WO2013079828A1 - 3s-rhamnose-glucuronyl hydrolase, procédé de fabrication et utilisations - Google Patents

3s-rhamnose-glucuronyl hydrolase, procédé de fabrication et utilisations Download PDF

Info

Publication number
WO2013079828A1
WO2013079828A1 PCT/FR2012/052054 FR2012052054W WO2013079828A1 WO 2013079828 A1 WO2013079828 A1 WO 2013079828A1 FR 2012052054 W FR2012052054 W FR 2012052054W WO 2013079828 A1 WO2013079828 A1 WO 2013079828A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
sequence
oligosaccharides
ulvans
rhamnose
Prior art date
Application number
PCT/FR2012/052054
Other languages
English (en)
Inventor
Pi COLLEN
William Helbert
Yannick Lerat
Jean-François SASSI
Original Assignee
Centre National De La Recherche Scientifique - Cnrs -
Université Pierre et Marie Curie
Centre D'Étude Et De Valorisation Des Algues
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique - Cnrs -, Université Pierre et Marie Curie, Centre D'Étude Et De Valorisation Des Algues filed Critical Centre National De La Recherche Scientifique - Cnrs -
Priority to EP12773034.9A priority Critical patent/EP2758528A1/fr
Priority to US14/345,718 priority patent/US20140302561A1/en
Publication of WO2013079828A1 publication Critical patent/WO2013079828A1/fr
Priority to IL231595A priority patent/IL231595A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02023Rhamnogalacturonan endolyase (4.2.2.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/02Carbon-oxygen lyases (4.2) acting on polysaccharides (4.2.2)
    • C12Y402/02024Rhamnogalacturonan exolyase (4.2.2.24)

Definitions

  • the present invention relates in particular to proteins, to nucleic acid sequences encoding these proteins, to vectors comprising these coding sequences, to a process for producing these proteins, and to a method for hydrolysis of oligosaccharides using these proteins.
  • the present invention finds particular applications in the development of natural bio-resources constituted by organisms and microorganisms comprising ulvans, in particular green algae. In particular, it finds applications in the laboratory, for the analysis of these ulvans, as well as in the food industry, in the field of cosmetics and in the field of pharmaceutical drugs and formulations where the products of degradation of ulvans are upgradable.
  • references in brackets [] refer to the list of references at the end of the text.
  • Ulvans are composed of different disaccharide repeating units constructed with rhamnose units, glucuronic acids, iduronic acids, xyloses and sulphates.
  • aldobiuronic acid or ulvanobiuronic acids, or respectively A (A 3 s) and B (B 3 s), the formulas of which are as follows:
  • the unit A (A 3 s) is beta-D-1, 4-glucuronic acid (1 ⁇ 4) alpha-L-1,4-rhamnose 3-sulfate.
  • the unit B (B 3S ) is alpha-L-1, 4-iduronic acid (1 ⁇ 4) alpha-L-1,4-rhamnose 3-sulfate.
  • Uronic acids are sometimes replaced by xylose residues sometimes sulphated to O-2.
  • Ulvans have unique physicochemical properties that make them attractive candidates for new agri-food, pharmaceutical, and cosmetic applications. Ulvans are composed of rare sugars such as rhamnose and iduronic acid. Rhamnose is an important component of the surface antigens of many microorganisms recognized specifically by mammalian lectins. It is also used for flavor synthesis. Iduronic acid is used for the synthesis of glycosaminoglycans (heparin). In addition to the monomers, ulvans and oligo-ulvans have interesting biological properties. Indeed, work has shown, for example, that oligo-ulvans have antitumor, antiviral (anti-influenza) and anticoagulant activities.
  • the inventors purified and cloned the ulvan lyase gene specifically cleaving the glycosidic linkage by an elimination mechanism between sulphated rhamnose and uronic acids.
  • the degradation products were purified and analyzes of their structures revealed that they were systematically terminated at their non-reducing end by a disaccharide unit composed of glucuronyl acid and sulphated rhamnose.
  • ulvan-lyase has made it possible to obtain specific olisaccharides.
  • the oligosaccharides obtained can be used, for example, in the cosmetic or medical field, etc.
  • the discovery of new enzymes for the degradation or modification of ulvans and oligo-ulvans should make it possible to produce new series of oligosaccharides of molecular weight and well calibrated structures thus widening the possibilities of application and valuation of ulvans.
  • the present invention is specifically intended to meet this need by providing proteins that very efficiently hydrolyze oligosaccharides.
  • the study of the recognition modalities of the enzymes of the present invention carried out by the inventors demonstrates their 3S-rhamnoglucuronyl hydrolase activity.
  • the subject of the present invention is a protein of sequence SEQ ID No. 1 of the attached sequence listing, namely the sequence peptide:
  • the protein which is the subject of the invention is a 3S-rhamnoglucuronyl hydrolase.
  • the protein which is the subject of the invention may further comprise, at their N-terminal end, a signal sequence or an addressing sequence.
  • This signal sequence can be one of signal sequences known to those skilled in the art for the protein, when synthesized in a host cell, to be directed to an organelle or a particular area of the host cell. It may be for example a signal sequence found in sites specializing in the prediction of signal peptides for example http://www.cbs.dtu.dk/services/SignalP/ [2] or even http: // bmbpcu36.leeds.ac.uk/prot_analysis/Signal.html [3]. It may be for example the sequence SEQ ID No. 2 of the attached sequence listing, namely the sequence MNKSILLLVTLLSLYSCT (SEQ ID No. 2). This signal sequence can be cleaved after synthesis of the protein or not.
  • the inventors have noted that the signal sequences do not interfere and that their cleavages are not necessary for the expression of protein, for example the protein is overexpressed without its signal peptide.
  • the present invention also relates to the nucleic acids encoding the protein of the present invention, in particular for the protein of sequence SEQ ID No. 1.
  • the nucleic acid of the present invention may be any sequence coding for the peptide of sequence SEQ ID No. 1 in view of the degeneracy of the genetic code. It may be, for example, a nucleic acid comprising or consisting of the sequence SEQ ID No. 3 of the attached sequence listing, namely the sequence nucleic acid:
  • the nucleic acid encoding the protein of the present invention may further comprise, at its 5 'end, the sequence SEQ ID No. 4 of the attached sequence listing, namely a sequence nucleic acid.
  • the present invention also relates to an isolated nucleic acid as defined above.
  • the present invention also relates to a vector comprising a nucleic acid encoding the protein of the present invention, for example a nucleic acid of sequence SEQ ID No. 3 of the attached sequence listing.
  • the vector may be one of the vectors known to those skilled in the art to make proteins by genetic recombination. It is generally chosen in particular according to the chosen cellular host.
  • nucleic acids of the present invention or the vectors of the present invention are useful in particular for the genetic recombination of proteins of the present invention.
  • the present invention also relates to a host cell comprising a nucleic acid sequence according to the invention or a vector according to the invention.
  • the nucleic acid when in a host cell, it can be isolated or not.
  • the host cell or host cell may be any suitable host for making the ulna lyase of the present invention from the nucleic acids or vectors of the invention. It can be for example E. coli, Pischia pastoris, Saccharomyces cerevisiae, insect cells, for example a system of insect-baculovirus cells (for example SF9 insect cells using a baculovirus expression system), mammals.
  • the host cell may also be the microorganism deposited under number 1-4324 at the CNCM in France.
  • the present invention thus also relates to a method of making proteins of the present invention comprising culturing a host cell comprising a nucleic acid sequence according to the invention or a vector or the microorganism deposited under the number I-4324 at the CNCM in France according to the invention.
  • This culturing is preferably in a culture medium for the growth of the microorganism. It may be for example ZoBell liquid culture medium, as described in the ZoBell document,
  • the culture pH is preferably between 7 and 9, preferably pH 8.
  • the culture temperature is preferably between 15 and 30 ° C, preferably 25 ° C.
  • the culture is preferably carried out with an NaCl concentration of 20 to 30 gL -1 , preferably 25 gL -1 .
  • This method of manufacturing the proteins according to the invention by using the microorganism deposited under the number I-4324 at the CNCM in France or any other host cell transformed for a genetic recombination production according to the present invention may further comprise a step protein recovery according to the invention.
  • This recovery or isolation step can be carried out by any means known to those skilled in the art. It may be, for example, a technique chosen from electrophoresis, molecular sieving, ultracentrifugation, differential precipitation, for example ammonium sulphate, ultrafiltration, membrane or gel filtration, exchange of ions, hydroxyapatite elution, hydrophobic interaction separation, or any other known means.
  • An example of a method of isolating these 3S Rhamnose glycuronyl hydrolase usable for the implementation of the present invention is described below.
  • microorganism or any other host cell transformed for recombinant genetic manufacture according to the present invention may also be used directly to degrade oligosaccharates, in their natural environment or in culture.
  • oligosaccharates in their natural environment or in culture.
  • it may be a discontinuous or continuous system.
  • a culture reactor containing a culture medium suitable for the development of the microorganism can be used.
  • the subject of the present invention is also a process for the hydrolysis of oligosaccharides comprising a step of contacting the oligosaccharides with a sequence protein of the invention, by for example a protein of sequence SEQ ID No. 1 or with a host cell comprising a vector with a nucleic acid encoding the protein of the invention, for example a nucleic acid of sequence SEQ ID No. 3. under conditions allowing the hydrolysis of oligosaccharides.
  • oligosaccharides are understood to mean oligomers formed by an n number of osues, that is to say monosaccharides by alpha or beta glycosidic linkage. It may be for example di, tri, tetra, oligosaccharides derived from the ulvan degradation by ulvan lyase specifically cleaving the glycosidic bond by a mechanism of elimination between sulfated rhamnose and uronic acids. These degradation products may comprise at their non-reducing end a disaccharide unit composed of glucuronyl acid and a sulphated rhamnose at the 3-position.
  • It may also be oligosaccharides having at least one glucuronyl acid bound to a sulphated rhamnose.
  • oligosaccharides having at least one glucuronyl acid bound to a sulphated rhamnose.
  • a glucuronyl acid bound to sulfated rhamnose itself bound to a uronic acid.
  • the pH may also be preferably between 7 and 8, preferably equal to 7.7. This is indeed the optimal pH range.
  • the (optimum) temperature is preferably between 40 ° C and 45 ° C.
  • the optimum ionic strength may be 100 mM NaCl with 100 mM Tris HCl or 200 mM NaCl.
  • the invention advantageously makes it possible to mobilize the very large algae resource currently untapped, in particular of green algae.
  • the invention also makes it possible to promote the biodegradation of algae, in particular of green algae, to produce original molecules, which are fragments of oligosaccharides, for example also hydrocolloids for cosmetic, food and pharmaceutical applications or pharmaceutical and parapharmaceutical formulations.
  • the degradation products of the oligosaccharides as defined above give access to new products which may be food, cosmetic, pharmaceutical and parapharmaceutical active ingredients used in the agri-food, cosmetic, pharmaceutical and parapharmaceutical fields. These new products can also be non-active products but having a neutrality and / or stability that is very interesting for use in each of these areas.
  • the use of the proteins of the present invention further provides access to rare oligosaccharides useful as synthons in glycochemistry.
  • the degradation of oligosaccharides can give access to iduronic acid (rare sugar) used for the synthesis of synthetic glycoaminoglycans.
  • the present invention also opens new perspectives of use of these algae for applications in bioenergy and chemistry.
  • the production of oligosaccharide fragments can give basic molecules for the manufacture of other molecules.
  • FIG. 1 is a diagram of the genomic environment of the 3S-rhamnose-glucuronyl hydrolase gene of Percisivirga ulvanivorans. The dark part represents the gene encoding the protein of the invention.
  • FIG. 2 represents the protein sequence (SEQ ID No. 1) of the protein of the present invention with the peptide or signal sequence in bold (SEQ ID No. 2).
  • FIG. 3 represents the SDS-PAGE electrophoresis gel of the protein of the invention obtained after overexpression in E. coli and purification on an affinity column. The left column represents the molecular weight markers.
  • FIG. 4 represents the results obtained from gel permeation chromatography experiments representing the kinetics of modification of oligo-ulvans by the protein of the invention.
  • the x-axis represents the retention time in minutes (min)
  • the y-axis represents the refractive index.
  • FIG. 5 represents the results obtained from ion exchange chromatography experiments conducted with the major degradation products of ulvan by ulvanane lyase of P. ulvanivorans: (A) A-Rha3S; (B) A-Rha3S-GluA-Rha3S; (C) A-Rha3S-1duA-Rha3S; (D) ⁇ -Rha3S-Xyl-Rha3S with the protein of the present invention.
  • the x-axis represents the elution time in minutes (min) and the y-axis represents the microsimetric conductimetry (S).
  • Figure 6 shows enzymatic reaction patterns catalyzed by the protein of the present invention. After cleavage of the glycosidic bond, the unsaturated monosaccharide produced rearranges spontaneously to 4-deoxy-1-threo-5-hexosulose-uronic acid.
  • Figure 7 shows cut-off rate results of glycosidic bond between glucuronyl residue and sulfated rhamnose as a function of oligo-ulvans structure.
  • the x-axis represents the time in minutes (min) and the y-axis represents the absorbance (265 nm).
  • FIG. 8 is a diagram showing the subsite organization of the active site of the enzyme of the present invention deduced from the experiments presented in FIG. 7.
  • the + signs indicate the presence of cationic amino acid potentials necessary for the recognition of the
  • FIG. 9 represents the results of proton NMR spectra of the trisaccharides obtained after incubation of oligo-ulvans tetrasaccharides.
  • a 10934 base pair DNA fragment was sequenced revealing a group of 6 genes whose corresponding proteins have homologies with families of glycoside hydrolase classified in CAZY (http://www.cazy.org/) and a protein unknown function.
  • the primary reactions of TAIL PCR were carried out in 20 ⁇ reactions with 15 ng of genomic DNA, 1 ⁇ GoTaq PCR buffer, 1.5 mM MgCl 2 , 0.2 mM of each dNTP, 0.2 ⁇ l of the first specific primer and degenerate arbitrary primer (5 ⁇ AD1 and AD2, 4 ⁇ AD3, 2 ⁇ AD4 and 3 ⁇ AD5), and 1.25 GoTaq U (Promega).
  • the conditions for TAIL PCR side reactions were identical to those for the primary reactions except that 1 ⁇ of a 1:50 dilution of the primary TAIL PCR reaction was used as the original strand and a second specific primer was then used.
  • For the tertiary reaction of TAIL PCR 1 ⁇ l of a 1: 50 dilution of the TAIL PCR side reaction was used with the third specific primer.
  • the amplification programs were adapted to each of the different TAIL PCR reactions according to the thermocyclers available in the laboratory (Table 2). New GH105 protein gene-specific primers derived from TAIL-PCR experiments were then synthesized to further sequence the gene.
  • Figure 1 shows the genomic environment of the ulvan-lyase gene.
  • the gene encoding a protein belonging to the GH105 family is 1130 base pairs and the translation leads to a 43.7 kD protein composed of 377 amino acids as shown in FIG. sequence by the SignalP program (http://www.cbs.dtu.dk/services/SignalP/) predicted a 16 amino acid signal peptide with a cleavage site between a serine (S16) and a cysteine (C17 ).
  • the complete gene without the signal peptide was cloned and introduced into the pFO4 expression vector according to the following protocol: Primers that match the ends of the GH105 protein gene (excluding its signal peptide) and also possess BamHI restriction and EcoRI respectively at the 5 'and 3' ends of the gene were synthesized. These primers made it possible to amplify the gene according to standard PCR conditions with an annealing temperature of 50 ° C. and 30 cycles.
  • PCR products were purified, digested with the appropriate restriction enzymes (BamHI / EcoRI) and ligated into the pFO4 expression vector (modified pET15 (Novagen), Groisillier et al., 2010 Groisillier A, Hervé C, Jeudy A, Rebuffet E, Pluchon PF, Chevolot Y, Flament D, Geslin C, Morgado IM, Power D, Branno M, Moreau H, Michel G, Boyen C, Czjzek M. 2010. MARINE-EXPRESS: taking advantage of high throughput cloning and expression strategies for the post-genomic analysis of marine organisms, Microb Cell Fact 9, 45).
  • Luria-Bertani-based expression medium 10 g tryptone, 5 g extract yeast and 10 g NaCl per L
  • IPTG isopropyl ⁇ -D1-thiogalactopyranoside
  • the bacteria were recovered by centrifugation.
  • the pellet of bacteria was suspended in 20 mM Tris-HCl buffer, 500 mM NaCl and 5 mM imidazole pH 7.4.
  • the cells were lysed using a French press in a 20 mM Tris-HCl buffer, 20 mM imidazole, 0.5M NaCl and pH 7.4.
  • Cell debris was removed by centrifugation.
  • the supernatant was injected onto a column of Ni Sepharose loaded with 100 mM NiSO 4 (GE Healthcare). After washing, the retained proteins were eluted with a linear imidazole gradient of 20 mM to 500 mM.
  • the active fractions were collected and purified on a superdex 75 column (1.
  • Figure 3 shows the gel obtained after migration.
  • the protein has been strongly expressed as demonstrated by the electrophoresis gel. Indeed, the most intense band corresponds to a protein whose molecular mass of 42kD corresponds to that expected.
  • Enzymes described in the literature belonging to the GH105 family are known to cut the binding between galacturonyl acid and neutral rhamnose of oligosaccharides produced after degradation of rhamnogalacturonan by rhamnogalacturonan lyases.
  • Galactose is the C4 epimer of glucose, therefore the formation of the double bond between C4 and C5 of galactose and glucose leads to a uronic acid of the same chemical structure: galacturonyl acid is synonymous with acid glucuronyl.
  • Oligosaccharide production was carried out by degradation of polygalacturonan at 1 g / L in 100 mM Tris-HCl at pH 7.7 at 30 ° C with rhamnogalacturonan lyase (Novozymes) at a final concentration of 0.2 ⁇ g / ml The degradation was followed by increasing the absorbance at 235 nm.
  • a production of oligo-ulvan was carried out by degradation of ulvan by the ulvan lyase from "01-PN-2010" to the completion followed by an ultrafiltration step on 5000 kD membrane in order to eliminate the resistant fraction.
  • the resulting mixture had a concentration of 12.5 mM oligosaccharides, mostly di- and tetra-saccharides but the presence of hexa-, octa- and deca-saccharides was also observed.
  • the oligo-ulvans mixture obtained after degradation of ulvane by "01-PN-2010" ulvan-lyase was incubated with the protein of the invention at a final concentration of 0.05 g / ml. room temperature (20 ° C).
  • oligo-ulvans The degradation kinetics of oligo-ulvans was followed by gel permeation on a Superdex 200 column coupled in series with a peptide HR column (GE Healthcare). Elution was carried out in 50 mM ammonium carbonate at a flow rate of 0.5 mL min- 1 on an Ultimate 3000 HPLC system (Dionex) equipped with a UV detector (Dionex) at 235 nm and an RI refractometer ( Wyatt) The injected volume was 100 ⁇ .
  • the absorbance at 235 nm decreases indicating that the glucuronyl acid of the non-reducing end is removed.
  • the peaks detected by their refractive index decreased and then disappeared in favor of new signals as shown.
  • HPAEC high-performance ion exchange chromatography
  • Dionex ICS 3000 chromatography apparatus equipped with a 20 ⁇ injection loupe, d an automated injection system AS100XR (Thermo Separation Products) and an ion exchange column AS1 1 (4 mm ⁇ 250 mm, Dionex lonPac) associated with a pre-column guard AG1 1 (4 mm ⁇ 50 mm), Dionex lonPac).
  • AS100XR Thermo Separation Products
  • AS1 1 4 mm ⁇ 250 mm, Dionex lonPac
  • pre-column guard AG1 1 (4 mm ⁇ 50 mm
  • Dionex lonPac Dionex lonPac
  • the mobile phases were ultrapure water (solution A) and 290 mM NaOH (solution B). Elution was carried out at a flow rate of 0.5 mL min -1 and the gradient used was 0 min: 3% Sol.B, 1.5 min: 1% Sol.B, 4.1 min: 5% Sol B: 6.5min: 10% B: 10.0 min: 18% B: 26 min: 22% B: 28 min, 40% B: 30 min: 100% B: 30 , 1 min: 3% B Sol, B: 37 min: 3% Sol B. Data acquisition and analysis were performed using Chromeleon-peak Net software (Dionex).
  • the four major oligo-ulvans were purified and then incubated with the protein of the invention.
  • the reaction medium was composed of 100 mM Tris HCl pH 7.7, 100 mM NaCl with 125 ⁇ l of purified oligosaccharides and a final protein concentration of 0.05 g / ml.
  • the reaction was carried out at 30 ° C and followed with a spectrophotometer at 235 nm. The molecular weight of these four oligosaccharides decreased and the molecules lost their UV absorbing properties at 265 nm.
  • Oligosaccharides obtained after incubation of the protein of the invention were analyzed by 1 H proton NMR and carbon. Spectra were obtained with a Bruker Avance DRX 500 spectrophotometer (NMR service from the University of Western Brittany) at 20 ° C. Prior to analysis, the samples were transferred to D 2 O (99.97 atom% D 2 O). The spectra clearly indicate the disappearance of the glucuronyl acid unit and that the oligosaccharides are terminated at their non-reducing end by sulphated rhamnose.
  • the structure of the oligosaccharides demonstrate that the protein of the invention is a 3S-rhamnose glucuronyl hydrolase which catalyzes the hydrolysis of the glycosidic bond between glucuronyl acid and sulfated rhamnose. This enzymes catalyze the reactions shown in Figure 6.
  • the study of the kinetics of degradation of the oligosaccharides purified by the protein of the invention was carried out in a reaction medium composed of 100 mM NaCl, 100 mM, Tris HCl (pH 7.7) and oligosaccharides of ulvan (dp 2 -8) at 30 ° C in a 1 mL quartz cuvette.
  • the maximum concentration of oligo-ulvans used corresponds to an absorbance of 0.5 to 235 nm. 10 ⁇ l of pure GH105 (19 ⁇ g / ml) was added to the reaction medium.
  • the degradation of ulvan oligosaccharides (or rather the disappearance of non-reducing glucuronyl acid) was followed by the decrease in absorbance at 235 nm for 5 min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La présente invention se rapporte notamment à des protéines, à des séquences d'acides nucléiques codant pour ces protéines, à des vecteurs comprenant ces séquences codantes, à un procédé de fabrication de ces protéines, ainsi qu'à un procédé d'hydrolyse d'oligosaccharides utilisant ces protéines. En particulier, elle concerne la protéine de séquence SEQ ID n°1. La présente invention trouve des applications dans la valorisation des bio-ressources naturelles constituées par les organismes et les microorganismes comprenant des ulvanes, notamment les algues vertes.

Description

3S-RHAMNOSE-GLUCURONYL HYDROLASE, PROCÉDÉ DE FABRICATION ET UTILISATIONS
DESCRIPTION
Domaine technique
La présente invention se rapporte notamment à des protéines, à des séquences d'acides nucléiques codant pour ces protéines, à des vecteurs comprenant ces séquences codantes, à un procédé de fabrication de ces protéines, ainsi qu'à un procédé d'hydrolyse d'oligosaccharides utilisant ces protéines.
La présente invention trouve notamment des applications dans la valorisation des bio-ressources naturelles constituées par les organismes et les microorganismes comprenant des ulvanes, notamment les algues vertes. En particulier, elle trouve des applications en laboratoire, pour l'analyse de ces ulvanes, ainsi que dans l'agro-alimentaire, dans le domaine de la cosmétique et dans le domaine des médicaments et formulations pharmaceutiques ou les produits de dégradation des ulvanes sont valorisâmes. Dans la description ci-dessous, les références entre crochets [ ] renvoient à la liste des références présentée à la fin du texte.
Etat de la technique
Les algues vertes appartenant au genre Ulvales (Ulva sp. et Enteromorpha sp.) sont présentes partout sur le globe terrestre et sont très communément rencontrées sur les côtes. Ces algues sont fréquemment impliquées dans la prolifération algale favorisée par l'eutrophisation des eaux côtières donnant lieu aux « marées vertes ».
Jusqu'à maintenant cette biomasse indésirable a une très faible valeur ajoutée et est utilisée essentiellement comme compost. Les polysaccharides anioniques complexes présents dans la paroi des ulves : les ulvanes, possèdent des structures originales et représentent une source de biopolymères dont les fonctionnalités sont encore peu explorées.
Les ulvanes sont composés de différentes unités de répétition disaccharidiques construites avec des unités rhamnoses, acides glucuroniques, acides iduroniques, xyloses et de sulfates.
Les deux principaux motifs de répétition sont appelés acide aldobiuronique, ou acides ulvanobiuroniques, ou respectivement A (A3s) et B (B3s), dont les formules sont les suivantes :
Figure imgf000003_0001
Le motif A (A3s) est l'acide béta-D-1 ,4-glucuronique (1→4) alpha-L- 1 ,4-rhamnose 3-sulfate. Le motif B (B3S) est l'acide alpha-L-1 ,4-iduronique (1→4) alpha-L-1 ,4-rhamnose 3-sulfate.
Les acides uroniques sont parfois remplacés par des résidus xylose quelquefois sulfatés en O-2.
Les ulvanes possèdent des propriétés physicochimiques uniques qui en font des candidats attractifs pour de nouvelles applications agroalimentaires, pharmaceutiques, et cosmétiques. Les ulvanes sont composés de sucres rares tels que le rhamnose et l'acide iduronique. Le rhamnose est un composé important des antigènes de surface de nombreux microorganismes reconnus spécifiquement par les lectines de mammifères. Il est également utilisé pour la synthèse d'arômes. L'acide iduronique est utilisé pour la synthèse des glycosaminoglycans (Le. héparine). En plus des monomères, les ulvanes et oligo-ulvanes présentent des propriétés biologiques intéressantes. En effet, des travaux ont montré, par exemple, que les oligo-ulvanes ont des activités antitumorales, antivirales (antigrippales) et anticoagulantes. Une liste non-exhaustive d'applications potentielles des ulvanes a été proposée par M. Lahaye et A. Robic dans le document Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007, 8, 1765- 1774 [1].
Dans ce contexte, une meilleure compréhension de la structure des ulvanes et le développement de procédés permettant de fragmenter les ulvanes sous forme oligomérique ou monomérique revêt un très grand intérêt.
Dans ce contexte, lors d'une précédente invention, les inventeurs ont purifiés et clonés le gène d'une ulvane-lyase clivant spécifiquement la liaison glycosidique par un mécanisme d'élimination entre le rhamnose sulfaté et les acides uroniques. Les produits de dégradation ont été purifiés et les analyses de leurs structures ont révélés qu'ils étaient systématiquement terminés à leur extrémité non réductrice par un motif disaccharidique composé de l'acide glucuronyl et d'un rhamnose sulfaté. Ainsi l'ulvan-lyase a permis d'obtenir des olisaccharides spécifiques.
Les oligosaccharides obtenus sont utilisables par exemple, dans le domaine cosmétique, médical etc.. Toutefois, la découvertes de nouvelles enzymes de dégradation ou de modification des ulvans et des oligo-ulvans devraient permettre de produire de nouvelles séries d'oligosaccharides de poids moléculaires et de structures bien calibrées élargissant ainsi les possibilités d'application et de valorisation des ulvans.
Actuellement, faute de moyens permettant de les connaître mieux et de les dégrader efficacement, les algues, notamment les algues vertes, sont essentiellement compostées et aucune valorisation industrielle n'en est faite. Ceci est d'autant plus déplorable que la source est abondante et parfois gênante en termes de pollution de nos côtes maritimes. Leur élimination est actuellement réalisée par voie de compost.
Il existe donc un réel besoin de trouver de nouveaux moyens de dégradation des ulvanes ainsi que des oligosaccharides après dégradation par des ulvanes lyases afin de pouvoir valoriser cette bio-ressource, issue notamment des algues vertes, en produisant des fragments oligo-ulvanes à façon dans la perspective d'applications cosmétiques, agro-alimentaires et médicales. Exposé de l'invention
La présente invention a précisément pour but de répondre à ce besoin en fournissant des protéines qui hydrolysent très efficacement des oligosaccharides. L'étude des modalités de reconnaissance des enzymes de la présente invention réalisée par les inventeurs démontre leur activité 3S-rhamnoglucuronyl hydrolase.
La présente invention a pour objet une protéine de séquence SEQ ID n°1 du listage de séquences annexé, à savoir le peptide de séquence :
DTEKTPLEEKDVFNEDYIKTSMIKALEWQEAHPIFAIHPTDWTNGA YYTGVARAHHTTKNMMYMAALKNQAVANNWQPYTRLYHADDVAISYSY LYVAENEKRRNFSDLEPTKKFLDTHLYEDNAWKAGTNRSKEDKTILWWW
CDALFMAPPVINLYAKQSEQPEYLDEMHKYYMETYNRLYDKEEKLFARD SRFVWDGDDEDKKEPNGEKVFWSRGNGvWIGGLALLLEDMPEDYKHR DFYVNLYKEMASRILEIQPEDGLWRTSLLSPESYDHGEVSGSAFHTFALA WGINKGLIDKKYTPAVKKAWKAMANCQHDDGRVGWVQNIGAFPEPASK DSYQNFGTGAFLLAGSEILKMR (SEQ ID n°1 )
Selon l'invention la protéine objet de l'invention est une 3S- rhamnoglucuronyl hydrolase.
Selon l'invention, la protéine objet de l'invention peuvent comprendre en outre, à leur extrémité N-terminale, une séquence signal ou séquence d'adressage. Cette séquence signal peut être une des séquences signal connues de l'homme du métier pour que la protéine, lorsqu'elle est synthétisée dans une cellule hôte, soit dirigée vers un organite ou une zone particulière de la cellule hôte. Il peut s'agir par exemple d'une séquence signal trouvée dans les sites spécialises dans la prédiction de peptides signaux par exemple http://www.cbs.dtu.dk/services/SignalP/ [2] ou encore http://bmbpcu36.leeds.ac.uk/prot_analysis/Signal.html [3]. Il peut s'agir par exemple la séquence SEQ ID n°2 du listage de séquences annexé, à savoir la séquence MNKSILLLVTLLSLYSCT (SEQ ID n°2). Cette séquence signal peut être clivée après synthèse de la protéine ou non.
Avantageusement, les inventeurs ont noté que les séquences signal ne gênent pas et que leurs clivages n'est pas nécessaire pour l'expression de protéine, par exemple la protéine est surexprimée sans son peptide signal.
La présente invention se rapporte également aux acides nucléiques codant pour la protéine de la présente invention, notamment pour la protéine de séquence SEQ ID n°1 . L'acide nucléique de la présente invention peut être toute séquence codant pour le peptide de séquence SEQ ID N° 1 compte tenu de la dégénérescence du code génétique. Il peut s'agir par exemple d'un acide nucléique comprenant ou constitué de la séquence SEQ ID n°3 du listage de séquences annexé, à savoir l'acide nucléique de séquence :
GATACTGAAAAAACACCATTAGAGGAGAAGGATGTTTTTAATGAAGAT TATATAAAAACTTCTATGATAAAAGCACTAGAGTGGCAAGAAGCACAC CCTATTTTTGCTATACATCCTACAGACTGGACTAATGGTGCATACTATA
CAGGTGTTGCAAGAGCACATCATACGACTAAAAACATGATGTATATGG CTGCGTTAAAAAATCAAGCAGTGGCTAATAATTGGCAACCATACACAC GTTTGTATCATGCTGATGATGTCGCTATTTCATATAGCTATTTGTATGT AGCTGAAAACGAAAAACGAAGGAATTTTTCAGATTTAGAGCCTACGAA AAAGTTTTTAGATACACATTTGTATGAGGATAATGCTTGGAAAGCAGG
AACTAATAGAAGTAAAGAAGACAAAACCATTTTATGGTGGTGGTGTGA TGCTTTATTTATGGCACCACCTGTAATTAATTTGTATGCAAAACAGTCA GAGCAACCTGAGTATCTAGACGAAATGCACAAATATTATATGGAAACC TATAACAGATTGTATGATAAAGAAGAAAAGTTATTTGCAAGAGATTCAA GATTTGTTTGGGACGGTGATGATGAAGACAAAAAAGAACCAAATGGTG AAAAAGTATTTTGGTCTAGAGGAAATGGATGGGTAATCGGCGGTTTAG CATTATTGCTAGAGGATATGCCAGAAGACTACAAGCATAGAGATTTCT ACGTGAACTTGTATAAAGAAATGGCTAGTAGAATATTAGAAATTCAACC AGAAGATGGTTTATGGAGAACAAGTTTGTTAAGTCCAGAATCTTACGA TCACGGTGAGGTTAGTGGTAGTGCTTTCCATACTTTTGCTTTGGCTTG G G G AATTAATAAAG GTTTAATAG ATAAAAAATATACACCTGCCGTTAAG AAAGCGTGGAAAGCTATGGCTAATTGTCAGCATGATGATGGTCGTGTA G GTTG G GTACAAAACATAG GTGCTTTTCCAG AGCCAGCTTCTAAG G AT AGTTATCAGAATTTTGGAACTGGAGCTTTTTTGTTAGCTGGAAGTGAA ATTCTAAAAATGAGATAA (SEQ ID n°3)
Selon l'invention l'acide nucléique codant pour la protéine de la présente invention peut comprendre en outre, à son extrémité 5', la séquence SEQ ID n° 4 du listage de séquences annexé, à savoir un acide nucléique de séquence
ATGAATAAATCAATCTTATTACTGGTTACTTTATTAAGCCTTTATAGTTG TACT (SEQ ID n°4).
En d'autres termes, la présente invention se rapporte également à un acide nucléique isolé tel que défini ci-dessus.
La présente invention se rapporte également à un vecteur comprenant un acide nucléique codant pour la protéine de la présente invention, par exemple un acide nucléique de séquence SEQ ID n°3 du listage de séquences annexé.
Le vecteur peut être un des vecteurs connus de l'homme du métier pour fabriquer des protéines par recombinaison génétique. Il est choisi en général notamment en fonction de l'hôte cellulaire choisi. Le vecteur peut être par exemple choisi parmi les vecteurs listés dans le catalogue http://www.promega.com/vectors/mammalian_express_vectors.htm [4] ou http://www.qiagen.com/pendantview/qiagenes. aspx?gaw=PROTQIAgenes 0807&gkw=mammalian+expression [5], ou encore http://www.scbt. com/chap_exp_vectors.php?type=pCruzTM%20Expressio n%20Vectors [6]. Il peut s'agir par exemple du vecteur d'expression décrit dans le document WO 83/004261 [7].
Les acides nucléiques de la présente invention ou les vecteurs de la présente invention sont utilisables notamment pour la fabrication par recombinaison génétique de protéines de la présente invention. Aussi, la présente invention se rapporte également à une cellule hôte comprenant une séquence d'acide nucléique selon l'invention ou un vecteur selon l'invention.
Selon l'invention, lorsque l'acide nucléique est dans une cellule hôte, il peut être isolée ou non.
La cellule hôte ou hôte cellulaire peut être tout hôte approprié pour la fabrication des ulvanes lyase de la présente invention à partir des acides nucléiques ou des vecteurs de l'invention. Il peut s'agir par exemple d'E. coli, de Pischia pastoris, de Saccharomyces cerevisiae, de cellules d'insectes, par exemple un système cellules d'insectes-baculovirus (par exemple cellules d'insecte SF9 utilisant un système d'expression de baculovirus), de mammifères.
La cellule hôte peut être également le microorganisme déposé sous le numéro 1-4324 à la CNCM en France.
La présente invention se rapporte donc également à un procédé de fabrication de protéines de la présente invention comprenant la mise en culture une cellule hôte comprenant une séquence d'acide nucléique selon l'invention ou un vecteur ou le microorganisme déposé sous le numéro I- 4324 à la CNCM en France selon l'invention.
Cette mise en culture se fait de préférence dans un milieu de culture permettant la croissance du microorganisme. Il peut s'agir par exemple milieu de culture liquide ZoBell, comme décrit dans le document ZoBell,
CE 1941 Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes, J Mar Res 4, 41 -75 [8]. Des conditions de culture utilisables pour la mise en œuvre de la présente invention sont également décrites dans ce document. Le pH de culture est de préférence compris entre 7 et 9, de préférence pH 8. La température de culture est de préférence comprise entre 15 et 30°C, de préférence 25°C. La culture est de préférence réalisée avec une concentration NaCI de 20 à 30 g.L"1, de préférence de 25 g.L"1.
Ce procédé de fabrication des protéines selon l'invention en utilisant le microorganisme déposé sous le numéro I-4324 à la CNCM en France ou tout autre cellule hôte transformée pour une fabrication par recombinaison génétique conformément à la présente invention, peut comprendre en outre une étape de récupération des protéines selon l'invention. Cette étape de récupération ou d'isolement peut être réalisée par tout moyen connu de l'homme du métier. Il peut s'agir par exemple d'une technique choisie parmi une électrophorèse, un tamisage moléculaire, une ultracentrifugation, une précipitation différentielle, par exemple au sulfate d'ammonium, par ultrafiltration, une filtration sur membrane ou sur gel, un échange d'ions, une élution sur hydroxyapatite, une séparation par interactions hydrophobes, ou tout autre moyen connu. Un exemple de procédé d'isolement de ces 3S Rhamnose glycuronyl hydrolase utilisables pour la mise en œuvre de la présente invention est décrit ci-dessous.
Le microorganisme précité ou toute autre cellule hôte transformée pour une fabrication par recombinaison génétique conformément à la présente invention peut également être utilisé directement pour dégrader des oligosacchandes, dans leur milieu naturel ou en culture. Lorsqu'il s'agit d'une culture, il peut s'agir d'un système discontinu ou continu. On peut utiliser par exemple un réacteur de culture contenant un milieu de culture approprié au développement du microorganisme.
La présente invention a également pour objet un procédé d'hydrolyse d'oligosaccharides comprenant une étape de mise en contact des oligosacchandes avec une protéine de séquence de l'invention, par exemple une protéine de séquence SEQ ID n°1 ou avec une cellule hôte comprenant un vecteur avec un acide nucléique codant pour la protéine de l'invention, par exemple un acide nucléique de séquence SEQ ID n°3. dans des conditions permettant l'hydrolyse des oligosaccharides.
Dans la présente par oligosaccharides on entend des oligomères formés d'un nombre n d'osés, c'est-à-dire des monosaccharides par liaison glycosidique alpha ou beta. Il peut s'agir par exemple de di, tri, tétra, d'oligosaccharides issus de la dégradation d'ulvane par l'ulvane-lyase clivant spécifiquement la liaison glycosidique par un mécanisme d'élimination entre le rhamnose sulfaté et les acides uroniques. Ces produits de dégradation peuvent comprendre à leur extrémité non réductrice un motif disaccharidique composé de l'acide glucuronyl et d'un rhamnose sulfaté en position 3. Il peut s'agir également d'oligosaccharides possédant au moins un acide glucuronyl lié à un rhamnose sulfaté, par exemple un acide glucuronyl lié à un rhamnose sulfaté lié lui-même à un acide uronique.
Pour la digestion enzymatique, la détermination des constantes de Michaelis Menten (Km et Vmax) permet aisément à l'homme du métier de trouver les conditions optimales de concentration de la protéine de l'invention utilisée et de concentration de protéine de l'invention pour la dégradation de la protéine de l'invention dans le milieu où elle se trouve ou dans le milieu dans lequel elle a été placée. Le pH peut être également compris de préférence entre 7 et 8, de préférence égale à 7,7. Il s'agit en effet de la gamme de pH optimale. La température (optimale) est de préférence comprise entre 40°C et 45°C. La force ionique optimale peut être égale à 100 mM NaCI avec 100 mM Tris HCI ou 200 mM NaCI.
L'invention permet avantageusement de mobiliser la très grande ressource d'algues actuellement inexploitée, notamment d'algues vertes. L'invention permet en outre de favoriser la biodégradation des algues, notamment des algues vertes, de produire des molécules originales, qui sont des fragments d'oligosaccharides, par exemple aussi des hydrocolloïdes pour des applications cosmétiques, agro-alimentaires et médicaments ou formulations pharmaceutiques et parapharmaceutiques.
Les produits de dégradation des oligosaccharides tel que défini ci- dessus donnent accès à de nouveaux produits qui peuvent être des actifs alimentaires, cosmétiques, pharmaceutiques et parapharmaceutiques utilisables dans les domaines agro-alimentaires, cosmétiques, pharmaceutiques et parapharmaceutiques. Ces nouveaux produits peuvent également être des produits non actifs mais présentant une neutralité et/ou une stabilité qui est très intéressante pour une utilisation dans chacun de ces domaines.
L'utilisation des protéines de la présente invention donne en outre accès à des oligosaccharides rares utilisables comme synthons en glycochimie. La dégradation des oligosaccharides peut donner accès à l'acide iduronique (sucre rare) utilisé pour la synthèse des glycoaminoglycans de synthèse.
La présente invention ouvre également de nouvelles perspectives d'utilisation de ces algues pour des applications en bioénergie et en chimie. La production de fragments oligosaccharides peut donner de molécules de base pour la fabrication d'autres molécules.
D'autres caractéristiques et avantages apparaîtront encore à l'homme du métier à la lecture des exemples ci-dessous, donnés à titre illustratif et non limitatif, en référence aux figures annexées.
Brève description des figures
- La figure 1 est un schéma de l'environnement génomique du gène de la 3S-rhamnose-glucuronyl hydrolase de Percisivirga ulvanivorans. La partie sombre représente le gène codant la protéine de l'invention.
La figure 2 représente la séquence protéique (SEQ ID n°1 ) de la protéine de la présente invention avec en gras le peptide ou séquence signal (SEQ ID n°2). La figure 3 représente le gel d'électrophorèse SDS-PAGE de la protéine de l'invention obtenu après surexpression dans E. coli et purification sur colonne d'affinité. La colonne de gauche représente les marqueurs de poids moléculaire.
- La figure 4 représente les résultats obtenus d'expériences de chromatographie de perméation de gel représentant la cinétique de modification des oligo-ulvans par la protéine de l'invention. Sur ce graphique, l'axe des abscisses représente le temps de rétention en minute (min), et l'axe des ordonnées représente l'index de réfraction.
- La figure 5 représente les résultats obtenus d'expériences de chromatographie échangeuse d'ions conduites avec les produits de dégradation majoritaire de l'ulvan par l'ulvane lyase de P. ulvanivorans : (A) A-Rha3S; (B) A-Rha3S-GluA-Rha3S; (C) A-Rha3S-lduA-Rha3S; (D) Δ- Rha3S-Xyl-Rha3S avec la protéine de la présente invention. Sur ces graphiques, l'axe des abscisses représente le temps d'élution en minute (min) et l'axe des ordonnées représente la conductimétrie en micro- siemens ( S).
La figure 6 représente des schémas de réactions enzymatiques catalysées par la protéine de la présente invention. Après coupure de la liaison glycosidique, le monosaccharide insaturé produit se réarrange spontanément en acide 4-deoxy-1 -threo-5-hexosulose-uronique.
La figure 7 représente les résultats de vitesse de coupure de la liaison glycosidique entre le résidu glucuronyl et le rhamnose sulfaté en fonction de la structure des oligo-ulvans. Sur ces graphiques, l'axe des abscisses représente le temps en minute (min) et l'axe des ordonnées représente l'absorbance (265 nm).
La figure 8 est un schéma représentant l'organisation en sous-site du site actif de l'enzyme de la présente invention déduite des expériences présentées figure 7. Les signes + indiquent la présence de potentiels acides aminés cationiques nécessaires à la reconnaissance du
Rhamnose sulfaté (sous-site +1 ) et des uroniques (sous-site +2). La figure 9 représente les résultats de spectres RMN du proton des trisaccharides obtenus après incubation des oligo-ulvans tétrasaccharides. A) mélange d'oligo-ulvans riche en glucuronique (R3S- GlcA-R3S > R3S-lduA-R3S) ou en B) iduronique (R3S-GlcA-R3S < R3S- lduA-R3S). C) Trisaccharide de structure R3S-Xyl-R3S.
EXEMPLES
Exemple 1 : identification et production de l'hydrolase de l'invention Les gènes contigus au gène de l'ulvane-lyase de la bactérie
Persicivirga ulvanivorans appelé « 01 -PN-2010 » déposé à la CNCM sous le numéro I-4324, ont été séquencés par la méthode de « Tail PCR » tel que décrit dans Liu YG, Mitsukawa N, Oosumi T and Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463 [9].
Un fragment d'ADN de 10934 paires de bases a été séquencé révélant un groupe de 6 gènes dont les protéines correspondantes présentent des homologies avec des familles de glycoside hydrolase classées dans CAZY (http://www.cazy.org/) et une protéine de fonction inconnue.
Le point de départ du séquençage par cette méthode a été le gène de l'ulvan-lyase. Trois amorces s'appariant (sens et anti-sens) avec la séquence connue ont été synthétisées. Cinq amorces différentes arbitraires ont été choisie parmi celles proposées dans la littérature (tableau 1 ; Liu et Whittier 1995 [9]).
Les réactions primaires de TAIL PCR ont été réalisés dans des réactions de 20 μΙ avec 15 ng d'ADN génomique, tampon GoTaq PCR 1 x, 1 ,5 mM MgCI2, 0,2 mM de chaque dNTP, 0,2 μΜ de la première amorce spécifique et une amorce arbitraire dégénérée (5 μΜ AD1 et AD2, 4 μΜ AD3, 2 μΜ AD4 et 3 μΜ AD5), et 1 ,25 U GoTaq (Promega). Les conditions pour les réactions secondaires de TAIL PCR étaient identiques à celles des réactions primaires excepté que 1 μΙ_ d'une dilution de 1 :50 de la réaction primaire de TAIL PCR a été employée comme brin d'origine et une deuxième amorce spécifique a été alors utilisée. Pour la réaction tertiaire de TAIL PCR 1 μΙ d'une dilution de 1 :50 de la réaction secondaire de TAIL PCR a été employé avec la troisième amorce spécifique.
Les programmes d'amplification étaient adaptés à chacune des différentes réactions de TAIL PCR en fonction des thermocycleurs disponibles au laboratoire (Tableau 2). De nouvelles amorces spécifiques du gène de la protéine GH105 déduites des expériences de TAIL-PCR ont été ensuite synthétisées pour poursuivre le séquençage du gène.
Tableau 1 : Amorce utilisé pour l'identification du gène de l'ulvane
lyase
SEQ
Amorces Séquences (5' à 3') Tm
ID n°
Amorces
spécifiques pour
TAIL PCR
CTAG GTT GTA ATG TGT TAG GTG CAT 60 5
UL_133R
CCC
GTG AAT CGC GCA TAA CTT CCC ACA 61 6
UL_194R ce
UL_285R CC CGT GTG CTT ACC TTT GGC CTG C 63 7
GC AGC TGG AAG AAC CGA GGT CTT 61 8
UL_426F
TC
CCG GAA CCA GAA CGA GGA AGA GAA 61 9
UL_582F
TC
GGA GGA AGA GCA CAA ATG AGA TGG 61 10
UL_643F
GC
CAC GTA ATC TGG GTA GGT TTT TAT 61 1 1
AfterUL 1 F
ATC ATG ATA CC
GCT TCT GTA GGT GTG TAT CCT AAC 60 12
AfterUL 2F
CC
GCT GGA CGT GTG TCT TCT TTG TAT 62 13
AfterUL 3F
TAC GC
Amorces
arbitraires
dégénérés pour
TAIL PCR
AD1 TGW GNA GWA NCA SAG A 38-43 14 AD2 AGW GNA GWA NCA WAG G 38-43 15
AD3 WGT GNA GWA NCA NAG A 38-43 16
AD4 NTC GAS TWT SGW GTT 36-39 17
AD5 NGT CGA SWG ANA WGA A 38-43 18
Tableau 2 : Programmes d'amplification
Figure imgf000015_0001
La figure 1 représente l'environnement génomique du gène de l'ulvane-lyase.
Le gène codant pour une protéine appartenant à la famille GH105 fait 1 130 paires de base et la traduction conduit à une protéine de masse moléculaire de 43,7 kD composé de 377 acides aminés tel que représenté sur la figure 2. L'analyse de la séquence par le programme SignalP (http://www.cbs.dtu.dk/services/SignalP/) a permis de prédire un peptide signal de 16 acides aminés avec un site de coupure entre une sérine (S16) et une cystéine (C17).
Le gène complet sans le peptide signal a été cloné et introduit dans le vecteur d'expression pFO4 selon le protocole suivant : Des amorces s'appariant avec les extrémités du gène de la protéine GH105 (excluant son peptide signal) et possédant également des sites de restriction BamHI et EcoRI respectivement aux extrémités 5' and 3' du gène ont été synthétisées. Ces amorces ont permis d'amplifier le gène selon des conditions standards de PCR avec une température d'anneling de 50°C et 30 cycles. Les produits de la PCR obtenus ont été purifiés, digérés avec les enzymes de restriction appropriées (BamHI/EcoRI) et ont été ligués dans le vecteur d'expression pFO4 (pET15 modifié (Novagen), Groisillier et al., 2010 Groisillier A, Hervé C, Jeudy A, Rebuffet E, Pluchon PF, Chevolot Y, Flament D, Geslin C, Morgado IM, Power D, Branno M, Moreau H, Michel G, Boyen C, Czjzek M 2010. MARINE-EXPRESS: taking advantage of high throughput cloning and expression stratégies for the post-genomic analysis of marine organisms. Microb Cell Fact. 9, 45).
Des cellules E.Coli BL21 préparées au laboratoire selon le protocole de Cohen, SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic résistance in bacteria: genetic transformation of Escherichia coli par R- factor DNA. Proc. Natl. Acad. Sci. USA 69: 21 10-21 14 [1 1 ] ont été transformées avec le plasmide par choc thermique puis l'expression du gène a été induite par la méthode de Korf U, Kohi T, vand der Zandt H Zahn R, Schleeger S Ueberle B, Wandschneider S Bechtel S, Schôler M, Ottleben H, Wiemann S and Poutska A 2005 Large scale protein expression for proteome research. Proteomics 2005, 5, 3571 -3580, DOI 10.1002/pmic.200401 195 [10] en incubant les cellules transformées 3 heures à 37°C dans un milieu d'expression à base de Luria-Bertani (10 g tryptone, 5 g extrait de levure et 10 g NaCI per L) avec ampicilline et 0,5 % glucose. Ensuite un volume égale de milieu Luria-Bertani froid avec 0,6% lactose, 20 mM Hepes pH 7,0 et 1 mM d'isopropyl β-D-l - thiogalactopyranoside (IPTG) a été ajouté et la culture incubée à 20°C pendant 18h.
Les bactéries ont été récupérées par centrifugation. Le culot de bactéries a été suspendu dans un tampon 20 mM Tris-HCI, 500 mM NaCI et 5 mM imidazole à pH 7,4. Les cellules ont été lysées à l'aide d'une presse de French dans un tampon de 20 mM Tris-HCI, 20 mM imidazole, 0.5M NaCI et pH 7,4. Les débris cellulaires ont été éliminés par centrifugation. Le surnageant a été injecté sur une colonne de Ni Sépharose chargé de 100 mM NiSO4 (GE Healthcare). Après lavage, les protéines retenues ont été éluées avec un gradient linéaire d'imidazole de 20 mM à 500 mM. Les fractions actives ont été collectées et purifiées sur une colonne superdex 75 (1 ,6x60 cm; GE Healthcare) équilibrée avec 20 mM Tris-HCI pH 8.0 avec 200mM NaCI puis des échantillons ont été préparés en mélangeant 10 μΙ de fraction active avec 10 μΙ tampon de charge contenant du SDS et chauffées à 95°C pendant 5 min avant migration dans un gel d'électrophorèse. Le gel était un gel de SDS- polyacrylamide à 12% précoulé (Mini Protean TGX, Biorad), la migration était réalisé à 200 V et 20 mA pendant 2h. La quantité de protéine chargée par puits était entre 1 et 10 g. Les marqueurs de poids moléculaire étaient 5μΙ précision plus protein standards (Biorad). Le gel a été révélé par coloration de coomassie
La figure 3 représente le gel obtenu après migration. La protéine a été fortement exprimée comme le démontre le gel d'électrophorèse. En effet, la bande la plus intense correspond à une protéine dont la masse moléculaire de 42kD correspond à celle attendue.
Example 2 : Mise en évidence de l'activité enzymatique de la protéine de l'invention
Des enzymes décrites dans la littérature appartenant à la famille GH105 sont connues pour couper la liaison entre l'acide galacturonyl et le rhamnose neutre des oligosaccharides produits après dégradation du rhamnogalacturonan par les rhamnogalacturonane lyases. Le galactose est l'épimère en C4 du glucose, par conséquent, la formation de la double liaison entre le C4 et C5 du galactose et du glucose conduit à un acide uronique de même structure chimique : l'acide galacturonyl est synonyme de l'acide glucuronyl. Une production d'oligosaccharides a été réalisée par dégradation de polygalacturonan à 1 g/L dans 100 mM Tris-HCI à pH 7,7 à 30°C avec une rhamnogalacturonane lyase (Novozymes) à une concentration finale de 0,2 pg/irnL La dégradation a été suivie par l'augmentation de l'absorbance à 235 nm.
Ces oligosaccharides ont été ainsi incubés dans ces mêmes conditions avec la protéine de l'invention à la concentration finale habituelle de dégradation de 0,05 g/mL et aucune diminution de l'absorbance à 235 nm n'a été observée.
De manière surprenante, la protéine de l'invention ne semblait pas éliminer le résidu galacturonyl (= glucuronyl) comme les GH105 étudiées et connues dans l'état de la technique.
Une production d'oligo-ulvane a été réalisée par dégradation de l'ulvane par l'ulvan lyase de « 01 -PN-2010 » jusqu'à la complétion suivi par une étape d'ultrafiltration sur 5000 kD membrane afin d'éliminer la fraction résistante. Le mélange obtenu avait une concentration de 12,5 mM d'oligosaccharides, majoritairement des di- et tétra-saccharides mais la présence de héxa-, octa- et déca-saccharides a été également observée.
Le mélange d'oligo-ulvans obtenu après dégradation de l'ulvane par l'ulvane-lyase de « 01 -PN-2010 » a été incubé avec la protéine de l'invention à une concentration finale de 0,05 g/mL à température ambiante (20°C).
La cinétique de dégradation des oligo-ulvanes a été suivie par perméation de gel sur une colonne Superdex 200 couplée en séries avec une colonne peptide HR (GE Healthcare). L'élution a été réalisée dans 50 mM carbonate d'ammonium à un débit de 0,5 mL min"1 sur un système HPLC Ultimate 3000 (Dionex) équipé d'un détecteur UV (Dionex) à 235 nm et un refractomètre RI (Wyatt). Le volume injecté était 100 μΙ.
Avant incubation avec la protéine de l'invention GH105, les pics ont été attribués aux oligo-ulvanes qui présentent la propriété d'être détecté à la fois en UV (265 nm) et selon leur indice de réfraction
Au cours de la dégradation, l'absorbance à 235 nm diminue indiquant que l'acide glucuronyl de l'extrémité non réductrice est éliminé. Les pics détectés par leur indice de réfraction ont diminués puis ont disparut au profit de nouveaux signaux tel que représenté.
La dégradation systématique des oligo-ulvanes par la 3S-rhamnose- glucuronyl hydrolase a été confirmée par chromatographie échangeuse d'ions haute performance (HPAEC) sur un appareil de chromatographie Dionex ICS 3000 équipé d'une loupe d'injection de 20 μί, d'un système d'injection automatisé AS100XR (Thermo Séparation Products) et d'une colonne échangeuse d'ions AS1 1 (4 mm x 250 mm, Dionex lonPac) associée à une pré-colonne guard AG1 1 (4 mm x 50 mm, Dionex lonPac). Le système a opéré en mode conductivité avec un détecteur ED40 (Dionex) et un suppresseur ASRS ultra-4mm (Dionex) à 300 mA. Les phases mobiles étaient de l'eau ultra pure (solution A) et 290 mM NaOH (solution B). L'élution a été réalisée à un débit de 0,5 mL min"1 et le gradient utilisé était 0 min: 3% Sol. B; 1 ,5 min: 1 % Sol. B; 4,1 min: 5% Sol. B; 6,5min: 10% Sol. B; 10.0 min: 18% Sol. B; 26 min: 22% Sol. B; 28 min; 40% Sol. B; 30 min: 100% Sol. B; 30,1 min: 3% B Sol. B; 37 min: 3% Sol. B. L'acquisition et l'analyse des données ont été réalisées avec le logiciel Chromeleon-peak Net software (Dionex).
Les quatre oligo-ulvanes majoritaires ont été purifiés puis incubés avec la protéine de l'invention. Le milieu réactionnel était composé de 100 mM Tris HCI pH 7,7, 100 mM NaCI avec 125 μΜ d'oligosaccharides purifiés et une concentration finale de protéine de 0.05 g/mL. La réaction était réalisée à 30°C et suivi avec un spectrophotomètre à 235 nm. Le poids moléculaire de ces quatre oligosaccharides a diminué et les molécules ont perdues leurs propriétés d'absorber l'UV à 265 nm.
Les oligosaccharides obtenus après incubation de la protéine de l'invention, ont été analysés par 1 H RMN du proton et du carbone. Des spectres ont été obtenus avec un spectrophotomètre Bruker Avance DRX 500 (Service de RMN de l'Université de Bretagne Occidentale) à 20°C. Avant l'analyse, les échantillons ont été transférée dans du D2O (99,97 atom% D2O). Les spectres indiquent clairement la disparition de l'unité acide glucuronyl et que les oligosaccharides sont terminés à leur extrémité non- réductrice par un rhamnose sulfaté. La structure des oligosaccharides démontrent que la protéine de l'invention est une 3S-rhamnose glucuronyl hydrolase qui catalyse l'hydrolyse de la liaison glycosidique entre l'acide glucuronyl et le rhamnose sulfaté. Cette enzymes catalysent notamment les réactions présentée Figure 6.
L'étude de la cinétique de dégradation des oligosaccharides purifiés par la protéine de l'invention a été réalisée dans un milieu réactionnel composé de 100 mM NaCI, 100 mM, Tris HCI (pH 7,7) et oligosaccharides d'ulvane (dp 2-8) à 30°C dans une cuvette de quartz 1 mL. La concentration maximale des oligo-ulvans utilisée correspond à une absorbance de 0,5 à 235 nm. 10 μί de GH105 pure (19 pg/mL) a été ajoutée au milieu réactionnel. La dégradation des oligosaccharides de l'ulvane (ou plutôt la disparition de l'acide glucuronyl non réducteur) a été suivie par la diminution de l'absorbance à 235 nm pendant 5 min.
Ceci a permis d'affiner les modalités de reconnaissance. Les inventeurs ont démontré que les tétra-saccharides de structures A-Rha3S- GluA-Rha3S et A-Rha3S-lduA-Rha3S sont dégradés plus rapidement. Une baisse de vitesse de dégradation observée pour l'oligo-ulvane A-Rha3S- Xyl-Rha3S indiquant que la présence de la fonction uronique en +2 du site actif est importante. Cette observation suggère une organisation du site actif en 3 sous-sites qui est confirmée par la vitesse de dégradation de disaccharide A-Rha3S. La présence du sulfate sur le rhamnose est critique pour obtenir la reconnaissance du substrat car le disaccharide Δ-Rha obtenu avec le rhamnogalacturonane n'est pas dégradé. Listes des références
[I] Marc Lahaye et Audrey Robic, Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007, Vol. 8, 1765-1774.
[2] http://www.cbs.dtu.dk/services/SignalP/
[3] http://bmbpcu36.leeds.ac.uk/prot_analysis/Signal.htnnL
[4] http://www.promega.com/vectors/mammalian_express_vectors.htm
[5] http://www.qiagen.com/pendantview/qiagenes. aspx?gaw=PROTQIAg enes0807&gkw=mammalian+expression
[6] http://www.scbt. com/chap_exp_vectors.php?type=pCruzTM%20Expr ession%20Vectors
[7] WO 83/004261
[8] ZoBell, CE 1941 Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes, J Mar Res 4, 41 -75
[9] Liu YG, Mitsukawa N, Oosumi T and Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463
[10] Korf U, Kohi T, vand der Zandt H Zahn R, Schleeger S Ueberle B, Wandschneider S Bechtel S, Schôler M, Ottleben H, Wiemann S and Poutska A 2005 Large scale protein expression for proteome research. Proteomics 2005, 5, 3571 -3580, DOI 10.1002/pmic.200401 195
[I I] Cohen, SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic résistance in bacteria: genetic transformation of Escherichia coli par R-factor DNA. Proc. Natl. Acad. Sci. USA 69: 21 10-21 14
[12] Groisillier A, Hervé C, Jeudy A, Rebuffet E, Pluchon PF, Chevolot Y, Flament D, Geslin C, Morgado IM, Power D, Branno M, Moreau H, Michel G, Boyen C, Czjzek M 2010. MARINE-EXPRESS: taking advantage of high throughput cloning and expression stratégies for the post-genomic analysis of marine organisms. Microb Cell Fact. 9, 45.

Claims

REVENDICATIONS
1 . Protéine de séquence SEQ ID n°1 du listage de séquences annexé.
2. Protéine selon la revendication 1 comprenant en outre, à son extrémité N-terminale, une séquence signal.
3. Protéine selon la revendication 2, dans laquelle la séquence signal est la séquence SEQ ID n°2 du listage de séquences annexé.
4. Acide nucléique isolé de séquence SEQ ID n°3 du listage de séquences annexée.
5. Acide nucléique isolé selon la revendication 4 comprenant en outre, à son extrémité 5', la séquence SEQ ID n°4 du listage de séquences annexé.
6. Vecteur comprenant un acide nucléique isolé selon la revendication 4 ou 5.
7. Cellule hôte comprenant une séquence d'acide nucléique isolé selon la revendication 4 ou 5 ou un vecteur selon la revendication 6.
8. Procédé de fabrication d'une protéine selon l'une quelconque des revendications 1 à 3 par recombinaison génétique utilisant un acide nucléique selon la revendication 4 ou 5 ou un vecteur selon la revendication 6.
9. Procédé d'hydrolyse d'oligosaccharides comprenant une étape de mise en contact des oligosacchandes avec une protéine selon l'une quelconque des revendications 1 à 3 ou avec une cellule hôte selon la revendication 7 dans des conditions permettant l'hydrolyse des oligosacchandes.
PCT/FR2012/052054 2011-09-19 2012-09-14 3s-rhamnose-glucuronyl hydrolase, procédé de fabrication et utilisations WO2013079828A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12773034.9A EP2758528A1 (fr) 2011-09-19 2012-09-14 3s-rhamnose-glucuronyl hydrolase, procédé de fabrication et utilisations
US14/345,718 US20140302561A1 (en) 2011-09-19 2012-09-14 3s-rhamnose-glucuronyl hydrolase, method of production and uses
IL231595A IL231595A0 (en) 2011-09-19 2014-03-19 3s-rhamnose-glucuronyl hydrolase, production method and uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158307 2011-09-19
FR1158307A FR2980210B1 (fr) 2011-09-19 2011-09-19 3s-rhamnose-glucuronyl hydrolase, procede de fabrication et utilisations

Publications (1)

Publication Number Publication Date
WO2013079828A1 true WO2013079828A1 (fr) 2013-06-06

Family

ID=47022968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052054 WO2013079828A1 (fr) 2011-09-19 2012-09-14 3s-rhamnose-glucuronyl hydrolase, procédé de fabrication et utilisations

Country Status (5)

Country Link
US (1) US20140302561A1 (fr)
EP (1) EP2758528A1 (fr)
FR (1) FR2980210B1 (fr)
IL (1) IL231595A0 (fr)
WO (1) WO2013079828A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051002A1 (fr) * 2016-09-13 2018-03-22 Centre National De La Recherche Scientifique Nouvelle ulvane lyase et son utilisation pour cliver des polysaccharides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983004261A1 (fr) 1982-06-02 1983-12-08 Elf Bio-Recherches Nouveau vecteur de clonage et d'expression, levure transformee par ce vecteur et leur application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983004261A1 (fr) 1982-06-02 1983-12-08 Elf Bio-Recherches Nouveau vecteur de clonage et d'expression, levure transformee par ce vecteur et leur application

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BARBEYRON TRISTAN ET AL: "Persicivirga ulvanivorans sp. nov., a marine member of the family Flavobacteriaceae that degrades ulvan from green algae", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY,, vol. 61, no. 8, 1 August 2011 (2011-08-01), pages 1899 - 1905, XP009153107, ISSN: 1466-5034 *
COHEN, SN; CHANG ACY; HSU L: "Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli par R-factor DNA", PROC. NATL. ACAD. SCI. USA, vol. 69, 1972, pages 2110 - 2114
DATABASE EMBL [online] 8 April 2007 (2007-04-08), "marine metagenome JCVI_SCAF_1101668117267 genomic scaffold, whole genome shotgun sequence.", XP002671979, retrieved from EBI accession no. EMBL:EN730801 Database accession no. EN730801 *
DATABASE Geneseq [online] 12 February 2004 (2004-02-12), "Bacterial polynucleotide #3001.", XP002671980, retrieved from EBI accession no. GSN:ADF02716 Database accession no. ADF02716 *
GROISILLIER A; HERVÉ C; JEUDY A; REBUFFET E; PLUCHON PF; CHEVOLOT Y; FLAMENT D; GESLIN C; MORGADO IM; POWER D: "MARINE-EXPRESS: taking advantage of high throughput cloning and expression strategies for the post-genomic analysis of marine organisms", MICROB CELL FACT., vol. 9, 2010, pages 45
KORF U; KOHL T; VAND DER ZANDT H ZAHN R; SCHLEEGER S; UEBERLE B; WANDSCHNEIDER S; BECHTEL S; SCHÔLER M; OTTLEBEN H; WIEMANN S: "Large scale protein expression for proteome research", PROTEOMICS 2005, vol. 5, 2005, pages 3571 - 3580
KORF U; KOHL T; VAND DER ZANDT H; ZAHN R; SCHLEEGER S; UEBERLE B; WANDSCHNEIDER S; BECHTEL S; SCHÔLER M; OTTLEBEN H: "Large scale protein expression for proteome research", PROTEOMICS, vol. 5, 2005, pages 3571 - 3580
LIU YG; MITSUKAWA N; OOSUMI T; WHITTIER RF: "Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR", PLANT J., vol. 8, 1995, pages 457 - 463
M. LAHAYE: "Robic dans le document Structure and functional properties of ulvan, a polysaccharide from green seaweeds", BIOMACROMOLECULES, vol. 8, 2007, pages 1765 - 1774
MARC LAHAYE; AUDREY ROBIC: "Structure and functional properties of ulvan, a polysaccharide from green seaweeds", BIOMACROMOLECULES, vol. 8, 2007, pages 1765 - 1774
REDOUAN E ET AL: "Improved isolation of glucuronan from algae and the production of glucuronic acid oligosaccharides using a glucuronan lyase", CARBOHYDRATE RESEARCH, PERGAMON, GB, vol. 344, no. 13, 8 September 2009 (2009-09-08), pages 1670 - 1675, XP026502122, ISSN: 0008-6215, [retrieved on 20090607], DOI: 10.1016/J.CARRES.2009.05.031 *
ZOBELL, CE: "Studies on marine bacteria. 1. The cultural requirements of heterotrophic aerobes", J MAR RES, vol. 4, 1941, pages 41 - 75

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051002A1 (fr) * 2016-09-13 2018-03-22 Centre National De La Recherche Scientifique Nouvelle ulvane lyase et son utilisation pour cliver des polysaccharides

Also Published As

Publication number Publication date
FR2980210A1 (fr) 2013-03-22
EP2758528A1 (fr) 2014-07-30
US20140302561A1 (en) 2014-10-09
IL231595A0 (en) 2014-05-28
FR2980210B1 (fr) 2014-12-26

Similar Documents

Publication Publication Date Title
Zhu et al. Characterization of an extracellular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidant activity of enzymatic hydrolysates
Collén et al. Ulvan lyases isolated from the flavobacteria Persicivirga ulvanivorans are the first members of a new polysaccharide lyase family
Foran et al. Functional characterization of a novel “ulvan utilization loci” found in Alteromonas sp. LOR genome
Zohra et al. Purification, characterization and end product analysis of dextran degrading endodextranase from Bacillus licheniformis KIBGE-IB25
FR2897069A1 (fr) Construction de nouveaux variants de l&#39;enzyme dextrane-saccharase dsr-s par ingienerie moleculaire.
EP3158062B1 (fr) Dextranes presentant une tres haute masse molaire
WO2009016275A2 (fr) Procédé de clivage enzymatique de polysaccharides issus des algues
Abdalla et al. Genetic and biochemical characterization of thermophilic β‐cyclodextrin glucanotransferase from Gracilibacillus alcaliphilus SK51. 001
EP2582810B1 (fr) Ulvane lyase, procede de fabrication et utilisations
EP2758528A1 (fr) 3s-rhamnose-glucuronyl hydrolase, procédé de fabrication et utilisations
EP2421961B1 (fr) 4s-iota-carraghénane sulfatase et son utilisation pour l&#39;obtention de l&#39;alpha-carraghénane
JP5314955B2 (ja) 新規微生物、イヌリナーゼ、イヌリン分解剤、イヌロオリゴ糖の製造方法及びイヌリナーゼの製造方法
EP3512942B1 (fr) Nouvelle ulvane lyase et son utilisation pour cliver des polysaccharides
WO2017175694A1 (fr) Alginate lyase et procédé utilisant une enzyme pour la production d&#39;un monosaccharide d&#39;acide uronique insaturé
EP2627778B1 (fr) Procede de transformation du iota-carraghenane en alpha-carraghenane a l&#39;aide d&#39;une nouvelle classe de 4s-iota-carraghenane sulfatase
WO2014072636A1 (fr) Kappa carraghénane sulfatase, procédé de fabrication et utilisation
CN114752613B (zh) 果胶酶基因、果胶酶、重组载体及其在蓝莓加工中的应用
KR102100958B1 (ko) 가야도모나스 주비니에게 g7 유래 알파-네오아가로올리고당 가수분해효소의 이용
US20160265013A1 (en) Glucan branching enzymes and their methods of use
TWI413692B (zh) 分離自洋菜分解海洋單胞菌(THALASSOMONAS AGARIVORANS)之β-洋菜酶、其製備方法及其用途
KR20200087064A (ko) 가야도모나스 주비니에게 g7 유래 알파-네오아가로올리고당 가수분해효소의 이용
FR3058732A1 (fr) Alpha-1,3-(3,6-anhydro)-d-galactosidases et leur utilisation pour hydrolyser des polysaccharides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 231595

Country of ref document: IL

Ref document number: 2012773034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14345718

Country of ref document: US