WO2013076907A1 - Fin-tube type heat exchanger - Google Patents

Fin-tube type heat exchanger Download PDF

Info

Publication number
WO2013076907A1
WO2013076907A1 PCT/JP2012/006625 JP2012006625W WO2013076907A1 WO 2013076907 A1 WO2013076907 A1 WO 2013076907A1 JP 2012006625 W JP2012006625 W JP 2012006625W WO 2013076907 A1 WO2013076907 A1 WO 2013076907A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
fin
fin collar
collar
tube
Prior art date
Application number
PCT/JP2012/006625
Other languages
French (fr)
Japanese (ja)
Inventor
横山 昭一
道人 尾崎
薫 細川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013545763A priority Critical patent/JP5988177B2/en
Priority to KR1020147005248A priority patent/KR20140103895A/en
Priority to CN201280042312.8A priority patent/CN103765148B/en
Publication of WO2013076907A1 publication Critical patent/WO2013076907A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins

Definitions

  • the present invention relates to a finned tube heat exchanger that transfers heat between a gas such as air flowing between a plurality of stacked flat fins and a fluid such as water or refrigerant flowing in a heat transfer tube.
  • a finned tube heat exchanger used in air conditioners such as room air conditioners, packaged air conditioners, and car air conditioners, heat pump hot water heaters, refrigerators, freezers, and the like.
  • heat exchangers incorporated in air conditioners such as room air conditioners and refrigerators are fin-tube heat exchangers.
  • FIG. 4 is a partial cross-sectional schematic front view for explaining a general finned tube heat exchanger 1.
  • the fin tube type heat exchanger 1 has a plurality of heat transfer fins 31 arranged in parallel with each other at a predetermined interval, and a substantially cylindrical shape provided so as to rise substantially orthogonal to the plane of the heat transfer fins 31.
  • the heat transfer tube 33 is expanded and brought into close contact with the fin collar. Heat is exchanged between the heat transfer tubes 33 and the heat transfer fins 31 through the heat transfer tubes 33 and the heat transfer fins 31 by flowing water or refrigerant into the heat transfer tubes 33.
  • the fin tube type heat exchanger 1 is generally manufactured by the following process.
  • a thin plate made of aluminum or aluminum alloy is pressed to form the heat transfer fin 31 having a substantially cylindrical fin collar that rises substantially perpendicular to the plane of the thin plate.
  • the heat transfer tube 33 made of copper or copper alloy is bent into a U shape to form a hairpin shape.
  • a plurality of the heat transfer fins 31 are stacked in parallel, and the heat transfer tube 33 is passed through the connected fin collars.
  • the outer surface of the heat transfer tube 33 and the inner surface of the fin collar are brought into close contact with each other, and the heat transfer tube 33 is fixed to the heat transfer fin 31.
  • the open end of the heat transfer tube 33 is expanded, the U bend tube 35 is inserted, and the heat transfer tube 33 is communicated by brazing.
  • Factors that affect the heat transfer performance of the finned tube heat exchanger include the heat transfer coefficient between the heat transfer tube 33 and a fluid such as water or refrigerant flowing through the heat transfer tube 33, and between the heat transfer tube and the fin collar.
  • the contact heat resistance of the heat transfer fin 31, the fin efficiency due to the heat conduction of the heat transfer fins 31, and the heat transfer coefficient between the air and the heat transfer fins 31 are known.
  • the contact thermal resistance between the heat transfer tube 33 and the fin collar is affected by the degree of adhesion between the heat transfer tube 33 and the fin collar.
  • FIG. 5 is a cross-sectional view of the main part of the fin collar of a conventional fin tube type heat exchanger.
  • the fin collar 102 of the heat transfer fin 101 in the fin tube type heat exchanger has a flange portion 103 having an arc-shaped cross section at the tip, and a radial direction of the fin collar 102 at the root.
  • An R portion 104 having a hem extending outward is provided. Therefore, even if the heat transfer fins 101 are stacked and the heat transfer tube 105 is inserted into the fin collar 102 and expanded, a gap space 107 that cannot be brought into close contact with the fin collar 102 is generated, which causes a deterioration in contact thermal resistance. It has become.
  • heat transfer fin material when aluminum or aluminum alloy is used as the heat transfer fin material and copper or copper alloy is used as the heat transfer tube material, when the heat transfer tube is expanded and fixed to the fin collar, the fin collar is plastically deformed. Thus, the hole diameter after tube expansion is maintained.
  • the heat transfer tube having a larger elastic coefficient is slightly reduced in diameter after the expansion, and a slight gap is formed between the heat transfer tube and the fin. It is considered that the performance loss (heat resistance) of the heat exchanger due to the gap is about 5% of the entire heat exchanger (see Non-Patent Document 1, for example).
  • FIG. 6 is a cross-sectional view of a main part of a fin collar of another conventional fin tube type heat exchanger.
  • a heat conductive fine powder such as an organic coating or metal powder is provided in the gap space or the gap 107.
  • Patent Documents 1-6 a technique (see Patent Documents 1-6) has been proposed in which a gap 108 or a gap is filled with a paint, resin, or the like.
  • Patent Document 7 a technique (see Patent Document 7) in which a heat transfer tube and a fin are brought into close contact with each other by heating and melting a low melting point non-metallic material without expanding the heat transfer tube.
  • the technique (refer patent document 8) which adheres a heat exchanger tube and a fin with an adhesive agent is also proposed.
  • FIG. 7 is a cross-sectional view of the main part of the fin collar of a further conventional fin tube type heat exchanger.
  • the fin described in Patent Document 9 shown in FIG. 7 it is intended to prevent the deterioration of the adhesion between the fin collar and the heat transfer tube by causing an Abeck phenomenon in which adjacent fins come into contact with each other at the time of tube expansion. The purpose is to improve sex.
  • the fin described in Patent Document 9 has a configuration in which a projecting portion 32 is provided by projecting a part of the flat surface portion 22 near the root R portion of the fin collar 26.
  • the radius of the arc shape of the cross section of the flange portion at the tip of the fin collar and the radius of the arc shape of the cross section of the R portion at the base of the fin collar are the same as those of the heat transfer fin at the time of pressing the fin collar. It cannot be reduced due to material elongation constraints. This also has the problem that there is a limit to the reduction of contact thermal resistance.
  • the gap space itself generated between the flange portion at the tip of the fin collar and the root R portion cannot be reduced.
  • the present invention solves the above-mentioned conventional problems, increases the area where the heat transfer tube and the fin collar part are in direct contact, reduces the contact heat resistance by improving the adhesion between the heat transfer tube and the fin, and heat exchange
  • An object of the present invention is to provide a finned tube heat exchanger capable of improving performance.
  • the finned tube heat exchanger of the present invention is A plurality of heat transfer fins laminated substantially in parallel at a predetermined interval; A plurality of heat transfer tubes penetrating the heat transfer fins in a direction substantially orthogonal to the planar direction of the heat transfer fins; A substantially cylindrical fin collar extending in a direction substantially orthogonal to the planar direction of the heat transfer fin is formed around a through hole of the heat transfer fin through which the heat transfer pipe passes. A finned tube heat exchanger that is inserted into the through hole in close contact with the heat transfer fin and exchanges heat between the gas flowing in the plane direction of the heat transfer fin and the refrigerant flowing inside the heat transfer tube.
  • the fin collar has a flange portion having an arc-shaped cross section at the tip, and a depressed portion recessed in a direction opposite to the rising direction of the fin collar from a peripheral fin plane connected to the fin collar at the root,
  • the cross-sectional shape of the depressed portion of the fin collar is formed to be an arc shape that roughly follows the shape of the flange portion of the fin collar of the adjacent heat transfer fin.
  • the finned tube heat exchanger of the present invention can reduce the gap space formed between the flange portion at the tip of the fin collar and the R portion at the base.
  • the contact area between the heat transfer tube and the fin collar can be increased, and the contact heat resistance can be reduced to improve the heat transfer between the heat transfer tube and the heat transfer fin, thereby improving the heat exchange performance. be able to.
  • Sectional drawing of the fin collar principal part of the finned-tube type heat exchanger in Embodiment 1 of this invention 1 is an enlarged cross-sectional view of the main part of the fin collar of FIG.
  • Sectional drawing of the fin collar principal part of the finned-tube type heat exchanger in Embodiment 2 of this invention Partial cross-sectional schematic front view for explaining a general fin tube heat exchanger Sectional view of the fin collar main part of a conventional fin tube type heat exchanger Sectional drawing of the fin collar main part of another conventional fin tube type heat exchanger Sectional drawing of the fin collar principal part of the fin tube type heat exchanger of another conventional example
  • the finned tube heat exchanger is: A plurality of heat transfer fins laminated substantially in parallel at a predetermined interval; A plurality of heat transfer tubes penetrating the heat transfer fins in a direction substantially orthogonal to the planar direction of the heat transfer fins; A substantially cylindrical fin collar extending in a direction substantially orthogonal to the planar direction of the heat transfer fin is formed around a through hole of the heat transfer fin through which the heat transfer pipe passes.
  • a finned tube heat exchanger that is inserted into the through hole in close contact with the heat transfer fin and exchanges heat between the gas flowing in the plane direction of the heat transfer fin and the refrigerant flowing inside the heat transfer tube.
  • the fin collar has a flange portion having an arc-shaped cross section at the tip, and a depressed portion recessed in a direction opposite to the rising direction of the fin collar from a peripheral fin plane connected to the fin collar at the root,
  • the cross-sectional shape of the depressed portion of the fin collar is formed to be an arc shape that roughly follows the shape of the flange portion of the fin collar of the adjacent heat transfer fin. Yes.
  • a gap space formed between the flange portion at the tip of the fin collar and the R portion at the base can be reduced, and the contact area between the heat transfer tube and the fin collar can be increased.
  • the contact heat resistance can be reduced and the heat transfer between the heat transfer tubes and the heat transfer fins can be improved, the heat exchange performance can be improved.
  • the finned-tube heat exchanger according to the second aspect of the present invention is particularly substantially circular provided in the rising direction of the fin collar so as to surround the fin collar in the configuration of the first aspect. And a diameter of the substantially circular protruding portion is set to be equal to or larger than a diameter of the outermost edge of the flange portion at the tip of the fin collar.
  • FIG. 1 is a cross-sectional view of the main part of the fin collar of the finned tube heat exchanger 200 according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the main part of the fin collar of A of FIG.
  • a finned tube heat exchanger 200 in the first embodiment shown in FIG. 1 includes a plurality of heat transfer fins 201 and a plurality of heat transfer tubes 205.
  • a substantially cylindrical fin collar 202 is formed around the through hole 208 of the heat transfer fin 201 through which the heat transfer tube 205 passes.
  • the fin collar 202 of the finned tube heat exchanger 200 according to the first embodiment will be described in detail.
  • the fin collar 202 has a flange 203 having an arcuate cross section at the tip, and a fin collar 202 rising direction from a peripheral fin plane 206 connected to the fin collar 202 at the root of the fin collar 202. And a depressed portion 204 that is recessed in the opposite direction.
  • the cross-sectional shape of the recessed portion 204 at the base of the fin collar 202 is an arc shape that roughly follows the shape of the flange portion 203 at the tip of the fin collar 202 of the adjacent heat transfer fin 201. Is formed.
  • the fin collar 202 is raised from a flange portion 203 having an arcuate cross section at the tip and a peripheral fin plane 206 connected to the fin collar 202 at the root of the fin collar 202. It has a depression 204 that is recessed in the opposite direction.
  • the cross-sectional shape of the recessed portion 204 at the base of the fin collar 202 is an arc shape that roughly follows the shape of the flange portion 203 at the tip of the fin collar 202 of the adjacent heat transfer fin 201. Is formed.
  • the gap space 207 formed between the R portion of the flange portion 203 at the tip of the fin collar 202 and the R shape of the root depressed portion 204 can be reduced.
  • the heat transfer tube 205 inserted into the fin collar 202 is expanded, the contact area between the heat transfer tube 205 and the fin collar 202 can be increased.
  • the contact heat resistance can be reduced and the heat transfer between the heat transfer tubes 205 and the heat transfer fins 201 can be improved, the heat exchange performance can be improved.
  • the finned tube heat exchanger 200 does not require materials other than the heat transfer tubes 205 and the heat transfer fins 201, and thus does not impair the recyclability at the time of product disposal.
  • FIG. 3 is a cross-sectional view of the main part of the fin collar of the finned tube heat exchanger 200a according to the second embodiment of the present invention.
  • the fin tube type heat exchanger 200a according to the second embodiment has a protrusion 209 provided on the fin collar 202a as compared with the fin tube type heat exchanger 200 according to the first embodiment described above. Is different.
  • the other configurations are the same as those of the finned tube heat exchanger 200 of the first embodiment.
  • the fin collar 202a of the finned tube heat exchanger 200a according to the second embodiment will be described in detail.
  • the fin collar 202a is similar to the first embodiment in that a fin collar 202 is formed from a flange portion 203 having an arcuate cross section at the tip and a peripheral fin plane 206 connected to the fin collar 202a at the root of the fin collar 202a. It has a depression 204 that is recessed in the direction opposite to the rising direction of 202a.
  • the cross-sectional shape of the recess 204 at the base of the fin collar 202a is an arc shape that roughly follows the shape of the flange portion 203 at the tip of the fin collar 202a of the adjacent heat transfer fin 201a. Is formed.
  • a substantially circular protrusion 209 is provided in the rising direction of the fin collar 202a so as to surround the fin collar 202a.
  • the diameter of the substantially circular protrusion 209 is formed to be equal to or greater than the diameter of the outermost edge of the flange 203 at the tip of the fin collar 202a.
  • a substantially circular protruding portion 209 is provided in the rising direction of the fin collar 202a so as to surround the fin collar 202a.
  • the diameter of the substantially circular protrusion 209 is formed to be equal to or greater than the diameter of the outermost edge of the flange 203 at the tip of the fin collar 202a.
  • the fin tube type heat exchanger has a fin collar standing up from a flange portion having an arcuate cross section at the tip of the fin collar and a surrounding fin plane connected to the fin collar at the root of the fin collar. It has a depression that is recessed in the direction opposite to the raising direction.
  • the cross-sectional shape of the depressed portion at the base of the fin collar is formed in an arc shape that roughly follows the shape of the flange portion at the tip of the fin collar of the adjacent heat transfer fin. Therefore, the gap space formed between the flange portion at the tip of the fin collar and the R portion at the base can be reduced.
  • the contact area between the heat transfer tube and the fin collar can be increased, and the contact heat resistance can be reduced to improve the heat transfer between the heat transfer tube and the heat transfer fin.
  • it is possible to improve the heat exchange performance, so that it can be applied not only to various air conditioners, refrigerators, and freezers, but also to uses such as heat pump water heaters and gas water heaters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In the present invention, at the root of fin collars there are depressions that are depressed in the direction opposite the rising direction of the fin collars. The cross-sectional shape of the depressions at the root of the fin collars is formed so as to be a circular arc that roughly follows the flange shape of a tip of the adjacent fin collar, and as a result, gaps are reduced and the contact surface area between a heat transfer pipe and the fin collars can be increased. Due to the foregoing, contact heat resistance is reduced, heat transfer between the heat transfer pipe and a heat transfer fin is improved, and heat exchange capabilities are improved.

Description

フィンチューブ型熱交換器Finned tube heat exchanger
 本発明は、多数積層された平板状のフィンの間を流動する空気などの気体と伝熱管内を流動する水や冷媒などの流体との間で熱を授受するフィンチューブ型熱交換器に関する。特に、ルームエアコン、パッケージエアコン、カーエアコン等の空気調和機や、ヒートポンプ式給湯機、冷蔵庫、冷凍庫等に用いられるフィンチューブ型熱交換器に関する。 The present invention relates to a finned tube heat exchanger that transfers heat between a gas such as air flowing between a plurality of stacked flat fins and a fluid such as water or refrigerant flowing in a heat transfer tube. In particular, the present invention relates to a finned tube heat exchanger used in air conditioners such as room air conditioners, packaged air conditioners, and car air conditioners, heat pump hot water heaters, refrigerators, freezers, and the like.
 ルームエアコン等の空気調和機や冷蔵庫等に組み込まれる熱交換器の大半は、フィンチューブ型熱交換器である。 Most of the heat exchangers incorporated in air conditioners such as room air conditioners and refrigerators are fin-tube heat exchangers.
 図4は、一般的なフィンチューブ型熱交換器1を説明するための部分断面概略正面図である。 FIG. 4 is a partial cross-sectional schematic front view for explaining a general finned tube heat exchanger 1.
 フィンチューブ型熱交換器1は、所定の間隔で相互に平行に配列された複数の伝熱フィン31と、前記伝熱フィン31の平面に略直交して立ち上がるように設けられた略円筒状のフィンカラーに拡管密着された伝熱管33により構成されている。そして、この伝熱管33の内部に水や冷媒を流すことにより、前記伝熱管33および前記伝熱フィン31を介して、外部の空気との間で熱交換が行われる。 The fin tube type heat exchanger 1 has a plurality of heat transfer fins 31 arranged in parallel with each other at a predetermined interval, and a substantially cylindrical shape provided so as to rise substantially orthogonal to the plane of the heat transfer fins 31. The heat transfer tube 33 is expanded and brought into close contact with the fin collar. Heat is exchanged between the heat transfer tubes 33 and the heat transfer fins 31 through the heat transfer tubes 33 and the heat transfer fins 31 by flowing water or refrigerant into the heat transfer tubes 33.
 このフィンチューブ型熱交換器1は、一般に次のような工程で製造される。 The fin tube type heat exchanger 1 is generally manufactured by the following process.
 初めに、アルミニウムまたはアルミニウム合金製などの薄板をプレス加工し、前記薄板の平面に略直交して立ち上がる略円筒状のフィンカラーを有する前記伝熱フィン31を形成する。次に、銅または銅合金製などの前記伝熱管33をU字型に曲げ加工し、ヘアピン状にする。そして、複数の前記伝熱フィン31を平行に積層し、連接した前記フィンカラーに前記伝熱管33を通す。さらに、前記伝熱管33を適当な方法で拡管することにより、前記伝熱管33の外面と前記フィンカラーの内面が密着し、前記伝熱管33が前記伝熱フィン31に固定される。最後に、前記伝熱管33の開放端を拡管してUベンド管35を差し込み、ろう付けすることにより、前記伝熱管33を連通させる。 First, a thin plate made of aluminum or aluminum alloy is pressed to form the heat transfer fin 31 having a substantially cylindrical fin collar that rises substantially perpendicular to the plane of the thin plate. Next, the heat transfer tube 33 made of copper or copper alloy is bent into a U shape to form a hairpin shape. A plurality of the heat transfer fins 31 are stacked in parallel, and the heat transfer tube 33 is passed through the connected fin collars. Furthermore, by expanding the heat transfer tube 33 by an appropriate method, the outer surface of the heat transfer tube 33 and the inner surface of the fin collar are brought into close contact with each other, and the heat transfer tube 33 is fixed to the heat transfer fin 31. Finally, the open end of the heat transfer tube 33 is expanded, the U bend tube 35 is inserted, and the heat transfer tube 33 is communicated by brazing.
 近年、空気調和機や冷蔵庫等においても、エネルギー消費効率の大幅な向上が求められている。このため、これらの機器に組み込まれるフィンチューブ型熱交換器は、伝熱性能を向上させることが要求されている。 In recent years, there has been a demand for significant improvement in energy consumption efficiency in air conditioners and refrigerators. For this reason, fin-tube heat exchangers incorporated in these devices are required to improve heat transfer performance.
 フィンチューブ型熱交換器の伝熱性能に影響を与える因子としては、前記伝熱管33とその内部を流れる水や冷媒などの流体の間の熱伝達率、前記伝熱管と前記フィンカラーとの間の接触熱抵抗、前記伝熱フィン31の熱伝導によるフィン効率および空気と前記伝熱フィン31との間の熱伝達率が知られている。 Factors that affect the heat transfer performance of the finned tube heat exchanger include the heat transfer coefficient between the heat transfer tube 33 and a fluid such as water or refrigerant flowing through the heat transfer tube 33, and between the heat transfer tube and the fin collar. The contact heat resistance of the heat transfer fin 31, the fin efficiency due to the heat conduction of the heat transfer fins 31, and the heat transfer coefficient between the air and the heat transfer fins 31 are known.
 前記伝熱管33とその内部を流れる流体との間の熱伝達率向上には、管内の沸騰熱伝達、凝縮熱伝達あるいは対流熱伝達の促進が有効であるため、前記伝熱管33の内表面積の増加及び冷媒の撹拌効果を増大させる最適な内面溝形状の開発が進められている。 In order to improve the heat transfer coefficient between the heat transfer tube 33 and the fluid flowing through the heat transfer tube 33, it is effective to promote boiling heat transfer, condensation heat transfer, or convection heat transfer in the tube. The development of an optimal inner groove shape that increases and increases the stirring effect of the refrigerant is underway.
 また、空気と前記伝熱フィン31との間の熱伝達率を向上させる手段としては、前記伝熱フィン31の表面に空気の温度境界層の形成を抑制するための起伏を設けたり、スリットまたはルーバーと呼ばれる切り起こしを設けたりする方法が開発されている。これらの起伏およびスリットまたはルーバーの寸法、形状の最適化が進められている。また、フィン効率は、前記伝熱フィン31の板厚と熱伝導率、そして前記伝熱管33の直径と配列によって一義的に定まるので、それらに留意した設計が行われている。 Further, as means for improving the heat transfer coefficient between air and the heat transfer fins 31, undulations for suppressing the formation of a temperature boundary layer of air are provided on the surface of the heat transfer fins 31, slits or A method of creating a cut-up called a louver has been developed. Optimization of the size and shape of these undulations and slits or louvers is underway. Further, the fin efficiency is uniquely determined by the plate thickness and thermal conductivity of the heat transfer fins 31 and the diameter and arrangement of the heat transfer tubes 33, and therefore, the design is performed in consideration of them.
 一方、前記伝熱管33と前記フィンカラーとの間の接触熱抵抗は、前記伝熱管33と前記フィンカラーの密着度合いに影響される。 On the other hand, the contact thermal resistance between the heat transfer tube 33 and the fin collar is affected by the degree of adhesion between the heat transfer tube 33 and the fin collar.
 図5は、従来の一例のフィンチューブ型熱交換器のフィンカラー要部の断面図である。図5に示すように一般に、フィンチューブ型熱交換器における伝熱フィン101のフィンカラー102は、先端に断面が円弧状のフランジ部103を有し、根元には前記フィンカラー102の半径方向の外側に裾が広がるR部104を有する。そのため、前記伝熱フィン101を積層して、前記フィンカラー102に伝熱管105を挿入し、拡管しても、前記フィンカラー102に密着できない隙間空間107が生じるため、接触熱抵抗を悪化させる原因となっている。 FIG. 5 is a cross-sectional view of the main part of the fin collar of a conventional fin tube type heat exchanger. As shown in FIG. 5, generally, the fin collar 102 of the heat transfer fin 101 in the fin tube type heat exchanger has a flange portion 103 having an arc-shaped cross section at the tip, and a radial direction of the fin collar 102 at the root. An R portion 104 having a hem extending outward is provided. Therefore, even if the heat transfer fins 101 are stacked and the heat transfer tube 105 is inserted into the fin collar 102 and expanded, a gap space 107 that cannot be brought into close contact with the fin collar 102 is generated, which causes a deterioration in contact thermal resistance. It has become.
 また、例えば、伝熱フィンの材料としてアルミニウムまたはアルミニウム合金を用い、伝熱管の材料として銅または銅合金を用いた場合、伝熱管を拡管してフィンカラーに固定する際、フィンカラーは、塑性変形して拡管後の孔径を維持する。これに対し、より弾性係数の大きい伝熱管は、拡管後に僅かに縮径して、フィンとの間に僅かな空隙部を形成することが分かっている。この空隙部による熱交換器の性能の損失(熱抵抗)は、熱交換器全体の5%程度であると考えられている(例えば、非特許文献1参照。)。 Also, for example, when aluminum or aluminum alloy is used as the heat transfer fin material and copper or copper alloy is used as the heat transfer tube material, when the heat transfer tube is expanded and fixed to the fin collar, the fin collar is plastically deformed. Thus, the hole diameter after tube expansion is maintained. On the other hand, it has been found that the heat transfer tube having a larger elastic coefficient is slightly reduced in diameter after the expansion, and a slight gap is formed between the heat transfer tube and the fin. It is considered that the performance loss (heat resistance) of the heat exchanger due to the gap is about 5% of the entire heat exchanger (see Non-Patent Document 1, for example).
 図6は、従来の別の一例のフィンチューブ型熱交換器のフィンカラー要部の断面図である。図6に示すように、隙間空間や空隙部107を少なくして、熱交換器の伝熱性能を向上させるため、隙間空間や空隙部107に、有機被膜、金属粉末等の熱伝導性微粉末、塗料、樹脂などを充填して隙間空間や空隙部を埋める構成108とする技術(特許文献1-6参照。)が提案されている。他にも伝熱管を拡管せずに低融点の非金属材料を加熱融解することにより、伝熱管とフィンとを密着させる技術(特許文献7参照。)が提案されている。また、接着剤で伝熱管とフィンとを密着させる技術(特許文献8参照。)も提案されている。 FIG. 6 is a cross-sectional view of a main part of a fin collar of another conventional fin tube type heat exchanger. As shown in FIG. 6, in order to improve the heat transfer performance of the heat exchanger by reducing the gap space and the gap 107, a heat conductive fine powder such as an organic coating or metal powder is provided in the gap space or the gap 107. In addition, a technique (see Patent Documents 1-6) has been proposed in which a gap 108 or a gap is filled with a paint, resin, or the like. In addition, there has been proposed a technique (see Patent Document 7) in which a heat transfer tube and a fin are brought into close contact with each other by heating and melting a low melting point non-metallic material without expanding the heat transfer tube. Moreover, the technique (refer patent document 8) which adheres a heat exchanger tube and a fin with an adhesive agent is also proposed.
 図7は、従来のさらに別の一例のフィンチューブ型熱交換器のフィンカラー要部の断面図である。図7に示す特許文献9に記載のフィンでは、隣接するフィン同士が拡管時に接触するアベック現象を起こし、フィンカラーと伝熱管との密着性が悪くなるのを防止することを狙い、フィンの積層性を良化させることを目的としている。この目的を達成するため、特許文献9に記載のフィンでは、フィンカラー26の根元R部近傍の平面部22の一部を突出させた突出部32を設けた構成としている。 FIG. 7 is a cross-sectional view of the main part of the fin collar of a further conventional fin tube type heat exchanger. In the fin described in Patent Document 9 shown in FIG. 7, it is intended to prevent the deterioration of the adhesion between the fin collar and the heat transfer tube by causing an Abeck phenomenon in which adjacent fins come into contact with each other at the time of tube expansion. The purpose is to improve sex. In order to achieve this object, the fin described in Patent Document 9 has a configuration in which a projecting portion 32 is provided by projecting a part of the flat surface portion 22 near the root R portion of the fin collar 26.
特開昭56-133595号公報JP-A-56-133595 特開昭58-158493号公報JP 58-158493 A 特開平10-160374号公報JP-A-10-160374 特開昭60-162193号公報JP 60-162193 A 特許第3982768号公報Japanese Patent No. 398768 特開2010-169344号公報JP 2010-169344 A 特開昭59-15794号公報JP 59-15794 A 特開平9-145282号公報Japanese Patent Laid-Open No. 9-145282 特開平9-119792号公報Japanese Patent Laid-Open No. 9-119792
 しかしながら、前記従来の構成ではいずれも、前記伝熱フィンを積層したとき、前記フィンカラーの先端の断面が円弧状のフランジ部と、根元の断面が円弧状のR部との間に生じる隙間空間では、前記フィンカラーと前記伝熱管を直接接触させることができない。そのため、接触熱抵抗の低減に限界があるという課題を有していた。 However, in any of the conventional configurations, when the heat transfer fins are stacked, a gap space is generated between the flange portion having a circular cross section at the tip of the fin collar and the R portion having a circular cross section at the root. Then, the fin collar and the heat transfer tube cannot be brought into direct contact with each other. For this reason, there is a problem that there is a limit in reducing the contact thermal resistance.
 また、前記フィンカラーの先端の前記フランジ部の断面の円弧形状の半径や、前記フィンカラーの根元のR部の断面の円弧形状の半径は、前記フィンカラーのプレス加工時における前記伝熱フィンの材料の伸びの制約から、小さくすることができない。このことからも、接触熱抵抗の低減に限界があるという課題を有していた。 Further, the radius of the arc shape of the cross section of the flange portion at the tip of the fin collar and the radius of the arc shape of the cross section of the R portion at the base of the fin collar are the same as those of the heat transfer fin at the time of pressing the fin collar. It cannot be reduced due to material elongation constraints. This also has the problem that there is a limit to the reduction of contact thermal resistance.
 さらに、隙間空間に前記伝熱フィンや前記伝熱管と異なる材料を充填することは、製品廃棄時のリサイクル性を悪化させることとなる。 Furthermore, filling the gap space with a material different from the heat transfer fins or the heat transfer tubes deteriorates the recyclability when the product is discarded.
 また、フィンカラーの根元に突出部を設けて、フィンの積層性を良くする構成としても、フィンカラーの先端のフランジ部と根元のR部との間に生じる隙間空間そのものを低減させることはできない。 Further, even if a protrusion is provided at the base of the fin collar to improve the stackability of the fins, the gap space itself generated between the flange portion at the tip of the fin collar and the root R portion cannot be reduced. .
 本発明は、前記従来の課題を解決するもので、伝熱管とフィンカラー部が直接接触する面積を増大させ、伝熱管とフィンの密着性を向上させることで接触熱抵抗を低減し、熱交換性能を向上させることができるフィンチューブ型熱交換器を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, increases the area where the heat transfer tube and the fin collar part are in direct contact, reduces the contact heat resistance by improving the adhesion between the heat transfer tube and the fin, and heat exchange An object of the present invention is to provide a finned tube heat exchanger capable of improving performance.
 前記従来の課題を解決するために、本発明のフィンチューブ型熱交換器は、
 所定の間隔を置いて略平行に積層された複数の伝熱フィンと、
 前記伝熱フィンの平面方向と略直交する方向に前記伝熱フィンを貫通する複数の伝熱管と、を備え、
 前記伝熱管が貫通する前記伝熱フィンの貫通孔の周囲には、前記伝熱フィンの平面方向に対し略直交する方向に延びる略円筒状のフィンカラーが形成され、前記伝熱管は前記フィンカラーに密着した状態で前記貫通孔に挿入され、前記伝熱フィンの平面方向に流れる気体と前記伝熱管の内部を流れる冷媒との間で熱交換を行うようにしたフィンチューブ型熱交換器であって、
 前記フィンカラーは、先端に断面が円弧状のフランジ部と、根元に前記フィンカラーに繋がる周囲のフィン平面から、前記フィンカラーの立ち上げ方向と反対方向に窪む陥没部と、を有し、
 前記フィンカラーの前記陥没部の断面形状は、前記伝熱フィンが積層されたとき、隣接する前記伝熱フィンの前記フィンカラーの前記フランジ部の形状に概略沿う円弧状となるように形成している。
In order to solve the conventional problem, the finned tube heat exchanger of the present invention is
A plurality of heat transfer fins laminated substantially in parallel at a predetermined interval;
A plurality of heat transfer tubes penetrating the heat transfer fins in a direction substantially orthogonal to the planar direction of the heat transfer fins;
A substantially cylindrical fin collar extending in a direction substantially orthogonal to the planar direction of the heat transfer fin is formed around a through hole of the heat transfer fin through which the heat transfer pipe passes. A finned tube heat exchanger that is inserted into the through hole in close contact with the heat transfer fin and exchanges heat between the gas flowing in the plane direction of the heat transfer fin and the refrigerant flowing inside the heat transfer tube. And
The fin collar has a flange portion having an arc-shaped cross section at the tip, and a depressed portion recessed in a direction opposite to the rising direction of the fin collar from a peripheral fin plane connected to the fin collar at the root,
When the heat transfer fins are stacked, the cross-sectional shape of the depressed portion of the fin collar is formed to be an arc shape that roughly follows the shape of the flange portion of the fin collar of the adjacent heat transfer fin. Yes.
 これによって、前記フィンカラーの先端の前記フランジ部と前記根元のR部との間にできる隙間空間を小さくすることができる。また、前記伝熱管と前記フィンカラーの接触面積を増加させることができ、接触熱抵抗を低減して前記伝熱管と前記伝熱フィンとの間の伝熱を向上させることができるため、熱交換性能を向上させることができる。さらに、前記伝熱管と前記伝熱フィン以外の材料を必要としないため、製品廃棄時のリサイクル性を損なうこともない。 This makes it possible to reduce a gap space formed between the flange portion at the tip of the fin collar and the R portion at the base. In addition, the contact area between the heat transfer tube and the fin collar can be increased, and the heat transfer between the heat transfer tube and the heat transfer fin can be improved by reducing the contact heat resistance, so that heat exchange Performance can be improved. Furthermore, since materials other than the heat transfer tubes and the heat transfer fins are not required, the recyclability at the time of product disposal is not impaired.
 本発明のフィンチューブ型熱交換器は、フィンカラーの先端のフランジ部と根元のR部との間にできる隙間空間を小さくすることができる。また、伝熱管とフィンカラーの接触面積を増大させることができ、接触熱抵抗を低減して伝熱管と伝熱フィンとの間の伝熱を向上させることができるため、熱交換性能を向上させることができる。 The finned tube heat exchanger of the present invention can reduce the gap space formed between the flange portion at the tip of the fin collar and the R portion at the base. In addition, the contact area between the heat transfer tube and the fin collar can be increased, and the contact heat resistance can be reduced to improve the heat transfer between the heat transfer tube and the heat transfer fin, thereby improving the heat exchange performance. be able to.
本発明の実施の形態1におけるフィンチューブ型熱交換器のフィンカラー要部の断面図Sectional drawing of the fin collar principal part of the finned-tube type heat exchanger in Embodiment 1 of this invention 図1のAのフィンカラー要部の拡大断面図1 is an enlarged cross-sectional view of the main part of the fin collar of FIG. 本発明の実施の形態2におけるフィンチューブ型熱交換器のフィンカラー要部の断面図Sectional drawing of the fin collar principal part of the finned-tube type heat exchanger in Embodiment 2 of this invention 一般的なフィンチューブ型熱交換器を説明するための部分断面概略正面図Partial cross-sectional schematic front view for explaining a general fin tube heat exchanger 従来の一例のフィンチューブ型熱交換器のフィンカラー要部の断面図Sectional view of the fin collar main part of a conventional fin tube type heat exchanger 従来の別の一例のフィンチューブ型熱交換器のフィンカラー要部の断面図Sectional drawing of the fin collar main part of another conventional fin tube type heat exchanger 従来のさらに別の一例のフィンチューブ型熱交換器のフィンカラー要部の断面図Sectional drawing of the fin collar principal part of the fin tube type heat exchanger of another conventional example
 本発明に係る第1の態様のフィンチューブ型熱交換器は、
 所定の間隔を置いて略平行に積層された複数の伝熱フィンと、
 前記伝熱フィンの平面方向と略直交する方向に前記伝熱フィンを貫通する複数の伝熱管と、を備え、
 前記伝熱管が貫通する前記伝熱フィンの貫通孔の周囲には、前記伝熱フィンの平面方向に対し略直交する方向に延びる略円筒状のフィンカラーが形成され、前記伝熱管は前記フィンカラーに密着した状態で前記貫通孔に挿入され、前記伝熱フィンの平面方向に流れる気体と前記伝熱管の内部を流れる冷媒との間で熱交換を行うようにしたフィンチューブ型熱交換器であって、
 前記フィンカラーは、先端に断面が円弧状のフランジ部と、根元に前記フィンカラーに繋がる周囲のフィン平面から、前記フィンカラーの立ち上げ方向と反対方向に窪む陥没部と、を有し、
 前記フィンカラーの前記陥没部の断面形状は、前記伝熱フィンが積層されたとき、隣接する前記伝熱フィンの前記フィンカラーの前記フランジ部の形状に概略沿う円弧状となるように形成している。
 この構成により、前記フィンカラーの先端の前記フランジ部と前記根元のR部との間にできる隙間空間を小さくすることができ、前記伝熱管と前記フィンカラーの接触面積を増加させることができる。また、接触熱抵抗を低減して前記伝熱管と前記伝熱フィンとの間の伝熱を向上させることができるため、熱交換性能を向上させることができる。
The finned tube heat exchanger according to the first aspect of the present invention is:
A plurality of heat transfer fins laminated substantially in parallel at a predetermined interval;
A plurality of heat transfer tubes penetrating the heat transfer fins in a direction substantially orthogonal to the planar direction of the heat transfer fins;
A substantially cylindrical fin collar extending in a direction substantially orthogonal to the planar direction of the heat transfer fin is formed around a through hole of the heat transfer fin through which the heat transfer pipe passes. A finned tube heat exchanger that is inserted into the through hole in close contact with the heat transfer fin and exchanges heat between the gas flowing in the plane direction of the heat transfer fin and the refrigerant flowing inside the heat transfer tube. And
The fin collar has a flange portion having an arc-shaped cross section at the tip, and a depressed portion recessed in a direction opposite to the rising direction of the fin collar from a peripheral fin plane connected to the fin collar at the root,
When the heat transfer fins are stacked, the cross-sectional shape of the depressed portion of the fin collar is formed to be an arc shape that roughly follows the shape of the flange portion of the fin collar of the adjacent heat transfer fin. Yes.
With this configuration, a gap space formed between the flange portion at the tip of the fin collar and the R portion at the base can be reduced, and the contact area between the heat transfer tube and the fin collar can be increased. In addition, since the contact heat resistance can be reduced and the heat transfer between the heat transfer tubes and the heat transfer fins can be improved, the heat exchange performance can be improved.
 さらに、前記伝熱管と前記伝熱フィン以外の材料を必要としないため、製品廃棄時のリサイクル性を損なうことがない。 Furthermore, since materials other than the heat transfer tubes and the heat transfer fins are not required, the recyclability at the time of product disposal is not impaired.
 本発明に係る第2の態様のフィンチューブ型熱交換器は、特に、第1の態様の構成に前記フィンカラーのまわりを囲むように、前記フィンカラーの立ち上げ方向に設けられた略円状の突出部をさらに備え、前記略円状の突出部の直径を、前記フィンカラーの先端の前記フランジ部の最外縁の直径以上となるように構成している。
 この構成により、前記伝熱フィンを積層したとき、前記フィンカラーの軸中心のずれが少ない。また、前記フィンカラーに挿入された前記伝熱管を拡管したとき、円周方向に密着性の粗密が発生しにくいので、良好な密着性を確保することができ、さらに接触熱抵抗を低減することができる。
The finned-tube heat exchanger according to the second aspect of the present invention is particularly substantially circular provided in the rising direction of the fin collar so as to surround the fin collar in the configuration of the first aspect. And a diameter of the substantially circular protruding portion is set to be equal to or larger than a diameter of the outermost edge of the flange portion at the tip of the fin collar.
With this configuration, when the heat transfer fins are stacked, the axial displacement of the fin collar is small. In addition, when the heat transfer tube inserted into the fin collar is expanded, it is difficult for the density of adhesion to occur in the circumferential direction, so that good adhesion can be ensured and contact thermal resistance can be further reduced. Can do.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
 図1は、本発明の第1の実施の形態におけるフィンチューブ型熱交換器200のフィンカラー要部の断面図である。図2は、図1のAのフィンカラー要部の拡大断面図である。
 図1に示す第1の実施形態におけるフィンチューブ型熱交換器200は、複数の伝熱フィン201と、複数の伝熱管205を備える。また、伝熱管205が貫通する伝熱フィン201の貫通孔208の周囲では、略円筒状のフィンカラー202が形成されている。以下、本実施の形態1におけるフィンチューブ型熱交換器200のフィンカラー202について詳述する。
(Embodiment 1)
FIG. 1 is a cross-sectional view of the main part of the fin collar of the finned tube heat exchanger 200 according to the first embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of the main part of the fin collar of A of FIG.
A finned tube heat exchanger 200 in the first embodiment shown in FIG. 1 includes a plurality of heat transfer fins 201 and a plurality of heat transfer tubes 205. A substantially cylindrical fin collar 202 is formed around the through hole 208 of the heat transfer fin 201 through which the heat transfer tube 205 passes. Hereinafter, the fin collar 202 of the finned tube heat exchanger 200 according to the first embodiment will be described in detail.
 図1および図2において、フィンカラー202は、その先端に断面が円弧状のフランジ部203と、フィンカラー202の根元にフィンカラー202に繋がる周囲のフィン平面206から、フィンカラー202の立ち上げ方向と反対方向に窪む陥没部204を有している。フィンカラー202の根元の陥没部204の断面形状は、伝熱フィン201が積層されたとき、隣接する伝熱フィン201のフィンカラー202の先端のフランジ部203の形状に概略沿う円弧状となるように形成されている。 1 and 2, the fin collar 202 has a flange 203 having an arcuate cross section at the tip, and a fin collar 202 rising direction from a peripheral fin plane 206 connected to the fin collar 202 at the root of the fin collar 202. And a depressed portion 204 that is recessed in the opposite direction. When the heat transfer fins 201 are stacked, the cross-sectional shape of the recessed portion 204 at the base of the fin collar 202 is an arc shape that roughly follows the shape of the flange portion 203 at the tip of the fin collar 202 of the adjacent heat transfer fin 201. Is formed.
 以上のように構成されたフィンチューブ熱交換器200について、その動作、作用を説明する。 The operation and action of the fin tube heat exchanger 200 configured as described above will be described.
 本実施の形態1においては、フィンカラー202は、その先端に断面が円弧状のフランジ部203と、フィンカラー202の根元にフィンカラー202に繋がる周囲のフィン平面206から、フィンカラー202の立ち上げ方向と反対方向に窪む陥没部204を有する。フィンカラー202の根元の陥没部204の断面形状は、伝熱フィン201が積層されたとき、隣接する伝熱フィン201のフィンカラー202の先端のフランジ部203の形状に概略沿う円弧状となるように形成されている。そのため、複数の伝熱フィン201が積層されたとき、フィンカラー202の先端のフランジ部203のR部と根元の陥没部204のR形状との間にできる隙間空間207を小さくすることができる。また、フィンカラー202に挿入される伝熱管205を拡管したとき、伝熱管205とフィンカラー202の接触面積を増加させることができる。さらに、接触熱抵抗を低減して伝熱管205と伝熱フィン201との間の伝熱を向上させることができるため、熱交換性能を向上させることができる。 In the first embodiment, the fin collar 202 is raised from a flange portion 203 having an arcuate cross section at the tip and a peripheral fin plane 206 connected to the fin collar 202 at the root of the fin collar 202. It has a depression 204 that is recessed in the opposite direction. When the heat transfer fins 201 are stacked, the cross-sectional shape of the recessed portion 204 at the base of the fin collar 202 is an arc shape that roughly follows the shape of the flange portion 203 at the tip of the fin collar 202 of the adjacent heat transfer fin 201. Is formed. Therefore, when the plurality of heat transfer fins 201 are stacked, the gap space 207 formed between the R portion of the flange portion 203 at the tip of the fin collar 202 and the R shape of the root depressed portion 204 can be reduced. Further, when the heat transfer tube 205 inserted into the fin collar 202 is expanded, the contact area between the heat transfer tube 205 and the fin collar 202 can be increased. Furthermore, since the contact heat resistance can be reduced and the heat transfer between the heat transfer tubes 205 and the heat transfer fins 201 can be improved, the heat exchange performance can be improved.
 また、本実施の形態1におけるフィンチューブ型熱交換器200は、前記伝熱管205と前記伝熱フィン201以外の材料を必要としないため、製品廃棄時のリサイクル性を損なうことがない。 In addition, the finned tube heat exchanger 200 according to the first embodiment does not require materials other than the heat transfer tubes 205 and the heat transfer fins 201, and thus does not impair the recyclability at the time of product disposal.
 (実施の形態2)
 図3は、本発明の第2の実施の形態におけるフィンチューブ型熱交換器200aのフィンカラー要部の断面図である。
 図3に示すように、本実施の形態2におけるフィンチューブ型熱交換器200aは、前述した実施の形態1におけるフィンチューブ型熱交換器200と比べて、フィンカラー202aに突出部209を設けている点で異なる。本実施の形態2において、その他の構成は、実施の形態1のフィンチューブ型熱交換器200と同じである。以下、本実施の形態2におけるフィンチューブ型熱交換器200aのフィンカラー202aについて詳述する。
(Embodiment 2)
FIG. 3 is a cross-sectional view of the main part of the fin collar of the finned tube heat exchanger 200a according to the second embodiment of the present invention.
As shown in FIG. 3, the fin tube type heat exchanger 200a according to the second embodiment has a protrusion 209 provided on the fin collar 202a as compared with the fin tube type heat exchanger 200 according to the first embodiment described above. Is different. In the second embodiment, the other configurations are the same as those of the finned tube heat exchanger 200 of the first embodiment. Hereinafter, the fin collar 202a of the finned tube heat exchanger 200a according to the second embodiment will be described in detail.
 図3において、フィンカラー202aは、実施の形態1と同様に、その先端に断面が円弧状のフランジ部203と、フィンカラー202aの根元にフィンカラー202aに繋がる周囲のフィン平面206から、フィンカラー202aの立ち上げ方向と反対方向に窪む陥没部204を有する。フィンカラー202aの根元の陥没部204の断面形状は、伝熱フィン201aが積層されたとき、隣接する伝熱フィン201aのフィンカラー202aの先端のフランジ部203の形状に概略沿う円弧状となるように形成されている。また、フィンカラー202aのまわりを囲むように、フィンカラー202aの立ち上げ方向に略円状の突出部209が設けられている。略円状の突出部209の直径は、フィンカラー202aの先端のフランジ部203の最外縁の直径以上となるように形成されている。 In FIG. 3, the fin collar 202a is similar to the first embodiment in that a fin collar 202 is formed from a flange portion 203 having an arcuate cross section at the tip and a peripheral fin plane 206 connected to the fin collar 202a at the root of the fin collar 202a. It has a depression 204 that is recessed in the direction opposite to the rising direction of 202a. When the heat transfer fins 201a are stacked, the cross-sectional shape of the recess 204 at the base of the fin collar 202a is an arc shape that roughly follows the shape of the flange portion 203 at the tip of the fin collar 202a of the adjacent heat transfer fin 201a. Is formed. A substantially circular protrusion 209 is provided in the rising direction of the fin collar 202a so as to surround the fin collar 202a. The diameter of the substantially circular protrusion 209 is formed to be equal to or greater than the diameter of the outermost edge of the flange 203 at the tip of the fin collar 202a.
 以上のように構成されたフィンチューブ熱交換器200aについて、以下その動作、作用を説明する。 The operation and action of the fin tube heat exchanger 200a configured as described above will be described below.
 本実施の形態2においては、隙間空間207を小さくする実施の形態1の構成に加えて、フィンカラー202aのまわりを囲むように、フィンカラー202aの立ち上げ方向に略円状の突出部209を設けている。略円状の突出部209の直径は、フィンカラー202aの先端のフランジ部203の最外縁の直径以上となるように形成されている。伝熱フィン201aを積層したとき、フィンカラー202aの軸中心のずれが少ない。また、フィンカラー202aに挿入された伝熱管205を拡管したとき、円周方向に密着性の粗密が発生しにくいので、良好な密着性を確保することができ、さらに接触熱抵抗を低減することができる。 In the second embodiment, in addition to the configuration of the first embodiment in which the gap space 207 is reduced, a substantially circular protruding portion 209 is provided in the rising direction of the fin collar 202a so as to surround the fin collar 202a. Provided. The diameter of the substantially circular protrusion 209 is formed to be equal to or greater than the diameter of the outermost edge of the flange 203 at the tip of the fin collar 202a. When the heat transfer fins 201a are stacked, the axial displacement of the fin collar 202a is small. In addition, when the heat transfer tube 205 inserted into the fin collar 202a is expanded, it is difficult for the density of adhesion to occur in the circumferential direction, so that good adhesion can be ensured and contact thermal resistance can be further reduced. Can do.
 以上のように、本発明にかかるフィンチューブ型熱交換器は、フィンカラーの先端に断面が円弧状のフランジ部と、フィンカラーの根元にフィンカラーに繋がる周囲のフィン平面から、フィンカラーの立ち上げ方向と反対方向に窪む陥没部を有している。フィンカラーの根元の陥没部の断面形状は、伝熱フィンが積層されたとき、隣接する伝熱フィンのフィンカラーの先端のフランジ部の形状に概略沿う円弧状となるように形成されている。そのため、フィンカラーの先端のフランジ部と根元のR部との間にできる隙間空間を小さくすることができる。また、伝熱管とフィンカラーの接触面積を増加させることができ、接触熱抵抗を低減して伝熱管と伝熱フィンとの間の伝熱を向上させることができる。その結果、熱交換性能を向上させることが可能となるので、各種空気調和機や冷蔵庫、冷凍庫だけでなく、ヒートポンプ式給湯機やガス湯沸かし器等の用途にも適用できる。 As described above, the fin tube type heat exchanger according to the present invention has a fin collar standing up from a flange portion having an arcuate cross section at the tip of the fin collar and a surrounding fin plane connected to the fin collar at the root of the fin collar. It has a depression that is recessed in the direction opposite to the raising direction. When the heat transfer fins are stacked, the cross-sectional shape of the depressed portion at the base of the fin collar is formed in an arc shape that roughly follows the shape of the flange portion at the tip of the fin collar of the adjacent heat transfer fin. Therefore, the gap space formed between the flange portion at the tip of the fin collar and the R portion at the base can be reduced. Further, the contact area between the heat transfer tube and the fin collar can be increased, and the contact heat resistance can be reduced to improve the heat transfer between the heat transfer tube and the heat transfer fin. As a result, it is possible to improve the heat exchange performance, so that it can be applied not only to various air conditioners, refrigerators, and freezers, but also to uses such as heat pump water heaters and gas water heaters.
 200、200a フィンチューブ型熱交換器
 201、201a 伝熱フィン
 202、202a フィンカラー
 203 フランジ部
 204 陥没部
 205 伝熱管
 206 フィン平面
 207 フィンカラーと伝熱管の間の隙間空間
 208 貫通孔
 209 突出部
200, 200a Fin tube type heat exchanger 201, 201a Heat transfer fin 202, 202a Fin collar 203 Flange portion 204 Depressed portion 205 Heat transfer tube 206 Fin plane 207 Clearance space between fin collar and heat transfer tube 208 Through hole 209 Protruding portion

Claims (2)

  1.  所定の間隔を置いて略平行に積層された複数の伝熱フィンと、
     前記伝熱フィンの平面方向と略直交する方向に前記伝熱フィンを貫通する複数の伝熱管と、を備え、
     前記伝熱管が貫通する前記伝熱フィンの貫通孔の周囲には、前記伝熱フィンの平面方向に対し略直交する方向に延びる略円筒状のフィンカラーが形成され、前記伝熱管は前記フィンカラーに密着した状態で前記貫通孔に挿入され、前記伝熱フィンの平面方向に流れる気体と前記伝熱管の内部を流れる冷媒との間で熱交換を行うようにしたフィンチューブ型熱交換器であって、
     前記フィンカラーは、先端に断面が円弧状のフランジ部と、根元に前記フィンカラーに繋がる周囲のフィン平面から、前記フィンカラーの立ち上げ方向と反対方向に窪む陥没部と、を有し、
     前記フィンカラーの前記陥没部の断面形状は、前記伝熱フィンが積層されたとき、隣接する前記伝熱フィンの前記フィンカラーの前記フランジ部の形状に概略沿う円弧状となるように形成したことを特徴とするフィンチューブ型熱交換器。
    A plurality of heat transfer fins laminated substantially in parallel at a predetermined interval;
    A plurality of heat transfer tubes penetrating the heat transfer fins in a direction substantially orthogonal to the planar direction of the heat transfer fins;
    A substantially cylindrical fin collar extending in a direction substantially orthogonal to the planar direction of the heat transfer fin is formed around a through hole of the heat transfer fin through which the heat transfer pipe passes. A finned tube heat exchanger that is inserted into the through hole in close contact with the heat transfer fin and exchanges heat between the gas flowing in the plane direction of the heat transfer fin and the refrigerant flowing inside the heat transfer tube. And
    The fin collar has a flange portion having an arc-shaped cross section at the tip, and a depressed portion recessed in a direction opposite to the rising direction of the fin collar from a peripheral fin plane connected to the fin collar at the root,
    The cross-sectional shape of the depressed portion of the fin collar is formed to have an arc shape that roughly follows the shape of the flange portion of the fin collar of the adjacent heat transfer fin when the heat transfer fins are stacked. A finned tube heat exchanger.
  2.  前記フィンカラーのまわりを囲むように、前記フィンカラーの立ち上げ方向に設けられた略円状の突出部をさらに備え、
     前記略円状の突出部の直径を、前記フィンカラーの先端の前記フランジ部の最外縁の直径以上となるように構成した請求項1に記載のフィンチューブ型熱交換器。
    Further comprising a substantially circular protrusion provided in the rising direction of the fin collar so as to surround the fin collar,
    The fin tube type heat exchanger according to claim 1, wherein a diameter of the substantially circular protruding portion is set to be equal to or larger than a diameter of an outermost edge of the flange portion at a tip of the fin collar.
PCT/JP2012/006625 2011-11-25 2012-10-17 Fin-tube type heat exchanger WO2013076907A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013545763A JP5988177B2 (en) 2011-11-25 2012-10-17 Finned tube heat exchanger
KR1020147005248A KR20140103895A (en) 2011-11-25 2012-10-17 Fin-tube type heat exchanger
CN201280042312.8A CN103765148B (en) 2011-11-25 2012-10-17 Fin tube type heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011257528 2011-11-25
JP2011-257528 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013076907A1 true WO2013076907A1 (en) 2013-05-30

Family

ID=48469378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006625 WO2013076907A1 (en) 2011-11-25 2012-10-17 Fin-tube type heat exchanger

Country Status (4)

Country Link
JP (1) JP5988177B2 (en)
KR (1) KR20140103895A (en)
CN (1) CN103765148B (en)
WO (1) WO2013076907A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784427A1 (en) * 2011-11-25 2014-10-01 Panasonic Corporation Heat transfer fin, fin-tube heat exchanger, and heat pump device
US20180135921A1 (en) * 2015-06-12 2018-05-17 Valeo Systemes Thermiques Fin of a heat exchanger, notably for a motor vehicle, and corresponding heat exchanger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10041739B2 (en) * 2014-09-08 2018-08-07 Mitsubishi Electric Corporation Heat exchanger and method for manufacturing plate-shaped fins for heat exchanger
CN106918261B (en) * 2015-12-25 2022-03-08 浙江盾安热工科技有限公司 Fin and heat exchanger
JP6831206B2 (en) * 2016-10-20 2021-02-17 リンナイ株式会社 Fin tube type heat exchanger and combustion device equipped with this heat exchanger
JP7281866B2 (en) * 2017-11-20 2023-05-26 アルコム・ニッケイ・スペシャルティ・コーティングズ・エスデーエヌ・ビーエッチデー Fin-and-tube heat exchanger and manufacturing method thereof
JP7084363B2 (en) 2019-08-23 2022-06-14 美津濃株式会社 Baseball or softball catcher
CN111043109A (en) * 2019-12-30 2020-04-21 福建中维动力科技股份有限公司 Energy-saving environment-friendly radiator
US11835306B2 (en) * 2021-03-03 2023-12-05 Rheem Manufacturing Company Finned tube heat exchangers and methods for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893137A (en) * 1972-02-15 1973-12-03
JPS503164U (en) * 1973-05-07 1975-01-14
JPS587083U (en) * 1981-07-02 1983-01-18 三菱電機株式会社 Heat exchanger
JPH0587480A (en) * 1991-09-27 1993-04-06 Showa Alum Corp Heat exchanger
JPH09119792A (en) * 1995-10-25 1997-05-06 Hidaka Seiki Kk Fin for heat exchanger
JP2008232499A (en) * 2007-03-19 2008-10-02 Daikin Ind Ltd Fin for heat exchanger

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4712545U (en) * 1971-03-12 1972-10-14
JPH02217158A (en) * 1988-10-28 1990-08-29 Showa Alum Corp Heat exchanger
US5582246A (en) * 1995-02-17 1996-12-10 Heat Pipe Technology, Inc. Finned tube heat exchanger with secondary star fins and method for its production
CN1063544C (en) * 1995-08-01 2001-03-21 康狄恩 Method for production of star-type heat-exchanging fin and apparatus thereof
US5660230A (en) * 1995-09-27 1997-08-26 Inter-City Products Corporation (Usa) Heat exchanger fin with efficient material utilization
JP3188645B2 (en) * 1996-04-12 2001-07-16 住友軽金属工業株式会社 Manufacturing method of find coil type heat exchanger and aluminum plate fin used therefor
JP3038179B2 (en) * 1998-04-08 2000-05-08 日高精機株式会社 Fin for heat exchanger and method of manufacturing the same
US6266882B1 (en) * 1999-05-20 2001-07-31 Carrier Corporation Fin collar and method of manufacturing
JP2008249299A (en) * 2007-03-30 2008-10-16 Daikin Ind Ltd Fin tube type heat exchanger and air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893137A (en) * 1972-02-15 1973-12-03
JPS503164U (en) * 1973-05-07 1975-01-14
JPS587083U (en) * 1981-07-02 1983-01-18 三菱電機株式会社 Heat exchanger
JPH0587480A (en) * 1991-09-27 1993-04-06 Showa Alum Corp Heat exchanger
JPH09119792A (en) * 1995-10-25 1997-05-06 Hidaka Seiki Kk Fin for heat exchanger
JP2008232499A (en) * 2007-03-19 2008-10-02 Daikin Ind Ltd Fin for heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784427A1 (en) * 2011-11-25 2014-10-01 Panasonic Corporation Heat transfer fin, fin-tube heat exchanger, and heat pump device
EP2784427A4 (en) * 2011-11-25 2014-10-15 Panasonic Corp Heat transfer fin, fin-tube heat exchanger, and heat pump device
US20180135921A1 (en) * 2015-06-12 2018-05-17 Valeo Systemes Thermiques Fin of a heat exchanger, notably for a motor vehicle, and corresponding heat exchanger

Also Published As

Publication number Publication date
JPWO2013076907A1 (en) 2015-04-27
CN103765148B (en) 2016-06-22
KR20140103895A (en) 2014-08-27
CN103765148A (en) 2014-04-30
JP5988177B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5988177B2 (en) Finned tube heat exchanger
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
EP2985559B1 (en) Heat transfer fin, heat exchanger, and refrigeration cycle device
JP4932439B2 (en) Plate fin tube heat exchanger and manufacturing method thereof
WO2014147788A1 (en) Heat exchanger, refrigeration cycle device, and production method for heat exchanger
EP2784427B1 (en) Heat transfer fin, fin-tube heat exchanger, and heat pump device
JP2009109183A (en) Tube for heat exchanger
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP2011257084A (en) All-aluminum heat exchanger
JP5048389B2 (en) Cross fin tube heat exchanger
WO2013118762A1 (en) Fin tube-type heat exchanger
CN211400384U (en) Integrated small-channel light tube heat exchanger and refrigeration appliance
JP5569410B2 (en) Heat exchanger tubes and heat exchangers
KR20160134131A (en) Heat exchanger using turn-fin
CN111556950A (en) Heat exchanger for refrigerator
JP2011099630A (en) Heat exchanger, and refrigerator and air conditioner using the same
KR200376365Y1 (en) Radiator
KR101618355B1 (en) Top plate type fin forming tool assembly
WO2012127925A1 (en) Heat exchanger and manufacturing method therefor
KR20100123181A (en) Condenser for refrigerator and manufacturing method thereof
KR101647705B1 (en) fin forming tool improving the drainage and forming tool assembly using the same
KR100518853B1 (en) Method for manufacturing the tube of heat exchanger
JP2010230304A (en) Fin and tube type heat exchanger for air conditioner
JP2012107769A (en) Heat exchanger, and article storage apparatus with the same
JP2014020756A (en) Fin tube heat exchanger, heat pump device and heat transfer fin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545763

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147005248

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851969

Country of ref document: EP

Kind code of ref document: A1