the indoor heat exchanger 43 absorbs heat by exchanging heat with the air (indoor air) sent by the indoor fan 43f.
  • the heat transfer medium that has absorbed heat is sent from the indoor heat exchanger 43 to the first pump 42 and circulates through the heat transfer medium circulation circuit 40 for air conditioning. As described above, the heat transfer medium absorbs heat in the indoor heat exchanger 43 of the indoor unit 2, thereby cooling the air (room air) and cooling the room (air-conditioned space).
  • FIG. 8 is a system diagram showing the flow of the refrigerant and heat transfer medium of the heat pump unit 1 in the cooling operation (natural circulation) mode.
  • the cooling operation (natural circulation) mode is an operation mode when the air conditioning load at the time of performing the cooling operation is an overload.
  • the heat of the first refrigerant flowing through the primary side heat transfer tube 21a is radiated (exhaust heat) to the second refrigerant flowing through the secondary side heat transfer tube 21b.
  • the first refrigerant is further condensed.
  • the intermediate heat exchanger 21 that functions as a condenser replaces the amount of heat released from the first refrigerant in the air conditioning heat source side heat exchanger 15. It is different from the cooling operation (normal) mode (see FIG. 7) in that it is compensated by radiating heat.
  • the cooling operation (normal) mode see FIG. 7
  • the second refrigerant that has radiated heat in the hot water supply heat source side heat exchanger 35 functioning as a condenser and has become a liquid state flows into the intermediate heat exchanger 21 by gravity.
  • the hot water supply circuit 50 is stopped.
  • the air-conditioning heat transfer medium circulation circuit 40 is the same as the above-described cooling operation (normal) mode, and thus the description thereof is omitted.
  • the air conditioning refrigerant circuit 10 is the same as that in the cooling operation (normal mode) described above except that the intermediate heat exchanger 21 functions as a condenser in addition to the air conditioning heat source side heat exchanger 15. Since there is, explanation is omitted.
  • the hot water supply refrigerant circuit 30 will be described.
  • the control device 4 an annular circuit is formed by the hot water supply heat source side heat exchanger 35, the pipe 35a, the second hot water supply expansion valve 36, the secondary heat transfer pipe 21b of the intermediate heat exchanger 21, and the pipes 37a and 38a. Then, the hot water supply refrigerant control valve 39 is closed, the hot water supply three-way valves 34 and 37 are controlled, and the hot water supply second expansion valve 36 is fully opened.
  • the control device 4 controls the rotational speed of the hot water supply fan 35f.
  • the second refrigerant flows into the secondary heat transfer tube 21b of the intermediate heat exchanger 21 functioning as an evaporator in a low-temperature liquid state.
  • the second refrigerant absorbs heat from the first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger 21.
  • the second refrigerant evaporates, becomes an upward flow, flows through the pipes 37a and 38a, and flows into the hot water supply heat source side heat exchanger 35 functioning as a condenser.
  • the medium-temperature second refrigerant in the gaseous state dissipates heat by exchanging heat with the air (outdoor air) sent by the hot-water supply fan 35f when flowing through the hot-water supply heat source side heat exchanger 35, and the low-temperature liquid It becomes a state. Then, the low-temperature liquid second refrigerant descends in the pipe 35 a due to gravity, flows into the secondary heat transfer pipe 21 b of the intermediate heat exchanger 21 via the hot water supply second expansion valve 36, and is supplied with the hot water supply refrigerant circuit 30. Circulate.
  • FIG. 9 is a system diagram illustrating the flow of the refrigerant and the heat transfer medium of the heat pump unit 1 in the heating operation mode.
  • the hot water supply refrigerant circuit 30 and the hot water supply circuit 50 are stopped. Further, the flow of the refrigerant to the intermediate heat exchanger 21 is closed in the hot water supply refrigerant circuit 30.
  • the control device 4 controls the switching means (not shown) in the first four-way valve 12 and the second four-way valve 14 to be in the heating operation mode position. That is, the control device 4 controls the first four-way valve 12 so that the first refrigerant discharged from the air conditioning compressor 11 flows into the secondary side heat transfer pipe 19b of the air conditioning utilization side heat exchanger 19, The second four-way valve 14 is controlled so that the first refrigerant flowing out from the intermediate heat exchanger 21 flows into the air conditioning compressor 11.
  • the control device 4 fully opens the air conditioning second expansion valve 16 and controls the opening (throttle) of the air conditioning first expansion valve 18. Further, the control device 4 controls the rotational speeds of the air conditioning compressor 11 and the air conditioning fan 15f.
  • the low-temperature and low-pressure first refrigerant that has flowed out of the air conditioning first expansion valve 18 is subjected to heat exchange on the air conditioning heat source side before the intermediate heat exchanger 21. Can flow into the vessel 15. In this case, the temperature of the first refrigerant that has exchanged heat with the air (outdoor air) sent by the air conditioning fan 15f does not become higher than the temperature of the air. The first refrigerant does not radiate heat in the heat pipe 21a.
  • the low temperature and low pressure discharged from the air conditioning first expansion valve 18 is used.
  • the first refrigerant absorbs heat in the intermediate heat exchanger 21, and the dryness of the first refrigerant increases.
  • the temperature difference between the temperature of the first refrigerant and the outdoor air temperature cannot be maintained, and the heat absorption amount of the first refrigerant decreases. Therefore, since it is necessary to supplement the heat absorption amount by the compressor 11, the load on the compressor 11 increases.
  • the first refrigerant flowing through the secondary side heat transfer tube 19b of the air conditioning use side heat exchanger 19 radiates heat by exchanging heat with the heat transfer medium flowing through the primary side heat transfer tube 19a of the air conditioning use side heat exchanger 19. Thus, it becomes a medium temperature and high pressure first refrigerant.
  • the medium-temperature and high-pressure first refrigerant flowing out of the air-conditioning utilization side heat exchanger 19 is decompressed by the air-conditioning first expansion valve 18 and becomes a low-temperature and low-pressure first refrigerant.
  • the low-temperature and low-pressure first refrigerant flows into the air-conditioning heat source side heat exchanger 15 functioning as an evaporator.
  • the first refrigerant flowing through the air conditioning heat source side heat exchanger 15 heats up (absorbs) heat from the air by exchanging heat with the air (outdoor air) sent by the air conditioning fan 15f.
  • the absorbed first refrigerant is supplied from the air-conditioning heat source side heat exchanger 15 through the second air-conditioning expansion valve 16, the intermediate heat exchanger 21, the second four-way valve 14, and the first four-way valve 12. It is sent to the compressor 11 and circulates through the air conditioning refrigerant circuit 10.
  • the control device 4 controls the rotation speeds of the first pump 41 and the indoor fan 43f.
  • the heat transfer medium flows into the primary side heat transfer tube 19 a of the air conditioning use side heat exchanger 19.
  • the heat transfer medium flowing through the primary side heat transfer pipe 19a of the air conditioning use side heat exchanger 19 absorbs heat by exchanging heat with the first refrigerant flowing through the secondary side heat transfer pipe 19b of the air conditioning use side heat exchanger 19.
  • a high-temperature heat transfer medium is obtained.
  • the high-temperature heat transfer medium flows into the indoor heat exchanger 43 of the indoor unit 2.
  • the heat transfer medium flowing through the indoor heat exchanger 43 dissipates heat by exchanging heat with the air (indoor air) sent by the indoor fan 43f.
  • the radiated heat transfer medium is sent from the indoor heat exchanger 43 to the first pump 41 and circulates in the heat transfer medium circulation circuit 40 for air conditioning. In this way, the heat transfer medium dissipates heat in the indoor heat exchanger 43 of the indoor unit 2, so that air (room air) is heated and the room (air-conditioned space) is heated.
  • FIG. 10 is a system diagram showing the flow of the refrigerant, heat transfer medium, and heated liquid in the heat pump unit 1 in the cooling hot water supply operation (exhaust heat recovery A) mode.
  • the exhaust heat recovery A is a case of “air conditioning exhaust heat> hot water supply endotherm”, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30 via the intermediate heat exchanger 21, and excess air conditioning is performed. Exhaust heat is exhausted to outdoor air.
  • the operation of the hot water supply circuit 50 is the same as in the hot water supply operation mode shown in FIG.
  • the operation of the air-conditioning heat transfer medium circulation circuit 40 is the same as that in the cooling operation (normal) mode shown in FIG.
  • the air conditioning refrigerant circuit 10 will be described.
  • the difference between the air conditioning refrigerant circuit 10 in the cooling operation (normal) mode (see FIG. 7) and the air conditioning refrigerant circuit 10 in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 10) is the cooling operation (normal).
  • ) Mode only the air conditioner heat source side heat exchanger 15 functions as a condenser, whereas in the cooling hot water supply operation (exhaust heat recovery A) mode, in addition to the air conditioner heat source side heat exchanger 15, an intermediate heat exchanger is provided. 21 also functions as a condenser.
  • the second refrigerant 14 is controlled so that the first refrigerant discharged from the air conditioning compressor 11 flows into the air conditioning heat source side heat exchanger 15.
  • the cooling hot water supply operation (exhaust heat recovery A) mode is different in that the second four-way valve 14 is controlled so that the first refrigerant discharged from the air conditioning compressor 11 flows into the intermediate heat exchanger 21.
  • the high-temperature and high-pressure first refrigerant discharged from the air-conditioning compressor 11 passes through the first four-way valve 12 and the second four-way valve 14, and the primary heat transfer tube 21a of the intermediate heat exchanger 21 that functions as a condenser. Flow into.
  • the high-temperature and high-pressure first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger 21 exchanges heat with the low-temperature and low-pressure second refrigerant flowing through the secondary heat transfer tube 21b of the intermediate heat exchanger 21. Radiates heat (exhaust heat).
  • the first refrigerant flows into the air conditioning heat source side heat exchanger 15 functioning as a condenser via the air conditioning second expansion valve 16.
  • the first refrigerant flowing through the air-conditioning heat source side heat exchanger 15 further dissipates heat (exhaust heat) by exchanging heat with the air (outdoor air) sent by the air-conditioning fan 15f. It becomes.
  • the medium temperature and high pressure first refrigerant flowing out of the air conditioning heat source side heat exchanger 15 flows into the air conditioning first expansion valve 18 via the second four-way valve 14 and is decompressed by the air conditioning first expansion valve 18 to be low temperature. It becomes a low-pressure first refrigerant.
  • the low-temperature and low-pressure first refrigerant flows into the primary side heat transfer tube 19a of the air conditioning use side heat exchanger 19 functioning as an evaporator.
  • the first refrigerant flowing through the primary side heat transfer pipe 19a of the air-conditioning use side heat exchanger 19 exchanges heat with the heat transfer medium flowing through the secondary side heat transfer pipe 19b of the air-conditioning use side heat exchanger 19; Pumps heat from the heat transfer medium (absorbs heat).
  • the first refrigerant that has absorbed heat is sent from the air conditioning utilization side heat exchanger 19 to the air conditioning compressor 11 and circulates through the air conditioning refrigerant circuit 10.
  • the high-temperature and high-pressure first refrigerant discharged from the compressor 11 flows into the intermediate heat exchanger 21 before the air-conditioning heat source side heat exchanger 15. Can be made.
  • coolant which flows the secondary side heat exchanger tube 21b of the intermediate heat exchanger 21 can be made into a counterflow. . Therefore, the amount of heat radiated from the first refrigerant to the second refrigerant in the intermediate heat exchanger 21 can be increased.
  • the difference between the hot water supply refrigerant circuit 30 in the hot water supply operation mode (see FIG. 6) and the hot water supply refrigerant circuit 30 in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 10) is that the second refrigerant in the hot water supply operation mode. Flows through the hot water supply heat source side heat exchanger 35, whereas the second refrigerant does not flow through the hot water supply heat source side heat exchanger 35 in the cooling hot water supply operation (exhaust heat recovery A) mode. Further, the second refrigerant does not flow through the intermediate heat exchanger 21 in the hot water supply operation mode, whereas the second refrigerant flows through the intermediate heat exchanger 21 in the cooling hot water supply operation (exhaust heat recovery A) mode. .
  • the control device 4 has an annular shape with a hot water supply compressor 31, a hot water supply side heat exchanger 32, a hot water supply first expansion valve 33, a pipe 35a, a hot water supply second expansion valve 36, an intermediate heat exchanger 21, and a pipe 37a.
  • the hot water supply refrigerant control valve 39 and the hot water supply second expansion valve 36 are fully opened to control the hot water supply three-way valves 34 and 37 so that a circuit is formed.
  • the control device 4 controls the opening degree (throttle) of the first hot water supply expansion valve 33 to stop the hot water supply fan 35f.
  • the high-temperature and high-pressure second refrigerant discharged from the hot water supply compressor 31 flows into the primary side heat transfer tube 32a of the hot water supply side heat exchanger 32 that functions as a condenser.
  • the second refrigerant flowing through the primary side heat transfer pipe 32a of the hot water supply side heat exchanger 32 exchanges heat with the heated liquid flowing through the secondary side heat transfer pipe 32b of the hot water supply side heat exchanger 32.
  • the medium-temperature and high-pressure second refrigerant that has flowed out of the primary-side heat transfer pipe 32a of the hot-water use side heat exchanger 32 is depressurized by the hot-water supply first expansion valve 33, and becomes a low-temperature and low-pressure second refrigerant.
  • the low-temperature and low-pressure second refrigerant passes through the three-way valve 34, the hot water supply refrigerant control valve 39, the pipe 35 a, and the hot water supply second expansion valve 36 on the secondary side of the intermediate heat exchanger 21 that functions as an evaporator. It flows into the heat transfer tube 21b.
  • the second refrigerant flowing through the secondary heat transfer tube 21b of the intermediate heat exchanger 21 is heated from the first refrigerant by exchanging heat with the first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger 21. Pumps up (absorbs heat). Then, the absorbed second refrigerant is sent from the secondary heat transfer tube 21 b of the intermediate heat exchanger 21 to the hot water supply compressor 31 and circulates in the hot water supply refrigerant circuit 30.
  • FIG. 11 is a system diagram showing the flow of the refrigerant, heat transfer medium, and heated liquid in the heat pump unit 1 in the cooling hot water supply operation (exhaust heat recovery B) mode.
  • the operation of the hot water supply circuit 50 is the same as that in the hot water supply operation mode (see FIG. 6), and the operation of the heat transfer medium circulation circuit 40 for air conditioning is the same as that in the cooling operation (normal) mode (see FIG. 7). Since the operation of 30 is the same as that in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 10), the description is omitted.
  • the air conditioning refrigerant circuit 10 will be described.
  • the difference between the air conditioning refrigerant circuit 10 in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 10) and the air conditioning refrigerant circuit 10 in the cooling hot water supply operation (exhaust heat recovery B) mode (see FIG. 11) is In the cooling hot water supply operation (exhaust heat recovery A) mode, the control device 4 rotates the air conditioning fan 15f, whereas in the cooling hot water supply operation (exhaust heat recovery B) mode, the control device 4 stops the rotation of the air conditioning fan 15f. Is a point.
  • the other control is the same as that of the air conditioning refrigerant circuit 10 in the cooling hot water supply operation (exhaust heat recovery A) mode, and thus the description thereof is omitted.
  • FIG. 12 is a system diagram showing the flow of the refrigerant, heat transfer medium, and heated liquid in the heat pump unit 1 in the cooling hot water supply operation (exhaust heat recovery C) mode.
  • the exhaust heat recovery C is the case of “air conditioning exhaust heat ⁇ hot water supply heat absorption”
  • the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30 via the intermediate heat exchanger 21 and is necessary for hot water supply. Heat is absorbed from the outdoor air.
  • the operation of the hot water supply circuit 50 is the same as that in the hot water supply operation mode (see FIG.
  • the hot water supply refrigerant circuit 30 will be described.
  • the second refrigerant bypasses the hot water supply heat source side heat exchanger 35, whereas in the exhaust heat recovery C mode, the second refrigerant does not bypass the hot water supply heat source side heat exchanger 35, and does not bypass the hot water supply heat source side. This is a point through which the secondary heat transfer tubes 21b of the heat exchanger 35 and the intermediate heat exchanger 21 flow.
  • control device 4 controls the hot water supply three-way valves 34 and 37 so that the second refrigerant can flow through the hot water supply heat source side heat exchanger 19 and the intermediate heat exchanger 21, and the hot water supply refrigerant control valve. 39 is closed. Further, the control device 4 controls the opening (throttle) of the first hot water supply expansion valve 33 to fully open the second hot water supply expansion valve 36. Further, the control device 4 controls the rotation speeds of the hot water supply compressor 31 and the hot water supply fan 35f.
  • the high-temperature and high-pressure second refrigerant discharged from the hot water supply compressor 31 flows into the primary side heat transfer tube 32a of the hot water supply side heat exchanger 32 that functions as a condenser.
  • the second refrigerant flowing through the primary side heat transfer pipe 32a of the hot water supply side heat exchanger 32 exchanges heat with the heated liquid flowing through the secondary side heat transfer pipe 32b of the hot water supply side heat exchanger 32. (Exhaust heat) to become a medium temperature and high pressure second refrigerant.
  • the medium-temperature and high-pressure second refrigerant that has flowed out of the primary-side heat transfer pipe 32a of the hot-water use side heat exchanger 32 is depressurized by the hot-water supply first expansion valve 33, and becomes a low-temperature and low-pressure second refrigerant.
  • the low-temperature and low-pressure second refrigerant flows into the hot water supply heat source side heat exchanger 35 functioning as an evaporator via the hot water supply three-way valve 34.
  • the second refrigerant flowing through the hot water supply heat source side heat exchanger 35 exchanges heat with the air (outdoor air) sent by the hot water supply fan 35f, thereby drawing up heat (absorbing heat) from the air.
  • coolant which flowed out from the hot water supply heat source side heat exchanger 35 flows in into the secondary side heat exchanger tube 21b of the intermediate heat exchanger 12 which functions as an evaporator.
  • the second refrigerant flowing through the secondary heat transfer tube 21b of the intermediate heat exchanger 21 exchanges heat with the first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger 21, and heat is transferred from the first refrigerant. Pump up (absorb heat).
  • the second refrigerant flowing out of the secondary heat transfer tube 21b of the intermediate heat exchanger 21 is sent to the hot water supply compressor 31 through the hot water supply three-way valve 37 and circulates in the hot water supply refrigerant circuit 30.
  • FIG. 13 is a system diagram showing the flow of the refrigerant, the heat transfer medium, and the liquid to be heated in the heat pump unit 1 in the heating / hot water supply operation (independent) mode.
  • the flow of the refrigerant to the intermediate heat exchanger 21 is closed in the hot water supply refrigerant circuit 30.
  • the operations of the hot water supply refrigerant circuit 30 and the hot water supply circuit 50 are the same as in the hot water supply operation mode (see FIG. 6), and the operations of the air conditioning refrigerant circuit 10 and the air conditioning heat transfer medium circulation circuit 40 are in the heating operation mode (see FIG. 9). Since it is the same as that of FIG.
  • FIG. 14 is a system diagram showing the flow of the refrigerant, heat transfer medium, and heated liquid in the heat pump unit 1 in the heating hot water supply operation (air conditioning surplus heating) mode. This mode is executed when the air conditioning load (heating load) is small, and surplus heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30 via the intermediate heat exchanger 21.
  • the operation of the hot water supply circuit 50 is the same as that in the hot water supply operation mode (see FIG. 6), the operation of the heat transfer medium circulation circuit 40 for air conditioning is the same as that in the heating operation mode (see FIG. 9), and the operation of the refrigerant circuit 30 for hot water supply. Is the same as in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 10), and the description thereof is omitted.
  • the air conditioning refrigerant circuit 10 will be described.
  • the difference between the air conditioning refrigerant circuit 10 in the heating operation (mode (see FIG. 9)) and the air conditioning refrigerant circuit 10 in the heating hot water supply operation (air conditioning surplus heating) mode (see FIG. 14) is that intermediate heat exchange is performed in the heating operation mode.
  • the condenser 21 did not function as a condenser
  • the intermediate heat exchanger 21 functions as a condenser in the heating hot water supply operation (air conditioning surplus heating) mode.
  • the control device 4 controls the switching means (not shown) in the first four-way valve 12 and the second four-way valve 14 to be in the heating / hot water supply operation (air conditioning surplus heating) mode position. That is, the control device 4 controls the first four-way valve 12 so that the first refrigerant discharged from the air conditioning compressor 11 flows into the air conditioning utilization side heat exchanger 19. Further, the control device 4 controls the second four-way valve 14 so that the first refrigerant flowing out from the air conditioning heat source side heat exchanger 15 flows into the air conditioning compressor 11. Furthermore, the control device 4 controls the first expansion valve 18 for air conditioning to be fully opened, and controls the opening (throttle) of the second expansion valve 16 for air conditioning. Further, the control device 4 controls the rotational speeds of the air conditioning compressor 11 and the air conditioning fan 15f.
  • the high-temperature and high-pressure first refrigerant discharged from the air conditioning compressor 11 flows into the secondary side heat transfer pipe 19b of the air conditioning utilization side heat exchanger 19 functioning as a condenser via the first four-way valve 12.
  • the first refrigerant flowing through the secondary side heat transfer tube 19b of the air conditioning use side heat exchanger 19 radiates heat by exchanging heat with the heat transfer medium flowing through the primary side heat transfer tube 19a of the air conditioning use side heat exchanger 19. (Exhaust heat).
  • coolant flows in into the primary side heat exchanger tube 21a of the intermediate heat exchanger 21 which functions as a condenser via the 1st expansion valve 18 for air conditioning, and the 2nd four-way valve 14.
  • the first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger exchanges heat with the second refrigerant flowing through the secondary heat transfer tube 21b of the intermediate heat exchanger 21, and radiates heat (exhaust to the second refrigerant. Heat) to become a medium temperature and high pressure first refrigerant.
  • the medium-temperature and high-pressure first refrigerant is decompressed by the air conditioning second expansion valve 16 and becomes a low-temperature and low-pressure first refrigerant. Furthermore, the low-temperature and low-pressure first refrigerant flows into the air-conditioning heat source side heat exchanger 15 that functions as an evaporator. The first refrigerant flowing through the air conditioning heat source side heat exchanger 15 heats up (absorbs) heat from the air by exchanging heat with the air (outdoor air) sent by the air conditioning fan 15f. Then, the absorbed first refrigerant is sent from the air-conditioning heat source side heat exchanger 15 to the air-conditioning compressor 11 via the second four-way valve 14 and the first four-way valve 12, Circulate.
  • “hot water supply operation”, “cooling operation”, “cooling hot water operation”, “heating operation”, and “heating hot water supply operation” can be operated according to the user's request. It can be set as the air-conditioning hot-water supply system S.
  • the cooling hot water supply operation the cooling hot water supply operation (exhaust heat recovery A) mode, the cooling hot water supply operation (exhaust heat recovery B) mode, or the cooling hot water supply operation ( By executing the exhaust heat recovery C) mode (see FIG. 2), the exhaust heat of the air conditioning refrigerant circuit 10 can be efficiently used for heating hot water. Thereby, the whole efficiency of air-conditioning hot-water supply system S can be improved.
  • the air conditioner (air conditioning and hot water supply system) described in Patent Document 1 is a first compressor (this embodiment) of an air conditioning cycle (air conditioning refrigerant circuit 10) when the heating load is low during heating operation (heating and hot water supply operation).
  • the air conditioning compressor 11 is intermittently operated repeatedly between the operating state and the stopped state, so that there is a problem that the operation efficiency of the air conditioner (air conditioning hot water supply system) is lowered.
  • the primary heat transfer tube 21a (the air conditioning refrigerant circuit 10 side) of the intermediate heat exchanger 21 can be caused to function as a condenser even during a heating hot water supply operation (see FIG. 14).
  • the air conditioning hot water supply system S allows the air conditioning use side heat while the air conditioning compressor 11 remains in a continuous operation state even when the heating load is low during the heating hot water supply operation.
  • the heat is sent to the primary heat transfer tube 21a of the intermediate heat exchanger 21 (FIG. 14). reference).
  • surplus heat (the remaining portion of the high-temperature and high-pressure first refrigerant discharged from the air-conditioning compressor 11) is transferred to the primary side of the intermediate heat exchanger 21. It can be sent to the heat transfer tube 21a. As a result, the amount of heat necessary for air conditioning can be secured without complicated control, and surplus air conditioning heat can be supplied to the hot water supply refrigerant circuit 30 via the intermediate heat exchanger 21.
  • the air conditioning and hot water supply system S can cause the intermediate heat exchanger 21 to function as a condenser regardless of the cooling operation / heating operation.
  • heat exhaust heat, surplus heat
  • FIG. 15 is a graph showing the variation of the heating load on the days before and after the coldest day in Tokyo.
  • the vertical axis indicates the heating load [kW] (indicated by a solid line on the graph of FIG. 15), the outdoor air temperature [° C.] (indicated by the broken line on the graph of FIG. 15), and the amount of solar radiation [MJ] (FIG. 15).
  • the horizontal axis is time [day], the day before the coldest day (time 1.0 to 2.0 [day]) (time 0.0 to 1.0 [day]) ) To the next day (time 2.0 to 3.0 [day]).
  • the heating load was calculated
  • the air conditioning compressor 11 of the air conditioning refrigerant circuit 10 may be intermittently operated.
  • the heating load suddenly decreases during the day (in FIG. 15, from about 4.0 kW to about 0.6 kW).
  • the air conditioning compressor 11 of the air conditioning refrigerant circuit 10 is intermittently operated. Such intermittent operation is not desirable in terms of operation efficiency. In this way, the energy saving effect obtained when the air conditioning system (air conditioning hot water supply system) is actually operated is compared with the energy saving effect expected by reducing the heating load by increasing the heat insulation of the house. 11 was intermittent because of intermittent operation.
  • the air conditioning hot water supply system S can prevent intermittent operation of the air conditioning compressor 11 of the air conditioning refrigerant circuit 10 even when the heating load is low during the heating operation. it can.
  • the air conditioning and hot water supply system S according to the present embodiment can cause the primary heat transfer tube 21a of the intermediate heat exchanger 21 to function as a condenser even during heating operation, so that the excess heat of the air conditioning refrigerant circuit 10 is supplied with hot water. Therefore, the efficiency of the air conditioning hot water supply system S as a whole can be improved.
  • the air conditioning and hot water supply system S determines the operation mode according to environmental conditions, setting conditions input from a remote controller (not shown), and the like. And if the air-conditioning hot-water supply system S needs to supply the exhaust heat of the 1st refrigerant
  • the air conditioning and hot water supply system S performs the natural circulation in the hot water supply refrigerant circuit 30 even when the air conditioning load during the cooling operation is an overload, and the hot water supply refrigerant circuit 30 does not perform the intermediate heat exchanger 10.
  • an air conditioning heat source side heat exchanger 15, an air conditioning utilization side heat exchanger 19, and an intermediate heat exchanger 21 are connected in series via various valves in the refrigerant circuit 10 for air conditioning.
  • the hot water supply side heat exchanger 32, the hot water supply heat source side heat exchanger 35, and the intermediate heat exchanger 21 are connected in series via various valves. If the heat exchanger is connected in parallel in the air conditioning refrigerant circuit 10 or the hot water supply refrigerant circuit 30 and the opening / closing of various valves is controlled according to the operation mode, depending on the refrigerant distribution in the pipe, Excess refrigerant may be generated. In this case, it is necessary to first adjust the refrigerant distribution state in the circuit before starting the operation.
  • the air conditioning and hot water supply system S since the heat exchangers are connected in series in each circuit as described above, it is not necessary to adjust the distribution of the refrigerant in the circuit. This is because the refrigerant circulates in the air conditioning refrigerant circuit 10 and the hot water supply refrigerant circuit 30 without being diverted. Therefore, in the air conditioning and hot water supply system S according to this embodiment, the operation can be started smoothly when the operation mode is switched, and the processing load on the control device 4 can be reduced.
  • the first refrigerant is caused to flow by fully opening the air conditioning first expansion valve 18 in the air conditioning refrigerant circuit 10, but the present invention is not limited thereto.
  • a bypass pipe having one end connected to the lower port of the second four-way valve 14 and the other end connected to the air conditioning first expansion valve 18 may be provided, and the two-way valve may be installed in the bypass pipe.
  • the control device 4 closes the two-way valve and controls the opening (throttle) of the air conditioning first expansion valve 18.
  • the control device 4 performs control to open the two-way valve and close the first expansion valve 18 for air conditioning. The same applies to the second expansion valve 16 for air conditioning.
  • the expansion valve (the first expansion valve 18 and the second expansion valve 16) has a higher pressure loss when fully opened than the two-way valve, and therefore the refrigerant passes through the intermediate heat exchanger without reducing pressure. In addition, when the refrigerant passes through the expansion valve, the amount of exchange heat decreases due to pressure loss.
  • pressure loss when each expansion valve is not used as a decompression device is reduced. be able to. Thereby, the efficiency of the entire air conditioning and hot water supply system S can be further improved.
  • the first expansion valve 18 and the second expansion valve 16 have been described as variable throttles capable of continuously increasing or decreasing the throttle amount (opening degree), but the present invention is not limited to this. That is, a fixed-throttle valve that switches between two patterns (large and small) as the throttle amount, and a low pressure loss valve may be adopted as the first expansion valve 18 and the second expansion valve 16. In this case, as described above, the pressure loss in each expansion valve can be reduced without installing bypass piping and on-off valves in the air conditioning first expansion valve 18 and / or the air conditioning second expansion valve 16. it can. Thus, the efficiency of the entire air conditioning and hot water supply system S can be improved, and the manufacturing cost can be reduced.
  • the 1st expansion valve 18 for air conditioning was used as a decompression device, it is not restricted to this. .
  • the air conditioning second expansion valve 16 may be used as a pressure reducing device.
  • the first refrigerant flowing out from the second heat transfer pipe 19 b of the air conditioning utilization side heat exchanger 19 flows into the intermediate heat exchanger 21 via the air conditioning first expansion valve 18, and the air conditioning heat source side Switching means (not shown) for the second four-way valve 14 so that the first refrigerant flowing out of the heat exchanger 15 flows into the air conditioning compressor 11 via the second four-way valve 14 and the first four-way valve 12.
  • Control The control device 4 fully opens the air conditioning first expansion valve 18 and controls the opening (throttle) of the air conditioning second expansion valve 16.
  • the air conditioning first expansion valve 18 functions as a pressure reducing device
  • the heating operation In Step S110 of FIG. 2 and Steps S203 and S204 of FIG. 3, the air conditioning second expansion valve 16 functions as a pressure reducing device.
  • the heat transfer medium is heated (or cooled) by the air conditioning utilization side heat exchanger 19 in the heat pump unit 1, supplied to the indoor unit 2, and heated by the indoor heat exchanger 43 of the indoor unit 2.
  • the present invention is not limited to this. That is, the heat transfer medium circulation circuit 40 for air conditioning is omitted, the air conditioning utilization side heat exchanger 19 is installed in the indoor unit 2, and the space between the first refrigerant flowing through the air conditioning utilization side heat exchanger 19 and the room air. It is good also as a structure which heats (or cools) by exchanging heat with.
  • a to-be-heated liquid is water
  • a high temperature to-be-heated liquid (hot water) is stored in the tank 52
  • the high-temperature to-be-heated liquid (hot water) stored in the tank 52 is a hot water supply terminal (FIG.
  • the present invention is not limited to this. That is, a heat exchanger (not shown) capable of exchanging heat between the hot heated liquid stored in the tank 52 and the feed water supplied to the hot water supply terminal (not shown) is further provided.
  • the structure which heats water supply with the heated high temperature heated liquid, and supplies hot water to a hot-water supply terminal (not shown) may be sufficient.
  • the liquid to be heated is not limited to water.
  • the hot water supply three-way valve 34 is used to pass the first refrigerant flowing from the hot water supply first expansion valve 33 to the hot water supply heat source side heat exchanger 35 or the hot water supply refrigerant control valve 39. Not limited to this. That is, even if it has a configuration in which two flow rate control valves are provided so that the first refrigerant flowing from the first hot water supply expansion valve 33 flows through the first hot water supply expansion valve 33 or the hot water supply heat source side heat exchanger 35. Good. The same applies to the three-way valve 37 for hot water supply.
  • S air-conditioning hot water supply system 10 air-conditioning refrigerant circuit 11 air-conditioning compressor 12 first four-way valve (first switching means) 14 Second four-way valve (second switching means) 15 Air Conditioning Heat Source Side Heat Exchanger 16 Air Conditioning Second Expansion Valve (Air Conditioning Pressure Reduction Device, Air Conditioning Second Pressure Reduction Device) 18 First expansion valve for air conditioning (pressure reducing device for air conditioning, first pressure reducing device for air conditioning) DESCRIPTION OF SYMBOLS 19 Air-conditioning use side heat exchanger 21 Intermediate heat exchanger 30 Hot-water supply refrigerant circuit 31 Hot-water supply compressor 32 Hot-water supply-side heat exchanger 33 Hot-water supply first expansion valve (hot-water supply decompression device) 34,37 Three-way valve for hot water supply (switching means) 35 Hot water supply heat source side heat exchanger 36 Second expansion valve for hot water supply (pressure reducing device for hot water supply) 39 Refrigerant control valve for hot water supply (switching means)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

An air conditioning/hot water supply system is provided which makes it possible to improve the overall efficiency of the air conditioning/hot water supply system. The air conditioning/hot water supply system comprises an air conditioning compressor (11), an air conditioning heat source-side heat exchanger (15), an intermediate heat exchanger (21), an air conditioning decompression device (17, 18), an air conditioning use-side heat exchanger (19), a first switching means (12), and a second switching means (14). The first switching means (12) switches the direction of a first refrigerant flowing through the air conditioning use-side heat exchanger (19) during cooling operation and heating operation. The second switching means (14) makes the intermediate heat exchanger (21) function as a condenser for the first refrigerant by switching, according to the operation mode, the direction of the first refrigerant flowing through the air conditioning heat source-side heat exchanger (15) and the intermediate heat exchanger (21).

Description

空調給湯システムAir conditioning and hot water supply system
 本発明は、空調と給湯を行う空調給湯システムに関する。 The present invention relates to an air conditioning and hot water supply system that performs air conditioning and hot water supply.
 空調と給湯を行う空調給湯システムとして、特許文献1に示す技術が開示されている。特許文献1には、メインサイクルとサブサイクルとをカスケードコンデンサ(中間熱交換器)により連結して冷媒回路を構成した空気調和装置(空調給湯システム)について記載されている。
 ここで、前記メインサイクルは、第一圧縮機と、第一の四方弁と、室外熱交換器と、第一電子膨張弁と、室内熱交換器とを接続することにより構成され、前記サブサイクルは、第二圧縮機と、第二の四方弁及び第三の四方弁と、給湯用熱交換器と、補助熱交換器と、第二電子膨張弁及び第三電子膨張弁と、を接続することにより構成される。
As an air conditioning and hot water supply system that performs air conditioning and hot water supply, a technique disclosed in Patent Document 1 is disclosed. Patent Document 1 describes an air conditioner (air conditioning hot water supply system) in which a refrigerant circuit is configured by connecting a main cycle and a sub cycle with a cascade condenser (intermediate heat exchanger).
Here, the main cycle is configured by connecting a first compressor, a first four-way valve, an outdoor heat exchanger, a first electronic expansion valve, and an indoor heat exchanger, and the subcycle Connects the second compressor, the second four-way valve and the third four-way valve, the hot water heat exchanger, the auxiliary heat exchanger, the second electronic expansion valve and the third electronic expansion valve. It is constituted by.
特開2005-299935号公報JP 2005-299935 A
 特許文献1に記載の空気調和装置(空調給湯システム)は冷房運転時において、カスケードコンデンサ(中間熱交換器)の一次側(メインサイクル側)を凝縮器として機能させ、二次側(サブサイクル側)を蒸発器として機能させることによって、メインサイクルからの排熱をサブサイクルで利用することができる。 In the air conditioner (air conditioning hot water supply system) described in Patent Document 1, the primary side (main cycle side) of the cascade condenser (intermediate heat exchanger) functions as a condenser during cooling operation, and the secondary side (sub cycle side) ) Function as an evaporator, exhaust heat from the main cycle can be used in the sub cycle.
 しかしながら、特許文献1に記載の空気調和装置(空調給湯システム)は暖房運転時において、空調運転を担うメインサイクルと、給湯運転を担うサブサイクルとを独立に機能させ、カスケードコンデンサ(中間熱交換器)を介した熱交換を行っていない。
 したがって、例えば、暖房運転時において空調対象である室内空気が設定温度に近い場合にはメインサイクルで断続運転を行うこととなり、システム全体の効率が悪化してしまうという問題がある。
However, the air conditioning apparatus (air conditioning and hot water supply system) described in Patent Document 1 allows the main cycle responsible for the air conditioning operation and the subcycle responsible for the hot water supply operation to function independently during the heating operation, and the cascade condenser (intermediate heat exchanger) ) Is not exchanging heat.
Therefore, for example, when the room air to be air-conditioned is close to the set temperature during the heating operation, the intermittent operation is performed in the main cycle, and there is a problem that the efficiency of the entire system is deteriorated.
 そこで、本発明は、空調給湯システム全体の効率を向上させることができる空調給湯システムを提供することを課題とする。 Therefore, an object of the present invention is to provide an air conditioning and hot water supply system that can improve the efficiency of the entire air conditioning and hot water supply system.
 前記課題を解決するために、本発明は、第一冷媒が循環する空調用冷媒回路と、第二冷媒が循環する給湯用冷媒回路と、を備える空調給湯システムであって、前記空調用冷媒回路は、第一冷媒を圧縮する空調用圧縮機と、空調熱源と熱交換可能な空調熱源側熱交換器と、第一冷媒と第二冷媒との熱交換をする中間熱交換器と、第一冷媒を減圧する空調用減圧装置と、冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する空調利用側熱交換器と、冷房運転と暖房運転とで前記空調利用側熱交換器を通流する第一冷媒の向きを切り替える第一切替手段と、前記第一切替手段に接続された第二切替手段と、を備え、前記第二切替手段は、運転モードに応じて前記空調熱源側熱交換器及び前記中間熱交換器を通流する第一冷媒の向きを切り替えることによって、前記中間熱交換器を第一冷媒の凝縮器として機能させることを特徴とする。 In order to solve the above-mentioned problem, the present invention is an air-conditioning hot-water supply system comprising an air-conditioning refrigerant circuit in which a first refrigerant circulates and a hot-water supply refrigerant circuit in which a second refrigerant circulates, wherein the air-conditioning refrigerant circuit Includes an air conditioning compressor that compresses the first refrigerant, an air conditioning heat source side heat exchanger that can exchange heat with the air conditioning heat source, an intermediate heat exchanger that exchanges heat between the first refrigerant and the second refrigerant, An air-conditioning decompression device that decompresses the refrigerant, an air-conditioning use-side heat exchanger that functions as an evaporator during cooling operation, and that functions as a condenser during heating operation, and the air-conditioning use-side heat exchanger in cooling operation and heating operation. First switching means for switching the direction of the first refrigerant flowing therethrough, and second switching means connected to the first switching means, wherein the second switching means is on the side of the air conditioning heat source according to the operation mode. The direction of the first refrigerant flowing through the heat exchanger and the intermediate heat exchanger By switching the, characterized in that to function the intermediate heat exchanger as a condenser for the first refrigerant.
 本発明によれば、空調給湯システム全体の効率を向上させることができる空調給湯システムを提供することができる。 According to the present invention, it is possible to provide an air conditioning and hot water supply system that can improve the efficiency of the entire air conditioning and hot water supply system.
本実施形態に係る給湯空調システムの系統図である。It is a systematic diagram of the hot water supply air conditioning system which concerns on this embodiment. 本実施形態に係る空調給湯システムの運転モードの決定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the determination process of the operation mode of the air-conditioning hot-water supply system which concerns on this embodiment. 本実施形態に係る空調給湯システムの運転モードの決定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the determination process of the operation mode of the air-conditioning hot-water supply system which concerns on this embodiment. 空調排熱量及び給湯吸熱量の推定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of an estimation process of the air-conditioning exhaust heat amount and the hot water supply heat absorption amount. 単独総消費電力及び余剰総消費電力の推定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the estimation process of single total power consumption and surplus total power consumption. 給湯運転モードにおけるヒートポンプユニットの冷媒及び被加熱液体の流れを示す系統図である。It is a systematic diagram which shows the flow of the refrigerant | coolant of a heat pump unit and a to-be-heated liquid in hot water supply operation mode. 冷房運転(通常)モードにおけるヒートポンプユニットの冷媒及び熱搬送媒体の流れを示す系統図である。It is a systematic diagram which shows the refrigerant | coolant of a heat pump unit in the air_conditionaing | cooling operation (normal) mode, and the flow of a heat transfer medium. 冷房運転(自然循環)モードにおけるヒートポンプユニットの冷媒及び熱搬送媒体の流れを示す系統図である。It is a systematic diagram which shows the flow of the refrigerant | coolant of a heat pump unit and a heat transfer medium in air_conditionaing | cooling operation (natural circulation) mode. 暖房運転モードにおけるヒートポンプユニットの冷媒及び熱搬送媒体の流れを示す系統図である。It is a systematic diagram which shows the flow of the refrigerant | coolant of a heat pump unit and a heat transfer medium in heating operation mode. 冷房給湯運転(排熱回収A)モードにおけるヒートポンプユニットの冷媒、熱搬送媒体、及び被加熱液体の流れを示す系統図である。It is a systematic diagram which shows the flow of the refrigerant | coolant of a heat pump unit, a heat transfer medium, and a to-be-heated liquid in air_conditioning | cooling hot_water | molten_metal supply driving | operation (exhaust heat recovery A) mode. 冷房給湯運転(排熱回収B)モードにおけるヒートポンプユニットの冷媒、熱搬送媒体、及び被加熱液体の流れを示す系統図である。It is a systematic diagram which shows the flow of the refrigerant | coolant of a heat pump unit, a heat carrier medium, and a to-be-heated liquid in air_conditioning | cooling hot_water | molten_metal supply driving | operation (exhaust heat recovery B) mode. 冷房給湯運転(排熱回収C)モードにおけるヒートポンプユニットの冷媒、熱搬送媒体、及び被加熱液体の流れを示す系統図である。It is a systematic diagram which shows the flow of the refrigerant | coolant of a heat pump unit, a heat transfer medium, and a to-be-heated liquid in air_conditioning | cooling hot_water | molten_metal supply driving | operation (exhaust heat recovery C) mode. 暖房給湯運転(独立)モードにおけるヒートポンプユニットの冷媒、熱搬送媒体、及び被加熱液体の流れを示す系統図である。It is a systematic diagram which shows the flow of the refrigerant | coolant of a heat pump unit, a heat carrier medium, and a to-be-heated liquid in heating hot-water supply operation (independent) mode. 暖房給湯運転(空調余剰加熱)モードにおけるヒートポンプユニットの冷媒、熱搬送媒体、及び被加熱液体の流れを示す系統図である。It is a systematic diagram which shows the flow of the refrigerant | coolant of a heat pump unit, a heat transfer medium, and a to-be-heated liquid in heating hot-water supply operation (air-conditioning surplus heating) mode. 東京における最寒日の前後日における暖房負荷、日射量、外気温度の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the heating load in the day before and after the coldest day in Tokyo, the amount of solar radiation, and outside temperature.
 以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
≪空調給湯システム≫
 図1は、本実施形態に係る給湯空調システムの系統図である。図1に示すように、空調給湯システムSは、室外(被空調空間外)に設置されるヒートポンプユニット1と、室内(被空調空間内)に設置される室内ユニット2と、給湯タンクユニット3と、制御装置4と、を備えている。
≪Air-conditioning hot water supply system≫
FIG. 1 is a system diagram of a hot water supply air conditioning system according to the present embodiment. As shown in FIG. 1, the air conditioning and hot water supply system S includes a heat pump unit 1 installed outside the room (outside the air-conditioned space), an indoor unit 2 installed inside the room (in the air-conditioned space), and a hot water tank unit 3. The control device 4 is provided.
 空調給湯システムSは、室内ユニット2が設置された室内を冷房する「冷房運転」と、室内ユニット2が設置された室内を暖房する「暖房運転」と、被加熱液体(例えば、水)を加熱してタンク52に高温の被加熱液体を供給する「給湯運転」と、冷房運転及び給湯運転を行う「冷房給湯運転」と、暖房運転及び給湯運転を行う「暖房給湯運転」と、を行う機能を有している。 The air conditioning and hot water supply system S heats the liquid to be heated (for example, water), “cooling operation” for cooling the room where the indoor unit 2 is installed, “heating operation” for heating the room where the indoor unit 2 is installed, and A function of performing a “hot water supply operation” for supplying a high temperature heated liquid to the tank 52, a “cooling hot water supply operation” for performing a cooling operation and a hot water supply operation, and a “heating hot water supply operation” for performing a heating operation and a hot water supply operation. have.
 また、空調給湯システムSは、第一冷媒が循環する空調用冷媒回路10と、第二冷媒が循環する給湯用冷媒回路30と、熱搬送媒体が循環する空調用熱搬送媒体循環回路40と、被加熱液体が通流する給湯回路50と、を備えている。 The air conditioning and hot water supply system S includes an air conditioning refrigerant circuit 10 through which a first refrigerant circulates, a hot water supply refrigerant circuit 30 through which a second refrigerant circulates, an air conditioning heat transfer medium circulation circuit 40 through which a heat transfer medium circulates, A hot water supply circuit 50 through which the liquid to be heated flows.
<空調用冷媒回路>
 ヒートポンプユニット1に設けられた空調用冷媒回路10は、空調用圧縮機11と、第一四方弁12と、第二四方弁14と、空調熱源側熱交換器15と、空調用第二膨張弁16と、中間熱交換器21の一次側伝熱管21aと、空調用第一膨張弁18と、空調利用側熱交換器19の二次側伝熱管19bと、が環状に配管で接続されている。
<Air conditioning refrigerant circuit>
The air conditioning refrigerant circuit 10 provided in the heat pump unit 1 includes an air conditioning compressor 11, a first four-way valve 12, a second four-way valve 14, an air conditioning heat source side heat exchanger 15, and an air conditioning second. The expansion valve 16, the primary heat transfer pipe 21 a of the intermediate heat exchanger 21, the air conditioning first expansion valve 18, and the secondary heat transfer pipe 19 b of the air conditioning utilization side heat exchanger 19 are annularly connected by piping. ing.
 なお、以下の記載において、第一四方弁12と、第二四方弁14とがそれぞれ有する四個のポートについて、紙面上側のポートを「上ポート」、紙面右側のポートを「右ポート」、紙面下側のポートを「下ポート」、紙面左側のポートを「左ポート」と記すことがあるものとする。 In the following description, regarding the four ports of the first four-way valve 12 and the second four-way valve 14, the upper port on the page is “upper port” and the right port on the page is “right port”. The port on the lower side of the page may be referred to as “lower port”, and the port on the left side of the page may be referred to as “left port”.
 図1に示すように、第一四方弁12の右ポートは圧縮機11の吐出側に接続され、上ポートは配管13aを介して第二四方弁14の上ポートに接続され、左ポートは圧縮機の吸入側に接続され、下ポートは配管12aを介して空調利用側熱交換器19の二次側伝熱管19bに接続されている。
 また、第二四方弁14の右ポートは配管14aを介して中間熱交換器21の一次側伝熱管21aに接続され、下ポートは配管17aを介して空調用第一膨張弁18に接続され、左ポートは配管15aを介して空調熱源側熱交換器15に接続されている。
As shown in FIG. 1, the right port of the first four-way valve 12 is connected to the discharge side of the compressor 11, and the upper port is connected to the upper port of the second four-way valve 14 via a pipe 13a. Is connected to the suction side of the compressor, and the lower port is connected to the secondary heat transfer pipe 19b of the air-conditioning utilization side heat exchanger 19 via a pipe 12a.
The right port of the second four-way valve 14 is connected to the primary heat transfer pipe 21a of the intermediate heat exchanger 21 via the pipe 14a, and the lower port is connected to the air conditioning first expansion valve 18 via the pipe 17a. The left port is connected to the air conditioning heat source side heat exchanger 15 via a pipe 15a.
 空調用圧縮機11は、第一冷媒を圧縮して高温高圧の冷媒にする圧縮機である。
 第一四方弁12は、冷房運転と暖房運転とで空調利用側熱交換器19の二次側伝熱管19bを通流する第一冷媒の向きを切り替える四方弁である。すなわち、第一四方弁12の切り替えによって、冷房運転時には空調用第一膨張弁18で膨張した低温低圧の第一冷媒が、空調利用側熱交換器19の二次側伝熱管19bに流入するようになっている。また、暖房運転時には、空調用圧縮機11で圧縮された高温高圧の第一冷媒が、空調利用側熱交換器19の二次側伝熱管19bに流入するようになっている。
The air conditioning compressor 11 is a compressor that compresses the first refrigerant into a high-temperature and high-pressure refrigerant.
The first four-way valve 12 is a four-way valve that switches the direction of the first refrigerant flowing through the secondary side heat transfer pipe 19b of the air conditioning utilization side heat exchanger 19 between the cooling operation and the heating operation. That is, by switching the first four-way valve 12, the low temperature and low pressure first refrigerant expanded by the air conditioning first expansion valve 18 flows into the secondary side heat transfer pipe 19 b of the air conditioning utilization side heat exchanger 19 during the cooling operation. It is like that. Further, during the heating operation, the high-temperature and high-pressure first refrigerant compressed by the air-conditioning compressor 11 flows into the secondary-side heat transfer tube 19 b of the air-conditioning use side heat exchanger 19.
 第二四方弁14は、運転モードに応じて空調熱源側熱交換器15及び中間熱交換器21を通流する第一冷媒の向きを切り替える四方弁である。なお、前記運転モードの詳細については、後記する。
 空調熱源側熱交換器15は、空調用ファン15fから送られてくる空気(室外空気)と第一冷媒との熱交換を行う熱交換器である。
 空調用第一膨張弁18及び空調用第二膨張弁16は、運転モードに応じて第一冷媒を減圧する減圧装置として機能する。ちなみに、空調運転時において、空調用第一膨張弁18及び空調用第二膨張弁16のいずれか一方が、第一冷媒を減圧する減圧装置として機能する。
The second four-way valve 14 is a four-way valve that switches the direction of the first refrigerant flowing through the air conditioning heat source side heat exchanger 15 and the intermediate heat exchanger 21 according to the operation mode. Details of the operation mode will be described later.
The air conditioning heat source side heat exchanger 15 is a heat exchanger that performs heat exchange between the air (outdoor air) sent from the air conditioning fan 15f and the first refrigerant.
The air conditioning first expansion valve 18 and the air conditioning second expansion valve 16 function as a decompression device that decompresses the first refrigerant according to the operation mode. Incidentally, during the air conditioning operation, one of the air conditioning first expansion valve 18 and the air conditioning second expansion valve 16 functions as a decompression device that decompresses the first refrigerant.
 空調利用側熱交換器19は、一次側伝熱管19aを通流する熱搬送媒体と、二次側伝熱管19bを通流する第一冷媒との熱交換を行う熱交換器である。
 中間熱交換器21は、一次側伝熱管21aを通流する第一冷媒と、二次側伝熱管21bを通流する第二冷媒との熱交換を行う熱交換器である。
 なお、第一冷媒として、HFC、HFO-1234yf、HFO-1234ze、自然冷媒(例えば、CO冷媒)などを用いることができる。
The air-conditioning utilization side heat exchanger 19 is a heat exchanger that performs heat exchange between the heat transfer medium that flows through the primary side heat transfer tube 19a and the first refrigerant that flows through the secondary side heat transfer tube 19b.
The intermediate heat exchanger 21 is a heat exchanger that performs heat exchange between the first refrigerant flowing through the primary heat transfer tube 21a and the second refrigerant flowing through the secondary heat transfer tube 21b.
As the first refrigerant, HFC, HFO-1234yf, HFO-1234ze, natural refrigerant (for example, CO 2 refrigerant), or the like can be used.
<給湯用冷媒回路>
 ヒートポンプユニット1に設けられた給湯用冷媒回路30は、給湯用圧縮機31と、給湯利用側熱交換器32の一次側伝熱管32aと、給湯用第一膨張弁33と、給湯用三方弁34と、給湯熱源側熱交換器35と、給湯用第二膨張弁36と、中間熱交換器21の二次側伝熱管21bと、給湯用三方弁37と、が環状に配管で接続されている。
 また、給湯用三方弁34と給湯用三方弁37とは、配管38aを介して相互に接続されている。また、給湯用冷媒回路30は給湯用冷媒制御弁39を備える。給湯用冷媒制御弁39は、その一端が配管35aから分岐する配管に接続され、他端が配管38aから分岐する配管に接続されている。
<Refrigerant circuit for hot water supply>
The hot water supply refrigerant circuit 30 provided in the heat pump unit 1 includes a hot water supply compressor 31, a hot water use side heat exchanger 32, a primary heat transfer pipe 32 a, a hot water supply first expansion valve 33, and a hot water supply three-way valve 34. A hot water supply heat source side heat exchanger 35, a hot water supply second expansion valve 36, a secondary heat transfer pipe 21b of the intermediate heat exchanger 21, and a hot water supply three-way valve 37 are connected in an annular shape by piping. .
The hot water supply three-way valve 34 and the hot water supply three-way valve 37 are connected to each other via a pipe 38a. The hot water supply refrigerant circuit 30 includes a hot water supply refrigerant control valve 39. One end of the hot water supply refrigerant control valve 39 is connected to a pipe branched from the pipe 35a, and the other end is connected to a pipe branched from the pipe 38a.
 給湯用圧縮機11は、第二冷媒を圧縮して高温高圧の冷媒とする圧縮機である。
 給湯利用側熱交換器32は、一次側伝熱管32aを通流する第二冷媒と、二次側伝熱管32bを通流する被加熱液体との熱交換を行う熱交換器である。
 給湯用第一膨張弁33及び給湯用第二膨張弁36は、運転モードに応じて第二冷媒を減圧する減圧装置として機能する。ちなみに、給湯運転時において、給湯用第一膨張弁33及び給湯用第二膨張弁36のいずれか一方が、第二冷媒を減圧する減圧装置として機能する。
The hot water supply compressor 11 is a compressor that compresses the second refrigerant into a high-temperature and high-pressure refrigerant.
The hot water supply side heat exchanger 32 is a heat exchanger that performs heat exchange between the second refrigerant flowing through the primary side heat transfer tube 32a and the heated liquid flowing through the secondary side heat transfer tube 32b.
The first hot water supply expansion valve 33 and the second hot water supply expansion valve 36 function as a decompression device that decompresses the second refrigerant in accordance with the operation mode. Incidentally, during the hot water supply operation, one of the hot water supply first expansion valve 33 and the hot water supply second expansion valve 36 functions as a pressure reducing device that depressurizes the second refrigerant.
 給湯熱源側熱交換器35は、給湯用ファン35fから送られてくる空気(室外空気)と第二冷媒との熱交換を行う熱交換器である。
 給湯用三方弁34,37は、通流する第二冷媒の流量比率を調整可能に構成された三方弁である。給湯用冷媒制御弁39は、開閉が制御可能に構成された開閉弁である。
 なお、第二冷媒として、HFC、HFO-1234yf、HFO-1234ze、自然冷媒(例えば、CO冷媒)などを用いることができる。また、第二冷媒は第一冷媒よりも高い臨界点(温度、圧力)を有する冷媒を使用する事が望ましい。
The hot water supply heat source side heat exchanger 35 is a heat exchanger that performs heat exchange between the air (outdoor air) sent from the hot water supply fan 35f and the second refrigerant.
The hot water supply three- way valves 34 and 37 are three-way valves configured to be capable of adjusting the flow rate ratio of the second refrigerant flowing therethrough. The hot water supply refrigerant control valve 39 is an open / close valve configured to be openable / closable.
As the second refrigerant, HFC, HFO-1234yf, HFO-1234ze, natural refrigerant (for example, CO 2 refrigerant), or the like can be used. The second refrigerant is preferably a refrigerant having a higher critical point (temperature, pressure) than the first refrigerant.
<空調用熱搬送媒体循環回路>
 ヒートポンプユニット1から室内ユニット2に亘って設けられた空調用熱搬送媒体循環回路40は、第一ポンプ41と、熱搬送媒体四方弁42と、空調利用側熱交換器19の一次側伝熱管19aと、室内熱交換器43と、が環状に配管で接続して構成されている。
<Heat transfer medium circulation circuit for air conditioning>
An air conditioning heat transfer medium circulation circuit 40 provided from the heat pump unit 1 to the indoor unit 2 includes a first pump 41, a heat transfer medium four-way valve 42, and a primary side heat transfer tube 19a of the air conditioning utilization side heat exchanger 19. And the indoor heat exchanger 43 are annularly connected by piping.
 第一ポンプ41は、室内熱交換器43から流入する熱搬送媒体を、熱搬送媒体四方弁42に向けて圧送するポンプである。
 熱搬送媒体四方弁42は、空調利用側熱交換器19の一次側伝熱管19aを通流する熱搬送媒体と、二次側伝熱管19bを通流する第一冷媒とが対向流となるように、冷房運転と暖房運転とで熱搬送媒体の流れる向きを切り替える四方弁である。
 室内熱交換器43は、室内ファン43fから送られてくる空気(室内空気)と熱搬送媒体との熱交換を行う熱交換器である。
 なお、熱搬送媒体として、エチレングリコールなどのブライン(不凍液)や、水などを用いることができる。
The first pump 41 is a pump that pumps the heat transfer medium flowing in from the indoor heat exchanger 43 toward the heat transfer medium four-way valve 42.
In the heat transfer medium four-way valve 42, the heat transfer medium flowing through the primary heat transfer pipe 19a of the air conditioning utilization side heat exchanger 19 and the first refrigerant flowing through the secondary heat transfer pipe 19b are opposed to each other. In addition, the four-way valve switches the flow direction of the heat transfer medium between the cooling operation and the heating operation.
The indoor heat exchanger 43 is a heat exchanger that performs heat exchange between the air (indoor air) sent from the indoor fan 43f and the heat transfer medium.
Note that brine (antifreeze) such as ethylene glycol, water, or the like can be used as the heat transfer medium.
<給湯回路>
 ヒートポンプユニット1から給湯タンクユニット3に亘って設けられた給湯回路50は、第二ポンプ51と、給湯利用側熱交換器32の二次側伝熱管32bと、タンク52と、を環状に配管で接続して構成されている。
 第二ポンプ51は、タンク52から被加熱液体を汲み上げ、給湯利用側熱交換器32の二次側伝熱管32bに向けて圧送するポンプである。
 タンク52は、被加熱液体を貯留するものであり、断熱材(図示せず)で覆われている。
 なお、以下の説明において、被加熱液体は水を用いるものとして説明する。
<Hot water supply circuit>
A hot water supply circuit 50 provided from the heat pump unit 1 to the hot water supply tank unit 3 includes a second pump 51, a secondary heat transfer pipe 32 b of the hot water supply side heat exchanger 32, and a tank 52 in a ring shape. Connected and configured.
The second pump 51 is a pump that pumps up the liquid to be heated from the tank 52 and pumps it toward the secondary heat transfer pipe 32 b of the hot water supply side heat exchanger 32.
The tank 52 stores the liquid to be heated and is covered with a heat insulating material (not shown).
In the following description, it is assumed that the liquid to be heated uses water.
 また、給湯タンクユニット3は、給水金具53と、給湯金具55と、三方弁54,56と、を備えている。
 給水金具53は、一端が三方弁54に接続され、他端が給水端末(図示せず)に接続されている。そして、使用者が給湯端末(図示せず)を開操作した場合に、給水源からの圧力によって、給水金具53を介してタンク52の下部に被加熱液体(水)が流入するようになっている。
The hot water supply tank unit 3 includes a water supply fitting 53, a hot water supply fitting 55, and three- way valves 54 and 56.
One end of the water supply fitting 53 is connected to the three-way valve 54, and the other end is connected to a water supply terminal (not shown). When the user opens the hot water supply terminal (not shown), the liquid to be heated (water) flows into the lower portion of the tank 52 via the water supply fitting 53 due to the pressure from the water supply source. Yes.
 三方弁54,56は、通流する被加熱液体の流量比率を調整可能に構成された三方弁であり、配管57aを介して相互に接続されている。そして、各三方弁54,56の開度に応じた流量の被加熱液体(水)が配管57aを介して流入させることにより、タンク52から供給される高温の被加熱液体を適度な温度に調整するようになっている。
 給湯金具55は、一端が三方弁56に接続され、他端が給湯端末(図示せず)に接続されている。そして、使用者が給湯端末を開操作することにより、温度調整がされた被加熱液体(湯)が給湯金具55を介して給湯端末に供給されるようになっている。
The three- way valves 54 and 56 are three-way valves configured to be able to adjust the flow rate ratio of the liquid to be heated to flow therethrough, and are connected to each other via a pipe 57a. Then, the heated liquid (water) having a flow rate corresponding to the opening degree of each of the three- way valves 54 and 56 is caused to flow through the pipe 57a, thereby adjusting the high-temperature heated liquid supplied from the tank 52 to an appropriate temperature. It is supposed to be.
One end of the hot water metal fitting 55 is connected to the three-way valve 56 and the other end is connected to a hot water supply terminal (not shown). When the user opens the hot water supply terminal, the heated liquid (hot water) whose temperature has been adjusted is supplied to the hot water supply terminal via the hot water supply fitting 55.
<制御装置>
 また、空調給湯システムSは、制御装置4を備えている。
 制御装置4は、空調給湯システムSの運転モードを決定し、決定した運転モードに従って各種弁(第一四方弁12、第二四方弁14、空調用第一膨張弁18、空調用第二膨張弁16、給湯用第一膨張弁33、給湯用三方弁34,37、給湯用第二膨張弁36、給湯用冷媒制御弁39、三方弁54,56)の状態(開度)、圧縮機(空調用圧縮機11、給湯用圧縮機31)の回転速度、各熱交換器のファン(空調用ファン15f、給湯用ファン35f、室内ファン43f)の回転速度、ポンプ(第一ポンプ41、第二ポンプ51)の回転速度、を制御して、空調給湯システムSの各種運転を制御する機能を有している。
<Control device>
The air conditioning and hot water supply system S includes a control device 4.
The control device 4 determines the operation mode of the air conditioning and hot water supply system S, and according to the determined operation mode, various valves (first four-way valve 12, second four-way valve 14, first expansion valve 18 for air conditioning, second air conditioning system). Expansion valve 16, hot water supply first expansion valve 33, hot water supply three- way valves 34, 37, hot water supply second expansion valve 36, hot water supply refrigerant control valve 39, three-way valves 54, 56) (opening), compressor Rotational speed of (air conditioning compressor 11, hot water supply compressor 31), rotational speed of fans (air conditioning fan 15f, hot water supply fan 35f, indoor fan 43f) of each heat exchanger, pump (first pump 41, second The rotational speed of the two pumps 51) is controlled to control various operations of the air conditioning and hot water supply system S.
(運転モードの決定処理)
 次に、制御装置4が実行する空調給湯システムSの運転モードについて説明する。図2及び図3は、本実施形態に係る空調給湯システムSの運転モードの決定処理の手順を示すフローチャートである。
(Operation mode decision process)
Next, the operation mode of the air conditioning and hot water supply system S executed by the control device 4 will be described. FIG.2 and FIG.3 is a flowchart which shows the procedure of the determination process of the operation mode of the air-conditioning hot-water supply system S which concerns on this embodiment.
 まず、図2を参照しつつ説明する。
 ステップS101において、制御装置4は、空調サイクル運転要求が有るか否かを判定する。ここで、空調サイクル運転要求とは、室内ユニット2が設置された室内(被空調空間)を空調(冷房/暖房)する運転要求である。空調サイクル運転要求は、例えば、室内に設置されたリモコン(図示せず)を使用者が操作することにより制御装置4に入力されてもよく、室内の温度を検出する室内温度検出器(図示せず)の検出温度(室内温度)と室内設定温度とに基づいて決定されてもよい。
 空調サイクル運転要求が有る場合(S101→Yes)、制御装置4の処理はステップS105に進む。空調サイクル運転要求がない場合(S101→No)、制御装置4の処理はステップS102に進む。
First, a description will be given with reference to FIG.
In step S101, the control device 4 determines whether there is an air conditioning cycle operation request. Here, the air-conditioning cycle operation request is an operation request for air-conditioning (cooling / heating) the room (air-conditioned space) in which the indoor unit 2 is installed. The air conditioning cycle operation request may be input to the control device 4 by a user operating a remote controller (not shown) installed in the room, for example, and an indoor temperature detector (not shown) that detects the room temperature. May be determined based on the detected temperature (room temperature) and the indoor set temperature.
If there is an air conditioning cycle operation request (S101 → Yes), the process of the control device 4 proceeds to step S105. If there is no air conditioning cycle operation request (S101 → No), the process of the control device 4 proceeds to step S102.
 ステップS102において、制御装置4は、給湯サイクル運転要求が有るか否かを判定する。ここで、給湯サイクル運転要求とは、空調給湯システムSの給湯運転を実行する要求である。給湯サイクル運転要求は、例えば、室内に設置されたリモコン(図示せず)を使用者が操作することにより制御装置4に入力されてもよく、給湯タンクユニット3のタンク52に貯留された高温の被加熱液体の量が所定量以下となった場合に「給湯サイクル運転要求」としてもよく、所定の時間帯となった場合に「給湯サイクル運転要求」としてもよい。
 給湯サイクル運転要求が有る場合(S102→Yes)、制御装置4の処理はステップS104に進む。給湯サイクル運転要求がない場合(S102→No)、制御装置4の処理はステップS103に進む。
In step S102, control device 4 determines whether or not there is a hot water supply cycle operation request. Here, the hot water supply cycle operation request is a request to execute the hot water supply operation of the air conditioning hot water supply system S. The hot water supply cycle operation request may be input to the control device 4 by a user operating a remote controller (not shown) installed in the room, for example, or the high temperature stored in the tank 52 of the hot water supply tank unit 3. A “hot water supply cycle operation request” may be made when the amount of liquid to be heated is equal to or less than a predetermined amount, and a “hot water supply cycle operation request” may be made when a predetermined time zone is reached.
When there is a hot water supply cycle operation request (S102 → Yes), the process of the control device 4 proceeds to step S104. When there is no hot water supply cycle operation request (S102 → No), the process of the control device 4 proceeds to step S103.
 ステップS103において、制御装置4は、空調給湯システムSの運転モードを「待機モード」に決定する。なお、待機モードとは、空調給湯システムSの空調運転(冷房運転/暖房運転)及び給湯運転を停止して、運転指令の入力を待つモードである。
 ステップS104において、制御装置4は、空調給湯システムSの運転モードを「給湯運転モード」に決定する。なお、給湯運転モードとは、空調給湯システムSの給湯運転を実行するモードである。この運転モードにおける空調給湯システムS(ヒートポンプユニット1)の動作は、図6を用いて後記する。
In step S103, the control device 4 determines the operation mode of the air conditioning and hot water supply system S to be “standby mode”. The standby mode is a mode in which the air-conditioning operation (cooling operation / heating operation) and the hot-water supply operation of the air-conditioning hot-water supply system S are stopped and an operation command is waited for.
In step S104, the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “hot water supply operation mode”. The hot water supply operation mode is a mode in which the hot water supply operation of the air conditioning hot water supply system S is executed. The operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
 ステップS105において、制御装置4は、給湯サイクル運転要求が有るか否かを判定する。なお、ステップS105における給湯サイクル運転要求は、ステップS102における給湯サイクル運転要求と同様であり説明を省略する。
 給湯サイクル運転要求が有る場合(S105→Yes)、制御装置4の処理はステップS111に進む。給湯サイクル運転要求がない場合(S105→No)、制御装置4の処理はステップS106に進む。
In step S105, control device 4 determines whether or not there is a hot water supply cycle operation request. The hot water supply cycle operation request in step S105 is the same as the hot water supply cycle operation request in step S102, and a description thereof will be omitted.
When there is a hot water supply cycle operation request (S105 → Yes), the process of the control device 4 proceeds to step S111. When there is no hot water supply cycle operation request (S105 → No), the process of the control device 4 proceeds to step S106.
 ステップS106において、制御装置4は、空調サイクル運転要求が「冷房運転」であるか否かを判定する。
 空調サイクル運転要求が「冷房運転」である場合(S106→Yes)、制御装置4の処理はステップS107に進む。空調サイクル運転要求が「冷房運転」でない場合(S106→No)、制御装置4の処理はステップS110に進む。
In step S <b> 106, the control device 4 determines whether or not the air conditioning cycle operation request is “cooling operation”.
When the air conditioning cycle operation request is “cooling operation” (S106 → Yes), the process of the control device 4 proceeds to step S107. When the air conditioning cycle operation request is not “cooling operation” (S106 → No), the process of the control device 4 proceeds to step S110.
 ステップS107において、制御装置4は、空調負荷Qacが所定の閾値Q1以上であるか否かを判定する。なお、空調負荷Qacは、室外温度Tao、室内温度Tai、室内設定温度Tac_set、室内風量Vac_setに基づいて推定される。また、閾値Q1は、空調負荷が過負荷であるか否かを判定する際の閾値であり、予め実験又はシミュレーションにより決定し、制御装置4に記憶されている。
 ステップS107において、空調負荷Qacが閾値Q1以上である場合(S107→Yes)、制御装置4の処理はステップS108に進む。空調負荷Qacが閾値Q1未満である場合(S107→No)、制御装置4の処理はステップS109に進む。
In step S107, the control device 4 determines whether or not the air conditioning load Qac is greater than or equal to a predetermined threshold value Q1. The air conditioning load Qac is estimated based on the outdoor temperature Tao, the indoor temperature Tai, the indoor set temperature Tac_set, and the indoor air volume Vac_set. The threshold value Q1 is a threshold value for determining whether or not the air conditioning load is overloaded, and is determined in advance by experiments or simulations and stored in the control device 4.
In step S107, when the air conditioning load Qac is equal to or greater than the threshold value Q1 (S107 → Yes), the process of the control device 4 proceeds to step S108. When the air conditioning load Qac is less than the threshold value Q1 (S107 → No), the process of the control device 4 proceeds to step S109.
 ステップS108において、制御装置4は、空調給湯システムSの運転モードを「冷房運転(通常)モード」に決定する。なお、冷房運転(通常)モードとは、空調給湯システムSの冷房運転を実行するモードであり、給湯用冷媒回路30において自然循環を行わないモードである。この運転モードにおける空調給湯システムS(ヒートポンプユニット1)の動作は、図7を用いて後記する。 In step S108, the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “cooling operation (normal) mode”. The cooling operation (normal) mode is a mode in which the cooling operation of the air conditioning and hot water supply system S is executed, and is a mode in which natural circulation is not performed in the hot water supply refrigerant circuit 30. The operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
 ステップS109において、制御装置4は、空調給湯システムSの運転モードを「冷房運転(自然循環)モード」に決定する。なお、冷房運転(自然循環)モードとは、空調給湯システムSの冷房運転を実行するモードであり、給湯用冷媒回路30において自然循環を行うモードである。この運転モードにおける空調給湯システムS(ヒートポンプユニット1)の動作は、図8を用いて後記する。 In step S109, the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “cooling operation (natural circulation) mode”. The cooling operation (natural circulation) mode is a mode in which the cooling operation of the air conditioning and hot water supply system S is executed, and is a mode in which natural circulation is performed in the hot water supply refrigerant circuit 30. The operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
 ステップS110において、制御装置4は、空調給湯システムSの運転モードを「暖房運転モード」に決定する。なお、暖房運転モードとは、空調給湯システムSの暖房運転を実行するモードである。この運転モードにおける空調給湯システムS(ヒートポンプユニット1)の動作は、図9を用いて後記する。 In step S110, the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “heating operation mode”. The heating operation mode is a mode in which the heating operation of the air conditioning and hot water supply system S is executed. The operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
 ステップS111において、制御装置4は、空調サイクル運転要求が「冷房運転」であるか否かを判定する。
 空調サイクル運転要求が「冷房運転」である場合(S111→Yes)、制御装置4の処理はステップS112に進む。空調サイクル運転要求が「冷房運転」でない場合(S111→No)、制御装置4の処理は図3のステップS201に進む。
In step S111, the control device 4 determines whether or not the air-conditioning cycle operation request is “cooling operation”.
When the air conditioning cycle operation request is “cooling operation” (S111 → Yes), the process of the control device 4 proceeds to step S112. When the air conditioning cycle operation request is not “cooling operation” (S111 → No), the processing of the control device 4 proceeds to step S201 in FIG.
 ステップS112において、制御装置4は、空調排熱量Qac_ex及び給湯吸熱量Qec_exを推定する。ここで、空調排熱量Qac_exとは、空調用冷媒回路10及び給湯用冷媒回路30を独立して運転した際の冷房運転に要する熱源への排熱量である。また、給湯吸熱量Qec_exとは、空調用冷媒回路10及び給湯用冷媒回路30を独立して運転した際の給湯運転に要する熱源からの給熱量である。
 なお、空調排熱量Qac_ex及び給湯吸熱量Qec_exの推定処理は、図4を用いて後記する。
In step S112, the control device 4 estimates the air conditioning exhaust heat amount Qac_ex and the hot water supply heat absorption amount Qec_ex. Here, the air conditioning exhaust heat amount Qac_ex is the amount of exhaust heat to the heat source required for the cooling operation when the air conditioning refrigerant circuit 10 and the hot water supply refrigerant circuit 30 are independently operated. The hot water supply heat absorption amount Qec_ex is the heat supply amount from the heat source required for the hot water supply operation when the air conditioning refrigerant circuit 10 and the hot water supply refrigerant circuit 30 are operated independently.
The estimation processing of the air conditioning exhaust heat amount Qac_ex and the hot water supply heat absorption amount Qec_ex will be described later with reference to FIG.
 ステップS113において、制御装置4は、空調排熱量Qac_exが給湯吸熱量Qec_exより大きいか否かを判定する。
 空調排熱量Qac_exが給湯吸熱量Qec_exより大きい場合(S113→Yes)、制御装置4の処理はステップS114に進む。空調排熱量Qac_exが給湯吸熱量Qec_ex以下である場合(S113→No)、制御装置4の処理はステップS115に進む。
In step S113, the control device 4 determines whether or not the air conditioning exhaust heat amount Qac_ex is larger than the hot water supply heat absorption amount Qec_ex.
When the air conditioning exhaust heat quantity Qac_ex is larger than the hot water supply heat absorption quantity Qec_ex (S113 → Yes), the process of the control device 4 proceeds to step S114. When the air conditioning exhaust heat amount Qac_ex is equal to or less than the hot water supply heat absorption amount Qec_ex (S113 → No), the process of the control device 4 proceeds to Step S115.
 ステップS114において、制御装置4は、空調給湯システムSの運転モードを「冷房給湯運転(排熱回収A)モード」に決定する。なお、冷房給湯運転(排熱回収A)モードは、空調給湯システムSの冷房運転及び給湯運転を実行するモードの一種であり、空調用冷媒回路10の排熱を給湯用冷媒回路30で回収して運転する。この運転モードにおける空調給湯システムS(ヒートポンプユニット1)の動作は、図10を用いて後記する。 In step S114, the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “cooling hot water supply operation (exhaust heat recovery A) mode”. The cooling hot water supply operation (exhaust heat recovery A) mode is a kind of mode for performing the cooling operation and the hot water supply operation of the air conditioning hot water supply system S, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30. Drive. The operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
 ステップS115において、制御装置4は、空調排熱量Qac_exが給湯吸熱量Qec_exと等しいか否かを判定する。
 空調排熱量Qac_exが給湯吸熱量Qec_exと等しい場合(S115→Yes)、制御装置4の処理はステップS116に進む。空調排熱量Qac_exが給湯吸熱量Qec_exと等しくない場合(S115→No)、制御装置4の処理はステップS117に進む。
In step S115, the control device 4 determines whether or not the air conditioning exhaust heat amount Qac_ex is equal to the hot water supply heat absorption amount Qec_ex.
When the air conditioning exhaust heat amount Qac_ex is equal to the hot water supply heat absorption amount Qec_ex (S115 → Yes), the process of the control device 4 proceeds to step S116. When the air conditioning exhaust heat amount Qac_ex is not equal to the hot water supply heat absorption amount Qec_ex (S115 → No), the process of the control device 4 proceeds to step S117.
 ステップS116において、制御装置4は、空調給湯システムSの運転モードを「冷房給湯運転(排熱回収B)モード」に決定する。なお、冷房給湯運転(排熱回収B)モードは、空調給湯システムSの冷房運転及び給湯運転を実行するモードの一種であり、空調用冷媒回路10の排熱を給湯用冷媒回路30で回収して運転する。この運転モードにおける空調給湯システムS(ヒートポンプユニット1)の動作は、図11を用いて後記する。 In step S116, the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “cooling hot water supply operation (exhaust heat recovery B) mode”. The cooling hot water supply operation (exhaust heat recovery B) mode is a kind of mode for performing the cooling operation and the hot water supply operation of the air conditioning hot water supply system S, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30. Drive. The operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
 ステップS117において、制御装置4は、空調給湯システムSの運転モードを「冷房給湯運転(排熱回収C)モード」に決定する。なお、冷房給湯運転(排熱回収C)モードは、空調給湯システムSの冷房運転及び給湯運転を実行するモードの一種であり、空調用冷媒回路10の排熱を給湯用冷媒回路30で回収して運転する。この運転モードにおける空調給湯システムS(ヒートポンプユニット1)の動作は、図12を用いて後記する。 In step S117, the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “cooling hot water supply operation (exhaust heat recovery C) mode”. The cooling / hot water supply operation (exhaust heat recovery C) mode is a kind of mode for performing the cooling operation and the hot water supply operation of the air conditioning and hot water supply system S, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30. Drive. The operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
 次に、ステップS111において、空調サイクル運転要求が「冷房運転」でない場合(S111→No)について、図3を用いて説明する。即ち、給湯サイクル運転要求が有り(S105→Yes参照)、空調サイクル運転要求が「暖房運転」である場合について説明する。 Next, the case where the air-conditioning cycle operation request is not “cooling operation” in step S111 (S111 → No) will be described with reference to FIG. That is, a case where there is a hot water supply cycle operation request (see S105 → Yes) and the air conditioning cycle operation request is “heating operation” will be described.
 ステップS201において、制御装置4は、単独総消費電力Wsys1及び余剰熱運転消費電力Wsys2を推定する。ここで、単独総消費電力Wsys1とは、空調給湯システムSを暖房給湯運転(独立)モード(後記する図13参照)で運転した場合の推定消費電力である。また、余剰熱運転消費電力Wsys2とは、空調給湯システムSを暖房給湯運転(空調余剰加熱)モード(後記する図14参照)で運転した場合の推定消費電力である。
 なお、単独総消費電力Wsys1及び余剰熱運転消費電力Wsys2の推定処理は、図5を用いて後記する。
In step S201, the control device 4 estimates the single total power consumption Wsys1 and the surplus heat operation power consumption Wsys2. Here, the single total power consumption Wsys1 is the estimated power consumption when the air conditioning and hot water supply system S is operated in the heating and hot water supply operation (independent) mode (see FIG. 13 to be described later). The surplus heat operation power consumption Wsys2 is the estimated power consumption when the air conditioning hot water supply system S is operated in the heating hot water supply operation (air conditioning surplus heating) mode (see FIG. 14 described later).
Note that the process of estimating the single total power consumption Wsys1 and the surplus heat operation power consumption Wsys2 will be described later with reference to FIG.
 ステップS202において、制御装置4は、単独総消費電力Wsys1が余剰熱運転消費電力Wsys2以下であるか否かを判定する。
 単独総消費電力Wsys1が余剰熱運転消費電力Wsys2以下である場合(S202→Yes)、制御装置4の処理はステップS203に進む。単独総消費電力Wsys1が余剰熱運転消費電力Wsys2より大きい場合(S202→No)、制御装置4の処理はステップS204に進む。
In step S202, the control device 4 determines whether or not the single total power consumption Wsys1 is equal to or less than the surplus heat operation power consumption Wsys2.
When the single total power consumption Wsys1 is equal to or less than the surplus heat operation power consumption Wsys2 (S202 → Yes), the process of the control device 4 proceeds to step S203. When the single total power consumption Wsys1 is larger than the surplus heat operation power consumption Wsys2 (S202 → No), the processing of the control device 4 proceeds to step S204.
 ステップS203において、制御装置4は、空調給湯システムSの運転モードを「暖房給湯運転(独立)モード」に決定する。なお、暖房給湯運転(独立)モードとは、空調給湯システムSの暖房運転及び給湯運転を実行するモードの一種であり、空調用冷媒回路10と給湯用冷媒回路30とを独立して運転し、中間熱交換器21を使用しない。この運転モードにおける空調給湯システムS(ヒートポンプユニット1)の動作は、図13を用いて後記する。 In step S203, the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “heating and hot water supply operation (independent) mode”. The heating and hot water supply operation (independent) mode is a type of mode for performing the heating operation and the hot water supply operation of the air conditioning and hot water supply system S. The air conditioning refrigerant circuit 10 and the hot water supply refrigerant circuit 30 are operated independently, The intermediate heat exchanger 21 is not used. The operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
 ステップS204において、制御装置4は、空調給湯システムSの運転モードを「暖房給湯運転(空調余剰加熱)モード」に決定する。なお、暖房給湯運転(空調余剰加熱)モードとは、空調給湯システムSの暖房運転を実行し、空調用冷媒回路10の余剰熱を給湯用冷媒回路30で回収して給湯運転するモードである。この運転モードにおける空調給湯システムS(ヒートポンプユニット1)の動作は、図14を用いて後記する。 In step S204, the control device 4 determines the operation mode of the air conditioning and hot water supply system S as the “heating and hot water supply operation (air conditioning surplus heating) mode”. The heating hot water supply operation (air conditioning surplus heating) mode is a mode in which the heating operation of the air conditioning hot water supply system S is executed, and the surplus heat of the air conditioning refrigerant circuit 10 is collected by the hot water supply refrigerant circuit 30 to perform the hot water supply operation. The operation of the air conditioning and hot water supply system S (heat pump unit 1) in this operation mode will be described later with reference to FIG.
(空調排熱量Qac_ex及び給湯吸熱量Qec_exの推定処理)
 図4は、図2のステップS112における空調排熱量Qac_ex及び給湯吸熱量Qec_exの推定処理の手順を示すフローチャートである。
 ステップS301において、制御装置4は、空調負荷Qacを推定する。なお、空調負荷Qacは、室外温度Tao、室内温度Tai、室内設定温度Tac_set、室内風量Vac_setに基づいて推定される。
(Estimated processing of air conditioning exhaust heat amount Qac_ex and hot water supply heat absorption amount Qec_ex)
FIG. 4 is a flowchart showing a procedure for estimating the air conditioning exhaust heat amount Qac_ex and the hot water supply heat absorption amount Qec_ex in step S112 of FIG.
In step S301, the control device 4 estimates the air conditioning load Qac. The air conditioning load Qac is estimated based on the outdoor temperature Tao, the indoor temperature Tai, the indoor set temperature Tac_set, and the indoor air volume Vac_set.
 室外温度Taoは、例えば、ヒートポンプユニット1の空調用ファン15f又は給湯用ファン35fの外気取入口に設けられた温度センサ(図示せず)で検出される。室内温度Taiは、例えば、室内ユニット2の室内ファン43fの室内空気取入口に設けられた温度センサ(図示せず)で検出される。室内風量Vac_setは、例えば、室内ファン43fの回転速度を検出することにより風量(空気の流量)を算出する。もしくは、室内に設置されたリモコン(図示せず)で使用者が設定した設定風量から算出する。室内設定温度Tac_setは、例えば、室内に設置されたリモコン(図示せず)を使用者が操作することにより制御装置4に入力される。 The outdoor temperature Tao is detected by, for example, a temperature sensor (not shown) provided at the outside air intake port of the air conditioning fan 15f or the hot water supply fan 35f of the heat pump unit 1. The indoor temperature Tai is detected by, for example, a temperature sensor (not shown) provided at the indoor air intake port of the indoor fan 43f of the indoor unit 2. For the indoor air volume Vac_set, for example, the air volume (air flow rate) is calculated by detecting the rotational speed of the indoor fan 43f. Alternatively, it is calculated from the set air volume set by the user with a remote controller (not shown) installed in the room. The indoor set temperature Tac_set is input to the control device 4 when the user operates a remote controller (not shown) installed indoors, for example.
 ステップS302において、制御装置4は、空調消費電力Wacを推定する。なお、空調消費電力Wacは、ステップS301で推定した空調負荷Qac、室外温度Tao、室内設定温度Tac_setに基づいて推定される。
 ステップS303において、制御装置4は、空調排熱量Qac_exを推定する。なお、空調排熱量Qac_exは、ステップS301で推定した空調負荷Qac、ステップS302で推定した空調消費電力Wacに基づいて推定される。
In step S302, the control device 4 estimates the air conditioning power consumption Wac. The air conditioning power consumption Wac is estimated based on the air conditioning load Qac, the outdoor temperature Tao, and the indoor set temperature Tac_set estimated in step S301.
In step S303, the control device 4 estimates the air conditioning exhaust heat quantity Qac_ex. The air conditioning exhaust heat quantity Qac_ex is estimated based on the air conditioning load Qac estimated in step S301 and the air conditioning power consumption Wac estimated in step S302.
 ステップS304において、制御装置4は、給湯負荷Qecを推定する。なお、給湯負荷Qecは、室外温度Tao、給水温度Twi、給湯温度Two、給水流量Vwに基づいて推定される。
 給水温度Twiは、例えば、ヒートポンプユニット1の給湯利用側熱交換器32の二次側伝熱管32bの入口側に設けられた温度センサ(図示せず)で検出される。給湯温度Two、は、ヒートポンプユニット1で沸き上げる湯(被加熱液体)の設定温度であり、例えば、室内に設置されたリモコン(図示せず)を使用者が操作することにより制御装置4に入力される。給水流量Vwは、例えば、ヒートポンプユニット1の第二ポンプ51の回転速度を検出することにより算出する。
In step S304, the control device 4 estimates the hot water supply load Qec. The hot water supply load Qec is estimated based on the outdoor temperature Tao, the water supply temperature Twi, the hot water supply temperature Two, and the water supply flow rate Vw.
The feed water temperature Twi is detected by, for example, a temperature sensor (not shown) provided on the inlet side of the secondary heat transfer tube 32b of the hot water use side heat exchanger 32 of the heat pump unit 1. The hot water supply temperature Two is a set temperature of hot water (liquid to be heated) boiled by the heat pump unit 1, and is input to the control device 4 when the user operates a remote controller (not shown) installed indoors, for example. Is done. The feed water flow rate Vw is calculated by detecting the rotational speed of the second pump 51 of the heat pump unit 1, for example.
 ステップS305において、制御装置4は、給湯消費電力Wecを推定する。なお、給湯消費電力Wecは、ステップS304で推定した給湯負荷Qec、室外温度Tao、給湯温度Twoに基づいて推定される。
 ステップS306において、制御装置4は、給湯吸熱量Qec_exを推定する。なお、給湯吸熱量Qec_exは、ステップS304で推定した給湯負荷Qec、ステップS305で推定した給湯消費電力Wecに基づいて推定される。
In step S305, control device 4 estimates hot water supply power consumption Wec. Hot water supply power consumption Wec is estimated based on hot water supply load Qec, outdoor temperature Tao, and hot water supply temperature Two estimated in step S304.
In step S306, the control device 4 estimates the hot water supply heat absorption amount Qec_ex. The hot water supply heat absorption amount Qec_ex is estimated based on the hot water supply load Qec estimated in step S304 and the hot water supply power consumption Wec estimated in step S305.
 このように、制御装置4は、空調排熱量Qac_exを推定し(S303参照)、給湯吸熱量Qec_exを推定して(S306参照)、図2のステップS112の処理を終了し、ステップS113に進む。 Thus, the control device 4 estimates the air conditioning exhaust heat quantity Qac_ex (see S303), estimates the hot water supply heat absorption quantity Qec_ex (see S306), ends the process of step S112 in FIG. 2, and proceeds to step S113.
(単独総消費電力Wsys1及び余剰熱運転消費電力Wsys2の推定処理)
 図5は、図3のステップS201における単独総消費電力Wsys1及び余剰熱運転消費電力Wsys2の推定処理の手順を示すフローチャートである。
 ステップS401において、制御装置4は、空調負荷Qacを推定する。なお、空調負荷Qacは、室外温度Tao、室内温度Tai、室内設定温度Tac_set、室内風量Vac_setに基づいて推定される。
(Individual total power consumption Wsys1 and surplus heat operation power consumption Wsys2 estimation processing)
FIG. 5 is a flowchart showing a procedure for estimating the single total power consumption Wsys1 and the surplus heat operation power consumption Wsys2 in step S201 of FIG.
In step S401, the control device 4 estimates the air conditioning load Qac. The air conditioning load Qac is estimated based on the outdoor temperature Tao, the indoor temperature Tai, the indoor set temperature Tac_set, and the indoor air volume Vac_set.
 ステップS402において、制御装置4は、空調用圧縮機目標回転速度Ncp_acを推定する。なお、空調用圧縮機目標回転速度Ncp_acは、ステップS401で推定した空調負荷Qac、室外温度Tao、室内設定温度Tac_set、室内風量Vac_setに基づいて推定される。
 ステップS403において、制御装置4は、ステップS402で推定した空調用圧縮機目標回転速度Ncp_acが空調用圧縮機最低回転速度Ncp_acmin以上であるか否かを判定する。
 ここで、空調用圧縮機最低回転速度Ncp_acminとは、空調用冷媒回路10の空調用圧縮機11が運転制御可能な回転速度の下限である。
In step S402, the control device 4 estimates the air conditioning compressor target rotational speed Ncp_ac. The air conditioning compressor target rotational speed Ncp_ac is estimated based on the air conditioning load Qac, the outdoor temperature Tao, the indoor set temperature Tac_set, and the indoor air volume Vac_set estimated in step S401.
In step S403, the control device 4 determines whether or not the air conditioning compressor target rotational speed Ncp_ac estimated in step S402 is equal to or higher than the air conditioning compressor minimum rotational speed Ncp_acmin.
Here, the minimum rotation speed Ncp_acmin of the air conditioning compressor is the lower limit of the rotation speed at which the air conditioning compressor 11 of the air conditioning refrigerant circuit 10 can be controlled.
 空調用圧縮機目標回転速度Ncp_acが空調用圧縮機最低回転速度Ncp_acmin以上である場合(S403→Yes)、制御装置4の処理はステップS404に進む。空調用圧縮機目標回転速度Ncp_acが空調用圧縮機最低回転速度Ncp_acmin未満である場合(S403→No)、制御装置4の処理はステップS409に進む。 If the air conditioning compressor target rotational speed Ncp_ac is equal to or higher than the air conditioning compressor minimum rotational speed Ncp_acmin (S403 → Yes), the process of the control device 4 proceeds to step S404. When the air conditioning compressor target rotation speed Ncp_ac is less than the air conditioning compressor minimum rotation speed Ncp_acmin (S403 → No), the process of the control device 4 proceeds to step S409.
 ステップS404において、制御装置4は、空調消費電力Wacを推定する。なお、空調消費電力Wacは、ステップS401で推定した空調負荷Qac、室外温度Tao、室内設定温度Tac_setに基づいて推定される。
 ステップS405において、制御装置4は、給湯負荷Qecを推定する。なお、給湯負荷Qecは、室外温度Tao、給水温度Twi、給湯温度Two、給水流量Vwに基づいて推定される。
In step S404, the control device 4 estimates the air conditioning power consumption Wac. The air conditioning power consumption Wac is estimated based on the air conditioning load Qac, the outdoor temperature Tao, and the indoor set temperature Tac_set estimated in step S401.
In step S405, the control device 4 estimates the hot water supply load Qec. The hot water supply load Qec is estimated based on the outdoor temperature Tao, the water supply temperature Twi, the hot water supply temperature Two, and the water supply flow rate Vw.
 ステップS406において、制御装置4は、給湯消費電力Wecを推定する。なお、給湯消費電力Wecは、ステップS405で推定した給湯負荷Qec、室外温度Tao、給湯温度Twoに基づいて推定される。
 ステップS407において、制御装置4は、単独総消費電力Wsys1を推定する。なお、単独総消費電力Wsys1は、ステップS404で推定した空調消費電力WacとステップS406で推定した給湯消費電力Wecとを加算して(即ち、Wsys1=Wac+Wec)推定する。
In step S406, control device 4 estimates hot water supply power consumption Wec. Hot water supply power consumption Wec is estimated based on hot water supply load Qec, outdoor temperature Tao, and hot water supply temperature Two estimated in step S405.
In step S407, the control device 4 estimates the single total power consumption Wsys1. The single total power consumption Wsys1 is estimated by adding the air conditioning power consumption Wac estimated in step S404 and the hot water supply power consumption Wec estimated in step S406 (that is, Wsys1 = Wac + Wec).
 ステップS408において、制御装置4は、余剰熱運転消費電力Wsys2を推定する。なお、本実施形態では、(Wsys2=Wsys1)として推定する。
 このように、制御装置4は、単独総消費電力Wsys1を推定し(S407参照)、余剰熱運転消費電力Wsys2を推定して(S408参照)、図3のステップS201の処理を終了し、ステップS202に進む。
In step S408, the control device 4 estimates surplus heat operation power consumption Wsys2. In this embodiment, it is estimated as (Wsys2 = Wsys1).
As described above, the control device 4 estimates the single total power consumption Wsys1 (see S407), estimates the surplus heat operation power consumption Wsys2 (see S408), and ends the process of step S201 in FIG. Proceed to
 次に、図5のステップS403において、空調用圧縮機回転速度Ncp_acが空調用圧縮機最低回転速度Ncp_acmin未満である場合(S403→No)について説明する。
 空調用圧縮機11は、空調用圧縮機最低回転速度Ncp_acmin未満の回転速度で運転することができないため、空調負荷Qacから推定された空調用圧縮機目標回転速度Ncp_acが、空調用圧縮機最低回転速度Ncp_acmin未満となった場合、圧縮機回転数はNcp_acminで回転することになる。
 このため、実際に出力される空調能力は、Ncp_acmin/Ncp_ac分だけ空調負荷Qacよりも大きくなるため、制御装置4は空調用圧縮機11の運転と停止を繰り返す断続運転となる。したがってこの場合、空調給湯システムSの効率が悪化する。
Next, the case where the air conditioning compressor rotation speed Ncp_ac is less than the air conditioning compressor minimum rotation speed Ncp_acmin in step S403 of FIG. 5 (S403 → No) will be described.
Since the air conditioning compressor 11 cannot be operated at a rotational speed less than the air conditioning compressor minimum rotational speed Ncp_acmin, the air conditioning compressor target rotational speed Ncp_ac estimated from the air conditioning load Qac is the minimum air conditioning compressor rotational speed. When the speed is less than Ncp_acmin, the compressor rotation speed is Ncp_acmin.
For this reason, since the air-conditioning capability actually output becomes larger than the air-conditioning load Qac by Ncp_acmin / Ncp_ac, the control device 4 performs intermittent operation in which the operation and stop of the air-conditioning compressor 11 are repeated. Therefore, in this case, the efficiency of the air conditioning and hot water supply system S deteriorates.
 ステップS409において、制御装置4は、断続運転時の空調消費電力悪化率εを推定する。そして、断続運転を考慮した空調消費電力Wac1を推定する。なお、空調消費電力悪化率εは、空調用圧縮機目標回転速度Ncp_ac、空調用圧縮機最低回転速度Ncp_acminに基づいて推定される。また、断続運転を考慮した空調消費電力Wac1は、ステップS401で推定した空調負荷Qac、室外温度Tao、室内設定温度Tac_set、空調消費電力悪化率εに基づいて推定される。 In step S409, the control device 4 estimates the air-conditioning power consumption deterioration rate ε during intermittent operation. And air-conditioning power consumption Wac1 which considered intermittent operation is estimated. The air conditioning power consumption deterioration rate ε is estimated based on the air conditioning compressor target rotation speed Ncp_ac and the air conditioning compressor minimum rotation speed Ncp_acmin. The air-conditioning power consumption Wac1 considering the intermittent operation is estimated based on the air-conditioning load Qac, the outdoor temperature Tao, the indoor set temperature Tac_set, and the air-conditioning power consumption deterioration rate ε estimated in step S401.
 ステップS410において、制御装置4は、給湯負荷Qecを推定する。なお、給湯負荷Qecは、室外温度Tao、給水温度Twi、給湯温度Two、給水流量Vwに基づいて推定される。
 ステップS411において、制御装置4は、給湯消費電力Wecを推定する。なお、給湯消費電力Wecは、ステップS304で推定した給湯負荷Qec、室外温度Tao、給湯温度Twoに基づいて推定される。
In step S410, control device 4 estimates hot water supply load Qec. The hot water supply load Qec is estimated based on the outdoor temperature Tao, the water supply temperature Twi, the hot water supply temperature Two, and the water supply flow rate Vw.
In step S411, control device 4 estimates hot water supply power consumption Wec. Hot water supply power consumption Wec is estimated based on hot water supply load Qec, outdoor temperature Tao, and hot water supply temperature Two estimated in step S304.
 ステップS412において、制御装置4は、単独総消費電力Wsys1を推定する。なお、単独総消費電力Wsys1は、ステップS409で推定した断続運転を考慮した空調消費電力Wac1とステップS411で推定した給湯消費電力Wecとを加算して(即ち、Wsys=Wac1+Wec)推定する。
 ステップS413において、制御装置4は、空調擬似負荷Qac_ecを推定する。なお、空調擬似負荷Qac_ecは、室外温度Tao、給水温度Twi、給湯温度Two、給水流量Vwに基づいて推定される。
In step S412, the control device 4 estimates the single total power consumption Wsys1. The single total power consumption Wsys1 is estimated by adding the air conditioning power consumption Wac1 considering the intermittent operation estimated in step S409 and the hot water supply power consumption Wec estimated in step S411 (ie, Wsys = Wac1 + Wec).
In step S413, the control device 4 estimates the air conditioning pseudo load Qac_ec. The air conditioning pseudo load Qac_ec is estimated based on the outdoor temperature Tao, the feed water temperature Twi, the hot water supply temperature Two, and the feed water flow rate Vw.
 ここで、空調給湯システムSを暖房給湯運転(空調余剰加熱)モード(図14参照)で運転制御する場合において、空調用冷媒回路10の空調利用側熱交換器19を凝縮器として機能させるとともに、空調用冷媒回路10の中間熱交換器21も凝縮器として機能させる。
 このため、給湯用冷媒回路30の中間熱交換器21における給湯吸熱量を、空調用冷媒回路10の中間熱交換器21における空調擬似負荷として、空調擬似負荷Qac_ecを推定する。
Here, in the case of controlling the operation of the air conditioning hot water supply system S in the heating hot water supply operation (air conditioning surplus heating) mode (see FIG. 14), the air conditioning use side heat exchanger 19 of the air conditioning refrigerant circuit 10 functions as a condenser, The intermediate heat exchanger 21 of the air conditioning refrigerant circuit 10 is also caused to function as a condenser.
Therefore, the air conditioning pseudo load Qac_ec is estimated using the hot water supply heat absorption amount in the intermediate heat exchanger 21 of the hot water supply refrigerant circuit 30 as the air conditioning pseudo load in the intermediate heat exchanger 21 of the air conditioning refrigerant circuit 10.
 ステップS414において、制御装置4は、空調擬似負荷Qac_ecを考慮した空調負荷Qac2を推定する。なお、擬似負荷を考慮した空調負荷Qac2は、ステップS401で推定した空調負荷QacとステップS413で推定した空調擬似負荷Qac_ecとを加算して(即ち、Qac2=Qac+Qac_ec)推定する。
 ステップS415において、制御装置4は、擬似負荷を考慮した空調消費電力Wac2を推定する。なお、空調消費電力Wac2は、ステップS414で推定した空調負荷Qac2、室外温度Tao、室内設定温度Tac_setに基づいて推定される。
In step S414, the control device 4 estimates the air conditioning load Qac2 in consideration of the air conditioning pseudo load Qac_ec. The air conditioning load Qac2 in consideration of the pseudo load is estimated by adding the air conditioning load Qac estimated in step S401 and the air conditioning pseudo load Qac_ec estimated in step S413 (that is, Qac2 = Qac + Qac_ec).
In step S415, the control device 4 estimates the air conditioning power consumption Wac2 in consideration of the pseudo load. The air conditioning power consumption Wac2 is estimated based on the air conditioning load Qac2, the outdoor temperature Tao, and the indoor set temperature Tac_set estimated in step S414.
 ステップS416において、制御装置4は、空調擬似負荷Qac_ecを考慮した給湯消費電力Wec2を推定する。なお、給湯消費電力Wec2は、ステップS414で推定した空調負荷Qac2、ステップS410で推定した給湯負荷Qec、室外温度Tao、給湯温度Two、室内設定温度Tac_setに基づいて推定される。 In step S416, the control device 4 estimates the hot water supply power consumption Wec2 in consideration of the air conditioning pseudo load Qac_ec. Hot water supply power consumption Wec2 is estimated based on air conditioning load Qac2 estimated in step S414, hot water supply load Qec estimated in step S410, outdoor temperature Tao, hot water supply temperature Two, and indoor set temperature Tac_set.
 ステップS417において、制御装置4は、余剰熱運転消費電力Wsys2を推定する。なお、余剰熱運転消費電力Wsys2は、ステップS415で推定した空調システム消費電力Wac2とステップS416で推定した給湯システム消費電力Wec2とを加算して(即ち、Wsys2=Wac2+Wec2)推定する。 In step S417, the control device 4 estimates surplus heat operation power consumption Wsys2. The surplus heat operation power consumption Wsys2 is estimated by adding the air conditioning system power consumption Wac2 estimated in step S415 and the hot water supply system power consumption Wec2 estimated in step S416 (that is, Wsys2 = Wac2 + Wec2).
 このように、制御装置4は、単独総消費電力Wsys1を推定し(S407,S412参照)、余剰熱運転消費電力Wsys2を推定して(S408,S417参照)、図3のステップS201の処理を終了し、ステップS202に進む。 In this manner, the control device 4 estimates the single total power consumption Wsys1 (see S407 and S412), estimates the surplus heat operation power consumption Wsys2 (see S408 and S417), and ends the process of step S201 in FIG. Then, the process proceeds to step S202.
(各運転モードの制御処理)
 次に、制御装置4が実行する空調給湯システムSの各運転モードについて、図6から図14を用いて説明する。制御装置4は、空調給湯システムSの運転モードを決定し(図2、図3参照)、決定した運転モードに従って空調給湯システムSを制御して各種運転を行う。
 なお、以下に説明する図6から図14において、第一冷媒、第二冷媒、熱搬送媒体、被加熱液体が通流している配管を太線で示し、流れ方向を矢印で示すものとする。また、各種弁(給湯用三方弁34,37、給湯用第二膨張弁36、給湯用冷媒制御弁39)について、通流を閉止している側を黒塗りで図示するものとする。
(Control processing in each operation mode)
Next, each operation mode of the air conditioning and hot water supply system S executed by the control device 4 will be described with reference to FIGS. The control device 4 determines the operation mode of the air conditioning and hot water supply system S (see FIGS. 2 and 3), and controls the air conditioning and hot water supply system S according to the determined operation mode to perform various operations.
In FIGS. 6 to 14 described below, a pipe through which the first refrigerant, the second refrigerant, the heat transfer medium, and the liquid to be heated flow is indicated by a bold line, and the flow direction is indicated by an arrow. Further, for various valves (three-way valves for hot water supply 34 and 37, a second hot water supply expansion valve 36, and a hot water supply refrigerant control valve 39), the side where the flow is closed is shown in black.
(待機モード:ステップS103)
 このモードにおいて、空調用冷媒回路10、給湯用冷媒回路30、空調用熱搬送媒体循環回路40及び給湯回路50は停止している。制御装置4は、運転指令の入力を待つ。運転指令が入力された場合には、空調給湯システムSの運転モードを決定する(図2、図3参照)。
(Standby mode: Step S103)
In this mode, the air conditioning refrigerant circuit 10, the hot water supply refrigerant circuit 30, the air conditioning heat transfer medium circulation circuit 40, and the hot water supply circuit 50 are stopped. The control device 4 waits for an input of an operation command. When the operation command is input, the operation mode of the air conditioning and hot water supply system S is determined (see FIGS. 2 and 3).
(給湯運転モード:ステップS104)
 図6は、給湯運転モードにおけるヒートポンプユニット1の冷媒及び被加熱液体の流れを示す系統図である。
 このモードにおいて、空調用冷媒回路10及び空調用熱搬送媒体循環回路40は停止している。また、中間熱交換器21への冷媒の通流は、給湯用冷媒回路30において閉止されている。
(Hot water supply operation mode: Step S104)
FIG. 6 is a system diagram showing the flow of the refrigerant and the liquid to be heated in the heat pump unit 1 in the hot water supply operation mode.
In this mode, the air conditioning refrigerant circuit 10 and the air conditioning heat transfer medium circulation circuit 40 are stopped. Further, the flow of the refrigerant to the intermediate heat exchanger 21 is closed in the hot water supply refrigerant circuit 30.
 給湯用冷媒回路30について説明する。制御装置4は、給湯用冷媒回路30内の冷媒が給湯熱源側熱交換器35を通流し、かつ、中間熱交換器21をバイパスして流れるように、給湯用冷媒制御弁39を全開とし、給湯用第二膨張弁36を閉止させ、給湯用三方弁34,37を制御する。また、制御装置4は、給湯用第一膨張弁33の開度(絞り)を制御する。また、制御装置4は、給湯用圧縮機31及び給湯用ファン35fの回転速度を制御する。 The hot water supply refrigerant circuit 30 will be described. The control device 4 fully opens the hot water supply refrigerant control valve 39 so that the refrigerant in the hot water supply refrigerant circuit 30 flows through the hot water supply heat source side heat exchanger 35 and bypasses the intermediate heat exchanger 21. The hot water supply second expansion valve 36 is closed, and the hot water supply three- way valves 34 and 37 are controlled. Moreover, the control apparatus 4 controls the opening degree (throttle) of the 1st expansion valve 33 for hot water supply. Further, the control device 4 controls the rotation speeds of the hot water supply compressor 31 and the hot water supply fan 35f.
 給湯用圧縮機31から吐出された高温高圧の第二冷媒は、凝縮器として機能する給湯利用側熱交換器32の一次側伝熱管32aに流入する。給湯利用側熱交換器32の一次側伝熱管32aを通流する第二冷媒は、給湯利用側熱交換器32の二次側伝熱管32bを通流する被加熱液体と熱交換することにより放熱して、中温高圧の第二冷媒となる。
 給湯利用側熱交換器32の一次側伝熱管32aから流出した中温高圧の第二冷媒は、給湯用第一膨張弁33で減圧され、低温低圧の第二冷媒となる。
The high-temperature and high-pressure second refrigerant discharged from the hot water supply compressor 31 flows into the primary side heat transfer tube 32a of the hot water supply side heat exchanger 32 that functions as a condenser. The second refrigerant flowing through the primary side heat transfer pipe 32a of the hot water supply side heat exchanger 32 exchanges heat with the heated liquid flowing through the secondary side heat transfer pipe 32b of the hot water supply side heat exchanger 32. Thus, it becomes a medium temperature and high pressure second refrigerant.
The medium-temperature and high-pressure second refrigerant that has flowed out of the primary-side heat transfer pipe 32a of the hot-water use side heat exchanger 32 is depressurized by the hot-water supply first expansion valve 33, and becomes a low-temperature and low-pressure second refrigerant.
 そして、低温低圧の第二冷媒は給湯用三方弁34を介して、蒸発器として機能する給湯熱源側熱交換器35に流入する。給湯熱源側熱交換器35を通流する第二冷媒は、給湯用ファン35fにより送られてくる空気(室外空気)と熱交換することにより、前記空気から熱を汲み上げる(吸熱する)。そして、吸熱した第二冷媒は、給湯熱源側熱交換器35から給湯用冷媒制御弁39及び給湯用三方弁37を介して、給湯用圧縮機31へと送られ、給湯用冷媒回路30を循環する。 The low-temperature and low-pressure second refrigerant flows into the hot water supply heat source side heat exchanger 35 functioning as an evaporator via the hot water supply three-way valve 34. The second refrigerant flowing through the hot water supply heat source side heat exchanger 35 exchanges heat with the air (outdoor air) sent by the hot water supply fan 35f, thereby pumping up heat (absorbing heat) from the air. Then, the absorbed second refrigerant is sent from the hot water supply heat source side heat exchanger 35 to the hot water supply compressor 31 through the hot water supply refrigerant control valve 39 and the hot water supply three-way valve 37 and circulates in the hot water supply refrigerant circuit 30. To do.
 次に、給湯回路50について説明する。制御装置4は、第二ポンプ51の回転速度を制御する。
 第二ポンプ51を駆動させることにより、タンク52の下部から流出した被加熱液体は給湯利用側熱交換器32の二次側伝熱管32bに流入する。給湯利用側熱交換器32の二次側伝熱管32bを通流する被加熱液体は、給湯利用側熱交換器32の一次側伝熱管32aを通流する第二冷媒と熱交換することにより吸熱し、高温の被加熱液体となる。そして、高温の被加熱液体は、給湯利用側熱交換器32の二次側伝熱管32bからタンク52の上部に戻され、貯留される。
Next, the hot water supply circuit 50 will be described. The control device 4 controls the rotation speed of the second pump 51.
By driving the second pump 51, the liquid to be heated that has flowed out from the lower portion of the tank 52 flows into the secondary heat transfer pipe 32 b of the hot water supply side heat exchanger 32. The liquid to be heated that flows through the secondary heat transfer pipe 32b of the hot water use side heat exchanger 32 absorbs heat by exchanging heat with the second refrigerant that flows through the primary side heat transfer pipe 32a of the hot water use side heat exchanger 32. Thus, it becomes a high-temperature liquid to be heated. The hot liquid to be heated is returned to the upper part of the tank 52 from the secondary heat transfer tube 32b of the hot water supply side heat exchanger 32 and stored.
(冷房運転(通常)モード:ステップS108)
 図7は、冷房運転(通常)モードにおけるヒートポンプユニット1の冷媒及び熱搬送媒体の流れを示す系統図である。
 このモードにおいて、給湯用冷媒回路30及び給湯回路50は停止している。また、中間熱交換器21への冷媒の通流は、給湯用冷媒回路30において閉止されている。
(Cooling operation (normal) mode: step S108)
FIG. 7 is a system diagram showing the flow of the refrigerant and heat transfer medium of the heat pump unit 1 in the cooling operation (normal) mode.
In this mode, the hot water supply refrigerant circuit 30 and the hot water supply circuit 50 are stopped. Further, the flow of the refrigerant to the intermediate heat exchanger 21 is closed in the hot water supply refrigerant circuit 30.
 空調用冷媒回路10について説明する。制御装置4は、第一四方弁12及び第二四方弁14内の切替手段(図示せず)が、それぞれ冷房運転の位置となるように制御する。
 すなわち、制御装置4は、空調利用側熱交換器19の二次側伝熱管19bから流出した第一冷媒が、空調用圧縮機11に流入するように第一四方弁12を制御し、空調用圧縮機11から吐出された第一冷媒が、空調熱源側熱交換器15に流入するように第二四方弁14を制御する。
The air conditioning refrigerant circuit 10 will be described. The control device 4 controls the switching means (not shown) in the first four-way valve 12 and the second four-way valve 14 to be in the cooling operation position.
That is, the control device 4 controls the first four-way valve 12 so that the first refrigerant flowing out from the secondary side heat transfer pipe 19b of the air conditioning utilization side heat exchanger 19 flows into the air conditioning compressor 11, and the air conditioning The second four-way valve 14 is controlled so that the first refrigerant discharged from the compressor 11 flows into the air conditioning heat source side heat exchanger 15.
 また、制御装置4は、空調用第二膨張弁16を全開とするように制御し、空調用第一膨張弁18の開度(絞り)を制御する。また、制御装置4は、空調用圧縮機11及び空調用ファン15fの回転速度を制御する。
 図7に示すように第二四方弁14を制御することによって、空調用圧縮機11から吐出された高温高圧の第一冷媒を、中間熱交換器21よりも先に空調熱源側熱交換器15に流入させることができる。
 ちなみに、前記とは逆の場合(第一冷媒が空調熱源側熱交換器15よりも先に中間熱交換器21に流入する場合)には、空調用圧縮機11から吐出された高温高圧の第一冷媒が中間熱交換器21で放熱する。この結果、第一冷媒の温度が低下し、空調熱源側熱交換器15で室外空気へ放熱する放熱量が低下する。したがって、圧縮機11による第一冷媒の圧縮によって前記放熱量を補う必要があるため、圧縮機11の負荷が大きくなる。
In addition, the control device 4 controls the second expansion valve 16 for air conditioning to be fully opened, and controls the opening degree (throttle) of the first expansion valve 18 for air conditioning. Further, the control device 4 controls the rotational speeds of the air conditioning compressor 11 and the air conditioning fan 15f.
As shown in FIG. 7, by controlling the second four-way valve 14, the high-temperature and high-pressure first refrigerant discharged from the air-conditioning compressor 11 is supplied to the air-conditioning heat source side heat exchanger before the intermediate heat exchanger 21. 15 can be introduced.
Incidentally, in the opposite case (when the first refrigerant flows into the intermediate heat exchanger 21 before the air conditioning heat source side heat exchanger 15), the high temperature and high pressure discharged from the air conditioning compressor 11 is used. One refrigerant radiates heat in the intermediate heat exchanger 21. As a result, the temperature of the first refrigerant decreases, and the amount of heat released to the outdoor air by the air conditioning heat source side heat exchanger 15 decreases. Therefore, since it is necessary to supplement the said heat radiation amount by compression of the 1st refrigerant | coolant by the compressor 11, the load of the compressor 11 becomes large.
 空調用圧縮機11から吐出された高温高圧の第一冷媒は、第一四方弁12及び第二空調用四方弁1を介して、凝縮器として機能する空調熱源側熱交換器15に流入する。
 空調熱源側熱交換器15を通流する第一冷媒は、空調用ファン15fにより送られてくる空気(室外空気)と熱交換することにより放熱(排熱)し、中温高圧の第一冷媒となる。空調熱源側熱交換器15から流出した中温高圧の第一冷媒は、空調用第二膨張弁16、中間熱交換器21の一次側伝熱管21a、第二四方弁14を介して空調用第一膨張弁18に流入する。
The high-temperature and high-pressure first refrigerant discharged from the air-conditioning compressor 11 flows into the air-conditioning heat source side heat exchanger 15 functioning as a condenser via the first four-way valve 12 and the second air-conditioning four-way valve 1. .
The first refrigerant flowing through the air-conditioning heat source side heat exchanger 15 dissipates heat (exhaust heat) by exchanging heat with the air (outdoor air) sent by the air-conditioning fan 15f. Become. The medium-temperature and high-pressure first refrigerant flowing out of the air-conditioning heat source side heat exchanger 15 passes through the air conditioning second expansion valve 16, the intermediate heat exchanger 21, the primary side heat transfer pipe 21 a, and the second four-way valve 14. It flows into one expansion valve 18.
 そして、中温高圧の第一冷媒は空調用第一膨張弁18で減圧され、低温低圧の第一冷媒となり、蒸発器として機能する空調利用側熱交換器19の二次側伝熱管19bに流入する。空調利用側熱交換器19の二次側伝熱管19bを通流する第一冷媒は、空調利用側熱交換器19の一次側伝熱管19aを通流する熱搬送媒体と熱交換することにより、熱搬送媒体から熱を汲み上げる(吸熱する)。そして、吸熱した第一冷媒は、空調利用側熱交換器19から第一四方弁12を介して空調用圧縮機11へと送られ、空調用冷媒回路10を循環する。 The medium-temperature and high-pressure first refrigerant is reduced in pressure by the air conditioning first expansion valve 18, becomes a low-temperature and low-pressure first refrigerant, and flows into the secondary-side heat transfer tube 19b of the air-conditioning use side heat exchanger 19 functioning as an evaporator. . The first refrigerant flowing through the secondary side heat transfer tube 19b of the air conditioning use side heat exchanger 19 exchanges heat with the heat transfer medium flowing through the primary side heat transfer tube 19a of the air conditioning use side heat exchanger 19, Pumps heat from the heat transfer medium (absorbs heat). Then, the absorbed first refrigerant is sent from the air-conditioning utilization side heat exchanger 19 to the air-conditioning compressor 11 via the first four-way valve 12 and circulates through the air-conditioning refrigerant circuit 10.
 次に、空調用熱搬送媒体循環回路40について説明する。制御装置4は、第一ポンプ41及び室内ファン43fの回転速度を制御する。また、制御装置4は、空調利用側熱交換器19の一次側伝熱管19aを通流する熱搬送媒体と空調利用側熱交換器19の二次側伝熱管19bを通流する第一冷媒とが対向流となるように熱搬送媒体四方弁42を制御する。 Next, the heat transfer medium circulation circuit 40 for air conditioning will be described. The control device 4 controls the rotation speeds of the first pump 41 and the indoor fan 43f. In addition, the control device 4 includes a heat transfer medium that flows through the primary side heat transfer pipe 19a of the air conditioning utilization side heat exchanger 19 and a first refrigerant that flows through the secondary side heat transfer pipe 19b of the air conditioning utilization side heat exchanger 19. The heat transfer medium four-way valve 42 is controlled so that becomes a counter flow.
 第一ポンプ41を駆動させることにより、熱搬送媒体は空調利用側熱交換器19の二次側伝熱管19bに流入する。空調利用側熱交換器19の二次側伝熱管19bを通流する熱搬送媒体は、空調利用側熱交換器19の二次側伝熱管19bを通流する第一冷媒と熱交換することにより放熱(排熱)して、低温の熱搬送媒体となる。
 そして、低温の熱搬送媒体は、室内ユニット2の室内熱交換器43に流入する。室内熱交換器43を通流する熱搬送媒体は、室内ファン43fにより送られてくる空気(室内空気)と熱交換することにより吸熱する。そして、吸熱した熱搬送媒体は、室内熱交換器43から第一ポンプ42へと送られ、空調用熱搬送媒体循環回路40を循環する。
 このように、室内ユニット2の室内熱交換器43で熱搬送媒体が吸熱することにより、空気(室内空気)が冷却され、室内(被空調空間)が冷房される。
By driving the first pump 41, the heat transfer medium flows into the secondary side heat transfer tube 19 b of the air conditioning utilization side heat exchanger 19. The heat transfer medium flowing through the secondary side heat transfer pipe 19b of the air conditioning use side heat exchanger 19 exchanges heat with the first refrigerant flowing through the secondary side heat transfer pipe 19b of the air conditioning use side heat exchanger 19. It dissipates heat (exhaust heat) and becomes a low-temperature heat transfer medium.
Then, the low-temperature heat transfer medium flows into the indoor heat exchanger 43 of the indoor unit 2. The heat transfer medium flowing through the indoor heat exchanger 43 absorbs heat by exchanging heat with the air (indoor air) sent by the indoor fan 43f. The heat transfer medium that has absorbed heat is sent from the indoor heat exchanger 43 to the first pump 42 and circulates through the heat transfer medium circulation circuit 40 for air conditioning.
As described above, the heat transfer medium absorbs heat in the indoor heat exchanger 43 of the indoor unit 2, thereby cooling the air (room air) and cooling the room (air-conditioned space).
(冷房運転(自然循環)モード:ステップS109)
 図8は、冷房運転(自然循環)モードにおけるヒートポンプユニット1の冷媒及び熱搬送媒体の流れを示す系統図である。
 冷房運転(自然循環)モードは、冷房運転を行う際の空調負荷が過負荷である場合の運転モードである。当該運転モードでは、中間熱交換器21において、二次側伝熱管21bを通流する第二冷媒に、一次側伝熱管21aを通流する第一冷媒の熱を放熱(排熱)させることによって、第一冷媒をさらに凝縮させる。
(Cooling operation (natural circulation) mode: step S109)
FIG. 8 is a system diagram showing the flow of the refrigerant and heat transfer medium of the heat pump unit 1 in the cooling operation (natural circulation) mode.
The cooling operation (natural circulation) mode is an operation mode when the air conditioning load at the time of performing the cooling operation is an overload. In the operation mode, in the intermediate heat exchanger 21, the heat of the first refrigerant flowing through the primary side heat transfer tube 21a is radiated (exhaust heat) to the second refrigerant flowing through the secondary side heat transfer tube 21b. The first refrigerant is further condensed.
 つまり、冷房運転(自然循環)モードは、空調負荷が過負荷であるために、空調熱源側熱交換器15では第一冷媒の放熱が足りない分を、凝縮器として機能する中間熱交換器21で放熱させることにより補う点で、冷房運転(通常)モード(図7参照)と異なる。
 なお、冷房運転(自然循環)モードで冷房運転を実行するためには、給湯熱源側熱交換器35と中間熱交換器21との間にヘッド差を設ける必要がある。すなわち、図8に示すように、給湯熱源側熱交換器35を中間熱交換器21よりも所定高さHだけ高く設置する必要がある。これは、給湯用冷媒回路30において、凝縮器として機能する給湯熱源側熱交換器35で放熱して液体状態となった第二冷媒を、重力により中間熱交換器21に流入させるためである。
That is, in the cooling operation (natural circulation) mode, since the air conditioning load is overloaded, the intermediate heat exchanger 21 that functions as a condenser replaces the amount of heat released from the first refrigerant in the air conditioning heat source side heat exchanger 15. It is different from the cooling operation (normal) mode (see FIG. 7) in that it is compensated by radiating heat.
In order to execute the cooling operation in the cooling operation (natural circulation) mode, it is necessary to provide a head difference between the hot water supply heat source side heat exchanger 35 and the intermediate heat exchanger 21. That is, as shown in FIG. 8, it is necessary to install the hot water supply heat source side heat exchanger 35 higher than the intermediate heat exchanger 21 by a predetermined height H. This is because, in the hot water supply refrigerant circuit 30, the second refrigerant that has radiated heat in the hot water supply heat source side heat exchanger 35 functioning as a condenser and has become a liquid state flows into the intermediate heat exchanger 21 by gravity.
 このモードにおいて給湯回路50は停止している。また、空調用熱搬送媒体循環回路40については、前記で説明した冷房運転(通常)モードと同様であるから説明を省略する。
 また、空調用冷媒回路10については、空調熱源側熱交換器15に加えて中間熱交換器21も凝縮器として機能する点以外は、前記で説明した冷房運転(通常モード)の場合と同様であるから説明を省略する。
In this mode, the hot water supply circuit 50 is stopped. Further, the air-conditioning heat transfer medium circulation circuit 40 is the same as the above-described cooling operation (normal) mode, and thus the description thereof is omitted.
The air conditioning refrigerant circuit 10 is the same as that in the cooling operation (normal mode) described above except that the intermediate heat exchanger 21 functions as a condenser in addition to the air conditioning heat source side heat exchanger 15. Since there is, explanation is omitted.
 給湯冷媒回路30について説明する。制御装置4は、給湯熱源側熱交換器35、配管35a、給湯用第二膨張弁36、中間熱交換器21の二次側伝熱管21b、配管37a,38aで環状の回路が形成されるように、給湯用冷媒制御弁39を閉止させ、給湯用三方弁34,37を制御し、給湯用第二膨張弁36を全開とする。また、制御装置4は、給湯用ファン35fの回転速度を制御する。 The hot water supply refrigerant circuit 30 will be described. In the control device 4, an annular circuit is formed by the hot water supply heat source side heat exchanger 35, the pipe 35a, the second hot water supply expansion valve 36, the secondary heat transfer pipe 21b of the intermediate heat exchanger 21, and the pipes 37a and 38a. Then, the hot water supply refrigerant control valve 39 is closed, the hot water supply three- way valves 34 and 37 are controlled, and the hot water supply second expansion valve 36 is fully opened. The control device 4 controls the rotational speed of the hot water supply fan 35f.
 第二冷媒は、蒸発器として機能する中間熱交換器21の二次側伝熱管21bに、低温の液体状態で流入する。そして、第二冷媒は中間熱交換器21の一次側伝熱管21aを通流する第一冷媒から吸熱する。これによって第二冷媒は蒸発し、上昇流となって配管37a,38aを通流し、凝縮器として機能する給湯熱源側熱交換器35に流入する。
 気体状態で中温の第二冷媒は、給湯熱源側熱交換器35を通流する際に、給湯用ファン35fにより送られてくる空気(室外空気)と熱交換することにより放熱し、低温の液体状態になる。そして、低温の液体状態の第二冷媒は、重力により配管35aを下降し、給湯用第二膨張弁36を介して中間熱交換器21の二次側伝熱管21bに流入し、給湯冷媒回路30を循環する。
The second refrigerant flows into the secondary heat transfer tube 21b of the intermediate heat exchanger 21 functioning as an evaporator in a low-temperature liquid state. The second refrigerant absorbs heat from the first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger 21. As a result, the second refrigerant evaporates, becomes an upward flow, flows through the pipes 37a and 38a, and flows into the hot water supply heat source side heat exchanger 35 functioning as a condenser.
The medium-temperature second refrigerant in the gaseous state dissipates heat by exchanging heat with the air (outdoor air) sent by the hot-water supply fan 35f when flowing through the hot-water supply heat source side heat exchanger 35, and the low-temperature liquid It becomes a state. Then, the low-temperature liquid second refrigerant descends in the pipe 35 a due to gravity, flows into the secondary heat transfer pipe 21 b of the intermediate heat exchanger 21 via the hot water supply second expansion valve 36, and is supplied with the hot water supply refrigerant circuit 30. Circulate.
(暖房運転モード:ステップS110)
 図9は、暖房運転モードにおけるヒートポンプユニット1の冷媒及び熱搬送媒体の流れを示す系統図である。
 このモードにおいて、給湯用冷媒回路30及び給湯回路50は停止している。また、中間熱交換器21への冷媒の通流は、給湯用冷媒回路30において閉止されている。
(Heating operation mode: step S110)
FIG. 9 is a system diagram illustrating the flow of the refrigerant and the heat transfer medium of the heat pump unit 1 in the heating operation mode.
In this mode, the hot water supply refrigerant circuit 30 and the hot water supply circuit 50 are stopped. Further, the flow of the refrigerant to the intermediate heat exchanger 21 is closed in the hot water supply refrigerant circuit 30.
 空調用冷媒回路10について説明する。制御装置4は、第一四方弁12及び第二四方弁14内の切替手段(図示せず)が、それぞれ暖房運転モードの位置となるように制御する。
 すなわち、制御装置4は、空調用圧縮機11から吐出された第一冷媒が、空調利用側熱交換器19の二次側伝熱管19bに流入するように第一四方弁12を制御し、中間熱交換器21から流出した第一冷媒が、空調用圧縮機11に流入するように第二四方弁14を制御する。
 また、制御装置4は、空調用第二膨張弁16を全開とし、空調用第一膨張弁18の開度(絞り)を制御する。また、制御装置4は、空調用圧縮機11及び空調用ファン15fの回転速度を制御する。
The air conditioning refrigerant circuit 10 will be described. The control device 4 controls the switching means (not shown) in the first four-way valve 12 and the second four-way valve 14 to be in the heating operation mode position.
That is, the control device 4 controls the first four-way valve 12 so that the first refrigerant discharged from the air conditioning compressor 11 flows into the secondary side heat transfer pipe 19b of the air conditioning utilization side heat exchanger 19, The second four-way valve 14 is controlled so that the first refrigerant flowing out from the intermediate heat exchanger 21 flows into the air conditioning compressor 11.
The control device 4 fully opens the air conditioning second expansion valve 16 and controls the opening (throttle) of the air conditioning first expansion valve 18. Further, the control device 4 controls the rotational speeds of the air conditioning compressor 11 and the air conditioning fan 15f.
 図9に示すように第二四方弁14を制御することによって、空調用第一膨張弁18から流出した低温低圧の第一冷媒を、中間熱交換器21よりも先に空調熱源側熱交換器15に流入させることができる。この場合、空調用ファン15fにより送られてくる空気(室外空気)と熱交換した第一冷媒の温度が、前記空気の温度よりも高くなることはないから、中間熱交換器21の一次側伝熱管21aにおいて第一冷媒が放熱することはない。 As shown in FIG. 9, by controlling the second four-way valve 14, the low-temperature and low-pressure first refrigerant that has flowed out of the air conditioning first expansion valve 18 is subjected to heat exchange on the air conditioning heat source side before the intermediate heat exchanger 21. Can flow into the vessel 15. In this case, the temperature of the first refrigerant that has exchanged heat with the air (outdoor air) sent by the air conditioning fan 15f does not become higher than the temperature of the air. The first refrigerant does not radiate heat in the heat pipe 21a.
 ちなみに、前記とは逆の場合(第一冷媒が空調熱源側熱交換器15よりも先に中間熱交換器21に流入する場合)には、空調用第一膨張弁18から吐出された低温低圧の第一冷媒が中間熱交換器21で吸熱し、第一冷媒の乾き度が増加する。このため、空調熱源側熱交換器15の上流部分において、第一冷媒の温度と室外空気温度との温度差を保持できなくなり、第一冷媒の吸熱量が低下する。したがって、圧縮機11によって前記吸熱量を補う必要があるため、圧縮機11の負荷が大きくなる。 Incidentally, in the opposite case (when the first refrigerant flows into the intermediate heat exchanger 21 before the air conditioning heat source side heat exchanger 15), the low temperature and low pressure discharged from the air conditioning first expansion valve 18 is used. The first refrigerant absorbs heat in the intermediate heat exchanger 21, and the dryness of the first refrigerant increases. For this reason, in the upstream part of the air-conditioning heat source side heat exchanger 15, the temperature difference between the temperature of the first refrigerant and the outdoor air temperature cannot be maintained, and the heat absorption amount of the first refrigerant decreases. Therefore, since it is necessary to supplement the heat absorption amount by the compressor 11, the load on the compressor 11 increases.
 空調用圧縮機11から吐出された高温高圧の第一冷媒は、凝縮器として機能する空調利用側熱交換器19の二次側伝熱管19bに流入する。空調利用側熱交換器19の二次側伝熱管19bを通流する第一冷媒は、空調利用側熱交換器19の一次側伝熱管19aを通流する熱搬送媒体と熱交換することにより放熱して、中温高圧の第一冷媒となる。空調利用側熱交換器19から流出した中温高圧の第一冷媒は、空調用第一膨張弁18で減圧され、低温低圧の第一冷媒となる。 The high-temperature and high-pressure first refrigerant discharged from the air-conditioning compressor 11 flows into the secondary heat transfer pipe 19b of the air-conditioning use-side heat exchanger 19 that functions as a condenser. The first refrigerant flowing through the secondary side heat transfer tube 19b of the air conditioning use side heat exchanger 19 radiates heat by exchanging heat with the heat transfer medium flowing through the primary side heat transfer tube 19a of the air conditioning use side heat exchanger 19. Thus, it becomes a medium temperature and high pressure first refrigerant. The medium-temperature and high-pressure first refrigerant flowing out of the air-conditioning utilization side heat exchanger 19 is decompressed by the air-conditioning first expansion valve 18 and becomes a low-temperature and low-pressure first refrigerant.
 そして、低温低圧の第一冷媒は、蒸発器として機能する空調熱源側熱交換器15に流入する。空調熱源側熱交換器15を通流する第一冷媒は、空調用ファン15fにより送られてくる空気(室外空気)と熱交換することにより前記空気から熱を汲み上げる(吸熱する)。そして、吸熱した第一冷媒は、空調熱源側熱交換器15から空調用第二膨張弁16、中間熱交換器21、第二四方弁14、及び第一四方弁12を介して空調用圧縮機11へと送られ、空調用冷媒回路10を循環する。 Then, the low-temperature and low-pressure first refrigerant flows into the air-conditioning heat source side heat exchanger 15 functioning as an evaporator. The first refrigerant flowing through the air conditioning heat source side heat exchanger 15 heats up (absorbs) heat from the air by exchanging heat with the air (outdoor air) sent by the air conditioning fan 15f. The absorbed first refrigerant is supplied from the air-conditioning heat source side heat exchanger 15 through the second air-conditioning expansion valve 16, the intermediate heat exchanger 21, the second four-way valve 14, and the first four-way valve 12. It is sent to the compressor 11 and circulates through the air conditioning refrigerant circuit 10.
 次に、空調用熱搬送媒体循環回路40について説明する。制御装置4は、第一ポンプ41及び室内ファン43fの回転速度を制御する。
 第一ポンプ41を駆動させることにより、熱搬送媒体は空調利用側熱交換器19の一次側伝熱管19aに流入する。空調利用側熱交換器19の一次側伝熱管19aを通流する熱搬送媒体は、空調利用側熱交換器19の二次側伝熱管19bを通流する第一冷媒と熱交換することにより吸熱して、高温の熱搬送媒体となる。
Next, the heat transfer medium circulation circuit 40 for air conditioning will be described. The control device 4 controls the rotation speeds of the first pump 41 and the indoor fan 43f.
By driving the first pump 41, the heat transfer medium flows into the primary side heat transfer tube 19 a of the air conditioning use side heat exchanger 19. The heat transfer medium flowing through the primary side heat transfer pipe 19a of the air conditioning use side heat exchanger 19 absorbs heat by exchanging heat with the first refrigerant flowing through the secondary side heat transfer pipe 19b of the air conditioning use side heat exchanger 19. Thus, a high-temperature heat transfer medium is obtained.
 そして、高温の熱搬送媒体は、室内ユニット2の室内熱交換器43に流入する。室内熱交換器43を通流する熱搬送媒体は、室内ファン43fにより送られてくる空気(室内空気)と熱交換することにより放熱する。そして、放熱した熱搬送媒体は、室内熱交換器43から第一ポンプ41へと送られ、空調用熱搬送媒体循環回路40を循環する。
 このように、室内ユニット2の室内熱交換器43で熱搬送媒体が放熱することにより、空気(室内空気)が加熱され、室内(被空調空間)が暖房される。
Then, the high-temperature heat transfer medium flows into the indoor heat exchanger 43 of the indoor unit 2. The heat transfer medium flowing through the indoor heat exchanger 43 dissipates heat by exchanging heat with the air (indoor air) sent by the indoor fan 43f. The radiated heat transfer medium is sent from the indoor heat exchanger 43 to the first pump 41 and circulates in the heat transfer medium circulation circuit 40 for air conditioning.
In this way, the heat transfer medium dissipates heat in the indoor heat exchanger 43 of the indoor unit 2, so that air (room air) is heated and the room (air-conditioned space) is heated.
(冷房給湯運転(排熱回収A)モード:ステップS114)
 図10は、冷房給湯運転(排熱回収A)モードにおけるヒートポンプユニット1の冷媒、熱搬送媒体及び被加熱液体の流れを示す系統図である。
 ここで、排熱回収Aは「空調排熱>給湯吸熱」の場合であり、中間熱交換器21を介して空調用冷媒回路10の排熱を給湯用冷媒回路30で回収し、余分な空調排熱を室外空気に排熱している。
 給湯回路50の動作は、図6に示す給湯運転モードと同様であるから説明を省略する。また、空調用熱搬送媒体循環回路40の動作は、図7に示す冷房運転(通常)モードと同様であるから説明を省略する。
(Cooling hot water supply operation (exhaust heat recovery A) mode: step S114)
FIG. 10 is a system diagram showing the flow of the refrigerant, heat transfer medium, and heated liquid in the heat pump unit 1 in the cooling hot water supply operation (exhaust heat recovery A) mode.
Here, the exhaust heat recovery A is a case of “air conditioning exhaust heat> hot water supply endotherm”, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30 via the intermediate heat exchanger 21, and excess air conditioning is performed. Exhaust heat is exhausted to outdoor air.
The operation of the hot water supply circuit 50 is the same as in the hot water supply operation mode shown in FIG. The operation of the air-conditioning heat transfer medium circulation circuit 40 is the same as that in the cooling operation (normal) mode shown in FIG.
 空調用冷媒回路10について説明する。冷房運転(通常)モード(図7参照)における空調用冷媒回路10と、冷房給湯運転(排熱回収A)モード(図10参照)における空調用冷媒回路10との差異点は、冷房運転(通常)モードでは、空調熱源側熱交換器15のみが凝縮器として機能していたのに対し、冷房給湯運転(排熱回収A)モードでは、空調熱源側熱交換器15に加えて中間熱交換器21も凝縮器として機能する点である。
 また、冷房運転(通常)モードでは、空調用圧縮機11から吐出された第一冷媒が空調熱源側熱交換器15に流入するように第二四方弁14を制御していたのに対し、冷房給湯運転(排熱回収A)モードでは、空調用圧縮機11から吐出された第一冷媒が中間熱交換器21に流入するように第二四方弁14を制御する点で異なる。
The air conditioning refrigerant circuit 10 will be described. The difference between the air conditioning refrigerant circuit 10 in the cooling operation (normal) mode (see FIG. 7) and the air conditioning refrigerant circuit 10 in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 10) is the cooling operation (normal). ) Mode, only the air conditioner heat source side heat exchanger 15 functions as a condenser, whereas in the cooling hot water supply operation (exhaust heat recovery A) mode, in addition to the air conditioner heat source side heat exchanger 15, an intermediate heat exchanger is provided. 21 also functions as a condenser.
In the cooling operation (normal) mode, the second refrigerant 14 is controlled so that the first refrigerant discharged from the air conditioning compressor 11 flows into the air conditioning heat source side heat exchanger 15. The cooling hot water supply operation (exhaust heat recovery A) mode is different in that the second four-way valve 14 is controlled so that the first refrigerant discharged from the air conditioning compressor 11 flows into the intermediate heat exchanger 21.
 空調用圧縮機11から吐出された高温高圧の第一冷媒は、第一四方弁12及び第二四方弁14を介して、凝縮器として機能する中間熱交換器21の一次側伝熱管21aに流入する。中間熱交換器21の一次側伝熱管21aを通流する高温高圧の第一冷媒は、中間熱交換器21の二次側伝熱管21bを通流する低温低圧の第二冷媒と熱交換することにより放熱(排熱)する。 The high-temperature and high-pressure first refrigerant discharged from the air-conditioning compressor 11 passes through the first four-way valve 12 and the second four-way valve 14, and the primary heat transfer tube 21a of the intermediate heat exchanger 21 that functions as a condenser. Flow into. The high-temperature and high-pressure first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger 21 exchanges heat with the low-temperature and low-pressure second refrigerant flowing through the secondary heat transfer tube 21b of the intermediate heat exchanger 21. Radiates heat (exhaust heat).
 そして、第一冷媒は空調用第二膨張弁16を介して、凝縮器として機能する空調熱源側熱交換器15に流入する。空調熱源側熱交換器15を通流する第一冷媒は、空調用ファン15fにより送られてくる空気(室外空気)と熱交換することによりさらに放熱(排熱)し、中温高圧の第一冷媒となる。
 空調熱源側熱交換器15から流出した中温高圧の第一冷媒は、第二四方弁14を介して空調用第一膨張弁18に流入し、空調用第一膨張弁18で減圧されて低温低圧の第一冷媒となる。
Then, the first refrigerant flows into the air conditioning heat source side heat exchanger 15 functioning as a condenser via the air conditioning second expansion valve 16. The first refrigerant flowing through the air-conditioning heat source side heat exchanger 15 further dissipates heat (exhaust heat) by exchanging heat with the air (outdoor air) sent by the air-conditioning fan 15f. It becomes.
The medium temperature and high pressure first refrigerant flowing out of the air conditioning heat source side heat exchanger 15 flows into the air conditioning first expansion valve 18 via the second four-way valve 14 and is decompressed by the air conditioning first expansion valve 18 to be low temperature. It becomes a low-pressure first refrigerant.
 そして、低温低圧の第一冷媒は、蒸発器として機能する空調利用側熱交換器19の一次側伝熱管19aに流入する。空調利用側熱交換器19の一次側伝熱管19aを通流する第一冷媒は、空調利用側熱交換器19の二次側伝熱管19bを通流する熱搬送媒体と熱交換することにより、熱搬送媒体から熱を汲み上げる(吸熱する)。そして、吸熱した第一冷媒は、空調利用側熱交換器19から空調用圧縮機11へと送られ、空調用冷媒回路10を循環する。 Then, the low-temperature and low-pressure first refrigerant flows into the primary side heat transfer tube 19a of the air conditioning use side heat exchanger 19 functioning as an evaporator. The first refrigerant flowing through the primary side heat transfer pipe 19a of the air-conditioning use side heat exchanger 19 exchanges heat with the heat transfer medium flowing through the secondary side heat transfer pipe 19b of the air-conditioning use side heat exchanger 19; Pumps heat from the heat transfer medium (absorbs heat). The first refrigerant that has absorbed heat is sent from the air conditioning utilization side heat exchanger 19 to the air conditioning compressor 11 and circulates through the air conditioning refrigerant circuit 10.
 図10に示すように第二四方弁14を制御することによって、圧縮機11から吐出された高温高圧の第一冷媒を、空調熱源側熱交換器15より先に中間熱交換器21に流入させることができる。また、中間熱交換器21の一次側伝熱管21aを通流する第一冷媒と、中間熱交換器21の二次側伝熱管21bを通流する第二冷媒とを対向流とすることができる。したがって、中間熱交換器21において第一冷媒から第二冷媒に放熱される熱量を大きくすることができる。 As shown in FIG. 10, by controlling the second four-way valve 14, the high-temperature and high-pressure first refrigerant discharged from the compressor 11 flows into the intermediate heat exchanger 21 before the air-conditioning heat source side heat exchanger 15. Can be made. Moreover, the 1st refrigerant | coolant which flows the primary side heat exchanger tube 21a of the intermediate heat exchanger 21 and the 2nd refrigerant | coolant which flows the secondary side heat exchanger tube 21b of the intermediate heat exchanger 21 can be made into a counterflow. . Therefore, the amount of heat radiated from the first refrigerant to the second refrigerant in the intermediate heat exchanger 21 can be increased.
 次に、給湯用冷媒回路30について説明する。給湯運転モード(図6参照)における給湯用冷媒回路30と、冷房給湯運転(排熱回収A)モード(図10参照)における給湯用冷媒回路30との差異点は、給湯運転モードでは第二冷媒が給湯熱源側熱交換器35を通流するのに対し、冷房給湯運転(排熱回収A)モードでは第二冷媒が給湯熱源側熱交換器35を通流しない点である。
 また、給湯運転モードでは第二冷媒が中間熱交換器21を通流しないのに対し、冷房給湯運転(排熱回収A)モードでは第二冷媒が中間熱交換器21を通流する点で異なる。
Next, the hot water supply refrigerant circuit 30 will be described. The difference between the hot water supply refrigerant circuit 30 in the hot water supply operation mode (see FIG. 6) and the hot water supply refrigerant circuit 30 in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 10) is that the second refrigerant in the hot water supply operation mode. Flows through the hot water supply heat source side heat exchanger 35, whereas the second refrigerant does not flow through the hot water supply heat source side heat exchanger 35 in the cooling hot water supply operation (exhaust heat recovery A) mode.
Further, the second refrigerant does not flow through the intermediate heat exchanger 21 in the hot water supply operation mode, whereas the second refrigerant flows through the intermediate heat exchanger 21 in the cooling hot water supply operation (exhaust heat recovery A) mode. .
 制御装置4は、給湯用圧縮機31、給湯利用側熱交換器32、給湯用第一膨張弁33、配管35a、給湯用第二膨張弁36、中間熱交換器21、及び配管37aで環状の回路が形成されるように、給湯用冷媒制御弁39及び給湯用第二膨張弁36を全開とし、給湯用三方弁34,37を制御する。また、制御装置4は、給湯用第一膨張弁33の開度(絞り)を制御し、給湯用ファン35fを停止させる。 The control device 4 has an annular shape with a hot water supply compressor 31, a hot water supply side heat exchanger 32, a hot water supply first expansion valve 33, a pipe 35a, a hot water supply second expansion valve 36, an intermediate heat exchanger 21, and a pipe 37a. The hot water supply refrigerant control valve 39 and the hot water supply second expansion valve 36 are fully opened to control the hot water supply three- way valves 34 and 37 so that a circuit is formed. The control device 4 controls the opening degree (throttle) of the first hot water supply expansion valve 33 to stop the hot water supply fan 35f.
 給湯用圧縮機31から吐出された高温高圧の第二冷媒は、凝縮器として機能する給湯利用側熱交換器32の一次側伝熱管32aに流入する。給湯利用側熱交換器32の一次側伝熱管32aを通流する第二冷媒は、給湯利用側熱交換器32の二次側伝熱管32bを通流する被加熱液体と熱交換することにより放熱して、中温高圧の第二冷媒となる。給湯利用側熱交換器32の一次側伝熱管32aから流出した中温高圧の第二冷媒は、給湯用第一膨張弁33で減圧され、低温低圧の第二冷媒となる。 The high-temperature and high-pressure second refrigerant discharged from the hot water supply compressor 31 flows into the primary side heat transfer tube 32a of the hot water supply side heat exchanger 32 that functions as a condenser. The second refrigerant flowing through the primary side heat transfer pipe 32a of the hot water supply side heat exchanger 32 exchanges heat with the heated liquid flowing through the secondary side heat transfer pipe 32b of the hot water supply side heat exchanger 32. Thus, it becomes a medium temperature and high pressure second refrigerant. The medium-temperature and high-pressure second refrigerant that has flowed out of the primary-side heat transfer pipe 32a of the hot-water use side heat exchanger 32 is depressurized by the hot-water supply first expansion valve 33, and becomes a low-temperature and low-pressure second refrigerant.
 そして、低温低圧の第二冷媒は、三方弁34、給湯用冷媒制御弁39、配管35a、及び給湯用第二膨張弁36を介して、蒸発器として機能する中間熱交換器21の二次側伝熱管21bに流入する。中間熱交換器21の二次側伝熱管21bを通流する第二冷媒は、中間熱交換器21の一次側伝熱管21aを通流する第一冷媒と熱交換することにより第一冷媒から熱を汲み上げる(吸熱する)。そして、吸熱した第二冷媒は、中間熱交換器21の二次側伝熱管21bから給湯用圧縮機31へと送られ、給湯用冷媒回路30を循環する。 The low-temperature and low-pressure second refrigerant passes through the three-way valve 34, the hot water supply refrigerant control valve 39, the pipe 35 a, and the hot water supply second expansion valve 36 on the secondary side of the intermediate heat exchanger 21 that functions as an evaporator. It flows into the heat transfer tube 21b. The second refrigerant flowing through the secondary heat transfer tube 21b of the intermediate heat exchanger 21 is heated from the first refrigerant by exchanging heat with the first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger 21. Pumps up (absorbs heat). Then, the absorbed second refrigerant is sent from the secondary heat transfer tube 21 b of the intermediate heat exchanger 21 to the hot water supply compressor 31 and circulates in the hot water supply refrigerant circuit 30.
 (冷房給湯運転(排熱回収B)モード:ステップS116)
 図11は、冷房給湯運転(排熱回収B)モードにおけるヒートポンプユニット1の冷媒、熱搬送媒体及び被加熱液体の流れを示す系統図である。
 ここで、排熱回収Bは「空調排熱=給湯吸熱」の場合であり、中間熱交換器21を介して空調用冷媒回路10の排熱を給湯用冷媒回路30で回収している。
 給湯回路50の動作は給湯運転モード(図6参照)と同様であり、空調用熱搬送媒体循環回路40の動作は冷房運転(通常)モード(図7参照)と同様であり、給湯用冷媒回路30の動作は冷房給湯運転(排熱回収A)モード(図10参照)と同様であるから、説明を省略する。
(Cooling hot water supply operation (exhaust heat recovery B) mode: step S116)
FIG. 11 is a system diagram showing the flow of the refrigerant, heat transfer medium, and heated liquid in the heat pump unit 1 in the cooling hot water supply operation (exhaust heat recovery B) mode.
Here, the exhaust heat recovery B is a case of “air conditioning exhaust heat = hot water supply heat absorption”, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30 via the intermediate heat exchanger 21.
The operation of the hot water supply circuit 50 is the same as that in the hot water supply operation mode (see FIG. 6), and the operation of the heat transfer medium circulation circuit 40 for air conditioning is the same as that in the cooling operation (normal) mode (see FIG. 7). Since the operation of 30 is the same as that in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 10), the description is omitted.
 空調用冷媒回路10について説明する。冷房給湯運転(排熱回収A)モード(図10参照)における空調用冷媒回路10と、冷房給湯運転(排熱回収B)モード(図11参照)における空調用冷媒回路10との差異点は、冷房給湯運転(排熱回収A)モードでは制御装置4が空調用ファン15fを回転させるのに対し、冷房給湯運転(排熱回収B)モードでは制御装置4が空調用ファン15fの回転を停止させる点である。
 その他の制御については、冷房給湯運転(排熱回収A)モードにおける空調用冷媒回路10と同様であるから説明を省略する。
The air conditioning refrigerant circuit 10 will be described. The difference between the air conditioning refrigerant circuit 10 in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 10) and the air conditioning refrigerant circuit 10 in the cooling hot water supply operation (exhaust heat recovery B) mode (see FIG. 11) is In the cooling hot water supply operation (exhaust heat recovery A) mode, the control device 4 rotates the air conditioning fan 15f, whereas in the cooling hot water supply operation (exhaust heat recovery B) mode, the control device 4 stops the rotation of the air conditioning fan 15f. Is a point.
The other control is the same as that of the air conditioning refrigerant circuit 10 in the cooling hot water supply operation (exhaust heat recovery A) mode, and thus the description thereof is omitted.
 前記で説明したように、冷房給湯運転(排熱回収B)モードにおいては、「空調排熱=給湯吸熱」となっている。したがって、空調用冷媒回路10を通流する第一冷媒と、給湯用冷媒回路30を通流する第二冷媒とを、中間熱交換器21において熱交換させることによって、空調側からの排熱をそのまま給湯側に供給する(吸熱させる)ことができる。 As described above, in the cooling hot water supply operation (exhaust heat recovery B) mode, “air conditioning exhaust heat = hot water supply heat absorption”. Therefore, heat exchange from the air conditioning side is achieved by causing the intermediate heat exchanger 21 to exchange heat between the first refrigerant flowing through the air conditioning refrigerant circuit 10 and the second refrigerant flowing through the hot water supply refrigerant circuit 30. It can be supplied to the hot water supply side as it is (heat absorption).
(冷房給湯運転(排熱回収C)モード:ステップS117)
 図12は、冷房給湯運転(排熱回収C)モードにおけるヒートポンプユニット1の冷媒、熱搬送媒体及び被加熱液体の流れを示す系統図である。
 ここで、排熱回収Cは「空調排熱<給湯吸熱」の場合であり、中間熱交換器21を介して空調用冷媒回路10の排熱を給湯用冷媒回路30で回収し、給湯に必要な熱の不足分を室外空気から吸熱している。
 給湯回路50の動作は給湯運転モード(図6参照)と同様であり、空調用熱搬送媒体循環回路40の動作は冷房運転(通常)モード(図7参照)と同様であり、空調用冷媒回路10の動作は冷房給湯運転(排熱回収B)モード(図11参照)と同様であるから、説明を省略する。
(Cooling hot water supply operation (exhaust heat recovery C) mode: step S117)
FIG. 12 is a system diagram showing the flow of the refrigerant, heat transfer medium, and heated liquid in the heat pump unit 1 in the cooling hot water supply operation (exhaust heat recovery C) mode.
Here, the exhaust heat recovery C is the case of “air conditioning exhaust heat <hot water supply heat absorption”, and the exhaust heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30 via the intermediate heat exchanger 21 and is necessary for hot water supply. Heat is absorbed from the outdoor air.
The operation of the hot water supply circuit 50 is the same as that in the hot water supply operation mode (see FIG. 6), and the operation of the heat transfer medium circulation circuit 40 for air conditioning is the same as in the cooling operation (normal) mode (see FIG. 7). Since the operation 10 is the same as in the cooling hot water supply operation (exhaust heat recovery B) mode (see FIG. 11), the description thereof is omitted.
 給湯用冷媒回路30について説明する。図11に示す冷房給湯運転(排熱回収B)モードの給湯用冷媒回路30と、図12に示す冷房給湯運転(排熱回収C)モードの給湯用冷媒回路30との差異点は、排熱回収Bモードでは第二冷媒が給湯熱源側熱交換器35をバイパスするのに対し、排熱回収Cモードでは第二冷媒が給湯用熱源側熱交換器35をバイパスせずに、給湯用熱源側熱交換器35及び中間熱交換器21の二次側伝熱管21bを通流する点である。 The hot water supply refrigerant circuit 30 will be described. The difference between the hot water supply refrigerant circuit 30 in the cooling hot water supply operation (exhaust heat recovery B) mode shown in FIG. 11 and the hot water supply refrigerant circuit 30 in the cooling hot water supply operation (exhaust heat recovery C) mode shown in FIG. In the recovery B mode, the second refrigerant bypasses the hot water supply heat source side heat exchanger 35, whereas in the exhaust heat recovery C mode, the second refrigerant does not bypass the hot water supply heat source side heat exchanger 35, and does not bypass the hot water supply heat source side. This is a point through which the secondary heat transfer tubes 21b of the heat exchanger 35 and the intermediate heat exchanger 21 flow.
 すなわち、制御装置4は、給湯用熱源側熱交換器19と中間熱交換器21とを第二冷媒が通流可能とするように給湯用三方弁34,37を制御し、給湯用冷媒制御弁39を閉止させる。
 また、制御装置4は、給湯用第一膨張弁33の開度(絞り)を制御し、給湯用第二膨張弁36を全開とする。また、制御装置4は、給湯用圧縮機31及び給湯用ファン35fの回転速度を制御する。
That is, the control device 4 controls the hot water supply three- way valves 34 and 37 so that the second refrigerant can flow through the hot water supply heat source side heat exchanger 19 and the intermediate heat exchanger 21, and the hot water supply refrigerant control valve. 39 is closed.
Further, the control device 4 controls the opening (throttle) of the first hot water supply expansion valve 33 to fully open the second hot water supply expansion valve 36. Further, the control device 4 controls the rotation speeds of the hot water supply compressor 31 and the hot water supply fan 35f.
 給湯用圧縮機31から吐出された高温高圧の第二冷媒は、凝縮器として機能する給湯利用側熱交換器32の一次側伝熱管32aに流入する。給湯利用側熱交換器32の一次側伝熱管32aを通流する第二冷媒は、給湯利用側熱交換器32の二次側伝熱管32bを通流する被加熱液体と熱交換することにより放熱(排熱)して、中温高圧の第二冷媒となる。給湯利用側熱交換器32の一次側伝熱管32aから流出した中温高圧の第二冷媒は、給湯用第一膨張弁33で減圧され、低温低圧の第二冷媒となる。 The high-temperature and high-pressure second refrigerant discharged from the hot water supply compressor 31 flows into the primary side heat transfer tube 32a of the hot water supply side heat exchanger 32 that functions as a condenser. The second refrigerant flowing through the primary side heat transfer pipe 32a of the hot water supply side heat exchanger 32 exchanges heat with the heated liquid flowing through the secondary side heat transfer pipe 32b of the hot water supply side heat exchanger 32. (Exhaust heat) to become a medium temperature and high pressure second refrigerant. The medium-temperature and high-pressure second refrigerant that has flowed out of the primary-side heat transfer pipe 32a of the hot-water use side heat exchanger 32 is depressurized by the hot-water supply first expansion valve 33, and becomes a low-temperature and low-pressure second refrigerant.
 そして、低温低圧の第二冷媒は給湯用三方弁34を介して、蒸発器として機能する給湯熱源側熱交換器35に流入する。そして、給湯熱源側熱交換器35を通流する第二冷媒は、給湯用ファン35fにより送られてくる空気(室外空気)と熱交換することにより、前記空気から熱をくみ上げる(吸熱する)。 The low-temperature and low-pressure second refrigerant flows into the hot water supply heat source side heat exchanger 35 functioning as an evaporator via the hot water supply three-way valve 34. The second refrigerant flowing through the hot water supply heat source side heat exchanger 35 exchanges heat with the air (outdoor air) sent by the hot water supply fan 35f, thereby drawing up heat (absorbing heat) from the air.
 さらに、給湯熱源側熱交換器35から流出した第二冷媒は、蒸発器として機能する中間熱交換器12の二次側伝熱管21bに流入する。中間熱交換器21の二次側伝熱管21bを通流する第二冷媒は、中間熱交換器21の一次側伝熱管21aを通流する第一冷媒と熱交換し、第一冷媒から熱を汲み上げる(吸熱する)。
 中間熱交換器21の二次側伝熱管21bから流出した第二冷媒は、給湯用三方弁37を介して給湯用圧縮機31へと送られ、給湯用冷媒回路30を循環する。
Furthermore, the 2nd refrigerant | coolant which flowed out from the hot water supply heat source side heat exchanger 35 flows in into the secondary side heat exchanger tube 21b of the intermediate heat exchanger 12 which functions as an evaporator. The second refrigerant flowing through the secondary heat transfer tube 21b of the intermediate heat exchanger 21 exchanges heat with the first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger 21, and heat is transferred from the first refrigerant. Pump up (absorb heat).
The second refrigerant flowing out of the secondary heat transfer tube 21b of the intermediate heat exchanger 21 is sent to the hot water supply compressor 31 through the hot water supply three-way valve 37 and circulates in the hot water supply refrigerant circuit 30.
(暖房給湯運転(独立)モード:ステップS203)
 図13は、暖房給湯運転(独立)モードにおけるヒートポンプユニット1の冷媒、熱搬送媒体及び被加熱液体の流れを示す系統図である。
 このモードにおいて、中間熱交換器21への冷媒の通流は、給湯用冷媒回路30において閉止されている。
 給湯用冷媒回路30及び給湯回路50の動作は給湯運転モード(図6参照)と同様であり、空調用冷媒回路10及び空調用熱搬送媒体循環回路40の動作は暖房運転モード(図9参照)と同様であるから説明を省略する。
(Heating and hot water supply operation (independent) mode: step S203)
FIG. 13 is a system diagram showing the flow of the refrigerant, the heat transfer medium, and the liquid to be heated in the heat pump unit 1 in the heating / hot water supply operation (independent) mode.
In this mode, the flow of the refrigerant to the intermediate heat exchanger 21 is closed in the hot water supply refrigerant circuit 30.
The operations of the hot water supply refrigerant circuit 30 and the hot water supply circuit 50 are the same as in the hot water supply operation mode (see FIG. 6), and the operations of the air conditioning refrigerant circuit 10 and the air conditioning heat transfer medium circulation circuit 40 are in the heating operation mode (see FIG. 9). Since it is the same as that of FIG.
(暖房給湯運転(空調余剰加熱)モード:ステップS204)
 図14は、暖房給湯運転(空調余剰加熱)モードにおけるヒートポンプユニット1の冷媒、熱搬送媒体及び被加熱液体の流れを示す系統図である。
 このモードは、空調負荷(暖房負荷)が小さい場合に実行され、中間熱交換器21を介して空調用冷媒回路10の余剰熱を給湯用冷媒回路30で回収している。
(Heating hot water supply operation (air-conditioning surplus heating) mode: step S204)
FIG. 14 is a system diagram showing the flow of the refrigerant, heat transfer medium, and heated liquid in the heat pump unit 1 in the heating hot water supply operation (air conditioning surplus heating) mode.
This mode is executed when the air conditioning load (heating load) is small, and surplus heat of the air conditioning refrigerant circuit 10 is recovered by the hot water supply refrigerant circuit 30 via the intermediate heat exchanger 21.
 給湯回路50の動作は給湯運転モード(図6参照)と同様であり、空調用熱搬送媒体循環回路40の動作は暖房運転モード(図9参照)と同様であり、給湯用冷媒回路30の動作は冷房給湯運転(排熱回収A)モード(図10参照)と同様であるから、説明を省略する。 The operation of the hot water supply circuit 50 is the same as that in the hot water supply operation mode (see FIG. 6), the operation of the heat transfer medium circulation circuit 40 for air conditioning is the same as that in the heating operation mode (see FIG. 9), and the operation of the refrigerant circuit 30 for hot water supply. Is the same as in the cooling hot water supply operation (exhaust heat recovery A) mode (see FIG. 10), and the description thereof is omitted.
 空調用冷媒回路10について説明する。暖房運転(モード(図9参照)における空調用冷媒回路10と、暖房給湯運転(空調余剰加熱)モード(図14参照)における空調用冷媒回路10との差異点は、暖房運転モードでは中間熱交換器21が凝縮器として機能していなかったのに対し、暖房給湯運転(空調余剰加熱)モードでは、中間熱交換器21が凝縮器として機能する点である。 The air conditioning refrigerant circuit 10 will be described. The difference between the air conditioning refrigerant circuit 10 in the heating operation (mode (see FIG. 9)) and the air conditioning refrigerant circuit 10 in the heating hot water supply operation (air conditioning surplus heating) mode (see FIG. 14) is that intermediate heat exchange is performed in the heating operation mode. Whereas the condenser 21 did not function as a condenser, the intermediate heat exchanger 21 functions as a condenser in the heating hot water supply operation (air conditioning surplus heating) mode.
 制御装置4は、第一四方弁12及び第二四方弁14内の切替手段(図示せず)が、それぞれ暖房給湯運転(空調余剰加熱)モードの位置となるように制御する。
 すなわち、制御装置4は、空調用圧縮機11から吐出された第一冷媒が、空調利用側熱交換器19に流入するように第一四方弁12を制御する。また、制御装置4は、空調熱源側熱交換器15から流出した第一冷媒が、空調用圧縮機11に流入するように第二四方弁14を制御する。
 さらに制御装置4は、空調用第一膨張弁18を全開とするように制御し、空調用第二膨張弁16の開度(絞り)を制御する。また、制御装置4は、空調用圧縮機11及び空調用ファン15fの回転速度を制御する。
The control device 4 controls the switching means (not shown) in the first four-way valve 12 and the second four-way valve 14 to be in the heating / hot water supply operation (air conditioning surplus heating) mode position.
That is, the control device 4 controls the first four-way valve 12 so that the first refrigerant discharged from the air conditioning compressor 11 flows into the air conditioning utilization side heat exchanger 19. Further, the control device 4 controls the second four-way valve 14 so that the first refrigerant flowing out from the air conditioning heat source side heat exchanger 15 flows into the air conditioning compressor 11.
Furthermore, the control device 4 controls the first expansion valve 18 for air conditioning to be fully opened, and controls the opening (throttle) of the second expansion valve 16 for air conditioning. Further, the control device 4 controls the rotational speeds of the air conditioning compressor 11 and the air conditioning fan 15f.
 空調用圧縮機11から吐出された高温高圧の第一冷媒は、第一四方弁12を介して、凝縮器として機能する空調利用側熱交換器19の二次側伝熱管19bに流入する。空調利用側熱交換器19の二次側伝熱管19bを通流する第一冷媒は、空調利用側熱交換器19の一次側伝熱管19aを通流する熱搬送媒体と熱交換することにより放熱(排熱)する。
 そして、第一冷媒は空調用第一膨張弁18及び第二四方弁14を介して、凝縮器として機能する中間熱交換器21の一次側伝熱管21aに流入する。中間熱交換器の一次側伝熱管21aを通流する第一冷媒は、中間熱交換器21の二次側伝熱管21bを通流する第二冷媒と熱交換し、第二冷媒に放熱(排熱)して中温高圧の第一冷媒となる。
The high-temperature and high-pressure first refrigerant discharged from the air conditioning compressor 11 flows into the secondary side heat transfer pipe 19b of the air conditioning utilization side heat exchanger 19 functioning as a condenser via the first four-way valve 12. The first refrigerant flowing through the secondary side heat transfer tube 19b of the air conditioning use side heat exchanger 19 radiates heat by exchanging heat with the heat transfer medium flowing through the primary side heat transfer tube 19a of the air conditioning use side heat exchanger 19. (Exhaust heat).
And a 1st refrigerant | coolant flows in into the primary side heat exchanger tube 21a of the intermediate heat exchanger 21 which functions as a condenser via the 1st expansion valve 18 for air conditioning, and the 2nd four-way valve 14. FIG. The first refrigerant flowing through the primary heat transfer tube 21a of the intermediate heat exchanger exchanges heat with the second refrigerant flowing through the secondary heat transfer tube 21b of the intermediate heat exchanger 21, and radiates heat (exhaust to the second refrigerant. Heat) to become a medium temperature and high pressure first refrigerant.
 そして、中温高圧の第一冷媒は空調用第二膨張弁16で減圧され、低温低圧の第一冷媒となる。さらに、低温低圧の第一冷媒は、蒸発器として機能する空調熱源側熱交換器15に流入する。空調熱源側熱交換器15を通流する第一冷媒は、空調用ファン15fにより送られてくる空気(室外空気)と熱交換することにより前記空気から熱を汲み上げる(吸熱する)。そして、吸熱した第一冷媒は、空調熱源側熱交換器15から、第二四方弁14及び第一四方弁12を介して空調用圧縮機11へと送られ、空調用冷媒回路10を循環する。 The medium-temperature and high-pressure first refrigerant is decompressed by the air conditioning second expansion valve 16 and becomes a low-temperature and low-pressure first refrigerant. Furthermore, the low-temperature and low-pressure first refrigerant flows into the air-conditioning heat source side heat exchanger 15 that functions as an evaporator. The first refrigerant flowing through the air conditioning heat source side heat exchanger 15 heats up (absorbs) heat from the air by exchanging heat with the air (outdoor air) sent by the air conditioning fan 15f. Then, the absorbed first refrigerant is sent from the air-conditioning heat source side heat exchanger 15 to the air-conditioning compressor 11 via the second four-way valve 14 and the first four-way valve 12, Circulate.
 ≪本実施形態に係る空調給湯システムの作用・効果≫
 本実施形態に係る空調給湯システムSによれば、使用者の要求に応じて「給湯運転」、「冷房運転」、「冷房給湯運転」、「暖房運転」及び「暖房給湯運転」を運転可能な空調給湯システムSとすることができる。
 また、「冷房給湯運転」時において、空調排熱と給湯吸熱の大小関係に応じて、冷房給湯運転(排熱回収A)モード、冷房給湯運転(排熱回収B)モード、又は冷房給湯運転(排熱回収C)モードを実行することにより(図2参照)、空調用冷媒回路10の排熱を効率的に給湯加熱に用いることができる。
 これにより、空調給湯システムSの全体の効率を向上させることができる。
≪Operation and effect of air conditioning and hot water supply system according to this embodiment≫
According to the air conditioning and hot water supply system S according to the present embodiment, “hot water supply operation”, “cooling operation”, “cooling hot water operation”, “heating operation”, and “heating hot water supply operation” can be operated according to the user's request. It can be set as the air-conditioning hot-water supply system S.
In the “cooling hot water supply operation”, the cooling hot water supply operation (exhaust heat recovery A) mode, the cooling hot water supply operation (exhaust heat recovery B) mode, or the cooling hot water supply operation ( By executing the exhaust heat recovery C) mode (see FIG. 2), the exhaust heat of the air conditioning refrigerant circuit 10 can be efficiently used for heating hot water.
Thereby, the whole efficiency of air-conditioning hot-water supply system S can be improved.
 ここで、特許文献1に記載の空気調和装置(空調給湯システム)と、本実施形態に係る空調給湯システムSとを比較しつつ説明する。
 特許文献1に記載の空気調和装置(空調給湯システム)は、暖房運転(暖房給湯運転)時において暖房負荷が低負荷の場合、空調サイクル(空調用冷媒回路10)の第一圧縮機(本実施形態に係る空調給湯システムSの空調用圧縮機11に相当)が動作状態と停止状態を繰り返す断続運転となるため、空気調和装置(空調給湯システム)の運転効率が低下するという問題があった。
Here, it demonstrates, comparing the air conditioning apparatus (air-conditioning hot-water supply system) of patent document 1, and the air-conditioning hot-water supply system S which concerns on this embodiment.
The air conditioner (air conditioning and hot water supply system) described in Patent Document 1 is a first compressor (this embodiment) of an air conditioning cycle (air conditioning refrigerant circuit 10) when the heating load is low during heating operation (heating and hot water supply operation). In the air conditioning hot water supply system S according to the embodiment, the air conditioning compressor 11) is intermittently operated repeatedly between the operating state and the stopped state, so that there is a problem that the operation efficiency of the air conditioner (air conditioning hot water supply system) is lowered.
 これに対し、本実施形態に係る空調給湯システムSは、第二四方弁14が、運転モードに応じて空調熱源側熱交換器15及び中間熱交換器21を通流する第一冷媒の向きを切り替えることによって、暖房給湯運転時においても中間熱交換器21の一次側伝熱管21a(空調用冷媒回路10の側)を凝縮器として機能させることができる(図14参照)。 In contrast, in the air conditioning and hot water supply system S according to the present embodiment, the direction of the first refrigerant in which the second four-way valve 14 flows through the air conditioning heat source side heat exchanger 15 and the intermediate heat exchanger 21 according to the operation mode. By switching these, the primary heat transfer tube 21a (the air conditioning refrigerant circuit 10 side) of the intermediate heat exchanger 21 can be caused to function as a condenser even during a heating hot water supply operation (see FIG. 14).
 これにより、本実施形態に係る空調給湯システムSは、暖房給湯運転時において暖房負荷が低負荷の場合であっても、空調用圧縮機11が連続運転の状態を保ったまま、空調利用側熱交換器19に所望の熱量(空調用圧縮機11から吐出された高温高圧の第一冷媒の一部)を供給した後、中間熱交換器21の一次側伝熱管21aへと送られる(図14参照)。
 このため、必要熱量を空調用熱搬送媒体循環回路40に搬送した後、余剰の熱量(空調用圧縮機11から吐出された高温高圧の第一冷媒の残部)を中間熱交換器21の一次側伝熱管21aへと送る事ができる。その結果、複雑な制御することなく空調に必要な熱量を確保でき、かつ、中間熱交換器21を介して給湯用冷媒回路30に空調余剰熱を与えることができる。
As a result, the air conditioning hot water supply system S according to the present embodiment allows the air conditioning use side heat while the air conditioning compressor 11 remains in a continuous operation state even when the heating load is low during the heating hot water supply operation. After supplying a desired amount of heat (a part of the high-temperature and high-pressure first refrigerant discharged from the air-conditioning compressor 11) to the exchanger 19, the heat is sent to the primary heat transfer tube 21a of the intermediate heat exchanger 21 (FIG. 14). reference).
For this reason, after transporting the necessary amount of heat to the air-conditioning heat transfer medium circulation circuit 40, surplus heat (the remaining portion of the high-temperature and high-pressure first refrigerant discharged from the air-conditioning compressor 11) is transferred to the primary side of the intermediate heat exchanger 21. It can be sent to the heat transfer tube 21a. As a result, the amount of heat necessary for air conditioning can be secured without complicated control, and surplus air conditioning heat can be supplied to the hot water supply refrigerant circuit 30 via the intermediate heat exchanger 21.
 これにより、空調用圧縮機11の断続運転を防止し、余剰熱も高温の被加熱液体として蓄熱することができるので、空調給湯システムSの全体としての運転効率を向上させることができる。
 すなわち、本実施形態に係る空調給湯システムSは、冷房運転・暖房運転にかかわらず、中間熱交換器21を凝縮器として機能させることができる。これによって、空調用冷媒回路10から給湯用冷媒回路30に熱(排熱、余剰熱)を受け渡すことができるので、一年を通して運転効率を向上させることが可能な空調給湯システムを構築することができる。
Thereby, the intermittent operation of the air conditioning compressor 11 can be prevented, and surplus heat can be stored as a high-temperature liquid to be heated, so that the overall operation efficiency of the air conditioning hot water supply system S can be improved.
That is, the air conditioning and hot water supply system S according to the present embodiment can cause the intermediate heat exchanger 21 to function as a condenser regardless of the cooling operation / heating operation. As a result, heat (exhaust heat, surplus heat) can be transferred from the air conditioning refrigerant circuit 10 to the hot water supply refrigerant circuit 30, so that an air conditioning hot water supply system capable of improving operating efficiency throughout the year is constructed. Can do.
 本実施形態に係る空調給湯システムSの効果についてさらに説明する。図15は、東京における最寒日の前後日における暖房負荷の変動を示すグラフである。
 図15は、縦軸を暖房負荷[kW](図15のグラフ上では実線で示す)、室外空気温度[℃](図15のグラフ上では破線で示す)、日射量[MJ](図15のグラフ上では一点鎖線で示す)とし、横軸を時刻[日]とし、最寒日(時刻1.0~2.0[日])の前日(時刻0.0~1.0[日])から翌日(時刻2.0~3.0[日])までを示したものである。なお、暖房負荷は断熱性能を示すQ値(熱損失係数)が1.6[KW/m・K]の高断熱化住宅について求めた。
The effect of the air conditioning and hot water supply system S according to the present embodiment will be further described. FIG. 15 is a graph showing the variation of the heating load on the days before and after the coldest day in Tokyo.
In FIG. 15, the vertical axis indicates the heating load [kW] (indicated by a solid line on the graph of FIG. 15), the outdoor air temperature [° C.] (indicated by the broken line on the graph of FIG. 15), and the amount of solar radiation [MJ] (FIG. 15). In the graph of (1), the horizontal axis is time [day], the day before the coldest day (time 1.0 to 2.0 [day]) (time 0.0 to 1.0 [day]) ) To the next day (time 2.0 to 3.0 [day]). In addition, the heating load was calculated | required about the highly insulated house whose Q value (heat loss coefficient) which shows heat insulation performance is 1.6 [KW / m < 2 > K].
 昨今の省エネ化の要求に対応して、住宅(被空調空間)を高断熱化し、冬期の暖房負荷を低減することが試みられている。高断熱化住宅では暖房負荷が小さくなるため、室内空調において省エネ効果が得られると考えられる。しかしながら、暖房負荷が低減することにより空調用冷媒回路10の空調用圧縮機11が断続運転する状態となる場合がある。 In response to the recent demand for energy saving, attempts have been made to reduce the heating load in winter by making the house (air-conditioned space) highly insulated. Since the heating load is reduced in highly insulated houses, it is considered that an energy saving effect can be obtained in indoor air conditioning. However, when the heating load is reduced, the air conditioning compressor 11 of the air conditioning refrigerant circuit 10 may be intermittently operated.
 図15に示すように、最寒日においても日中は暖房負荷が急低下(図15では、約4.0kWから約0.6kW)している。ここで、暖房負荷が所定値(例えば1.0kW)以下となると、空調用冷媒回路10の空調用圧縮機11が断続運転となる。このような断続運転は運転効率の面で望ましくない。
 このように、住宅を高断熱化して暖房負荷を低減することにより期待される省エネ効果に対して、実際に空調システム(空調給湯システム)を運転した場合に得られる省エネ効果は、空調用圧縮機11が断続運転となるため小さなものとなっていた。
As shown in FIG. 15, even on the coldest day, the heating load suddenly decreases during the day (in FIG. 15, from about 4.0 kW to about 0.6 kW). Here, when the heating load becomes a predetermined value (for example, 1.0 kW) or less, the air conditioning compressor 11 of the air conditioning refrigerant circuit 10 is intermittently operated. Such intermittent operation is not desirable in terms of operation efficiency.
In this way, the energy saving effect obtained when the air conditioning system (air conditioning hot water supply system) is actually operated is compared with the energy saving effect expected by reducing the heating load by increasing the heat insulation of the house. 11 was intermittent because of intermittent operation.
 これに対し、本実施形態に係る空調給湯システムSは、暖房運転時において暖房負荷が低負荷の場合であっても、空調用冷媒回路10の空調用圧縮機11の断続運転を防止することができる。また、本実施形態に係る空調給湯システムSは、暖房運転時においても中間熱交換器21の一次側伝熱管21aを凝縮器として機能させることができるので、空調用冷媒回路10の余剰熱を給湯に用いることができ、空調給湯システムSの全体としての効率を向上させることができる。 On the other hand, the air conditioning hot water supply system S according to the present embodiment can prevent intermittent operation of the air conditioning compressor 11 of the air conditioning refrigerant circuit 10 even when the heating load is low during the heating operation. it can. In addition, the air conditioning and hot water supply system S according to the present embodiment can cause the primary heat transfer tube 21a of the intermediate heat exchanger 21 to function as a condenser even during heating operation, so that the excess heat of the air conditioning refrigerant circuit 10 is supplied with hot water. Therefore, the efficiency of the air conditioning hot water supply system S as a whole can be improved.
 また、空調給湯システムSは、環境条件やリモコン(図示せず)から入力される設定条件などに応じて運転モードを決定する。そして、空調給湯システムSは、空調用冷媒回路10の第一冷媒の排熱を、給湯用冷媒回路30の第二冷媒に供給する必要があれば、中間熱交換器を空調用冷媒回路10における凝縮器として機能させる。
 したがって、空調用冷媒回路10の第一冷媒からの排熱を最大限使用することによって、空調給湯システムS全体としての効率を向上させることができる。
Further, the air conditioning and hot water supply system S determines the operation mode according to environmental conditions, setting conditions input from a remote controller (not shown), and the like. And if the air-conditioning hot-water supply system S needs to supply the exhaust heat of the 1st refrigerant | coolant of the air-conditioning refrigerant circuit 10 to the 2nd refrigerant | coolant of the hot-water supply refrigerant circuit 30, an intermediate heat exchanger will be provided in the air-conditioning refrigerant circuit 10. It functions as a condenser.
Therefore, the efficiency of the entire air conditioning and hot water supply system S can be improved by using the exhaust heat from the first refrigerant in the air conditioning refrigerant circuit 10 to the maximum extent.
 また、空調給湯システムSは、冷房運転を行う際の空調負荷が過負荷である場合に、給湯運転を行っていなくても、給湯冷媒回路30で自然循環を行うことにより、中間熱交換器10を空調冷媒回路10の凝縮器として機能させることができる(図8参照)。
 すなわち、給湯用圧縮機31を回転させることなく、空調用冷媒回路10の第一冷媒の熱を給湯用冷媒回路30の第二冷媒に吸熱させることによって、足りない分の空調負荷を補うことができる。したがって、空調給湯システムS全体としての効率を向上させることができる。
Further, the air conditioning and hot water supply system S performs the natural circulation in the hot water supply refrigerant circuit 30 even when the air conditioning load during the cooling operation is an overload, and the hot water supply refrigerant circuit 30 does not perform the intermediate heat exchanger 10. Can function as a condenser of the air conditioning refrigerant circuit 10 (see FIG. 8).
That is, it is possible to compensate for an insufficient air conditioning load by causing the second refrigerant of the hot water supply refrigerant circuit 30 to absorb the heat of the first refrigerant of the air conditioning refrigerant circuit 10 without rotating the hot water supply compressor 31. it can. Therefore, the efficiency of the air conditioning and hot water supply system S as a whole can be improved.
 また、空調給湯システムSは空調用冷媒回路10において、空調熱源側熱交換器15、空調利用側熱交換器19、及び中間熱交換器21が各種弁を介して直列に接続されている。また、給湯用冷媒回路30においても、給湯利用側熱交換器32、給湯熱源側熱交換器35、及び中間熱交換器21が各種弁を介して直列に接続されている。
 仮に、空調用冷媒回路10又は給湯用冷媒回路30において前記熱交換器を並列に接続し、運転モードに応じて各種弁の開閉を制御することとした場合、配管内での冷媒の分布によっては余剰冷媒が生じる可能性がある。この場合、運転を開始する前に、まず回路内における冷媒の分布状態を調整する必要がある。
In the air conditioning hot water supply system S, an air conditioning heat source side heat exchanger 15, an air conditioning utilization side heat exchanger 19, and an intermediate heat exchanger 21 are connected in series via various valves in the refrigerant circuit 10 for air conditioning. Also in the hot water supply refrigerant circuit 30, the hot water supply side heat exchanger 32, the hot water supply heat source side heat exchanger 35, and the intermediate heat exchanger 21 are connected in series via various valves.
If the heat exchanger is connected in parallel in the air conditioning refrigerant circuit 10 or the hot water supply refrigerant circuit 30 and the opening / closing of various valves is controlled according to the operation mode, depending on the refrigerant distribution in the pipe, Excess refrigerant may be generated. In this case, it is necessary to first adjust the refrigerant distribution state in the circuit before starting the operation.
 これに対して、本実施形態に係る空調給湯システムSは、前記で説明したように各回路において熱交換器が直列に接続されているため、回路内における冷媒の分布を調整する必要がない。なぜなら、空調用冷媒回路10及び給湯用冷媒回路30において冷媒が分流することなく回路内を循環するからである。したがって、本実施形態に係る空調給湯システムSでは、運転モードを切り替えた際にスムーズに運転を開始することができるとともに、制御装置4の処理負担を軽減することができる。 In contrast, in the air conditioning and hot water supply system S according to the present embodiment, since the heat exchangers are connected in series in each circuit as described above, it is not necessary to adjust the distribution of the refrigerant in the circuit. This is because the refrigerant circulates in the air conditioning refrigerant circuit 10 and the hot water supply refrigerant circuit 30 without being diverted. Therefore, in the air conditioning and hot water supply system S according to this embodiment, the operation can be started smoothly when the operation mode is switched, and the processing load on the control device 4 can be reduced.
≪変形例≫
 なお、本実施形態に係る空調給湯システムSは、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
≪Modification≫
In addition, the air-conditioning hot-water supply system S which concerns on this embodiment is not limited to the structure of the said embodiment, A various change is possible within the range which does not deviate from the meaning of invention.
 例えば、上記実施形態では、空調用冷媒回路10において空調用第一膨張弁18を全開とすることによって第一冷媒を通流させることとしていたが、これに限らない。すなわち、一端が第二四方弁14の下ポートに接続され、他端が空調用第一膨張弁18に接続されたバイパス配管を設け、当該バイパス配管に二方弁を設置する構成としてもよい。そして、空調用第一膨張弁18を減圧装置として使用する場合、制御装置4は、前記二方弁を閉止させ、空調用第一膨張弁18の開度(絞り)を制御する。また、空調用第一膨張弁を減圧装置として使用しない場合、制御装置4は、前記二方弁を開放させ、空調用第一膨張弁18を閉止させる制御を行う。
 なお、空調用第二膨張弁16についても前記と同様のことがいえる。
For example, in the above-described embodiment, the first refrigerant is caused to flow by fully opening the air conditioning first expansion valve 18 in the air conditioning refrigerant circuit 10, but the present invention is not limited thereto. In other words, a bypass pipe having one end connected to the lower port of the second four-way valve 14 and the other end connected to the air conditioning first expansion valve 18 may be provided, and the two-way valve may be installed in the bypass pipe. . When the air conditioning first expansion valve 18 is used as a pressure reducing device, the control device 4 closes the two-way valve and controls the opening (throttle) of the air conditioning first expansion valve 18. Further, when the first expansion valve for air conditioning is not used as the decompression device, the control device 4 performs control to open the two-way valve and close the first expansion valve 18 for air conditioning.
The same applies to the second expansion valve 16 for air conditioning.
 膨張弁(第一膨張弁18及び第二膨張弁16)は、二方弁と比較すると、全開の場合の圧力損失が高いため、減圧を行わないで中間熱交換器内を冷媒が通過させる場合に、冷媒が膨張弁を通過すると圧力損失により交換熱量が低下することとなる。
 前記のように、空調用第一膨張弁18及び/又は空調用第二膨張弁16にバイパス配管及び開閉弁を設置することによって、各膨張弁を減圧装置として使用しない場合の圧力損失を低減させることができる。これによって、空調給湯システムS全体の効率をさらに向上させることができる。
The expansion valve (the first expansion valve 18 and the second expansion valve 16) has a higher pressure loss when fully opened than the two-way valve, and therefore the refrigerant passes through the intermediate heat exchanger without reducing pressure. In addition, when the refrigerant passes through the expansion valve, the amount of exchange heat decreases due to pressure loss.
As described above, by installing bypass piping and on-off valves in the air conditioning first expansion valve 18 and / or the air conditioning second expansion valve 16, pressure loss when each expansion valve is not used as a decompression device is reduced. be able to. Thereby, the efficiency of the entire air conditioning and hot water supply system S can be further improved.
 また、上記実施形態では、第一膨張弁18及び第二膨張弁16は絞り量(開度)を連続的に増減可能な可変絞りとして説明したが、これに限らない。すなわち、絞り量として2パターン(大・小)の切替えを行う固定絞りの弁で、低圧力損失のものを第一膨張弁18及び第二膨張弁16として採用してもよい。
 この場合には、前記のように、空調用第一膨張弁18及び/又は空調用第二膨張弁16にバイパス配管及び開閉弁を設置することなく、各膨張弁における圧力損失を低減することができる。これによって、空調給湯システムS全体の効率を向上させることができるとともに、その製造コストを削減できる。
In the above embodiment, the first expansion valve 18 and the second expansion valve 16 have been described as variable throttles capable of continuously increasing or decreasing the throttle amount (opening degree), but the present invention is not limited to this. That is, a fixed-throttle valve that switches between two patterns (large and small) as the throttle amount, and a low pressure loss valve may be adopted as the first expansion valve 18 and the second expansion valve 16.
In this case, as described above, the pressure loss in each expansion valve can be reduced without installing bypass piping and on-off valves in the air conditioning first expansion valve 18 and / or the air conditioning second expansion valve 16. it can. Thus, the efficiency of the entire air conditioning and hot water supply system S can be improved, and the manufacturing cost can be reduced.
 また、上記実施形態の暖房運転モード(図9参照)及び暖房給湯運転(独立)モード(図13参照)において、空調用第一膨張弁18を減圧装置として使用していたが、これに限らない。すなわち、前記各運転モードにおいて、空調用第二膨張弁16を減圧装置として使用してもよい。
 この場合、制御装置14は、空調利用側熱交換器19の第二伝熱管19bから流出した第一冷媒が空調用第一膨張弁18を介して中間熱交換器21に流入し、空調熱源側熱交換器15から流出した第一冷媒が第二四方弁14及び第一四方弁12を介して空調用圧縮機11に流入するように、第二四方弁14の切替手段(図示せず)を制御する。
 また、制御装置4は、空調用第一膨張弁18を全開とし、空調用第二膨張弁16の開度(絞り)を制御する。
Moreover, in the heating operation mode (refer FIG. 9) and heating hot-water supply operation (independent) mode (refer FIG. 13) of the said embodiment, although the 1st expansion valve 18 for air conditioning was used as a decompression device, it is not restricted to this. . In other words, in each of the operation modes, the air conditioning second expansion valve 16 may be used as a pressure reducing device.
In this case, in the control device 14, the first refrigerant flowing out from the second heat transfer pipe 19 b of the air conditioning utilization side heat exchanger 19 flows into the intermediate heat exchanger 21 via the air conditioning first expansion valve 18, and the air conditioning heat source side Switching means (not shown) for the second four-way valve 14 so that the first refrigerant flowing out of the heat exchanger 15 flows into the air conditioning compressor 11 via the second four-way valve 14 and the first four-way valve 12. Control).
The control device 4 fully opens the air conditioning first expansion valve 18 and controls the opening (throttle) of the air conditioning second expansion valve 16.
 制御装置4が前記のような制御を行った場合、冷房運転(図2のステップS108,S109,S114,S116,S117)では、空調用第一膨張弁18が減圧装置として機能し、暖房運転(図2のステップS110,図3のステップS203,S204)では、空調用第二膨張弁16が減圧装置として機能することとなる。 When the control device 4 performs the control as described above, in the cooling operation (steps S108, S109, S114, S116, and S117 in FIG. 2), the air conditioning first expansion valve 18 functions as a pressure reducing device, and the heating operation ( In Step S110 of FIG. 2 and Steps S203 and S204 of FIG. 3, the air conditioning second expansion valve 16 functions as a pressure reducing device.
 また、上記実施形態においては、ヒートポンプユニット1内の空調利用側熱交換器19で熱搬送媒体を加熱(又は冷却)して室内ユニット2に供給し、室内ユニット2の室内熱交換器43で加熱(又は冷却)された熱搬送媒体と室内空気とを熱交換することにより室内を暖房(又は冷房)するものとして説明したが、これに限られるものではない。すなわち、空調用熱搬送媒体循環回路40を省略し、空調利用側熱交換器19を室内ユニット2に設置し、空調利用側熱交換器19内を通流する第一冷媒と室内空気との間で熱交換することにより暖房(又は冷房)する構成としてもよい。 In the above-described embodiment, the heat transfer medium is heated (or cooled) by the air conditioning utilization side heat exchanger 19 in the heat pump unit 1, supplied to the indoor unit 2, and heated by the indoor heat exchanger 43 of the indoor unit 2. Although it has been described that the interior of the room is heated (or cooled) by exchanging heat between the (or cooled) heat transfer medium and the room air, the present invention is not limited to this. That is, the heat transfer medium circulation circuit 40 for air conditioning is omitted, the air conditioning utilization side heat exchanger 19 is installed in the indoor unit 2, and the space between the first refrigerant flowing through the air conditioning utilization side heat exchanger 19 and the room air. It is good also as a structure which heats (or cools) by exchanging heat with.
 また、上記実施形態においては、被加熱液体は水であり、高温の被加熱液体(湯)をタンク52に貯留し、タンク52に貯留された高温の被加熱液体(湯)を給湯端末(図示せず)に供給するものとして説明したが、これに限られるものではない。すなわち、タンク52に貯留された高温の被加熱液体と給湯端末(図示せず)に供給される給水との間で熱交換可能な熱交換器(図示せず)をさらに備え、タンク52に貯留された高温の被加熱液体で給水を加熱して給湯端末(図示せず)に給湯する構成であってもよい。このように、被加熱液体は水に限られない。 Moreover, in the said embodiment, a to-be-heated liquid is water, a high temperature to-be-heated liquid (hot water) is stored in the tank 52, and the high-temperature to-be-heated liquid (hot water) stored in the tank 52 is a hot water supply terminal (FIG. However, the present invention is not limited to this. That is, a heat exchanger (not shown) capable of exchanging heat between the hot heated liquid stored in the tank 52 and the feed water supplied to the hot water supply terminal (not shown) is further provided. The structure which heats water supply with the heated high temperature heated liquid, and supplies hot water to a hot-water supply terminal (not shown) may be sufficient. Thus, the liquid to be heated is not limited to water.
 また、上記実施形態では、給湯用第一膨張弁33から流入する第一冷媒を給湯熱源側熱交換器35又は給湯用冷媒制御弁39に通流させるために給湯用三方弁34を用いたが、これに限らない。すなわち、給湯用第一膨張弁33から流入する第一冷媒を給湯用第一膨張弁33又は給湯熱源側熱交換器35に通流させるように、二つの流量制御弁を設ける構成であってもよい。
 なお、給湯用三方弁37についても、前記と同様のことがいえる。
In the above embodiment, the hot water supply three-way valve 34 is used to pass the first refrigerant flowing from the hot water supply first expansion valve 33 to the hot water supply heat source side heat exchanger 35 or the hot water supply refrigerant control valve 39. Not limited to this. That is, even if it has a configuration in which two flow rate control valves are provided so that the first refrigerant flowing from the first hot water supply expansion valve 33 flows through the first hot water supply expansion valve 33 or the hot water supply heat source side heat exchanger 35. Good.
The same applies to the three-way valve 37 for hot water supply.
 S 空調給湯システム
 10 空調用冷媒回路
 11 空調用圧縮機
 12 第一四方弁(第一切替手段)
 14 第二四方弁(第二切替手段)
 15 空調熱源側熱交換器
 16 空調用第二膨張弁(空調用減圧装置、空調用第二減圧装置)
 18 空調用第一膨張弁(空調用減圧装置、空調用第一減圧装置)
 19 空調利用側熱交換器
 21 中間熱交換器
 30 給湯用冷媒回路
 31 給湯用圧縮機
 32 給湯利用側熱交換器
 33 給湯用第一膨張弁(給湯用減圧装置)
 34,37 給湯用三方弁(切替手段)
 35 給湯熱源側熱交換器
 36 給湯用第二膨張弁(給湯用減圧装置)
 39 給湯用冷媒制御弁(切替手段)
S air-conditioning hot water supply system 10 air-conditioning refrigerant circuit 11 air-conditioning compressor 12 first four-way valve (first switching means)
14 Second four-way valve (second switching means)
15 Air Conditioning Heat Source Side Heat Exchanger 16 Air Conditioning Second Expansion Valve (Air Conditioning Pressure Reduction Device, Air Conditioning Second Pressure Reduction Device)
18 First expansion valve for air conditioning (pressure reducing device for air conditioning, first pressure reducing device for air conditioning)
DESCRIPTION OF SYMBOLS 19 Air-conditioning use side heat exchanger 21 Intermediate heat exchanger 30 Hot-water supply refrigerant circuit 31 Hot-water supply compressor 32 Hot-water supply-side heat exchanger 33 Hot-water supply first expansion valve (hot-water supply decompression device)
34,37 Three-way valve for hot water supply (switching means)
35 Hot water supply heat source side heat exchanger 36 Second expansion valve for hot water supply (pressure reducing device for hot water supply)
39 Refrigerant control valve for hot water supply (switching means)

Claims (4)

  1.  第一冷媒が循環する空調用冷媒回路と、第二冷媒が循環する給湯用冷媒回路と、を備える空調給湯システムであって、
     前記空調用冷媒回路は、
     第一冷媒を圧縮する空調用圧縮機と、
     空調熱源と熱交換可能な空調熱源側熱交換器と、
     第一冷媒と第二冷媒との熱交換をする中間熱交換器と、
     第一冷媒を減圧する空調用減圧装置と、
     冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する空調利用側熱交換器と、
     冷房運転と暖房運転とで前記空調利用側熱交換器を通流する第一冷媒の向きを切り替える第一切替手段と、
     前記第一切替手段に接続された第二切替手段と、を備え、
     前記第二切替手段は、運転モードに応じて前記空調熱源側熱交換器及び前記中間熱交換器を通流する第一冷媒の向きを切り替えることによって、前記中間熱交換器を第一冷媒の凝縮器として機能させること
     を特徴とする空調給湯システム。
    An air conditioning hot water supply system comprising an air conditioning refrigerant circuit in which a first refrigerant circulates and a hot water supply refrigerant circuit in which a second refrigerant circulates,
    The air conditioning refrigerant circuit is:
    An air conditioning compressor for compressing the first refrigerant;
    An air conditioning heat source side heat exchanger capable of exchanging heat with the air conditioning heat source;
    An intermediate heat exchanger for exchanging heat between the first refrigerant and the second refrigerant;
    An air-conditioning decompression device for decompressing the first refrigerant;
    An air-conditioning side heat exchanger that functions as an evaporator during cooling operation and functions as a condenser during heating operation;
    A first switching means for switching the direction of the first refrigerant flowing through the air-conditioning utilization side heat exchanger between the cooling operation and the heating operation;
    A second switching means connected to the first switching means,
    The second switching means switches the intermediate heat exchanger to the first refrigerant by switching the direction of the first refrigerant flowing through the air-conditioning heat source side heat exchanger and the intermediate heat exchanger according to an operation mode. Air-conditioning hot water supply system characterized by functioning as a water heater.
  2.  前記空調用減圧装置は、
     冷房運転時に第一冷媒を減圧する空調用第一減圧装置と、
     暖房運転時に第一冷媒を減圧する空調用第二減圧装置と、を有すること
     を特徴とする請求の範囲第1項に記載の空調給湯システム。
    The decompression device for air conditioning is
    A first decompression device for air conditioning that decompresses the first refrigerant during cooling operation;
    The air conditioning and hot water supply system according to claim 1, further comprising: a second decompression device for air conditioning that decompresses the first refrigerant during a heating operation.
  3.  前記給湯用冷媒回路は、
     第二冷媒を圧縮する給湯用圧縮機と、
     給湯運転時に凝縮器として機能する給湯利用側熱交換器と、
     第二冷媒を減圧する給湯用減圧装置と、
     給湯熱源と熱交換可能な給湯熱源側熱交換器と、
     第一冷媒の凝縮器として機能し、第二冷媒の蒸発器として機能する前記中間熱交換器と、
     運転モードに応じて、前記給湯熱源側熱交換器及び/又は前記中間熱交換器に第二冷媒を通流させる切替手段と、を備えること
     を特徴とする請求の範囲第1項又は第2項に記載の空調給湯システム。
    The hot water supply refrigerant circuit is:
    A hot water compressor for compressing the second refrigerant;
    A hot water supply side heat exchanger that functions as a condenser during hot water operation;
    A depressurizing device for hot water supply for depressurizing the second refrigerant;
    A hot water source heat source side heat exchanger capable of exchanging heat with a hot water source,
    The intermediate heat exchanger that functions as a condenser for the first refrigerant and functions as an evaporator for the second refrigerant;
    A switching means for causing the second refrigerant to flow through the hot water supply heat source side heat exchanger and / or the intermediate heat exchanger according to an operation mode. The air conditioning hot water supply system described in 1.
  4.  前記給湯熱源側熱交換器は、前記中間熱交換器よりも高い位置に設置されていること
     を特徴とする請求の範囲第3項に記載の空調給湯システム。
    The air-conditioning hot water supply system according to claim 3, wherein the hot water supply heat source side heat exchanger is installed at a position higher than the intermediate heat exchanger.
PCT/JP2011/077531 2011-11-29 2011-11-29 Air conditioning/hot water supply system WO2013080297A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013546876A JP5788526B2 (en) 2011-11-29 2011-11-29 Air conditioning and hot water supply system
EP11876541.1A EP2787304A4 (en) 2011-11-29 2011-11-29 Air conditioning/hot water supply system
PCT/JP2011/077531 WO2013080297A1 (en) 2011-11-29 2011-11-29 Air conditioning/hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077531 WO2013080297A1 (en) 2011-11-29 2011-11-29 Air conditioning/hot water supply system

Publications (1)

Publication Number Publication Date
WO2013080297A1 true WO2013080297A1 (en) 2013-06-06

Family

ID=48534823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077531 WO2013080297A1 (en) 2011-11-29 2011-11-29 Air conditioning/hot water supply system

Country Status (3)

Country Link
EP (1) EP2787304A4 (en)
JP (1) JP5788526B2 (en)
WO (1) WO2013080297A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067315B2 (en) * 2018-11-07 2021-07-20 Shinwa Controls Co., Ltd Temperature control system
US20220333843A1 (en) * 2021-04-16 2022-10-20 Guangdong Giwee Technology Co. Ltd. Three-pipe multi-split air conditioning system and control method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529663B2 (en) * 2016-04-21 2019-06-12 三菱電機株式会社 Exhaust heat recovery type air conditioner
CN106288484B (en) * 2016-08-16 2019-01-04 东北电力大学 A kind of air source heat pump system and its defrosting control method
CN106288562B (en) * 2016-08-16 2019-01-04 东北电力大学 A kind of the defrosting control device and its method of air source heat pump system
EP4063762A1 (en) * 2021-03-26 2022-09-28 Mitsubishi Electric R&D Centre Europe B.V. Cascaded heat pump system with low gwp refrigerant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136959A (en) * 1982-02-05 1983-08-15 三菱電機株式会社 Heat-pump heating and hot-water supply device
JPS5921959A (en) * 1982-07-28 1984-02-04 ミサワホ−ム株式会社 Heat source unit
JPH04143559A (en) * 1990-10-02 1992-05-18 Matsushita Electric Ind Co Ltd Heat pumping installation
JP2005257231A (en) * 2004-03-15 2005-09-22 Fujitsu General Ltd Heat pump hot water supply air conditioner
JP2005299935A (en) 2004-04-06 2005-10-27 Fujitsu General Ltd Air conditioner
WO2011104834A1 (en) * 2010-02-24 2011-09-01 株式会社 日立製作所 Air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026205Y1 (en) * 1969-12-29 1975-08-05
JPS6152564A (en) * 1984-08-22 1986-03-15 株式会社日立製作所 Air-conditioning hot-water supply device
JP2005249319A (en) * 2004-03-05 2005-09-15 Fujitsu General Ltd Heat pump hot water supply air-conditioner
JP4811167B2 (en) * 2006-07-24 2011-11-09 ダイキン工業株式会社 Air conditioning system
JP5373964B2 (en) * 2010-03-01 2013-12-18 株式会社日立製作所 Air conditioning and hot water supply system
JP5492346B2 (en) * 2011-02-22 2014-05-14 株式会社日立製作所 Air conditioning and hot water supply system
ES2608179T3 (en) * 2011-02-22 2017-04-06 Hitachi, Ltd. Air conditioning / hot water supply system and control method for air conditioning / hot water supply system
WO2013061473A1 (en) * 2011-10-28 2013-05-02 株式会社日立製作所 Hot-water supply and air-conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136959A (en) * 1982-02-05 1983-08-15 三菱電機株式会社 Heat-pump heating and hot-water supply device
JPS5921959A (en) * 1982-07-28 1984-02-04 ミサワホ−ム株式会社 Heat source unit
JPH04143559A (en) * 1990-10-02 1992-05-18 Matsushita Electric Ind Co Ltd Heat pumping installation
JP2005257231A (en) * 2004-03-15 2005-09-22 Fujitsu General Ltd Heat pump hot water supply air conditioner
JP2005299935A (en) 2004-04-06 2005-10-27 Fujitsu General Ltd Air conditioner
WO2011104834A1 (en) * 2010-02-24 2011-09-01 株式会社 日立製作所 Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787304A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067315B2 (en) * 2018-11-07 2021-07-20 Shinwa Controls Co., Ltd Temperature control system
US20220333843A1 (en) * 2021-04-16 2022-10-20 Guangdong Giwee Technology Co. Ltd. Three-pipe multi-split air conditioning system and control method thereof

Also Published As

Publication number Publication date
JP5788526B2 (en) 2015-09-30
EP2787304A1 (en) 2014-10-08
JPWO2013080297A1 (en) 2015-04-27
EP2787304A4 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5492346B2 (en) Air conditioning and hot water supply system
KR101623746B1 (en) Second stage heating type geothermal heat system using geothermal energy
JP5788526B2 (en) Air conditioning and hot water supply system
US20130167559A1 (en) Heat pump and control method thereof
US20110138839A1 (en) Water circulation apparatus associated with refrigerant system
JP5920251B2 (en) Heating and hot water supply equipment
WO2018116410A1 (en) Air conditioner
KR101341533B1 (en) gas heat pump system and control method thereof
JPWO2013161011A1 (en) Air conditioning and hot water supply system
EP3690356A1 (en) Refrigeration cycle device
JP5629280B2 (en) Waste heat recovery system and operation method thereof
JP5681787B2 (en) Two-way refrigeration cycle equipment
EP2607809B1 (en) Hydronic heater
WO2013061473A1 (en) Hot-water supply and air-conditioning device
CN105890225A (en) Partial heat recovery type air conditioner cold hot water and life hot water joint supply system
KR101497210B1 (en) Hybrid cooling and heating system and the appratus having it
KR101647285B1 (en) Thermal storage air conditioning system that can perform sequential or simultaneous frost accumulation and emissions or heat storage and dissipation by using a single heat exchanger and its control method
JP2012013350A (en) Hot-water heater
EP2339267B1 (en) Refrigerating cycle apparatus, heat pump type hot water supply air conditioner and outdoor unit thereof
JP5150300B2 (en) Heat pump type water heater
US10465935B2 (en) Air-conditioning apparatus
KR101166858B1 (en) Space cooling, heating and domestic hot water systeme for the geosource heat pump heating and cooling
JP6143682B2 (en) Combined heat source heat pump device
KR101461599B1 (en) an air conditioner which through modification defrosting and efficiency ompressor
JP2012215353A (en) Dual refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546876

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011876541

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE