WO2013073423A1 - Seamless austenite heat-resistant alloy tube - Google Patents

Seamless austenite heat-resistant alloy tube Download PDF

Info

Publication number
WO2013073423A1
WO2013073423A1 PCT/JP2012/078788 JP2012078788W WO2013073423A1 WO 2013073423 A1 WO2013073423 A1 WO 2013073423A1 JP 2012078788 W JP2012078788 W JP 2012078788W WO 2013073423 A1 WO2013073423 A1 WO 2013073423A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
tube
content
resistant alloy
seamless
Prior art date
Application number
PCT/JP2012/078788
Other languages
French (fr)
Japanese (ja)
Inventor
佳奈 浄徳
伊勢田 敦朗
岡田 浩一
平田 弘征
吉澤 満
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to IN3492DEN2014 priority Critical patent/IN2014DN03492A/en
Priority to KR1020147015980A priority patent/KR101632520B1/en
Priority to EP12850463.6A priority patent/EP2781612B1/en
Priority to CN201280056250.6A priority patent/CN103946403B/en
Priority to PL12850463T priority patent/PL2781612T3/en
Publication of WO2013073423A1 publication Critical patent/WO2013073423A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a seamless austenitic heat-resistant alloy tube. Specifically, it can be used as a member for high-temperature equipment by directly fillet welding the outer surface of the pipe, such as a pipe constituting the furnace wall of a power generation boiler (hereinafter referred to as “furnace wall pipe”).
  • the present invention relates to a seamless austenitic heat-resistant alloy tube. More specifically, it is a seamless alloy pipe made of an austenitic heat-resistant alloy with excellent high-temperature strength, sufficient stress corrosion cracking resistance, and low thermal expansion coefficient.
  • the present invention relates to a seamless austenitic heat-resistant alloy pipe capable of suppressing the occurrence of cracks in HAZ.
  • Non-Patent Document 1 shows a chart in which the horizontal axis indicates the Cr content of the material and the vertical axis indicates the temperature at an allowable stress of 49 MPa, with the increase in Cr content. It is stated that the temperature on the vertical axis, and hence the creep strength as the high temperature strength, is increased.
  • Non-Patent Document 2 shows a diagram arranged for practical heat-resistant materials with the Ni content of the material on the horizontal axis and the crack sensitivity on the vertical axis, and as the Ni content increases, It is shown that the crack sensitivity on the vertical axis is reduced, and the corrosion resistance at high temperatures (stress corrosion cracking resistance) is increased.
  • Patent Documents 1 to 3 disclose heat-resistant alloys in which the content of Cr and Ni is increased and at least one of Mo and W is contained to improve the creep rupture strength as high-temperature strength.
  • Patent Documents 4 to 7 contain 28% to 38% Cr, 35% to 60% Ni in mass%.
  • a heat-resistant alloy that further improves the creep rupture strength by utilizing precipitation of an ⁇ -Cr phase having a body-centered cubic structure mainly composed of Cr is disclosed.
  • Patent Document 8 and Patent Document 9 Mo and / or W is included to enhance solid solution, and Al and Ti are included to form a ⁇ ′ phase that is an intermetallic compound, specifically, Ni. 3 Ni-based alloys are disclosed that are used in the severe environment described above by utilizing precipitation strengthening of (Al, Ti).
  • Patent Document 10 proposes a high Ni austenitic heat-resistant alloy in which the creep strength is improved by adjusting the range of the content of Al and Ti and precipitating the ⁇ 'phase.
  • HAZ weld heat-affected zone
  • austenitic heat-resistant alloys used as members of various structures are required to satisfy both prevention of cracking in HAZ during welding and welded joint performance.
  • Patent Document 11 includes a specific amount of Fe, and by adjusting the range of the effective B amount, austenite-based heat resistance capable of ensuring workability at high temperatures and preventing cracks in HAZ during butt welding.
  • An alloy is disclosed.
  • Patent Document 12 by adjusting the content of impurity elements such as Sn and Pb in addition to P and S, cracking in HAZ can be prevented at the time of butt welding and long-time use at high temperatures.
  • An austenitic heat-resistant alloy that is also capable of being excellent in creep strength is disclosed.
  • austenitic heat-resistant alloys are generally assembled into various structures by welding. In recent years, there has been a movement to use these austenitic heat-resistant alloy tubes for furnace wall tubes of power generation boilers.
  • carbon steel or 1% Cr steel that does not need to be preheated and postheated has been generally used from various viewpoints such as workability.
  • the conventionally used carbon steel or 1% Cr steel has insufficient high-temperature strength. For this reason, neither the above-mentioned carbon steel nor 1% Cr steel can be used as the material for the furnace wall tube of the “next generation ultra super critical pressure boiler”.
  • austenitic stainless steel has a large coefficient of linear thermal expansion as shown in Non-Patent Document 4. For this reason, in austenitic stainless steel, thermal deformation becomes large at the time of welding, which causes a problem at the time of manufacturing the furnace wall.
  • the furnace wall is composed of a panel in which a plurality of furnace wall tubes are arranged in parallel and welded to a fin plate or a fin bar for connecting the furnace wall tubes. For this reason, unlike butt welding in which machined groove surfaces are welded, it is necessary to fillet weld the outer surface of the as-manufactured pipe directly to the fin plate or fin bar.
  • an austenitic heat-resistant alloy tube with an increased Ni content that can be suitably used for the furnace wall tube of the “next generation ultra super critical pressure boiler”, that is, excellent high temperature strength and sufficient stress corrosion cracking resistance.
  • seamless alloy pipes made of austenitic heat-resistant alloys with a low thermal expansion coefficient Ni content that is excellent in weld crack resistance and can suppress cracking in HAZ during welding Developing an improved seamless austenitic heat-resistant alloy tube has become an urgent issue.
  • Patent Documents 1 to 10 described above disclose austenitic heat-resistant alloys with improved creep rupture strength, but have not been studied from the viewpoint of “weldability” when assembled as a structure, There is no consideration of welding the outer surface of the tube directly. Therefore, it is impossible to use the tube made of the austenitic heat-resistant alloy proposed in each of the above patent documents as the furnace wall tube of the “next generation ultra super critical pressure boiler”.
  • the austenitic heat-resistant alloy proposed by the present inventors in Patent Document 11 is used as products such as tubes, plates, rods and forged products used for heat-resistant pressure-resistant members for power generation boilers, chemical industries, etc., particularly as large products. It is suitable for. And this austenitic heat-resistant alloy can remarkably improve the high temperature workability at the time of manufacturing the above-mentioned products and when using the actual machine, the resistance to weld cracking, and the decrease in ductility due to high temperature aging.
  • the austenitic heat-resistant alloy proposed by the present inventors in Patent Document 12 can prevent cracks in HAZ, can also prevent defects caused by welding workability that occurs during welding work, and can also be used at high temperatures. Excellent creep strength. For this reason, this austenitic heat-resistant alloy can be suitably used as a raw material for high-temperature equipment such as a power generation boiler and a chemical industrial plant.
  • the present invention has been made in view of the above-mentioned present situation.
  • an austenitic heat-resistant alloy that can be used as a member of a high-temperature apparatus by directly fillet welding the outer surface of the tube.
  • This is a seamless alloy pipe made of an austenitic heat-resistant alloy with excellent thermal cracking resistance, sufficient stress corrosion cracking resistance, and low thermal expansion coefficient.
  • An object of the present invention is to provide a seamless austenitic heat-resistant alloy pipe capable of suppressing the occurrence of cracks in HAZ.
  • the present inventors conducted various investigations in order to solve the problems described above.
  • austenitic heat-resistant alloy pipes various austenitic heat-resistant alloy seamless pipes containing B (hereinafter sometimes simply referred to as “austenitic heat-resistant alloy pipes”).
  • the cracks generated in the above HAZ are mechanically influenced by the toe angle of the surging.
  • the toe angle is indirectly influenced by the oxide layer formed on the outer surface of the austenitic heat-resistant alloy tube.
  • (G) B segregates at the grain boundaries of the HAZ near the melting boundary during the welding process due to the welding thermal cycle. Since B is an element that lowers the melting point of the grain boundary, the grain boundary where the B segregates during the welding is locally melted, and the melted portion is opened by welding thermal stress, so-called “liquefaction cracking”. Produce. Note that when the crystal grain size is large, the grain interface area per unit volume is small. Therefore, when the crystal grain size is large, the grain boundary segregation of B becomes remarkable and the stress applied to the specific grain interface becomes large, so that cracks in the HAZ are likely to occur.
  • the outer surface of the austenitic heat-resistant alloy tube was directly regarded as a fin plate (alloy plate having a chemical composition shown in Table 2 in the Example, having a thickness of 6 mm, a width of 15 mm, and a length of 200 mm) and fillet welding. Even in this case, it has been clarified that cracks in the HAZ can be prevented by taking the following measures (j) and (k).
  • the average crystal grain size d ( ⁇ m) at the thickness central portion of the alloy tube is adjusted to a range satisfying the following formula according to the amount of B contained in the alloy at 1000 ⁇ m or less.
  • d ⁇ 1500-2.5 ⁇ 10 5 ⁇ B B in the above formula represents the content (% by mass) of B.
  • the thickness of the oxide layer on the outer surface of the alloy tube is suppressed to 15 ⁇ m or less.
  • the present invention has been completed based on the above findings, and the gist thereof is a seamless austenitic heat-resistant alloy tube shown below.
  • Impurity refers to materials mixed from ore, scrap, or the production environment as raw materials when industrially producing austenitic heat-resistant alloys.
  • REM is a general term for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM refers to the total content of one or more elements of REM.
  • the seamless austenitic heat-resistant alloy pipe of the present invention is excellent in weld crack resistance and can suppress the occurrence of cracks in the HAZ during welding. Therefore, the seamless austenitic heat-resistant alloy pipe of the present invention is a seamless alloy pipe made of an austenitic heat-resistant alloy having excellent high-temperature strength, sufficient stress corrosion cracking resistance, and a low thermal expansion coefficient. However, it can be suitably used as a member for high-temperature equipment such as a furnace wall tube of a power generation boiler.
  • C Chemical composition of the tube: C: 0.03-0.15%
  • C stabilizes austenite, forms fine carbides at grain boundaries, and improves creep strength at high temperatures.
  • a C content of 0.03% or more is necessary.
  • the carbide becomes coarse and precipitates in a large amount, so that the ductility of the grain boundary is lowered, and further, the toughness and the creep strength are also lowered. Therefore, an upper limit is set, and the C content is 0.03 to 0.15%.
  • the preferable lower limit of the C content is 0.04%, and the preferable upper limit is 0.12%.
  • Si 1% or less Si is an element that has a deoxidizing action and is effective for improving corrosion resistance and oxidation resistance at high temperatures. However, when Si is contained excessively, the stability of austenite is lowered, leading to a decrease in toughness and creep strength. Therefore, an upper limit is set for the Si content to 1% or less. The Si content is desirably 0.8% or less.
  • the desirable lower limit of the Si content is 0.02%.
  • Mn 2% or less Mn, like Si, has a deoxidizing action. Mn also contributes to stabilization of austenite. However, when the Mn content is excessive, embrittlement is caused, and the toughness and creep ductility are also reduced. Therefore, an upper limit is set for the Mn content to 2% or less. The Mn content is desirably 1.5% or less.
  • the desirable lower limit of the Mn content is 0.02%.
  • P 0.03% or less
  • P is an element which is contained in the alloy as an impurity and segregates at the grain boundary of HAZ during welding to increase the liquefaction cracking sensitivity. Therefore, an upper limit is set for the P content to 0.03% or less.
  • the content of P is desirably 0.02% or less.
  • the desirable lower limit of the P content is 0.0005%.
  • S 0.01% or less
  • S is an element which is contained in the alloy as an impurity like P and segregates at the grain boundaries of HAZ during welding to increase the liquefaction cracking sensitivity. Furthermore, S is an element that adversely affects toughness after long-term use. Therefore, an upper limit is set for the S content to 0.01% or less. The content of S is desirably 0.005% or less.
  • the desirable lower limit of the S content is 0.0001%.
  • Ni 35-60%
  • Ni is an effective element for obtaining austenite, and is an essential element for ensuring the structural stability when used for a long time.
  • a Ni content of 35% or more is necessary.
  • Ni is an expensive element, and containing a large amount of Ni causes an increase in cost. Therefore, an upper limit is set so that the Ni content is 35 to 60%.
  • a desirable lower limit of the Ni content is 38%, and a desirable upper limit is 55%.
  • Cr 18-38% Cr is an essential element for securing oxidation resistance and corrosion resistance at high temperatures.
  • a Cr content of 18% or more is necessary.
  • the Cr content is 18 to 38%.
  • a desirable lower limit of the Cr content is 20%, and a desirable upper limit is 35%.
  • W 3-11% W is an element that contributes greatly to the improvement of creep strength at a high temperature exceeding 700 ° C. by dissolving in the matrix. In order to fully exhibit the effect, W content of at least 3% or more is necessary. However, even if W is excessively contained, the effect is saturated and the creep strength may be lowered. Furthermore, since W is an expensive element, excessive W content causes an increase in cost. Therefore, an upper limit is set so that the W content is 3 to 11%. A desirable lower limit of the W content is 5%, and a desirable upper limit is 10%.
  • Ti 0.01 to 1.2% Ti precipitates in the grains as fine carbonitrides and contributes to the creep strength at high temperatures. In order to obtain the effect, a Ti content of 0.01% or more is necessary. However, when the Ti content is excessive, it precipitates in large amounts as carbonitrides, leading to a decrease in creep ductility and toughness. Therefore, an upper limit is set so that the Ti content is 0.01 to 1.2%. A desirable lower limit of the Ti content is 0.05%, and a desirable upper limit is 1.0%.
  • Al 0.5% or less
  • Al is an element having a deoxidizing action.
  • an upper limit is set for the Al content to 0.5% or less.
  • the content of Al is desirably 0.3% or less.
  • the desirable lower limit of the Al content is 0.001%.
  • the lower limit of the Al content is more preferably 0.0015%.
  • B 0.0001 to 0.01%
  • B is an element necessary for improving the creep strength by segregating at the grain boundary during use at a high temperature to strengthen the grain boundary and finely dispersing the grain boundary carbide.
  • B has an effect of segregating at the grain boundary to improve the fixing force and contribute to improvement of toughness.
  • a B content of 0.0001% or more is necessary.
  • an upper limit is set so that the B content is 0.0001 to 0.01%.
  • a desirable lower limit of the B content is 0.0005%, and a desirable upper limit is 0.005%.
  • the crystal grain size of HAZ in the vicinity of the melting boundary increases, in other words, the grain interface area per unit volume decreases, and B Grain boundary segregation is promoted, and stress applied to a specific grain interface is increased, so that liquefaction cracking sensitivity is increased.
  • the average crystal grain size d ( ⁇ m) of the center thickness of the alloy tube is 1000 ⁇ m or less, and the following formula is satisfied according to the amount (%) of B contained in the alloy. If it adjusts to the range to perform, the increase in the liquefaction cracking sensitivity by the segregation of B can be suppressed.
  • d ⁇ 1500-2.5 ⁇ 10 5 ⁇ B B in the above formula represents the content of B in mass%.
  • N 0.02% or less N is an element effective for stabilizing austenite.
  • Cr content range of 18 to 38%, if N is contained excessively, a large amount of fine nitride precipitates in the grains during use at a high temperature, leading to a decrease in creep ductility and toughness. . Therefore, an upper limit is set for the N content to 0.02% or less.
  • the N content is desirably 0.015% or less.
  • the desirable lower limit of the N content is 0.0005%.
  • O 0.008% or less
  • O oxygen
  • an upper limit is set for the O content to 0.008% or less.
  • the content of O is desirably 0.005% or less.
  • the desirable lower limit of the O content is 0.0005%.
  • Zr 0.01 to 0.5%
  • Zr combines with C or N to form fine carbides or carbonitrides and contributes to the improvement of creep strength.
  • a Zr content of 0.01% or more is necessary.
  • an upper limit is set so that the Zr content is 0.01 to 0.5%.
  • a desirable lower limit of the Zr content is 0.015%, and a desirable upper limit is 0.4%.
  • Nb 0.01 to 0.5%
  • Nb combines with C or N to form fine carbides or carbonitrides and contributes to the improvement of creep strength.
  • an Nb content of 0.01% or more is necessary.
  • an upper limit is set so that the Nb content is 0.01 to 0.5%.
  • a desirable lower limit of the Nb content is 0.015%, and a desirable upper limit is 0.4%.
  • V 0.01 to 0.5%
  • V combines with C or N to form fine carbides or carbonitrides and contributes to the improvement of creep strength.
  • a V content of 0.01% or more is necessary.
  • an upper limit is set so that the V content is 0.01 to 0.5%.
  • a desirable lower limit of V content is 0.015%, and a desirable upper limit is 0.4%.
  • the above-mentioned Zr, Nb, and V can be contained alone or in combination of two or more.
  • the total amount when these elements are combined and contained may be 1.5%, but is preferably 1.2% or less.
  • One of the seamless austenitic heat-resistant alloy tubes of the present invention has a chemical composition comprising the above-mentioned elements, and the balance being Fe and impurities.
  • impurities refer to impurities mixed from ores, scraps, or production environments as raw materials when industrially producing austenitic heat-resistant alloys.
  • Another one of the seamless austenitic heat-resistant alloy pipes of the present invention is a chemistry containing one or more elements selected from Mo, Cu, Co, Ca, Mg and REM instead of a part of the above-mentioned Fe. Of composition.
  • Mo 1% or less Mo has an effect of improving creep strength. That is, Mo has a function of improving the creep strength at a high temperature by dissolving in the matrix. Therefore, you may contain Mo. However, when Mo is excessively contained, the stability of austenite is lowered, and instead the creep strength is lowered. For this reason, an upper limit is set for the amount of Mo in the case of inclusion, and the amount is made 1% or less.
  • the amount of Mo is preferably 0.1% or more.
  • Cu 1% or less Cu has an effect of improving creep strength. That is, Cu is an austenite-forming element like Ni and contributes to the improvement of creep strength by increasing phase stability. Therefore, Cu may be contained. However, when Cu is contained excessively, the hot workability is lowered. For this reason, when making it contain, the upper limit is provided in the quantity of Cu, and it is 1% or less.
  • the amount of Cu is preferably 0.02% or more.
  • Co 1% or less Co has the effect of improving the creep strength. That is, Co is an austenite-forming element, like Ni and Cu, and contributes to the improvement of creep strength by increasing phase stability. Therefore, Co may be contained. However, since Co is an extremely expensive element, excessive content of Co causes a significant cost increase. For this reason, the upper limit is set to the amount of Co in the case of making it contain, and it is 1% or less.
  • the amount of Co is preferably 0.02% or more.
  • the above-mentioned Mo, Cu and Co can be contained in only one of them or in combination of two or more.
  • the total amount when these elements are contained in combination may be 3%.
  • Ca 0.05% or less Ca has an effect of improving hot workability. For this reason, Ca may be contained. However, when the content of Ca is excessive, it combines with O to significantly reduce cleanliness, and on the other hand, deteriorate hot workability. For this reason, when making it contain, the upper limit is provided in the quantity of Ca, and it is 0.05% or less.
  • the amount of Ca is preferably 0.0005% or more.
  • Mg 0.05% or less Mg, like Ca, has an effect of improving hot workability. For this reason, you may contain Mg. However, if the Mg content is excessive, it combines with O to significantly reduce cleanliness, and on the contrary, deteriorate hot workability. For this reason, the upper limit is set to the amount of Mg in the case of containing 0.05% or less.
  • the amount of Mg is preferably 0.0005% or more.
  • REM 0.1% or less REM has an effect of improving hot workability. That is, REM has a strong affinity with S and contributes to improvement of hot workability. For this reason, you may contain REM. However, when the content of REM becomes excessive, it combines with O to significantly reduce cleanliness and, on the contrary, deteriorate hot workability. For this reason, an upper limit is set for the amount of REM in the case of inclusion, so that it is 0.1% or less.
  • the amount of REM is preferably 0.0005% or more.
  • REM is a generic name for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM refers to the total content of one or more elements of REM.
  • REM is generally contained in misch metal. For this reason, for example, it may be added in the form of misch metal and contained so that the amount of REM falls within the above range.
  • the above-mentioned Ca, Mg and REM can be contained in only one of them, or in a combination of two or more.
  • the total amount when these elements are contained in combination may be 0.2%.
  • the average crystal grain size d ⁇ m at the wall thickness central portion of the tube is 1000 ⁇ m or less, and depending on the amount of B contained in the alloy, d ⁇ 1500-2.5 ⁇ 10 5 ⁇ B It must satisfy the expression expressed by In addition, B in said formula represents content of B in the mass%.
  • the toughness and ductility are significantly reduced. Furthermore, since the HAZ crystal grain size near the melting boundary also increases, in other words, the grain boundary area per unit volume decreases, so the upper limit of the B content contained in the tube is controlled to 0.01% as described above. However, liquefaction cracking due to segregation of B cannot be prevented.
  • the average crystal grain size d at the center of the thickness of the tube can be maintained by 0.5 to 5 hours in a temperature range of 1150 to 1250 ° C. Can be made to satisfy the above-mentioned formula of “d ⁇ 1500 ⁇ 2.5 ⁇ 10 5 ⁇ B”.
  • the thickness of the oxide layer on the outer surface of the tube The oxide film formed on the surface of the seamless austenitic heat-resistant alloy tube of the present invention having the chemical composition described in the item (A) has a high melting point. Moreover, the above oxide film deteriorates the wettability with the molten metal when fillet welding the outer surface of the pipe. For this reason, when the thickness of the oxide layer on the outer surface of the pipe is increased, the toe angle of the weld bead (excess) is increased and stress is easily concentrated on the HAZ, and liquefaction cracking is likely to occur. Therefore, an upper limit is set for the thickness of the oxide layer on the outer surface of the tube to be 15 ⁇ m or less. The thickness of the oxide layer on the outer surface of the tube is desirably 10 ⁇ m or less.
  • the outer surface of the tube can be stably formed by performing the solution heat treatment in the temperature range of 1150 to 1250 ° C. described in the above section (B) for 0.5 to 5 hours in a reducing gas such as hydrogen.
  • the thickness of the oxide layer can be 15 ⁇ m or less.
  • an oxide scale (oxide layer) is formed by performing the solution heat treatment described in the above section (B) in the atmosphere or in a combustion gas, treatments such as pickling, polishing, and shot blasting are performed.
  • the thickness of the oxide layer on the outer surface of the tube can be stably reduced to 15 ⁇ m or less.
  • the thickness of the oxide layer on the outer surface of the tube may be close to 0 ⁇ m by performing a solution heat treatment in reducing gas, pickling, polishing, shot blasting, or the like.
  • mechanical grinding may be performed to remove the oxide layer on the outer surface of the tube, thereby reducing the thickness of the oxide layer to zero.
  • the thickness of the oxide layer on the outer surface of the tube is desirably 0.1 ⁇ m or more, and more desirably 0.2 ⁇ m or more.
  • Each billet thus obtained was hot pierced and rolled using a model mill to produce a seamless tube having an outer diameter of 38 mm and a wall thickness of 9 mm.
  • Each seamless pipe having an outer diameter of 38 mm and a wall thickness of 9 mm was cut into a length of 200 mm, and the temperature was changed in the range of 1150 to 1280 ° C. and the holding time at the temperature in the range of 0.5 to 5 h.
  • a solution heat treatment was performed to prepare various test tubes having different average crystal grain diameters d at the center of the wall thickness.
  • the outer surface of the obtained test tube was polished to change the oxide layer thickness variously.
  • the average crystal grain size d at the center of the wall thickness and the oxide layer thickness on the outer surface of the tube were measured by the following methods.
  • the average crystal grain d ( ⁇ m) at the center of the wall thickness is based on the center of the 200 mm-long test tube, and before and after that, five test pieces are cut out so that the test surface has a cross section, and It was obtained by cutting into four pieces in the circumferential direction, mirror polishing, corroding with aqua regia and observing the central portion of the wall with an optical microscope.
  • the oxide layer thickness on the outer surface of the tube was mirror-polished again on the 20 test pieces used for measuring the average crystal grain size d ( ⁇ m) of the above-mentioned thickness center for each test tube, This was determined by observation with an optical microscope in the state of polishing.
  • each test tube was observed at a magnification of 400 for every 20 test pieces, and the thickness of the oxide on the outer surface of the tube was measured. Subsequently, the value of the oxide thickness in 20 test pieces was arithmetically averaged to obtain the oxide layer thickness on the outer surface of the tube.
  • each test tube whose outer surface was polished after the solution heat treatment was used, and an alloy plate having a thickness of 6 mm and a width of 15 mm cut into a 200 mm length having the chemical composition shown in Table 2.
  • a constrained weld specimen was prepared that simulated fillet welding of a furnace wall tube shown in FIG.
  • test pieces were cut out from the four fillet welds so that the surface to be tested had a cross-section and mirror-polished.
  • the rate of occurrence of liquefaction cracks is defined as “(number of crack occurrence cross sections / 20) ⁇ 100 (%)”, and only test specimens with a liquefaction crack occurrence rate of 0 (zero) are judged as “pass”. Was judged as “failed”.
  • the alloys A to F having a chemical composition within the range specified in the present invention are used as the raw material, the average crystal grain size in the central portion of the tube or the oxide on the outer surface of the tube.
  • liquefaction cracking occurs in the HAZ, and it cannot be used for a furnace wall tube that directly fillet welds the outer surface of the tube.
  • the average crystal grain size d in the central portion of the wall thickness of the tube is less than 1000 ⁇ m, but d ⁇ 1500 ⁇ defined according to the amount of B contained in the alloy 2.5 ⁇ 10 5 ⁇ B
  • liquefaction cracking occurred in HAZ.
  • rate of occurrence of liquefaction cracks increased as the average crystal grain size d increased.
  • the average crystal grain size d at the center of the tube thickness exceeded 1000 ⁇ m, so that liquefaction cracking occurred in the HAZ.
  • the seamless austenitic heat-resistant alloy pipe of the present invention is excellent in weld crack resistance and can suppress the occurrence of cracks in the HAZ during welding. Therefore, the seamless austenitic heat-resistant alloy pipe of the present invention is a seamless alloy pipe made of an austenitic heat-resistant alloy having excellent high-temperature strength, sufficient stress corrosion cracking resistance, and a low thermal expansion coefficient. However, it can be suitably used as a member for high-temperature equipment such as a furnace wall tube of a power generation boiler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

A seamless austenite heat-resistant alloy tube of the present invention is made with a chemical composition comprising, in terms of mass percent, C: 0.03-0.15%, Si ≤ 1%, Mn ≤ 2%, P ≤ 0.03%, S ≤ 0.01%, Ni: 35-60%, Cr: 18-38%, W: 3-11%, Ti: 0.01-1.2%, Al ≤ 0.5%, B: 0.0001-0.01%, N ≤ 0.02%, and O ≤ 0.008%; at least one chosen from Zr: 0.01-0.5%, Nb: 0.01-0.05%, and V: 0.01-0.5%; and, if necessary, at least one chosen from Mo ≤ 1%, Cu ≤ 1%, Co ≤ 1%, Ca ≤ 0.05%, Mg ≤ 0.05%, and REM ≤ 0.1%; with the remainder consisting of Fe and impurities. The average crystal grain diameter (dµm) at the central section of the thickness of the tube is 1000 µm or less and fulfills the expression (d ≤ 1500 - 2.5 × 105 × B). The thickness of an oxide layer on the outer surface of the tube is 15 µm or less, and the outer surface of the tube is directly fillet welded. The alloy tube of the present invention has outstanding resistance to weld cracking and can suppress the appearance of cracks in the heat-affected zone during welding, and therefore can favorably be used as a member for high-temperature devices such as furnace wall pipes for boilers for electricity generation.

Description

継目無オーステナイト系耐熱合金管Seamless austenitic heat-resistant alloy tube
 本発明は、継目無オーステナイト系耐熱合金管に関する。詳しくは、発電用ボイラの火炉壁を構成する管(以下、「火炉壁管」という。)のように、管の外表面を直接にすみ肉溶接して高温機器の部材として用いることが可能な継目無オーステナイト系耐熱合金管に関する。さらに詳しくは、高温強度に優れ、十分な耐応力腐食割れ性を有し、熱膨張係数が小さいオーステナイト系耐熱合金を素材とする継目無合金管のうちで、耐溶接割れ性に優れて溶接時のHAZでの割れ発生を抑止することが可能な継目無オーステナイト系耐熱合金管に関する。 The present invention relates to a seamless austenitic heat-resistant alloy tube. Specifically, it can be used as a member for high-temperature equipment by directly fillet welding the outer surface of the pipe, such as a pipe constituting the furnace wall of a power generation boiler (hereinafter referred to as “furnace wall pipe”). The present invention relates to a seamless austenitic heat-resistant alloy tube. More specifically, it is a seamless alloy pipe made of an austenitic heat-resistant alloy with excellent high-temperature strength, sufficient stress corrosion cracking resistance, and low thermal expansion coefficient. The present invention relates to a seamless austenitic heat-resistant alloy pipe capable of suppressing the occurrence of cracks in HAZ.
 近年、発電用ボイラにおいては、高効率化のために蒸気の温度と圧力を高めた「超々臨界圧ボイラ」の新設が世界中で進められている。さらに、これまで600℃前後であった蒸気温度を650℃以上、さらには700℃以上にまで高めた「次世代超々臨界圧ボイラ」の実用化についても計画されている。これは、省エネルギーと資源の有効活用および環境保全のためのCOガス排出量削減がエネルギー問題の解決課題の一つとなっており、重要な産業政策となっていることに基づく。そして、化石燃料を燃焼させる発電用ボイラにおいては、高温・高圧化が高効率化に有利なためである。 In recent years, in the boilers for power generation, new establishments of “super-supercritical boilers” in which the temperature and pressure of steam are increased for higher efficiency are being promoted all over the world. Furthermore, there is a plan to commercialize a “next-generation super supercritical pressure boiler” in which the steam temperature, which has been around 600 ° C., has been increased to 650 ° C. or higher and further to 700 ° C. or higher. This is based on the fact that energy conservation, effective utilization of resources, and reduction of CO 2 gas emissions for environmental conservation are one of the challenges for solving energy problems and are an important industrial policy. In a power generation boiler that burns fossil fuel, high temperature and high pressure are advantageous for high efficiency.
 蒸気の高温・高圧化は、ボイラを構成する管、例えば、過熱器管および再過熱器管のような伝熱管、ならびに主蒸気管などの稼動時における温度を上昇させる。したがって、このような過酷な環境において長期間使用される材料には、高温強度および高温での耐食性、なかでも長期にわたる金属組織の安定性および良好なクリープ特性が要求される。 Steam high temperature and high pressure increase the temperature during operation of pipes constituting the boiler, for example, heat transfer pipes such as a superheater pipe and a resuperheater pipe, and a main steam pipe. Therefore, a material used for a long time in such a harsh environment is required to have high-temperature strength and high-temperature corrosion resistance, in particular, long-term metal structure stability and good creep characteristics.
 非特許文献1には、実用耐熱材料を対象として、横軸に材料のCr含有量、縦軸に許容応力49MPaにおける温度をとって整理した図が示されおり、Cr含有量の増加に伴って縦軸の温度、したがって、高温強度としてのクリープ強度が高くなることが述べられている。 Non-Patent Document 1 shows a chart in which the horizontal axis indicates the Cr content of the material and the vertical axis indicates the temperature at an allowable stress of 49 MPa, with the increase in Cr content. It is stated that the temperature on the vertical axis, and hence the creep strength as the high temperature strength, is increased.
 また、非特許文献2には、実用耐熱材料を対象として、横軸に材料のNi含有量、縦軸に割れ感受性をとって整理した図が示されており、Ni含有量の増加に伴って縦軸の割れ感受性が小さくなって、高温での耐食性(耐応力腐食割れ性)が高くなることが示されている。 In addition, Non-Patent Document 2 shows a diagram arranged for practical heat-resistant materials with the Ni content of the material on the horizontal axis and the crack sensitivity on the vertical axis, and as the Ni content increases, It is shown that the crack sensitivity on the vertical axis is reduced, and the corrosion resistance at high temperatures (stress corrosion cracking resistance) is increased.
 特許文献1~3に、CrおよびNiの含有量を高め、しかも、MoおよびWの1種以上を含有させて、高温強度としてのクリープ破断強度の向上を図った耐熱合金が開示されている。 Patent Documents 1 to 3 disclose heat-resistant alloys in which the content of Cr and Ni is increased and at least one of Mo and W is contained to improve the creep rupture strength as high-temperature strength.
 さらに、ますます厳しくなる高温強度特性への要求、特にクリープ破断強度への要求に対して、特許文献4~7には、質量%で、Crを28~38%、Niを35~60%含有し、Crを主体とした体心立方構造のα-Cr相の析出を活用して、一層のクリープ破断強度の改善を図った耐熱合金が開示されている。 Furthermore, in response to increasingly demanding requirements for high-temperature strength characteristics, particularly creep rupture strength, Patent Documents 4 to 7 contain 28% to 38% Cr, 35% to 60% Ni in mass%. In addition, a heat-resistant alloy that further improves the creep rupture strength by utilizing precipitation of an α-Cr phase having a body-centered cubic structure mainly composed of Cr is disclosed.
 一方、特許文献8および特許文献9には、Moおよび/またはWを含有させて固溶強化を図るとともに、AlおよびTiを含有させて金属間化合物であるγ’相、具体的には、Ni(Al、Ti)の析出強化を活用して、上述のような過酷な高温環境下で使用するNi基合金が開示されている。 On the other hand, in Patent Document 8 and Patent Document 9, Mo and / or W is included to enhance solid solution, and Al and Ti are included to form a γ ′ phase that is an intermetallic compound, specifically, Ni. 3 Ni-based alloys are disclosed that are used in the severe environment described above by utilizing precipitation strengthening of (Al, Ti).
 また、特許文献10には、AlとTiの含有量の範囲を調整し、γ’相を析出させることによりクリープ強度を改善した高Niオーステナイト系耐熱合金が提案されている。 Further, Patent Document 10 proposes a high Ni austenitic heat-resistant alloy in which the creep strength is improved by adjusting the range of the content of Al and Ti and precipitating the γ 'phase.
 ところで、オーステナイト系耐熱合金は、一般に、溶接により各種構造物に組み立てられ、高温で使用される。しかしながら、非特許文献3に報告されているように、オーステナイト系耐熱合金の合金元素量が増加すると、溶接施工時に溶接熱影響部(以下、「HAZ」という。)、なかでも溶融境界に隣接したHAZで割れが発生するという問題が生じる。 By the way, austenitic heat-resistant alloys are generally assembled into various structures by welding and used at high temperatures. However, as reported in Non-Patent Document 3, when the alloy element amount of the austenitic heat-resistant alloy is increased, the weld heat-affected zone (hereinafter referred to as “HAZ”), particularly, adjacent to the melting boundary during welding construction. There arises a problem that cracks occur in the HAZ.
 このため、各種構造物の部材として用いられるオーステナイト系耐熱合金には、溶接時のHAZでの割れ防止と溶接継手性能の両立が要求される。 For this reason, austenitic heat-resistant alloys used as members of various structures are required to satisfy both prevention of cracking in HAZ during welding and welded joint performance.
 特許文献11には、特定量のFeを含有させるとともに、有効B量の範囲を調整することにより、高温での加工性の確保および突合せ溶接時のHAZでの割れの防止が可能なオーステナイト系耐熱合金が開示されている。 Patent Document 11 includes a specific amount of Fe, and by adjusting the range of the effective B amount, austenite-based heat resistance capable of ensuring workability at high temperatures and preventing cracks in HAZ during butt welding. An alloy is disclosed.
 さらに、特許文献12には、P、Sに加えて、Sn、Pbなどの不純物元素の含有量を調整することにより、突合せ溶接時および高温での長時間使用に際して、HAZでの割れの防止ができ、しかも、クリープ強度にも優れたオーステナイト系耐熱合金が開示されている。 Furthermore, in Patent Document 12, by adjusting the content of impurity elements such as Sn and Pb in addition to P and S, cracking in HAZ can be prevented at the time of butt welding and long-time use at high temperatures. An austenitic heat-resistant alloy that is also capable of being excellent in creep strength is disclosed.
特開昭60-100640号公報JP-A-60-1000064 特開昭64-55352号公報JP-A 64-55352 特開平2-200756号公報JP-A-2-200756 特開平7-216511号公報Japanese Patent Laid-Open No. 7-216511 特開平7-331390号公報JP 7-331390 A 特開平8-127848号公報JP-A-8-127848 特開平8-218140号公報JP-A-8-218140 特開昭51-84726号公報JP-A-51-84726 特開昭51-84727号公報Japanese Patent Laid-Open No. 51-84727 特開平9-157779号公報Japanese Patent Laid-Open No. 9-157779 特開2011-63838号公報JP 2011-63838 A 特開2010-150593号公報JP 2010-150593 A
 前述のとおり、オーステナイト系耐熱合金は、一般に、溶接により各種構造物に組み立てられる。そして、近年では、これらオーステナイト系耐熱合金の管を発電用ボイラの火炉壁管に使用しようとする動きがある。 As described above, austenitic heat-resistant alloys are generally assembled into various structures by welding. In recent years, there has been a movement to use these austenitic heat-resistant alloy tubes for furnace wall tubes of power generation boilers.
 上記火炉壁管の素材としては従来、一般に、作業性等種々の観点から、予熱と後熱の双方を施す必要がない、炭素鋼または1%Cr鋼が使用されてきた。 As a material for the furnace wall tube, carbon steel or 1% Cr steel that does not need to be preheated and postheated has been generally used from various viewpoints such as workability.
 しかしながら、前記した蒸気温度を700℃以上にまで高めた「次世代超々臨界圧ボイラ」においては、従来使用されてきた炭素鋼または1%Cr鋼では高温強度が不十分である。このため、上記の炭素鋼と1%Cr鋼はいずれも、「次世代超々臨界圧ボイラ」の火炉壁管の素材として用いることはできない。 However, in the “next generation ultra super critical pressure boiler” in which the steam temperature is raised to 700 ° C. or higher, the conventionally used carbon steel or 1% Cr steel has insufficient high-temperature strength. For this reason, neither the above-mentioned carbon steel nor 1% Cr steel can be used as the material for the furnace wall tube of the “next generation ultra super critical pressure boiler”.
 一方、これまで過熱器管および再過熱器管に使用されていた通常のオーステナイト系ステンレス鋼は、Ni含有量が少ないため、火炉壁のような内部に高温水が流れる環境では応力腐食割れが生じる。したがって、通常のオーステナイト系ステンレス鋼もまた、これを「次世代超々臨界圧ボイラ」の火炉壁管の素材として用いることはできない。 On the other hand, normal austenitic stainless steel used for superheater tubes and resuperheater tubes has low Ni content, so stress corrosion cracking occurs in an environment where high-temperature water flows inside the furnace wall. . Therefore, ordinary austenitic stainless steel cannot be used as a material for a furnace wall tube of a “next generation ultra-supercritical boiler”.
 加えて、オーステナイト系ステンレス鋼は、非特許文献4に一例が示されているように線熱膨張係が大きい。このため、オーステナイト系ステンレス鋼では、溶接時に熱変形が大きくなって、火炉壁製作時に問題が生じる。 In addition, austenitic stainless steel has a large coefficient of linear thermal expansion as shown in Non-Patent Document 4. For this reason, in austenitic stainless steel, thermal deformation becomes large at the time of welding, which causes a problem at the time of manufacturing the furnace wall.
 なお、火炉壁は、複数本の火炉壁管を平行に配置し、該火炉壁管同士を連結するためのフィンプレートまたはフィンバーと溶接したパネルから構成される。このため、機械加工した開先面を溶接する突合せ溶接とは異なり、製造ままの管の外表面を直接、フィンプレートまたはフィンバーとすみ肉溶接する必要がある。 The furnace wall is composed of a panel in which a plurality of furnace wall tubes are arranged in parallel and welded to a fin plate or a fin bar for connecting the furnace wall tubes. For this reason, unlike butt welding in which machined groove surfaces are welded, it is necessary to fillet weld the outer surface of the as-manufactured pipe directly to the fin plate or fin bar.
 上記のように管の外表面を直接にすみ肉溶接する(以下、単に「管の外表面を直接に溶接する」ということがある。)場合は、開先内に溶接する突合せ溶接の場合と比べて形状的に余盛止端部での応力集中が大きくなる。その結果、管の外表面を直接に溶接する場合は、突合せ溶接する場合に比べて、溶接中にHAZでの割れが生じやすくなる。 When fillet welding the outer surface of the pipe directly as described above (hereinafter sometimes simply referred to as “welding the outer surface of the pipe directly”), the case of butt welding that welds in the groove and Compared with the shape, the stress concentration at the extra-banking toe increases. As a result, when the outer surface of the pipe is directly welded, cracks in the HAZ are more likely to occur during welding than when butt welding is performed.
 したがって、「次世代超々臨界圧ボイラ」の火炉壁管に好適に使用できるNi含有量を高めたオーステナイト系耐熱合金管を開発すること、すなわち、高温強度に優れ、十分な耐応力腐食割れ性を有し、熱膨張係数が小さいオーステナイト系耐熱合金を素材とする継目無合金管のうちで、耐溶接割れ性に優れて溶接時のHAZでの割れ発生を抑止することが可能なNi含有量を高めた継目無オーステナイト系耐熱合金管を開発することが喫緊の課題となっている。 Therefore, the development of an austenitic heat-resistant alloy tube with an increased Ni content that can be suitably used for the furnace wall tube of the “next generation ultra super critical pressure boiler”, that is, excellent high temperature strength and sufficient stress corrosion cracking resistance. Among seamless alloy pipes made of austenitic heat-resistant alloys with a low thermal expansion coefficient, Ni content that is excellent in weld crack resistance and can suppress cracking in HAZ during welding Developing an improved seamless austenitic heat-resistant alloy tube has become an urgent issue.
 前述の特許文献1~10には、クリープ破断強度を改善したオーステナイト系耐熱合金が開示されているが、構造物として組み立てる際の「溶接性」という観点からの検討はなされておらず、しかも、管の外表面を直接に溶接することは全く考慮されていない。したがって、上記の各特許文献で提案されたオーステナイト系耐熱合金を素材とする管を「次世代超々臨界圧ボイラ」の火炉壁管に用いることは到底できない。 Patent Documents 1 to 10 described above disclose austenitic heat-resistant alloys with improved creep rupture strength, but have not been studied from the viewpoint of “weldability” when assembled as a structure, There is no consideration of welding the outer surface of the tube directly. Therefore, it is impossible to use the tube made of the austenitic heat-resistant alloy proposed in each of the above patent documents as the furnace wall tube of the “next generation ultra super critical pressure boiler”.
 本発明者らが特許文献11で提案したオーステナイト系耐熱合金は、発電用ボイラ、化学工業用などの耐熱耐圧部材に使う管、板、棒および鍛造品等の製品、特に大型製品として使用するのに好適である。そして、このオーステナイト系耐熱合金によって、上記製品の製造時および実機使用時の高温加工性、耐溶接割れ感受性、さらには高温時効による延性の低下を顕著に改善することができる。 The austenitic heat-resistant alloy proposed by the present inventors in Patent Document 11 is used as products such as tubes, plates, rods and forged products used for heat-resistant pressure-resistant members for power generation boilers, chemical industries, etc., particularly as large products. It is suitable for. And this austenitic heat-resistant alloy can remarkably improve the high temperature workability at the time of manufacturing the above-mentioned products and when using the actual machine, the resistance to weld cracking, and the decrease in ductility due to high temperature aging.
 同様に、本発明者らが特許文献12で提案したオーステナイト系耐熱合金は、HAZにおける割れを防止できるとともに、溶接施工中に発生する溶接作業性に起因した欠陥も防止でき、さらに、高温でのクリープ強度にも優れている。このため、このオーステナイト耐熱合金は、発電用ボイラ、化学工業プラント等の高温機器の素材として好適に用いることができる。 Similarly, the austenitic heat-resistant alloy proposed by the present inventors in Patent Document 12 can prevent cracks in HAZ, can also prevent defects caused by welding workability that occurs during welding work, and can also be used at high temperatures. Excellent creep strength. For this reason, this austenitic heat-resistant alloy can be suitably used as a raw material for high-temperature equipment such as a power generation boiler and a chemical industrial plant.
 しかしながら、上記の特許文献11および特許文献12で提案したオーステナイト系耐熱合金を開発するに際して、本発明者らは、管の外表面を直接に溶接することについては、必ずしも配慮していなかった。そのため、上記のオーステナイト系耐熱合金を素材とする管の外表面を直接に溶接する場合には、形状的に余盛止端部での応力集中が大きくなる結果、突合せ溶接する場合に比べて、溶接時にHAZでの割れが生じやすくなることを避けられない可能性がある。したがって、上記の各オーステナイト系耐熱合金を素材とする管を「次世代超々臨界圧ボイラ」の火炉壁管に使用するに際しては、改善すべき事柄が残されている。 However, when developing the austenitic heat-resistant alloy proposed in Patent Document 11 and Patent Document 12 described above, the present inventors have not always considered the direct welding of the outer surface of the pipe. Therefore, when directly welding the outer surface of the tube made of the above austenitic heat-resistant alloy as a raw material, the stress concentration at the surging toe is increased in shape, compared to the case of butt welding, There is a possibility that cracks in the HAZ tend to occur during welding. Therefore, when using the above-mentioned tubes made of each austenitic heat-resistant alloy as the furnace wall tube of the “next generation super supercritical pressure boiler”, there are still matters to be improved.
 本発明は、上記現状に鑑みてなされたもので、発電用ボイラの火炉壁管のように、管の外表面を直接にすみ肉溶接して高温機器の部材として用いることができるオーステナイト系耐熱合金管、すなわち、高温強度に優れ、十分な耐応力腐食割れ性を有し、熱膨張係数が小さいオーステナイト系耐熱合金を素材とする継目無合金管のうちで、耐溶接割れ性に優れて溶接時のHAZでの割れ発生を抑止することが可能な継目無オーステナイト系耐熱合金管を提供することを目的とする。 The present invention has been made in view of the above-mentioned present situation. Like a furnace wall tube of a power generation boiler, an austenitic heat-resistant alloy that can be used as a member of a high-temperature apparatus by directly fillet welding the outer surface of the tube. This is a seamless alloy pipe made of an austenitic heat-resistant alloy with excellent thermal cracking resistance, sufficient stress corrosion cracking resistance, and low thermal expansion coefficient. An object of the present invention is to provide a seamless austenitic heat-resistant alloy pipe capable of suppressing the occurrence of cracks in HAZ.
 本発明者らは前記した課題を解決するために、種々の調査を実施した。 The present inventors conducted various investigations in order to solve the problems described above.
 その結果、先ず、適正量のBを含有させることによって、オーステナイト系耐熱合金に十分な高温強度を付与できることが確認できた。 As a result, it was confirmed that sufficient a high temperature strength could be imparted to the austenitic heat-resistant alloy by first containing an appropriate amount of B.
 そこで次に、本発明者らはBを含有する種々のオーステナイト系耐熱合金の継目無管(以下、単に「オーステナイト系耐熱合金管」ということがある。)を作製して、該合金管の外表面を直接、フィンプレートに見立てた板、具体的には、後述する実施例の表2に示す化学組成を有する厚さ6mm、幅15mm、長さ200mmの合金板とすみ肉溶接し、溶接時にHAZで生じる割れについて、詳細な調査を行った。 Accordingly, the present inventors then produced various austenitic heat-resistant alloy seamless pipes containing B (hereinafter sometimes simply referred to as “austenitic heat-resistant alloy pipes”). A plate whose surface is directly regarded as a fin plate, specifically, fillet welded to a 6 mm thick, 15 mm wide, 200 mm long alloy plate having a chemical composition shown in Table 2 of Examples described later, and during welding A detailed investigation was conducted on cracks generated in HAZ.
 その結果、下記(a)~(d)の事項が明らかになった。 As a result, the following items (a) to (d) became clear.
 (a)溶接時に、割れは溶融境界に近いHAZの結晶粒界に発生するという非特許文献3の内容が確認できた。 (A) During welding, the content of Non-Patent Document 3 that cracks occur at the grain boundaries of HAZ close to the melting boundary was confirmed.
 (b)オーステナイト系耐熱合金管に含まれるB量が多いほど、また、オーステナイト系耐熱合金管の結晶粒径が大きいほど、HAZでの割れが発生しやすい。さらに、余盛の止端角が大きいほど、HAZでの割れが発生しやすい。 (B) The larger the amount of B contained in the austenitic heat-resistant alloy tube, and the larger the crystal grain size of the austenitic heat-resistant alloy tube, the easier the cracking in HAZ occurs. Furthermore, the larger the toe angle of the surging, the easier it is to crack in the HAZ.
 (c)HAZに生じた割れの破面には、溶融痕が認められる。また、該破面上には、Bの濃化が生じている。そして、オーステナイト系耐熱合金管の結晶粒径が大きいほどBの濃化が顕著である。 (C) Melting marks are observed on the fracture surface of the crack generated in the HAZ. Further, B is concentrated on the fracture surface. And the concentration of B becomes more remarkable as the crystal grain size of the austenitic heat-resistant alloy tube is larger.
 (d)オーステナイト系耐熱合金管の外表面に生成している酸化物層が厚いほど、余盛の止端角が大きい。 (D) The thicker the oxide layer formed on the outer surface of the austenitic heat-resistant alloy tube, the larger the toe angle of the surging.
 上記(a)~(d)の判明事項から、本発明者らは、次の(e)~(f)の結論に至った。 From the above findings (a) to (d), the present inventors have reached the following conclusions (e) to (f).
 (e)溶接時にHAZで発生する割れは、冶金的には粒界に存在するBが強く影響し、Bの粒界での挙動にはオーステナイト系耐熱合金管の結晶粒径が間接的に影響する。 (E) Cracks generated in HAZ during welding are strongly influenced by B present at the grain boundary in terms of metallurgy, and the behavior of B at the grain boundary is indirectly influenced by the crystal grain size of the austenitic heat-resistant alloy tube. To do.
 (f)上記のHAZで発生する割れは、力学的には余盛の止端角が強く影響する。そして、止端角には、オーステナイト系耐熱合金管の外表面に生成している酸化物層が間接的に影響する。 (F) The cracks generated in the above HAZ are mechanically influenced by the toe angle of the surging. The toe angle is indirectly influenced by the oxide layer formed on the outer surface of the austenitic heat-resistant alloy tube.
 すなわち、適正量のBを含有させて十分な高温強度を確保したオーステナイト系耐熱合金管を直接に、すみ肉溶接した場合、溶接時にHAZで生じる割れを防止するには、
 オーステナイト系耐熱合金管の結晶粒径を管理するとともに、Bの含有量を結晶粒径に応じて調整すること、および、
 オーステナイト系耐熱合金管の外表面に存在する酸化物層の厚さを管理し、余盛形状を制御すること、
という2項目が有効であることが明らかになった。
That is, in order to prevent cracks caused by HAZ during welding when directly filling fillet welded austenitic heat-resistant alloy pipe containing sufficient amount of B and securing sufficient high temperature strength,
Managing the crystal grain size of the austenitic heat-resistant alloy tube, adjusting the content of B according to the crystal grain size, and
Managing the thickness of the oxide layer present on the outer surface of the austenitic heat-resistant alloy tube, and controlling the surplus shape,
These two items were found to be effective.
 その理由は、次の(g)~(i)によるものと考えられる。 The reason is considered to be due to the following (g) to (i).
 (g)Bは、溶接施工中に、溶接熱サイクルにより溶融境界近傍のHAZの粒界に偏析する。Bは粒界の融点を低下させる元素であるため、溶接中に上記のBが偏析した粒界が局部的に溶融し、その溶融した箇所が溶接熱応力により開口して、いわゆる「液化割れ」を生じる。なお、結晶粒径が大きい場合、単位体積あたりの粒界面積は小さい。したがって、結晶粒径が大きい場合、Bの粒界偏析が顕著になるとともに、特定の粒界面にかかる応力が大きくなるので、HAZでの割れが発生しやすくなる。 (G) B segregates at the grain boundaries of the HAZ near the melting boundary during the welding process due to the welding thermal cycle. Since B is an element that lowers the melting point of the grain boundary, the grain boundary where the B segregates during the welding is locally melted, and the melted portion is opened by welding thermal stress, so-called “liquefaction cracking”. Produce. Note that when the crystal grain size is large, the grain interface area per unit volume is small. Therefore, when the crystal grain size is large, the grain boundary segregation of B becomes remarkable and the stress applied to the specific grain interface becomes large, so that cracks in the HAZ are likely to occur.
 (h)溶接ビード(余盛)の止端角が大きくなると、HAZへ応力が集中しやすくなり、このため割れが発生しやすくなる。 (H) If the toe angle of the weld bead (excess) increases, stress tends to concentrate on the HAZ, and cracks are likely to occur.
 (i)管の外表面に厚い酸化物層が形成されている場合、酸化物の融点が高いことに加えて、管の外表面をすみ肉溶接する際に、溶融金属との濡れ性が悪くなる。このため、余盛の止端角が大きくなって、割れに対する感受性が高くなる。 (I) When a thick oxide layer is formed on the outer surface of the pipe, in addition to the high melting point of the oxide, the wettability with molten metal is poor when fillet welding the outer surface of the pipe. Become. For this reason, the toe angle of the surging is increased and the sensitivity to cracking is increased.
 そこで、本発明者らは、さらに詳細な検討を実施した。 Therefore, the present inventors conducted further detailed studies.
 その結果、オーステナイト系耐熱合金管の外表面を直接、フィンプレートに見立てた板(実施例の表2に示す化学組成を有する厚さ6mm、幅15mm、長さ200mmの合金板)とすみ肉溶接した場合であっても、下記(j)および(k)の対策を講じることによって、HAZでの割れを防止できることが明らかになった。 As a result, the outer surface of the austenitic heat-resistant alloy tube was directly regarded as a fin plate (alloy plate having a chemical composition shown in Table 2 in the Example, having a thickness of 6 mm, a width of 15 mm, and a length of 200 mm) and fillet welding. Even in this case, it has been clarified that cracks in the HAZ can be prevented by taking the following measures (j) and (k).
 (j)合金管の肉厚中央部の平均結晶粒径d(μm)を、1000μm以下で、かつ、合金が含有するBの量に応じて、下記の式を満足する範囲に調整する。
  d≦1500-2.5×10×B
上記の式におけるBは、Bの含有量(質量%)を表す。
(J) The average crystal grain size d (μm) at the thickness central portion of the alloy tube is adjusted to a range satisfying the following formula according to the amount of B contained in the alloy at 1000 μm or less.
d ≦ 1500-2.5 × 10 5 × B
B in the above formula represents the content (% by mass) of B.
 (k)すみ肉溶接時の溶融金属との濡れ性を改善して止端角を小さくするために、合金管の外表面の酸化物層の厚さを15μm以下に抑える。 (K) In order to improve the wettability with molten metal during fillet welding and reduce the toe angle, the thickness of the oxide layer on the outer surface of the alloy tube is suppressed to 15 μm or less.
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記に示す継目無オーステナイト系耐熱合金管にある。 The present invention has been completed based on the above findings, and the gist thereof is a seamless austenitic heat-resistant alloy tube shown below.
 (1)質量%で、C:0.03~0.15%、Si:1%以下、Mn:2%以下、P:0.03%以下、S:0.01%以下、Ni:35~60%、Cr:18~38%、W:3~11%、Ti:0.01~1.2%、Al:0.5%以下、B:0.0001~0.01%、N:0.02%以下およびO:0.008%以下と、
Zr:0.01~0.5%、Nb:0.01~0.5%およびV:0.01~0.5%のうちの1種以上と、
残部がFeおよび不純物とからなる化学組成であって、管の肉厚中央部の平均結晶粒径dμmが、1000μm以下、かつ下記の式を満足し、さらに、管の外表面の酸化物層の厚さが15μm以下であることを特徴とする、管外表面を直接にすみ肉溶接して用いられる継目無オーステナイト系耐熱合金管。
 d≦1500-2.5×10×B
上記の式におけるBは、質量%でのBの含有量を表す。
(1) By mass%, C: 0.03 to 0.15%, Si: 1% or less, Mn: 2% or less, P: 0.03% or less, S: 0.01% or less, Ni: 35 to 60%, Cr: 18 to 38%, W: 3 to 11%, Ti: 0.01 to 1.2%, Al: 0.5% or less, B: 0.0001 to 0.01%, N: 0 0.02% or less and O: 0.008% or less,
One or more of Zr: 0.01 to 0.5%, Nb: 0.01 to 0.5% and V: 0.01 to 0.5%;
The balance is a chemical composition composed of Fe and impurities, the average crystal grain size dμm at the center of the tube thickness is 1000 μm or less and satisfies the following formula, and the oxide layer on the outer surface of the tube A seamless austenitic heat-resistant alloy pipe used by directly fillet welding the outer surface of the pipe, wherein the thickness is 15 μm or less.
d ≦ 1500-2.5 × 10 5 × B
B in the above formula represents the content of B in mass%.
 (2)Feの一部に代えて、質量%で、下記の<1>および<2>に示される元素から選択される1種以上を含有することを特徴とする、上記(1)に記載の継目無オーステナイト系耐熱合金管。
 <1>Mo:1%以下、Cu:1%以下およびCo:1%以下、
 <2>Ca:0.05%以下、Mg:0.05%以下およびREM:0.1%以下。
(2) The method according to (1) above, wherein one or more elements selected from the elements shown in the following <1> and <2> are contained in mass% instead of a part of Fe Seamless austenitic heat-resistant alloy tube.
<1> Mo: 1% or less, Cu: 1% or less, and Co: 1% or less,
<2> Ca: 0.05% or less, Mg: 0.05% or less, and REM: 0.1% or less.
 (3)火炉壁管に用いることを特徴とする、上記(1)または(2)に記載の継目無オーステナイト系耐熱合金管。 (3) The seamless austenitic heat-resistant alloy tube according to (1) or (2) above, which is used for a furnace wall tube.
 「不純物」とは、オーステナイト系耐熱合金を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入するものを指す。 “Impurity” refers to materials mixed from ore, scrap, or the production environment as raw materials when industrially producing austenitic heat-resistant alloys.
 「REM」とは、Sc、Yおよびランタノイドの合計17元素の総称であり、REMの含有量はREMのうちの1種または2種以上の元素の合計含有量を指す。 “REM” is a general term for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM refers to the total content of one or more elements of REM.
 本発明の継目無オーステナイト系耐熱合金管は、耐溶接割れ性に優れ、溶接時のHAZでの割れ発生を抑止することができる。このため、本発明の継目無オーステナイト系耐熱合金管は、高温強度に優れ、十分な耐応力腐食割れ性を有し、熱膨張係数が小さいオーステナイト系耐熱合金を素材とする継目無合金管のうちでも、発電用ボイラの火炉壁管のような高温機器の部材として好適に用いることができる。 The seamless austenitic heat-resistant alloy pipe of the present invention is excellent in weld crack resistance and can suppress the occurrence of cracks in the HAZ during welding. Therefore, the seamless austenitic heat-resistant alloy pipe of the present invention is a seamless alloy pipe made of an austenitic heat-resistant alloy having excellent high-temperature strength, sufficient stress corrosion cracking resistance, and a low thermal expansion coefficient. However, it can be suitably used as a member for high-temperature equipment such as a furnace wall tube of a power generation boiler.
実施例で作製した、火炉壁管のすみ肉溶接を模擬した拘束溶接試験体について模式的に説明する図である。なお、図ではフィンプレートに見立てた合金板を単に「フィンプレート」と表記した。It is a figure which illustrates typically the restraint welding test body which simulated the fillet welding of the furnace wall pipe produced in the Example. In the figure, the alloy plate resembling a fin plate is simply referred to as “fin plate”. 供試管とフィンプレートに見立てた合金板とのすみ肉溶接について説明する図である。なお、図ではフィンプレートに見立てた合金板を単に「フィンプレート」と表記した。It is a figure explaining fillet welding with an alloy plate made to look like a test tube and a fin plate. In the figure, the alloy plate resembling a fin plate is simply referred to as “fin plate”.
 以下、本発明の各要件について詳しく説明する。なお、以下の説明における各元素の含有量の「%」表示は「質量%」を意味する。 Hereinafter, each requirement of the present invention will be described in detail. In the following description, “%” of the content of each element means “mass%”.
 (A)管の化学組成:
 C:0.03~0.15%
 Cは、オーステナイトを安定にするとともに粒界に微細な炭化物を形成し、高温でのクリープ強度を向上させる。この効果を十分に得るためには、0.03%以上のC含有量が必要である。しかしながら、Cが過剰に含有された場合には、炭化物が粗大となり、かつ多量に析出するので、粒界の延性が低下し、さらに、靱性およびクリープ強度の低下も生じる。したがって、上限を設け、Cの含有量を0.03~0.15%とする。C含有量の好ましい下限は0.04%であり、また、好ましい上限は0.12%である。
(A) Chemical composition of the tube:
C: 0.03-0.15%
C stabilizes austenite, forms fine carbides at grain boundaries, and improves creep strength at high temperatures. In order to sufficiently obtain this effect, a C content of 0.03% or more is necessary. However, when C is contained excessively, the carbide becomes coarse and precipitates in a large amount, so that the ductility of the grain boundary is lowered, and further, the toughness and the creep strength are also lowered. Therefore, an upper limit is set, and the C content is 0.03 to 0.15%. The preferable lower limit of the C content is 0.04%, and the preferable upper limit is 0.12%.
 Si:1%以下
 Siは、脱酸作用を有するとともに、高温での耐食性および耐酸化性の向上に有効な元素である。しかし、Siが過剰に含有された場合には、オーステナイトの安定性が低下して、靱性およびクリープ強度の低下を招く。そのため、Siの含有量に上限を設けて1%以下とする。Siの含有量は、望ましくは0.8%以下である。
Si: 1% or less Si is an element that has a deoxidizing action and is effective for improving corrosion resistance and oxidation resistance at high temperatures. However, when Si is contained excessively, the stability of austenite is lowered, leading to a decrease in toughness and creep strength. Therefore, an upper limit is set for the Si content to 1% or less. The Si content is desirably 0.8% or less.
 なお、Siの含有量について特に下限を設ける必要はないが、極端な低減は、脱酸効果が十分に得られず合金の清浄度が大きくなって清浄性が劣化するとともに、高温での耐食性および耐酸化性の向上効果も得難くなるし、製造コストも大きく上昇する。そのため、Si含有量の望ましい下限は0.02%である。 Although it is not necessary to set a lower limit in particular for the Si content, the extreme reduction is that the deoxidation effect cannot be sufficiently obtained, the cleanliness of the alloy is increased and the cleanliness is deteriorated, and the corrosion resistance at high temperature and It is difficult to obtain the effect of improving oxidation resistance, and the manufacturing cost is greatly increased. Therefore, the desirable lower limit of the Si content is 0.02%.
 Mn:2%以下
 Mnは、Siと同様、脱酸作用を有する。Mnは、オーステナイトの安定化にも寄与する。しかし、Mnの含有量が過剰になると、脆化を招き、さらに、靱性およびクリープ延性の低下も生じる。そのため、Mnの含有量に上限を設けて2%以下とする。Mnの含有量は、望ましくは、1.5%以下である。
Mn: 2% or less Mn, like Si, has a deoxidizing action. Mn also contributes to stabilization of austenite. However, when the Mn content is excessive, embrittlement is caused, and the toughness and creep ductility are also reduced. Therefore, an upper limit is set for the Mn content to 2% or less. The Mn content is desirably 1.5% or less.
 なお、Mnの含有量についても特に下限を設ける必要はないが、極端な低減は、脱酸効果が十分に得られず合金の清浄性を劣化させるとともに、オーステナイト安定化効果が得難くなるし、製造コストも大きく上昇する。そのため、Mn含有量の望ましい下限は0.02%である。 In addition, it is not necessary to provide a lower limit particularly for the content of Mn, but an extreme reduction is not sufficient to obtain a deoxidation effect, deteriorates the cleanliness of the alloy, and makes it difficult to obtain an austenite stabilizing effect, Manufacturing costs also increase significantly. Therefore, the desirable lower limit of the Mn content is 0.02%.
 P:0.03%以下
 Pは、不純物として合金中に含まれ、溶接中にHAZの結晶粒界に偏析して、液化割れ感受性を高める元素である。そのため、Pの含有量に上限を設けて0.03%以下とする。Pの含有量は、望ましくは、0.02%以下である。
P: 0.03% or less P is an element which is contained in the alloy as an impurity and segregates at the grain boundary of HAZ during welding to increase the liquefaction cracking sensitivity. Therefore, an upper limit is set for the P content to 0.03% or less. The content of P is desirably 0.02% or less.
 なお、Pの含有量は可能な限り低減することが好ましいが、極度の低減は製造コストの増大を招く。そのため、P含有量の望ましい下限は0.0005%である。 In addition, although it is preferable to reduce the content of P as much as possible, the extreme reduction leads to an increase in manufacturing cost. Therefore, the desirable lower limit of the P content is 0.0005%.
 S:0.01%以下
 Sは、Pと同様に不純物として合金中に含まれ、溶接中にHAZの結晶粒界に偏析して、液化割れ感受性を高める元素である。さらに、Sは、長時間使用後の靱性にも悪影響を及ぼす元素である。そのため、Sの含有量に上限を設けて0.01%以下とする。Sの含有量は、望ましくは、0.005%以下である。
S: 0.01% or less S is an element which is contained in the alloy as an impurity like P and segregates at the grain boundaries of HAZ during welding to increase the liquefaction cracking sensitivity. Furthermore, S is an element that adversely affects toughness after long-term use. Therefore, an upper limit is set for the S content to 0.01% or less. The content of S is desirably 0.005% or less.
 なお、Sの含有量は可能な限り低減することが好ましいが、極度の低減は製造コストの増大を招く。そのため、S含有量の望ましい下限は0.0001%である。 In addition, it is preferable to reduce the S content as much as possible, but extreme reduction leads to an increase in manufacturing cost. Therefore, the desirable lower limit of the S content is 0.0001%.
 Ni:35~60%
 Niは、オーステナイトを得るために有効な元素であり、長時間使用時の組織安定性を確保するために必須の元素である。後述の18~38%というCr含有量の範囲で、上述したNiの効果を十分に得るためには、35%以上のNi含有量が必要である。しかしながら、Niは高価な元素であり、多量のNi含有はコストの増大を招く。そのため、上限を設けて、Niの含有量を35~60%とする。Ni含有量の望ましい下限は38%であり、また、望ましい上限は55%である。
Ni: 35-60%
Ni is an effective element for obtaining austenite, and is an essential element for ensuring the structural stability when used for a long time. In order to obtain the above-described effects of Ni sufficiently within the Cr content range of 18 to 38% described later, a Ni content of 35% or more is necessary. However, Ni is an expensive element, and containing a large amount of Ni causes an increase in cost. Therefore, an upper limit is set so that the Ni content is 35 to 60%. A desirable lower limit of the Ni content is 38%, and a desirable upper limit is 55%.
 Cr:18~38%
 Crは、高温での耐酸化性および耐食性の確保のために必須の元素である。上記35~60%というNi含有量の範囲で、上述したCrの効果を得るためには、18%以上のCr含有量が必要である。しかし、Crの含有量が38%を超えると、高温でのオーステナイトの安定性が劣化して、クリープ強度の低下を招く。したがって、Crの含有量を18~38%とする。Cr含有量の望ましい下限は20%であり、また、望ましい上限は35%である。
Cr: 18-38%
Cr is an essential element for securing oxidation resistance and corrosion resistance at high temperatures. In order to obtain the above-described effect of Cr in the Ni content range of 35 to 60%, a Cr content of 18% or more is necessary. However, if the Cr content exceeds 38%, the stability of austenite at high temperatures deteriorates, leading to a decrease in creep strength. Therefore, the Cr content is 18 to 38%. A desirable lower limit of the Cr content is 20%, and a desirable upper limit is 35%.
 W:3~11%
 Wは、マトリックスに固溶して700℃を超える高温でのクリープ強度の向上に大きく寄与する元素である。その効果を十分に発揮させるためには少なくとも3%以上のW含有量が必要である。しかしながら、Wを過剰に含有させても効果は飽和し、かえってクリープ強度を低下させる場合もある。さらに、Wは、高価な元素であるため、過剰のW含有はコストの増大を招く。そのため、上限を設けて、Wの含有量を3~11%とする。W含有量の望ましい下限は5%であり、また、望ましい上限は10%である。
W: 3-11%
W is an element that contributes greatly to the improvement of creep strength at a high temperature exceeding 700 ° C. by dissolving in the matrix. In order to fully exhibit the effect, W content of at least 3% or more is necessary. However, even if W is excessively contained, the effect is saturated and the creep strength may be lowered. Furthermore, since W is an expensive element, excessive W content causes an increase in cost. Therefore, an upper limit is set so that the W content is 3 to 11%. A desirable lower limit of the W content is 5%, and a desirable upper limit is 10%.
 Ti:0.01~1.2%
 Tiは、微細な炭窒化物として粒内に析出し、高温でのクリープ強度に寄与する。その効果を得るためには0.01%以上のTi含有量が必要である。しかしながら、Tiの含有量が過剰になると、炭窒化物として多量に析出し、クリープ延性および靱性の低下を招く。このため、上限を設けて、Tiの含有量を0.01~1.2%とする。Ti含有量の望ましい下限は0.05%であり、また、望ましい上限は1.0%である。
Ti: 0.01 to 1.2%
Ti precipitates in the grains as fine carbonitrides and contributes to the creep strength at high temperatures. In order to obtain the effect, a Ti content of 0.01% or more is necessary. However, when the Ti content is excessive, it precipitates in large amounts as carbonitrides, leading to a decrease in creep ductility and toughness. Therefore, an upper limit is set so that the Ti content is 0.01 to 1.2%. A desirable lower limit of the Ti content is 0.05%, and a desirable upper limit is 1.0%.
 Al:0.5%以下
 Alは、脱酸作用を有する元素である。しかしながら、Alの含有量が過剰になると、合金の清浄性が著しく劣化して、熱間加工性および延性が低下する。そのため、Alの含有量に上限を設けて0.5%以下とする。Alの含有量は、望ましくは0.3%以下である。
Al: 0.5% or less Al is an element having a deoxidizing action. However, when the Al content is excessive, the cleanliness of the alloy is remarkably deteriorated and the hot workability and ductility are lowered. Therefore, an upper limit is set for the Al content to 0.5% or less. The content of Al is desirably 0.3% or less.
 なお、Alの含有量について特に下限を設ける必要はないが、極端な低減は、脱酸効果が十分に得られず合金の清浄性を逆に劣化させるとともに、製造コストの上昇を招く。そのため、Al含有量の望ましい下限は0.001%である。Alの脱酸効果を安定して得、合金に良好な清浄性を確保させるためには、Al含有量の下限は0.0015%とすることがより望ましい。 In addition, although it is not necessary to set a lower limit in particular for the Al content, an extreme reduction causes a deoxidation effect not sufficiently obtained, which deteriorates the cleanliness of the alloy, and increases the manufacturing cost. Therefore, the desirable lower limit of the Al content is 0.001%. In order to stably obtain the deoxidation effect of Al and to ensure good cleanability of the alloy, the lower limit of the Al content is more preferably 0.0015%.
 B:0.0001~0.01%
 Bは、高温での使用中に粒界に偏析して粒界を強化するとともに、粒界炭化物を微細分散させることにより、クリープ強度を向上させるのに必要な元素である。加えて、Bは、粒界に偏析して固着力を向上させ、靱性改善にも寄与する効果も有する。これらの効果を得るためには、0.0001%以上のB含有量が必要である。しかしながら、Bの含有量が過剰になると、溶接中の溶接熱サイクルにより、溶融境界近傍の高温HAZにBが多量に偏析して、粒界の融点を低下させ、HAZの液化割れ感受性を高める。そのため、上限を設けて、Bの含有量を0.0001~0.01%とする。B含有量の望ましい下限は0.0005%であり、また、望ましい上限は0.005%である。
B: 0.0001 to 0.01%
B is an element necessary for improving the creep strength by segregating at the grain boundary during use at a high temperature to strengthen the grain boundary and finely dispersing the grain boundary carbide. In addition, B has an effect of segregating at the grain boundary to improve the fixing force and contribute to improvement of toughness. In order to obtain these effects, a B content of 0.0001% or more is necessary. However, if the B content is excessive, a large amount of B segregates in the high-temperature HAZ near the melting boundary due to the welding heat cycle during welding, lowering the melting point of the grain boundary, and increasing the HAZ liquefaction cracking sensitivity. Therefore, an upper limit is set so that the B content is 0.0001 to 0.01%. A desirable lower limit of the B content is 0.0005%, and a desirable upper limit is 0.005%.
 なお、管の肉厚中央部の平均結晶粒径dμmが大きい場合、溶融境界近傍のHAZの結晶粒径が大きくなって、換言すれば、単位体積あたりの粒界面積が小さくなって、Bの粒界偏析が助長されるとともに、特定の粒界面へかかる応力が大きくなるので、液化割れ感受性が高くなる。 In addition, when the average crystal grain size dμm in the central portion of the tube thickness is large, the crystal grain size of HAZ in the vicinity of the melting boundary increases, in other words, the grain interface area per unit volume decreases, and B Grain boundary segregation is promoted, and stress applied to a specific grain interface is increased, so that liquefaction cracking sensitivity is increased.
 しかしながら、後述するように、合金管の肉厚中央部の平均結晶粒径d(μm)を、1000μm以下で、かつ、合金が含有するBの量(%)に応じて、下記の式を満足する範囲に調整すれば、Bの偏析による液化割れ感受性の増大を抑止することができる。
 d≦1500-2.5×10×B
上記の式におけるBは、質量%でのBの含有量を表す。
However, as will be described later, the average crystal grain size d (μm) of the center thickness of the alloy tube is 1000 μm or less, and the following formula is satisfied according to the amount (%) of B contained in the alloy. If it adjusts to the range to perform, the increase in the liquefaction cracking sensitivity by the segregation of B can be suppressed.
d ≦ 1500-2.5 × 10 5 × B
B in the above formula represents the content of B in mass%.
 N:0.02%以下
 Nは、オーステナイトを安定にするのに有効な元素である。前記の18~38%というCr含有量の範囲では、Nが過剰に含有されると、高温での使用中に多量の微細窒化物が粒内に析出して、クリープ延性および靱性の低下を招く。そのため、Nの含有量に上限を設けて0.02%以下とする。Nの含有量は、望ましくは0.015%以下である。
N: 0.02% or less N is an element effective for stabilizing austenite. In the above-mentioned Cr content range of 18 to 38%, if N is contained excessively, a large amount of fine nitride precipitates in the grains during use at a high temperature, leading to a decrease in creep ductility and toughness. . Therefore, an upper limit is set for the N content to 0.02% or less. The N content is desirably 0.015% or less.
 なお、Nの含有量について特に下限を設ける必要はないが、極端な低減は、オーステナイトを安定にする効果が得難くなるし、製造コストも大きく上昇する。そのため、N含有量の望ましい下限は0.0005%である。 Although there is no particular need to set a lower limit for the N content, an extreme reduction makes it difficult to obtain the effect of stabilizing austenite, and the manufacturing cost also greatly increases. Therefore, the desirable lower limit of the N content is 0.0005%.
 O:0.008%以下
 O(酸素)は、不純物として合金中に含まれ、その含有量が過剰になると、熱間加工性が低下し、さらに、靱性および延性の劣化を招く。このため、Oの含有量に上限を設けて0.008%以下とする。Oの含有量は、望ましくは0.005%以下である。
O: 0.008% or less O (oxygen) is contained in the alloy as an impurity, and when its content is excessive, hot workability is lowered, and further, toughness and ductility are deteriorated. For this reason, an upper limit is set for the O content to 0.008% or less. The content of O is desirably 0.005% or less.
 Oの含有量について特に下限を設ける必要はないが、極端な低減は、製造コストの上昇を招く。そのため、O含有量の望ましい下限は0.0005%である。 Although there is no need to set a lower limit in particular for the O content, an extreme reduction leads to an increase in manufacturing cost. Therefore, the desirable lower limit of the O content is 0.0005%.
 次に、Zr、NbおよびVはいずれも、CまたはNと結合して微細な炭化物または炭窒化物を形成し、クリープ強度の向上に寄与する。このため、本発明の継目無オーステナイト系耐熱合金管には、上記CからOまでの元素に加えて、Zr:0.01~0.5%、Nb:0.01~0.5%およびV:0.01~0.5%のうちの1種以上の元素を含有させる。 Next, all of Zr, Nb and V combine with C or N to form fine carbides or carbonitrides and contribute to the improvement of creep strength. Therefore, in the seamless austenitic heat-resistant alloy tube of the present invention, in addition to the elements C to O, Zr: 0.01 to 0.5%, Nb: 0.01 to 0.5% and V : One or more elements of 0.01 to 0.5% are contained.
 Zr:0.01~0.5%
 Zrは、CまたはNと結合して微細な炭化物または炭窒化物を形成し、クリープ強度の向上に寄与する。この効果を得るためには0.01%以上のZr含有量が必要である。しかしながら、Zrの含有量が過剰になると、炭化物または炭窒化物として多量に析出し、クリープ延性の低下を招く。このため、上限を設けて、Zrの含有量を0.01~0.5%とする。Zr含有量の望ましい下限は0.015%であり、また、望ましい上限は0.4%である。
Zr: 0.01 to 0.5%
Zr combines with C or N to form fine carbides or carbonitrides and contributes to the improvement of creep strength. In order to obtain this effect, a Zr content of 0.01% or more is necessary. However, when the content of Zr is excessive, a large amount of carbide or carbonitride is precipitated, resulting in a decrease in creep ductility. Therefore, an upper limit is set so that the Zr content is 0.01 to 0.5%. A desirable lower limit of the Zr content is 0.015%, and a desirable upper limit is 0.4%.
 Nb:0.01~0.5%
 Nbは、CまたはNと結合して微細な炭化物または炭窒化物を形成し、クリープ強度の向上に寄与する。この効果を得るためには0.01%以上のNb含有量が必要である。しかしながら、Nbの含有量が過剰になると、炭化物または炭窒化物として多量に析出し、クリープ延性の低下を招く。このため、上限を設けて、Nbの含有量を0.01~0.5%とする。Nb含有量の望ましい下限は0.015%であり、また、望ましい上限は0.4%である。
Nb: 0.01 to 0.5%
Nb combines with C or N to form fine carbides or carbonitrides and contributes to the improvement of creep strength. In order to obtain this effect, an Nb content of 0.01% or more is necessary. However, when the Nb content is excessive, a large amount of carbide or carbonitride precipitates, resulting in a decrease in creep ductility. Therefore, an upper limit is set so that the Nb content is 0.01 to 0.5%. A desirable lower limit of the Nb content is 0.015%, and a desirable upper limit is 0.4%.
 V:0.01~0.5%
 Vは、CまたはNと結合して微細な炭化物または炭窒化物を形成し、クリープ強度の向上に寄与する。この効果を得るためには0.01%以上のV含有量が必要である。しかしながら、Vの含有量が過剰になると、炭化物または炭窒化物として多量に析出し、クリープ延性の低下を招く。このため、上限を設けて、Vの含有量を0.01~0.5%とする。V含有量の望ましい下限は0.015%であり、また、望ましい上限は0.4%である。
V: 0.01 to 0.5%
V combines with C or N to form fine carbides or carbonitrides and contributes to the improvement of creep strength. In order to obtain this effect, a V content of 0.01% or more is necessary. However, when the content of V is excessive, a large amount of carbide or carbonitride is precipitated, resulting in a decrease in creep ductility. Therefore, an upper limit is set so that the V content is 0.01 to 0.5%. A desirable lower limit of V content is 0.015%, and a desirable upper limit is 0.4%.
 上記のZr、NbおよびVは、そのうちのいずれか1種のみ、または、2種以上の複合で含有させることができる。これらの元素を複合して含有させる場合の合計量は、1.5%であってもよいが、1.2%以下であることが好ましい。 The above-mentioned Zr, Nb, and V can be contained alone or in combination of two or more. The total amount when these elements are combined and contained may be 1.5%, but is preferably 1.2% or less.
 本発明の継目無オーステナイト系耐熱合金管の一つは、上述の各元素と、残部がFeおよび不純物とからなる化学組成のものである。 One of the seamless austenitic heat-resistant alloy tubes of the present invention has a chemical composition comprising the above-mentioned elements, and the balance being Fe and impurities.
 なお、既に述べたように、「不純物」とは、オーステナイト系耐熱合金を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入するものを指す。 As already mentioned, “impurities” refer to impurities mixed from ores, scraps, or production environments as raw materials when industrially producing austenitic heat-resistant alloys.
 本発明の継目無オーステナイト系耐熱合金管の他の一つは、上述のFeの一部に代えて、Mo、Cu、Co、Ca、MgおよびREMから選んだ1種以上の元素を含有する化学組成のものである。 Another one of the seamless austenitic heat-resistant alloy pipes of the present invention is a chemistry containing one or more elements selected from Mo, Cu, Co, Ca, Mg and REM instead of a part of the above-mentioned Fe. Of composition.
 以下、これらの任意元素の作用効果と、含有量の限定理由について説明する。 Hereinafter, the effect of these optional elements and the reason for limiting the content will be described.
 <1>のグループのMo、CuおよびCoはいずれも、クリープ強度を向上させる作用を有する。このため、これらの元素を含有させてもよい。 <Mo>, Cu, and Co in <1> group all have an effect of improving creep strength. For this reason, you may contain these elements.
 Mo:1%以下
 Moは、クリープ強度を向上させる作用を有する。すなわち、Moは、マトリックスに固溶して高温でのクリープ強度を向上させる作用を有する。したがって、Moを含有させてもよい。しかしながら、Moが過剰に含有された場合には、オーステナイトの安定性が低下して、却ってクリープ強度の低下を招く。そのため、含有させる場合のMoの量に上限を設けて1%以下とする。
Mo: 1% or less Mo has an effect of improving creep strength. That is, Mo has a function of improving the creep strength at a high temperature by dissolving in the matrix. Therefore, you may contain Mo. However, when Mo is excessively contained, the stability of austenite is lowered, and instead the creep strength is lowered. For this reason, an upper limit is set for the amount of Mo in the case of inclusion, and the amount is made 1% or less.
 一方、前記したMoの効果を安定して得るためには、Moの量は0.1%以上であることが好ましい。 On the other hand, in order to stably obtain the effect of Mo described above, the amount of Mo is preferably 0.1% or more.
 Cu:1%以下
 Cuは、クリープ強度を向上させる作用を有する。すなわち、CuはNiと同様オ-ステナイト生成元素であり、相安定性を高めてクリープ強度の向上に寄与する。したがって、Cuを含有させてもよい。しかしながら、Cuが過剰に含有された場合には、熱間加工性の低下を招く。このため、含有させる場合のCuの量に上限を設けて1%以下とする。
Cu: 1% or less Cu has an effect of improving creep strength. That is, Cu is an austenite-forming element like Ni and contributes to the improvement of creep strength by increasing phase stability. Therefore, Cu may be contained. However, when Cu is contained excessively, the hot workability is lowered. For this reason, when making it contain, the upper limit is provided in the quantity of Cu, and it is 1% or less.
 一方、前記したCuの効果を安定して得るためには、Cuの量は0.02%以上であることが好ましい。 On the other hand, in order to stably obtain the effect of Cu described above, the amount of Cu is preferably 0.02% or more.
 Co:1%以下
 Coは、クリープ強度を向上させる作用を有する。すなわち、CoはNiおよびCuと同様オ-ステナイト生成元素であり、相安定性を高めてクリープ強度の向上に寄与する。したがって、Coを含有させてもよい。しかしながら、Coは極めて高価な元素であるため、Coの過剰の含有は大幅なコスト増を招く。このため、含有させる場合のCoの量に上限を設けて1%以下とする。
Co: 1% or less Co has the effect of improving the creep strength. That is, Co is an austenite-forming element, like Ni and Cu, and contributes to the improvement of creep strength by increasing phase stability. Therefore, Co may be contained. However, since Co is an extremely expensive element, excessive content of Co causes a significant cost increase. For this reason, the upper limit is set to the amount of Co in the case of making it contain, and it is 1% or less.
 一方、前記したCoの効果を安定して得るためには、Coの量は0.02%以上であることが好まししい。 On the other hand, in order to stably obtain the effect of Co described above, the amount of Co is preferably 0.02% or more.
 上記のMo、CuおよびCoは、そのうちのいずれか1種のみ、または、2種以上の複合で含有させることができる。これらの元素を複合して含有させる場合の合計量は、3%であってもよい。 The above-mentioned Mo, Cu and Co can be contained in only one of them or in combination of two or more. The total amount when these elements are contained in combination may be 3%.
 <2>のグループのCa、MgおよびREMは、いずれも熱間加工性を向上させる作用を有する。このため、これらの元素を含有させてもよい。 <2> Ca, Mg, and REM all have the effect of improving hot workability. For this reason, you may contain these elements.
 Ca:0.05%以下
 Caは、熱間加工性を改善する作用を有する。このため、Caを含有させてもよい。しかしながら、Caの含有量が過剰になると、Oと結合して、清浄性を著しく低下させ、却って熱間加工性を劣化させる。このため、含有させる場合のCaの量に上限を設けて0.05%以下とする。
Ca: 0.05% or less Ca has an effect of improving hot workability. For this reason, Ca may be contained. However, when the content of Ca is excessive, it combines with O to significantly reduce cleanliness, and on the other hand, deteriorate hot workability. For this reason, when making it contain, the upper limit is provided in the quantity of Ca, and it is 0.05% or less.
 一方、前記したCaの効果を安定して得るためには、Caの量は0.0005%以上であることが好ましい。 On the other hand, in order to stably obtain the effect of Ca described above, the amount of Ca is preferably 0.0005% or more.
 Mg:0.05%以下
 Mgは、Caと同様、熱間加工性を改善する作用を有する。このため、Mgを含有させてもよい。しかしながら、Mgの含有量が過剰になると、Oと結合して、清浄性を著しく低下させ、却って熱間加工性を劣化させる。このため、含有させる場合のMgの量に上限を設けて0.05%以下とする。
Mg: 0.05% or less Mg, like Ca, has an effect of improving hot workability. For this reason, you may contain Mg. However, if the Mg content is excessive, it combines with O to significantly reduce cleanliness, and on the contrary, deteriorate hot workability. For this reason, the upper limit is set to the amount of Mg in the case of containing 0.05% or less.
 一方、前記したMgの効果を安定して得るためには、Mgの量は0.0005%以上であることが好ましい。 On the other hand, in order to stably obtain the effect of Mg described above, the amount of Mg is preferably 0.0005% or more.
 REM:0.1%以下
 REMは、熱間加工性を改善する作用を有する。すなわち、REMは、Sとの親和力が強く、熱間加工性の向上に寄与する。このため、REMを含有させてもよい。しかしながら、REMの含有量が過剰になると、Oと結合して、清浄性を著しく低下させ、却って熱間加工性を劣化させる。このため、含有させる場合のREMの量に上限を設けて0.1%以下とする。
REM: 0.1% or less REM has an effect of improving hot workability. That is, REM has a strong affinity with S and contributes to improvement of hot workability. For this reason, you may contain REM. However, when the content of REM becomes excessive, it combines with O to significantly reduce cleanliness and, on the contrary, deteriorate hot workability. For this reason, an upper limit is set for the amount of REM in the case of inclusion, so that it is 0.1% or less.
 一方、前記したREMの効果を安定して得るためには、REMの量は0.0005%以上であることが好ましい。 On the other hand, in order to stably obtain the above-described REM effect, the amount of REM is preferably 0.0005% or more.
 既に述べたように、「REM」とは、Sc、Yおよびランタノイドの合計17元素の総称であり、REMの含有量はREMのうちの1種または2種以上の元素の合計含有量を指す。 As already described, “REM” is a generic name for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM refers to the total content of one or more elements of REM.
 なお、REMについては、一般的にミッシュメタルに含有される。このため、例えば、ミッシュメタルの形で添加して、REMの量が上記の範囲となるように含有させてもよい。 Note that REM is generally contained in misch metal. For this reason, for example, it may be added in the form of misch metal and contained so that the amount of REM falls within the above range.
 上記のCa、MgおよびREMは、そのうちのいずれか1種のみ、または、2種以上の複合で含有させることができる。これらの元素を複合して含有させる場合の合計量は、0.2%であってもよい。 The above-mentioned Ca, Mg and REM can be contained in only one of them, or in a combination of two or more. The total amount when these elements are contained in combination may be 0.2%.
 (B)管の肉厚中央部の平均結晶粒径:
 管の肉厚中央部の平均結晶粒径dμmは、1000μm以下で、かつ、合金が含有するBの量に応じて、
 d≦1500-2.5×10×B
で表される式を満足するものでなければならない。なお、上記の式におけるBは、質量%でのBの含有量を表す。
(B) Average crystal grain size at the center of the tube thickness:
The average crystal grain size dμm at the wall thickness central portion of the tube is 1000 μm or less, and depending on the amount of B contained in the alloy,
d ≦ 1500-2.5 × 10 5 × B
It must satisfy the expression expressed by In addition, B in said formula represents content of B in the mass%.
 先ず、管の肉厚中央部の平均結晶粒径が1000μmより大きい場合には、靱性および延性の低下が著しくなる。さらに、溶融境界近傍のHAZの結晶粒径も大きくなるので、換言すれば、単位体積あたりの粒界面積が小さくなるので、たとえ管が含有するB量の上限を前記した0.01%に管理しても、Bの偏析による液化割れを防止することができない。 First, when the average crystal grain size in the central part of the tube is larger than 1000 μm, the toughness and ductility are significantly reduced. Furthermore, since the HAZ crystal grain size near the melting boundary also increases, in other words, the grain boundary area per unit volume decreases, so the upper limit of the B content contained in the tube is controlled to 0.01% as described above. However, liquefaction cracking due to segregation of B cannot be prevented.
 一方、管の肉厚中央部の平均結晶粒径dが1000μm以下であっても、
d≦1500-2.5×10×B
の式を満たさない場合には、溶接中の溶接熱サイクルにより、溶融境界近傍の高温HAZにBが多量に偏析して、粒界の融点を低下させ、HAZの液化割れ感受性を高めてしまうので、液化割れを防止することができない。
On the other hand, even if the average crystal grain size d at the wall thickness center of the tube is 1000 μm or less,
d ≦ 1500-2.5 × 10 5 × B
If the above equation is not satisfied, the welding heat cycle during welding causes a large amount of B to segregate in the high-temperature HAZ in the vicinity of the melting boundary, thereby lowering the melting point of the grain boundary and increasing the HAZ liquefaction cracking susceptibility. , Liquefaction cracking can not be prevented.
 なお、管の化学組成にもよるが、例えば、1150~1250℃の温度域で、0.5~5h保持して固溶化熱処理することによって、上記管の肉厚中央部の平均結晶粒径dを1000μm以下で、かつ、前記の「d≦1500-2.5×10×B」の式を満たすようにすることができる。 Although depending on the chemical composition of the tube, for example, the average crystal grain size d at the center of the thickness of the tube can be maintained by 0.5 to 5 hours in a temperature range of 1150 to 1250 ° C. Can be made to satisfy the above-mentioned formula of “d ≦ 1500−2.5 × 10 5 × B”.
 (C)管の外表面の酸化物層の厚さ:
 前記(A)項に記載の化学組成を有する本発明の継目無オーステナイト系耐熱合金管の表面に形成される酸化皮膜は、高融点である。しかも、上記の酸化被膜は、管の外表面をすみ肉溶接する際に、溶融金属との濡れ性を悪くする。このため、管の外表面の酸化物層の厚さが大きくなると、溶接ビード(余盛)の止端角が大きくなってHAZに応力が集中しやすくなり、液化割れが発生しやすくなる。したがって、管の外表面の酸化物層の厚さに上限を設けて15μm以下とする。上記の管の外表面の酸化物層の厚さは10μm以下であることが望ましい。
(C) The thickness of the oxide layer on the outer surface of the tube:
The oxide film formed on the surface of the seamless austenitic heat-resistant alloy tube of the present invention having the chemical composition described in the item (A) has a high melting point. Moreover, the above oxide film deteriorates the wettability with the molten metal when fillet welding the outer surface of the pipe. For this reason, when the thickness of the oxide layer on the outer surface of the pipe is increased, the toe angle of the weld bead (excess) is increased and stress is easily concentrated on the HAZ, and liquefaction cracking is likely to occur. Therefore, an upper limit is set for the thickness of the oxide layer on the outer surface of the tube to be 15 μm or less. The thickness of the oxide layer on the outer surface of the tube is desirably 10 μm or less.
 例えば、上記(B)項で述べた1150~1250℃の温度域で、0.5~5h保持する固溶化熱処理を、水素等の還元性ガス中で行うことによって、安定して管の外表面の酸化物層の厚さを15μm以下とすることができる。 For example, the outer surface of the tube can be stably formed by performing the solution heat treatment in the temperature range of 1150 to 1250 ° C. described in the above section (B) for 0.5 to 5 hours in a reducing gas such as hydrogen. The thickness of the oxide layer can be 15 μm or less.
 また、上記(B)項で述べた固溶化熱処理を、大気中あるいは燃焼ガス中で行って酸化スケール(酸化物層)が形成された場合には、酸洗、研磨、ショットブラスト等の処理を行うことによって、安定して管の外表面の酸化物層の厚さを15μm以下とすることができる。 In addition, when an oxide scale (oxide layer) is formed by performing the solution heat treatment described in the above section (B) in the atmosphere or in a combustion gas, treatments such as pickling, polishing, and shot blasting are performed. By carrying out, the thickness of the oxide layer on the outer surface of the tube can be stably reduced to 15 μm or less.
 なお、管の外表面の酸化物層の厚さについて特に下限を設ける必要はない。 Note that there is no particular lower limit on the thickness of the oxide layer on the outer surface of the tube.
 例えば、還元性ガス中での固溶化熱処理、酸洗、研磨、ショットブラスト等の処理を行って、管の外表面の酸化物層の厚さを0μmに近い状態にしてもよい。また、機械研削を行って、管の外表面の酸化物層を除去して、該酸化物層の厚さを0にしてもよい。ただし、管の外表面の酸化物層の厚さの極端な低減は、製造コストの高騰を招く。したがって、管の外表面の酸化物層の厚さは0.1μm以上であることが望ましく、0.2μm以上であればより望ましい。 For example, the thickness of the oxide layer on the outer surface of the tube may be close to 0 μm by performing a solution heat treatment in reducing gas, pickling, polishing, shot blasting, or the like. Alternatively, mechanical grinding may be performed to remove the oxide layer on the outer surface of the tube, thereby reducing the thickness of the oxide layer to zero. However, an extreme reduction in the thickness of the oxide layer on the outer surface of the tube leads to increased manufacturing costs. Therefore, the thickness of the oxide layer on the outer surface of the tube is desirably 0.1 μm or more, and more desirably 0.2 μm or more.
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
 表1に示す化学組成を有する各種の合金を、通常の方法によって180kg真空誘導溶解炉を用いて溶解した後、造塊してインゴットにし、次いで、該インゴットを熱間鍛造して、ビレットを作製した。 Various alloys having the chemical composition shown in Table 1 were melted by a usual method using a 180 kg vacuum induction melting furnace, then ingoted into an ingot, and then the ingot was hot forged to produce a billet. did.
 このようにして得た各ビレットを、モデルミルを用いて熱間穿孔圧延し、外径が38mmで肉厚が9mmの継目無管を製造した。 Each billet thus obtained was hot pierced and rolled using a model mill to produce a seamless tube having an outer diameter of 38 mm and a wall thickness of 9 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の外径が38mmで肉厚が9mmの各継目無管を、200mm長さに切断し、温度を1150~1280℃、該温度での保持時間を0.5~5hの範囲で変化させた固溶化熱処理を行い、肉厚中央部の平均結晶粒径dが異なる各種の供試管を作製した。 Each seamless pipe having an outer diameter of 38 mm and a wall thickness of 9 mm was cut into a length of 200 mm, and the temperature was changed in the range of 1150 to 1280 ° C. and the holding time at the temperature in the range of 0.5 to 5 h. A solution heat treatment was performed to prepare various test tubes having different average crystal grain diameters d at the center of the wall thickness.
 次いで、得られた供試管の外表面を研磨して、酸化物層厚さを種々に変化させた。 Next, the outer surface of the obtained test tube was polished to change the oxide layer thickness variously.
 上記の固溶化熱処理後に外表面を研磨した各供試管について、肉厚中央部の平均結晶粒径dと管の外表面の酸化物層厚さを、それぞれ、次の方法で測定した。 For each test tube whose outer surface was polished after the above solution heat treatment, the average crystal grain size d at the center of the wall thickness and the oxide layer thickness on the outer surface of the tube were measured by the following methods.
 肉厚中央部の平均結晶粒d(μm)は、200mm長さの供試管の中央部を基準とし、その前後から、被検面が横断面になるように試験片を5個切り出し、かつ円周方向に4個に切断して、鏡面研磨し、王水で腐食して肉厚中央部の光学顕微鏡観察を行って求めた。 The average crystal grain d (μm) at the center of the wall thickness is based on the center of the 200 mm-long test tube, and before and after that, five test pieces are cut out so that the test surface has a cross section, and It was obtained by cutting into four pieces in the circumferential direction, mirror polishing, corroding with aqua regia and observing the central portion of the wall with an optical microscope.
 すなわち、切断後の試験片1個につき、倍率100倍で1視野観察して、切断法により20個の試験片毎の平均粒切片長さを測定した。上記の試験片毎の平均粒切片長さをさらに算術平均し、それを1.128倍して平均結晶粒径d(μm)を求めた。 That is, for each test piece after cutting, one field of view was observed at a magnification of 100 times, and the average grain section length for every 20 test pieces was measured by a cutting method. The average grain slice length for each test piece was further arithmetically averaged and multiplied by 1.128 to obtain the average crystal grain size d (μm).
 管の外表面の酸化物層厚さは、各供試管について、上述した肉厚中央部の平均結晶粒径d(μm)を測定するために用いた20個の試験片を再度鏡面研磨し、研磨ままの状態で光学顕微鏡観察を行って求めた。 The oxide layer thickness on the outer surface of the tube was mirror-polished again on the 20 test pieces used for measuring the average crystal grain size d (μm) of the above-mentioned thickness center for each test tube, This was determined by observation with an optical microscope in the state of polishing.
 すなわち、各供試管について20個の試験片毎に倍率400倍で観察して、管の外表面の酸化物の厚さを測定した。次いで、20個の試験片における酸化物の厚さの値を算術平均して、管の外表面の酸化物層厚さとした。 That is, each test tube was observed at a magnification of 400 for every 20 test pieces, and the thickness of the oxide on the outer surface of the tube was measured. Subsequently, the value of the oxide thickness in 20 test pieces was arithmetically averaged to obtain the oxide layer thickness on the outer surface of the tube.
 さらに、前記の固溶化熱処理後に外表面を研磨した各供試管と、表2に示す化学組成を有する200mm長さに切断した厚さ6mm、幅15mmのフィンプレートに見立てた合金板とを用いて、図1に示す火炉壁管のすみ肉溶接を模擬した拘束溶接試験体を作製した。 Further, each test tube whose outer surface was polished after the solution heat treatment was used, and an alloy plate having a thickness of 6 mm and a width of 15 mm cut into a 200 mm length having the chemical composition shown in Table 2. A constrained weld specimen was prepared that simulated fillet welding of a furnace wall tube shown in FIG.
 なお、各供試管と上記合金板とのすみ肉溶接は、図2に示すようにして4箇所で実施した。具体的には、市販の溶接ワイヤ(AWS規格A5.14 ER NiCrCoMo-1)およびボンドフラックスを用いて、入熱12kJ/cmにてサブマージアーク溶接して実施した。 In addition, fillet welding between each test tube and the above alloy plate was performed at four locations as shown in FIG. Specifically, using a commercially available welding wire (AWS standard A5.14 ER NiCrCoMo-1) and bond flux, submerged arc welding was performed at a heat input of 12 kJ / cm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた各拘束溶接試験体について、4箇所のすみ肉溶接箇所からそれぞれ、被検面が横断面になるように試験片を5個ずつ切出して、鏡面研磨した。 For each of the obtained constrained weld specimens, five test pieces were cut out from the four fillet welds so that the surface to be tested had a cross-section and mirror-polished.
 次いで、王水で腐食し、光学顕微鏡により検鏡して、拘束溶接試験体のそれぞれ計20箇所の溶接部について、供試管のHAZにおける液化割れの有無を調査し、液化割れ発生率を求めた。 Next, it was corroded with aqua regia and examined with an optical microscope, and the presence or absence of liquefaction cracks in the HAZ of the test tube was investigated for a total of 20 welded portions of each of the restrained weld specimens, and the occurrence rate of liquefaction cracks was determined. .
 なお、液化割れ発生率は、「(割れ発生断面数/20)×100(%)」で定義し、液化割れ発生率が0(ゼロ)である試験体だけを「合格」と判定し、他は「不合格」と判定した。 The rate of occurrence of liquefaction cracks is defined as “(number of crack occurrence cross sections / 20) × 100 (%)”, and only test specimens with a liquefaction crack occurrence rate of 0 (zero) are judged as “pass”. Was judged as “failed”.
 表3に、上記の各試験結果を示す。なお、表3には、供試管の素材合金に含まれるB量および「EQU=1500-2.5×10×B」から求めたEQUの値を併記した。 Table 3 shows the results of the above tests. Table 3 also shows the amount of B contained in the material alloy of the test tube and the value of EQU obtained from “EQU = 1500−2.5 × 10 5 × B”.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、本発明で規定する条件を満足する継目無管を用いた供試管符号A1、A6、A7、B1~B3、C1~C3、D1、E1およびF1の場合、液化割れ発生率は0、すなわち、全断面においてHAZに液化割れの発生は認められない。したがって、本発明で規定する条件を満足する継目無管は、火炉壁管のように管の外表面を直接にすみ肉溶接して用いる場合にも、十分な耐溶接割れ性を有することが明らかである。 From Table 3, in the case of test tube codes A1, A6, A7, B1 to B3, C1 to C3, D1, E1 and F1 using seamless tubes satisfying the conditions specified in the present invention, the occurrence rate of liquefaction cracking is 0. That is, the occurrence of liquefaction cracks in the HAZ is not observed in the entire cross section. Therefore, it is clear that a seamless pipe that satisfies the conditions specified in the present invention has sufficient weld crack resistance even when the outer surface of the pipe is directly fillet welded, such as a furnace wall pipe. It is.
 これに対して、化学組成が本発明で規定する範囲内にある合金A~Fを素材とする場合であっても、管の肉厚中央部の平均結晶粒径または管の外表面の酸化物層の厚さが本発明で規定する上限を超える供試管符号の場合、HAZに液化割れが発生しており、管の外表面を直接にすみ肉溶接する火炉壁管に用いることはできない。 On the other hand, even when the alloys A to F having a chemical composition within the range specified in the present invention are used as the raw material, the average crystal grain size in the central portion of the tube or the oxide on the outer surface of the tube In the case of a test tube code in which the thickness of the layer exceeds the upper limit specified in the present invention, liquefaction cracking occurs in the HAZ, and it cannot be used for a furnace wall tube that directly fillet welds the outer surface of the tube.
 供試管符号A2、A3、D2、E2およびF2の場合、管の肉厚中央部の平均結晶粒径dは1000μmを下回るものの、合金が含有するBの量に応じて規定される
d≦1500-2.5×10×B
の式を満たさないために、HAZに液化割れが発生した。しかも、上記平均結晶粒径dが大きくなるにつれて液化割れ発生率が高くなった。
In the case of the test tube codes A2, A3, D2, E2 and F2, the average crystal grain size d in the central portion of the wall thickness of the tube is less than 1000 μm, but d ≦ 1500− defined according to the amount of B contained in the alloy 2.5 × 10 5 × B
In order not to satisfy the formula, liquefaction cracking occurred in HAZ. Moreover, the rate of occurrence of liquefaction cracks increased as the average crystal grain size d increased.
 供試管符号C4の場合、管の肉厚中央部の平均結晶粒径dが1000μmを超えるため、HAZに液化割れが発生した。 In the case of the test tube code C4, the average crystal grain size d at the center of the tube thickness exceeded 1000 μm, so that liquefaction cracking occurred in the HAZ.
 供試管符号A4およびA5の場合、管の外表面の酸化物層の厚さが15μmを超えるため、HAZに液化割れが発生した。しかも、上記管の外表面の酸化物層の厚さが大きくなるほど、液化割れ発生率が高くなった。 In the case of the test tube codes A4 and A5, since the thickness of the oxide layer on the outer surface of the tube exceeded 15 μm, liquefaction cracking occurred in the HAZ. Moreover, as the thickness of the oxide layer on the outer surface of the tube increases, the rate of occurrence of liquefaction cracks increases.
 本発明の継目無オーステナイト系耐熱合金管は、耐溶接割れ性に優れ、溶接時のHAZでの割れ発生を抑止することができる。このため、本発明の継目無オーステナイト系耐熱合金管は、高温強度に優れ、十分な耐応力腐食割れ性を有し、熱膨張係数が小さいオーステナイト系耐熱合金を素材とする継目無合金管のうちでも、発電用ボイラの火炉壁管のような高温機器の部材として好適に用いることができる。
 
 
The seamless austenitic heat-resistant alloy pipe of the present invention is excellent in weld crack resistance and can suppress the occurrence of cracks in the HAZ during welding. Therefore, the seamless austenitic heat-resistant alloy pipe of the present invention is a seamless alloy pipe made of an austenitic heat-resistant alloy having excellent high-temperature strength, sufficient stress corrosion cracking resistance, and a low thermal expansion coefficient. However, it can be suitably used as a member for high-temperature equipment such as a furnace wall tube of a power generation boiler.

Claims (3)

  1.  質量%で、C:0.03~0.15%、Si:1%以下、Mn:2%以下、P:0.03%以下、S:0.01%以下、Ni:35~60%、Cr:18~38%、W:3~11%、Ti:0.01~1.2%、Al:0.5%以下、B:0.0001~0.01%、N:0.02%以下およびO:0.008%以下と、
    Zr:0.01~0.5%、Nb:0.01~0.5%およびV:0.01~0.5%のうちの1種以上と、
    残部がFeおよび不純物とからなる化学組成であって、管の肉厚中央部の平均結晶粒径dμmが、1000μm以下、かつ下記の式を満足し、さらに、管の外表面の酸化物層の厚さが15μm以下であることを特徴とする、管外表面を直接にすみ肉溶接して用いられる継目無オーステナイト系耐熱合金管。
     d≦1500-2.5×10×B
    上記の式におけるBは、質量%でのBの含有量を表す。
    In mass%, C: 0.03 to 0.15%, Si: 1% or less, Mn: 2% or less, P: 0.03% or less, S: 0.01% or less, Ni: 35 to 60%, Cr: 18-38%, W: 3-11%, Ti: 0.01-1.2%, Al: 0.5% or less, B: 0.0001-0.01%, N: 0.02% And O: 0.008% or less,
    One or more of Zr: 0.01 to 0.5%, Nb: 0.01 to 0.5% and V: 0.01 to 0.5%;
    The balance is a chemical composition composed of Fe and impurities, the average crystal grain size dμm at the center of the tube thickness is 1000 μm or less and satisfies the following formula, and the oxide layer on the outer surface of the tube A seamless austenitic heat-resistant alloy pipe used by directly fillet welding the outer surface of the pipe, wherein the thickness is 15 μm or less.
    d ≦ 1500-2.5 × 10 5 × B
    B in the above formula represents the content of B in mass%.
  2.  Feの一部に代えて、質量%で、下記の<1>および<2>に示される元素から選択される1種以上を含有することを特徴とする、請求項1に記載の継目無オーステナイト系耐熱合金管。
     <1>Mo:1%以下、Cu:1%以下およびCo:1%以下、
     <2>Ca:0.05%以下、Mg:0.05%以下およびREM:0.1%以下。
    2. The seamless austenite according to claim 1, comprising at least one element selected from the elements represented by the following <1> and <2> in mass% instead of a part of Fe: Heat resistant alloy tube.
    <1> Mo: 1% or less, Cu: 1% or less, and Co: 1% or less,
    <2> Ca: 0.05% or less, Mg: 0.05% or less, and REM: 0.1% or less.
  3.  火炉壁管に用いることを特徴とする、請求項1または2に記載の継目無オーステナイト系耐熱合金管。
     
     
    The seamless austenitic heat-resistant alloy pipe according to claim 1 or 2, which is used for a furnace wall pipe.

PCT/JP2012/078788 2011-11-15 2012-11-07 Seamless austenite heat-resistant alloy tube WO2013073423A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN3492DEN2014 IN2014DN03492A (en) 2011-11-15 2012-11-07
KR1020147015980A KR101632520B1 (en) 2011-11-15 2012-11-07 Seamless austenite heat-resistant alloy tube
EP12850463.6A EP2781612B1 (en) 2011-11-15 2012-11-07 Seamless austenite heat-resistant alloy tube
CN201280056250.6A CN103946403B (en) 2011-11-15 2012-11-07 Austenite is seamless refractory alloy pipe
PL12850463T PL2781612T3 (en) 2011-11-15 2012-11-07 Seamless austenite heat-resistant alloy tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011249875A JP5212533B2 (en) 2011-11-15 2011-11-15 Seamless austenitic heat-resistant alloy tube
JP2011-249875 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013073423A1 true WO2013073423A1 (en) 2013-05-23

Family

ID=48429486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078788 WO2013073423A1 (en) 2011-11-15 2012-11-07 Seamless austenite heat-resistant alloy tube

Country Status (7)

Country Link
EP (1) EP2781612B1 (en)
JP (1) JP5212533B2 (en)
KR (1) KR101632520B1 (en)
CN (1) CN103946403B (en)
IN (1) IN2014DN03492A (en)
PL (1) PL2781612T3 (en)
WO (1) WO2013073423A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066579A1 (en) * 2016-10-05 2018-04-12 新日鐵住金株式会社 NiCrFe ALLOY

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6492747B2 (en) * 2014-03-25 2019-04-03 新日鐵住金株式会社 Austenitic heat-resistant alloy tube manufacturing method and austenitic heat-resistant alloy tube manufactured by the manufacturing method
JP6398277B2 (en) * 2014-04-14 2018-10-03 新日鐵住金株式会社 Manufacturing method of Ni-base heat-resistant alloy welded joint
CN104073739B (en) * 2014-07-25 2016-09-21 太原钢铁(集团)有限公司 A kind of manufacture method of heat-resistance stainless steel seamless steel pipe and rustless steel and seamless steel pipe
RU2578277C1 (en) * 2015-05-18 2016-03-27 Байдуганов Александр Меркурьевич High-temperature alloy
RU2579710C1 (en) * 2015-05-20 2016-04-10 Байдуганов Александр Меркурьевич High-temperature alloy
RU2581317C1 (en) * 2015-05-25 2016-04-20 Байдуганов Александр Меркурьевич High-temperature alloy
JP6477252B2 (en) * 2015-05-26 2019-03-06 新日鐵住金株式会社 Austenitic heat-resistant alloy and heat-resistant pressure-resistant member
RU2581323C1 (en) * 2015-06-01 2016-04-20 Байдуганов Александр Меркурьевич High-temperature alloy
CN105483492A (en) * 2015-12-08 2016-04-13 江苏华冶科技有限公司 High-temperature-resisting alloy material for radiant tube and casting process of high-temperature-resisting alloy material
CN107868885A (en) * 2016-09-26 2018-04-03 宝钢特钢有限公司 A kind of abros and its slab production method
CN106702259A (en) * 2016-11-29 2017-05-24 山西太钢不锈钢股份有限公司 Manufacturing method of wolfram-contained austenite stainless steel seamless tube
JP2018127672A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Austenitic heat resistant alloy member
US20200232081A1 (en) * 2017-02-09 2020-07-23 Nippon Steel Corporation Austenitic Heat Resistant Alloy and Method for Producing Same
JP6825514B2 (en) * 2017-08-01 2021-02-03 日本製鉄株式会社 Austenitic heat resistant alloy member
KR102471375B1 (en) 2018-01-10 2022-11-28 닛폰세이테츠 가부시키가이샤 Austenitic heat-resistant alloy, manufacturing method thereof, and austenitic heat-resistant alloy material
WO2019138986A1 (en) 2018-01-10 2019-07-18 日本製鉄株式会社 Austenitic heat-resistant alloy and method for producing same
JP6969666B2 (en) * 2018-02-28 2021-11-24 日本製鉄株式会社 Austenitic stainless steel welded joint
US11772084B2 (en) 2018-03-02 2023-10-03 AZUL Energy Inc. Catalyst, liquid composition, electrode, catalyst electrode for electrochemical reaction, fuel cell, and air battery
WO2019224289A1 (en) * 2018-05-23 2019-11-28 Ab Sandvik Materials Technology New austenitic alloy

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184726A (en) 1975-01-23 1976-07-24 Sumitomo Metal Ind
JPS5184727A (en) 1975-01-23 1976-07-24 Sumitomo Metal Ind TAINETSUSEINORYOKONAGOKIN
JPS60100640A (en) 1983-11-07 1985-06-04 Nippon Kokan Kk <Nkk> High-chromium alloy having excellent resistance to heat and corrosion
JPS6333549A (en) * 1986-07-29 1988-02-13 Nippon Kokan Kk <Nkk> Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture
JPS6417806A (en) * 1987-07-14 1989-01-20 Sumitomo Metal Ind Stuck double tubes for boiler
JPS6455352A (en) 1987-08-26 1989-03-02 Nippon Kokan Kk Heat-resisting alloy
JPH02200756A (en) 1989-01-30 1990-08-09 Sumitomo Metal Ind Ltd High strength heat resisting steel excellent in workability
JPH07216511A (en) 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy excellent in strength at high temperature
JPH07331390A (en) 1994-06-08 1995-12-19 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy
JPH08127848A (en) 1994-11-01 1996-05-21 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy excellent in high temperature strength
JPH08218140A (en) 1995-02-10 1996-08-27 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy excellent in high temperature strength and high temperature corrosion resistance
JPH09157779A (en) 1995-10-05 1997-06-17 Hitachi Metals Ltd Low thermal expansion nickel base superalloy and its production
WO2006003953A1 (en) * 2004-06-30 2006-01-12 Sumitomo Metal Industries, Ltd. RAW PIPE OF Fe-Ni ALLOY AND METHOD FOR PRODUCTION THEREOF
JP2010150593A (en) 2008-12-25 2010-07-08 Sumitomo Metal Ind Ltd Austenitic heat-resistant alloy
JP2011063838A (en) 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd Ni-BASED ALLOY PRODUCT AND MANUFACTURING METHOD THEREFOR
JP2011214141A (en) * 2010-03-19 2011-10-27 Sumitomo Metal Ind Ltd Method for manufacturing high cr-high ni alloy pipe, and high cr-high ni alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100640A (en) 1992-09-22 1994-04-12 Kansai Paint Co Ltd Actinic-radiation-during colored coating composition for vacuum-formable film, vacuum-formable film and vacuum-formed article
JPH1068035A (en) * 1996-08-29 1998-03-10 Sumitomo Metal Ind Ltd Nickel-chromium alloy excellent in intergranular stress corrosion cracking resistance, and its production
KR100473039B1 (en) * 2000-11-16 2005-03-09 스미토모 긴조쿠 고교 가부시키가이샤 Ni-base heat resistant alloy excellent in weldability and strength at elavated temperature, weld joint using the same, and tube for ethylene cracking furnace or reformer furnace using the same
KR100532877B1 (en) * 2002-04-17 2005-12-01 스미토모 긴조쿠 고교 가부시키가이샤 Austenitic stainless steel excellent in high temperature strength and corrosion resistance, heat resistant pressurized parts, and the manufacturing method thereof
JP3708909B2 (en) * 2002-06-28 2005-10-19 独立行政法人科学技術振興機構 Method for producing a high-temperature oxidation-resistant heat-resistant alloy member formed by depositing a rhenium-containing alloy film
CN100348761C (en) * 2006-02-17 2007-11-14 刘相法 P-si intermediate alloy and preparing method
CN102066594B (en) * 2008-06-16 2013-03-27 住友金属工业株式会社 Heat-resistant austenitic alloy, heat-resistant pressure-resistant member comprising the alloy, and process for producing the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184726A (en) 1975-01-23 1976-07-24 Sumitomo Metal Ind
JPS5184727A (en) 1975-01-23 1976-07-24 Sumitomo Metal Ind TAINETSUSEINORYOKONAGOKIN
JPS60100640A (en) 1983-11-07 1985-06-04 Nippon Kokan Kk <Nkk> High-chromium alloy having excellent resistance to heat and corrosion
JPS6333549A (en) * 1986-07-29 1988-02-13 Nippon Kokan Kk <Nkk> Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture
JPS6417806A (en) * 1987-07-14 1989-01-20 Sumitomo Metal Ind Stuck double tubes for boiler
JPS6455352A (en) 1987-08-26 1989-03-02 Nippon Kokan Kk Heat-resisting alloy
JPH02200756A (en) 1989-01-30 1990-08-09 Sumitomo Metal Ind Ltd High strength heat resisting steel excellent in workability
JPH07216511A (en) 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy excellent in strength at high temperature
JPH07331390A (en) 1994-06-08 1995-12-19 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy
JPH08127848A (en) 1994-11-01 1996-05-21 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy excellent in high temperature strength
JPH08218140A (en) 1995-02-10 1996-08-27 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy excellent in high temperature strength and high temperature corrosion resistance
JPH09157779A (en) 1995-10-05 1997-06-17 Hitachi Metals Ltd Low thermal expansion nickel base superalloy and its production
WO2006003953A1 (en) * 2004-06-30 2006-01-12 Sumitomo Metal Industries, Ltd. RAW PIPE OF Fe-Ni ALLOY AND METHOD FOR PRODUCTION THEREOF
JP2010150593A (en) 2008-12-25 2010-07-08 Sumitomo Metal Ind Ltd Austenitic heat-resistant alloy
JP2011063838A (en) 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd Ni-BASED ALLOY PRODUCT AND MANUFACTURING METHOD THEREFOR
JP2011214141A (en) * 2010-03-19 2011-10-27 Sumitomo Metal Ind Ltd Method for manufacturing high cr-high ni alloy pipe, and high cr-high ni alloy

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Welding and Joining Handbook", 2003, MARUZEN, pages: 948 - 950
"Welding and Joining Handbook", 2003, pages: 948 - 950
FUJIMITU MASUYAMA, JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, vol. 80, no. 8, 1994, pages 587 - 592
MASAMICHI KOIWA: "Metal Corrosion Damage and Anticorrosion Technique", 1983, AGUNE SYOUFUUSHA CORP, pages: 452 - 453
SHINICHI TAKANO ET AL., IHI TECHNICAL REVIEW, vol. 49, no. 4, 2009, pages 185 - 191

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066579A1 (en) * 2016-10-05 2018-04-12 新日鐵住金株式会社 NiCrFe ALLOY
JPWO2018066579A1 (en) * 2016-10-05 2019-07-11 日本製鉄株式会社 NiCrFe alloy

Also Published As

Publication number Publication date
PL2781612T3 (en) 2018-11-30
EP2781612B1 (en) 2018-06-06
JP5212533B2 (en) 2013-06-19
KR20140091061A (en) 2014-07-18
IN2014DN03492A (en) 2015-06-26
CN103946403A (en) 2014-07-23
KR101632520B1 (en) 2016-06-21
JP2013104109A (en) 2013-05-30
CN103946403B (en) 2016-02-17
EP2781612A4 (en) 2016-03-02
EP2781612A1 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5212533B2 (en) Seamless austenitic heat-resistant alloy tube
KR101630096B1 (en) Ni-BASED HEAT-RESISTANT ALLOY
JP4697357B1 (en) Austenitic heat-resistant alloy
JP6819700B2 (en) Ni-based heat-resistant alloy member and its manufacturing method
JP4780189B2 (en) Austenitic heat-resistant alloy
JP5236651B2 (en) Low thermal expansion Ni-base superalloy for boiler excellent in high temperature strength, boiler component using the same, and method for manufacturing boiler component
KR101809360B1 (en) METHOD FOR PRODUCING Ni-BASED HEAT-RESISTANT ALLOY WELDING JOINT AND WELDING JOINT OBTAINED BY USING THE SAME
WO2011033856A1 (en) Ni-BASED ALLOY PRODUCT AND PROCESS FOR PRODUCTION THEREOF
WO2010038826A1 (en) Ni‑BASED HEAT-RESISTANT ALLOY
JP6201724B2 (en) Ni-base heat-resistant alloy member and Ni-base heat-resistant alloy material
JP5899806B2 (en) Austenitic heat-resistant alloy with excellent liquefaction resistance in HAZ
JP6439579B2 (en) Method for producing austenitic heat-resistant alloy welded joint and welded joint obtained using the same
JP6795038B2 (en) Austenitic heat-resistant alloy and welded joints using it
JP2021021130A (en) Austenitic heat-resistant alloy weld joint
JP2021011610A (en) Austenitic heat-resistant alloy weld joint
JP2021025096A (en) Austenitic heat-resistant alloy weld joint
JP2021025095A (en) Austenitic heat-resistant alloy weld joint
JP2021167437A (en) Austenitic heat-resistant alloy weld joint
JP2021167439A (en) Austenitic heat-resistant alloy weld joint
JP2021167440A (en) Austenitic heat-resistant alloy weld joint
JP2021167438A (en) Austenitic heat-resistant alloy weld joint

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280056250.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012850463

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147015980

Country of ref document: KR

Kind code of ref document: A