WO2013080014A2 - Integral solar panel system for an electric vehicle - Google Patents

Integral solar panel system for an electric vehicle Download PDF

Info

Publication number
WO2013080014A2
WO2013080014A2 PCT/IB2012/002495 IB2012002495W WO2013080014A2 WO 2013080014 A2 WO2013080014 A2 WO 2013080014A2 IB 2012002495 W IB2012002495 W IB 2012002495W WO 2013080014 A2 WO2013080014 A2 WO 2013080014A2
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
storage device
solar
integral
solar panel
Prior art date
Application number
PCT/IB2012/002495
Other languages
French (fr)
Other versions
WO2013080014A3 (en
Inventor
Agnew Alexander BROOKS
Original Assignee
ROCHLANI, Vijay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROCHLANI, Vijay filed Critical ROCHLANI, Vijay
Publication of WO2013080014A2 publication Critical patent/WO2013080014A2/en
Publication of WO2013080014A3 publication Critical patent/WO2013080014A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/40Mobile PV generator systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • Integral solar panel system for an electric, vehicle is an integral solar panel system for an electric, vehicle.
  • This invention relates to the technical field of automobile manufacture. More
  • the present invention relates to the manufacturing of an electric vehicle with an integral solar battery charger.
  • the current state of the art is to recharge the traction storage device from an external power source, located in a specific space, which is connected to the vehicle via an electrical cord or through other means such as inductive coupling.
  • the current state of the art for recharging the traction storage device for electric vehicles utilizes an energy source for recharging that is located in a fixed position, such as an electrical power receptacle for the vehicle's onboard charger, an external charger connected to an energy source such as a solar array, a wind generator, or an electrical power distribution grid.
  • the present invention is in the technical field of electric vehicle energy storage device recharging technology. More particularly, the present invention is in the technical field of collecting and converting energy from the sun, and/or other ambient sources, for the purpose of recharging the traction storage device. Those familiar with the art will recognize the advantage in driving range improvement, remote recharging capabilities, and battery life extension provided by the present invention.
  • this invention serves as an integral function during the entire life of the vehicle, whether or not the vehicle is connected to an external source of energy, through a power cord, or an inductive coupling device.
  • the chemical reaction involving the free exchange of ions is particularly susceptible to short-term and long-term damage due to lack of available free ions during various states of discharge. More particularly, the chemistry may form insoluble or irreversible products during this state of discharge due to the unavailability of free ions.
  • the integration of this invention supplies a continuous, positive quantity of free ions to the overall traction storage device, such as a rechargeable Lithium chemistry battery, which experimental data has shown to have a preventive effect on the formation of insoluble and irreversible products during states of discharge for that device.
  • the overall traction storage device such as a rechargeable Lithium chemistry battery
  • the unique and novel aspect of the current invention provides a continuous positive flow of ions to the chemistry during the hours from sunrise to a few hours after sunset that the current state of the art does not receive, thus adding value to the proposition of electric vehicle ownership by preserving the relatively large investment in the traction storage device for a longer period of time than the current state of the art.
  • the present invention is in the technical field of electric vehicle energy storage device recharging technology. More particularly, the present invention is in the technical field of collecting and converting energy from the sun, and/or other ambient frequency sources, for the purpose of recharging the traction storage device.
  • Those familiar with the art will recognize the advantage in driving range improvement, remote recharging capabilities, and battery life extension provided by the present invention.
  • Those familiar with the art will recognize the unique and novel improvement of the current invention for collecting, converting, and supplying traction storage device recharging energy from sunlight, and other wavelengths of ambient energy, as an integral function the entire life of a commercially available highway-ready vehicle, whether or not the electric vehicle is recharged via an external source of energy through a power cord or inductive coupling device.
  • Fig.1 is a depiction of the solar panel in a thin-profile design with a shatterproof lamination subassembly.
  • Fig. 2 is a depiction of the molded rubber extrusion profile that contains the solar panel, prevents the edges of the solar panel from being exposed to moisture, and mounts the solar panel to the slightly curved rooftop of a compact pickup truck.
  • Fig. 3 depicts an integral solar panel mounted to the roof section of the electric truck cab.
  • Fig. 4 is a depiction of a tonneau cover to the compact pickup truck bed that is fitted with solar panels
  • Fig. 5 is a depiction of a box van truck bed fitted with solar panels.
  • Fig. 6 depicts a Battery management System (BMS) device that converts the voltage of the solar panel output to the voltage of the traction storage device as a direct input through an isolation relay and control circuitry common to the electric vehicle industry.
  • BMS Battery management System
  • Fig. 1 shows a solar panel is mounted via a flexible extruded rubber molding, shown in Fig. 2, to the roof of an electric compact pickup truck (Fig. 3). This is aerodynamic to prevent drag on the vehicle while it is moving.
  • the attachment is through an adhesive between the molding (Fig. 2) and the roof area (Fig. 3), or to a tonneau cover (Fig. 4), or to the box van (Fig. 5).
  • a poly-crystalline solar panel may be utilized as a power source to recharge the main traction storage device.
  • the current state of the art of this type of recharging is to collect energy from the sun in a stationary collection station, and then to distribute this stored energy as a charging station to the electric vehicle via a power cord or inductive connection process.
  • Those familiar with the art will recognize that the ability to carry the solar charging ability as an integral part of the vehicle is an improvement over the current state of the art.
  • the current invention mounts the solar panel onto the roof of the vehicle in an aerodynamic manner, using a smooth, flexible extruded profile shown in Fig. 2.
  • the Windshield line in Fig. 4 (1) is utilized in a manner to guide the wind up and over the solar panel to minimize the wind resistance.
  • the extruded molding in Fig. 2 forms a secure shelf for the solar panel to be mounted into a slot in the molding capable of fitting the solar panel.
  • top of a cargo box as shown in Fig. 5, or the pickup truck tonneau cover as shown in Fig. 4, are fitted with solar panels so as to provide a net positive energy supply without detracting from the forward motion of the vehicle throw wind resistance or excessive weight.
  • the current invention may utilize other ambient energies beside those energies commonly available from the sun in an integral device, as shown in Fig. 3.
  • an integral device as shown in Fig. 3.
  • the application of integral devices to collect and convert the energy through a circuitry, as depicted in Fig. 6, so as to isolate the sensitive collection device from the high wattage of the traction storage device, such as a battery system, is unique and novel.
  • Rl is the control relay that disconnects or energizes the main onboard battery charger.
  • R2 is the isolation relay that disconnects the solar panel from the traction storage device.
  • a feature of the present invention is that the solar panels are not covered with glass, so they are very lightweight, thus producing more energy for the traction storage device that that energy required to transport the weight of the solar device itself.
  • Another feature of the current invention is the light weight and the high efficiency, greater than 12%, of the solar collection device.
  • the ability to supply energy to the traction storage device, such as a Lithium chemistry battery, the entire time the sun is shining is a notable advantage over the current state of the art, which is an electric vehicle that can only recharge when it is connected to the electrical power grid or another stationary source of energy.
  • Another feature of the current invention is to extend the useful life of a traction storage device, such as a Lithium battery, by supplying an integral and continuous flow of ions to the chemical reaction so that insoluble and irreversible products detrimental to the life of the battery are not formed. Only a small net positive flow of electrical energy is required to provide this chemical benefit.
  • the current invention may provide enough energy to accomplish this benefit, which is a marked improvement over the current art.
  • Another feature of the current invention is to extend the range that a high-speed electric vehicle can travel between charging sessions at a plugin station. More particularly, those familiar with the art will recognize that golf carts, or other low-speed vehicles usually operate on relatively low voltage, such as 12, 24, 36, 48, or 72 volts using low-cost batteries such as AGM lead acid batteries. These voltages may be available directly from a solar panel, but it requires an efficient conversion between the output voltage of the solar panel and the charging voltage accepted by the batteries. Those familiar with this art will recognize that an efficient and isolated conversion for a traction storage device, such as Lithium chemistry batteries, parallel to the onboard or outboard powered charging system so as to supplement the range performance of a highway-speed electric vehicle.
  • a traction storage device such as Lithium chemistry batteries

Abstract

Integral solar panel for an electric vehicle to recharge the traction battery pack. An integrally installed electronic solar panel array that is capable of fully recharging an automobile with energy obtained from sunlight or other wavelengths of ambient energy. Such an energy collecting panel is modular and may be removed or replaced with common tools. Further, such collecting panel is non-glass, shatterproof, and non-glare. Further still, such a solar panel is designed to provide an isolated source of power to directly recharge the main traction storage device, such as a battery or a capacitor.

Description

TITLE OF THE INVENTION
Integral solar panel system for an electric, vehicle.
CROSS REFERENCE TO RELATED APPLICATIONS
The present application claims priority of U.S. provisional application No. 61/656,556, filed on Dec. 1, 2011, which is herein incorporated by reference. BACKGROUND TO THE INVENTION
This invention relates to the technical field of automobile manufacture. More
particularly, the present invention relates to the manufacturing of an electric vehicle with an integral solar battery charger.
FIELD OF THE INVENTION DESCRIPTION OF RELATED ART
The current state of the art is to recharge the traction storage device from an external power source, located in a specific space, which is connected to the vehicle via an electrical cord or through other means such as inductive coupling. The current state of the art for recharging the traction storage device for electric vehicles utilizes an energy source for recharging that is located in a fixed position, such as an electrical power receptacle for the vehicle's onboard charger, an external charger connected to an energy source such as a solar array, a wind generator, or an electrical power distribution grid. BRIEF SUMMARY OF THE INVENTION
The present invention is in the technical field of electric vehicle energy storage device recharging technology. More particularly, the present invention is in the technical field of collecting and converting energy from the sun, and/or other ambient sources, for the purpose of recharging the traction storage device. Those familiar with the art will recognize the advantage in driving range improvement, remote recharging capabilities, and battery life extension provided by the present invention.
Those familiar with the art will recognize the unique and novel improvement of the current invention for collecting, converting, and supplying traction storage device recharging energy from sunlight, and other wavelengths of ambient energy. Further, this invention serves as an integral function during the entire life of the vehicle, whether or not the vehicle is connected to an external source of energy, through a power cord, or an inductive coupling device. The chemical reaction involving the free exchange of ions is particularly susceptible to short-term and long-term damage due to lack of available free ions during various states of discharge. More particularly, the chemistry may form insoluble or irreversible products during this state of discharge due to the unavailability of free ions. The integration of this invention supplies a continuous, positive quantity of free ions to the overall traction storage device, such as a rechargeable Lithium chemistry battery, which experimental data has shown to have a preventive effect on the formation of insoluble and irreversible products during states of discharge for that device. Those familiar with the art will recognize that the ongoing formation of these insoluble products diminishes the power storage capacity of the device due to an apparent reduction in the chemistry to provide enough available ion states. The unique and novel aspect of the current invention provides a continuous positive flow of ions to the chemistry during the hours from sunrise to a few hours after sunset that the current state of the art does not receive, thus adding value to the proposition of electric vehicle ownership by preserving the relatively large investment in the traction storage device for a longer period of time than the current state of the art.
The present invention is in the technical field of electric vehicle energy storage device recharging technology. More particularly, the present invention is in the technical field of collecting and converting energy from the sun, and/or other ambient frequency sources, for the purpose of recharging the traction storage device. Those familiar with the art will recognize the advantage in driving range improvement, remote recharging capabilities, and battery life extension provided by the present invention. Those familiar with the art will recognize the unique and novel improvement of the current invention for collecting, converting, and supplying traction storage device recharging energy from sunlight, and other wavelengths of ambient energy, as an integral function the entire life of a commercially available highway-ready vehicle, whether or not the electric vehicle is recharged via an external source of energy through a power cord or inductive coupling device.
This summary of the invention does not necessarily describe all features of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:
Fig.1 is a depiction of the solar panel in a thin-profile design with a shatterproof lamination subassembly. Fig. 2 is a depiction of the molded rubber extrusion profile that contains the solar panel, prevents the edges of the solar panel from being exposed to moisture, and mounts the solar panel to the slightly curved rooftop of a compact pickup truck.
Fig. 3 depicts an integral solar panel mounted to the roof section of the electric truck cab.
Fig. 4 is a depiction of a tonneau cover to the compact pickup truck bed that is fitted with solar panels
Fig. 5 is a depiction of a box van truck bed fitted with solar panels.
Fig. 6 depicts a Battery management System (BMS) device that converts the voltage of the solar panel output to the voltage of the traction storage device as a direct input through an isolation relay and control circuitry common to the electric vehicle industry.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the invention in more detail, Fig. 1 shows a solar panel is mounted via a flexible extruded rubber molding, shown in Fig. 2, to the roof of an electric compact pickup truck (Fig. 3). This is aerodynamic to prevent drag on the vehicle while it is moving. The attachment is through an adhesive between the molding (Fig. 2) and the roof area (Fig. 3), or to a tonneau cover (Fig. 4), or to the box van (Fig. 5). Now referring to the drawing in Fig. 1, a poly-crystalline solar panel may be utilized as a power source to recharge the main traction storage device. There are various sources of clean and renewable energies that are suitable for recharging the traction storage device, such as a battery system. The current state of the art of this type of recharging is to collect energy from the sun in a stationary collection station, and then to distribute this stored energy as a charging station to the electric vehicle via a power cord or inductive connection process. Those familiar with the art will recognize that the ability to carry the solar charging ability as an integral part of the vehicle is an improvement over the current state of the art.
Still further, the current invention mounts the solar panel onto the roof of the vehicle in an aerodynamic manner, using a smooth, flexible extruded profile shown in Fig. 2. The Windshield line in Fig. 4 (1) is utilized in a manner to guide the wind up and over the solar panel to minimize the wind resistance. The extruded molding in Fig. 2 forms a secure shelf for the solar panel to be mounted into a slot in the molding capable of fitting the solar panel.
Still further, the top of a cargo box as shown in Fig. 5, or the pickup truck tonneau cover as shown in Fig. 4, are fitted with solar panels so as to provide a net positive energy supply without detracting from the forward motion of the vehicle throw wind resistance or excessive weight.
Still further, the current invention may utilize other ambient energies beside those energies commonly available from the sun in an integral device, as shown in Fig. 3. Still further, the application of integral devices to collect and convert the energy through a circuitry, as depicted in Fig. 6, so as to isolate the sensitive collection device from the high wattage of the traction storage device, such as a battery system, is unique and novel. Rl is the control relay that disconnects or energizes the main onboard battery charger. R2 is the isolation relay that disconnects the solar panel from the traction storage device.
A feature of the present invention is that the solar panels are not covered with glass, so they are very lightweight, thus producing more energy for the traction storage device that that energy required to transport the weight of the solar device itself.
Another feature of the current invention is the light weight and the high efficiency, greater than 12%, of the solar collection device. The ability to supply energy to the traction storage device, such as a Lithium chemistry battery, the entire time the sun is shining is a notable advantage over the current state of the art, which is an electric vehicle that can only recharge when it is connected to the electrical power grid or another stationary source of energy.
Another feature of the current invention is to extend the useful life of a traction storage device, such as a Lithium battery, by supplying an integral and continuous flow of ions to the chemical reaction so that insoluble and irreversible products detrimental to the life of the battery are not formed. Only a small net positive flow of electrical energy is required to provide this chemical benefit. The current invention may provide enough energy to accomplish this benefit, which is a marked improvement over the current art.
Another feature of the current invention is to extend the range that a high-speed electric vehicle can travel between charging sessions at a plugin station. More particularly, those familiar with the art will recognize that golf carts, or other low-speed vehicles usually operate on relatively low voltage, such as 12, 24, 36, 48, or 72 volts using low-cost batteries such as AGM lead acid batteries. These voltages may be available directly from a solar panel, but it requires an efficient conversion between the output voltage of the solar panel and the charging voltage accepted by the batteries. Those familiar with this art will recognize that an efficient and isolated conversion for a traction storage device, such as Lithium chemistry batteries, parallel to the onboard or outboard powered charging system so as to supplement the range performance of a highway-speed electric vehicle.
While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The invention should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the invention. Moreover, the terms "consisting", "comprising" and other derivatives from the term "comprise" are intended to be open-ended terms that specify the presence of any stated features, elements, steps, or components, and are not intended to preclude the presence or addition of one or more other features, elements, integers, steps, components, or groups thereof. Moreover, Applicants have endeavored in the present specification and drawings to draw attention to certain features of the invention, it should be understood that the Applicant claims protection in respect to any patentable feature or combination of features referred to in the specification or drawings. The drawings are provided to illustrate features of the invention, but the claimed invention is expressly not limited to the illustrated embodiments.

Claims

CLAIMS We claim:
1. An integral solar charging system for the main traction storage device for an
electric vehicle.
2. The integral solar charging system of claim 1, wherein the electric vehicle is
capable of highway speeds.
3. „ The integral solar charging system of claim 1, comprising one or a plurality of solar panels.
4. The integral solar charging system of claim 1 ,
wherein said system produces a net gain of energy to the traction storage device as compared to the additional weight and wind resistance it may add to the operation of that vehicle at all posted speed limits for a motor vehicle.
5. The integral solar charging system of claim 1, comprising an automatic isolation for the traction storage device of an electric vehicle such that the storage device will be connected to the solar recharging unit at all times, except when the storage device has been determined to have reached a full state of charge by an integral battery management system.
6. A method of powering a highway speed electric vehicle, comprising the direct conversion of solar energy through the system of Claim 1, or other ambient frequencies of energies, into electricity of suitable form to recharge the integral traction storage device in such a highway-speed electric vehicle.
7. A molded, modular surface mount for a solar panel, said surface mount sized to fit the roof of an electric vehicle in an aerodynamic manner to reduce its resistance to the wind while the vehicle is being operated, so as to securely contain a solar panel from moisture and erosion from underneath the panel.
8. A molded tonneau cover for a pickup truck that is integrally constructed with the solar charging system of Claim 1 , so as to form a solar electric vehicle traction battery charger.
PCT/IB2012/002495 2011-12-01 2012-11-27 Integral solar panel system for an electric vehicle WO2013080014A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161565556P 2011-12-01 2011-12-01
US61/565,556 2011-12-01

Publications (2)

Publication Number Publication Date
WO2013080014A2 true WO2013080014A2 (en) 2013-06-06
WO2013080014A3 WO2013080014A3 (en) 2014-06-12

Family

ID=47739397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/002495 WO2013080014A2 (en) 2011-12-01 2012-11-27 Integral solar panel system for an electric vehicle

Country Status (1)

Country Link
WO (1) WO2013080014A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070786A1 (en) * 2015-10-30 2017-05-04 Truxmart Ltd. Tonneau system for use with a pickup truck
CN114851946A (en) * 2022-06-09 2022-08-05 宁波跨途电子科技有限公司 Solar car cover

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19933651C2 (en) * 1999-07-17 2002-05-29 Webasto Vehicle Sys Int Gmbh Vehicle roof with external solar generator
US8120308B2 (en) * 2005-08-24 2012-02-21 Ward Thomas A Solar panel charging system for electric vehicle that charges individual batteries with direct parallel connections to solar panels
US8997901B2 (en) * 2006-05-11 2015-04-07 Ford Global Technologies, Llc Vehicular body panel energy generator system
US20080128187A1 (en) * 2006-12-01 2008-06-05 Lucky Power Technology Co., Ltd. Transportation device adapted with a solar photo module
US20090288891A1 (en) * 2008-05-20 2009-11-26 Paul Budge Apparatus, system, and method for expandable photovoltaic panel electricity generation
FR2934206A1 (en) * 2008-07-24 2010-01-29 Peugeot Citroen Automobiles Sa Flexible roof for e.g. electric vehicle, has main part with photovoltaic cells transforming solar energy into electric energy to power part of electrical equipments of vehicle, where part is flexible and foldable during opening of roof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070786A1 (en) * 2015-10-30 2017-05-04 Truxmart Ltd. Tonneau system for use with a pickup truck
US10596887B2 (en) 2015-10-30 2020-03-24 Worksport, Ltd. Tonneau system for use with a pickup truck
US11220164B2 (en) 2015-10-30 2022-01-11 Worksport, Ltd. Tonneau system for use with a pickup truck
US11760177B2 (en) 2015-10-30 2023-09-19 Worksport Ltd. Tonneau system for use with a pickup truck
US11780305B2 (en) 2015-10-30 2023-10-10 Worksport Ltd. Tonneau system for use with a pickup truck
CN114851946A (en) * 2022-06-09 2022-08-05 宁波跨途电子科技有限公司 Solar car cover

Also Published As

Publication number Publication date
WO2013080014A3 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
US20130328348A1 (en) Integral solar panel system for an electric vehicle
US10464431B2 (en) Electric vehicle, power supply station, and power maintaining method for electric vehicle
JP3165480U (en) Solar cell car
US20150298661A1 (en) An electronic vehicle battery replacement system
JP2012515526A (en) Solar power management for vehicles
US11581847B2 (en) Photovoltaic and electromagnetic powered mobile electric vehicle charging station
CN202573847U (en) Wind and solar hybrid generating trailer with vanadium redox battery (VRB) for storing energy
CN201646423U (en) Environmentally friendly electric vehicle
US9525305B2 (en) Electric system and vehicle
CN205059297U (en) Solar energy increases form electric automobile and electrical power generating system thereof
US20120235640A1 (en) Energy management systems and methods
CN201494325U (en) Solar saloon car
WO2013080014A2 (en) Integral solar panel system for an electric vehicle
CN104149641A (en) Wind and light complementary power-generating electric bicycle
JP2014042403A (en) Charging device, solar system, electrical system, and vehicle
CN205149487U (en) Complementary storage battery car clothing of scene
WO2011038821A1 (en) An electric power generating device for automobiles
CN102745087A (en) Solar electric vehicle
CN203920382U (en) A kind of chargeable automobile sun-shade-curtain
CN202413459U (en) Electric vehicle using light energy for power generation
CN102291046A (en) Power supply system for electric vehicle
CN202357900U (en) Solar battery for automobile
CN201442526U (en) Solar power-assisted electric vehicle
CN202896269U (en) Range-extending hybrid power system
CN107878208A (en) Solar telephone

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 12824847

Country of ref document: EP

Kind code of ref document: A2