WO2013077211A1 - Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte, and electricity storage device - Google Patents

Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte, and electricity storage device Download PDF

Info

Publication number
WO2013077211A1
WO2013077211A1 PCT/JP2012/079270 JP2012079270W WO2013077211A1 WO 2013077211 A1 WO2013077211 A1 WO 2013077211A1 JP 2012079270 W JP2012079270 W JP 2012079270W WO 2013077211 A1 WO2013077211 A1 WO 2013077211A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel electrolyte
group
meth
acrylate
forming agent
Prior art date
Application number
PCT/JP2012/079270
Other languages
French (fr)
Japanese (ja)
Inventor
政宏 上田
松木 安生
ホジン イ
山田 欣司
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2013077211A1 publication Critical patent/WO2013077211A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a gel electrolyte forming agent, a gel electrolyte forming composition containing the gel electrolyte forming agent and a liquid medium, a gel electrolyte formed from the gel electrolyte forming composition, and an electricity storage provided with the gel electrolyte Regarding devices.
  • a power storage device having a high voltage and a high energy density has been required as a power source for driving electronic equipment.
  • the electrolyte ion conductor
  • a liquid state substance has high ionic conductivity. Therefore, in a power storage device such as a lithium ion secondary battery or a lithium ion capacitor, a liquid electrolyte in which a lithium electrolyte salt is dissolved in a solvent mainly composed of propylene carbonate, ethylene carbonate, or the like is usually used.
  • a physical gel electrolyte or a chemical gel electrolyte is generally known.
  • the former is a solidification technique using non-covalent bonds such as hydrogen bonds and van der Waals forces, while the latter is a gelation method by a chemical reaction utilizing the formation of a polymer compound.
  • the electrolyte when the electrolyte is gelled, the ionic conductivity decreases. That is, in the gel electrolyte, the interface resistance between the active material surface and the electrolyte is inevitably increased as compared with a normal electrolytic solution. As a result, even a slight deterioration of the surface of the active material significantly increases the electrode resistance, which in turn may cause a significant deterioration of the charge / discharge characteristics of the electricity storage device.
  • a solution containing a gel electrolyte forming agent and an electrolyte is placed in a housing in which electrodes and separators are arranged, as in the conventional manufacturing process of a nonaqueous electrolyte type electricity storage device.
  • the chemical gel electrolyte is usually produced by an irreversible chemical reaction by heating and / or irradiating light with a gel electrolyte forming agent containing a gel electrolyte prepolymer.
  • a gel electrolyte forming agent containing a gel electrolyte prepolymer since the reactivity of the gel electrolyte prepolymer is very high, gelation may have already progressed when an attempt was made to produce the gel electrolyte. Therefore, it has been an issue to suppress the reaction of the gel electrolyte prepolymer and ensure the storage stability of the gel electrolyte forming agent.
  • the present invention provides a gel electrolyte forming agent capable of producing a gel electrolyte with improved electrolyte retention.
  • some embodiments according to the present invention provide a gel electrolyte forming agent that further improves storage stability.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • One aspect of the gel electrolyte forming agent according to the present invention is: A repeating unit (A1) derived from (meth) acrylate having a cyclic ether structure and a repeating unit (A2) derived from (meth) acrylate having a chain ether structure,
  • a repeating unit (A1) derived from (meth) acrylate having a cyclic ether structure and a repeating unit (A2) derived from (meth) acrylate having a chain ether structure When the total amount of the repeating unit (A1) and the repeating unit (A2) is 100 [mol%], the amount of the repeating unit (A2) relative to the amount of the repeating unit (A1) (M1 [mol%])
  • the polymer (A) contains a ratio (M2 / M1) of the amount (M2 [mol%]) in the range of 1 to 10.
  • the (meth) acrylate having the cyclic ether structure may be a compound represented by the following general formula (1).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a divalent linking group
  • R 3 represents a hydrogen atom or a monovalent organic group
  • a plurality of R 4 s are present.
  • Independently represents a hydrogen atom or a monovalent organic group
  • m and n are integers of 0 or more, and m + n ⁇ 1.
  • the (meth) acrylate having a chain ether structure may be a compound represented by the following general formula (2).
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents a single bond or a divalent organic group
  • a plurality of R 7 s may be independently a divalent hydrocarbon group
  • R 8 represents a hydrogen atom or a monovalent organic group
  • x is an integer of 1 or more.
  • the M1 [mol%] may be in the range of 10 to 40 mol%.
  • the number average molecular weight of the polymer (A) may be 1,000 or more and 100,000 or less.
  • the gel electrolyte forming agent according to any one of Application Examples 1 to 5 may further contain an ester compound (B) having at least one carbon-carbon unsaturated bond.
  • the component (B) may be at least one selected from the group consisting of cyclic carbonates and (meth) acrylates.
  • the cyclic ester carbonate may be a compound represented by the following general formula (3).
  • R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl or alkenyl group having 1 to 6 carbon atoms, or a phenyl group.
  • the M A parts by mass content of the component (A), the content of the component (B) is taken as M B parts by weight,
  • the ratio (M A / M B ) can be in the range of 1-100.
  • the gel electrolyte forming agent of any one of Application Examples 1 to 5 may further contain a compound (C) having a phenolic hydroxyl group.
  • the component (C) may be a compound represented by the following general formula (4).
  • R 14 represents a substituted or unsubstituted alkyl group or alkoxy group.
  • N is an integer of 0 or more and 5 or less.
  • the component (C) may be a compound represented by the following general formula (5).
  • R 15 represents a substituted or unsubstituted alkyl group or alkoxy group.
  • M is an integer of 0 or more and 3 or less.
  • the component (C) may be a compound having at least one group represented by the following general formula (6).
  • R 16 and R 17 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • the ratio (M A / M C ) can be in the range of 10 to 1000.
  • composition for forming a gel electrolyte according to the present invention contains the gel electrolyte forming agent of any one of Application Examples 1 to 14, and the liquid medium (D).
  • the gel electrolyte forming composition of Application Example 15 may further contain a cyclic ether compound.
  • the cyclic ether compound may have a cyclic ether group having a number of members different from that of the cyclic ether group contained in the (meth) acrylate having the cyclic ether structure.
  • One aspect of the gel electrolyte according to the present invention is characterized by being produced by heating the gel electrolyte forming composition of any one of Application Examples 15 to 17.
  • One aspect of the electricity storage device according to the present invention is characterized by including the gel electrolyte of Application Example 18.
  • a gel electrolyte having sufficient ionic conductivity for developing good charge / discharge characteristics and having improved liquid retention compared to a conventional gel electrolyte Obtainable.
  • storage stability becomes very favorable further.
  • the gel electrolyte according to the present invention has good liquid retention, separation between the gel electrolyte matrix and the liquid medium can be suppressed. Further, since gelation can be performed under mild conditions, it is possible to suppress deterioration of the electrode and the gel electrolyte itself, and as a result, it is possible to suppress deterioration of charge / discharge characteristics of the electricity storage device. Furthermore, according to the electricity storage device including the gel electrolyte according to the present invention, the electricity storage device characteristics such as discharge rate characteristics, low temperature characteristics, DC-IR characteristics, and cycle characteristics are improved.
  • (meth) acryl is a concept encompassing both “acryl” and “methacryl”.
  • ⁇ (meth) acrylate is a concept encompassing both “ ⁇ acrylate” and “ ⁇ methacrylate”.
  • the gel electrolyte forming agent includes a repeating unit (A1) derived from (meth) acrylate having a cyclic ether structure and a repeating unit derived from (meth) acrylate having a chain ether structure. (A2), and when the total amount of the repeating unit (A1) and the repeating unit (A2) is 100 [mol%], the amount of the repeating unit (A1) (M1 [mol%])
  • the polymer (A) has a ratio (M2 / M1) of the amount (M2 [mol%]) of the repeating unit (A2) to 1) in the range of 1 to 10.
  • the gel electrolyte forming agent according to the present embodiment is obtained by heating a gel electrolyte forming composition obtained by mixing with a liquid medium (D) and other additives described below under mild conditions. Can be produced.
  • “heating under mild conditions” means heating at a temperature of about 70 to 100 ° C. at which the electrode and gel electrolyte do not deteriorate.
  • the gel electrolyte is a highly flexible gel and has no thermoreversibility. Therefore, abnormal expansion of the battery due to heating or overcharging can be prevented, and workability such as thin film processing is improved.
  • each component that may be included in the gel electrolyte forming agent according to the present embodiment will be described in detail.
  • the polymer (A) contained in the gel electrolyte forming agent according to the present embodiment includes a repeating unit (A1) derived from a (meth) acrylate having a cyclic ether structure and a (meth) acrylate having a chain ether structure. Derived repeating unit (A2).
  • the repeating unit (A1) is derived from (meth) acrylate having a cyclic ether structure.
  • the repeating unit (A1) can construct a crosslinked structure by opening the cyclic ether structure when producing a gel electrolyte.
  • the (meth) acrylate having a cyclic ether structure is not particularly limited as long as the cyclic ether structure can be opened and crosslinked, and is preferably a compound represented by the following general formula (1).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a divalent linking group
  • R 3 represents a hydrogen atom or a monovalent organic group
  • a plurality of R 4 s are present.
  • m and n are integers of 0 or more, and m + n ⁇ 1.
  • R 1 represents a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of the oxidation resistance of the polymer (A).
  • R 2 represents a divalent linking group, for example, a single bond, a divalent chain hydrocarbon group having 1 to 20 carbon atoms, a divalent cyclic saturated group having 3 to 20 carbon atoms, or An unsaturated hydrocarbon group, or a divalent group obtained by combining these with an ether group, an ester group, or a carbonyl group can be given.
  • a divalent linking group may have a substituent. Is preferably a single bond or an alkylene group having 1 to 4 carbon atoms.
  • R 3 represents a hydrogen atom or a monovalent organic group, and the monovalent organic group is preferably a linear or branched alkyl group having 1 to 8 carbon atoms.
  • the linear or branched alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a 2-methylpropyl group, and a 1-methylpropyl group.
  • R 3 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms so that it can be easily crosslinked.
  • a plurality of R 4 each independently represents a hydrogen atom or a monovalent organic group, and the monovalent organic group is a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the linear or branched alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, and 1-methylpropyl group. And t-butyl group.
  • each R 4 is independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms so that it can be easily crosslinked.
  • M and n are integers of 0 or more, and m + n ⁇ 1, but they can be easily reacted, and the stability of the polymer is good. Therefore, in the above formula (1), m + n is 2 or more. And m + n is more preferably 2.
  • the (meth) acrylate having the cyclic ether structure is more preferably a compound represented by the following general formula (1-1).
  • the repeating unit derived from the compound represented by the following general formula (1-1) can be easily ring-opened and cross-linked with lithium ions in a non-aqueous solvent. Therefore, for example, when a gel electrolyte is prepared using the gel electrolyte forming composition containing the gel electrolyte forming agent of the present invention, lithium ions are contained as the liquid medium (D) contained in the gel electrolyte forming composition. By using such a liquid medium, the gel electrolyte forming agent can be easily cross-linked, and a gel electrolyte excellent in ion conductivity can be produced.
  • the heat treatment of the gel electrolyte forming composition is not essential for producing the gel electrolyte, but from the viewpoint of producing a gel electrolyte with good gel strength, the heat treatment should be performed at a low temperature that does not deteriorate the active material. Is preferred.
  • R 1 represents a hydrogen atom or a methyl group
  • R 9 represents a single bond or a divalent organic group
  • R 3 represents a hydrogen atom or a monovalent organic group
  • each R 4 independently represents a hydrogen atom or a monovalent organic group.
  • R 1 , R 3 and R 4 have the same meaning as in the above formula (1).
  • R 9 represents a single bond or a divalent organic group, and examples of the divalent organic group include an alkylene group having 1 to 10 carbon atoms. Among these, R 9 is preferably a methylene group.
  • the gel electrolyte produced by using the gel electrolyte-forming composition produced by mixing the gel electrolyte-forming agent according to the present embodiment and the liquid medium (D) described later is a cyclic unit of the repeating unit (A1). Since the ether structure is ring-opened and crosslinked, a strong polymer network structure can be constructed and a gel electrolyte having excellent gel strength can be obtained.
  • the (meth) acrylate having a cyclic ether structure examples include glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, caprolactone-modified tetrahydrofurfuryl (meth) acrylate, (3-oxetanyl) methyl (meth) acrylate, (3-Methyl-3-oxetanyl) methyl (meth) acrylate, (3-ethyl-3-oxetanyl) methyl (meth) acrylate, (3-butyl-3-oxetanyl) methyl (meth) acrylate, (3-hexyl- 3-Oxetanyl) methyl (meth) acrylate, (3-ethyl-oxetane-3-yloxy) ethyl (meth) acrylate, (3-ethyl-oxetane-3-yloxy) butyl (meth) acryl
  • the content of the repeating unit (A1) in the polymer (A) is such that when the total amount of the repeating unit (A1) and the repeating unit (A2) is 100 mol%, the repeating unit (A1) is 10 to 40 mol%. It is preferably 15 to 35 mol%.
  • the content ratio of the repeating unit (A1) in the polymer (A) is in the above range, it is easy to heat under mild conditions using a metal ion such as lithium ion contained in the liquid medium (D) as a catalyst.
  • a gel electrolyte can be produced without causing a deterioration of the coexisting electrode or liquid medium by causing a crosslinking reaction (cationic polymerization). Moreover, since it can also fully bridge
  • the gel electrolyte forming agent according to the present embodiment does not require such an additive and can be gelled only by heating, it is possible to suppress the deterioration over time of the charge / discharge characteristics as described above. Is excellent.
  • the repeating unit (A2) is derived from (meth) acrylate having a chain ether structure. Since the repeating unit (A2) has a (poly) ether-type chain ether structure moiety, the affinity with the liquid medium used for the electricity storage device can be improved. Thereby, liquid retention property can be provided to a polymer (A).
  • the presence of a (poly) ether-type chain ether structure site degrades due to degradation due to a change in oxidation-reduction potential that accompanies charge / discharge of the electricity storage device. It is difficult to do.
  • the polymer (A) having the repeating unit (A1) and the repeating unit (A2) it is possible to suppress deterioration due to a change in oxidation-reduction potential accompanying charging / discharging of the electricity storage device, and to maintain the gel electrolyte. Liquid deterioration can also be suppressed.
  • the (meth) acrylate having a chain ether structure is preferably a compound represented by the following general formula (2).
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents a single bond or a divalent organic group
  • a plurality of R 7 s may be independently a divalent hydrocarbon group
  • R 8 represents a hydrogen atom or a monovalent organic group
  • x is an integer of 1 or more.
  • R 5 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint of synthesizing a polymer with good yield.
  • R 6 represents a single bond or a divalent organic group, and the divalent organic group is preferably an alkylene group having 1 to 10 carbon atoms.
  • a plurality of R 7 which may be present each independently represent a divalent hydrocarbon group, and the divalent hydrocarbon group includes a linear or branched 2 having 1 to 10 carbon atoms. Valent hydrocarbon group. Among these, it is preferable that each R 7 is independently an alkylene group having 1 to 3 carbon atoms because of high affinity with a liquid medium.
  • R 8 represents a hydrogen atom or a monovalent organic group, and the monovalent organic group is a linear or branched alkyl group having 1 to 4 carbon atoms, or a group having 6 to 12 carbon atoms.
  • An aryl group is preferred. Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include those exemplified in the description of R 4 above. Examples of the aryl group include a phenyl group and a naphthyl group.
  • R 8 is preferably an alkyl group having 1 to 3 carbon atoms because of high affinity with the liquid medium.
  • x is an integer of 1 or more, preferably 1 to 30, more preferably 1 to 20, and particularly preferably 1 to 10.
  • the (meth) acrylate having a chain ether structure is more preferably a compound represented by the following general formula (2-1).
  • the repeating unit derived from the compound represented by the following general formula (2-1) has a high affinity with a carbonate-based solvent or a lactone-based polymer generally used in non-aqueous electrolytes, and is crosslinked to form a polymer.
  • a strong network is formed, the nonaqueous electrolyte solution can be absorbed and sufficiently swelled, and movement of lithium ions between the nonaqueous electrolyte solution and the active material is not hindered.
  • a gel electrolyte that exhibits good ionic conductivity can be produced.
  • R 5 represents a hydrogen atom or a methyl group
  • R 10 represents a single bond or a divalent organic group
  • a plurality of R 11 are each independently a hydrogen atom or a monovalent organic group.
  • R 8 represents a hydrogen atom or a monovalent organic group.
  • R 5 has the same meaning as R 5 in the general formula (2).
  • R 8 has the same meaning as R 8 in the general formula (2).
  • R 10 represents a single bond or a divalent organic group, and examples of the divalent organic group include an alkylene group having 1 to 10 carbon atoms. Among these, R 10 is preferably a single bond.
  • a plurality of R 11 each independently represent a hydrogen atom or a monovalent organic group, and the monovalent organic group is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the linear or branched alkyl group having 1 to 4 carbon atoms include those exemplified in the description of R 4 above.
  • each of R 11 is preferably a hydrogen atom since affinity with the liquid medium (D) is increased.
  • x is an integer of 1 or more, preferably 1 to 30, more preferably 1 to 20, and particularly preferably 1 to 10.
  • Specific examples of the compound represented by the general formula (2) include 2-methoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, and 2-ethylhexyloxydiethylene glycol (meth).
  • the content of the repeating unit (A2) in the polymer (A) is such that when the total amount of the repeating unit (A1) and the repeating unit (A2) is 100 mol%, the repeating unit (A2) is 60 to 90 mol%. It is preferably some 65 to 85 mol%.
  • the content ratio of the repeating unit (A2) in the polymer (A) is in the above range, a gel electrolyte having excellent oxidation-reduction resistance and excellent liquid retention can be produced.
  • the polymer (A) contained in the gel electrolyte forming agent according to this embodiment has a total amount of 100 mol of the repeating unit (A1) and the repeating unit (A2). %,
  • the ratio (M2 / M1) of the amount (M2 [mol%]) of the repeating unit (A2) to the amount (M1 [mol%]) of the repeating unit (A1) is in the range of 1 to 10 It is preferably in the range of 1.5 to 8, more preferably in the range of 2 to 6.
  • Polymer (A) contained in the gel electrolyte forming agent according to the present embodiment starts radical polymerization of (meth) acrylate having a cyclic ether structure and (meth) acrylate having a chain ether structure. It can be easily prepared by radical (co) polymerization in a reaction solvent in the presence of an agent and optionally a molecular weight regulator.
  • the polymer (A) thus obtained is a copolymer, it may have any structure of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer.
  • reaction solvent water, alcohol, ester, carbonate, ketone, lactone, ether, sulfoxide, amide etc.
  • examples of the alcohol include methanol, ethanol, isopropanol and the like
  • examples of the ester include ethyl acetate, methyl propionate, and butyl acetate
  • Examples of the carbonate include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate
  • the ketone include methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, and diethyl ketone
  • Examples of the lactone include ⁇ -butyl lactone
  • Examples of the ether include trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofur
  • the reaction solvent is preferably at least one solvent that can be contained in the liquid medium (D) exemplified later, and more preferably the same solvent as the solvent actually used in the gel electrolyte forming composition. .
  • the gel electrolyte-forming agent solution after polymerization can be directly used for the preparation of the gel electrolyte-forming composition, thus simplifying the process. be able to. In this case, it is possible to produce a gel electrolyte having better liquid retention by radical polymerization using a solvent that can be contained in the liquid medium (D) as a reaction solvent.
  • the affinity between the resulting polymer and the liquid medium (D) becomes very good. Preparation of the composition for use is facilitated, and liquid retention of the resulting gel electrolyte is very good.
  • the liquid medium (D) will be described later.
  • the reaction solvent it is preferable to use one or more selected from carbonates, lactones, ethers and sulfoxides. Among these, the liquid medium actually used or a mixture thereof is used. Most preferably it is used. Surprisingly, it has been revealed that the effect of improving the liquid retention is maintained even when the solvent is replaced after the polymerization in the reaction solvent.
  • the ratio of the solvent used in the production of the polymer (A) is preferably 100 to 1,000 parts by mass, and preferably 200 to 500 parts by mass with respect to 100 parts by mass of the total amount of monomers. More preferred.
  • radical polymerization initiator In the radical (co) polymerization, a radical polymerization initiator is usually used.
  • the radical polymerization initiator include azo initiators such as N, N′-azobisisobutyronitrile and dimethyl N, N′-azobis (2-methylpropionate); benzoyl peroxide, lauroyl peroxide And organic peroxide initiators such as
  • the radical polymerization initiator is preferably added in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of all monomers.
  • the molecular weight regulator examples include halogenated hydrocarbons such as chloroform and carbon tetrachloride; mercaptan compounds such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dotezyl mercaptan, and thioglycolic acid; dimethyl
  • halogenated hydrocarbons such as chloroform and carbon tetrachloride
  • mercaptan compounds such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dotezyl mercaptan, and thioglycolic acid
  • dimethyl examples thereof include xanthogen compounds such as xanthogen disulfide and diisopropylxanthogen disulfide; and other molecular weight regulators
  • the polymer (A) is a radical (co) polymerization using a monomer other than the compound represented by the general formula (1) or (2) (hereinafter also referred to as “other monomer”).
  • the content of other monomers in 100 mol% of all monomers is preferably less than 10 mol%, and more preferably 0 mol%.
  • the number average molecular weight (Mn) of the polymer (A) obtained as described above is preferably 1,000 to 1,000,000, more preferably 1,000 to 100,000, and 10,000 to 100,000. Is particularly preferred.
  • the number average molecular weight (Mn) of the polymer (A) is 100,000 or less, the impregnation property to the electrode plate is improved, so that the electrical characteristics (charge rate characteristics, DC-IR characteristics, cycle characteristics) of the obtained electricity storage device are obtained. ) Tend to be better.
  • the number average molecular weight (Mn) of the polymer (A) is 1000 or more and 100,000 or less, the cycle characteristics of the obtained electricity storage device tend to be particularly good.
  • the number average molecular weight (Mn) of a polymer (A) can be calculated
  • the gel electrolyte forming agent according to the present embodiment may contain an ester compound (B) having at least one carbon-carbon unsaturated bond (hereinafter also referred to as “component (B)”).
  • component (B) is also contained in the gel electrolyte produced using this gel electrolyte forming agent.
  • an electrode including a gel electrolyte containing such a component (B) it is considered that when a charge / discharge is started, the component (B) undergoes electropolymerization to form a protective film on the surface of the active material layer.
  • Such a protective film is a stable film that does not crack during the charge / discharge cycle of the battery, and the active material surface is covered with the protective film, so that the liquid medium is decomposed and gas is generated by repeated charge / discharge. Therefore, it is considered that the charge / discharge characteristics of the electricity storage device can be improved.
  • dendrites due to metal ions are likely to occur on the electrode surface by repeated charge and discharge. Since such dendrites are usually precipitated as needle-like crystals, when the crystals grow, they are short-circuited with the counter electrode and lose the charge / discharge function.
  • the protective film described above also has an effect of suppressing the growth of dendrites on the electrode surface, and as a result, the charge / discharge characteristics of the electricity storage device can be improved.
  • the content of component (B) in the gel electrolyte-forming agent according to the present embodiment M A parts by weight and the content of the polymer (A), the content of the component (B) was M B parts by weight
  • the ratio (M A / M B ) is preferably in the range of 1-100.
  • the gelation is not inhibited when the gel electrolyte is produced from the gel electrolyte forming agent, and the surface of the active material layer is appropriately protected as described above. Since a film can be formed, deterioration of the active material layer surface can be suppressed. This improves the cycle characteristics of the electricity storage device.
  • the interface resistance between the gel electrolyte and the active material layer surface can be reduced by an appropriate protective film formed on the surface of the active material layer, an electricity storage device having good charge / discharge characteristics is manufactured. Can do.
  • the component (B) is not limited as long as it is an ester having at least one carbon-carbon unsaturated bond, but it does not have solubility in the liquid medium (D) described later or phase separation from the polymer (A). From the viewpoint of producing a uniform gel electrolyte, it is preferably at least one selected from the group consisting of cyclic carbonates and (meth) acrylates. Hereinafter, the cyclic carbonate and (meth) acrylate will be described in this order.
  • Cyclic carbonate examples include compounds represented by the following general formula (3).
  • R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl or alkenyl group having 1 to 6 carbon atoms, or a phenyl group. Note that when R 12 or R 13 is an alkyl group, an alkenyl group, or a phenyl group, part of the hydrogen atoms may be substituted with a halogen atom (preferably a fluorine atom).
  • cyclic carbonate examples include vinylene carbonate (VC), 3-methyl vinylene carbonate, 3,4-dimethyl vinylene carbonate, 3-ethyl vinylene carbonate, 3,4-diethyl vinylene carbonate, 3-propyl vinylene carbonate, 3 , 4-dipropyl vinylene carbonate, 3-phenyl vinylene carbonate, 3,4-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), divinyl ethylene carbonate (DVEC), fluorinated vinylene carbonate, and the like.
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • DVEC divinyl ethylene carbonate
  • fluorinated vinylene carbonate and the like.
  • At least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate is preferable, and vinylene carbonate is particularly preferable from the viewpoint of efficiently forming a protective film on the surface of the active material layer.
  • the content ratio of the component (B) in the gel electrolyte forming agent is such that the concentration of the cyclic carbonate in the gel electrolyte forming composition described later is 0.5 to 5.
  • the content is preferably 0% by mass, more preferably 0.5 to 4.0% by mass, and particularly preferably 0.5 to 3.0% by mass.
  • (meth) acrylate (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl ( (Meth) acrylate, n-amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, nonyl (meth) Alkyl (meth) acrylates such as acrylate and decyl (meth) acrylate; 2-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, ethylene glycol di (meth) acrylate;
  • the content ratio of component (B) in the gel electrolyte forming agent is such that the concentration of (meth) acrylate in the gel electrolyte forming composition described later is 0.01 to
  • the content is preferably 5.0% by mass, more preferably 0.01 to 4.0% by mass, and particularly preferably 0.05 to 2.0% by mass.
  • (meth) acrylates as exemplified above are likely to volatilize when heated, when preparing a gel electrolyte by heating a composition for forming a gel electrolyte containing (meth) acrylate, (meth) In some cases, the acrylate is vaporized to generate gas, and the housing of the electricity storage device is deformed. However, it is preferable that the concentration of (meth) acrylate is within the above-mentioned range because the generation of such gas can be effectively suppressed.
  • the gel electrolyte forming agent according to the present embodiment may contain a compound (C) having a phenolic hydroxyl group (hereinafter also referred to as “component (C)”).
  • component (C) a compound having a phenolic hydroxyl group
  • the “phenolic hydroxyl group” means a hydroxyl group directly bonded to an aromatic ring such as a benzene ring, a condensed benzene ring, a non-benzene aromatic ring or a heteroaromatic ring.
  • the crosslinking reaction may proceed at a cyclic ether structure contained in the polymer (A) or a different site. .
  • a part of gel electrolyte formation agent gelatinizes and the storage stability of a gel electrolyte formation agent falls.
  • the storage stability is improved because the crosslinking reaction by the polymerization initiator of the gel electrolyte forming composition produced using the gel electrolyte forming agent can be suppressed. To do. Therefore, in an actual production line, since it can supply stably, without changing the characteristic of the composition for gel electrolyte formation, the gel electrolyte with stable quality can be supplied.
  • component (C) does not deteriorate the charge / discharge characteristics of the electricity storage device.
  • the reason for this is not fully elucidated and is not preferred to be bound by theory, but in an electrode equipped with such a gel electrolyte, when charge / discharge is first performed, the component (C) undergoes electropolymerization, It is thought that a protective film is formed on the surface of the active material layer. By forming such a protective film, it is considered that decomposition of the liquid medium can be suppressed.
  • Such a protective film is a stable film that does not crack during the charge / discharge cycle of the battery, and the surface of the active material layer is covered with the protective film, so that the liquid medium is decomposed or the gas is removed by repeated charge / discharge. Since generation
  • the protective film described above also has an effect of suppressing the growth of dendrites on the electrode surface, and as a result, the charge / discharge characteristics of the electricity storage device can be improved.
  • the content ratio of the component (C) is within the above range, not only can the storage stability of the gel electrolyte forming agent be ensured, but also the solubility in the liquid medium (D) described later, This is preferable in that a more uniform gel electrolyte can be produced without phase separation with the coalescence (A).
  • the component (C) is preferably a compound represented by the following general formula (4).
  • R 14 represents a substituted or unsubstituted alkyl group or alkoxy group.
  • N is an integer of 0 or more and 5 or less.
  • a plurality of R 14 which may be present each represents a substituted or unsubstituted alkyl group or alkoxy group.
  • the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms).
  • Such alkyl groups may be linear, branched or cyclic, such as methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, isobutyl.
  • R 14 is an alkyl group, it is preferable that an alkyl group is substituted at the 2-position and / or the 6-position of the phenol group because the effect of improving the storage stability of the gel electrolyte forming agent is high.
  • an alkoxy group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) is preferable.
  • alkoxy groups include methoxy, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, heptyloxy, octyloxy, isooctyloxy, nonyloxy, decyloxy, and the like.
  • R 14 is an alkoxy group, it is preferable that an alkoxy group is substituted at the 4-position of the phenol group because the effect of improving the storage stability of the gel electrolyte forming agent is high.
  • the compound represented by the following general formula (5) is more effective in improving the storage stability of the gel electrolyte forming agent. It is more preferable that (In Formula (5), R 15 represents a substituted or unsubstituted alkyl group or alkoxy group. M represents an integer of 0 or more and 3 or less.)
  • a plurality of R 15 which may be present each represent a substituted or unsubstituted alkyl group or alkoxy group.
  • the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), and examples thereof include the same alkyl group as R 14 in the above formula (4).
  • the alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), and examples thereof include the same alkoxy groups as R 14 in the above formula (4).
  • Specific examples of the compound represented by the general formula (4) include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,4 , 6-tri-t-butylphenol, 2,6-di-t-butyl-4-s-butylphenol, 2,6-di-t-butyl-4-methoxyphenol, 2,6-di-t-butyl- 4-hydroxymethylphenol, 2,6-di-t-butyl-4- (methoxycarbonyl) phenol, 2,6-di-t-butyl-4-nonylphenol, 4-methoxyphenol, 4-ethoxyphenol, 4- Examples include propoxyphenol, 4-isopropoxyphenol, 4-butoxyphenol, 4-t-butoxyphenol and the like.
  • component (C) a compound having at least one group represented by the following general formula (6) (hydroxyphenylpropionate compound), hydroxybenzyl compound, thiobisphenol compound, thiomethylphenol compound An alkanediylphenol compound is also preferred.
  • R 16 and R 17 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, but an alkyl having 1 to 6 carbon atoms (more preferably 1 to 4 carbon atoms). It is preferably a group.
  • the alkyl group may be any of linear, branched and cyclic, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, secondary butyl group, tertiary butyl group, isobutyl group, amyl Group, tertiary amyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, isooctyl group, tertiary octyl group, 2-ethylhexyl group, nonyl group, decyl group and the like.
  • hydroxyphenylpropionate compounds include 3,9-bis [2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethoxy. ] -2,4,8,10-terolaoxaspiro [5.5] undecane, pentaerythrityltetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], triethylene glycol- Bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadec -[3- (3,5-di-tert-butyl-4-hydroxyphen
  • hydroxybenzyl compounds include 1,3,5, -trimethyl-2,4,6, -tris (3 ′, 5′-di-t-butyl-4-hydroxybenzyl) benzene, 1,3 , 5-tris (4-hydroxybenzyl) benzene, tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate, 1,3,5-tris (4-tert-butyl-3) -Hydroxy-2,6-dimethylbenzyl) -isocyanurate and the like.
  • thiobisphenol compound examples include 4,4′-thiobis (6-tert-butyl-3-methylphenol).
  • thiomethylphenol compound examples include 2,4-bis [(octylthio) methyl] -o-cresol.
  • alkanediylphenol compounds include N, N′-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 2,2′-methylenebis (4-methyl).
  • -6-tert-butylphenol 4,4'-butylidene-bis (3-methyl-6-tert-butylphenol), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) ) Butane and the like.
  • the component (C) contained in the gel electrolyte forming agent according to the present embodiment preferably has a standard boiling point of 100 to 250 ° C.
  • the standard boiling point is within the above range, vaporization of the component (C) can be suppressed in the step of heating when producing the gel electrolyte. That is, even if gelation is performed by heating in a state where the casing is sealed in the power storage device manufacturing process, deformation due to an increase in the casing internal pressure due to gas generation can be suppressed.
  • composition for gel electrolyte formation according to the present embodiment (hereinafter also simply referred to as “composition”) contains the above-described gel electrolyte formation agent and the liquid medium (D). .
  • composition contains the above-described gel electrolyte formation agent and the liquid medium (D). .
  • the above-mentioned gel electrolyte forming agent and other additives as necessary are added to the liquid medium (D) and heated to about 40 to 60 ° C. It is sufficient to stir well. Thereby, the polymer (A) contained in the gel electrolyte forming agent can be completely dissolved in the liquid medium (D). Note that if the heating temperature is raised to 70 to 100 ° C., a gel electrolyte may be formed.
  • the composition according to the present embodiment is stable around room temperature and does not gel. For this reason, since it can be set as a gel electrolyte by inject
  • omitted the storage stability and the freedom degree of an electrical storage device preparation process.
  • Liquid medium (D) The liquid medium (D) contained in the composition according to the present embodiment further contains an electrolyte, a solvent for dissolving the electrolyte, and, if necessary, an additive.
  • any conventionally known lithium salts can also be used, and specific examples LiClO 4, LiBF 4, LiPF 6 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCF 3 SO 3, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N, a lower fatty acid Lithium etc. can be illustrated.
  • These electrolytes may be used alone or in combination of two or more.
  • an electrolyte other than Li examples include (FSO 2 ) 2 N ⁇ , BF 4 ⁇ , PF 6 ⁇ , SbF 6 ⁇ , NO 3 ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , ( Anions such as C 2 F 5 SO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 3 C ⁇ , CF 3 CO 2 ⁇ , C 3 F 7 CO 2 ⁇ , CH 3 CO 2 ⁇ , (CN) 2 N ⁇ And a salt composed of a combination of cation and cation.
  • any one of N, P, S, O, C, and Si or two or more kinds of elements are included in the structure, and a chain structure or a cyclic structure such as a 5-membered ring or a 6-membered ring is included in the skeleton.
  • Compounds. Examples of the compound having a chain structure in the skeleton include alkyl ammonium.
  • Examples of compounds having a cyclic structure in the skeleton include furan, thiophene, pyrrole, pyridine, oxazole, isoxazole, thiazol, isothiazol, furazane, imidazole, pyrazole, pyrazine, pyrimidine, pyridazine, pyrrolidine, Heterocyclic compounds such as piperidine; and condensed heterocyclic compounds such as benzofuran, isobenzofuran, indole, isoindole, isodridine, and carbazole.
  • lithium ions act as a cationic polymerization initiator, which is preferable in that it is not necessary to use another cationic polymerization initiator.
  • LiPF 6 it is particularly preferable in that the discharge capacity retention rate at a low temperature of the obtained electricity storage device is good.
  • Solvents for dissolving the electrolyte include ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), methyl ethyl carbonate (MEC), methyl propyl carbonate (PMC), butylene carbonate (BC), diethyl Carbonates such as carbonate (DEC); cyclic carboxylic acid esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, methyl Cyclic ethers such as tetrahydrofuran and methyltetrahydrofuran; sulfolane and the like can be used. These solvents may be used alone or in combination of two or more.
  • Such a liquid medium (D) usually has an electrolyte concentration of 0.1 to 5 mol / L, particularly preferably 0.5 to 2 mol / L.
  • additives examples include additives conventionally used in electrolyte solutions, and specifically, components for improving ionic conductivity can be used.
  • nitrogen-containing or sulfur-containing compounds such as azaindole, benzimidazole, benzodithiol, benzofuran, benzothiazole, 1-benzothiophene, 1H-benzotriazole, benzylcapton, 1-bromo-3-fluorobenzene; sucrose fatty acid
  • ester examples include 10 mass% or less, preferably 3 mass% or less.
  • these additives may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the composition for forming a gel electrolyte according to the present embodiment may be further added with a cyclic ether compound from the viewpoint of improving the liquid retention of the resulting gel electrolyte and increasing the crosslink density to improve the mechanical strength.
  • a cyclic ether compound those having an alkyl group having 6 to 28 carbon atoms are preferable, an alkyl glycidyl ether having an alkyl group having 6 to 28 carbon atoms, and a fatty acid glycidyl ether having an alkyl group having 6 to 28 carbon atoms. More preferred are alkylphenol glycidyl ethers having an alkyl group having 6 to 28 carbon atoms.
  • alkyl glycidyl ethers having an alkyl group having 6 to 28 carbon atoms are particularly preferable.
  • these cyclic ether compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the cyclic ether compound preferably has two or more cyclic ether groups in the molecule.
  • the crosslink density can be further increased, so that the mechanical strength of the gel electrolyte can be further improved.
  • cyclic ether compounds include vinylcyclohexene dioxide, dicyclopentadiene dioxide, alicyclic diepoxy-adipade, 1,6-bis (2,3-epoxypropoxy) naphthalene, ethylene glycol diglycidyl ether.
  • the cyclic ether compound When a cyclic ether compound is added to the gel electrolyte forming composition according to the present embodiment, the cyclic ether compound has a different number of members from the cyclic ether group contained in the repeating unit (A1) in the polymer (A). It preferably has a cyclic ether group.
  • the cyclic ether group contained in the repeating unit (A1) is an oxiranyl group
  • the cyclic ether compound to be added preferably has an oxetanyl group.
  • the cyclic ether compound to be added when the cyclic ether group contained in the repeating unit (A1) is an oxetanyl group, the cyclic ether compound to be added preferably has an oxiranyl group.
  • the cyclic ether compound added in this way has a different number of cyclic ether groups from the cyclic ether group contained in the repeating unit (A1), it can be more effectively cross-linked, and the gel electrolyte can be produced.
  • the heating temperature can be further reduced. Thereby, the deterioration of the electrode and gel electrolyte itself accompanying heating can be suppressed.
  • a crosslinking density can be improved, the gel electrolyte excellent in mechanical strength can be produced.
  • the content of the cyclic ether compound is in the range of 0 to 50 parts by mass with respect to 100 parts by mass of the polymer (A). It is preferred that
  • gel electrolyte The gel electrolyte which concerns on this Embodiment is produced by heating the above-mentioned composition for gel electrolyte formation. Since the gel electrolyte according to the present embodiment can be prepared simply by heating the above-described composition for forming a gel electrolyte, unlike a general gel electrolyte, a thermal acid generator or a light used for gel electrolyte preparation is used. An additive such as an acid generator may not be contained. For this reason, with the charge / discharge of the electricity storage device, it is possible to suppress the deterioration over time of the charge / discharge characteristics that may be caused by the decomposition of the thermal acid generator or the photoacid generator.
  • the heating temperature in the preparation of the gel electrolyte can be set to 70 to 100 ° C. (preferably 75 to 95 ° C., more preferably 80 to 90 ° C.), the deterioration of the active material layer of the electricity storage device can be suppressed. Can do. Further, since the ring-opening and crosslinking are performed, the change in the volume of the polymer is small, and damage to the structure of the electricity storage device such as peeling of the active material layer can be suppressed even if the polymer is gelled in a sealed state.
  • the gel electrolyte according to the present embodiment is a highly flexible gel and has no thermoreversibility. Therefore, abnormal expansion of the battery due to heating or overcharging can be prevented, and workability such as thin film processing is improved.
  • Electric storage device The electric storage device according to the present embodiment may include a known configuration and material in addition to the gel electrolyte described above.
  • the electrode material is not particularly limited as long as it can insert and desorb lithium ions.
  • the electrode for example, an electrode in which a positive electrode / negative electrode active material layer is formed on the surface of a current collector can be used.
  • the positive electrode active material examples include metal oxides such as CuO, Cu 2 O, MnO 2 , V 2 O 5 , CrO 3 , MoO 3 , Fe 2 O 3 , Ni 2 O 3 , and CuO 3 , and Li x CO 2. , Li x NiO 2 , Li x Mn 2 O 4 , LiFePO 4 and other complex oxides of lithium and transition metals, TiS 2 , MoS 2 , NbSe 3 and other metal chalcogenides, polyacene, polyparaphenylene, polypyrrole, Examples thereof include conductive compounds such as polyaniline.
  • a composite oxide of lithium and one or more kinds selected from transition metals such as cobalt, nickel, manganese, and iron is preferable.
  • transition metals such as cobalt, nickel, manganese, and iron
  • These lithium composite oxides may be doped with a small amount of elements such as fluorine, boron, aluminum, chromium, zirconium, molybdenum, and iron.
  • lithium storage metals such as metallic lithium, Al, Mg, Pt, Sn, Si, Zn, and Bi
  • Al-based lithium alloys such as Al—Ni, Al—Ag, and Al—Mn
  • SbSn Antimony type lithium alloys such as InSb, CoSb 3 , Mi 2 MnSb
  • Sn 2 M (M Fe, Co, Mn, V, Ti)
  • Sn-based lithium alloys such as 4 ; Sn oxides such as SnO 2 , Sn 2 P 2 O 7 , SnPBO 6 , SnPO 4 Cl; Si-based such as Si—C composite, Si—Ti composite, and Si—M thin film Lithium alloys; Nanocomposite materials such as Sn and Si; Amorphous alloy materials such as Sn, Co and Carbon; Sn-based plating alloys such as Sn-Ag and Sn-Cu; Si-based amorphous thin films
  • carbon materials include amorphous carbon, mesocarbon microbeads, graphite, natural graphite, non-graphitizable carbon, and the like, and surface modified products of these carbon materials are preferable materials.
  • a conductive agent may be used for the electrode material. Any conductive material that does not adversely affect battery performance can be used as the conductive agent. Normally, carbon black such as acetylene black and kettin black is used, but carbon fibers such as natural graphite, artificial graphite, carbon whisker, vapor grown carbon, carbon nanotubes, fullerene, conductive ceramic materials, etc. may be used. Often, these can be included as a mixture of two or more.
  • the current collector is not particularly limited as long as it is an electronic conductor that does not adversely affect the constructed power storage device.
  • Examples of the positive electrode current collector include aluminum, titanium, stainless steel copper, nickel, baked carbon, conductive polymer, conductive glass, etc., and aluminum and copper for the purpose of improving adhesion, conductivity, and oxidation resistance. Or the like can be used which have been treated with carbon, nickel, titanium, silver or the like.
  • Examples of the negative electrode current collector include copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, Al—Cd alloy, etc.
  • a surface of copper or the like treated with carbon, nickel, titanium, silver or the like can be used.
  • the surface of these current collector materials can be oxidized.
  • As for these shapes in addition to a foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a glass body, a porous body, a foamed body and the like are also used.
  • a binder for binding the positive electrode / negative electrode active material to the current collector a copolymer of polyvinylidene fluoride and hexafluoropropylene (HFP), perfluoromethyl vinyl ether (PFMV) or tetrafluoroethylene (TFE)
  • HFP polyvinylidene fluoride and hexafluoropropylene
  • PFMV perfluoromethyl vinyl ether
  • TFE tetrafluoroethylene
  • Polyvinylidene fluoride copolymer resins such as polytetrafluoroethylene (PTFE), fluorine resins such as fluorine rubber; styrene-butadiene rubber (SBR), ethylene-propylene rubber (EPDM), styrene-acrylonitrile copolymer, etc.
  • polysaccharides such as carboxymethylcellulose (CMC) and thermoplastic resins such as polyimide resin, but are not limited thereto. Moreover, you may use these in mixture of 2 or more types.
  • the addition amount is preferably 0.2 to 30 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the active material.
  • the positive electrode active material whose surface is coated with carbon such as LiFePO 4
  • a carboxylic acid-modified polyvinylidene fluoride or SBR aqueous binder can be mentioned as a preferable material.
  • a porous membrane is used, and usually a porous polymer film or a nonwoven fabric is preferably used.
  • a porous polymer film or a nonwoven fabric is preferably used.
  • those composed of a non-conductive porous material and electrically insulating particles are particularly suitable.
  • the non-conductive porous material is selected from polyacrylonitrile, polyester (PET), polyimide, polyamide, polytetrafluoroethylene, polyolefin, glass, ceramic and the like.
  • PET polyester
  • polyamide polytetrafluoroethylene
  • polyolefin polyolefin
  • glass glass
  • ceramic ceramic
  • a nonwoven fabric having an electrically insulating inorganic film on a flat flexible substrate is suitable, and polyester (PET) and polyamide are particularly preferred.
  • the insulating particles used for the separator include at least one kind of inorganic oxide such as alumina, titania, silicon and / or zirconia as the inorganic material, and polymers such as fluororesin, polystyrene resin and acrylic resin as the organic material. Particles are used.
  • the separator can further have a shutdown mechanism because the separator or the separator has an extremely thin wax particle layer or polymer particle layer that melts at a desired cutoff temperature.
  • Materials that are advantageous for forming the barrier particles include low melting polymers such as natural or artificial waxes and polyolefins, which melt at the desired barrier temperature and close the pores of the separator. Further current during the abnormal operation of the battery can be suppressed.
  • the electricity storage device can be formed in a cylindrical shape, a coin shape, a square shape, a laminate shape, or any other shape, and the basic configuration of the electricity storage device is the same regardless of the shape, depending on the purpose.
  • the design can be changed.
  • the above-mentioned composition for gel electrolyte formation You may heat-process, after injecting
  • Example 1 5.1.1. Preparation of Gel Electrolyte Forming Agent
  • 52 g of methoxyethyl acrylate (monomer content ratio: 74% by mass, equivalent to 80 mol%), 18 g of (3-ethyl-3-oxetanyl) methyl methacrylate (monomer content ratio) 26 mass%, corresponding to 20 mol%), 211 g of ethylene carbonate (EC): diethyl carbonate (DEC) 3: 7 (volume ratio) as a reaction solvent, and 0.2% of N, N′-azobisisobutyronitrile. 71 g (1 part by mass with respect to 100 parts by mass of monomer) was added, heated to 60 ° C.
  • a gel electrolyte was prepared by filling 10 g of the obtained gel electrolyte forming composition into a 50 mL vial tube and heating in an oven at 80 ° C. for 30 minutes. The obtained gel electrolyte was allowed to stand at 25 ° C. for 1 day, and the appearance of the gel electrolyte was visually observed. Table 3 shows the evaluation results. In Tables 3 to 10, if the gel electrolyte matrix and the liquid medium are not separated, it is judged that the liquid retaining property is good and “ ⁇ ”, and if they are separated, the liquid retaining property is judged to be poor. ⁇ ”.
  • Biaxial planetary mixer product name “TK Hibismix 2P-03” manufactured by PRIMIX Co., Ltd.
  • binder for electrochemical device electrode product name “KF polymer # 1120” manufactured by Kureha Co., Ltd.
  • conductive assistant manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denka Black 50% press product”
  • LiCoO 2 having a particle diameter of 5 ⁇ m as a positive electrode active material (manufactured by Hayashi Kasei Co., Ltd.) ) 100 parts by mass (in terms of solid content) and 36 parts by mass of N-methylpyrrolidone (NMP) were added and stirred at 60 rpm for 2 hours.
  • SBR binder composition manufactured by JSR Corporation, trade name “TRD2001”
  • TRD2001 2 parts by mass of the SBR binder composition
  • the mixture was further stirred at 60 rpm for 1 hour to obtain a paste.
  • the mixture was stirred at 200 rpm for 2 minutes at 200 rpm using a stirring defoamer (trade name “Awatori Nertaro” manufactured by Shinky Co., Ltd.).
  • a negative electrode slurry was prepared by stirring at 1,800 rpm for 5 minutes and further stirring at 1,800 rpm for 1.5 minutes under a reduced pressure of 25 kPa, followed by mixing.
  • the negative electrode slurry prepared above was uniformly applied to the surface of a current collector made of copper foil having a thickness of 20 ⁇ m by a doctor blade method so that the film thickness after drying was 150 ⁇ m, and dried at 120 ° C. for 20 minutes. . Then, the negative electrode was obtained by pressing using a roll-press machine so that the density of a film
  • a negative electrode terminal was attached to and mounted on the negative electrode cut out to 50 mm ⁇ 25 mm on a film-like exterior aluminum seal made of aluminum.
  • a separator made of a polypropylene porous film cut out to 54 mm ⁇ 27 mm (manufactured by Celgard, trade name “Celguard # 2400”, thickness 25 ⁇ m) was placed on the negative electrode, and then cut into 48 mm ⁇ 23 mm.
  • a positive electrode terminal was attached to the positive electrode and placed on the separator. And the exterior aluminum seal similar to the said exterior aluminum seal was mounted on this positive electrode.
  • the laminated body which consists of an exterior aluminum seal, a negative electrode, a separator, a positive electrode, and an exterior aluminum seal was obtained. Thereafter, the outer peripheral aluminum seals on the three sides of this laminate were sealed by bonding the outer peripheral edges of the two outer aluminum seals with a heating sealing device. Then, after injecting the gel electrolyte forming composition obtained above so that air does not enter between each layer and further degassing under reduced pressure, the negative electrode terminal and the positive electrode terminal are external to the outer aluminum seal under reduced pressure. The 4th side was sealed so that it might be exposed, and it sealed. The laminated cell thus sealed was heated in an oven at 80 ° C. for 30 minutes to produce a secondary battery (electrochemical device) composed of a bipolar single-layer laminated cell.
  • a secondary battery electrochemical device
  • the discharge rate (%) was calculated by calculating the ratio (percent%) of the discharge capacity at 2C to the discharge capacity at 0.2C.
  • the discharge rate of the secondary battery cell produced by using is “B”, it can be evaluated that the discharge rate characteristic represented by the following formula (7) is 0.7 or more. .
  • Discharge rate characteristics A / B (7)
  • Table 3 shows the obtained discharge rate characteristic values.
  • “1C” indicates a current value at which discharge is completed in one hour after constant current discharge of a cell having a certain electric capacity.
  • “0.1 C” is a current value at which discharge is completed over 10 hours
  • 10 C is a current value at which discharge is completed over 0.1 hours.
  • the discharge capacity retention rate (percentage%) at 0 ° C. with respect to the discharge capacity at 25 ° C. was used as an index of low temperature characteristics.
  • the discharge capacity retention rate at 0 ° C. of the secondary battery cell produced using the electrolyte solution of (R) is “D”
  • the low temperature characteristic represented by the following formula (8) is 0.8 or more. If it exists, it can be evaluated that it is favorable. Table 3 shows the obtained low temperature characteristic values.
  • Low temperature characteristics C / D (8)
  • a graph was created with the applied current value (A) as the horizontal axis and the voltage value (V) as the vertical axis, and the slope value of the straight line connecting the plot points was calculated at each charge / discharge time.
  • the gradient values were taken as internal DC resistance values (DC-IR) during charging and discharging, respectively.
  • Electrolytic solution of EC: DEC 3: 7 (volume ratio) containing DC-IR of “E” and LiPF 6 of 1 mol / L of the secondary battery cell produced using the above gel electrolyte forming composition
  • the DC-IR characteristic of the secondary battery cell produced using the battery is “F”
  • the DC-IR characteristic represented by the following formula (9) is 2.5 or less. be able to.
  • DC-IR characteristics E / F (9)
  • Table 3 shows the obtained DC-IR characteristic values.
  • DOD indicates the ratio of the discharge capacity to the charge capacity.
  • charge to 50% DOD indicates that only 50% of the capacity is charged when the total capacity is 100%.
  • the discharge rate characteristic represented by the following formula (10) is 0.7 or more when the discharge capacity maintenance ratio at the 50th cycle of the secondary battery cell manufactured using the electrolyte solution of (R) is “H” If it is, it can be evaluated that it is favorable.
  • Example 28 Comparative Examples 4 to 6
  • 6 parts by mass of the polymer P1 obtained above as a component (A) and 0.2 parts by mass of vinylene carbonate (VC) as a component (B) were weighed out, and no bubbles were mixed therein.
  • a gel electrolyte forming agent was prepared by sufficiently stirring, mixing and homogenizing under reduced pressure.
  • Each evaluation test was performed in the same manner as in Example 1 except that this gel electrolyte forming agent was used.
  • Examples 29 to 60 and Comparative Examples 4 to 6 were the same as Example 1 except that gel electrolyte forming agents were prepared in the same manner as in Example 28 so as to have the compositions shown in Tables 5 to 7. Each evaluation test was conducted.
  • Example 61 6 parts by mass of the polymer P1 obtained above as component (A) and 0.035 of 2,6-di-t-butyl-4-methylphenol (BHT) as component (C) were used.
  • a gel electrolyte forming agent was prepared by weighing out a mass part and thoroughly agitating, mixing, and homogenizing the mixture under reduced pressure so that bubbles do not enter. Each evaluation test was performed in the same manner as in Example 1 except that this gel electrolyte forming agent was used.
  • Examples 62 to 83 and Comparative Examples 7 to 8 were the same as Example 1 except that gel electrolyte forming agents were prepared in the same manner as in Example 61 so that the compositions shown in Tables 8 to 10 were obtained. Each evaluation test was conducted.
  • EC / DEC Mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7
  • GBL ⁇ -butyrolactone
  • DG diglyme (diethylene glycol dimethyl ether)
  • DEC Diethyl carbonate
  • MEK Methyl ethyl ketone
  • PC Propylene carbonate
  • CEL 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate (manufactured by Daicel Chemical Industries, Ltd., product name “Celoxide 2021P”)
  • EGDG ethylene glycol diglycidyl ether
  • DOX 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane
  • OXAL 3-ethyl-3-hydroxymethyloxetane
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration.
  • the present invention includes a configuration that achieves the same effect as the configuration described in the above embodiment or a configuration that can achieve the same object.
  • the present invention includes a configuration in which a known technique is added to the configuration described in the above embodiment.

Abstract

This agent for forming a gel electrolyte contains a polymer (A) which has a repeating unit (A1) that is derived from a (meth)acrylate having a cyclic ether structure and a repeating unit (A2) that is derived from a (meth)acrylate having a chain ether structure, with the ratio of the amount (M2 [mol%]) of the repeating unit (A2) relative to the amount (M1 [mol%]) of the repeating unit (A1), namely M2/M1 being within the range of 1-10 when the total amount of the repeating unit (A1) and the repeating unit (A2) is taken as 100 [mol%].

Description

ゲル電解質形成剤、ゲル電解質形成用組成物、ゲル電解質、および蓄電デバイスGel electrolyte forming agent, composition for forming gel electrolyte, gel electrolyte, and electricity storage device
 本発明は、ゲル電解質形成剤、該ゲル電解質形成剤と液状媒体とを含有するゲル電解質形成用組成物、該ゲル電解質形成用組成物により形成されたゲル電解質、および該ゲル電解質を備えた蓄電デバイスに関する。 The present invention relates to a gel electrolyte forming agent, a gel electrolyte forming composition containing the gel electrolyte forming agent and a liquid medium, a gel electrolyte formed from the gel electrolyte forming composition, and an electricity storage provided with the gel electrolyte Regarding devices.
 近年、電子機器の駆動用電源として高電圧、高エネルギー密度を有する蓄電デバイスが要求されている。このような蓄電デバイスにおいて、電解質(イオン伝導体)はその性能を大きく左右する欠かせない要素となっている。一般的には、液体状態の物質が高いイオン伝導性を有する。そのため、リチウムイオン二次電池やリチウムイオンキャパシタ等の蓄電デバイスにおいても、炭酸プロピレン、炭酸エチレン等を主成分とした溶媒にリチウム電解質塩を溶解させた液体状態の電解液が通常用いられている。 In recent years, a power storage device having a high voltage and a high energy density has been required as a power source for driving electronic equipment. In such an electricity storage device, the electrolyte (ion conductor) is an indispensable element that greatly affects its performance. In general, a liquid state substance has high ionic conductivity. Therefore, in a power storage device such as a lithium ion secondary battery or a lithium ion capacitor, a liquid electrolyte in which a lithium electrolyte salt is dissolved in a solvent mainly composed of propylene carbonate, ethylene carbonate, or the like is usually used.
 しかしながら、このような液体状態の電解液を使用した蓄電デバイスでは、電解液の漏洩の危険性に加えて、使用環境や誤使用・事故による温度上昇や内圧上昇、破裂、発火といった安全性の問題が指摘されている。この原因の一つとしては、電解質に液体を用いていることが挙げられる。そのため、特開2001-176555号公報、特開2009-70605号公報および特開2002-110245号公報では、安定性(不揮発性)、安全性(非爆発性)、作製の容易さ(薄膜加工等)の観点から、ゲル状の電解質(以下「ゲル電解質」ともいう。)の開発が検討されている。 However, in an electricity storage device using such a liquid electrolyte, in addition to the risk of leakage of the electrolyte, there are safety problems such as temperature rise, internal pressure rise, rupture, and fire due to usage environment, misuse, accidents, etc. Has been pointed out. One of the causes is that a liquid is used for the electrolyte. Therefore, in Japanese Patent Application Laid-Open Nos. 2001-176555, 2009-70605 and 2002-110245, stability (nonvolatile), safety (non-explosive), ease of production (thin film processing, etc.) ), The development of a gel electrolyte (hereinafter also referred to as “gel electrolyte”) is being studied.
 このようなゲル電解質を作製する技術としては、一般に物理ゲル電解質もしくは化学ゲル電解質が知られている。前者は水素結合やファンデルワールス力のような非共有結合性相互作用を用いる凝固体化技術であるのに対し、後者は高分子化合物の形成等を利用する化学反応によるゲル化方法である。 As a technique for producing such a gel electrolyte, a physical gel electrolyte or a chemical gel electrolyte is generally known. The former is a solidification technique using non-covalent bonds such as hydrogen bonds and van der Waals forces, while the latter is a gelation method by a chemical reaction utilizing the formation of a polymer compound.
 しかしながら、従来のゲル電解質では、電解液の保液性が不十分である場合があった。電解液の保液性が不十分である場合、ゲル電解質マトリックスと電解液との分離による蓄電デバイスの充放電特性の劣化や、ゲル電解質マトリックスから分離した電解液の漏液による蓄電デバイスの劣化を十分に抑制できなかった。 However, conventional gel electrolytes sometimes have insufficient electrolyte retention. If the electrolyte retainability is insufficient, the charge / discharge characteristics of the electricity storage device may be deteriorated due to separation of the gel electrolyte matrix and the electrolyte solution, or the electricity storage device may be deteriorated due to leakage of the electrolyte separated from the gel electrolyte matrix. It was not able to suppress enough.
 また、一般に電解質をゲル化するとイオン伝導性が減少する。すなわち、ゲル電解質では、通常の電解液と比較して活物質表面と電解質との界面抵抗がどうしても大きくなる。そうすると、活物質表面の僅かな劣化でも電極抵抗を大幅に増大させ、ひいては蓄電デバイスの充放電特性の大幅な劣化を引き起こす場合があった。なお、従来の化学ゲル電解質によれば、従来の非水電解液型の蓄電デバイスの製造工程と同様に、電極やセパレータが配置された筐体内にゲル電解質形成剤と電解液を含有する溶液を注入し、その後ゲル化させることで容易にゲル電解質を配した電池を作製することができる。しかしながら、ゲル化させる工程において電極や電解液を高温で加熱することにより電極の劣化が発生したり、またゲル化のための開始剤を添加する必要があるため充放電を阻害する成分を除去できないなど、作製される蓄電デバイスの充放電特性が劣化する問題があった。 In general, when the electrolyte is gelled, the ionic conductivity decreases. That is, in the gel electrolyte, the interface resistance between the active material surface and the electrolyte is inevitably increased as compared with a normal electrolytic solution. As a result, even a slight deterioration of the surface of the active material significantly increases the electrode resistance, which in turn may cause a significant deterioration of the charge / discharge characteristics of the electricity storage device. In addition, according to a conventional chemical gel electrolyte, a solution containing a gel electrolyte forming agent and an electrolyte is placed in a housing in which electrodes and separators are arranged, as in the conventional manufacturing process of a nonaqueous electrolyte type electricity storage device. By injecting and then gelling, a battery in which a gel electrolyte is easily arranged can be produced. However, heating the electrode or electrolyte at a high temperature during the gelation process may cause deterioration of the electrode, or it may be necessary to add an initiator for gelation, and components that hinder charging and discharging cannot be removed. For example, there is a problem that the charge / discharge characteristics of the power storage device to be manufactured deteriorate.
 一方、化学ゲル電解質は、ゲル電解質プレポリマーを含むゲル電解質形成剤を加熱および/または光照射するなどして非可逆的な化学反応により作製するのが通常である。しかしながら、ゲル電解質プレポリマーの反応性は非常に高いため、ゲル電解質を作製しようとしたときには既にゲル化が進行している場合があった。したがって、ゲル電解質プレポリマーの反応を抑制して、ゲル電解質形成剤の貯蔵安定性を確保することが一つの課題となっていた。 On the other hand, the chemical gel electrolyte is usually produced by an irreversible chemical reaction by heating and / or irradiating light with a gel electrolyte forming agent containing a gel electrolyte prepolymer. However, since the reactivity of the gel electrolyte prepolymer is very high, gelation may have already progressed when an attempt was made to produce the gel electrolyte. Therefore, it has been an issue to suppress the reaction of the gel electrolyte prepolymer and ensure the storage stability of the gel electrolyte forming agent.
 そこで、本発明に係る幾つかの態様は、前記課題の少なくとも一部を解決することで、良好な充放電特性を発現させるための十分なイオン伝導度を有し、しかも従来のゲル電解質と比較して電解液の保液性を向上させたゲル電解質が作製可能なゲル電解質形成剤を提供するものである。 Accordingly, some aspects of the present invention have sufficient ionic conductivity for expressing good charge / discharge characteristics by solving at least a part of the above-described problems, and are compared with conventional gel electrolytes. Thus, the present invention provides a gel electrolyte forming agent capable of producing a gel electrolyte with improved electrolyte retention.
 また、本発明に係る幾つかの態様は、上記の特徴に加えて、さらに貯蔵安定性が良好となるゲル電解質形成剤を提供するものである。 In addition to the above features, some embodiments according to the present invention provide a gel electrolyte forming agent that further improves storage stability.
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 The present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
 [適用例1]
 本発明に係るゲル電解質形成剤の一態様は、
 環状エーテル構造を有する(メタ)アクリレートに由来する繰り返し単位(A1)と、鎖状エーテル構造を有する(メタ)アクリレートに由来する繰り返し単位(A2)と、を有し、
 前記繰り返し単位(A1)と前記繰り返し単位(A2)の合計量を100[mol%]としたときに、前記繰り返し単位(A1)の量(M1[mol%])に対する前記繰り返し単位(A2)の量(M2[mol%])の比率(M2/M1)が1~10の範囲内にある重合体(A)を含有する。
[Application Example 1]
One aspect of the gel electrolyte forming agent according to the present invention is:
A repeating unit (A1) derived from (meth) acrylate having a cyclic ether structure and a repeating unit (A2) derived from (meth) acrylate having a chain ether structure,
When the total amount of the repeating unit (A1) and the repeating unit (A2) is 100 [mol%], the amount of the repeating unit (A2) relative to the amount of the repeating unit (A1) (M1 [mol%]) The polymer (A) contains a ratio (M2 / M1) of the amount (M2 [mol%]) in the range of 1 to 10.
 [適用例2]
 適用例1のゲル電解質形成剤において、前記環状エーテル構造を有する(メタ)アクリレートが下記一般式(1)で表される化合物であることができる。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Rは水素原子またはメチル基を表し、Rは2価の連結基を表し、Rは水素原子または1価の有機基を表し、複数存在するRはそれぞれ独立に水素原子または1価の有機基を表す。mおよびnは0以上の整数であり、m+n≧1である。)
[Application Example 2]
In the gel electrolyte forming agent of Application Example 1, the (meth) acrylate having the cyclic ether structure may be a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
(In Formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents a divalent linking group, R 3 represents a hydrogen atom or a monovalent organic group, and a plurality of R 4 s are present. Independently represents a hydrogen atom or a monovalent organic group, m and n are integers of 0 or more, and m + n ≧ 1.
 [適用例3]
 適用例1または適用例2のゲル電解質形成剤において、前記鎖状エーテル構造を有する(メタ)アクリレートが下記一般式(2)で表される化合物であることができる。
Figure JPOXMLDOC01-appb-C000008
(式(2)中、Rは水素原子またはメチル基を表し、Rは単結合または2価の有機基を表し、複数存在してもよいRはそれぞれ独立に2価の炭化水素基を表し、Rは水素原子または1価の有機基を表す。xは1以上の整数である。)
[Application Example 3]
In the gel electrolyte forming agent of Application Example 1 or Application Example 2, the (meth) acrylate having a chain ether structure may be a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000008
(In formula (2), R 5 represents a hydrogen atom or a methyl group, R 6 represents a single bond or a divalent organic group, and a plurality of R 7 s may be independently a divalent hydrocarbon group. R 8 represents a hydrogen atom or a monovalent organic group, and x is an integer of 1 or more.)
 [適用例4]
 適用例1ないし適用例3のいずれか一例のゲル電解質形成剤において、前記M1[mol%]が10~40mol%の範囲にあることができる。
[Application Example 4]
In the gel electrolyte forming agent of any one of Application Examples 1 to 3, the M1 [mol%] may be in the range of 10 to 40 mol%.
 [適用例5]
 適用例1ないし適用例4のいずれか一例のゲル電解質形成剤において、前記重合体(A)の数平均分子量が1,000以上10万以下であることができる。
[Application Example 5]
In the gel electrolyte forming agent of any one of Application Examples 1 to 4, the number average molecular weight of the polymer (A) may be 1,000 or more and 100,000 or less.
 [適用例6]
 適用例1ないし適用例5のいずれか一例のゲル電解質形成剤において、さらに、炭素-炭素不飽和結合を少なくとも1つ有するエステル化合物(B)を含有することができる。
[Application Example 6]
The gel electrolyte forming agent according to any one of Application Examples 1 to 5 may further contain an ester compound (B) having at least one carbon-carbon unsaturated bond.
 [適用例7]
 適用例6のゲル電解質形成剤において、前記成分(B)が環状炭酸エステルおよび(メタ)アクリレートからなる群より選択される少なくとも1種であることができる。
[Application Example 7]
In the gel electrolyte forming agent of Application Example 6, the component (B) may be at least one selected from the group consisting of cyclic carbonates and (meth) acrylates.
 [適用例8]
 適用例7のゲル電解質形成剤において、前記環状炭酸エステルが下記一般式(3)で表される化合物であることができる。
Figure JPOXMLDOC01-appb-C000009
(式(3)中、R12およびR13はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基もしくはアルケニル基、またはフェニル基である。)
[Application Example 8]
In the gel electrolyte forming agent of Application Example 7, the cyclic ester carbonate may be a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000009
(In Formula (3), R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl or alkenyl group having 1 to 6 carbon atoms, or a phenyl group.)
 [適用例9]
 適用例6ないし適用例8のいずれか一例のゲル電解質形成剤において、前記成分(A)の含有量をM質量部、前記成分(B)の含有量をM質量部としたときに、比率(M/M)が1~100の範囲内にあることができる。
[Application Example 9]
In any one example of the gel electrolyte-forming agent applications 6 to Application Example 8, the M A parts by mass content of the component (A), the content of the component (B) is taken as M B parts by weight, The ratio (M A / M B ) can be in the range of 1-100.
 [適用例10]
 適用例1ないし適用例5のいずれか一例のゲル電解質形成剤において、さらに、フェノール性水酸基を有する化合物(C)を含有することができる。
[Application Example 10]
The gel electrolyte forming agent of any one of Application Examples 1 to 5 may further contain a compound (C) having a phenolic hydroxyl group.
 [適用例11]
 適用例10のゲル電解質形成剤において、前記成分(C)が下記一般式(4)で表される化合物であることができる。
Figure JPOXMLDOC01-appb-C000010
(式(4)中、R14はそれぞれ置換もしくは非置換のアルキル基またはアルコキシ基を表す。nは0以上5以下の整数である。)
[Application Example 11]
In the gel electrolyte forming agent of Application Example 10, the component (C) may be a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000010
(In formula (4), R 14 represents a substituted or unsubstituted alkyl group or alkoxy group. N is an integer of 0 or more and 5 or less.)
 [適用例12]
 適用例10のゲル電解質形成剤において、前記成分(C)が下記一般式(5)で表される化合物であることができる。
Figure JPOXMLDOC01-appb-C000011
(式(5)中、R15はそれぞれ置換もしくは非置換のアルキル基またはアルコキシ基を表す。mは0以上3以下の整数である。)
[Application Example 12]
In the gel electrolyte forming agent of Application Example 10, the component (C) may be a compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000011
(In Formula (5), R 15 represents a substituted or unsubstituted alkyl group or alkoxy group. M is an integer of 0 or more and 3 or less.)
 [適用例13]
 適用例10のゲル電解質形成剤において、前記成分(C)が下記一般式(6)で表される基を少なくとも1つ有する化合物であることができる。
Figure JPOXMLDOC01-appb-C000012
(式(6)中、R16およびR17は、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表す。)
[Application Example 13]
In the gel electrolyte forming agent of Application Example 10, the component (C) may be a compound having at least one group represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000012
(In the formula (6), R 16 and R 17 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
 [適用例14]
 適用例10ないし適用例13のいずれか一例のゲル電解質形成剤において、前記成分(A)の含有量をM質量部、前記成分(C)の含有量をM質量部としたときに、比率(M/M)が10~1000の範囲内にあることができる。
[Application Example 14]
In any one example of the gel electrolyte-forming agent applications 10 to application 13, the content of the component (A) M A parts by mass, the content of the component (C) is taken as M C parts by weight, The ratio (M A / M C ) can be in the range of 10 to 1000.
 [適用例15]
 本発明に係るゲル電解質形成用組成物の一態様は、適用例1ないし適用例14のいずれか一例のゲル電解質形成剤と、液状媒体(D)と、を含有する。
[Application Example 15]
One aspect of the composition for forming a gel electrolyte according to the present invention contains the gel electrolyte forming agent of any one of Application Examples 1 to 14, and the liquid medium (D).
 [適用例16]
 適用例15のゲル電解質形成用組成物において、環状エーテル化合物をさらに含有することができる。
[Application Example 16]
The gel electrolyte forming composition of Application Example 15 may further contain a cyclic ether compound.
 [適用例17]
 適用例16のゲル電解質形成用組成物において、前記環状エーテル化合物が、前記環状エーテル構造を有する(メタ)アクリレートに含まれる環状エーテル基とは員数が異なる環状エーテル基を有することができる。
[Application Example 17]
In the gel electrolyte forming composition of Application Example 16, the cyclic ether compound may have a cyclic ether group having a number of members different from that of the cyclic ether group contained in the (meth) acrylate having the cyclic ether structure.
 [適用例18]
 本発明に係るゲル電解質の一態様は、適用例15ないし適用例17のいずれか一例のゲル電解質形成用組成物を加熱して作製されることを特徴とする。
[Application Example 18]
One aspect of the gel electrolyte according to the present invention is characterized by being produced by heating the gel electrolyte forming composition of any one of Application Examples 15 to 17.
 [適用例19]
 本発明に係る蓄電デバイスの一態様は、適用例18のゲル電解質を備えることを特徴とする。
[Application Example 19]
One aspect of the electricity storage device according to the present invention is characterized by including the gel electrolyte of Application Example 18.
 本発明に係るゲル電解質形成剤によれば、良好な充放電特性を発現させるための十分なイオン伝導度を有し、しかも従来のゲル電解質と比較して保液性を向上させたゲル電解質を得ることができる。また、本発明に係るゲル電解質形成剤によれば、さらに貯蔵安定性が非常に良好となる。 According to the gel electrolyte forming agent according to the present invention, a gel electrolyte having sufficient ionic conductivity for developing good charge / discharge characteristics and having improved liquid retention compared to a conventional gel electrolyte. Obtainable. Moreover, according to the gel electrolyte formation agent which concerns on this invention, storage stability becomes very favorable further.
 本発明に係るゲル電解質によれば、良好な保液性を有するためゲル電解質マトリックスと液状媒体との分離を抑制することができる。また、温和な条件でゲル化できるために電極やゲル電解質自体の劣化を抑制することができ、その結果蓄電デバイスにおける充放電特性の劣化等を抑止できる。さらに、本発明に係るゲル電解質を備える蓄電デバイスによれば、放電レート特性、低温特性、DC-IR特性及びサイクル特性などの蓄電デバイス特性が良好となる。 Since the gel electrolyte according to the present invention has good liquid retention, separation between the gel electrolyte matrix and the liquid medium can be suppressed. Further, since gelation can be performed under mild conditions, it is possible to suppress deterioration of the electrode and the gel electrolyte itself, and as a result, it is possible to suppress deterioration of charge / discharge characteristics of the electricity storage device. Furthermore, according to the electricity storage device including the gel electrolyte according to the present invention, the electricity storage device characteristics such as discharge rate characteristics, low temperature characteristics, DC-IR characteristics, and cycle characteristics are improved.
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。なお、本明細書における「(メタ)アクリル~」とは、「アクリル~」および「メタクリル~」の双方を包括する概念である。また、「~(メタ)アクリレート」とは、「~アクリレート」および「~メタクリレート」の双方を包括する概念である。 Hereinafter, preferred embodiments according to the present invention will be described in detail. It should be understood that the present invention is not limited only to the embodiments described below, and includes various modifications that are implemented within a scope that does not change the gist of the present invention. In the present specification, “(meth) acryl” is a concept encompassing both “acryl” and “methacryl”. Further, “˜ (meth) acrylate” is a concept encompassing both “˜acrylate” and “˜methacrylate”.
 1.ゲル電解質形成剤
 本実施の形態に係るゲル電解質形成剤は、環状エーテル構造を有する(メタ)アクリレートに由来する繰り返し単位(A1)と、鎖状エーテル構造を有する(メタ)アクリレートに由来する繰り返し単位(A2)と、を有し、前記繰り返し単位(A1)と前記繰り返し単位(A2)の合計量を100[mol%]としたときに、前記繰り返し単位(A1)の量(M1[mol%])に対する前記繰り返し単位(A2)の量(M2[mol%])の比率(M2/M1)が1~10の範囲内にある重合体(A)を含有する。
1. Gel Electrolyte Forming Agent The gel electrolyte forming agent according to the present embodiment includes a repeating unit (A1) derived from (meth) acrylate having a cyclic ether structure and a repeating unit derived from (meth) acrylate having a chain ether structure. (A2), and when the total amount of the repeating unit (A1) and the repeating unit (A2) is 100 [mol%], the amount of the repeating unit (A1) (M1 [mol%]) The polymer (A) has a ratio (M2 / M1) of the amount (M2 [mol%]) of the repeating unit (A2) to 1) in the range of 1 to 10.
 本実施の形態に係るゲル電解質形成剤は、後述する液状媒体(D)やその他の添加剤と混合することにより得られたゲル電解質形成用組成物を温和な条件で加熱することにより、ゲル電解質を作製することができる。なお、本明細書において「温和な条件で加熱する」とは、電極やゲル電解質が劣化しない70~100℃程度の温度で加熱することをいう。また、このゲル電解質は、柔軟性に富むゲルであり、しかも熱可逆性がない。そのため、加熱や過充電による電池の異常膨張を防止することができ、薄膜加工等の作業性が良好となる。以下、本実施の形態に係るゲル電解質形成剤に含まれ得る各成分について詳細に説明する。 The gel electrolyte forming agent according to the present embodiment is obtained by heating a gel electrolyte forming composition obtained by mixing with a liquid medium (D) and other additives described below under mild conditions. Can be produced. In the present specification, “heating under mild conditions” means heating at a temperature of about 70 to 100 ° C. at which the electrode and gel electrolyte do not deteriorate. The gel electrolyte is a highly flexible gel and has no thermoreversibility. Therefore, abnormal expansion of the battery due to heating or overcharging can be prevented, and workability such as thin film processing is improved. Hereinafter, each component that may be included in the gel electrolyte forming agent according to the present embodiment will be described in detail.
 1.1.重合体(A)
 本実施の形態に係るゲル電解質形成剤に含まれる重合体(A)は、環状エーテル構造を有する(メタ)アクリレートに由来する繰り返し単位(A1)と、鎖状エーテル構造を有する(メタ)アクリレートに由来する繰り返し単位(A2)と、を有する。
1.1. Polymer (A)
The polymer (A) contained in the gel electrolyte forming agent according to the present embodiment includes a repeating unit (A1) derived from a (meth) acrylate having a cyclic ether structure and a (meth) acrylate having a chain ether structure. Derived repeating unit (A2).
 1.1.1.繰り返し単位(A1)
 上記繰り返し単位(A1)は、環状エーテル構造を有する(メタ)アクリレートに由来するものである。上記繰り返し単位(A1)は、ゲル電解質を作製する際に該環状エーテル構造が開環することで架橋構造を構築することができる。
1.1.1. Repeating unit (A1)
The repeating unit (A1) is derived from (meth) acrylate having a cyclic ether structure. The repeating unit (A1) can construct a crosslinked structure by opening the cyclic ether structure when producing a gel electrolyte.
 上記環状エーテル構造を有する(メタ)アクリレートは、環状エーテル構造が開環して架橋することができるものであれば特に限定されないが、下記一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(1)中、Rは水素原子またはメチル基を表し、Rは2価の連結基を表し、Rは水素原子または1価の有機基を表し、複数存在するRはそれぞれ独立に水素原子または1価の有機基を表す。mおよびnは0以上の整数であり、m+n≧1である。)
The (meth) acrylate having a cyclic ether structure is not particularly limited as long as the cyclic ether structure can be opened and crosslinked, and is preferably a compound represented by the following general formula (1). .
Figure JPOXMLDOC01-appb-C000013
(In Formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents a divalent linking group, R 3 represents a hydrogen atom or a monovalent organic group, and a plurality of R 4 s are present. Independently represents a hydrogen atom or a monovalent organic group, m and n are integers of 0 or more, and m + n ≧ 1.
 上記式(1)中、Rは水素原子またはメチル基を表すが、重合体(A)の耐酸化性の観点からメチル基であることが好ましい。 In the above formula (1), R 1 represents a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of the oxidation resistance of the polymer (A).
 上記式(1)中、Rは2価の連結基を表し、例えば単結合、炭素数1~20の2価の鎖状炭化水素基、炭素数3~20の2価の環状の飽和若しくは不飽和の炭化水素基、又はこれらとエーテル基、エステル基若しくはカルボニル基とを組み合わせた2価の基を挙げることができ、このような2価の連結基は置換基を有していてもよいが、好ましくは単結合または炭素数1~4のアルキレン基である。 In the above formula (1), R 2 represents a divalent linking group, for example, a single bond, a divalent chain hydrocarbon group having 1 to 20 carbon atoms, a divalent cyclic saturated group having 3 to 20 carbon atoms, or An unsaturated hydrocarbon group, or a divalent group obtained by combining these with an ether group, an ester group, or a carbonyl group can be given. Such a divalent linking group may have a substituent. Is preferably a single bond or an alkylene group having 1 to 4 carbon atoms.
 上記式(1)中、Rは水素原子または1価の有機基を表し、1価の有機基としては炭素数1~8の直鎖状又は分岐状のアルキル基であることが好ましい。炭素数1~8の直鎖状又は分岐状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等が挙げられる。これらの中でも、容易に架橋することができるように、Rは水素原子または炭素数1~6のアルキル基であることが好ましい。 In the above formula (1), R 3 represents a hydrogen atom or a monovalent organic group, and the monovalent organic group is preferably a linear or branched alkyl group having 1 to 8 carbon atoms. Examples of the linear or branched alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a 2-methylpropyl group, and a 1-methylpropyl group. Group, t-butyl group and the like. Among these, R 3 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms so that it can be easily crosslinked.
 上記式(1)中、複数存在するRはそれぞれ独立に水素原子または1価の有機基を表し、1価の有機基としては炭素数1~4の直鎖状又は分岐状のアルキル基であることが好ましい。炭素数1~4の直鎖状又は分岐状のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等を挙げることができる。これらの中でも、容易に架橋することができるように、Rはそれぞれ独立に水素原子または炭素数1~3のアルキル基であることが好ましい。また、mおよびnは0以上の整数であり、m+n≧1であるが、容易に反応でき、しかも重合体の安定性が良好となるため、上記式(1)中、m+nは2以上であることが好ましく、m+nは2であることがより好ましい。 In the above formula (1), a plurality of R 4 each independently represents a hydrogen atom or a monovalent organic group, and the monovalent organic group is a linear or branched alkyl group having 1 to 4 carbon atoms. Preferably there is. Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, and 1-methylpropyl group. And t-butyl group. Among these, it is preferable that each R 4 is independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms so that it can be easily crosslinked. M and n are integers of 0 or more, and m + n ≧ 1, but they can be easily reacted, and the stability of the polymer is good. Therefore, in the above formula (1), m + n is 2 or more. And m + n is more preferably 2.
 上記環状エーテル構造を有する(メタ)アクリレートは、下記一般式(1-1)で表される化合物であることがより好ましい。下記一般式(1-1)で表される化合物に由来する繰り返し単位は、非水溶媒中でリチウムイオンにより容易に開環架橋することができる。このため、たとえば本願発明のゲル電解質形成剤を含有するゲル電解質形成用組成物を用いてゲル電解質を作製する場合、ゲル電解質形成用組成物に含有される液状媒体(D)としてリチウムイオンを含有する液状媒体を用いることにより、ゲル電解質形成剤を容易に架橋させ、イオン伝導性に優れたゲル電解質を作製することができる。この場合、ゲル電解質を作製するにあたりゲル電解質形成用組成物の加熱処理は必須ではないが、ゲル強度の良好なゲル電解質を作製する観点から、活物質を劣化させない低温での加熱処理を行うことが好ましい。
Figure JPOXMLDOC01-appb-C000014
(式(1-1)中、Rは水素原子またはメチル基を表し、Rは単結合または2価の有機基を表し、Rは水素原子または1価の有機基を表し、複数存在するRはそれぞれ独立に水素原子または1価の有機基を表す。)
The (meth) acrylate having the cyclic ether structure is more preferably a compound represented by the following general formula (1-1). The repeating unit derived from the compound represented by the following general formula (1-1) can be easily ring-opened and cross-linked with lithium ions in a non-aqueous solvent. Therefore, for example, when a gel electrolyte is prepared using the gel electrolyte forming composition containing the gel electrolyte forming agent of the present invention, lithium ions are contained as the liquid medium (D) contained in the gel electrolyte forming composition. By using such a liquid medium, the gel electrolyte forming agent can be easily cross-linked, and a gel electrolyte excellent in ion conductivity can be produced. In this case, the heat treatment of the gel electrolyte forming composition is not essential for producing the gel electrolyte, but from the viewpoint of producing a gel electrolyte with good gel strength, the heat treatment should be performed at a low temperature that does not deteriorate the active material. Is preferred.
Figure JPOXMLDOC01-appb-C000014
(In the formula (1-1), R 1 represents a hydrogen atom or a methyl group, R 9 represents a single bond or a divalent organic group, R 3 represents a hydrogen atom or a monovalent organic group, And each R 4 independently represents a hydrogen atom or a monovalent organic group.)
 上記式(1-1)中、R、R及びRについては、上記式(1)と同義である。上記式(1-1)中、Rは単結合または2価の有機基を表し、2価の有機基としては炭素数1~10のアルキレン基が挙げられる。これらの中でも、Rはメチレン基であることが好ましい。 In the above formula (1-1), R 1 , R 3 and R 4 have the same meaning as in the above formula (1). In the above formula (1-1), R 9 represents a single bond or a divalent organic group, and examples of the divalent organic group include an alkylene group having 1 to 10 carbon atoms. Among these, R 9 is preferably a methylene group.
 本実施の形態に係るゲル電解質形成剤と後述する液状媒体(D)とを混合して作製されたゲル電解質形成用組成物を用いて作製されたゲル電解質は、繰り返し単位(A1)が有する環状エーテル構造を開環させて架橋されているため、強固な重合体ネットワーク構造を構築することができ、ゲル強度に優れたゲル電解質となる。 The gel electrolyte produced by using the gel electrolyte-forming composition produced by mixing the gel electrolyte-forming agent according to the present embodiment and the liquid medium (D) described later is a cyclic unit of the repeating unit (A1). Since the ether structure is ring-opened and crosslinked, a strong polymer network structure can be constructed and a gel electrolyte having excellent gel strength can be obtained.
 環状エーテル構造を有する(メタ)アクリレートの具体例としては、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、(3-オキセタニル)メチル(メタ)アクリレート、(3-メチル-3-オキセタニル)メチル(メタ)アクリレート、(3-エチル-3-オキセタニル)メチル(メタ)アクリレート、(3-ブチル-3-オキセタニル)メチル(メタ)アクリレート、(3-ヘキシル-3-オキセタニル)メチル(メタ)アクリレート、(3-エチル-オキセタン-3-イロキシ)エチル(メタ)アクリレート、(3-エチル-オキセタン-3-イロキシ)ブチル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等が挙げられるが、(3-オキセタニル)メチル(メタ)アクリレート及び(3-アルキル-3-オキセタニル)メチル(メタ)アクリレートを好ましく用いることができる。これらの化合物は、1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the (meth) acrylate having a cyclic ether structure include glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, caprolactone-modified tetrahydrofurfuryl (meth) acrylate, (3-oxetanyl) methyl (meth) acrylate, (3-Methyl-3-oxetanyl) methyl (meth) acrylate, (3-ethyl-3-oxetanyl) methyl (meth) acrylate, (3-butyl-3-oxetanyl) methyl (meth) acrylate, (3-hexyl- 3-Oxetanyl) methyl (meth) acrylate, (3-ethyl-oxetane-3-yloxy) ethyl (meth) acrylate, (3-ethyl-oxetane-3-yloxy) butyl (meth) acrylate, 3,4-epoxycyclohexyl Methyl ( Data) acrylate and the like, can be preferably used (3-oxetanyl) methyl (meth) acrylate and (3-alkyl-3-oxetanyl) methyl (meth) acrylate. These compounds may be used alone or in combination of two or more.
 重合体(A)中における繰り返し単位(A1)の含有割合は、繰り返し単位(A1)および繰り返し単位(A2)の合計量を100mol%としたときに繰り返し単位(A1)が、10~40mol%であることが好ましく、15~35mol%であることがより好ましい。重合体(A)中における繰り返し単位(A1)の含有割合が前記範囲にあると、液状媒体(D)中に含まれるリチウムイオン等の金属イオンを触媒として、温和な条件で加熱することにより容易に架橋反応(カチオン重合)が起こり、共存する電極や液状媒体の劣化を引き起こすことなくゲル電解質を作製することができる。また、十分に架橋させることもできるので、ゲル電解質の機械的強度を確保することもできる。 The content of the repeating unit (A1) in the polymer (A) is such that when the total amount of the repeating unit (A1) and the repeating unit (A2) is 100 mol%, the repeating unit (A1) is 10 to 40 mol%. It is preferably 15 to 35 mol%. When the content ratio of the repeating unit (A1) in the polymer (A) is in the above range, it is easy to heat under mild conditions using a metal ion such as lithium ion contained in the liquid medium (D) as a catalyst. A gel electrolyte can be produced without causing a deterioration of the coexisting electrode or liquid medium by causing a crosslinking reaction (cationic polymerization). Moreover, since it can also fully bridge | crosslink, the mechanical strength of a gel electrolyte can also be ensured.
 なお、一般的には、ゲル電解質を作製する際にゲル化を促進させるための熱酸発生剤や光酸発生剤等の添加剤を添加する必要がある。この添加剤がゲル電解質中に残存してしまうと、蓄電デバイスにおいて充放電特性の経時的劣化を招くことがある。しかしながら、本実施の形態に係るゲル電解質形成剤は、このような添加剤を必須とせず、加熱のみでゲル化することができるため、上述のような充放電特性の経時的劣化を抑制できる点で優れている。 In general, it is necessary to add an additive such as a thermal acid generator or a photoacid generator for promoting gelation when producing a gel electrolyte. If this additive remains in the gel electrolyte, the charge / discharge characteristics may deteriorate over time in the electricity storage device. However, since the gel electrolyte forming agent according to the present embodiment does not require such an additive and can be gelled only by heating, it is possible to suppress the deterioration over time of the charge / discharge characteristics as described above. Is excellent.
 1.1.2.繰り返し単位(A2)
 上記繰り返し単位(A2)は、鎖状エーテル構造を有する(メタ)アクリレートに由来するものである。上記繰り返し単位(A2)は、(ポリ)エーテル型の鎖状エーテル構造部位を有するため、蓄電デバイスに用いられる液状媒体との親和性を向上させることができる。これにより、重合体(A)に保液性を付与することができる。
1.1.2. Repeating unit (A2)
The repeating unit (A2) is derived from (meth) acrylate having a chain ether structure. Since the repeating unit (A2) has a (poly) ether-type chain ether structure moiety, the affinity with the liquid medium used for the electricity storage device can be improved. Thereby, liquid retention property can be provided to a polymer (A).
 なお、一般的に、(ポリ)エーテル型の鎖状エーテル構造部位が存在すると、蓄電デバイスの充放電に伴う酸化還元電位の変化により分解するなどして劣化するため、良好な蓄電デバイス特性を発現させることが困難である。しかしながら、繰り返し単位(A1)および繰り返し単位(A2)を有する重合体(A)によれば、蓄電デバイスの充放電に伴う酸化還元電位の変化による劣化を抑制することができ、しかもゲル電解質の保液性の劣化を抑制することもできる。 In general, the presence of a (poly) ether-type chain ether structure site degrades due to degradation due to a change in oxidation-reduction potential that accompanies charge / discharge of the electricity storage device. It is difficult to do. However, according to the polymer (A) having the repeating unit (A1) and the repeating unit (A2), it is possible to suppress deterioration due to a change in oxidation-reduction potential accompanying charging / discharging of the electricity storage device, and to maintain the gel electrolyte. Liquid deterioration can also be suppressed.
 鎖状エーテル構造を有する(メタ)アクリレートは、下記一般式(2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
(式(2)中、Rは水素原子またはメチル基を表し、Rは単結合または2価の有機基を表し、複数存在してもよいRはそれぞれ独立に2価の炭化水素基を表し、Rは水素原子または1価の有機基を表す。xは1以上の整数である。)
The (meth) acrylate having a chain ether structure is preferably a compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000015
(In formula (2), R 5 represents a hydrogen atom or a methyl group, R 6 represents a single bond or a divalent organic group, and a plurality of R 7 s may be independently a divalent hydrocarbon group. R 8 represents a hydrogen atom or a monovalent organic group, and x is an integer of 1 or more.)
 式(2)中、Rは水素原子またはメチル基を表すが、収率よく重合体を合成する観点から水素原子であることが好ましい。式(2)中、Rは単結合または2価の有機基を表し、2価の有機基としては炭素数1~10のアルキレン基が好ましい。 In formula (2), R 5 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint of synthesizing a polymer with good yield. In the formula (2), R 6 represents a single bond or a divalent organic group, and the divalent organic group is preferably an alkylene group having 1 to 10 carbon atoms.
 式(2)中、複数存在してもよいRはそれぞれ独立に2価の炭化水素基を表し、2価の炭化水素基としては、炭素数1~10の直鎖状又は分岐状の2価の炭化水素基が挙げられる。これらの中でも、液状媒体との親和性が高くなることから、Rはそれぞれ独立に炭素数1~3のアルキレン基であることが好ましい。 In the formula (2), a plurality of R 7 which may be present each independently represent a divalent hydrocarbon group, and the divalent hydrocarbon group includes a linear or branched 2 having 1 to 10 carbon atoms. Valent hydrocarbon group. Among these, it is preferable that each R 7 is independently an alkylene group having 1 to 3 carbon atoms because of high affinity with a liquid medium.
 式(2)中、Rは水素原子または1価の有機基を表し、1価の有機基としては炭素数1~4の直鎖状若しくは分岐状のアルキル基、又は炭素数6~12のアリール基であることが好ましい。炭素数1~4の直鎖状又は分岐状のアルキル基としては、上記Rの説明で例示列挙したものを挙げることができる。アリール基としては、例えばフェニル基、ナフチル基が挙げられる。液状媒体との親和性が高くなることから、Rは炭素数1~3のアルキル基であることが好ましい。また、式(2)中、xは1以上の整数であり、1~30であることが好ましく、1~20であることがより好ましく、1~10であることが特に好ましい。 In the formula (2), R 8 represents a hydrogen atom or a monovalent organic group, and the monovalent organic group is a linear or branched alkyl group having 1 to 4 carbon atoms, or a group having 6 to 12 carbon atoms. An aryl group is preferred. Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include those exemplified in the description of R 4 above. Examples of the aryl group include a phenyl group and a naphthyl group. R 8 is preferably an alkyl group having 1 to 3 carbon atoms because of high affinity with the liquid medium. In the formula (2), x is an integer of 1 or more, preferably 1 to 30, more preferably 1 to 20, and particularly preferably 1 to 10.
 上記鎖状エーテル構造を有する(メタ)アクリレートは、下記一般式(2-1)で表される化合物であることがより好ましい。下記一般式(2-1)で表される化合物に由来する繰り返し単位は、一般的に非水電解液に使用されているカーボネート系溶媒やラクトン系との親和性が高く、架橋して重合体が強固なネットワークを形成した場合でも非水電解液を吸収して十分に膨潤することができ、非水電解液と活物質の間のリチウムイオンの移動を妨げない。その結果、良好なイオン伝導性を発現するゲル電解質を作製することができる。
Figure JPOXMLDOC01-appb-C000016
(式(2-1)中、Rは水素原子またはメチル基を表し、R10は単結合または2価の有機基を表し、複数存在するR11はそれぞれ独立に水素原子または1価の有機基を表し、Rは水素原子または1価の有機基を表す。)
The (meth) acrylate having a chain ether structure is more preferably a compound represented by the following general formula (2-1). The repeating unit derived from the compound represented by the following general formula (2-1) has a high affinity with a carbonate-based solvent or a lactone-based polymer generally used in non-aqueous electrolytes, and is crosslinked to form a polymer. However, even when a strong network is formed, the nonaqueous electrolyte solution can be absorbed and sufficiently swelled, and movement of lithium ions between the nonaqueous electrolyte solution and the active material is not hindered. As a result, a gel electrolyte that exhibits good ionic conductivity can be produced.
Figure JPOXMLDOC01-appb-C000016
(In the formula (2-1), R 5 represents a hydrogen atom or a methyl group, R 10 represents a single bond or a divalent organic group, and a plurality of R 11 are each independently a hydrogen atom or a monovalent organic group. And R 8 represents a hydrogen atom or a monovalent organic group.)
 上記式(2-1)中、Rは上記一般式(2)中のRと同義である。Rは、上記一般式(2)中のRと同義である。R10は単結合または2価の有機基を表し、2価の有機基としては炭素数1~10のアルキレン基が挙げられる。これらの中でも、R10は単結合であることが好ましい。 In the above formula (2-1), R 5 has the same meaning as R 5 in the general formula (2). R 8 has the same meaning as R 8 in the general formula (2). R 10 represents a single bond or a divalent organic group, and examples of the divalent organic group include an alkylene group having 1 to 10 carbon atoms. Among these, R 10 is preferably a single bond.
 複数存在するR11はそれぞれ独立に水素原子または1価の有機基を表し、1価の有機基としては炭素数1~4の直鎖状又は分岐状のアルキル基であることが好ましい。炭素数1~4の直鎖状又は分岐状のアルキル基としては、上記Rの説明で例示列挙したものを挙げることができる。これらの中でも液状媒体(D)との親和性が高くなることから、R11はそれぞれ水素原子であることが好ましい。また、式(2-1)中、xは1以上の整数であり、1~30であることが好ましく、1~20であることがより好ましく、1~10であることが特に好ましい。 A plurality of R 11 each independently represent a hydrogen atom or a monovalent organic group, and the monovalent organic group is preferably a linear or branched alkyl group having 1 to 4 carbon atoms. Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include those exemplified in the description of R 4 above. Among these, each of R 11 is preferably a hydrogen atom since affinity with the liquid medium (D) is increased. In the formula (2-1), x is an integer of 1 or more, preferably 1 to 30, more preferably 1 to 20, and particularly preferably 1 to 10.
 上記一般式(2)で表される化合物の具体例としては、2-メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、2-エチルヘキシルオキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート(エチレングリコールユニットの繰り返し数=2~30)、2-エトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、エトキシトリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート、エトキシジプロピレングリコール(メタ)アクリレート、エトキシトリプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート(エチレングリコールユニットの繰り返し数=2~30)等が挙げられる。これらの化合物は、1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the compound represented by the general formula (2) include 2-methoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, and 2-ethylhexyloxydiethylene glycol (meth). Acrylate, methoxypolyethylene glycol (meth) acrylate (number of ethylene glycol unit repeats = 2 to 30), 2-ethoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, ethoxytriethylene glycol (meth) acrylate, methoxypropylene glycol (Meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, Metoki Tetraethylene glycol (meth) acrylate, ethoxydipropylene glycol (meth) acrylate, ethoxytripropylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxy polyethylene glycol (meth) acrylate (ethylene glycol) And the number of repeating units = 2 to 30). These compounds may be used alone or in combination of two or more.
 重合体(A)中における繰り返し単位(A2)の含有割合は、繰り返し単位(A1)および繰り返し単位(A2)の合計量を100mol%としたときに繰り返し単位(A2)が、60~90mol%であることが好ましく、65~85mol%であることがより好ましい。重合体(A)中における繰り返し単位(A2)の含有割合が前記範囲にあると、酸化還元耐性に優れ、しかも保液性に優れたゲル電解質を作製することができる。 The content of the repeating unit (A2) in the polymer (A) is such that when the total amount of the repeating unit (A1) and the repeating unit (A2) is 100 mol%, the repeating unit (A2) is 60 to 90 mol%. It is preferably some 65 to 85 mol%. When the content ratio of the repeating unit (A2) in the polymer (A) is in the above range, a gel electrolyte having excellent oxidation-reduction resistance and excellent liquid retention can be produced.
 1.1.3.繰り返し単位(A1)と繰り返し単位(A2)との比率
 本実施の形態に係るゲル電解質形成剤に含まれる重合体(A)は、繰り返し単位(A1)および繰り返し単位(A2)の合計量を100mol%としたときに、前記繰り返し単位(A1)の量(M1[mol%])に対する前記繰り返し単位(A2)の量(M2[mol%])の比率(M2/M1)が1~10の範囲内にあり、1.5~8の範囲内であることが好ましく、2~6の範囲内であることがより好ましい。M2/M1の値が前記範囲にあると、前述したように良好な保液性と十分なゲル化特性とを両立させることができる。
1.1.3. Ratio of Repeating Unit (A1) to Repeating Unit (A2) The polymer (A) contained in the gel electrolyte forming agent according to this embodiment has a total amount of 100 mol of the repeating unit (A1) and the repeating unit (A2). %, The ratio (M2 / M1) of the amount (M2 [mol%]) of the repeating unit (A2) to the amount (M1 [mol%]) of the repeating unit (A1) is in the range of 1 to 10 It is preferably in the range of 1.5 to 8, more preferably in the range of 2 to 6. When the value of M2 / M1 is in the above range, it is possible to achieve both good liquid retention and sufficient gelling properties as described above.
 1.1.4.製造方法
 本実施の形態に係るゲル電解質形成剤に含まれる重合体(A)は、上記環状エーテル構造を有する(メタ)アクリレートと、鎖状エーテル構造を有する(メタ)アクリレートと、をラジカル重合開始剤および任意的に分子量調節剤の存在下、反応溶媒中でラジカル(共)重合させることにより容易に作製することができる。これにより得られる重合体(A)が共重合体である場合には、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体のいずれの構造であってもよい。
1.1.4. Production Method Polymer (A) contained in the gel electrolyte forming agent according to the present embodiment starts radical polymerization of (meth) acrylate having a cyclic ether structure and (meth) acrylate having a chain ether structure. It can be easily prepared by radical (co) polymerization in a reaction solvent in the presence of an agent and optionally a molecular weight regulator. When the polymer (A) thus obtained is a copolymer, it may have any structure of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer.
 上記反応溶媒としては、特に制限されないが、例えば、水、アルコール、エステル、カーボネート、ケトン、ラクトン、エーテル、スルホキシド、アミドなどを挙げることができる。
上記アルコールとしては、例えばメタノール、エタノール、イソプロパノールなどを;
上記エステルとしては、例えば酢酸エチル、プロピオン酸メチル、酢酸ブチルなどを;
上記カーボネートとしては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどを;
上記ケトンとしては、例えばメチルエチルケトン、メチルイソブチルケトン、メチルプロピルケトン、ジエチルケトンなどを;
上記ラクトンとしては、例えばγ-ブチルラクトンなどを;
上記エーテルとしては、例えばトリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどを;
上記スルホキシドとしては、例えばジメチルスルホキシドなどを;
上記アミドとしては、例えばN-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどを、それぞれ挙げることができ、これらのうちから選択される1種以上を使用することが好ましい。
Although it does not restrict | limit especially as said reaction solvent, For example, water, alcohol, ester, carbonate, ketone, lactone, ether, sulfoxide, amide etc. can be mentioned.
Examples of the alcohol include methanol, ethanol, isopropanol and the like;
Examples of the ester include ethyl acetate, methyl propionate, and butyl acetate;
Examples of the carbonate include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate;
Examples of the ketone include methyl ethyl ketone, methyl isobutyl ketone, methyl propyl ketone, and diethyl ketone;
Examples of the lactone include γ-butyl lactone;
Examples of the ether include trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran and the like;
Examples of the sulfoxide include dimethyl sulfoxide and the like;
Examples of the amide include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, etc., and one or more selected from these can be used. Is preferred.
 上記反応溶媒としては後に例示する液状媒体(D)に含まれ得る溶媒の少なくとも1種であることが好ましく、ゲル電解質形成用組成物に実際に使用する溶媒と同種の溶媒であることがより好ましい。液状媒体(D)に含まれ得る溶媒の少なくとも1種を使用することで、重合後のゲル電解質形成剤の溶液をそのままゲル電解質形成用組成物の調製に供することができ、プロセスを簡略化することができる。この場合、液状媒体(D)に含まれ得る溶媒を反応溶媒としてラジカル重合させることにより、保液性により優れたゲル電解質を作製することが可能となる。なお、ゲル電解質形成用組成物に実際に使用する溶媒と同種の溶媒を反応溶媒として用いると、得られる重合体と液状媒体(D)との親和性が非常に良好となるので、ゲル電解質形成用組成物の調製が容易になると共に、得られるゲル電解質の保液性が非常に良好となる。 The reaction solvent is preferably at least one solvent that can be contained in the liquid medium (D) exemplified later, and more preferably the same solvent as the solvent actually used in the gel electrolyte forming composition. . By using at least one solvent that can be contained in the liquid medium (D), the gel electrolyte-forming agent solution after polymerization can be directly used for the preparation of the gel electrolyte-forming composition, thus simplifying the process. be able to. In this case, it is possible to produce a gel electrolyte having better liquid retention by radical polymerization using a solvent that can be contained in the liquid medium (D) as a reaction solvent. If a solvent of the same type as the solvent actually used for the gel electrolyte forming composition is used as the reaction solvent, the affinity between the resulting polymer and the liquid medium (D) becomes very good. Preparation of the composition for use is facilitated, and liquid retention of the resulting gel electrolyte is very good.
 液状媒体(D)については後述するが、反応溶媒としては、カーボネート、ラクトン、エーテルおよびスルホキシドから選択される1種以上を使用することが好ましく、これらのうち実際に使用する液状媒体またはその混合物を使用することが最も好ましい。驚くべきことに、反応溶媒中で重合を行った後に溶媒置換を行っても、保液性向上の効果は維持されることが明らかとなっている。 The liquid medium (D) will be described later. As the reaction solvent, it is preferable to use one or more selected from carbonates, lactones, ethers and sulfoxides. Among these, the liquid medium actually used or a mixture thereof is used. Most preferably it is used. Surprisingly, it has been revealed that the effect of improving the liquid retention is maintained even when the solvent is replaced after the polymerization in the reaction solvent.
 重合体(A)を製造する際の溶媒の使用割合は、単量体の合計100質量部に対して、100~1,000質量部とすることが好ましく、200~500質量部とすることがより好ましい。 The ratio of the solvent used in the production of the polymer (A) is preferably 100 to 1,000 parts by mass, and preferably 200 to 500 parts by mass with respect to 100 parts by mass of the total amount of monomers. More preferred.
 上記ラジカル(共)重合では、通常、ラジカル重合開始剤が用いられる。ラジカル重合開始剤としては、例えば、N,N’-アゾビスイソブチロニトリル、ジメチルN,N’-アゾビス(2-メチルプロピオネート)等のアゾ系開始剤;ベンゾイルパーオキシド、ラウロイルパーオキシド等の有機過酸化物系開始剤が挙げられる。ラジカル重合開始剤は、全単量体100質量部に対して、0.1~5質量部添加するとよい。 In the radical (co) polymerization, a radical polymerization initiator is usually used. Examples of the radical polymerization initiator include azo initiators such as N, N′-azobisisobutyronitrile and dimethyl N, N′-azobis (2-methylpropionate); benzoyl peroxide, lauroyl peroxide And organic peroxide initiators such as The radical polymerization initiator is preferably added in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of all monomers.
 上記分子量調節剤としては、例えばクロロホルム、四塩化炭素などのハロゲン化炭化水素;n-ヘキシルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドテジルメルカプタン、チオグリコール酸などのメルカプタン化合物;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイドなどのキサントゲン化合物;ターピノーレン、α-メチルスチレンダイマーなどのその他の分子量調節剤を挙げることができる。分子量調節剤の使用割合は、単量体の合計100質量部に対して、5質量部以下とすることが好ましい。 Examples of the molecular weight regulator include halogenated hydrocarbons such as chloroform and carbon tetrachloride; mercaptan compounds such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dotezyl mercaptan, and thioglycolic acid; dimethyl Examples thereof include xanthogen compounds such as xanthogen disulfide and diisopropylxanthogen disulfide; and other molecular weight regulators such as terpinolene and α-methylstyrene dimer. The use ratio of the molecular weight regulator is preferably 5 parts by mass or less with respect to 100 parts by mass in total of the monomers.
 なお、重合体(A)は、上記一般式(1)または(2)で表される化合物以外の単量体(以下「その他の単量体」ともいう。)を用いてラジカル(共)重合させることもできるが、全単量体100mol%中のその他の単量体の含有割合が10mol%未満であることが好ましく、0mol%であることがより好ましい。 The polymer (A) is a radical (co) polymerization using a monomer other than the compound represented by the general formula (1) or (2) (hereinafter also referred to as “other monomer”). However, the content of other monomers in 100 mol% of all monomers is preferably less than 10 mol%, and more preferably 0 mol%.
 以上のようにして得られる重合体(A)の数平均分子量(Mn)は、1000~100万であることが好ましく、1000~10万であることがより好ましく、1万~10万であることが特に好ましい。重合体(A)の数平均分子量(Mn)が10万以下であると、極板への含浸性が向上するため、得られる蓄電デバイスの電気特性(充電レート特性、DC-IR特性、サイクル特性)がより良好となる傾向がある。さらに、重合体(A)の数平均分子量(Mn)が1000以上10万以下であると、得られる蓄電デバイスのサイクル特性がとりわけ良好となる傾向がある。なお、重合体(A)の数平均分子量(Mn)は、GPC(ゲルパーミエーションクロマトグラフィー)法によって測定された標準ポリスチレンの溶出時間と分子量との関係から換算することにより求めることができる。 The number average molecular weight (Mn) of the polymer (A) obtained as described above is preferably 1,000 to 1,000,000, more preferably 1,000 to 100,000, and 10,000 to 100,000. Is particularly preferred. When the number average molecular weight (Mn) of the polymer (A) is 100,000 or less, the impregnation property to the electrode plate is improved, so that the electrical characteristics (charge rate characteristics, DC-IR characteristics, cycle characteristics) of the obtained electricity storage device are obtained. ) Tend to be better. Furthermore, when the number average molecular weight (Mn) of the polymer (A) is 1000 or more and 100,000 or less, the cycle characteristics of the obtained electricity storage device tend to be particularly good. In addition, the number average molecular weight (Mn) of a polymer (A) can be calculated | required by converting from the relationship between the elution time of standard polystyrene measured by GPC (gel permeation chromatography) method, and molecular weight.
 1.2.炭素-炭素不飽和結合を少なくとも一つ有するエステル化合物(B)
 本実施の形態に係るゲル電解質形成剤は、炭素-炭素不飽和結合を少なくとも一つ有するエステル化合物(B)(以下、「成分(B)」ともいう。)を含有してもよい。本実施の形態に係るゲル電解質形成剤に成分(B)が含まれていると、このゲル電解質形成剤を用いて作製されるゲル電解質中にも成分(B)が含まれることになる。このような成分(B)を含有するゲル電解質を備える電極では、充放電を開始すると成分(B)が電解重合することにより、活物質層の表面に保護膜が形成されると考えられる。このような保護膜は、電池の充放電サイクル中も亀裂が生じない安定な膜となり、活物質表面が保護膜によって被覆されることにより、充放電の繰り返しによる液状媒体の分解やガスの発生が抑制されるので、蓄電デバイスの充放電特性を向上できると考えられる。特にリチウムイオンのような金属イオンを利用する蓄電デバイスでは、充放電を繰り返すことにより電極表面に金属イオンに起因するデンドライトが生じやすい。このようなデンドライトは通常、針状の結晶として析出するため、結晶が成長すると対極と短絡してしまい、充放電機能を失ってしまう。前述した保護膜はこのような電極表面でのデンドライドの成長を抑制する効果もあると推測でき、その結果、蓄電デバイスの充放電特性を向上できると考えられる。
1.2. Ester compound (B) having at least one carbon-carbon unsaturated bond
The gel electrolyte forming agent according to the present embodiment may contain an ester compound (B) having at least one carbon-carbon unsaturated bond (hereinafter also referred to as “component (B)”). When the component (B) is contained in the gel electrolyte forming agent according to the present embodiment, the component (B) is also contained in the gel electrolyte produced using this gel electrolyte forming agent. In an electrode including a gel electrolyte containing such a component (B), it is considered that when a charge / discharge is started, the component (B) undergoes electropolymerization to form a protective film on the surface of the active material layer. Such a protective film is a stable film that does not crack during the charge / discharge cycle of the battery, and the active material surface is covered with the protective film, so that the liquid medium is decomposed and gas is generated by repeated charge / discharge. Therefore, it is considered that the charge / discharge characteristics of the electricity storage device can be improved. In particular, in an electricity storage device using metal ions such as lithium ions, dendrites due to metal ions are likely to occur on the electrode surface by repeated charge and discharge. Since such dendrites are usually precipitated as needle-like crystals, when the crystals grow, they are short-circuited with the counter electrode and lose the charge / discharge function. It can be presumed that the protective film described above also has an effect of suppressing the growth of dendrites on the electrode surface, and as a result, the charge / discharge characteristics of the electricity storage device can be improved.
 本実施の形態に係るゲル電解質形成剤における成分(B)の含有割合は、前記重合体(A)の含有量をM質量部、前記成分(B)の含有量をM質量部としたときに、比率(M/M)を1~100の範囲内とすることが好ましい。比率(M/M)が前記範囲にあると、ゲル電解質形成剤からゲル電解質を作製する際にゲル化が阻害されることなく、しかも上述のように活物質層の表面に適度な保護膜を形成することができるので活物質層表面の劣化を抑制することができる。これにより、蓄電デバイスのサイクル特性が向上する。さらに、活物質層の表面に形成された適度な保護膜により、ゲル電解質と活物質層表面との界面抵抗を低減させることもできるため、良好な充放電特性を備えた蓄電デバイスを作製することができる。 The content of component (B) in the gel electrolyte-forming agent according to the present embodiment, M A parts by weight and the content of the polymer (A), the content of the component (B) was M B parts by weight Sometimes, the ratio (M A / M B ) is preferably in the range of 1-100. When the ratio (M A / M B ) is within the above range, the gelation is not inhibited when the gel electrolyte is produced from the gel electrolyte forming agent, and the surface of the active material layer is appropriately protected as described above. Since a film can be formed, deterioration of the active material layer surface can be suppressed. This improves the cycle characteristics of the electricity storage device. Furthermore, since the interface resistance between the gel electrolyte and the active material layer surface can be reduced by an appropriate protective film formed on the surface of the active material layer, an electricity storage device having good charge / discharge characteristics is manufactured. Can do.
 成分(B)としては、炭素-炭素不飽和結合を少なくとも1つ有するエステルであれば制限されないが、後述する液状媒体(D)への溶解性や、重合体(A)と相分離せずに均一なゲル電解質を作製できる観点から、環状炭酸エステルおよび(メタ)アクリレートからなる群より選択される少なくとも1種であることが好ましい。以下、環状炭酸エステル、(メタ)アクリレートの順に説明する。 The component (B) is not limited as long as it is an ester having at least one carbon-carbon unsaturated bond, but it does not have solubility in the liquid medium (D) described later or phase separation from the polymer (A). From the viewpoint of producing a uniform gel electrolyte, it is preferably at least one selected from the group consisting of cyclic carbonates and (meth) acrylates. Hereinafter, the cyclic carbonate and (meth) acrylate will be described in this order.
 1.2.1.環状炭酸エステル
 環状炭酸エステルとしては、例えば下記一般式(3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
1.2.1. Cyclic carbonate Examples of the cyclic carbonate include compounds represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000017
 上記式(3)中、R12およびR13はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基もしくはアルケニル基、またはフェニル基である。なお、R12またはR13がアルキル基、アルケニル基、フェニル基である場合、その水素原子の一部がハロゲン原子(好ましくはフッ素原子)で置換されていてもよい。 In the above formula (3), R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl or alkenyl group having 1 to 6 carbon atoms, or a phenyl group. Note that when R 12 or R 13 is an alkyl group, an alkenyl group, or a phenyl group, part of the hydrogen atoms may be substituted with a halogen atom (preferably a fluorine atom).
 環状炭酸エステルの具体例としては、ビニレンカーボネート(VC)、3-メチルビニレンカーボネート、3,4-ジメチルビニレンカーボネート、3-エチルビニレンカーボネート、3,4-ジエチルビニレンカーボネート、3-プロピルビニレンカーボネート、3,4-ジプロピルビニレンカーボネート、3-フェニルビニレンカーボネート、3,4-ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート(DVEC)、フッ素化ビニレンカーボネート等が挙げられる。これらの環状炭酸エステルは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、活物層表面で効率良く保護膜を形成できる観点から、ビニレンカーボネート、ビニルエチレンカーボネートおよびジビニルエチレンカーボネートからなる群より選択される少なくとも1種が好ましく、ビニレンカーボネートが特に好ましい。 Specific examples of the cyclic carbonate include vinylene carbonate (VC), 3-methyl vinylene carbonate, 3,4-dimethyl vinylene carbonate, 3-ethyl vinylene carbonate, 3,4-diethyl vinylene carbonate, 3-propyl vinylene carbonate, 3 , 4-dipropyl vinylene carbonate, 3-phenyl vinylene carbonate, 3,4-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), divinyl ethylene carbonate (DVEC), fluorinated vinylene carbonate, and the like. These cyclic carbonates may be used alone or in combination of two or more. Among these, at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate is preferable, and vinylene carbonate is particularly preferable from the viewpoint of efficiently forming a protective film on the surface of the active material layer.
 成分(B)として環状炭酸エステルを使用する場合、ゲル電解質形成剤中の成分(B)の含有割合は、後述するゲル電解質形成用組成物中の環状炭酸エステルの濃度が0.5~5.0質量%となるように含有されていることが好ましく、0.5~4.0質量%であることがより好ましく、0.5~3.0質量%であることが特に好ましい。ゲル電解質形成用組成物中の成分(B)の濃度が前記範囲内であると、ゲル電解質形成用組成物の貯蔵安定性が向上すると共に、これを使用して作製されたゲル電解質を備える蓄電デバイスは良好な充放電特性を示す。 When a cyclic carbonate is used as the component (B), the content ratio of the component (B) in the gel electrolyte forming agent is such that the concentration of the cyclic carbonate in the gel electrolyte forming composition described later is 0.5 to 5. The content is preferably 0% by mass, more preferably 0.5 to 4.0% by mass, and particularly preferably 0.5 to 3.0% by mass. When the concentration of the component (B) in the gel electrolyte-forming composition is within the above range, the storage stability of the gel electrolyte-forming composition is improved, and the electricity storage provided with the gel electrolyte produced using the composition The device exhibits good charge / discharge characteristics.
 1.2.2.(メタ)アクリレート
 (メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート等のアルキル(メタ)アクリレート;
2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリレート;
メトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、エトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート等の鎖状エーテル構造を有する(メタ)アクリレート;
(3-エチル-3-オキセタニル)メチル(メタ)アクリレート、(3-エチル-3-オキセタン-3-イロキシ)エチル(メタ)アクリレート、(3-エチル-オキセタン-3-イロキシ)ブチルアクリレート、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート等の環状エーテル構造を有する(メタ)アクリレート;
等を挙げることができる。
1.2.2. Specific examples of (meth) acrylate (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl ( (Meth) acrylate, n-amyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, nonyl (meth) Alkyl (meth) acrylates such as acrylate and decyl (meth) acrylate;
2-hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate Hydroxyl group-containing (meth) acrylates such as pentaerythritol hexa (meth) acrylate;
(Meth) acrylates having a chain ether structure such as methoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, ethoxytriethylene glycol (meth) acrylate, methoxytetraethylene glycol (meth) acrylate;
(3-ethyl-3-oxetanyl) methyl (meth) acrylate, (3-ethyl-3-oxetane-3-yloxy) ethyl (meth) acrylate, (3-ethyl-oxetane-3-yloxy) butyl acrylate, glycidyl ( (Meth) acrylates having a cyclic ether structure such as (meth) acrylate and tetrahydrofurfuryl (meth) acrylate;
Etc.
 成分(B)として(メタ)アクリレートを使用する場合、ゲル電解質形成剤中の成分(B)の含有割合は、後述するゲル電解質形成用組成物中の(メタ)アクリレートの濃度が0.01~5.0質量%となるように含有されていることが好ましく、0.01~4.0質量%であることがより好ましく、0.05~2.0質量%であることが特に好ましい。ゲル電解質形成用組成物中の成分(B)の濃度が前記範囲内であると、ゲル電解質形成用組成物の貯蔵安定性が向上すると共に、これを使用して作製されたゲル電解質を備える蓄電デバイスは良好な充放電特性を示す。 When (meth) acrylate is used as component (B), the content ratio of component (B) in the gel electrolyte forming agent is such that the concentration of (meth) acrylate in the gel electrolyte forming composition described later is 0.01 to The content is preferably 5.0% by mass, more preferably 0.01 to 4.0% by mass, and particularly preferably 0.05 to 2.0% by mass. When the concentration of the component (B) in the gel electrolyte-forming composition is within the above range, the storage stability of the gel electrolyte-forming composition is improved, and the electricity storage provided with the gel electrolyte produced using the composition The device exhibits good charge / discharge characteristics.
 上記例示したような(メタ)アクリレートは加熱されることにより揮発しやすいため、(メタ)アクリレートを含有するゲル電解質形成用組成物を加熱するなどしてゲル電解質を作製する際に、(メタ)アクリレートが気化してガスが発生して、蓄電デバイスの筐体を変形させる場合がある。しかしながら、(メタ)アクリレートの濃度が前記範囲内であると、このようなガスの発生を効果的に抑制できる点で好ましい。 Since (meth) acrylates as exemplified above are likely to volatilize when heated, when preparing a gel electrolyte by heating a composition for forming a gel electrolyte containing (meth) acrylate, (meth) In some cases, the acrylate is vaporized to generate gas, and the housing of the electricity storage device is deformed. However, it is preferable that the concentration of (meth) acrylate is within the above-mentioned range because the generation of such gas can be effectively suppressed.
 1.3.フェノール性水酸基を有する化合物(C)
 本実施の形態に係るゲル電解質形成剤は、フェノール性水酸基を有する化合物(C)(以下、「成分(C)」ともいう。)を含有してもよい。本願発明において、「フェノール性水酸基」とは、ベンゼン環、縮合ベンゼン環、非ベンゼン系芳香環、複素芳香環などの芳香環に直接結合した水酸基のことをいう。
1.3. Compound having phenolic hydroxyl group (C)
The gel electrolyte forming agent according to the present embodiment may contain a compound (C) having a phenolic hydroxyl group (hereinafter also referred to as “component (C)”). In the present invention, the “phenolic hydroxyl group” means a hydroxyl group directly bonded to an aromatic ring such as a benzene ring, a condensed benzene ring, a non-benzene aromatic ring or a heteroaromatic ring.
 重合体(A)を合成する際に使用した重合開始剤の一部が残留していると、重合体(A)に含まれる環状エーテル構造やそれとは異なる部位で架橋反応が進行する場合がある。これにより、ゲル電解質形成剤の一部がゲル化して、ゲル電解質形成剤の貯蔵安定性が低下するものと考えられる。しかしながら、ゲル電解質形成剤に成分(C)を添加することにより、かかるゲル電解質形成剤を用いて作製されたゲル電解質形成用組成物の重合開始剤による架橋反応を抑制できるため貯蔵安定性が向上する。したがって、実際の製造ラインにおいて、ゲル電解質形成用組成物の特性を変化させることなく安定供給できるため、品質の安定したゲル電解質を供給することができる。 If a part of the polymerization initiator used for synthesizing the polymer (A) remains, the crosslinking reaction may proceed at a cyclic ether structure contained in the polymer (A) or a different site. . Thereby, it is thought that a part of gel electrolyte formation agent gelatinizes and the storage stability of a gel electrolyte formation agent falls. However, by adding the component (C) to the gel electrolyte forming agent, the storage stability is improved because the crosslinking reaction by the polymerization initiator of the gel electrolyte forming composition produced using the gel electrolyte forming agent can be suppressed. To do. Therefore, in an actual production line, since it can supply stably, without changing the characteristic of the composition for gel electrolyte formation, the gel electrolyte with stable quality can be supplied.
 なお、得られるゲル電解質中に成分(C)の一部は残留するが、この残留した成分(C)は蓄電デバイスの充放電特性を劣化させないことが明らかとなっている。この理由については十分に解明できておらず理論に束縛されることを好まないが、このようなゲル電解質を備える電極では、最初に充放電を行うと成分(C)が電解重合することにより、活物質層の表面に保護膜が形成されると考えられる。かかる保護膜が形成されることにより、液状媒体の分解を抑制することができると考えられる。このような保護膜は、電池の充放電サイクル中も亀裂が生じない安定な膜であり、活物質層表面が保護膜によって被覆されることにより、充放電の繰り返しによる液状媒体の分解やガスの発生が抑制されるので、蓄電デバイスの充放電特性を向上できると考えられる。特にリチウムイオンのような金属イオンを利用する蓄電デバイスでは、充放電を繰り返すことにより電極表面に金属イオンに起因するデンドライトが生じやすい。このようなデンドライトは通常、針状の結晶として析出するため、結晶が成長すると対極と短絡してしまい、充放電機能を失ってしまう。前述した保護膜はこのような電極表面でのデンドライドの成長を抑制する効果もあると推測でき、その結果、蓄電デバイスの充放電特性を向上できると考えられる。 In addition, although a part of component (C) remains in the gel electrolyte obtained, it has become clear that this remaining component (C) does not deteriorate the charge / discharge characteristics of the electricity storage device. The reason for this is not fully elucidated and is not preferred to be bound by theory, but in an electrode equipped with such a gel electrolyte, when charge / discharge is first performed, the component (C) undergoes electropolymerization, It is thought that a protective film is formed on the surface of the active material layer. By forming such a protective film, it is considered that decomposition of the liquid medium can be suppressed. Such a protective film is a stable film that does not crack during the charge / discharge cycle of the battery, and the surface of the active material layer is covered with the protective film, so that the liquid medium is decomposed or the gas is removed by repeated charge / discharge. Since generation | occurrence | production is suppressed, it is thought that the charging / discharging characteristic of an electrical storage device can be improved. In particular, in an electricity storage device using metal ions such as lithium ions, dendrites due to metal ions are likely to occur on the electrode surface by repeated charge and discharge. Since such dendrites are usually precipitated as needle-like crystals, when the crystals grow, they are short-circuited with the counter electrode and lose the charge / discharge function. It can be presumed that the protective film described above also has an effect of suppressing the growth of dendrites on the electrode surface, and as a result, the charge / discharge characteristics of the electricity storage device can be improved.
 ゲル電解質形成剤中における成分(C)の含有割合は、成分(A)の含有量をM質量部、成分(C)の含有量をM質量部としたときに、比率(M/M)が10~1000の範囲内にあることが好ましく、75~250の範囲内にあることがより好ましい。成分(C)の含有割合が前記範囲内であると、ゲル電解質形成剤の貯蔵安定性を確保できるだけでなく、後述する液状媒体(D)への溶解性や、ゲル電解質を作製した場合に重合体(A)と相分離せずにより均一なゲル電解質を作製することができる点で好ましい。 The content of component (C) in the gel electrolyte formers, M A parts by weight and the content of the component (A), the content of the component (C) is taken as M C parts by weight, the ratio (M A / M C ) is preferably in the range of 10 to 1000, and more preferably in the range of 75 to 250. When the content ratio of the component (C) is within the above range, not only can the storage stability of the gel electrolyte forming agent be ensured, but also the solubility in the liquid medium (D) described later, This is preferable in that a more uniform gel electrolyte can be produced without phase separation with the coalescence (A).
 成分(C)としては、下記一般式(4)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
(式(4)中、R14はそれぞれ置換もしくは非置換のアルキル基またはアルコキシ基を表す。nは0以上5以下の整数である。)
The component (C) is preferably a compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000018
(In formula (4), R 14 represents a substituted or unsubstituted alkyl group or alkoxy group. N is an integer of 0 or more and 5 or less.)
 上記式(4)中、複数存在してもよいR14は、それぞれ置換もしくは非置換のアルキル基またはアルコキシ基を表す。アルキル基としては、炭素数1~10(好ましくは炭素数1~6)のアルキル基であることが好ましい。このようなアルキル基としては、直鎖、分岐鎖あるいは環状のいずれであってもよく、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二ブチル基、第三ブチル基、イソブチル基、アミル基、第三アミル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、イソオクチル基、第三オクチル基、2-エチルヘキシル基、ノニル基、デシル基等が挙げられる。R14がアルキル基である場合、フェノール基の2位および/または6位にアルキル基が置換していると、ゲル電解質形成剤の貯蔵安定性を向上させる効果が高い点で好ましい。アルコキシ基としては、炭素数1~10(好ましくは炭素数1~6)のアルコキシ基が好ましい。このようなアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、イソオクチルオキシ基、ノニルオキシ基、デシルオキシ基等が挙げられる。R14がアルコキシ基である場合、フェノール基の4位にアルコキシ基が置換していると、ゲル電解質形成剤の貯蔵安定性を向上させる効果が高い点で好ましい。 In the above formula (4), a plurality of R 14 which may be present each represents a substituted or unsubstituted alkyl group or alkoxy group. The alkyl group is preferably an alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Such alkyl groups may be linear, branched or cyclic, such as methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, isobutyl. Group, amyl group, tertiary amyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, isooctyl group, tertiary octyl group, 2-ethylhexyl group, nonyl group, decyl group and the like. When R 14 is an alkyl group, it is preferable that an alkyl group is substituted at the 2-position and / or the 6-position of the phenol group because the effect of improving the storage stability of the gel electrolyte forming agent is high. As the alkoxy group, an alkoxy group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) is preferable. Examples of such alkoxy groups include methoxy, ethoxy, propoxy, butoxy, pentoxy, hexyloxy, heptyloxy, octyloxy, isooctyloxy, nonyloxy, decyloxy, and the like. . When R 14 is an alkoxy group, it is preferable that an alkoxy group is substituted at the 4-position of the phenol group because the effect of improving the storage stability of the gel electrolyte forming agent is high.
 成分(C)としては、上記一般式(4)で表される化合物の中でもゲル電解質形成剤の貯蔵安定性を向上させる効果がより一層高い点で、下記一般式(5)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000019
(式(5)中、R15はそれぞれ置換もしくは非置換のアルキル基またはアルコキシ基を表す。mは0以上3以下の整数を表す。)
As the component (C), among the compounds represented by the general formula (4), the compound represented by the following general formula (5) is more effective in improving the storage stability of the gel electrolyte forming agent. It is more preferable that
Figure JPOXMLDOC01-appb-C000019
(In Formula (5), R 15 represents a substituted or unsubstituted alkyl group or alkoxy group. M represents an integer of 0 or more and 3 or less.)
 上記式(5)中、複数存在してもよいR15は、それぞれ置換もしくは非置換のアルキル基またはアルコキシ基を表す。アルキル基としては、炭素数1~10(好ましくは炭素数1~6)のアルキル基であることが好ましく、上記式(4)のR14と同様のアルキル基を例示できる。アルコキシ基としては、炭素数1~10(好ましくは炭素数1~6)のアルコキシ基であることが好ましく、上記式(4)のR14と同様のアルコキシ基を例示できる。 In the above formula (5), a plurality of R 15 which may be present each represent a substituted or unsubstituted alkyl group or alkoxy group. The alkyl group is preferably an alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), and examples thereof include the same alkyl group as R 14 in the above formula (4). The alkoxy group is preferably an alkoxy group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), and examples thereof include the same alkoxy groups as R 14 in the above formula (4).
 上記一般式(4)で表される化合物の具体例としては、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,4,6-トリ-t-ブチルフェノール、2,6-ジ-t-ブチル-4-s-ブチルフェノール、2,6-ジ-t-ブチル-4-メトキシフェノール、2,6-ジ-t-ブチル-4-ヒドロキシメチルフェノール、2,6-ジ-t-ブチル-4-(メトキシカルボニル)フェノール、2,6-ジ-t-ブチル-4-ノニルフェノール、4-メトキシフェノール、4-エトキシフェノール、4-プロポキシフェノール、4-イソプロポキシフェノール、4-ブトキシフェノール、4-t-ブトキシフェノール等が挙げられる。 Specific examples of the compound represented by the general formula (4) include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,4 , 6-tri-t-butylphenol, 2,6-di-t-butyl-4-s-butylphenol, 2,6-di-t-butyl-4-methoxyphenol, 2,6-di-t-butyl- 4-hydroxymethylphenol, 2,6-di-t-butyl-4- (methoxycarbonyl) phenol, 2,6-di-t-butyl-4-nonylphenol, 4-methoxyphenol, 4-ethoxyphenol, 4- Examples include propoxyphenol, 4-isopropoxyphenol, 4-butoxyphenol, 4-t-butoxyphenol and the like.
 また、成分(C)としては、下記一般式(6)で表される基を少なくとも1つ有する化合物(ヒドロキシフェニルプロピオネート系化合物)、ヒドロキシベンジル系化合物、チオビスフェノール系化合物、チオメチルフェノール系化合物、アルカンジイルフェノール系化合物であることも好ましい。
Figure JPOXMLDOC01-appb-C000020
Further, as the component (C), a compound having at least one group represented by the following general formula (6) (hydroxyphenylpropionate compound), hydroxybenzyl compound, thiobisphenol compound, thiomethylphenol compound An alkanediylphenol compound is also preferred.
Figure JPOXMLDOC01-appb-C000020
 上記式(6)中、R16およびR17は、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表すが、炭素数1~6(より好ましくは炭素数1~4)のアルキル基であることが好ましい。アルキル基は、直鎖、分岐鎖および環状のいずれであってもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二ブチル基、第三ブチル基、イソブチル基、アミル基、第三アミル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、イソオクチル基、第三オクチル基、2-エチルヘキシル基、ノニル基、デシル基等が挙げられる。 In the above formula (6), R 16 and R 17 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, but an alkyl having 1 to 6 carbon atoms (more preferably 1 to 4 carbon atoms). It is preferably a group. The alkyl group may be any of linear, branched and cyclic, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, secondary butyl group, tertiary butyl group, isobutyl group, amyl Group, tertiary amyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, isooctyl group, tertiary octyl group, 2-ethylhexyl group, nonyl group, decyl group and the like.
 ヒドロキシフェニルプロピオネート系化合物の具体例としては、3,9-ビス[2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニロキシ〕-1,1-ジメチルエトキシ]-2,4,8,10-テロラオキサスピロ[5・5]ウンデカン、ペンタエリスリチルテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5'-ジ-t-ブチル-4'-ヒドロキシフェニルプロピオネート)]メタン等を挙げることができる。 Specific examples of hydroxyphenylpropionate compounds include 3,9-bis [2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethoxy. ] -2,4,8,10-terolaoxaspiro [5.5] undecane, pentaerythrityltetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], triethylene glycol- Bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadec -[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, tetrakis [methylene-3- (3,5′-di-tert-butyl-4′-hydroxyphenylpropionate)] methane Etc.
 ヒドロキシベンジル系化合物の具体例としては、1,3,5,-トリメチル-2,4,6,-トリス(3',5'-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-イソシアヌレイト等を挙げることができる。 Specific examples of hydroxybenzyl compounds include 1,3,5, -trimethyl-2,4,6, -tris (3 ′, 5′-di-t-butyl-4-hydroxybenzyl) benzene, 1,3 , 5-tris (4-hydroxybenzyl) benzene, tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate, 1,3,5-tris (4-tert-butyl-3) -Hydroxy-2,6-dimethylbenzyl) -isocyanurate and the like.
 チオビスフェノール系化合物の具体例としては、4,4'-チオビス(6-t-ブチル-3-メチルフェノール)等を挙げることができる。 Specific examples of the thiobisphenol compound include 4,4′-thiobis (6-tert-butyl-3-methylphenol).
 チオメチルフェノール系化合物の具体例としては、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール等を挙げることができる。 Specific examples of the thiomethylphenol compound include 2,4-bis [(octylthio) methyl] -o-cresol.
 アルカンジイルフェノール系化合物の具体例としては、N,N'-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4'-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン等を挙げることができる。 Specific examples of alkanediylphenol compounds include N, N′-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 2,2′-methylenebis (4-methyl). -6-tert-butylphenol), 4,4'-butylidene-bis (3-methyl-6-tert-butylphenol), 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) ) Butane and the like.
 なお、本実施の形態に係るゲル電解質形成剤に含まれる成分(C)は、標準沸点が100~250℃であることが好ましい。標準沸点が前記範囲内にあると、ゲル電解質を作製する際に加熱する工程において、成分(C)が気化することを抑制できる。すなわち、蓄電デバイス製造工程において筐体を密閉した状態で加熱によるゲル化を行ってもガス発生によって筐体内圧が上昇することによる変形を抑制できる。 The component (C) contained in the gel electrolyte forming agent according to the present embodiment preferably has a standard boiling point of 100 to 250 ° C. When the standard boiling point is within the above range, vaporization of the component (C) can be suppressed in the step of heating when producing the gel electrolyte. That is, even if gelation is performed by heating in a state where the casing is sealed in the power storage device manufacturing process, deformation due to an increase in the casing internal pressure due to gas generation can be suppressed.
 2.ゲル電解質形成用組成物
 本実施の形態に係るゲル電解質形成用組成物(以下、単に「組成物」ともいう。)は、上述のゲル電解質形成剤と、液状媒体(D)と、を含有する。本実施の形態に係る組成物を温和な条件で加熱して架橋(カチオン重合)させることにより、保液性に優れた良好なゲル電解質を作製することができる。
2. Composition for Gel Electrolyte Formation The composition for gel electrolyte formation according to the present embodiment (hereinafter also simply referred to as “composition”) contains the above-described gel electrolyte formation agent and the liquid medium (D). . By heating the composition according to the present embodiment under mild conditions for crosslinking (cationic polymerization), a good gel electrolyte having excellent liquid retention can be produced.
 本実施の形態に係る組成物を作製する際には、液状媒体(D)中に上述のゲル電解質形成剤や必要に応じてその他の添加剤を添加して、40~60℃程度に加熱しながら十分に攪拌すればよい。これにより、ゲル電解質形成剤に含まれる重合体(A)を液状媒体(D)中に完全に溶解させることができる。なお、加熱温度を70~100℃まで上げてしまうと、ゲル電解質が形成されてしまう場合があるため注意を要する。 When preparing the composition according to the present embodiment, the above-mentioned gel electrolyte forming agent and other additives as necessary are added to the liquid medium (D) and heated to about 40 to 60 ° C. It is sufficient to stir well. Thereby, the polymer (A) contained in the gel electrolyte forming agent can be completely dissolved in the liquid medium (D). Note that if the heating temperature is raised to 70 to 100 ° C., a gel electrolyte may be formed.
 なお、本実施の形態に係る組成物は室温付近では安定であり、ゲル化することはない。このため、蓄電デバイスの筐体に液体状の組成物を注入し、その後加熱することでゲル電解質とすることができるため、貯蔵安定性や蓄電デバイス作製工程の自由度を向上させることができる。以下、本実施の形態に係る組成物に含まれる各成分について説明するが、ゲル電解質形成剤については上述したとおりであるから説明を省略する。 Note that the composition according to the present embodiment is stable around room temperature and does not gel. For this reason, since it can be set as a gel electrolyte by inject | pouring a liquid composition into the housing | casing of an electrical storage device, and heating after that, the storage stability and the freedom degree of an electrical storage device preparation process can be improved. Hereinafter, although each component contained in the composition which concerns on this Embodiment is demonstrated, since it is as having mentioned above about a gel electrolyte formation agent, description is abbreviate | omitted.
 2.1.液状媒体(D)
 本実施の形態に係る組成物に含まれる液状媒体(D)は、電解質、該電解質を溶解させるための溶媒、必要に応じてさらに添加剤を含有する。
2.1. Liquid medium (D)
The liquid medium (D) contained in the composition according to the present embodiment further contains an electrolyte, a solvent for dissolving the electrolyte, and, if necessary, an additive.
 上記電解質としては、従来から公知のリチウム塩のいずれをも使用することができ、その具体例としては、例えばLiClO、LiBF、LiPF、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、LiCFSO、LiCHSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等を例示することができる。これら電解質は、1種単独で用いてもよく、2種類以上を併用してもよい。 Examples of the electrolyte, any conventionally known lithium salts can also be used, and specific examples LiClO 4, LiBF 4, LiPF 6 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCF 3 SO 3, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N, a lower fatty acid Lithium etc. can be illustrated. These electrolytes may be used alone or in combination of two or more.
 ゲル電解質のイオン伝導性を高める観点から、Li以外の電解質を用いることが可能である。このような電解質としては、例えば、(FSO、BF 、PF 、SbF 、NO 、CFSO 、(CFSO、(CSO、(CFSO、CFCO 、CCO 、CHCO 、(CN)等のアニオンとカチオンとの組合せからなる塩が挙げられる。 From the viewpoint of increasing the ionic conductivity of the gel electrolyte, it is possible to use an electrolyte other than Li. Examples of such an electrolyte include (FSO 2 ) 2 N , BF 4 , PF 6 , SbF 6 , NO 3 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , ( Anions such as C 2 F 5 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , CF 3 CO 2 , C 3 F 7 CO 2 , CH 3 CO 2 , (CN) 2 N And a salt composed of a combination of cation and cation.
 前記カチオンとしては、N、P、S、O、C、Siのいずれかもしくは2種類以上の元素を構造中に含み、鎖状構造または5員環、6員環等の環状構造を骨格に有する化合物が挙げられる。鎖状構造を骨格に有する化合物の例としては、アルキルアンモニウム等が挙げられる。環状構造を骨格に有する化合物の例としては、フラン、チオフェン、ピロール、ピリジン、オキサゾ-ル、イソオキサゾ-ル、チアゾ-ル、イソチアゾ-ル、フラザン、イミダゾール、ピラゾール、ピラジン、ピリミジン、ピリダジン、ピロリジン、ピペリジン等の複素単環化合物;ベンゾフラン、イソベンゾフラン、インドール、イソインドール、イソドリジン、カルバゾール等の縮合複素環化合物が挙げられる。 As the cation, any one of N, P, S, O, C, and Si or two or more kinds of elements are included in the structure, and a chain structure or a cyclic structure such as a 5-membered ring or a 6-membered ring is included in the skeleton. Compounds. Examples of the compound having a chain structure in the skeleton include alkyl ammonium. Examples of compounds having a cyclic structure in the skeleton include furan, thiophene, pyrrole, pyridine, oxazole, isoxazole, thiazol, isothiazol, furazane, imidazole, pyrazole, pyrazine, pyrimidine, pyridazine, pyrrolidine, Heterocyclic compounds such as piperidine; and condensed heterocyclic compounds such as benzofuran, isobenzofuran, indole, isoindole, isodridine, and carbazole.
 上記例示した電解質の中でも、LiPFまたはLiBFを用いた場合には、リチウムイオンがカチオン重合開始剤として作用するため、他のカチオン重合開始剤を用いなくてもよい点で好ましい。また、LiPFを用いた場合には、得られる蓄電デバイスの低温における放電容量保持率が良好となる点で特に好ましい。 Among the electrolytes exemplified above, when LiPF 6 or LiBF 4 is used, lithium ions act as a cationic polymerization initiator, which is preferable in that it is not necessary to use another cationic polymerization initiator. In addition, when LiPF 6 is used, it is particularly preferable in that the discharge capacity retention rate at a low temperature of the obtained electricity storage device is good.
 上記電解質を溶解させるための溶媒としては、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート(PMC)、ブチレンカーボネート(BC)、ジエチルカーボネート(DEC)等のカーボネート類;γ-ブチロラクトン(GBL)、γ-バレロラクトン等の環状カルボン酸エステル類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、メチルテトラヒドロフラン、メチルテトラヒドロフラン等の環状エーテル類;スルホラン等を使用することができる。これらの溶媒は、1種単独で用いてもよく、2種以上を混合して用いてもよい。 Solvents for dissolving the electrolyte include ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), methyl ethyl carbonate (MEC), methyl propyl carbonate (PMC), butylene carbonate (BC), diethyl Carbonates such as carbonate (DEC); cyclic carboxylic acid esters such as γ-butyrolactone (GBL) and γ-valerolactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, methyl Cyclic ethers such as tetrahydrofuran and methyltetrahydrofuran; sulfolane and the like can be used. These solvents may be used alone or in combination of two or more.
 このような液状媒体(D)は、通常では、電解質濃度として0.1~5mol/L、特に有利に0.5~2mol/Lとすることが好ましい。 Such a liquid medium (D) usually has an electrolyte concentration of 0.1 to 5 mol / L, particularly preferably 0.5 to 2 mol / L.
 2.2.添加剤
 上記添加剤としては、従来から電解液に使用されてきた添加剤が挙げられ、具体的にはイオン伝導度を向上させるための成分を使用することができる。たとえば、アザインドール、ベンゾイミダゾール、ベンゾジチオール、ベンゾフラン、ベンゾチアゾール、1-ベンゾチオフェン、1H-ベンゾトリアゾール、ベンジルカプトン、1-ブロモ-3-フルオロベンゼン等の含窒素・含硫黄系化合物;ショ糖脂肪酸エステル類が挙げられ、その添加量は10質量%以下、好ましくは3質量%以下である。また、これらの添加剤は、1種単独で用いてもよく2種類以上組み合わせて用いてもよい。
2.2. Additives Examples of the additives include additives conventionally used in electrolyte solutions, and specifically, components for improving ionic conductivity can be used. For example, nitrogen-containing or sulfur-containing compounds such as azaindole, benzimidazole, benzodithiol, benzofuran, benzothiazole, 1-benzothiophene, 1H-benzotriazole, benzylcapton, 1-bromo-3-fluorobenzene; sucrose fatty acid Examples of the ester include 10 mass% or less, preferably 3 mass% or less. Moreover, these additives may be used individually by 1 type, and may be used in combination of 2 or more types.
 本実施の形態に係るゲル電解質形成用組成物は、得られるゲル電解質の保液性を向上させ、また架橋密度を上げて機械的強度を向上させる観点から、環状エーテル化合物をさらに添加することができる。このような環状エーテル化合物としては、炭素数6~28のアルキル基を有するものが好ましく、炭素数6~28のアルキル基を有するアルキルグリシジルエーテル、炭素数6~28のアルキル基を有する脂肪酸グリシジルエーテル、炭素数6~28のアルキル基を有するアルキルフェノールグリシジルエーテル等がより好ましい。これらの中でも、炭素数6~28のアルキル基を有するアルキルグリシジルエーテルが特に好ましい。なお、これらの環状エーテル化合物は、1種単独で用いてもよく、2種以上を混合して用いてもよい。 The composition for forming a gel electrolyte according to the present embodiment may be further added with a cyclic ether compound from the viewpoint of improving the liquid retention of the resulting gel electrolyte and increasing the crosslink density to improve the mechanical strength. it can. As such a cyclic ether compound, those having an alkyl group having 6 to 28 carbon atoms are preferable, an alkyl glycidyl ether having an alkyl group having 6 to 28 carbon atoms, and a fatty acid glycidyl ether having an alkyl group having 6 to 28 carbon atoms. More preferred are alkylphenol glycidyl ethers having an alkyl group having 6 to 28 carbon atoms. Among these, alkyl glycidyl ethers having an alkyl group having 6 to 28 carbon atoms are particularly preferable. In addition, these cyclic ether compounds may be used individually by 1 type, and 2 or more types may be mixed and used for them.
 また、上記環状エーテル化合物は、分子中に2個以上の環状エーテル基を有することも好ましい。分子中に2個以上の環状エーテル基を有する環状エーテル化合物を添加することにより、架橋密度をさらに高めることができるため、ゲル電解質の機械的強度をより向上できる。このような環状エーテル化合物としては、例えば、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンジオキシド、アリサイクリックジエポキシ-アジペイド、1,6-ビス(2,3-エポキシプロポキシ)ナフタレン、エチレングリコールジグリシジルエーテル、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、1,2:8,9-ジエポキシリモネン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、3-エチル-3-ヒドロキシメチルオキセタン等が挙げられる。 The cyclic ether compound preferably has two or more cyclic ether groups in the molecule. By adding a cyclic ether compound having two or more cyclic ether groups in the molecule, the crosslink density can be further increased, so that the mechanical strength of the gel electrolyte can be further improved. Examples of such cyclic ether compounds include vinylcyclohexene dioxide, dicyclopentadiene dioxide, alicyclic diepoxy-adipade, 1,6-bis (2,3-epoxypropoxy) naphthalene, ethylene glycol diglycidyl ether. 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, 1,2: 8,9-diepoxylimonene, 3-ethyl-3 {[((3-ethyloxetane-3-yl) Methoxy] methyl} oxetane, 3-ethyl-3-hydroxymethyloxetane, and the like.
 本実施の形態に係るゲル電解質形成用組成物に環状エーテル化合物を添加する場合、該環状エーテル化合物は、重合体(A)中の繰り返し単位(A1)に含まれる環状エーテル基とは異なる員数の環状エーテル基を有することが好ましい。たとえば、繰り返し単位(A1)に含まれる環状エーテル基がオキシラニル基である場合、添加する環状エーテル化合物はオキセタニル基を有することが好ましい。一方、繰り返し単位(A1)に含まれる環状エーテル基がオキセタニル基である場合、添加する環状エーテル化合物はオキシラニル基を有することが好ましい。このように添加する環状エーテル化合物が繰り返し単位(A1)に含まれる環状エーテル基とは異なる員数の環状エーテル基を有することにより、より効果的に架橋させることができ、ゲル電解質を作製する際の加熱温度をより低下させることができる。これにより、加熱に伴う電極やゲル電解質自体の劣化を抑制できる。また、架橋密度を向上させることができるので、機械的強度に優れたゲル電解質を作製することができる。 When a cyclic ether compound is added to the gel electrolyte forming composition according to the present embodiment, the cyclic ether compound has a different number of members from the cyclic ether group contained in the repeating unit (A1) in the polymer (A). It preferably has a cyclic ether group. For example, when the cyclic ether group contained in the repeating unit (A1) is an oxiranyl group, the cyclic ether compound to be added preferably has an oxetanyl group. On the other hand, when the cyclic ether group contained in the repeating unit (A1) is an oxetanyl group, the cyclic ether compound to be added preferably has an oxiranyl group. When the cyclic ether compound added in this way has a different number of cyclic ether groups from the cyclic ether group contained in the repeating unit (A1), it can be more effectively cross-linked, and the gel electrolyte can be produced. The heating temperature can be further reduced. Thereby, the deterioration of the electrode and gel electrolyte itself accompanying heating can be suppressed. Moreover, since a crosslinking density can be improved, the gel electrolyte excellent in mechanical strength can be produced.
 本実施の形態に係るゲル電解質形成用組成物に環状エーテル化合物を添加する場合、環状エーテル化合物の含有割合は、重合体(A)100質量部に対して、0~50質量部の範囲で含有されることが好ましい。 When the cyclic ether compound is added to the gel electrolyte forming composition according to the present embodiment, the content of the cyclic ether compound is in the range of 0 to 50 parts by mass with respect to 100 parts by mass of the polymer (A). It is preferred that
 3.ゲル電解質
 本実施の形態に係るゲル電解質は、上述のゲル電解質形成用組成物を加熱することにより作製される。本実施の形態に係るゲル電解質は、上述のゲル電解質形成用組成物を加熱するだけで作製できるため、一般的なゲル電解質とは異なり、ゲル電解質作製の際に用いられる熱酸発生剤や光酸発生剤等の添加剤を含有しないことができる。このため、蓄電デバイスの充放電に伴って、熱酸発生剤や光酸発生剤が分解して生じ得る充放電特性の経時的な劣化を抑制することができる。
3. Gel electrolyte The gel electrolyte which concerns on this Embodiment is produced by heating the above-mentioned composition for gel electrolyte formation. Since the gel electrolyte according to the present embodiment can be prepared simply by heating the above-described composition for forming a gel electrolyte, unlike a general gel electrolyte, a thermal acid generator or a light used for gel electrolyte preparation is used. An additive such as an acid generator may not be contained. For this reason, with the charge / discharge of the electricity storage device, it is possible to suppress the deterioration over time of the charge / discharge characteristics that may be caused by the decomposition of the thermal acid generator or the photoacid generator.
 また、ゲル電解質作製の際の加熱温度を70~100℃(好ましくは75~95℃、より好ましくは80~90℃)とすることができるので、蓄電デバイスの活物質層の劣化を抑制することができる。また、開環して架橋するために、重合体の体積変化が小さく、密閉した状態でゲル化させても活物質層の剥離など蓄電デバイスの構成に与えるダメージを抑制することができる。 In addition, since the heating temperature in the preparation of the gel electrolyte can be set to 70 to 100 ° C. (preferably 75 to 95 ° C., more preferably 80 to 90 ° C.), the deterioration of the active material layer of the electricity storage device can be suppressed. Can do. Further, since the ring-opening and crosslinking are performed, the change in the volume of the polymer is small, and damage to the structure of the electricity storage device such as peeling of the active material layer can be suppressed even if the polymer is gelled in a sealed state.
 本実施の形態に係るゲル電解質は、柔軟性に富むゲルであり、しかも熱可逆性がない。そのため、加熱や過充電による電池の異常膨張を防止することができ、薄膜加工等の作業性が良好となる。 The gel electrolyte according to the present embodiment is a highly flexible gel and has no thermoreversibility. Therefore, abnormal expansion of the battery due to heating or overcharging can be prevented, and workability such as thin film processing is improved.
 4.蓄電デバイス
 本実施の形態に係る蓄電デバイスは、上述のゲル電解質を備える他、公知の構成、材料を使用することができる。
4). Electric storage device The electric storage device according to the present embodiment may include a known configuration and material in addition to the gel electrolyte described above.
 電極材料としては、リチウムイオンの挿入、脱離が可能であるものであれば特に制限されるものではない。電極としては、例えば集電体の表面に正極/負極活物質層が形成されたものを使用することができる。 The electrode material is not particularly limited as long as it can insert and desorb lithium ions. As the electrode, for example, an electrode in which a positive electrode / negative electrode active material layer is formed on the surface of a current collector can be used.
 正極活物質としては、例えば、CuO、CuO、MnO、V、CrO、MoO、Fe、Ni、CuO等の金属酸化物、LiCO、LiNiO、LiMn、LiFePO等のリチウムと遷移金属との複合酸化物や、TiS、MoS、NbSe等の金属カルコゲン化物、ポリアセン、ポリパラフェニレン、ポリピロール、ポリアニリン等の導電性化合物等が挙げられる。特に本発明では、コバルト、ニッケル、マンガン、鉄等の遷移金属から選ばれる1種類以上とリチウムとの複合酸化物が好ましく、その具体例としては、LiCoO、LiMnO、LiMn、LiNiCo(1-x)、LiMnNiCo(a+b+c=1)、LiFePO等が挙げられる。また、これらのリチウム複合酸化物に、少量のフッ素、ホウ素、アルミニウム、クロム、ジルコニウム、モリブデン、鉄などの元素をドープしたものでもよい。 Examples of the positive electrode active material include metal oxides such as CuO, Cu 2 O, MnO 2 , V 2 O 5 , CrO 3 , MoO 3 , Fe 2 O 3 , Ni 2 O 3 , and CuO 3 , and Li x CO 2. , Li x NiO 2 , Li x Mn 2 O 4 , LiFePO 4 and other complex oxides of lithium and transition metals, TiS 2 , MoS 2 , NbSe 3 and other metal chalcogenides, polyacene, polyparaphenylene, polypyrrole, Examples thereof include conductive compounds such as polyaniline. In particular, in the present invention, a composite oxide of lithium and one or more kinds selected from transition metals such as cobalt, nickel, manganese, and iron is preferable. Specific examples thereof include LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , and LiNi. x Co (1-x) O 2, LiMn a Ni b Co c (a + b + c = 1), LiFePO 4 , and the like. These lithium composite oxides may be doped with a small amount of elements such as fluorine, boron, aluminum, chromium, zirconium, molybdenum, and iron.
 負極活物質としては、例えば、金属リチウム、Al、Mg、Pt、Sn、Si、Zn、Bi等のリチウム吸蔵金属;Al-Ni、Al-Ag、Al-Mn等のAl系リチウム合金;SbSn、InSb、CoSb、MiMnSb等のアンチモン系リチウム合金;SnM(M=Fe、Co、Mn、V、Ti)、SnCu、Sn、Sn12Ag13、SnSb0.4等のSn系リチウム合金;SnO、Sn、SnPBO、SnPOCl等のSn酸化物;Si-C複合系、Si-Ti複合系、Si-M薄膜等のSi系リチウム合金;Sn、Si等のナノ複合材料;Sn、Co、炭素等のアモルファス合金材料;Sn-Ag、Sn-Cu等のSn系メッキ合金;Si系アモルファス薄膜等が挙げられ、炭素材料としてはアモルファスカーボン、メソカーボンマイクロビーズ、グラファイト、天然黒鉛、難黒鉛化性炭素等があり、これらの炭素材料の表面修飾物等が好適材料として挙げられる。 Examples of the negative electrode active material include lithium storage metals such as metallic lithium, Al, Mg, Pt, Sn, Si, Zn, and Bi; Al-based lithium alloys such as Al—Ni, Al—Ag, and Al—Mn; SbSn, Antimony type lithium alloys such as InSb, CoSb 3 , Mi 2 MnSb; Sn 2 M (M = Fe, Co, Mn, V, Ti), Sn 5 Cu 6 , Sn 3 V 2 , Sn 12 Ag 13 , SnSb 0. Sn-based lithium alloys such as 4 ; Sn oxides such as SnO 2 , Sn 2 P 2 O 7 , SnPBO 6 , SnPO 4 Cl; Si-based such as Si—C composite, Si—Ti composite, and Si—M thin film Lithium alloys; Nanocomposite materials such as Sn and Si; Amorphous alloy materials such as Sn, Co and Carbon; Sn-based plating alloys such as Sn-Ag and Sn-Cu; Si-based amorphous thin films Examples of carbon materials include amorphous carbon, mesocarbon microbeads, graphite, natural graphite, non-graphitizable carbon, and the like, and surface modified products of these carbon materials are preferable materials.
 上記電極材料には、さらに導電剤を用いてもよい。導電剤としては、電池性能に悪影響を及ぼさない電子伝導材料であれば使用することができる。通常、アセチレンブラックやケッチンブラック等のカーボンブラックが使用されるが、天然黒鉛、人造黒鉛、カーボンウイスカー、気相成長炭素等の炭素繊維、カーボンナノチューブ、フラーレン、導電性セラミック材料等を使用してもよく、これらは2種類以上の混合物として含ませることができる。 Further, a conductive agent may be used for the electrode material. Any conductive material that does not adversely affect battery performance can be used as the conductive agent. Normally, carbon black such as acetylene black and kettin black is used, but carbon fibers such as natural graphite, artificial graphite, carbon whisker, vapor grown carbon, carbon nanotubes, fullerene, conductive ceramic materials, etc. may be used. Often, these can be included as a mixture of two or more.
 上記集電体としては、構成された蓄電デバイスにおいて悪影響を及ぼさない電子伝導体であれば特に制限されない。正極集電体としては、例えばアルミニウム、チタン、ステンレス銅、ニッケル、焼成炭素、導電性高分子、導電性硝子等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。負極集電体としては、例えば銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性硝子、Al-Cd合金等の他に接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理したものを用いることができる。これらの集電体材料は、表面を酸化処理することも可能である。これらの形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチまたはエキスパンドされた物、硝子体、多孔質体、発泡体等の成型体も用いられる。 The current collector is not particularly limited as long as it is an electronic conductor that does not adversely affect the constructed power storage device. Examples of the positive electrode current collector include aluminum, titanium, stainless steel copper, nickel, baked carbon, conductive polymer, conductive glass, etc., and aluminum and copper for the purpose of improving adhesion, conductivity, and oxidation resistance. Or the like can be used which have been treated with carbon, nickel, titanium, silver or the like. Examples of the negative electrode current collector include copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, Al—Cd alloy, etc. For the purpose, a surface of copper or the like treated with carbon, nickel, titanium, silver or the like can be used. The surface of these current collector materials can be oxidized. As for these shapes, in addition to a foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a glass body, a porous body, a foamed body and the like are also used.
 上記正極/負極活物質を集電体に結着させるバインダーとしては、ポリフッ化ビニリデンと、ヘキサフルオロプロピレン(HFP)、パーフルオロメチルビニルエーテル(PFMV)またはテトラフルオロエチレン(TFE)と、の共重合体などのポリフッ化ビニリデン共重合体樹脂;ポリテトラフルオロエチレン(PTFE)、フッ素ゴムなどのフッ素系樹脂;スチレン-ブタジエンゴム(SBR)、エチレン-プロピレンゴム(EPDM)、スチレン-アクリロニトリル共重合体などのポリマーが挙げられ、カルボキシメチルセルロース(CMC)等の多糖類、ポリイミド樹脂等の熱可塑性樹脂などを併用することができるが、これらに限定されるものではない。また、これらは2種類以上を混合して用いてもよい。その添加量としては、活物質量100質量部に対して0.2~30質量部が好ましく、0.5~10質量部がより好ましい。なお、LiFePOのように表面を炭素被覆した正極活物質については、カルボン酸変性したポリフッ化ビニリデンまたはSBRの水系バインダーも好ましい材料として挙げることができる。 As a binder for binding the positive electrode / negative electrode active material to the current collector, a copolymer of polyvinylidene fluoride and hexafluoropropylene (HFP), perfluoromethyl vinyl ether (PFMV) or tetrafluoroethylene (TFE) Polyvinylidene fluoride copolymer resins such as polytetrafluoroethylene (PTFE), fluorine resins such as fluorine rubber; styrene-butadiene rubber (SBR), ethylene-propylene rubber (EPDM), styrene-acrylonitrile copolymer, etc. Examples of the polymer include polysaccharides such as carboxymethylcellulose (CMC) and thermoplastic resins such as polyimide resin, but are not limited thereto. Moreover, you may use these in mixture of 2 or more types. The addition amount is preferably 0.2 to 30 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the active material. As for the positive electrode active material whose surface is coated with carbon, such as LiFePO 4 , a carboxylic acid-modified polyvinylidene fluoride or SBR aqueous binder can be mentioned as a preferable material.
 セパレータとしては、多孔性の膜が使用され、通常多孔性ポリマーフィルムや不織布が好適に使用される。本発明においては特に、非導電性多孔質材料と電気絶縁性の粒子からなるものが好適である。非導電性多孔質材料は、ポリアクリロニトリル、ポリエステル(PET)、ポリイミド、ポリアミド、ポリテトラフルオロエチレン、ポリオレフィン、ガラス、セラミック等から選択される。特に、平面状の柔軟な基材に、電気絶縁性の無機皮膜を有する不織布が好適であり、ポリエステル(PET)、ポリアミドが特に好ましい。 As the separator, a porous membrane is used, and usually a porous polymer film or a nonwoven fabric is preferably used. In the present invention, those composed of a non-conductive porous material and electrically insulating particles are particularly suitable. The non-conductive porous material is selected from polyacrylonitrile, polyester (PET), polyimide, polyamide, polytetrafluoroethylene, polyolefin, glass, ceramic and the like. In particular, a nonwoven fabric having an electrically insulating inorganic film on a flat flexible substrate is suitable, and polyester (PET) and polyamide are particularly preferred.
 セパレータに使用される絶縁性の粒子としては、無機材料としては少なくとも一種類のアルミナ、チタニア、珪素及び/又はジルコニアなどの無機酸化物、有機材料としてはフッ素樹脂、ポリスチレン樹脂、アクリル樹脂などのポリマー粒子などが用いられる。 The insulating particles used for the separator include at least one kind of inorganic oxide such as alumina, titania, silicon and / or zirconia as the inorganic material, and polymers such as fluororesin, polystyrene resin and acrylic resin as the organic material. Particles are used.
 上記セパレータは、さらにセパレータ又はセパレータ中に、所望の遮断温度で溶融する極めて薄いワックス粒子層、又はポリマー粒子層の遮断粒子が存在することでシャットダウンメカニズムを有することができる。この遮断粒子を形成するのに有利な材料としては、天然または人工のワックス、ポリオレフィンなどの低融点ポリマーがあり、この粒子が所望の遮断温度で溶融し、かつセパレータの細孔を閉鎖することで、電池の異常作動時の更なる電流を抑制することができる。 The separator can further have a shutdown mechanism because the separator or the separator has an extremely thin wax particle layer or polymer particle layer that melts at a desired cutoff temperature. Materials that are advantageous for forming the barrier particles include low melting polymers such as natural or artificial waxes and polyolefins, which melt at the desired barrier temperature and close the pores of the separator. Further current during the abnormal operation of the battery can be suppressed.
 本実施の形態に係る蓄電デバイスは、円筒型、コイン型、角型、ラミネート型、その他任意の形状に形成することができ、蓄電デバイスの基本構成は形状によらず同じであり、目的に応じて設計変更し実施することができる。 The electricity storage device according to this embodiment can be formed in a cylindrical shape, a coin shape, a square shape, a laminate shape, or any other shape, and the basic configuration of the electricity storage device is the same regardless of the shape, depending on the purpose. The design can be changed.
 本実施の形態に係る蓄電デバイスの具体的な製造方法としては、例えば、負極集電体に負極活物質を塗布してなる負極と、正極集電体に正極活物質を塗布してなる正極とを、セパレータを介して捲回した捲回体を筐体に収納し、前述のゲル電解質形成用組成物を注入し上下に絶縁板を載置した状態で密封し、加熱処理することにより得られる。 As a specific manufacturing method of the electricity storage device according to the present embodiment, for example, a negative electrode formed by applying a negative electrode active material to a negative electrode current collector, and a positive electrode formed by applying a positive electrode active material to a positive electrode current collector Is obtained by storing a wound body wound through a separator in a casing, injecting the above-described composition for forming gel electrolyte, sealing with an insulating plate placed on the top and bottom, and heat-treating it. .
 なお、本実施の形態に係る蓄電デバイスを作製する場合、選択した活物質により初回の充電時に多量のガスが発生し、セル性能に影響があるような場合には、前述のゲル電解質形成用組成物をプレ電池に注入後、前処理として充電または充放電の処理を行った後に、加熱処理を行ってもよい。 In the case of producing the electricity storage device according to the present embodiment, if the selected active material generates a large amount of gas during the first charge and affects the cell performance, the above-mentioned composition for gel electrolyte formation You may heat-process, after injecting | throwing-in an object to a pre-battery and performing the process of charge or charging / discharging as pre-processing.
 5.実施例
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例、比較例中の「部」および「%」は、特に断らない限り質量基準である。
5. EXAMPLES Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. “Part” and “%” in Examples and Comparative Examples are based on mass unless otherwise specified.
 5.1.実施例1
 5.1.1.ゲル電解質形成剤の作製
 十分に乾燥した容器に、メトキシエチルアクリレートを52g(モノマー含有比率;74質量%、80mol%に相当)、(3-エチル-3-オキセタニル)メチルメタクリレートを18g(モノマー含有比率;26質量%、20mol%に相当)、反応溶媒としてエチレンカーボネート(EC):ジエチルカーボネート(DEC)=3:7(体積比)を211g、N,N’-アゾビスイソブチロニトリルを0.71g(モノマー総質量100質量部に対して1質量部)を加え、乾燥窒素雰囲気にて60℃に加熱し、6時間反応させ、その後室温まで冷却した。冷却した溶液をヘキサンに投入し、得られた沈殿物をろ別により回収した。回収した沈殿物を60℃で12時間減圧乾燥することにより数平均分子量20万の重合体P1を得た。この重合体P1をゲル電解質形成剤として使用した。
5.1. Example 1
5.1.1. Preparation of Gel Electrolyte Forming Agent In a well-dried container, 52 g of methoxyethyl acrylate (monomer content ratio: 74% by mass, equivalent to 80 mol%), 18 g of (3-ethyl-3-oxetanyl) methyl methacrylate (monomer content ratio) 26 mass%, corresponding to 20 mol%), 211 g of ethylene carbonate (EC): diethyl carbonate (DEC) = 3: 7 (volume ratio) as a reaction solvent, and 0.2% of N, N′-azobisisobutyronitrile. 71 g (1 part by mass with respect to 100 parts by mass of monomer) was added, heated to 60 ° C. in a dry nitrogen atmosphere, reacted for 6 hours, and then cooled to room temperature. The cooled solution was put into hexane, and the resulting precipitate was collected by filtration. The collected precipitate was dried under reduced pressure at 60 ° C. for 12 hours to obtain a polymer P1 having a number average molecular weight of 200,000. This polymer P1 was used as a gel electrolyte forming agent.
 5.1.2.ゲル電解質形成用組成物の調製
 得られた重合体P1を3g秤り取り、LiPFを1mol/L含有するEC:DEC=3:7(体積比)の液状媒体(D)47gに溶解させて、ゲル電解質形成剤を6質量%含有するゲル電解質形成用組成物を調製した。
5.1.2. Preparation of Gel Electrolyte Forming Composition 3 g of the obtained polymer P1 is weighed and dissolved in 47 g of a liquid medium (D) containing 1 mol / L of LiPF 6 and EC: DEC = 3: 7 (volume ratio). A composition for forming a gel electrolyte containing 6% by mass of a gel electrolyte forming agent was prepared.
 5.1.3.ゲル電解質の評価試験
(1)保液性の評価
 得られたゲル電解質形成用組成物10gを50mLのバイアル管へ充填し、80℃で30分間オーブンで加熱することによりゲル電解質を作製した。得られたゲル電解質を25℃で1日放置し、ゲル電解質の外観を目視で観察した。表3に評価結果を示した。なお、表3~表10において、ゲル電解質マトリックスと液状媒体とが分離していなければ保液性が良好と判断して「○」、分離していれば保液性が不良と判断して「×」と示した。
5.1.3. Evaluation Test of Gel Electrolyte (1) Evaluation of Liquid Retention Property A gel electrolyte was prepared by filling 10 g of the obtained gel electrolyte forming composition into a 50 mL vial tube and heating in an oven at 80 ° C. for 30 minutes. The obtained gel electrolyte was allowed to stand at 25 ° C. for 1 day, and the appearance of the gel electrolyte was visually observed. Table 3 shows the evaluation results. In Tables 3 to 10, if the gel electrolyte matrix and the liquid medium are not separated, it is judged that the liquid retaining property is good and “◯”, and if they are separated, the liquid retaining property is judged to be poor. × ”.
(2)イオン伝導度の評価
 ドライルーム内で得られたゲル電解質形成用組成物を、イオン伝導度評価用セル(ソーラトロン社製、型番「SR-CIR-C」)に封入し、80℃で30分間オーブンで加熱することにより評価用セル中でゲル電解質を作製し、これを測定用セルとした。25℃の恒温槽を用いて測定用セルの温度を安定化させた後、測定用セルを電気化学測定装置(Bio-Logic社製、型番「HJ-1001SM8A」)に接続し、周波数0.2MHz~0.1Hz、振幅幅5mVの条件にて交流インピーダンス法に基づいてイオン伝導度の測定を行った。表3に評価結果を示した。なお、表3~表10において、イオン伝導度が1.0×10-3S/cm以上の場合には良好と判断でき、1.0×10-3S/cm未満であれば不良と判断できる。
(2) Evaluation of ion conductivity The composition for gel electrolyte formation obtained in the dry room is sealed in an ion conductivity evaluation cell (model number “SR-CIR-C” manufactured by Solartron), and at 80 ° C. A gel electrolyte was produced in an evaluation cell by heating in an oven for 30 minutes, and this was used as a measurement cell. After stabilizing the temperature of the measuring cell using a 25 ° C. thermostat, the measuring cell was connected to an electrochemical measuring device (manufactured by Bio-Logic, model number “HJ-1001SM8A”), and the frequency was 0.2 MHz. Ion conductivity was measured based on the AC impedance method under conditions of ˜0.1 Hz and an amplitude width of 5 mV. Table 3 shows the evaluation results. In Tables 3 to 10, when the ionic conductivity is 1.0 × 10 −3 S / cm or more, it can be judged as good, and when it is less than 1.0 × 10 −3 S / cm, it is judged as defective. it can.
(3)ゲル電解質形成剤の貯蔵安定性
 得られたゲル電解質形成剤を25g秤り取り、ジエチルカーボネート(DEC)75gに溶解させて、ゲル電解質形成剤を25質量%含有する溶液を調製した。次に、E型粘度計(東機産業製、型式「RE-85L」)を用いて、調製直後の溶液の粘度および6ヶ月貯蔵後の粘度を25℃で測定した。調製直後の溶液の粘度をV、6ヶ月貯蔵後の粘度をVとしたときに、|(V-V)/V|×100で表される粘度変化率(%)を算出した。表8~表10において、粘度変化率が2%以内であれば貯蔵安定性が良好と判断して「○」、粘度変化率が2%より大きければ不良と判断して「×」とした。
(3) Storage stability of gel electrolyte forming agent 25 g of the obtained gel electrolyte forming agent was weighed and dissolved in 75 g of diethyl carbonate (DEC) to prepare a solution containing 25% by mass of the gel electrolyte forming agent. Next, the viscosity of the solution immediately after preparation and the viscosity after storage for 6 months were measured at 25 ° C. using an E-type viscometer (manufactured by Toki Sangyo, model “RE-85L”). When the viscosity of the solution immediately after preparation is V 0 and the viscosity after storage for 6 months is V 6 , the rate of change in viscosity (%) represented by | (V 0 −V 6 ) / V 0 | × 100 is calculated. did. In Tables 8 to 10, when the viscosity change rate was within 2%, it was judged that the storage stability was good, and when the viscosity change rate was larger than 2%, it was judged as poor, and “x” was given.
(4)蓄電デバイスの製造および評価
 <正極の製造>
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)に電気化学デバイス電極用バインダー(株式会社クレハ製、商品名「KFポリマー#1120」)4.0質量部(固形分換算)、導電助剤(電気化学工業株式会社製、商品名「デンカブラック50%プレス品」)3.0質量部、正極活物質として粒径5μmのLiCoO(ハヤシ化成株式会社製)100質量部(固形分換算)、N-メチルピロリドン(NMP)36質量部を投入し、60rpmで2時間攪拌を行った。得られたペーストにNMPを投入し、固形分を65%に調製した後、攪拌脱泡機(株式会社シンキー製、商品名「泡とり練太郎」)を使用して、200rpmで2分間、1800rpmで5分間、さらに真空下において1800rpmで1.5分間攪拌混合することにより、電極用スラリーを調製した。厚み30μmのアルミニウム箔よりなる集電体の表面に、調製した電極用スラリーを、乾燥後の膜厚が80μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥処理した。その後、電極層の密度が3.0g/cmとなるようにロールプレス機によりプレス加工することにより、正極を得た。
(4) Production and evaluation of electricity storage device <Production of positive electrode>
Biaxial planetary mixer (product name “TK Hibismix 2P-03” manufactured by PRIMIX Co., Ltd.) and binder for electrochemical device electrode (product name “KF polymer # 1120” manufactured by Kureha Co., Ltd.) 4.0 parts by mass (Solid content conversion), conductive assistant (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denka Black 50% press product”) 3.0 parts by mass, LiCoO 2 having a particle diameter of 5 μm as a positive electrode active material (manufactured by Hayashi Kasei Co., Ltd.) ) 100 parts by mass (in terms of solid content) and 36 parts by mass of N-methylpyrrolidone (NMP) were added and stirred at 60 rpm for 2 hours. After adding NMP to the obtained paste to adjust the solid content to 65%, using a stirring defoaming machine (trade name “Awatori Netaro”, manufactured by Shinky Co., Ltd.), 2 minutes at 200 rpm, 1800 rpm The mixture was stirred and mixed for 5 minutes at 1,800 rpm for 1.5 minutes under vacuum to prepare a slurry for electrodes. The prepared electrode slurry was uniformly applied to the surface of a current collector made of an aluminum foil having a thickness of 30 μm by a doctor blade method so that the film thickness after drying was 80 μm, followed by drying at 120 ° C. for 20 minutes. Then, the positive electrode was obtained by pressing with a roll press so that the density of an electrode layer might be set to 3.0 g / cm < 3 >.
 <負極の製造>
 二軸型プラネタリーミキサー(プライミクス株式会社製、商品名「TKハイビスミックス 2P-03」)中に増粘剤(商品名「CMC2200」、ダイセル化学工業株式会社製)1質量部(固形分換算)、負極活物質としてグラファイト(日立化成工業株式会社製、製品名「SMG-HE1」)100質量部および水68質量部を投入し、60rpmで1時間攪拌を行った。その後ここに、SBRバインダー組成物(JSR株式会社製、商品名「TRD2001」)を、重合体に換算して2質量部加え、60rpmでさらに1時間攪拌してペーストを得た。得られたペーストに水を追加投入し、固形分を50質量%に調整した後、攪拌脱泡機(株式会社シンキー製、商品名「あわとり練太郎」)を使用して、200rpmで2分間および1,800rpmで5分間、さらに絶対圧25kPaの減圧下において1,800rpmで1.5分間攪拌、順次に混合することにより、負極用スラリーを調製した。厚み20μmの銅箔からなる集電体の表面に、上記で調製した負極用スラリーを、乾燥後の膜厚が150μmとなるようにドクターブレード法によって均一に塗布し、120℃で20分間乾燥した。その後、膜の密度が1.5g/cmとなるようにロールプレス機を使用してプレス加工することにより、負極を得た。
<Manufacture of negative electrode>
Thickener (trade name “CMC2200”, manufactured by Daicel Chemical Industries, Ltd.) in a biaxial planetary mixer (trade name “TK Hibismix 2P-03”, manufactured by Primics Co., Ltd.) 1 part by mass (solid content conversion) Then, 100 parts by mass of graphite (manufactured by Hitachi Chemical Co., Ltd., product name “SMG-HE1”) and 68 parts by mass of water were added as the negative electrode active material, and the mixture was stirred at 60 rpm for 1 hour. Thereafter, 2 parts by mass of the SBR binder composition (manufactured by JSR Corporation, trade name “TRD2001”) was added to the polymer, and the mixture was further stirred at 60 rpm for 1 hour to obtain a paste. After adding water to the obtained paste and adjusting the solid content to 50% by mass, the mixture was stirred at 200 rpm for 2 minutes at 200 rpm using a stirring defoamer (trade name “Awatori Nertaro” manufactured by Shinky Co., Ltd.). Then, a negative electrode slurry was prepared by stirring at 1,800 rpm for 5 minutes and further stirring at 1,800 rpm for 1.5 minutes under a reduced pressure of 25 kPa, followed by mixing. The negative electrode slurry prepared above was uniformly applied to the surface of a current collector made of copper foil having a thickness of 20 μm by a doctor blade method so that the film thickness after drying was 150 μm, and dried at 120 ° C. for 20 minutes. . Then, the negative electrode was obtained by pressing using a roll-press machine so that the density of a film | membrane may be 1.5 g / cm < 3 >.
 <リチウムイオン二次電池セルの組立て>
 グローブボックス内でアルミニウムからなるフィルム状の外装アルミシール上に、50mm×25mmに切り出した前記負極に負極端子を取り付けて載置した。次いで、この負極上に、54mm×27mmに切り出したポリプロピレン製の多孔膜からなるセパレータ(セルガード社製、商品名「セルガード#2400」、厚み25μm)を載置し、その後、48mm×23mmに切り出した前記正極に正極端子を取り付けて、前記セパレータ上に載置した。そして、この正極上に、上記外装アルミシールと同様の外装アルミシールを載置した。このようにして、外装アルミシール、負極、セパレータ、正極、及び外装アルミシールからなる積層体を得た。その後、この積層体の3辺の外装アルミシールを加温シーリング装置で2つの外装アルミシールの外周縁部を互いに接合させ封止した。そして、各層の間に空気が入らないように上記で得られたゲル電解質形成用組成物を注入して、さらに減圧脱気した後、減圧下で、負極端子と正極端子が外装アルミシールの外部に露出するようにして4辺目を封止して密閉した。このようにして得られた封止後のラミネートセルを80℃で30分間オーブンで加熱することにより2極式単層ラミネートセルからなる二次電池(電気化学デバイス)を作製した。
<Assembly of lithium ion secondary battery cells>
In the glove box, a negative electrode terminal was attached to and mounted on the negative electrode cut out to 50 mm × 25 mm on a film-like exterior aluminum seal made of aluminum. Next, a separator made of a polypropylene porous film cut out to 54 mm × 27 mm (manufactured by Celgard, trade name “Celguard # 2400”, thickness 25 μm) was placed on the negative electrode, and then cut into 48 mm × 23 mm. A positive electrode terminal was attached to the positive electrode and placed on the separator. And the exterior aluminum seal similar to the said exterior aluminum seal was mounted on this positive electrode. Thus, the laminated body which consists of an exterior aluminum seal, a negative electrode, a separator, a positive electrode, and an exterior aluminum seal was obtained. Thereafter, the outer peripheral aluminum seals on the three sides of this laminate were sealed by bonding the outer peripheral edges of the two outer aluminum seals with a heating sealing device. Then, after injecting the gel electrolyte forming composition obtained above so that air does not enter between each layer and further degassing under reduced pressure, the negative electrode terminal and the positive electrode terminal are external to the outer aluminum seal under reduced pressure. The 4th side was sealed so that it might be exposed, and it sealed. The laminated cell thus sealed was heated in an oven at 80 ° C. for 30 minutes to produce a secondary battery (electrochemical device) composed of a bipolar single-layer laminated cell.
 <放電レート特性の評価>
 上記で製造した二次電池セルを25℃の恒温槽に入れ、定電流(0.2C)にて充電を開始し、電圧が4.2Vになるまで充電した。次いで、定電流(0.2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、0.2Cでの放電容量を測定した。
<Evaluation of discharge rate characteristics>
The secondary battery cell produced above was placed in a constant temperature bath at 25 ° C., charging was started at a constant current (0.2 C), and charging was continued until the voltage reached 4.2V. Next, discharge was started at a constant current (0.2 C), and when the voltage reached 2.7 V, the discharge was completed (cut off), and the discharge capacity at 0.2 C was measured.
 次に、同じセルにつき、25℃で定電流(0.2C)にて充電を開始し、電圧が4.2Vになるまで充電した。次いで、定電流(2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、2Cでの放電容量を測定した。 Next, the same cell was charged at a constant current (0.2 C) at 25 ° C. and charged until the voltage reached 4.2V. Next, discharge was started at a constant current (2C), and when the voltage reached 2.7 V, the discharge was completed (cutoff), and the discharge capacity at 2C was measured.
 上記の測定値を用いて、0.2Cでの放電容量に対する2Cでの放電容量の割合(百分率%)を計算することにより放電レート(%)を算出した。上記のゲル電解質形成用組成物を使用して作製された二次電池セルの放電レートを「A」、LiPFを1mol/L含有するEC:DEC=3:7(体積比)の電解液を使用して作製された二次電池セルの放電レートを「B」とした時、下記式(7)で表される放電レート特性が0.7以上であれば良好であると評価することができる。
 放電レート特性=A/B ・・・・・(7)
Using the above measured values, the discharge rate (%) was calculated by calculating the ratio (percent%) of the discharge capacity at 2C to the discharge capacity at 0.2C. The secondary battery cell produced using the above-mentioned gel electrolyte forming composition has a discharge rate of “A” and an electrolyte solution containing EC: DEC = 3: 7 (volume ratio) containing 1 mol / L of LiPF 6. When the discharge rate of the secondary battery cell produced by using is “B”, it can be evaluated that the discharge rate characteristic represented by the following formula (7) is 0.7 or more. .
Discharge rate characteristics = A / B (7)
 得られた放電レート特性の値を表3に示す。なお、測定条件において「1C」とは、ある一定の電気容量を有するセルを定電流放電して1時間で放電終了となる電流値のことを示す。例えば「0.1C」とは、10時間かけて放電終了となる電流値のことであり、10Cとは0.1時間かけて放電完了となる電流値のことをいう。 Table 3 shows the obtained discharge rate characteristic values. In the measurement conditions, “1C” indicates a current value at which discharge is completed in one hour after constant current discharge of a cell having a certain electric capacity. For example, “0.1 C” is a current value at which discharge is completed over 10 hours, and 10 C is a current value at which discharge is completed over 0.1 hours.
 <低温特性の評価>
 上記で製造した二次電池セルを25℃の恒温槽に入れ、定電流(0.2C)にて充電を開始し、電圧が4.2Vになるまで充電した。次いで、定電流(0.2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、25℃での放電容量を測定した。
<Evaluation of low temperature characteristics>
The secondary battery cell produced above was placed in a constant temperature bath at 25 ° C., charging was started at a constant current (0.2 C), and charging was continued until the voltage reached 4.2V. Next, discharge was started at a constant current (0.2 C), and when the voltage reached 2.7 V, the discharge was completed (cut off), and the discharge capacity at 25 ° C. was measured.
 次に、同じセルにつき、0℃の恒温槽に入れ、定電流(0.2C)にて充電を開始し、電圧が4.2Vになるまで充電した。次いで、定電流(0.2C)にて放電を開始し、電圧が2.7Vになった時点を放電完了(カットオフ)とし、0℃での放電容量を測定した。 Next, the same cell was placed in a thermostat at 0 ° C., charging was started at a constant current (0.2 C), and charging was continued until the voltage reached 4.2V. Next, discharge was started at a constant current (0.2 C), and when the voltage reached 2.7 V, the discharge was completed (cut off), and the discharge capacity at 0 ° C. was measured.
 上記の測定値を用いて、25℃での放電容量に対する0℃での放電容量保持率(百分率%)を低温特性の指標とした。上記のゲル電解質形成用組成物を使用して作製された二次電池セルの0℃での放電容量保持率を「C」、LiPFを1mol/L含有するEC:DEC=3:7(体積比)の電解液を使用して作製された二次電池セルの0℃での放電容量保持率を「D」とした時、下記式(8)で表される低温特性が0.8以上であれば良好であると評価することができる。得られた低温特性の値を表3に示す。
 低温特性=C/D ・・・・・(8)
Using the measured values, the discharge capacity retention rate (percentage%) at 0 ° C. with respect to the discharge capacity at 25 ° C. was used as an index of low temperature characteristics. The secondary battery cell produced using the above-mentioned gel electrolyte forming composition has a discharge capacity retention at 0 ° C. of “C”, EC containing 1 mol / L of LiPF 6 : DEC = 3: 7 (volume) When the discharge capacity retention rate at 0 ° C. of the secondary battery cell produced using the electrolyte solution of (R) is “D”, the low temperature characteristic represented by the following formula (8) is 0.8 or more. If it exists, it can be evaluated that it is favorable. Table 3 shows the obtained low temperature characteristic values.
Low temperature characteristics = C / D (8)
 <内部直流抵抗値(DC-IR)の評価>
 25℃に設定した恒温槽に、上記にて作製した二次電池セルを配置し、定電流(0.2C)にて50%DOD(3.8V)まで充電した。その後、定電流(0.5C)にて10秒間充電を行った際の電圧変化を読み取り、1分間休止した後、さらに定電流(0.5C)にて10秒間放電を行った際の電圧変化を読み取った。電流値を0.5Cから1.0C、2.0C、3.0C、5.0Cに変更した以外は同様の方法で充放電時の電圧を読み取った。印加した電流値(A)を横軸、電圧値(V)を縦軸としたグラフを作成し、充放電各時において、プロット点を結んだ直線の勾配値を算出した。その勾配値をそれぞれ充電時および放電時の内部直流抵抗値(DC-IR)とした。上記のゲル電解質形成用組成物を使用して作製された二次電池セルのDC-IRを「E」、LiPFを1mol/L含有するEC:DEC=3:7(体積比)の電解液を使用して作製された二次電池セルのDC-IRを「F」としたとき、下記式(9)で表されるDC-IR特性が2.5以下であれば良好であると評価することができる。
 DC-IR特性=E/F ・・・・・(9)
<Evaluation of internal DC resistance (DC-IR)>
The secondary battery cell produced above was placed in a thermostat set to 25 ° C., and charged to 50% DOD (3.8 V) at a constant current (0.2 C). After that, the voltage change when charging at a constant current (0.5C) for 10 seconds is read, and after a pause for 1 minute, the voltage change when discharging at a constant current (0.5C) for 10 seconds is further performed. I read. The voltage at the time of charging / discharging was read by the same method except having changed the electric current value from 0.5C to 1.0C, 2.0C, 3.0C, 5.0C. A graph was created with the applied current value (A) as the horizontal axis and the voltage value (V) as the vertical axis, and the slope value of the straight line connecting the plot points was calculated at each charge / discharge time. The gradient values were taken as internal DC resistance values (DC-IR) during charging and discharging, respectively. Electrolytic solution of EC: DEC = 3: 7 (volume ratio) containing DC-IR of “E” and LiPF 6 of 1 mol / L of the secondary battery cell produced using the above gel electrolyte forming composition When the DC-IR characteristic of the secondary battery cell produced using the battery is “F”, the DC-IR characteristic represented by the following formula (9) is 2.5 or less. be able to.
DC-IR characteristics = E / F (9)
 得られたDC-IR特性の値を表3に示す。なお、測定条件において、「DOD」とは、充電容量に対する放電容量の割合を示す。たとえば、「50%DODまで充電する」とは、全容量を100%とした場合、50%の容量だけ充電することを示す。 Table 3 shows the obtained DC-IR characteristic values. In the measurement conditions, “DOD” indicates the ratio of the discharge capacity to the charge capacity. For example, “charge to 50% DOD” indicates that only 50% of the capacity is charged when the total capacity is 100%.
 <25℃サイクル特性の評価>
 上記<内部直流抵抗値(DC-IR)の評価>の評価後、25℃に設定した恒温槽に同じ二次電池セルを配置し、定電流(2.0C)にて充電を開始し、電圧が4.2Vになった時点で引き続き定電圧(4.2V)にて充電を続行し、電流値が0.01Cとなった時点を充電完了(カットオフ)とした。その後、定電流(2.0C)にて放電を開始し、電圧が3.0Vになった時点を放電完了(カットオフ)とし、1サイクル目の放電容量を算出した。このようにして100回充放電を繰り返し、50サイクル目の放電容量を算出した。このようにして測定した50サイクル目の放電容量を、1サイクル目の放電容量で割った値を50サイクル放電維持率(%)とした。上記のゲル電解質形成用組成物を使用して作製された二次電池セルの50サイクル目の放電容量維持率を「G」、LiPFを1mol/L含有するEC:DEC=3:7(体積比)の電解液を使用して作製された二次電池セルの50サイクル目の放電容量維持率を「H」とした時、下記式(10)で表される放電レート特性が0.7以上であれば良好であると評価することができる。得られたサイクル特性の値を表3に示す。
 サイクル特性=G/H ・・・・・(10)
<Evaluation of cycle characteristics at 25 ° C.>
After the evaluation of <Internal DC Resistance Value (DC-IR)> above, the same secondary battery cell is placed in a thermostat set at 25 ° C., and charging is started at a constant current (2.0 C). When the voltage became 4.2 V, the charging was continued at a constant voltage (4.2 V), and the charging was completed (cut off) when the current value reached 0.01C. Thereafter, discharging was started at a constant current (2.0 C), and the time when the voltage reached 3.0 V was regarded as the completion of discharging (cutoff), and the discharge capacity at the first cycle was calculated. Thus, charging / discharging was repeated 100 times, and the discharge capacity at the 50th cycle was calculated. A value obtained by dividing the discharge capacity at the 50th cycle thus measured by the discharge capacity at the first cycle was defined as the 50th cycle discharge retention rate (%). The secondary battery cell produced using the above gel electrolyte forming composition has a discharge capacity maintenance ratio of 50th cycle as “G” and EC: DEC = 3: 7 (volume) containing 1 mol / L of LiPF 6. The discharge rate characteristic represented by the following formula (10) is 0.7 or more when the discharge capacity maintenance ratio at the 50th cycle of the secondary battery cell manufactured using the electrolyte solution of (R) is “H” If it is, it can be evaluated that it is favorable. Table 3 shows the obtained cycle characteristic values.
Cycle characteristics = G / H (10)
 5.2.実施例2~27、比較例1~3
 モノマー組成、配合量及び反応溶媒を表1または表2に記載のものに変更した以外は、上記実施例1と同様にして重合体P2~P20を作製した。また、使用したゲル電解質形成用組成物を表3~表4に記載のものに変更した以外は、上記実施例1と同様にして各評価試験を行った。なお、表3~表4における添加剤の含有割合は、ゲル電解質形成剤100質量部に対する添加剤の含有量(質量部)を表している。
5.2. Examples 2 to 27, Comparative Examples 1 to 3
Polymers P2 to P20 were produced in the same manner as in Example 1 except that the monomer composition, blending amount and reaction solvent were changed to those shown in Table 1 or Table 2. Each evaluation test was conducted in the same manner as in Example 1 except that the gel electrolyte forming composition used was changed to those shown in Tables 3 to 4. In Tables 3 to 4, the additive content ratio represents the additive content (parts by mass) relative to 100 parts by mass of the gel electrolyte forming agent.
 5.3.実施例28~60、比較例4~6
 実施例28では、成分(A)として上記で得られた重合体P1を6質量部、および成分(B)としてビニレンカーボネート(VC)を0.2質量部秤り取り、これを気泡が混入しないように減圧下において十分に攪拌・混合し均質化することによりゲル電解質形成剤を作製した。このゲル電解質形成剤を使用した以外は、上記実施例1と同様にして各評価試験を行った。
5.3. Examples 28 to 60, Comparative Examples 4 to 6
In Example 28, 6 parts by mass of the polymer P1 obtained above as a component (A) and 0.2 parts by mass of vinylene carbonate (VC) as a component (B) were weighed out, and no bubbles were mixed therein. Thus, a gel electrolyte forming agent was prepared by sufficiently stirring, mixing and homogenizing under reduced pressure. Each evaluation test was performed in the same manner as in Example 1 except that this gel electrolyte forming agent was used.
 実施例29~60及び比較例4~6は、上記実施例28と同様にして表5~表7に記載の組成となるようにゲル電解質形成剤を作製した以外は、上記実施例1と同様にして各評価試験を行った。 Examples 29 to 60 and Comparative Examples 4 to 6 were the same as Example 1 except that gel electrolyte forming agents were prepared in the same manner as in Example 28 so as to have the compositions shown in Tables 5 to 7. Each evaluation test was conducted.
 5.4.実施例61~83、比較例7~8
 実施例61では、成分(A)として上記で得られた重合体P1を6質量部、および成分(C)として2,6-ジ-t-ブチル-4-メチルフェノール(BHT)を0.035質量部秤り取り、これを気泡が混入しないように減圧下において十分に攪拌・混合し均質化することによりゲル電解質形成剤を作製した。このゲル電解質形成剤を使用した以外は、上記実施例1と同様にして各評価試験を行った。
5.4. Examples 61 to 83, Comparative Examples 7 to 8
In Example 61, 6 parts by mass of the polymer P1 obtained above as component (A) and 0.035 of 2,6-di-t-butyl-4-methylphenol (BHT) as component (C) were used. A gel electrolyte forming agent was prepared by weighing out a mass part and thoroughly agitating, mixing, and homogenizing the mixture under reduced pressure so that bubbles do not enter. Each evaluation test was performed in the same manner as in Example 1 except that this gel electrolyte forming agent was used.
 実施例62~83及び比較例7~8は、上記実施例61と同様にして表8~表10に記載の組成となるようにゲル電解質形成剤を作製した以外は、上記実施例1と同様にして各評価試験を行った。 Examples 62 to 83 and Comparative Examples 7 to 8 were the same as Example 1 except that gel electrolyte forming agents were prepared in the same manner as in Example 61 so that the compositions shown in Tables 8 to 10 were obtained. Each evaluation test was conducted.
 5.5.評価結果
 作製した重合体P1~P20のモノマー組成、配合量及び反応溶媒を表1~表2に示し、各実施例および各比較例で使用したゲル電解質形成用組成物の組成、ならびに評価結果を表3~表10に示す。
5.5. Evaluation results The monomer compositions, blending amounts and reaction solvents of the produced polymers P1 to P20 are shown in Tables 1 and 2, and the compositions of the gel electrolyte forming compositions used in each Example and each Comparative Example and the evaluation results are shown. Tables 3 to 10 show.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表1~表10中の略称は、それぞれ以下の化合物または製品名を表す。
<環状エーテル構造を有する(メタ)アクリレート>
・OXMA:(3-エチル-3-オキセタニル)メチルメタクリレート
・OXEA:(3-エチル-オキセタン-3-イロキシ)エチルアクリレート
・OXBA:(3-エチル-オキセタン-3-イロキシ)ブチルアクリレート
・GMA:グリシジルメタクリレート
・THFMA:テトラヒドロフルフリルメタクリレート
・OXA:(3-エチル-3-オキセタニル)メチルアクリレート
 なお、OXEAは“Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41, 469-475. ”に記載の方法で合成し、OXBAについても同様の方法で合成した。
Abbreviations in Tables 1 to 10 represent the following compounds or product names, respectively.
<(Meth) acrylate having cyclic ether structure>
OXMA: (3-ethyl-3-oxetanyl) methyl methacrylate OXEA: (3-ethyl-oxetane-3-yloxy) ethyl acrylate OXBA: (3-ethyl-oxetane-3-yloxy) butyl acrylate GMA: glycidyl Methacrylate / THFMA: Tetrahydrofurfuryl methacrylate / OXA: (3-Ethyl-3-oxetanyl) methyl acrylate OXEA is described in “Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41, 469-475”. And OXBA was synthesized in the same manner.
<鎖状エーテル構造を有する(メタ)アクリレート>
・MEA:メトキシエチルアクリレート
・TEGA:エトキシトリエチレングリコールアクリレート
・DEGMA:メトキシジエチレングリコ-ルメタクリレート
・MTEGA:メトキシテトラエチレングリコールアクリレート
<(Meth) acrylate having a chain ether structure>
MEA: methoxyethyl acrylate TEGA: ethoxytriethylene glycol acrylate DEGMA: methoxydiethylene glycol methacrylate MTEGA: methoxytetraethylene glycol acrylate
<重合開始剤>
・AIBN:N,N’-アゾビスイソブチロニトリル
<Polymerization initiator>
AIBN: N, N'-azobisisobutyronitrile
<(重合)溶媒>
・EC/DEC:エチレンカーボネートとジエチルカーボネートの体積比3:7の混合溶

・GBL:γ-ブチロラクトン
・DG:ジグライム(ジエチレングリコールジメチルエーテル)
・DEC:ジエチルカーボネート
・MEK:メチルエチルケトン
・PC:プロピレンカーボネート
<(Polymerization) solvent>
EC / DEC: Mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7 GBL: γ-butyrolactone DG: diglyme (diethylene glycol dimethyl ether)
・ DEC: Diethyl carbonate ・ MEK: Methyl ethyl ketone ・ PC: Propylene carbonate
<炭素-炭素不飽和結合を有するエステル化合物>
・VC:ビニレンカーボネート
・VEC:ビニルエチレンカーボネート
・VA:酢酸ビニル
<Ester compound having carbon-carbon unsaturated bond>
・ VC: Vinylene carbonate ・ VEC: Vinyl ethylene carbonate ・ VA: Vinyl acetate
<フェノール性水酸基含有化合物>
・BHT:2,6-ジ-t-ブチル-4-メチルフェノール
・PTBHP:ペンタエリスリチルテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]
・4MP:4-メトキシフェノール
<Phenolic hydroxyl group-containing compound>
BHT: 2,6-di-t-butyl-4-methylphenol PTBHP: pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate]
・ 4MP: 4-methoxyphenol
<添加剤(環状エーテル化合物)>
・CEL:3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート(ダイセル化学工業株式会社製、製品名「セロキサイド2021P」)
・EGDG:エチレングリコールジグリシジルエーテル
・DOX:3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン
・OXAL:3-エチル-3-ヒドロキシメチルオキセタン
<Additive (cyclic ether compound)>
CEL: 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate (manufactured by Daicel Chemical Industries, Ltd., product name “Celoxide 2021P”)
EGDG: ethylene glycol diglycidyl ether DOX: 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane OXAL: 3-ethyl-3-hydroxymethyloxetane
<その他>
・KF:ポリフッ化ビニリデン樹脂(アルケマ社製、製品名「カイナーフレックス2081」)
・UA:ポリエステルジアクリレート(新中村化学工業株式会社製、製品名「NKオリゴ UA-8651」)
<Others>
・ KF: Polyvinylidene fluoride resin (manufactured by Arkema, product name “Kyner Flex 2081”)
UA: Polyester diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., product name “NK Oligo UA-8651”)
 実施例1~83において作製されたゲル電解質によれば、いずれも良好なイオン伝導度を有し、しかも保液性に優れていることが判った。さらに、これらのゲル電解質を用いたリチウムイオン二次電池はいずれも内部直流抵抗値が低く、放電レート特性、低温特性、サイクル特性のいずれも良好であった。また、実施例61~83において作製されたゲル電解質形成剤は、貯蔵安定性が非常に良好であることが判った。 According to the gel electrolytes prepared in Examples 1 to 83, it was found that all had good ionic conductivity and excellent liquid retention. Furthermore, all of the lithium ion secondary batteries using these gel electrolytes had low internal DC resistance values and good discharge rate characteristics, low temperature characteristics, and cycle characteristics. Further, it was found that the gel electrolyte forming agents prepared in Examples 61 to 83 had very good storage stability.
 一方、比較例1、4、7のゲル電解質(従来のゲル電解質)は、ゲル電解質形成剤としてポリフッ化ビニリデン樹脂を使用したことにより、ゲル電解質マトリックスと液状媒体との分離が発生し、保液性が不良となることが判った。 On the other hand, in the gel electrolytes of Comparative Examples 1, 4, and 7 (conventional gel electrolytes), the use of polyvinylidene fluoride resin as the gel electrolyte forming agent caused separation of the gel electrolyte matrix and the liquid medium. It was found that the sex was poor.
 比較例2のゲル電解質は、M2/M1の値が10を超えているゲル電解質形成剤を使用しているため、ゲル電解質形成用組成物を加熱してもゲル化が起こらず、評価することができなかった。 Since the gel electrolyte of Comparative Example 2 uses a gel electrolyte forming agent having an M2 / M1 value exceeding 10, gelation does not occur even when the gel electrolyte forming composition is heated. I could not.
 比較例3、5のゲル電解質は、M2/M1の値が1未満のゲル電解質形成剤を使用しているため、ゲル電解質マトリックスと液状媒体との分離が発生し、保液性が不良であることが判った。 Since the gel electrolytes of Comparative Examples 3 and 5 use a gel electrolyte forming agent having an M2 / M1 value of less than 1, separation of the gel electrolyte matrix and the liquid medium occurs, and the liquid retention property is poor. I found out.
 比較例6、8のゲル電解質(従来のゲル電解質)は、ゲル電解質形成剤としてポリエステルジアクリレートを使用したことにより、ゲル電解質マトリックスと液状媒体との分離が発生し、保液性が不良となることが判った。 In the gel electrolytes of Comparative Examples 6 and 8 (conventional gel electrolytes), the use of polyester diacrylate as the gel electrolyte forming agent causes separation of the gel electrolyte matrix and the liquid medium, resulting in poor liquid retention. I found out.
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。 The present invention is not limited to the above embodiment, and various modifications can be made. The present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects). The present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration. Furthermore, the present invention includes a configuration that achieves the same effect as the configuration described in the above embodiment or a configuration that can achieve the same object. Furthermore, the present invention includes a configuration in which a known technique is added to the configuration described in the above embodiment.

Claims (19)

  1.  環状エーテル構造を有する(メタ)アクリレートに由来する繰り返し単位(A1)と、鎖状エーテル構造を有する(メタ)アクリレートに由来する繰り返し単位(A2)と、を有し、
     前記繰り返し単位(A1)と前記繰り返し単位(A2)の合計量を100[mol%]としたときに、前記繰り返し単位(A1)の量(M1[mol%])に対する前記繰り返し単位(A2)の量(M2[mol%])の比率(M2/M1)が1~10の範囲内にある重合体(A)を含有する、ゲル電解質形成剤。
    A repeating unit (A1) derived from (meth) acrylate having a cyclic ether structure and a repeating unit (A2) derived from (meth) acrylate having a chain ether structure,
    When the total amount of the repeating unit (A1) and the repeating unit (A2) is 100 [mol%], the amount of the repeating unit (A2) relative to the amount of the repeating unit (A1) (M1 [mol%]) A gel electrolyte forming agent comprising a polymer (A) having a ratio (M2 / M1) of an amount (M2 [mol%]) in the range of 1 to 10.
  2.  前記環状エーテル構造を有する(メタ)アクリレートが下記一般式(1)で表される化合物である、請求項1に記載のゲル電解質形成剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素原子またはメチル基を表し、Rは2価の連結基を表し、Rは水素原子または1価の有機基を表し、複数存在するRはそれぞれ独立に水素原子または1価の有機基を表す。mおよびnは0以上の整数であり、m+n≧1である。)
    The gel electrolyte formation agent of Claim 1 whose (meth) acrylate which has the said cyclic ether structure is a compound represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents a divalent linking group, R 3 represents a hydrogen atom or a monovalent organic group, and a plurality of R 4 s are present. Independently represents a hydrogen atom or a monovalent organic group, m and n are integers of 0 or more, and m + n ≧ 1.
  3.  前記鎖状エーテル構造を有する(メタ)アクリレートが下記一般式(2)で表される化合物である、請求項1または請求項2に記載のゲル電解質形成剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは水素原子またはメチル基を表し、Rは単結合または2価の有機基を表し、複数存在してもよいRはそれぞれ独立に2価の炭化水素基を表し、Rは水素原子または1価の有機基を表す。xは1以上の整数である。)
    The gel electrolyte forming agent according to claim 1 or 2, wherein the (meth) acrylate having a chain ether structure is a compound represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), R 5 represents a hydrogen atom or a methyl group, R 6 represents a single bond or a divalent organic group, and a plurality of R 7 s may be independently a divalent hydrocarbon group. R 8 represents a hydrogen atom or a monovalent organic group, and x is an integer of 1 or more.)
  4.  前記M1[mol%]が10~40mol%の範囲にある、請求項1ないし請求項3のいずれか一項に記載のゲル電解質形成剤。 The gel electrolyte forming agent according to any one of claims 1 to 3, wherein the M1 [mol%] is in the range of 10 to 40 mol%.
  5.  前記重合体(A)の数平均分子量が1,000以上10万以下である、請求項1ないし請求項4のいずれか一項に記載のゲル電解質形成剤。 The gel electrolyte forming agent according to any one of claims 1 to 4, wherein the number average molecular weight of the polymer (A) is 1,000 or more and 100,000 or less.
  6.  さらに、炭素-炭素不飽和結合を少なくとも1つ有するエステル化合物(B)を含有する、請求項1ないし請求項5のいずれか一項に記載のゲル電解質形成剤。 The gel electrolyte forming agent according to any one of claims 1 to 5, further comprising an ester compound (B) having at least one carbon-carbon unsaturated bond.
  7.  前記成分(B)が環状炭酸エステルおよび(メタ)アクリレートからなる群より選択される少なくとも1種である、請求項6に記載のゲル電解質形成剤。 The gel electrolyte forming agent according to claim 6, wherein the component (B) is at least one selected from the group consisting of cyclic carbonates and (meth) acrylates.
  8.  前記環状炭酸エステルが下記一般式(3)で表される化合物である、請求項7に記載のゲル電解質形成剤。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R12およびR13はそれぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基もしくはアルケニル基、またはフェニル基である。)
    The gel electrolyte formation agent of Claim 7 whose said cyclic carbonate is a compound represented by following General formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (3), R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl or alkenyl group having 1 to 6 carbon atoms, or a phenyl group.)
  9.  前記成分(A)の含有量をM質量部、前記成分(B)の含有量をM質量部としたときに、比率(M/M)が1~100の範囲内にある、請求項6ないし請求項8のいずれか一項に記載のゲル電解質形成剤。 M A parts by mass and the content of the component (A), the content of the component (B) is taken as M B parts by weight, the ratio (M A / M B) is within the range of 1 to 100, The gel electrolyte forming agent according to any one of claims 6 to 8.
  10.  さらに、フェノール性水酸基を有する化合物(C)を含有する、請求項1ないし請求項5のいずれか一項に記載のゲル電解質形成剤。 Furthermore, the gel electrolyte formation agent as described in any one of Claim 1 thru | or 5 containing the compound (C) which has a phenolic hydroxyl group.
  11.  前記成分(C)が下記一般式(4)で表される化合物である、請求項10に記載のゲル電解質形成剤。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、R14はそれぞれ置換もしくは非置換のアルキル基またはアルコキシ基を表す。nは0以上5以下の整数である。)
    The gel electrolyte formation agent of Claim 10 whose said component (C) is a compound represented by following General formula (4).
    Figure JPOXMLDOC01-appb-C000004
    (In formula (4), R 14 represents a substituted or unsubstituted alkyl group or alkoxy group. N is an integer of 0 or more and 5 or less.)
  12.  前記成分(C)が下記一般式(5)で表される化合物である、請求項10に記載のゲル電解質形成剤。
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、R15はそれぞれ置換もしくは非置換のアルキル基またはアルコキシ基を表す。mは0以上3以下の整数である。)
    The gel electrolyte formation agent of Claim 10 whose said component (C) is a compound represented by following General formula (5).
    Figure JPOXMLDOC01-appb-C000005
    (In Formula (5), R 15 represents a substituted or unsubstituted alkyl group or alkoxy group. M is an integer of 0 or more and 3 or less.)
  13.  前記成分(C)が下記一般式(6)で表される基を少なくとも1つ有する化合物である、請求項10に記載のゲル電解質形成剤。
    Figure JPOXMLDOC01-appb-C000006
    (式(6)中、R16およびR17は、それぞれ独立に、水素原子または炭素数1~10のアルキル基を表す。)
    The gel electrolyte forming agent according to claim 10, wherein the component (C) is a compound having at least one group represented by the following general formula (6).
    Figure JPOXMLDOC01-appb-C000006
    (In the formula (6), R 16 and R 17 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.)
  14.  前記成分(A)の含有量をM質量部、前記成分(C)の含有量をM質量部としたときに、比率(M/M)が10~1000の範囲内にある、請求項10ないし請求項13のいずれか一項に記載のゲル電解質形成剤。 M A parts by mass and the content of the component (A), the content of the component (C) is taken as M C parts by weight, the ratio (M A / M C) is within the range of 10-1000, The gel electrolyte forming agent according to any one of claims 10 to 13.
  15.  請求項1ないし請求項14のいずれか一項に記載のゲル電解質形成剤と、液状媒体(D)と、を含有する、ゲル電解質形成用組成物。 A composition for forming a gel electrolyte, comprising the gel electrolyte forming agent according to any one of claims 1 to 14 and a liquid medium (D).
  16.  環状エーテル化合物をさらに含有する、請求項15に記載のゲル電解質形成用組成物。 The composition for forming a gel electrolyte according to claim 15, further comprising a cyclic ether compound.
  17.  前記環状エーテル化合物が、前記環状エーテル構造を有する(メタ)アクリレートに含まれる環状エーテル基とは員数が異なる環状エーテル基を有する、請求項16に記載のゲル電解質形成用組成物。 The composition for forming a gel electrolyte according to claim 16, wherein the cyclic ether compound has a cyclic ether group having a number of members different from that of the cyclic ether group contained in the (meth) acrylate having the cyclic ether structure.
  18.  請求項15ないし請求項17のいずれか一項に記載のゲル電解質形成用組成物を加熱して作製されるゲル電解質。 A gel electrolyte produced by heating the gel electrolyte forming composition according to any one of claims 15 to 17.
  19.  請求項18に記載のゲル電解質を備える蓄電デバイス。 An electricity storage device comprising the gel electrolyte according to claim 18.
PCT/JP2012/079270 2011-11-25 2012-11-12 Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte, and electricity storage device WO2013077211A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-257267 2011-11-25
JP2011257267 2011-11-25
JP2012-120467 2012-05-28
JP2012120467 2012-05-28
JP2012163532 2012-07-24
JP2012-163532 2012-07-24
JP2012-168076 2012-07-30
JP2012168076 2012-07-30

Publications (1)

Publication Number Publication Date
WO2013077211A1 true WO2013077211A1 (en) 2013-05-30

Family

ID=48469659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079270 WO2013077211A1 (en) 2011-11-25 2012-11-12 Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte, and electricity storage device

Country Status (3)

Country Link
JP (1) JPWO2013077211A1 (en)
TW (1) TW201327974A (en)
WO (1) WO2013077211A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013512A1 (en) * 2013-11-20 2015-05-22 Commissariat Energie Atomique LI-ION BATTERY ELECTROLYTE ADDITIVE
KR102163082B1 (en) * 2019-11-07 2020-10-07 서울시립대학교 산학협력단 Gel polymer electrolyte and electrochemical device comprising the same
CN114221036A (en) * 2021-12-14 2022-03-22 珠海冠宇电池股份有限公司 Electrolyte and electrochemical device comprising same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167797A (en) * 1999-09-30 2001-06-22 Sony Corp Gel phase electrolyte and gel phase electrolyte cell
JP2002110245A (en) * 2000-10-03 2002-04-12 Maxell Hokuriku Seiki Kk Polymer solid electrolyte lithium ion secondary battery
JP2002260441A (en) * 2001-03-06 2002-09-13 Ube Ind Ltd Polymeric solid electrolyte and method of making the same
JP2004253393A (en) * 2003-02-21 2004-09-09 Celgard Inc Oxidation-resistant separator for battery
JP2005310445A (en) * 2004-04-19 2005-11-04 Hitachi Maxell Ltd Gel electrolyte and electrochemical element using it
JP2006086101A (en) * 2004-08-18 2006-03-30 Daiso Co Ltd Electrolyte composition and battery
JP2006196199A (en) * 2005-01-11 2006-07-27 Nitto Denko Corp Reactive polymer carrying porous film for separator for battery and manufacturing method of battery using it
WO2006112206A1 (en) * 2005-03-30 2006-10-26 Sanyo Electric Co., Ltd. Polymer for lithium ion secondary battery and lithium ion secondary battery using same
JP2008192391A (en) * 2007-02-02 2008-08-21 Sony Corp Nonaqueous electrolyte composition and nonaqueous secondary battery
JP2008311126A (en) * 2007-06-15 2008-12-25 Nitto Denko Corp Porous film carrying cross-linking polymer for battery separator, and its utilization
JP2009070605A (en) * 2007-09-11 2009-04-02 Dai Ichi Kogyo Seiyaku Co Ltd Lithium polymer battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066842B2 (en) * 1991-01-25 2000-07-17 東ソー株式会社 Suspension polymerization of vinyl chloride
JP3877581B2 (en) * 2000-11-30 2007-02-07 日本化薬株式会社 Resin composition for polymer solid electrolyte, polymer solid electrolyte, and polymer battery
JP2009102608A (en) * 2007-10-02 2009-05-14 Hitachi Chem Co Ltd Acrylic polymer, method for synthesizing the same, polymerizable resin composition and gelatinous polymer electrolyte
JP2009287012A (en) * 2008-04-28 2009-12-10 Jsr Corp Ionic polymer and method of manufacturing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167797A (en) * 1999-09-30 2001-06-22 Sony Corp Gel phase electrolyte and gel phase electrolyte cell
JP2002110245A (en) * 2000-10-03 2002-04-12 Maxell Hokuriku Seiki Kk Polymer solid electrolyte lithium ion secondary battery
JP2002260441A (en) * 2001-03-06 2002-09-13 Ube Ind Ltd Polymeric solid electrolyte and method of making the same
JP2004253393A (en) * 2003-02-21 2004-09-09 Celgard Inc Oxidation-resistant separator for battery
JP2005310445A (en) * 2004-04-19 2005-11-04 Hitachi Maxell Ltd Gel electrolyte and electrochemical element using it
JP2006086101A (en) * 2004-08-18 2006-03-30 Daiso Co Ltd Electrolyte composition and battery
JP2006196199A (en) * 2005-01-11 2006-07-27 Nitto Denko Corp Reactive polymer carrying porous film for separator for battery and manufacturing method of battery using it
WO2006112206A1 (en) * 2005-03-30 2006-10-26 Sanyo Electric Co., Ltd. Polymer for lithium ion secondary battery and lithium ion secondary battery using same
JP2008192391A (en) * 2007-02-02 2008-08-21 Sony Corp Nonaqueous electrolyte composition and nonaqueous secondary battery
JP2008311126A (en) * 2007-06-15 2008-12-25 Nitto Denko Corp Porous film carrying cross-linking polymer for battery separator, and its utilization
JP2009070605A (en) * 2007-09-11 2009-04-02 Dai Ichi Kogyo Seiyaku Co Ltd Lithium polymer battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU SASAKI: "Keisan Kagaku ni yoru Kanjo Ether Rui no Cation Kaikan Jugosei no Kento", TREND, 2004, pages 8 - 14, Retrieved from the Internet <URL:http://www2.toagosei.co.jp/develop/trend/No7/no72.pdf> *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013512A1 (en) * 2013-11-20 2015-05-22 Commissariat Energie Atomique LI-ION BATTERY ELECTROLYTE ADDITIVE
WO2015075619A1 (en) * 2013-11-20 2015-05-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrolyte additive for lithium-ion battery
US10193186B2 (en) 2013-11-20 2019-01-29 Commisariat A L'energie Atomique Et Aux Energies Alternatives Electrolyte additive for lithium-ion battery
KR102163082B1 (en) * 2019-11-07 2020-10-07 서울시립대학교 산학협력단 Gel polymer electrolyte and electrochemical device comprising the same
CN114221036A (en) * 2021-12-14 2022-03-22 珠海冠宇电池股份有限公司 Electrolyte and electrochemical device comprising same
CN114221036B (en) * 2021-12-14 2023-11-28 珠海冠宇电池股份有限公司 Electrolyte and electrochemical device comprising same

Also Published As

Publication number Publication date
TW201327974A (en) 2013-07-01
JPWO2013077211A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
CN106558698B (en) Lithium ion battery positive electrode slurry, lithium ion battery positive electrode plate, preparation methods of lithium ion battery positive electrode slurry and positive electrode plate, and lithium ion battery
JP2013194112A (en) Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte and power-accumulating device
JP4741140B2 (en) POLYMER ELECTROLYTE, BATTERY CELL CONTAINING POLYMER ELECTROLYTE, AND METHOD FOR PRODUCING POLYMER ELECTROLYTE
US9722249B2 (en) Use of conductive polymers in battery electrodes
JP4068826B2 (en) Gel-type polymer electrolyte and use thereof
KR101884568B1 (en) Polymer by thermal gelation with functional group for chelating transition metal ion
WO2006080110A1 (en) Positive electrode material for lithium secondary cell
JP2009218065A (en) Lithium secondary battery and method for manufacturing the same
CN103733289B (en) The electrode binding agent of electrochemical element, the composition for electrodes of electrochemical element, the electrode and electrochemical element of electrochemical element
JP2007220496A (en) Lithium secondary battery containing carboxylic acid anhydrous organic compound in electrolyte
JP2005340165A (en) Positive electrode material for lithium secondary cell
WO2014092071A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2009070605A (en) Lithium polymer battery
JP5326575B2 (en) Method for producing polyradical compound-conductive substance complex
JP5126570B2 (en) Method for manufacturing lithium secondary battery
JP2021512200A (en) Copolymers of ester and ether units, their manufacturing methods and their use
US20170263936A1 (en) Lithium metal electrode, method for preparing the same, and lithium rechargeable battery using the same
JP2009277413A (en) Lithium polymer battery
Swiderska-Mocek et al. Compatibility of polymer electrolyte based on N-methyl-N-propylpiperidinium bis (trifluoromethanesulphonyl) imide ionic liquid with LiMn2O4 cathode in Li-ion batteries
WO2013077211A1 (en) Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte, and electricity storage device
WO2015115242A1 (en) Non-aqueous electrolyte secondary cell
JP2015003998A (en) Acrylic polymer particle production method, and acrylic polymer particles obtained thereby
JP2014035901A (en) Gel electrolyte and power storage device
JP5896154B2 (en) SOLID ELECTROLYTE FILM FORMING AGENT, ELECTROLYTIC SOLUTION CONTAINING SAME, AND ELECTRIC STORAGE DEVICE
Zhang et al. Ion-compensation regime between electrolyte and cathode to prepare advanced lithium metal batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850976

Country of ref document: EP

Kind code of ref document: A1