WO2013077157A1 - Secondary battery system, secondary battery module using secondary battery system, and method for controlling secondary battery - Google Patents

Secondary battery system, secondary battery module using secondary battery system, and method for controlling secondary battery Download PDF

Info

Publication number
WO2013077157A1
WO2013077157A1 PCT/JP2012/078095 JP2012078095W WO2013077157A1 WO 2013077157 A1 WO2013077157 A1 WO 2013077157A1 JP 2012078095 W JP2012078095 W JP 2012078095W WO 2013077157 A1 WO2013077157 A1 WO 2013077157A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
secondary battery
soc
charge
threshold value
Prior art date
Application number
PCT/JP2012/078095
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 寛文
山本 恒典
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2013077157A1 publication Critical patent/WO2013077157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery system, a secondary battery module using the secondary battery system, and a secondary battery control method.
  • Patent Document 1 discloses the following technique.
  • a storage unit that stores information related to charging completion time or departure time, and a required charging amount is calculated based on the charging amount and target charging amount of the power storage device, and charging is possible per unit time corrected based on the temperature related to the power storage device
  • the charge amount calculation process for calculating the maximum charge amount calculated based on the charge amount and the charge time from the charge start time to the charge completion time or departure time is executed at a predetermined timing, and the required charge amount is greater than the maximum charge amount. If the charge amount is low, the intermittent charge process is performed intermittently without driving the cooling device, and the charge amount calculation process is executed at a predetermined timing. If the required charge amount is larger than the maximum charge amount, charging is performed.
  • a control unit that executes a cooling / charging control process for cooling the power storage device by the cooling device when a predetermined condition is satisfied.
  • the negative electrode storage site decreases because the acceptability of Li ions in the negative electrode active material decreases. Also, the volume of the negative electrode active material changes (expands and shrinks) at a potential at which the stage structure on the low SOC side changes, but with high-rate charging, the expansion rate of the negative electrode active material is high, and microcracks occur without being able to follow up. . Since the negative electrode active material is exposed in the microcrack portion, the electrolytic solution is decomposed to form a film. Since the coating is formed biased to the microcrack generation location on the surface of the negative electrode active material, the electrical contact area between the negative electrode active materials is reduced. Therefore, the discharge capacity of the battery is deteriorated.
  • An object of this invention is to suppress deterioration of the discharge capacity of a battery.
  • a charging / discharging control unit that controls charging / discharging of the secondary battery and a battery state detecting unit that measures the battery temperature of the secondary battery are provided, and the charging / discharging control unit includes a charging state SOC 1 of the secondary battery.
  • the battery temperature detection unit measures the battery temperature T 1 of the secondary battery, and when T 1 is equal to or lower than the battery temperature first threshold value T m control unit charges the secondary battery by the following charging current first threshold value I m, T 1 is greater than T m, and, when: the battery temperature second threshold value T n, the charge and discharge control unit charges the secondary battery current second charged at the threshold I n the following, T 1 is greater than T m, and, when greater than T n, the secondary battery system to stop charging the discharge control unit secondary battery.
  • a control method for a secondary battery comprising: a charge / discharge control unit that controls charge / discharge of the secondary battery; and a battery state detection unit that measures the battery temperature of the secondary battery, wherein the charge / discharge control unit calculates the state of charge SOC 1 of the rechargeable battery, when the SOC 1 is less SOC first threshold SOC m, the battery temperature T 1 of the rechargeable battery in the battery state detector is measured, T 1 is the battery temperature when: 1 threshold T m, the charging and discharging control unit is charged with the following charging current first threshold I m the secondary battery, T 1 is greater than T m, and, when: the battery temperature second threshold value T n, discharge control unit is charged with the following charging current second threshold I n the secondary battery, T 1 is greater than T m, and, when a larger T n, the charge and discharge control unit stops the charging of the secondary battery To control the secondary battery.
  • 1 is a partially cutaway perspective view of a cylindrical non-aqueous secondary battery according to an embodiment of the present invention.
  • 1 is a schematic configuration diagram of a secondary battery system according to an embodiment of the present invention. It is a system flow figure of the secondary battery system concerning one embodiment of the present invention. It is explanatory drawing which illustrates the time-sequential change of the charge condition of the electrical storage apparatus in the charging process by a control part, temperature, and charging current.
  • FIG. 1 shows a non-aqueous secondary battery (hereinafter also simply referred to as a battery) of this embodiment.
  • a battery After producing an electrode winding group 22 in which a positive electrode plate 11 using a composite lithium oxide as an active material and a negative electrode plate 12 using a material holding lithium ions as an active material are wound in a spiral through a separator 13, The electrode winding group 22 is accommodated in a cylindrical battery can 26 having a bottom.
  • the negative electrode tab 24 led out from the lower part of the electrode winding group 22 is welded to the bottom of the battery can 26, and then the positive electrode tab 23 led out from the upper part of the electrode winding group 22 is welded to the battery lid 25.
  • a predetermined electrolytic solution is injected into the battery can 26, and a battery lid 25 having an insulating gasket (not shown) attached to the periphery is attached to the opening of the battery can 26 and caulked.
  • the winding shaft 21 side is an inner peripheral side 31 and the outer side is an outer peripheral side 32.
  • a lithium ion secondary battery is used as a non-aqueous secondary battery, but a non-aqueous secondary battery using a positive electrode and a negative electrode capable of inserting and removing alkali metal ions such as sodium ions can also be used. good.
  • Examples of the positive electrode active material applied to the positive electrode plate 11 include lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially nickel). ), Lithium manganate and modified products thereof, and composite oxides thereof (nickel, cobalt, manganese).
  • the conductive agent for the positive electrode for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and various graphites can be used alone or in combination.
  • the positive electrode binder for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. It is also possible to mix an acrylate monomer or an acrylate oligomer having a reactive functional group introduced into the binder.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the negative electrode active material applied to the negative electrode plate 12 various kinds of natural graphite, artificial graphite, silicon-based composite materials such as silicide, and various metal plastic materials can be used.
  • binders such as PVdF and modified products thereof can be used as the negative electrode binder.
  • SBR styrene-butadiene copolymer rubber particles
  • CMC carboxymethyl cellulose
  • the conductive agent for the negative electrode for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and various graphites can be used alone or in combination.
  • the separator is not particularly limited as long as it is a composition that can withstand the range of use of the lithium ion secondary battery, but it is common to use a single or composite microporous film of an olefin resin such as polyethylene or polypropylene. Yes, and preferred as an embodiment.
  • the thickness of the separator is not limited, but 10 to 40 ⁇ m is preferable.
  • ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), or methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent.
  • the shape of the electrode winding group in the present embodiment is not necessarily a true cylindrical shape, and may be a long cylindrical shape whose winding group cross section is an ellipse or a prismatic shape such as a rectangular winding cross section.
  • a cylindrical battery can with a bottom is filled with an electrode winding group and an electrolyte, and a tab for taking out current from the electrode plate is sealed in a state welded to the cap and the battery can.
  • Form is preferred. However, it is not particularly limited to this form.
  • the battery can that fills the electrode winding group is not particularly limited.
  • a battery can plated with iron for corrosion resistance such as a battery can plated with iron for corrosion resistance, a stainless steel battery can, etc., strength, corrosion resistance, processing Those having excellent properties are preferred. It is also possible to reduce the weight by using an aluminum alloy or various engineering plastics, and it is also possible to use various engineering plastics and metals together.
  • Fig. 2 shows the secondary battery system.
  • the assembled battery 41 combines a plurality of the batteries of FIG. 1 in series and in parallel.
  • a battery controller 51 is provided in order to detect the state of the assembled battery 41.
  • the battery controller 51 charge / discharge control unit detects the battery voltage, charge / discharge current, and battery surface temperature of the assembled battery 41, and measures the accumulated charge / discharge time, accumulated charge / discharge electricity amount, and accumulated time.
  • the assembled battery 41 is composed of a plurality of single lithium batteries (lithium cells) electrically connected in series, in parallel, or in series-parallel.
  • the assembled battery 41 and the battery controller 51 are combined in parallel, and all the data obtained by the battery controller 51 is transmitted to the overall controller 61.
  • the overall controller 61 transmits the charge / discharge current value and the time of each battery to each battery controller 51 in accordance with the data obtained from each battery controller 51.
  • the battery controller 51 has a CPU, ROM, and RAM, and includes a microcomputer that operates according to a predetermined program.
  • the battery controller 51 performs charge / discharge control of the assembled battery 41 based on data transmitted from the overall controller 61.
  • the control function (mechanism) for detecting or estimating the internal resistance value is referred to as an internal resistance detection unit.
  • the present invention has a feature in the discharge control method, and a control function (mechanism) relating to discharge is referred to as a discharge control unit.
  • the overall controller 61 has a CPU, a ROM, and a RAM as well as a battery controller, and includes a microcomputer that operates according to a predetermined program. And it connects with the battery controller 51 with a communication cable, each can communicate bidirectionally, and performs various control according to the state of each assembled battery 41.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the voltage detection unit 42 detects the voltage of the assembled battery 41.
  • the battery voltage to be detected may be one battery (lithium cell) constituting the assembled battery 41, a battery group in which a plurality of batteries are connected in series, or a voltage of an assembled battery in which a plurality of batteries are connected in series and parallel.
  • the battery voltage to be measured is not particularly limited.
  • the current detection unit 43 detects the value of the charge / discharge current of the assembled battery 41.
  • a galvanometer, a galvanometer using a shunt resistor, a clamp meter, and the like can be considered, but the present invention is not limited to this, and any means can be used as long as it is a means for detecting a current value. Can do.
  • the temperature detection unit 44 detects the temperature of the assembled battery 41.
  • a means for detecting the temperature may be a thermocouple, a thermistor, or the like, but is not particularly limited. Further, the location where the temperature is detected may be the battery surface, the inside of the battery, the surface temperature of the casing in which the assembled battery is housed, and the ambient temperature of the assembled battery 41.
  • the assembled battery 41, voltage detection unit 42, current detection unit 43, temperature detection unit 44, and battery controller 51 are combined to form a secondary battery module.
  • the battery controller 51 may incorporate a voltage detection unit 42, a current detection unit 43, and a temperature detection unit 44.
  • the timer is provided in the battery controller and measures the time related to charging / discharging of the assembled battery 41. For example, the elapsed time after the start of discharge is measured.
  • the electric load 71 may be a heater, an electric brake, an electric power steering, or an electric motor.
  • the battery controller 51 is provided for each of the assembled batteries 41.
  • the battery controller 51 By detecting the state of the battery and controlling it according to the state of the assembled battery 41, it is possible to suppress a decrease in battery capacity and an increase in internal resistance of the lithium ion secondary battery and provide a long-life secondary battery system. .
  • FIG. 3 is a flowchart of the secondary battery system according to the embodiment of the present invention.
  • a command to start charging of the lithium ion secondary battery is sent from the overall controller 61 to the battery controller 51, and each battery controller 51 starts charging each assembled battery 41 (step S001).
  • the battery controller 51 After starting charging, the battery controller 51 measures the battery voltage V by the voltage detection unit 42, the charging current I by the current detection unit 43, and the battery temperature T by the temperature detection unit 44, and the charging time t (elapsed time from the start of charging) by a timer. ).
  • the battery controller 51 calculates a state of charge (SOC) from the battery voltage.
  • SOC state of charge
  • V O indicates an open circuit voltage before the start of charging
  • Q (V 0 ) indicates a battery capacity before the start of charging ([Equation 1]).
  • the initial battery capacity is set to Q b (step S002).
  • step S002 the battery controller 51 compares the SOC 1 of the assembled battery 41 with the SOC first threshold SOC m (step S003). If SOC 1 of the battery pack 41 is equal to or lower than the SOC first threshold value SOC m , the process proceeds to step S004, and if higher than the SOC first threshold value SOC m , the process proceeds to step S012.
  • the SOC first threshold value SOC m is desirably 20% or more and 35% or less.
  • step S004 the battery controller 51 by the temperature detector 44 measures the battery temperatures T 1, compared with the battery temperature T 1 of the battery temperature first threshold value T m measured in step S005. Then, if the battery temperature T 1 is higher than the battery temperature first threshold value T m proceeds to step S006, the process proceeds to step S007 if less battery temperature first threshold T m.
  • step S006 the battery temperatures T 1 measured the flow advances to step S008 if less battery temperature second threshold value T n, the process proceeds to step S009 is higher than the battery temperature second threshold value T n.
  • the battery temperature first threshold value T m is desirably 5 ° C. or more and 15 ° C. or less
  • the battery temperature second threshold value T n is specifically 45 ° C. or more and 55 ° C. or less.
  • the battery temperature second threshold value T n is larger than the battery temperature first threshold value T m .
  • the battery controller 51 to the charging current for charging the assembled battery 41 and less charging current first threshold I m.
  • the charging current first threshold value Im may be a constant current, or may be calculated based on, for example, [Equation 3].
  • the charging current is set higher in a place where the graphite stage structure does not change, and charging is performed in the place where the graphite stage structure changes. Fine control, such as setting the current lower, can be performed, and deterioration can be suppressed compared to a constant current.
  • a reduction in cost can be expected by setting the charging current first threshold Im to a constant current.
  • the first threshold value I m charging current is a value as a variable SOC and the battery temperature T, ⁇ 2, ⁇ 3, ⁇ 2 are constants.
  • the battery controller 51 sets the charging current for charging the assembled battery 41 to be equal to or less than the charging current second threshold value In.
  • the time to charge current second threshold I n may be a constant current, may be calculated on the basis of, for example, [Equation 4]. As the SOC is high, the sensitivity of the temperature to deterioration is high, so by controlling the charging current according to the value of the SOC and temperature as shown in [Equation 4], the current is decreased at higher temperatures and higher SOC, and the temperature rises due to Joule heat generation. And the deterioration can be suppressed as compared with a constant current. However, by the charging current second threshold I n constant current, cost reduction can be expected.
  • the second threshold value I n charge current is a value as a variable SOC and the battery temperature T, ⁇ 4, ⁇ 5, ⁇ 3 are constants.
  • step S009 the battery controller 51 temporarily stops the charging of the assembled battery 41.
  • the charging stop period may be a fixed period or may be stopped until the battery temperature T 1 becomes equal to or lower than the battery temperature third threshold value TL . It is desirable to first define the temperature T L and , if the temperature does not fall below a certain period T L , define the time and end the charging stop period.
  • step S010 the battery controller 51 calculates SOC 2 again from the battery voltage V calculated by the voltage detector 42.
  • the SOC 2 is calculated based on [Equation 8].
  • R (SOC, T) in [Equation 5] indicates the battery internal resistance of the assembled battery 41
  • V O ′ in [Equation 6] indicates the open circuit voltage assumed from the battery voltage V during the charging period.
  • Q (V O ') in [Equation 7] indicates the battery capacity during the charging period.
  • the battery capacity Q (V O ′) during the charging period may be calculated by adding the battery capacity Q before the start of charging to the capacity obtained by integrating the charging current ⁇ time, or may be calculated based on [Equation 7]. You may do it.
  • step S010 the battery controller 51 compares the SOC 2 of the assembled battery 41 with the SOC first threshold value SOC m (step S011). If the SOC 2 of the battery pack 41 is equal to or lower than the SOC first threshold value SOC m , the process proceeds to step S004, and if it is higher than the SOC first threshold value SOC m , the process proceeds to step S012.
  • the battery controller 51 compares the SOC 2 of the assembled battery 41 with the SOC second threshold value SOC n (step S012). If the SOC 2 of the battery pack 41 is equal to or lower than the SOC second threshold value SOC n , the process proceeds to step S013, and if it is higher than the SOC second threshold value SOC n , the process proceeds to step S018.
  • the SOC second threshold value SOC n is preferably 60 to 70%, and in the case of PHEV and EV, the SOC second threshold value SOC n is preferably about 90 to 100%.
  • SOC second threshold SOC n is greater than SOC first threshold SOC m.
  • step S013 the battery controller 51 by the temperature detector 44 measures the battery temperature T 2, compared with the battery temperature T 2 and the battery temperature second threshold value T n measured in step S014. If the battery temperature T 2 is equal to or lower than the battery temperature second threshold value T n , the process proceeds to step S015, and if higher, the process proceeds to step S016.
  • the battery temperature second threshold value T n may be calculated by [Equation 9].
  • the battery temperature second threshold value T n is a value with SOC as a variable, and ⁇ 8 and ⁇ 5 are constants.
  • step S015 the battery controller 51 controls the charging current for charging the assembled battery 41 to be equal to or lower than the charging current third threshold I O.
  • the charging current second threshold I O may be a constant current, or may be calculated based on, for example, [Equation 10].
  • step S016 the battery controller 51 temporarily stops charging the assembled battery 41.
  • the charging stop period may be a fixed period or may be stopped until the battery temperature T 2 becomes equal to or lower than the battery temperature third threshold value TL .
  • step S017 the battery controller 51 calculates the SOC again from the battery voltage V of the assembled battery 41.
  • SOC calculation method for example, it is calculated based on [Equation 8]. If the SOC of the assembled battery 41 is equal to or lower than the SOC second threshold value SOC n , the process proceeds to S013. If the SOC of the assembled battery 41 is higher than the SOC second threshold value SOC n , the process proceeds to S018.
  • step S018 the battery controller 51 ends the charging of the assembled battery 41, and transmits a charging end command to the overall controller 61.
  • the value of the charging current is controlled to be small to suppress the expansion rate of the negative electrode active material, thereby suppressing microcracks of the negative electrode active material. Therefore, a long-life secondary battery system can be provided.
  • FIG. 4 is an explanatory diagram illustrating time series changes in the charging state, temperature, and charging current of the assembled battery 41 in the charging process by the battery controller 51.
  • the battery temperature and the state of charge (SOC) of the assembled battery 41 shown on the vertical axis increase with the passage of time.
  • SOC state of charge
  • the temperature of the assembled battery 41 is linearly increased.
  • the temperature is merely an example, and the present invention is not limited to this.
  • the charging current to the assembled battery 41 is set as the charging current. controlled to be less than the first threshold value I m (period from the time t01 shown in FIG. 4 t02).
  • Battery controller 51 is to measure the SOC and the battery temperature T of the assembled battery 41 over time, for example, when the battery temperature T of the battery pack 41 exceeds the battery temperature first threshold value T m, the charging to the assembled battery 41
  • the charging current to be controlled is controlled to be equal to or lower than the charging current second threshold value In.
  • the threshold value of the charging current has a relationship of I m ⁇ I n (period from time t02 to t03 shown in FIG. 4).
  • the battery controller 51 stops charging the assembled battery 41.
  • the battery temperature T becomes equal to or lower than the battery temperature third threshold value T L , charging is restarted (periods from time t03 to t04, from t06 to t07, and from t08 to t09 shown in FIG. 4).
  • the battery controller 51 controls the charging current for charging the assembled battery 41 to be equal to or lower than the charging current second threshold value In (shown in FIG. 4). (Time t05 to t06, t07 to t08, t09 to t10).
  • the battery controller 51 ends the charging of the assembled battery 41 and transmits a charging end command to the overall controller 61 (time t10 shown in FIG. 4).
  • the battery pack 41 when the battery pack 41 is charged, if the position where the SOC is low is low and the battery temperature is low, the deterioration can be suppressed as described above by controlling the value of the charging current to be low.
  • a long-life secondary battery system can be provided.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified and applied without departing from the gist thereof.
  • the battery is a wound type lithium ion secondary battery
  • the present invention is applied to a laminated type lithium ion secondary battery in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately laminated via separators. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Deterioration of discharge capacity of a battery is suppressed. This secondary battery system is provided with a charge/discharge control unit, which controls charging and discharging of a secondary battery, and a battery state detecting unit, which measures a battery temperature of the secondary battery. The charge/discharge control unit calculates a state of charge (SOC1) of the secondary battery, and when the state of charge (SOC1) is equal to or less than an SOC first threshold value (SOCm), a battery temperature (T1) of the secondary battery is measured by means of the battery state detecting unit. When the battery temperature (T1) is equal to or below a battery temperature first threshold value (Tm), the charge/discharge control unit charges the secondary battery at a charging current first threshold value (Im) or less, and when the battery temperature (T1) is higher than the value (Tm) but equal to or below a battery temperature second threshold value (Tn), the charge/discharge control unit charges the secondary battery at a charging current second threshold value (In) or less, and when the battery temperature (T1) is higher than the value (Tm) and also higher than the value (Tn), the charge/discharge control unit stops the charging of the secondary battery.

Description

二次電池システム、二次電池システムを用いた二次電池モジュールおよび二次電池の制御方法Secondary battery system, secondary battery module using the secondary battery system, and secondary battery control method
 本発明は、二次電池システム、二次電池システムを用いた二次電池モジュールおよび二次電池の制御方法に関する。 The present invention relates to a secondary battery system, a secondary battery module using the secondary battery system, and a secondary battery control method.
 従来例として、特許文献1には次のような技術が開示されている。充電完了時刻または発車時刻に関する情報を記憶する記憶部と、蓄電装置の充電量と目標充電量に基づいて必要充電量を算出し、蓄電装置に関する温度に基づいて補正した単位時間当たりに充電可能な充電量と充電開始時刻から充電完了時刻または発車時刻までの充電時間とに基づいて算出した最大充電量を算出する充電量算出処理を所定のタイミングで実行し、最大充電量よりも必要充電量が少ない場合は冷却装置を駆動することなく充電を間歇的に行う間歇充電処理と、充電量算出処理を所定のタイミングで実行し、最大充電量よりも必要充電量が多い場合は充電を実施するとともに、所定の条件を満たす場合に蓄電装置を冷却装置により冷却する冷却・充電制御処理とを実行する制御部とを備えている制御装置。 As a conventional example, Patent Document 1 discloses the following technique. A storage unit that stores information related to charging completion time or departure time, and a required charging amount is calculated based on the charging amount and target charging amount of the power storage device, and charging is possible per unit time corrected based on the temperature related to the power storage device The charge amount calculation process for calculating the maximum charge amount calculated based on the charge amount and the charge time from the charge start time to the charge completion time or departure time is executed at a predetermined timing, and the required charge amount is greater than the maximum charge amount. If the charge amount is low, the intermittent charge process is performed intermittently without driving the cooling device, and the charge amount calculation process is executed at a predetermined timing. If the required charge amount is larger than the maximum charge amount, charging is performed. And a control unit that executes a cooling / charging control process for cooling the power storage device by the cooling device when a predetermined condition is satisfied.
特開2010-233360号公報JP 2010-233360 A
 低温では、負極活物質のLiイオンの受入れ性が低下するため、負極吸蔵サイトが減少する。また、低SOC側のステージ構造が変化する電位で負極活物質の体積が変化(膨張収縮)するが、高レート充電では、負極活物質の膨張速度が速く、追従できずにマイクロクラックが発生する。マイクロクラック部分は負極活物質がむき出しとなっているため、電解液を分解して被膜を形成する。被膜が負極活物質表面のマイクロクラック発生箇所に偏って形成されるため、負極活物質間の電気的な接触面積が低下する。よって、電池の放電容量が劣化する。 At low temperatures, the negative electrode storage site decreases because the acceptability of Li ions in the negative electrode active material decreases. Also, the volume of the negative electrode active material changes (expands and shrinks) at a potential at which the stage structure on the low SOC side changes, but with high-rate charging, the expansion rate of the negative electrode active material is high, and microcracks occur without being able to follow up. . Since the negative electrode active material is exposed in the microcrack portion, the electrolytic solution is decomposed to form a film. Since the coating is formed biased to the microcrack generation location on the surface of the negative electrode active material, the electrical contact area between the negative electrode active materials is reduced. Therefore, the discharge capacity of the battery is deteriorated.
 特許文献1の技術では、上記に基づく電池の放電容量の劣化を抑制することが難しい。本発明は、電池の放電容量の劣化を抑制させることを目的とする。 In the technique of Patent Document 1, it is difficult to suppress the deterioration of the discharge capacity of the battery based on the above. An object of this invention is to suppress deterioration of the discharge capacity of a battery.
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。
(1)二次電池の充放電を制御する充放電制御部と、二次電池の電池温度を計測する電池状態検出部と、を備え、充放電制御部は、二次電池の充電状態SOC1を算出し、SOC1がSOC第1閾値SOCm以下の時に、電池状態検出部で二次電池の電池温度T1が計測され、T1が電池温度第1閾値Tm以下の時に、充放電制御部は二次電池を充電電流第1閾値Im以下で充電し、T1がTmより大きく、かつ、電池温度第2閾値Tn以下の時に、充放電制御部は二次電池を充電電流第2閾値In以下で充電し、T1がTmより大きく、かつ、Tnより大きい時に、充放電制御部は二次電池への充電を停止する二次電池システム。
(2)上記において、充放電制御部で充電された二次電池の充電状態SOC2がSOC第2閾値SOCn以下の時に、電池状態検出部で二次電池の電池温度T2が計測され、SOC1<SOC2、SOCm<SOCnであり、T2が電池温度第2閾値Tn以下である時、充放電制御部は二次電池をIn以下で充電し、T2がTnより大きい時、充放電制御部は二次電池への充電を停止する二次電池システム。
(3)上記において、Tnが二次電池の充電状態に応じて変化する二次電池システム。
(4)上記において、SOCmが20%以上35%以下にある二次電池システム。
(5)上記において、Tmが5℃以上15℃以下、Tnが45℃以上55℃以下である二次電池システム。
(6)上記において、ImまたはInは一定電流である二次電池システム。
(7)上記のいずれかの二次電池システムを用いた二次電池モジュール。
(8)二次電池の充放電を制御する充放電制御部と、二次電池の電池温度を計測する電池状態検出部と、を備えた二次電池の制御方法であって、充放電制御部は、二次電池の充電状態SOC1を算出し、SOC1がSOC第1閾値SOCm以下の時に、電池状態検出部で二次電池の電池温度T1が計測され、T1が電池温度第1閾値Tm以下の時に、充放電制御部は二次電池を充電電流第1閾値Im以下で充電し、T1がTmより大きく、かつ、電池温度第2閾値Tn以下の時に、充放電制御部は二次電池を充電電流第2閾値In以下で充電し、T1がTmより大きく、かつ、Tnより大きい時に、充放電制御部は二次電池への充電を停止する二次電池の制御方法。
The features of the present invention for solving the above problems are as follows, for example.
(1) A charging / discharging control unit that controls charging / discharging of the secondary battery and a battery state detecting unit that measures the battery temperature of the secondary battery are provided, and the charging / discharging control unit includes a charging state SOC 1 of the secondary battery. When the SOC 1 is equal to or lower than the SOC first threshold value SOC m , the battery temperature detection unit measures the battery temperature T 1 of the secondary battery, and when T 1 is equal to or lower than the battery temperature first threshold value T m control unit charges the secondary battery by the following charging current first threshold value I m, T 1 is greater than T m, and, when: the battery temperature second threshold value T n, the charge and discharge control unit charges the secondary battery current second charged at the threshold I n the following, T 1 is greater than T m, and, when greater than T n, the secondary battery system to stop charging the discharge control unit secondary battery.
(2) In the above, when the state of charge SOC 2 of the secondary battery charged by the charge / discharge control unit is equal to or lower than the SOC second threshold value SOC n , the battery temperature T 2 of the secondary battery is measured by the battery state detection unit, When SOC 1 <SOC 2 , SOC m <SOC n and T 2 is the battery temperature second threshold value T n or less, the charge / discharge control unit charges the secondary battery at I n or less, and T 2 is T n When it is larger, the charge / discharge control unit stops the charging of the secondary battery.
(3) In the above, the secondary battery system in which T n changes according to the state of charge of the secondary battery.
(4) In the above, the secondary battery system in which SOC m is 20% or more and 35% or less.
(5) In the above, the secondary battery system in which T m is 5 ° C. or more and 15 ° C. or less and T n is 45 ° C. or more and 55 ° C. or less.
(6) secondary battery system is in the above, the I m or I n constant current.
(7) A secondary battery module using any one of the above secondary battery systems.
(8) A control method for a secondary battery, comprising: a charge / discharge control unit that controls charge / discharge of the secondary battery; and a battery state detection unit that measures the battery temperature of the secondary battery, wherein the charge / discharge control unit calculates the state of charge SOC 1 of the rechargeable battery, when the SOC 1 is less SOC first threshold SOC m, the battery temperature T 1 of the rechargeable battery in the battery state detector is measured, T 1 is the battery temperature when: 1 threshold T m, the charging and discharging control unit is charged with the following charging current first threshold I m the secondary battery, T 1 is greater than T m, and, when: the battery temperature second threshold value T n, discharge control unit is charged with the following charging current second threshold I n the secondary battery, T 1 is greater than T m, and, when a larger T n, the charge and discharge control unit stops the charging of the secondary battery To control the secondary battery.
 本発明により、電池の放電容量の劣化を抑制できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, deterioration of the discharge capacity of the battery can be suppressed. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施形態にかかる円筒形の非水系二次電池の一部切欠斜視図である。1 is a partially cutaway perspective view of a cylindrical non-aqueous secondary battery according to an embodiment of the present invention. 本発明の一実施形態に係る二次電池システムの概略構成図である。1 is a schematic configuration diagram of a secondary battery system according to an embodiment of the present invention. 本発明の一実施形態に係る二次電池システムのシステムフロー図である。It is a system flow figure of the secondary battery system concerning one embodiment of the present invention. 制御部による充電処理における蓄電装置の充電状態、温度、及び充電電流の時系列変化を例示する説明図である。It is explanatory drawing which illustrates the time-sequential change of the charge condition of the electrical storage apparatus in the charging process by a control part, temperature, and charging current.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 図1は本実施形態の非水系二次電池(以下、単に電池とも表記する)を示している。複合リチウム酸化物を活物質とする正極板11とリチウムイオンを保持する材料を活物質とする負極板12とをセパレータ13を介して渦巻き状に捲回した電極捲回群22を作製した後、電極捲回群22を底の有る円筒形の電池缶26の内部に収容する。電極捲回群22の下部より導出した負極タブ24を電池缶26の底部に溶接し、次いで電極捲回群22の上部より導出した正極タブ23を電池蓋25に溶接する。電池缶26には所定の電解液を注入し、電池缶26の開口部に絶縁性ガスケット(図示せず)を周辺に取り付けた電池蓋25を取り付けて、かしめる構成にしている。ここで捲回軸21側を内周側31とし、その外側を外周側32とする。本実施例では、非水系二次電池としてリチウムイオン二次電池を用いているが、ナトリウムイオンなどアルカリ金属イオンの挿入・離脱が可能な正極と負極を用いた非水系二次電池を用いても良い。 FIG. 1 shows a non-aqueous secondary battery (hereinafter also simply referred to as a battery) of this embodiment. After producing an electrode winding group 22 in which a positive electrode plate 11 using a composite lithium oxide as an active material and a negative electrode plate 12 using a material holding lithium ions as an active material are wound in a spiral through a separator 13, The electrode winding group 22 is accommodated in a cylindrical battery can 26 having a bottom. The negative electrode tab 24 led out from the lower part of the electrode winding group 22 is welded to the bottom of the battery can 26, and then the positive electrode tab 23 led out from the upper part of the electrode winding group 22 is welded to the battery lid 25. A predetermined electrolytic solution is injected into the battery can 26, and a battery lid 25 having an insulating gasket (not shown) attached to the periphery is attached to the opening of the battery can 26 and caulked. Here, the winding shaft 21 side is an inner peripheral side 31 and the outer side is an outer peripheral side 32. In this example, a lithium ion secondary battery is used as a non-aqueous secondary battery, but a non-aqueous secondary battery using a positive electrode and a negative electrode capable of inserting and removing alkali metal ions such as sodium ions can also be used. good.
 正極板11に塗布された正極活物質としては、例えば、コバルト酸リチウム及びその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウム及びその変性体(一部ニッケルをコバルト置換させたもの)、マンガン酸リチウム及びその変性体、およびこれらの複合酸化物(ニッケル、コバルト、マンガン)が挙げることができる。 Examples of the positive electrode active material applied to the positive electrode plate 11 include lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (partially nickel). ), Lithium manganate and modified products thereof, and composite oxides thereof (nickel, cobalt, manganese).
 このとき正極用導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラックや各種グラファイトを単独、あるいは組み合わせて用いることができる。 At this time, as the conductive agent for the positive electrode, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and various graphites can be used alone or in combination.
 正極用結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着剤などを用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着剤中に混入させることも可能である。 As the positive electrode binder, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. It is also possible to mix an acrylate monomer or an acrylate oligomer having a reactive functional group introduced into the binder.
 次に、負極板12に塗布された負極活物質としては、各種天然黒鉛、人造黒鉛、シリサイドなどのシリコン系複合材料、及び各種金属塑性材料を用いることができる。 Next, as the negative electrode active material applied to the negative electrode plate 12, various kinds of natural graphite, artificial graphite, silicon-based composite materials such as silicide, and various metal plastic materials can be used.
 負極用結着剤としては、PVdFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオンを受入れ性向上の観点から、スチレン-ブタジエン共重合体ゴム粒子(SBR)およびその変性体に、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂などを併用、もしくは少量添加するのがより好ましい。 Various binders such as PVdF and modified products thereof can be used as the negative electrode binder. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof can be used. It is more preferable to use a cellulosic resin such as carboxymethyl cellulose (CMC) in combination or to add a small amount.
 このとき負極用導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラックや各種グラファイトを単独、あるいは組み合わせて用いることができる。 At this time, as the conductive agent for the negative electrode, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and various graphites can be used alone or in combination.
 セパレータについては、リチウムイオン二次電池の使用範囲に耐えうる組成であれば、特に限定されないが、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを単一あるいは複合して用いるのが一般的であり、また態様として好ましい。このセパレータの厚みに限定されないが、10~40μmが好ましい。 The separator is not particularly limited as long as it is a composition that can withstand the range of use of the lithium ion secondary battery, but it is common to use a single or composite microporous film of an olefin resin such as polyethylene or polypropylene. Yes, and preferred as an embodiment. The thickness of the separator is not limited, but 10 to 40 μm is preferable.
 電解液については、電解質塩としてLiPF6及びLiBF4などの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独もしくは組み合わせて用いることができる。また、正極電極及び負極電極上に良好な皮膜を形成させ、過充放電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキルベンゼン(CHB)およびその変性体を用いることが好ましい。 For the electrolytic solution, it is possible to use various lithium compounds such as LiPF 6 and LiBF 4 as an electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), or methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. Further, in order to form a good film on the positive electrode and the negative electrode and to ensure the stability at the time of overcharge / discharge, it is preferable to use vinylene carbonate (VC), cyclohexylbenzene (CHB) or a modified product thereof. .
 本実施形態における電極捲回群の形状は必ずしも真円筒形である必要はなく、捲回群断面が楕円である長円筒形や捲回断面が長方形の様な角柱の様な形状でもよい。代表的な使用形態としては、筒状で底のある電池缶に電極捲回群と電解液を充填し、電極板から電流を取り出すタブがキャップと電池缶に溶接された状態で封じられている形態が好ましい。
しかし、特にこの形態に限定されない。
The shape of the electrode winding group in the present embodiment is not necessarily a true cylindrical shape, and may be a long cylindrical shape whose winding group cross section is an ellipse or a prismatic shape such as a rectangular winding cross section. As a typical use form, a cylindrical battery can with a bottom is filled with an electrode winding group and an electrolyte, and a tab for taking out current from the electrode plate is sealed in a state welded to the cap and the battery can. Form is preferred.
However, it is not particularly limited to this form.
 また、電極捲回群を充填する電池缶は、特に限定されるものではないが、耐腐食のために鉄にメッキを施した電池缶、ステンレス鋼製電池缶など、強度、耐腐食性、加工性に優れるものが好ましい。また、アルミニウム合金や各種エンジニアリングプラスティックを使用して軽量化をはかることも可能であり、各種エンジニアリングプラスティックと金属との併用も可能である。 In addition, the battery can that fills the electrode winding group is not particularly limited. However, such as a battery can plated with iron for corrosion resistance, a stainless steel battery can, etc., strength, corrosion resistance, processing Those having excellent properties are preferred. It is also possible to reduce the weight by using an aluminum alloy or various engineering plastics, and it is also possible to use various engineering plastics and metals together.
 次に、図2に二次電池システムを示す。組電池41は図1の電池を複数直列及び並列に組み合わせている。この組電池41の状態を検出するために、バッテリーコントローラ51を備える。このバッテリーコントローラ51(充放電制御部)は組電池41の電池電圧、充放電電流、電池表面温度を検出し、また、累積充放電時間、累積充放電電気量、累積時間を測定している。組電池41は、複数のリチウム単電池(リチウムセル)を電気的に直列あるいは並列あるいは直並列に接続したものから構成されている。 Next, Fig. 2 shows the secondary battery system. The assembled battery 41 combines a plurality of the batteries of FIG. 1 in series and in parallel. In order to detect the state of the assembled battery 41, a battery controller 51 is provided. The battery controller 51 (charge / discharge control unit) detects the battery voltage, charge / discharge current, and battery surface temperature of the assembled battery 41, and measures the accumulated charge / discharge time, accumulated charge / discharge electricity amount, and accumulated time. The assembled battery 41 is composed of a plurality of single lithium batteries (lithium cells) electrically connected in series, in parallel, or in series-parallel.
 さらに組電池41とバッテリーコントローラ51を並列に組み合わせ、バッテリーコントローラ51で得られたデータを全て全体コントローラ61に送信する。全体コントローラ61では、各バッテリーコントローラ51から得られたデータに応じて、各電池の充放電電流値及びその時間を各バッテリーコントローラ51にデータ送信する。 Further, the assembled battery 41 and the battery controller 51 are combined in parallel, and all the data obtained by the battery controller 51 is transmitted to the overall controller 61. The overall controller 61 transmits the charge / discharge current value and the time of each battery to each battery controller 51 in accordance with the data obtained from each battery controller 51.
 バッテリーコントローラ51はCPU、ROM、RAMを有し、所定のプログラムによって作動するマイクロコンピュータを含んでいる。そして、このバッテリーコントローラ51は全体コントローラ61から送信されたデータを基に組電池41の充放電制御を行う。 The battery controller 51 has a CPU, ROM, and RAM, and includes a microcomputer that operates according to a predetermined program. The battery controller 51 performs charge / discharge control of the assembled battery 41 based on data transmitted from the overall controller 61.
 バッテリーコントローラ51が行う制御のうち、内部抵抗値を検知もしくは推定する制御機能(機構)を内部抵抗検知部という。また、本発明では放電制御方法に特徴を有しており、放電に関する制御機能(機構)を放電制御部という。 Among the controls performed by the battery controller 51, the control function (mechanism) for detecting or estimating the internal resistance value is referred to as an internal resistance detection unit. Further, the present invention has a feature in the discharge control method, and a control function (mechanism) relating to discharge is referred to as a discharge control unit.
 全体コントローラ61はバッテリーコントローラ同様、CPU、ROM、RAMを有し、所定のプログラムによって作動するマイクロコンピュータを含んでいる。そして、バッテリーコントローラ51と通信ケーブルで接続され、それぞれ双方向で通信が可能となっており、各組電池41の状態に応じて様々な制御を行う。 The overall controller 61 has a CPU, a ROM, and a RAM as well as a battery controller, and includes a microcomputer that operates according to a predetermined program. And it connects with the battery controller 51 with a communication cable, each can communicate bidirectionally, and performs various control according to the state of each assembled battery 41. FIG.
 電圧検出部42では、組電池41の電圧を検出する。検出する電池電圧は組電池41を構成する一つの電池(リチウムセル)もしくは、電池を複数個直列に接続した電池群、及び電池を複数個直並列に接続した組電池の電圧が考えられるが、測定する電池電圧は特に限定されるものではない。 The voltage detection unit 42 detects the voltage of the assembled battery 41. The battery voltage to be detected may be one battery (lithium cell) constituting the assembled battery 41, a battery group in which a plurality of batteries are connected in series, or a voltage of an assembled battery in which a plurality of batteries are connected in series and parallel. The battery voltage to be measured is not particularly limited.
 電流検出部43では、組電池41の充放電電流の値を検出する。検出方法としては、検流計、シャント抵抗を用いた検流、及びクランプメータなどが考えられるが、これに限定されるものではなく、電流値を検出する手段であれば、如何なる手段も用いることができる。 The current detection unit 43 detects the value of the charge / discharge current of the assembled battery 41. As a detection method, a galvanometer, a galvanometer using a shunt resistor, a clamp meter, and the like can be considered, but the present invention is not limited to this, and any means can be used as long as it is a means for detecting a current value. Can do.
 温度検出部44では、組電池41の温度を検出する。温度を検出する手段は、熱電対、サーミスタ等が考えられるが、特に限定されるものではない。また、温度を検出する箇所は電池表面、電池内部、組電池が収められている筺体の表面温度、及び組電池41の周囲環境温度が考えられる。 The temperature detection unit 44 detects the temperature of the assembled battery 41. A means for detecting the temperature may be a thermocouple, a thermistor, or the like, but is not particularly limited. Further, the location where the temperature is detected may be the battery surface, the inside of the battery, the surface temperature of the casing in which the assembled battery is housed, and the ambient temperature of the assembled battery 41.
 これら電圧検出部42、電流検出部43、温度検出部44をまとめて電池状態検出部という。組電池41、電圧検出部42、電流検出部43、温度検出部44、バッテリーコントローラ51が合わさって二次電池モジュールとなる。バッテリーコントローラ51に電圧検出部42、電流検出部43、温度検出部44が組み込まれていてもよい。 These voltage detector 42, current detector 43, and temperature detector 44 are collectively referred to as a battery state detector. The assembled battery 41, voltage detection unit 42, current detection unit 43, temperature detection unit 44, and battery controller 51 are combined to form a secondary battery module. The battery controller 51 may incorporate a voltage detection unit 42, a current detection unit 43, and a temperature detection unit 44.
 タイマーは、バッテリーコントローラ内に設けられ、組電池41の充放電に関する時間を計測する。例えば、放電を開始してからの経過時間等を計測するものである。 The timer is provided in the battery controller and measures the time related to charging / discharging of the assembled battery 41. For example, the elapsed time after the start of discharge is measured.
 電気負荷71は、例えば自動車であれば、ヒータ、電動ブレーキ、電動パワーステアリング、電動モータであってよい。 For example, in the case of an automobile, the electric load 71 may be a heater, an electric brake, an electric power steering, or an electric motor.
 以上のように、本実施形態によれば、組電池41を複数個並列に接続した二次電池システムにおいて、組電池41に対して、バッテリーコントローラ51をそれぞれ有し、バッテリーコントーラ51で組電池41の状態を検出し、その組電池41の状態に応じて制御することで、リチウムイオン二次電池の電池容量低下及び内部抵抗上昇を抑制し、長寿命な二次電池システムを提供することができる。 As described above, according to the present embodiment, in the secondary battery system in which a plurality of the assembled batteries 41 are connected in parallel, the battery controller 51 is provided for each of the assembled batteries 41. By detecting the state of the battery and controlling it according to the state of the assembled battery 41, it is possible to suppress a decrease in battery capacity and an increase in internal resistance of the lithium ion secondary battery and provide a long-life secondary battery system. .
 次に、バッテリーコントローラ51の充放電制御方法について説明する。
 図3は本発明の実施形態に係る二次電池システムのフロー図である。
 最初に、リチウムイオン二次電池の充電を開始する命令を全体コントローラ61からバッテリーコントローラ51に送り、各バッテリーコントローラ51は各組電池41の充電を開始する(ステップS001)。
Next, a charge / discharge control method of the battery controller 51 will be described.
FIG. 3 is a flowchart of the secondary battery system according to the embodiment of the present invention.
First, a command to start charging of the lithium ion secondary battery is sent from the overall controller 61 to the battery controller 51, and each battery controller 51 starts charging each assembled battery 41 (step S001).
 バッテリーコントローラ51は充電開始後、電圧検出部42により電池電圧V、電流検出部43により充電電流I、温度検出部44により電池温度Tを計測し、タイマーにより充電時間t(充電開始からの経過時間)を計測する。 After starting charging, the battery controller 51 measures the battery voltage V by the voltage detection unit 42, the charging current I by the current detection unit 43, and the battery temperature T by the temperature detection unit 44, and the charging time t (elapsed time from the start of charging) by a timer. ).
 バッテリーコントローラ51は電池電圧から充電状態(State of Charge:SOC)を算出する。SOCの算出方法として、例えば[数2]に基づいて算出される。ここでVOは充電開始前の開回路電圧を示し、Q(V0)は充電開始前の電池容量を示す([数1])。また、初期の電池容量をQbとする(ステップS002)。 The battery controller 51 calculates a state of charge (SOC) from the battery voltage. As an SOC calculation method, for example, it is calculated based on [Equation 2]. Here, V O indicates an open circuit voltage before the start of charging, and Q (V 0 ) indicates a battery capacity before the start of charging ([Equation 1]). Further, the initial battery capacity is set to Q b (step S002).
[数1]
  Q(V0)=α1O+β1
[数2]
  SOC1=Q(VO)/Qb×100
[Equation 1]
Q (V 0 ) = α 1 V O + β 1
[Equation 2]
SOC 1 = Q (V O ) / Q b × 100
 ステップS002の後に、バッテリーコントローラ51は組電池41のSOC1をSOC第1閾値SOCmと比較する(ステップS003)。ここで、組電池41のSOC1がSOC第1閾値SOCm以下であればステップS004に進み、SOC第1閾値SOCmより高ければステップS012に進む。SOC第1閾値SOCmとして具体的には、20%以上35%以下であることが望ましい。 After step S002, the battery controller 51 compares the SOC 1 of the assembled battery 41 with the SOC first threshold SOC m (step S003). If SOC 1 of the battery pack 41 is equal to or lower than the SOC first threshold value SOC m , the process proceeds to step S004, and if higher than the SOC first threshold value SOC m , the process proceeds to step S012. Specifically, the SOC first threshold value SOC m is desirably 20% or more and 35% or less.
 ステップS004では、バッテリーコントローラ51は温度検出部44により、電池温度T1を計測し、ステップS005で計測した電池温度T1と電池温度第1閾値Tmと比較する。そして、電池温度T1が電池温度第1閾値Tmより高ければステップS006に進み、電池温度第1閾値Tm以下であればステップS007に進む。 In step S004, the battery controller 51 by the temperature detector 44 measures the battery temperatures T 1, compared with the battery temperature T 1 of the battery temperature first threshold value T m measured in step S005. Then, if the battery temperature T 1 is higher than the battery temperature first threshold value T m proceeds to step S006, the process proceeds to step S007 if less battery temperature first threshold T m.
 ステップS006では、計測した電池温度T1が電池温度第2閾値Tn以下であればステップS008へ進み、電池温度第2閾値Tnより高ければステップS009に進む。電池温度第1閾値Tmとして具体的には、5℃以上15℃以下、電池温度第2閾値Tnとして具体的には、45℃以上55℃以下であることが望ましい。電池温度第2閾値Tnは電池温度第1閾値Tmより大きい。 In step S006, the battery temperatures T 1 measured the flow advances to step S008 if less battery temperature second threshold value T n, the process proceeds to step S009 is higher than the battery temperature second threshold value T n. Specifically, the battery temperature first threshold value T m is desirably 5 ° C. or more and 15 ° C. or less, and the battery temperature second threshold value T n is specifically 45 ° C. or more and 55 ° C. or less. The battery temperature second threshold value T n is larger than the battery temperature first threshold value T m .
 ステップS007では、バッテリーコントローラ51は組電池41を充電する充電電流を充電電流第1閾値Im以下とする。このとき、充電電流第1閾値Imは一定電流でも良いし、例えば[数3]に基づいて算出されても良い。[数3]のようにSOCと温度の値によって充電電流を制御することで、黒鉛のステージ構造が変化しない場所では、充電電流を高めに設定し、黒鉛のステージ構造が変化する場所では、充電電流を低めに設定するなど、きめ細かい制御ができ、一定電流よりも劣化を抑制できる。ただし、充電電流第1閾値Imを一定電流とすることにより、低コスト化が望める。充電電流第1閾値ImはSOCと電池温度Tを変数とする値であり、α2、α3、β2は定数である。 In step S007, the battery controller 51 to the charging current for charging the assembled battery 41 and less charging current first threshold I m. At this time, the charging current first threshold value Im may be a constant current, or may be calculated based on, for example, [Equation 3]. By controlling the charging current according to the SOC and temperature values as shown in [Equation 3], the charging current is set higher in a place where the graphite stage structure does not change, and charging is performed in the place where the graphite stage structure changes. Fine control, such as setting the current lower, can be performed, and deterioration can be suppressed compared to a constant current. However, a reduction in cost can be expected by setting the charging current first threshold Im to a constant current. The first threshold value I m charging current is a value as a variable SOC and the battery temperature T, α 2, α 3, β 2 are constants.
[数3]
  Im(SOC、T)=α2SOC+α3T+β2 
[Equation 3]
I m (SOC, T) = α 2 SOC + α 3 T + β 2
 ステップS008では、バッテリーコントローラ51は組電池41を充電する充電電流を充電電流第2閾値In以下とする。このとき充電電流第2閾値Inは一定電流でも良いし、例えば[数4]に基づいて算出されても良い。SOCが高いと劣化に対する温度の感度が高くなるので、[数4]のようにSOCと温度の値によって充電電流を制御することで、高温、高SOCほど電流を下げて、ジュール発熱による温度上昇を抑えることができ、一定電流よりも劣化を抑制できる。ただし、充電電流第2閾値Inを一定電流とすることにより、低コスト化が望める。充電電流第2閾値InはSOCと電池温度Tを変数とする値であり、α4、α5、β3は定数である。 In step S008, the battery controller 51 sets the charging current for charging the assembled battery 41 to be equal to or less than the charging current second threshold value In. The time to charge current second threshold I n may be a constant current, may be calculated on the basis of, for example, [Equation 4]. As the SOC is high, the sensitivity of the temperature to deterioration is high, so by controlling the charging current according to the value of the SOC and temperature as shown in [Equation 4], the current is decreased at higher temperatures and higher SOC, and the temperature rises due to Joule heat generation. And the deterioration can be suppressed as compared with a constant current. However, by the charging current second threshold I n constant current, cost reduction can be expected. The second threshold value I n charge current is a value as a variable SOC and the battery temperature T, α 4, α 5, β 3 are constants.
[数4]
  In(SOC、T)=α4SOC+α5T+β3 
[Equation 4]
I n (SOC, T) = α 4 SOC + α 5 T + β 3
 ステップS009では、バッテリーコントローラ51は組電池41の充電を一時的に停止する。充電停止期間は、一定期間でも良いし、電池温度T1が電池温度第3閾値TL以下となるまで停止しても良い。まずは温度TLで規定しておいて、温度が一定期間TLより下がらなければ時間で規定して充電停止期間を終了させることが望ましい。 In step S009, the battery controller 51 temporarily stops the charging of the assembled battery 41. The charging stop period may be a fixed period or may be stopped until the battery temperature T 1 becomes equal to or lower than the battery temperature third threshold value TL . It is desirable to first define the temperature T L and , if the temperature does not fall below a certain period T L , define the time and end the charging stop period.
 ステップS010では、バッテリーコントローラ51は電圧検出部42により算出した電池電圧VからSOC2を再度算出する。SOC2の算出方法として、例えば[数8]に基づいて算出される。ここで、[数5]におけるR(SOC、T)は組電池41の電池内部抵抗を示し、[数6]におけるVO′は充電期間中の電池電圧Vから想定される開回路電圧を示し、[数7]におけるQ(VO′)は充電期間中の電池容量を示す。充電期間中の電池容量Q(VO′)は充電開始前の電池容量Qに充電電流×時間の積算で求められる容量を足し合わせて算出しても良いし、[数7]に基づいて算出しても良い。 In step S010, the battery controller 51 calculates SOC 2 again from the battery voltage V calculated by the voltage detector 42. For example, the SOC 2 is calculated based on [Equation 8]. Here, R (SOC, T) in [Equation 5] indicates the battery internal resistance of the assembled battery 41, and V O ′ in [Equation 6] indicates the open circuit voltage assumed from the battery voltage V during the charging period. Q (V O ') in [Equation 7] indicates the battery capacity during the charging period. The battery capacity Q (V O ′) during the charging period may be calculated by adding the battery capacity Q before the start of charging to the capacity obtained by integrating the charging current × time, or may be calculated based on [Equation 7]. You may do it.
[数5]
  R(SOC、T)=α6SOC+α7T+β4
[数6]
  VO′=V―I×R(T)
[数7]
  Q(VO′)=α1O′+β1
[数8]
  SOC2=Q(VO′)/Qb×100
[Equation 5]
R (SOC, T) = α 6 SOC + α 7 T + β 4
[Equation 6]
V O ′ = V−I × R (T)
[Equation 7]
Q (V O ') = α 1 V O ' + β 1
[Equation 8]
SOC 2 = Q (V O ′) / Q b × 100
 ステップS010の後に、バッテリーコントローラ51は組電池41のSOC2をSOC第1閾値SOCmと比較する(ステップS011)。ここで、組電池41のSOC2がSOC第1閾値SOCm以下であればステップS004に進み、SOC第1閾値SOCmより高ければステップS012に進む。 After step S010, the battery controller 51 compares the SOC 2 of the assembled battery 41 with the SOC first threshold value SOC m (step S011). If the SOC 2 of the battery pack 41 is equal to or lower than the SOC first threshold value SOC m , the process proceeds to step S004, and if it is higher than the SOC first threshold value SOC m , the process proceeds to step S012.
 ステップS011の後に、バッテリーコントローラ51は組電池41のSOC2をSOC第2閾値SOCnと比較する(ステップS012)。ここで、組電池41のSOC2がSOC第2閾値SOCn以下であればステップS013に進み、SOC第2閾値SOCnより高ければステップS018に進む。HEVであれば、SOC第2閾値SOCnは60~70%、PHEV、EVであれば、SOC第2閾値SOCnは90~100%程度であることが望ましい。SOC第2閾値SOCnはSOC第1閾値SOCmより大きい。 After step S011, the battery controller 51 compares the SOC 2 of the assembled battery 41 with the SOC second threshold value SOC n (step S012). If the SOC 2 of the battery pack 41 is equal to or lower than the SOC second threshold value SOC n , the process proceeds to step S013, and if it is higher than the SOC second threshold value SOC n , the process proceeds to step S018. In the case of HEV, the SOC second threshold value SOC n is preferably 60 to 70%, and in the case of PHEV and EV, the SOC second threshold value SOC n is preferably about 90 to 100%. SOC second threshold SOC n is greater than SOC first threshold SOC m.
 ステップS013では、バッテリーコントローラ51は温度検出部44により電池温度T2を計測し、ステップS014で計測した電池温度T2と電池温度第2閾値Tnと比較する。そして電池温度T2が電池温度第2閾値Tn以下であればステップS015に進み、高ければステップS016に進む。ここで電池温度第2閾値Tnは[数9]で算出されても良い。電池温度第2閾値TnはSOCを変数とする値であり、α8、β5は定数である。 In step S013, the battery controller 51 by the temperature detector 44 measures the battery temperature T 2, compared with the battery temperature T 2 and the battery temperature second threshold value T n measured in step S014. If the battery temperature T 2 is equal to or lower than the battery temperature second threshold value T n , the process proceeds to step S015, and if higher, the process proceeds to step S016. Here, the battery temperature second threshold value T n may be calculated by [Equation 9]. The battery temperature second threshold value T n is a value with SOC as a variable, and α 8 and β 5 are constants.
[数9]
  Tn(SOC)=α8SOC+β5 
[Equation 9]
T n (SOC) = α 8 SOC + β 5
 ステップS015では、バッテリーコントローラ51は組電池41を充電する充電電流を充電電流第3閾値IO以下に制御する。このとき充電電流第2閾値IOは一定電流でも良いし、例えば[数10]に基づいて算出されても良い。充電電流第3閾値IOは電池温度第2閾値Tnと同じ値にしても良いし、異なる値にしても良い。図4では電池温度第2閾値Tn=充電電流第3閾値IOとしている。 In step S015, the battery controller 51 controls the charging current for charging the assembled battery 41 to be equal to or lower than the charging current third threshold I O. At this time, the charging current second threshold I O may be a constant current, or may be calculated based on, for example, [Equation 10]. The charging current third threshold I O may be the same value as the battery temperature second threshold T n , or may be a different value. In FIG. 4, the battery temperature second threshold value T n = the charging current third threshold value I O.
[数10]
  I(SOC、T)=α9SOC+α10T+β6 
[Equation 10]
I (SOC, T) = α 9 SOC + α 10 T + β 6
 ステップS016では、バッテリーコントローラ51は組電池41への充電を一時的に停止する。充電停止期間は、一定期間でも良いし、電池温度T2が電池温度第3閾値TL以下となるまで停止しても良い。 In step S016, the battery controller 51 temporarily stops charging the assembled battery 41. The charging stop period may be a fixed period or may be stopped until the battery temperature T 2 becomes equal to or lower than the battery temperature third threshold value TL .
 ステップS017では、バッテリーコントローラ51は組電池41の電池電圧VからSOCを再度算出する。SOCの算出方法として、例えば[数8]に基づいて算出される。そして、組電池41のSOCがSOC第2閾値SOCn以下であればS013に進み、組電池41のSOCがSOC第2閾値SOCnより高ければS018に進む。 In step S017, the battery controller 51 calculates the SOC again from the battery voltage V of the assembled battery 41. As an SOC calculation method, for example, it is calculated based on [Equation 8]. If the SOC of the assembled battery 41 is equal to or lower than the SOC second threshold value SOC n , the process proceeds to S013. If the SOC of the assembled battery 41 is higher than the SOC second threshold value SOC n , the process proceeds to S018.
 ステップS018では、バッテリーコントローラ51は組電池41の充電を終了し、全体コントローラ61に充電終了の命令を送信する。 In step S018, the battery controller 51 ends the charging of the assembled battery 41, and transmits a charging end command to the overall controller 61.
 以上のように、リチウムイオン電池を充電する際に、充電状態の低い位置では、充電電流の値を小さく制御して負極活物質の膨張速度を抑えることで、負極活物質のマイクロクラックを抑制することができるため、長寿命な二次電池システムを提供することができる。 As described above, when charging a lithium ion battery, at a position where the charging state is low, the value of the charging current is controlled to be small to suppress the expansion rate of the negative electrode active material, thereby suppressing microcracks of the negative electrode active material. Therefore, a long-life secondary battery system can be provided.
 図4はバッテリーコントローラ51による充電処理における組電池41の充電状態、温度、及び充電電流の時系列変化を例示する説明図である。 FIG. 4 is an explanatory diagram illustrating time series changes in the charging state, temperature, and charging current of the assembled battery 41 in the charging process by the battery controller 51.
 図4に示すように時刻t01において、充電が開始された後、縦軸に示す組電池41の電池温度、及び充電状態(SOC)は時間の経過とともに上昇する。なお、図4においては、説明の便宜上、組電池41の温度が線形的に上昇しているが、あくまで例示であって、これに限定されるものではない。 As shown in FIG. 4, after charging is started at time t01, the battery temperature and the state of charge (SOC) of the assembled battery 41 shown on the vertical axis increase with the passage of time. In FIG. 4, for convenience of explanation, the temperature of the assembled battery 41 is linearly increased. However, the temperature is merely an example, and the present invention is not limited to this.
 バッテリーコントローラ51は、組電池41のSOCがSOC第1閾値SOCm以下、及び組電池の電池温度Tが電池温度第1閾値Tm以下と判定した場合、組電池41への充電電流を充電電流第1閾値Im以下となるように制御する(図4に示す時刻t01からt02の期間)。 When the battery controller 51 determines that the SOC of the assembled battery 41 is equal to or lower than the SOC first threshold value SOC m and the battery temperature T of the assembled battery is equal to or lower than the battery temperature first threshold value T m , the charging current to the assembled battery 41 is set as the charging current. controlled to be less than the first threshold value I m (period from the time t01 shown in FIG. 4 t02).
 バッテリーコントローラ51は、組電池41のSOC及び電池温度Tを継時的に測定しており、例えば組電池41の電池温度Tが電池温度第1閾値Tmを超えた場合、組電池41へ充電する充電電流を充電電流第2閾値In以下となるように制御する。ここで、充電電流の閾値はIm<Inの関係にある(図4に示す時刻t02からt03の期間)。 Battery controller 51 is to measure the SOC and the battery temperature T of the assembled battery 41 over time, for example, when the battery temperature T of the battery pack 41 exceeds the battery temperature first threshold value T m, the charging to the assembled battery 41 The charging current to be controlled is controlled to be equal to or lower than the charging current second threshold value In. Here, the threshold value of the charging current has a relationship of I m <I n (period from time t02 to t03 shown in FIG. 4).
 バッテリーコントローラ51は、組電池41の電池温度Tが電池温度第2閾値Tnを超えた場合、組電池41への充電を停止する。そして電池温度Tが電池温度第3閾値TL以下となった場合、充電を再開する(図4に示す時刻t03からt04、t06からt07、t08からt09の期間)。 When the battery temperature T of the assembled battery 41 exceeds the battery temperature second threshold value T n , the battery controller 51 stops charging the assembled battery 41. When the battery temperature T becomes equal to or lower than the battery temperature third threshold value T L , charging is restarted (periods from time t03 to t04, from t06 to t07, and from t08 to t09 shown in FIG. 4).
 バッテリーコントローラ51は、組電池41のSOCがSOC第1閾値SOCmを超えた場合、組電池41へ充電する充電電流を充電電流第2閾値In以下となるように制御する(図4に示す時刻t05からt06、t07からt08、t09からt10の期間)。 When the SOC of the assembled battery 41 exceeds the SOC first threshold value SOC m , the battery controller 51 controls the charging current for charging the assembled battery 41 to be equal to or lower than the charging current second threshold value In (shown in FIG. 4). (Time t05 to t06, t07 to t08, t09 to t10).
 バッテリーコントローラ51は組電池41の充電を終了し、全体コントローラ61に充電終了の命令を送信する(図4に示す時刻t10)。 The battery controller 51 ends the charging of the assembled battery 41 and transmits a charging end command to the overall controller 61 (time t10 shown in FIG. 4).
 以上のように、組電池41を充電する際に、SOCの低い位置が低く、かつ、電池温度が低い場合、充電電流の値を低く制御することで上述の通り劣化を抑制することができるため、長寿命な二次電池システムを提供することができる。 As described above, when the battery pack 41 is charged, if the position where the SOC is low is low and the battery temperature is low, the deterioration can be suppressed as described above by controlling the value of the charging current to be low. A long-life secondary battery system can be provided.
 本発明は上記実施形態に限定されるものではなく、その要旨に逸脱しない範囲で、適宜変更して適用できる。 The present invention is not limited to the above-described embodiment, and can be appropriately modified and applied without departing from the gist thereof.
 例えば、電池を捲回型のリチウムイオン二次電池としたが、複数の正極板と、複数の負極板とをセパレータを介して交互に積層してなる積層型のリチウムイオン二次電池に適用しても良い。 For example, although the battery is a wound type lithium ion secondary battery, the present invention is applied to a laminated type lithium ion secondary battery in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately laminated via separators. May be.
11 正極板
12 負極板
13 セパレータ
14 集電体
15 電極合剤層
21 捲回軸
22 電極捲回群
23 正極タブ
24 負極タブ
25 電池蓋
26 電池缶
31 内周側
32 外周側
41 組電池
42 電圧検出部
43 電流検出部
44 温度検出部
51 バッテリーコントローラ
61 全体コントローラ
71 電気負荷
DESCRIPTION OF SYMBOLS 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Current collector 15 Electrode mixture layer 21 Winding shaft 22 Electrode winding group 23 Positive electrode tab 24 Negative electrode tab 25 Battery cover 26 Battery can 31 Inner peripheral side 32 Outer peripheral side 41 Assembly battery 42 Voltage Detector 43 Current detector 44 Temperature detector 51 Battery controller 61 Overall controller 71 Electric load

Claims (8)

  1.  二次電池の充放電を制御する充放電制御部と、
     前記二次電池の電池温度を計測する電池状態検出部と、を備え、
     前記充放電制御部は、前記二次電池の充電状態SOC1を算出し、
     SOC1がSOC第1閾値SOCm以下の時に、前記電池状態検出部で前記二次電池の電池温度T1が計測され、
     T1が電池温度第1閾値Tm以下の時に、前記充放電制御部は前記二次電池を充電電流第1閾値Im以下で充電し、
     T1がTmより大きく、かつ、電池温度第2閾値Tn以下の時に、前記充放電制御部は前記二次電池を充電電流第2閾値In以下で充電し、
     T1がTmより大きく、かつ、Tnより大きい時に、前記充放電制御部は前記二次電池への充電を停止する二次電池システム。
    A charge / discharge control unit for controlling charge / discharge of the secondary battery;
    A battery state detection unit for measuring a battery temperature of the secondary battery,
    The charge / discharge control unit calculates a state of charge SOC 1 of the secondary battery,
    When the SOC 1 is equal to or lower than the SOC first threshold SOC m , the battery temperature detection unit measures the battery temperature T 1 of the secondary battery,
    When T 1 is less than or equal to the battery temperature first threshold value T m , the charge / discharge control unit charges the secondary battery with a charge current first threshold value I m or less,
    T 1 is greater than T m, and, when: the battery temperature second threshold value T n, the charging and discharging control unit charges the secondary battery by the following charging current second threshold value I n,
    The charging / discharging control unit stops charging the secondary battery when T 1 is greater than T m and greater than T n .
  2.  請求項1において、
     前記充放電制御部で充電された前記二次電池の充電状態SOC2がSOC第2閾値SOCn以下の時に、前記電池状態検出部で前記二次電池の電池温度T2が計測され、
      SOC1<SOC2、SOCm<SOCnであり、
     T2が電池温度第2閾値Tn以下である時、前記充放電制御部は前記二次電池をIn以下で充電し、
     T2がTnより大きい時、前記充放電制御部は前記二次電池への充電を停止する二次電池システム。
    In claim 1,
    When the state of charge SOC 2 of the secondary battery charged by the charge / discharge control unit is equal to or lower than the SOC second threshold value SOC n , the battery state detection unit measures the battery temperature T 2 of the secondary battery,
    SOC 1 <SOC 2 , SOC m <SOC n ,
    When T 2 is less than or equal to the battery temperature second threshold value T n , the charge / discharge control unit charges the secondary battery with I n or less,
    When T 2 is greater than T n , the charge / discharge control unit stops charging the secondary battery.
  3.  請求項1または2において、
     Tnが前記二次電池の充電状態に応じて変化する二次電池システム。
    In claim 1 or 2,
    A secondary battery system in which T n changes in accordance with a state of charge of the secondary battery.
  4.  請求項1乃至3のいずれかにおいて、
     SOCmが20%以上35%以下にある二次電池システム。
    In any one of Claims 1 thru | or 3,
    A secondary battery system having an SOC m of 20% to 35%.
  5.  請求項2乃至4のいずれかにおいて、
     Tmが5℃以上15℃以下、
     Tnが45℃以上55℃以下である二次電池システム。
    In any of claims 2 to 4,
    T m is 5 ° C. or more and 15 ° C. or less,
    A secondary battery system in which T n is 45 ° C. or higher and 55 ° C. or lower.
  6.  請求項1乃至5のいずれかにおいて、
     ImまたはInは一定電流である二次電池システム。
    In any one of Claims 1 thru | or 5,
    Secondary battery system I m or I n is a constant current.
  7.  請求項1乃至6のいずれかの二次電池システムを用いた二次電池モジュール。 A secondary battery module using the secondary battery system according to claim 1.
  8.  二次電池の充放電を制御する充放電制御部と、
     前記二次電池の電池温度を計測する電池状態検出部と、を備えた二次電池の制御方法であって、
     前記充放電制御部は、前記二次電池の充電状態SOC1を算出し、
     SOC1がSOC第1閾値SOCm以下の時に、前記電池状態検出部で前記二次電池の電池温度T1が計測され、
     T1が電池温度第1閾値Tm以下の時に、前記充放電制御部は前記二次電池を充電電流第1閾値Im以下で充電し、
     T1がTmより大きく、かつ、電池温度第2閾値Tn以下の時に、前記充放電制御部は前記二次電池を充電電流第2閾値In以下で充電し、
     T1がTmより大きく、かつ、Tnより大きい時に、前記充放電制御部は前記二次電池への充電を停止する二次電池の制御方法。
    A charge / discharge control unit for controlling charge / discharge of the secondary battery;
    A battery state detection unit for measuring a battery temperature of the secondary battery, and a control method of the secondary battery comprising:
    The charge / discharge control unit calculates a state of charge SOC 1 of the secondary battery,
    When the SOC 1 is equal to or lower than the SOC first threshold SOC m , the battery temperature detection unit measures the battery temperature T 1 of the secondary battery,
    When T 1 is less than or equal to the battery temperature first threshold value T m , the charge / discharge control unit charges the secondary battery with a charge current first threshold value I m or less,
    T 1 is greater than T m, and, when: the battery temperature second threshold value T n, the charging and discharging control unit charges the secondary battery by the following charging current second threshold value I n,
    The secondary battery control method, wherein when T 1 is greater than T m and greater than T n , the charge / discharge control unit stops charging the secondary battery.
PCT/JP2012/078095 2011-11-24 2012-10-31 Secondary battery system, secondary battery module using secondary battery system, and method for controlling secondary battery WO2013077157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-255703 2011-11-24
JP2011255703A JP5771512B2 (en) 2011-11-24 2011-11-24 Secondary battery system, secondary battery module using the secondary battery system, and secondary battery control method

Publications (1)

Publication Number Publication Date
WO2013077157A1 true WO2013077157A1 (en) 2013-05-30

Family

ID=48469605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078095 WO2013077157A1 (en) 2011-11-24 2012-10-31 Secondary battery system, secondary battery module using secondary battery system, and method for controlling secondary battery

Country Status (2)

Country Link
JP (1) JP5771512B2 (en)
WO (1) WO2013077157A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545893A (en) * 2013-10-30 2014-01-29 上海斐讯数据通信技术有限公司 Mobile terminal charging safety control method and system
GB2568104A (en) * 2017-11-07 2019-05-08 Rotork Controls Actuating mechanism with integral battery
CN111183561A (en) * 2018-09-12 2020-05-19 Oppo广东移动通信有限公司 Charging control method and device, electronic equipment and computer readable storage medium
CN114407727A (en) * 2022-01-24 2022-04-29 四川野马汽车股份有限公司 Method and system for estimating charging remaining time of electric automobile

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535935B (en) * 2014-12-31 2017-07-21 普天新能源车辆技术有限公司 A kind of capacity check method and device of power battery pack
CN106816658B (en) * 2015-11-30 2019-04-19 南京德朔实业有限公司 Battery pack and its guard method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122839A (en) * 1997-10-16 1999-04-30 Yamaha Motor Co Ltd Battery-charging controller
JP2000197212A (en) * 1998-12-28 2000-07-14 Yamaha Motor Co Ltd Power supply system for motor-driven car
JP2000209789A (en) * 1999-01-11 2000-07-28 Toyota Motor Corp Charge/discharge control device for secondary battery
JP2001314046A (en) * 2000-05-01 2001-11-09 Toyota Motor Corp Charging apparatus and method of battery pack and electric vehicle
JP2007330008A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Charging circuit, charging system, and charging method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5502282B2 (en) * 2007-07-13 2014-05-28 三洋電機株式会社 How to charge the battery pack
JP5537992B2 (en) * 2010-02-24 2014-07-02 三洋電機株式会社 Secondary battery charging method, secondary battery charging control device, and battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122839A (en) * 1997-10-16 1999-04-30 Yamaha Motor Co Ltd Battery-charging controller
JP2000197212A (en) * 1998-12-28 2000-07-14 Yamaha Motor Co Ltd Power supply system for motor-driven car
JP2000209789A (en) * 1999-01-11 2000-07-28 Toyota Motor Corp Charge/discharge control device for secondary battery
JP2001314046A (en) * 2000-05-01 2001-11-09 Toyota Motor Corp Charging apparatus and method of battery pack and electric vehicle
JP2007330008A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Charging circuit, charging system, and charging method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545893A (en) * 2013-10-30 2014-01-29 上海斐讯数据通信技术有限公司 Mobile terminal charging safety control method and system
GB2568104A (en) * 2017-11-07 2019-05-08 Rotork Controls Actuating mechanism with integral battery
US11742676B2 (en) 2017-11-07 2023-08-29 Rotork Controls Limited Actuating mechanism with integral battery
CN111183561A (en) * 2018-09-12 2020-05-19 Oppo广东移动通信有限公司 Charging control method and device, electronic equipment and computer readable storage medium
EP3675316A4 (en) * 2018-09-12 2020-11-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method and apparatus, electronic device and computer-readable storage medium
US11201359B2 (en) 2018-09-12 2021-12-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method and apparatus, and computer readable storage medium
CN111183561B (en) * 2018-09-12 2024-02-23 Oppo广东移动通信有限公司 Charging control method and device, electronic equipment and computer readable storage medium
CN114407727A (en) * 2022-01-24 2022-04-29 四川野马汽车股份有限公司 Method and system for estimating charging remaining time of electric automobile

Also Published As

Publication number Publication date
JP5771512B2 (en) 2015-09-02
JP2013110901A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5298095B2 (en) Secondary battery system
JP5637878B2 (en) Secondary battery system
JP5337842B2 (en) Secondary battery system
US10700376B2 (en) Methods for fast-charging and detecting lithium plating in lithium ion batteries
US10135267B2 (en) Secondary battery system
US8460812B2 (en) Lithium secondary battery
JP5940145B2 (en) Secondary battery system, secondary battery deterioration state judgment method
JP5779528B2 (en) Lithium ion secondary battery system and control method of lithium ion secondary battery system
JP6441125B2 (en) Nonaqueous electrolyte battery and battery pack
JP5771512B2 (en) Secondary battery system, secondary battery module using the secondary battery system, and secondary battery control method
CN110247101B (en) Method for rapidly charging a battery
JP5841827B2 (en) Secondary battery system and control method of secondary battery system
KR101811952B1 (en) Method for sorting reusable nonaqueous electrolyte secondary battery
JP5618156B2 (en) Manufacturing method of sealed lithium secondary battery
JP2012028044A (en) Lithium ion battery
JP7085136B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP2023141511A (en) Non-aqueous secondary battery manufacturing method, non-aqueous secondary battery testing device, and non-aqueous secondary battery testing method
JP2022072249A (en) Control method of lithium ion secondary battery
JP2022086167A (en) Lithium-ion secondary battery control method
JP2017097956A (en) Nonaqueous electrolyte secondary battery
JP2016181419A (en) Lithium ion secondary battery control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852094

Country of ref document: EP

Kind code of ref document: A1