WO2013071490A1 - 一种无线移动通信网络覆盖的实现***及方法 - Google Patents

一种无线移动通信网络覆盖的实现***及方法 Download PDF

Info

Publication number
WO2013071490A1
WO2013071490A1 PCT/CN2011/082237 CN2011082237W WO2013071490A1 WO 2013071490 A1 WO2013071490 A1 WO 2013071490A1 CN 2011082237 W CN2011082237 W CN 2011082237W WO 2013071490 A1 WO2013071490 A1 WO 2013071490A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
mobile terminal
cell
coverage
track
Prior art date
Application number
PCT/CN2011/082237
Other languages
English (en)
French (fr)
Inventor
程健
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2011/082237 priority Critical patent/WO2013071490A1/zh
Publication of WO2013071490A1 publication Critical patent/WO2013071490A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data

Definitions

  • the present invention relates to wireless mobile communication technologies, and in particular, to a system and method for implementing wireless mobile communication network coverage.
  • the high-speed railway refers to: by modifying existing lines, such as: linearization, gauge standardization, etc., or specializing in the construction of a new "high-speed new line" to enable a railway with an operating rate of more than 200 kilometers per hour.
  • the high speed railway is referred to as a high speed rail.
  • a notable feature of the high-speed rail is the high-speed movement.
  • the spectral broadening of the Doppler frequency namely: U-shaped spectrum
  • the spectral broadening of the Doppler frequency refers to: spectrum expansion based on the spectrum of the received signal, which generally occurs when the communication scene is more complex and more numerous than the surrounding environment.
  • the directional offset of the Doppler frequency generally occurs in a scene with direct vision between the terminal and the base station, such as: general satellite communication, radar communication, or A scene covered by a mobile communication network of a track or highway.
  • the reception processing technique of spectral broadening of the Doppler frequency is much more complicated than the reception processing technique in which there is a fixed Doppler frequency directional offset, specifically, for the presence of Doppler frequency.
  • Spectral broadening reception processing since the spectral broadening of the Doppler frequency causes time-dependent selective fading, the receiver is generally processed by error correction coding plus interleaving techniques or diversity techniques; and for the presence of a fixed Doppler frequency
  • the reception processing of the directional offset since a fixed frequency offset is introduced in the spectrum of the transmitted signal, therefore, at the receiver end, only Perform proper frequency offset compensation calibration.
  • Figure 1 is a schematic diagram of a high-speed rail model. From Figure 1, it can be seen very intuitively what kind of scene is called a high-speed rail model; wherein, in Figure 1,
  • denotes a base station
  • ZZZ denotes a mobile terminal, indicating a track.
  • the Doppler frequency simulation under the high-speed rail model is used over time if the coverage of the existing wireless mobile communication network is adopted.
  • the result is shown in Figure 2. It can be seen from FIG. 2 that, as time passes, when the mobile terminal passes through the base station, the mobile terminal converts from “close” to “away” relative to the base station, and the corresponding Doppler frequency gradually changes from a positive value to a negative value. This process is called the “slow transition" process of the Doppler frequency, as shown in "Switching Area 1" in Figure 2; when the mobile terminal leaves the original base station and switches to another base station, the relative speed will be negative.
  • the instantaneous change process of Doppler frequency from negative to positive is called “fast conversion” of Doppler frequency.
  • the process is shown in "Switching Area 2" in Figure 2. As can be seen from Figure 2, the mobile terminal undergoes the above two frequency changes after passing through each cell. If the cell radii are assumed to be the same, the Doppler frequency of the mobile terminal will follow the "cycle" of Figure 2. The time shown, changes periodically.
  • the degree of "slow transition” process depends on the vertical distance between the base station and the rail, and the speed of the vehicle. Specifically, the closer the base station is to the orbit, the faster the vehicle speed, the faster the “slow transition” process changes. That is: the shorter the duration of this process, the closer it is to the "fast transition” process.
  • the fast change of the Doppler frequency in the two processes of the "slow transition” process and the “fast transition” process of the mobile terminal in each cell is roughly the maximum Doppler. Double the frequency ⁇ .
  • the Doppler frequency calculation formula is as follows:
  • V is the vehicle speed
  • 6 is the angle between the base station and the mobile object, ie the mobile terminal
  • c is the speed of light
  • / ⁇ is the carrier frequency.
  • vcos6 represents the projection of the absolute speed of the vehicle speed onto the line segment between the two base stations;
  • the maximum Doppler frequency ⁇ is around 650Hz.
  • 2GHz is a typical 3G band.
  • the mobile terminal will experience two frequency hoppings of approximately 1.3 kHz.
  • the instantaneous change of this Doppler frequency is even greater. Excessive frequency changes may result in failure of reception, handover failure, cell update or cell reselection failure, and even serious consequences such as cell search failure, which may reduce the performance of system communication and serve the application of mobile services in high-speed rail scenarios. Bringing great challenges. Therefore, the existing wireless mobile network coverage technical solution is not suitable for high-speed rail scenarios.
  • the main object of the present invention is to provide an implementation system and method for wireless mobile communication network coverage, which can effectively implement coverage of a wireless mobile communication network in a high-speed rail scenario, thereby ensuring system communication performance.
  • the present invention provides a base station including a transmitting antenna.
  • the transmitting antenna is in the form of a beam.
  • the track along the high-speed traffic road is centered on the location where the base station is located, Covered in two directions, each cell carries one cell.
  • the number of the base stations is two or more.
  • the covering is in two opposite directions, including:
  • the coverage of one base station in one direction overlaps with the coverage in the opposite direction of the adjacent base station.
  • the present invention further provides a mobile terminal, comprising: a switching module, configured to perform a forward switching or a reverse switching according to a moving direction of the mobile terminal during the moving along the track.
  • the mobile terminal further includes: a calibration module, configured to compensate for a frequency offset caused by the high-speed movement by using an automatic frequency control (AFC) calibration method during the receiving signal.
  • AFC automatic frequency control
  • the present invention also provides an implementation system for wireless mobile communication network coverage, the system includes: a base station and a mobile terminal; the mobile terminal includes: a handover module;
  • the transmitting antenna of the base station is in the form of a beam, and when covering the orbital area of the high-speed traffic road, the track along the high-speed traffic road is centered on the location where the base station is located, and covers the opposite directions, and each beam carries a cell;
  • the mobile terminal further includes: a calibration module, configured to compensate a frequency offset caused by high-speed mobility by using an AFC calibration method in receiving a signal sent by the base station; and the base station is further configured to send to the mobile terminal signal.
  • the system further includes: a configuration unit, configured to set a direction of movement along the track to a positive direction in advance, and configure a cell covered by each base station in the positive direction as a forward measurement list of the mobile terminal, along the edge
  • the cell covered in the reverse direction of the positive direction is configured as a reverse measurement list of the mobile terminal.
  • the present invention also provides a method for implementing wireless mobile communication network coverage, the method comprising: when covering a track area of a high speed traffic road, configuring a transmitting antenna of each base station in a beam form, and along a track of the high speed traffic road, The location where the base station is located is centered, and covers the opposite directions, and each cell carries one cell.
  • the present invention further provides a method for implementing wireless mobile communication network coverage, the method comprising: during a track movement along a high speed traffic road, the mobile terminal performs forward switching or reverse switching according to its own moving direction.
  • the method before the forward switching or the reverse switching according to the moving direction of the mobile device, the method further includes:
  • the direction of the track movement is set to a positive direction in advance, and the cell covered by the base station in the positive direction is configured as a forward measurement list of the mobile terminal, and the cell covered in the reverse direction of the positive direction is configured as a mobile terminal.
  • the forward switching or the reverse switching according to the moving direction of the mobile terminal is: when the moving direction of the mobile terminal is the same as the positive direction, the mobile terminal selects a cell to switch from the forward measurement list;
  • the mobile terminal selects a cell from the reverse measurement list to perform handover.
  • the method further includes: In the process of receiving the signal transmitted by the base station, the mobile terminal uses the AFC calibration method to compensate for the frequency offset caused by the high-speed movement.
  • the system and method for implementing the coverage of the wireless mobile communication network of the present invention when covering the track area of the high-speed traffic road, configuring the transmitting antenna of each base station in the form of a beam, and along the track of the high-speed traffic road, the position of the base station is Center, covering in opposite directions, carrying one cell on each beam; in the process of moving along the track, the mobile terminal performs forward switching or reverse switching according to its moving direction, so that the switching process can be performed
  • the amount of change in the Doppler frequency of the mobile terminal is significantly reduced, so that the coverage of the wireless mobile communication network can be effectively realized in the high-speed rail scenario, thereby ensuring the performance of the system communication.
  • the mobile terminal uses the AFC calibration method to compensate for the frequency offset caused by the high-speed movement, so that the normal operation of the communication can be further ensured.
  • Figure 1 is a schematic diagram of a high-speed rail model
  • Figure 1 is a schematic diagram showing the simulation results of the Doppler frequency of the high-speed rail model in the coverage mode of the existing wireless mobile communication network
  • FIG. 3 is a schematic structural diagram of a system for implementing coverage of a wireless mobile communication network according to the present invention
  • FIG. 4 is a schematic diagram of a network arrangement form of a base station in the system of the present invention
  • FIG. 5 is a schematic flowchart of a method for implementing coverage of a wireless mobile communication network according to the present invention
  • FIG. 6 is a schematic diagram of handover of a mobile terminal according to the present invention
  • Fig. 7 is a schematic diagram showing the simulation result of the Doppler frequency of the switching occurrence point at a different position from the target cell. detailed description
  • the transmitting antenna of the base station is in the form of a beam, covering the high speed traffic In the track area of the road, the track along the high-speed traffic road is centered on the location where the base station is located, and covers the opposite directions, each of which carries a cell; the mobile terminal moves along the track according to itself
  • the direction of movement is forward switching or reverse switching.
  • the base station provided by the present invention includes a transmitting antenna, and the transmitting antenna is in the form of a beam.
  • the transmitting antenna is in the form of a beam.
  • the mobile terminal provided by the present invention includes: a switching module, configured to perform a forward switching or a reverse switching according to a moving direction of the mobile terminal during the moving along the track.
  • the mobile terminal further includes: a calibration module, configured to compensate for a frequency offset caused by the high-speed movement by using an AFC calibration method during the signal reception.
  • the system includes: a base station 31 and a mobile terminal 32;
  • the transmitting antenna of the base station 31 is in the form of a beam, and when covering the track area of the high-speed traffic road, the track along the high-speed traffic road is centered on the location where the base station is located, and covers the opposite directions, and each beam carries a cell;
  • the mobile terminal 32 is configured to perform forward switching or reverse switching according to its moving direction during the movement along the track.
  • the number of the base stations 31 may be two or more.
  • the high-speed traffic road may specifically be a high-speed railway, a highway, or the like.
  • FIG. 4 is a schematic diagram of a networked form of a base station in the system of the present invention.
  • the traveling direction of the train is from left to right.
  • the moving direction of the mobile terminal is from left to right
  • the connection between the neighboring base stations is parallel, and includes three base stations, which are a base station 31-0, a base station 31-1, and a base station 31-2, respectively, and then the base antennas of the base station 31-0, the base station 31-1, and the base station 31-2 are In the form of a beam, and in the opposite direction of the track of the high-speed traffic road, that is, covering the left and right directions, each beam carries a cell, specifically, the transmitting antenna of the base station 31-0 The two beams respectively cover the cell 0 and the cell 1.
  • the two beams of the transmitting antenna of the base station 31-1 cover the cell 2 and the cell 3 respectively, and the two beams of the transmitting antenna of the 31-2 cover the cell 4 and the cell 5 respectively, and A cell covered by one direction of a base station overlaps with a cell that covers the opposite direction of the neighboring base station, that is, the coverage of one base station in one direction overlaps with the coverage of the opposite base station, for example, between cell 1 and cell 2.
  • the overlay will be repeated.
  • means to cover to the left, and to cover to the right.
  • the mobile terminal 32 is further configured to compensate the frequency offset caused by the high-speed movement by using an AFC calibration method in the process of receiving the signal sent by the base station 31;
  • the base station 31 is further configured to send a signal to the mobile terminal 32.
  • the system may further include: a configuration unit, configured to set a direction of movement along the track to a positive direction in advance, and configure a cell covered by each base station 31 in the positive direction as a forward measurement list of the mobile terminal 32, along the edge
  • the cell covered in the reverse direction of the positive direction is configured as a reverse measurement list of the mobile terminal 32.
  • the present invention also provides an implementation method for coverage of a wireless mobile communication network. As shown in FIG. 5, the method includes the following steps:
  • Step 500 When covering a high-speed traffic road area, configure a transmitting antenna of each base station in a beam form, and along the track of the high-speed traffic road, centering on the location where the base station is located, and covering in opposite directions, each Carrying a cell on the beam;
  • the coverage of one base station in one direction overlaps with the coverage in the opposite direction of the adjacent base station.
  • the coverage in the same direction between the adjacent or secondary neighboring base stations overlaps, which is a prerequisite for the mobile terminal to implement the handover, and is a well-known technical means for those skilled in the art, and details are not described herein again.
  • each base station is configured in the form of a beam, and along the track of the high-speed traffic road, centering on the location where the base station is located, covering in opposite directions, each carrying a small beam
  • the specific processing of the area is a common technical means for those skilled in the art, and will not be described herein.
  • Step 501 In the process of moving along the track, the mobile terminal performs forward switching or reverse switching according to its moving direction.
  • the method may further include:
  • the direction of the track movement is set to a positive direction in advance, and the cell covered by the base station in the positive direction is configured as a forward measurement list of the mobile terminal, and the cell covered in the reverse direction of the positive direction is configured as a mobile terminal.
  • the forward switching or the reverse switching according to the moving direction of the mobile device is specifically: when the moving direction of the mobile terminal is the same as the positive direction, the mobile terminal selects a cell to switch from the forward measurement list;
  • the mobile terminal selects a cell from the reverse measurement list to perform handover.
  • the mobile terminal After the coverage of the base station is configured by the method of the present invention, as shown in FIG. 6, assuming that the moving direction of the mobile terminal is from left to right, and the forward direction is set from left to right in advance, the mobile terminal is in the cell from the cell 1 to the cell.
  • the moving direction of the mobile terminal is from left to right, and the forward direction is set from left to right in advance
  • the mobile terminal is in the cell from the cell 1 to the cell.
  • the overlapping range of the cell 1 and the cell 3 starts from the position of the base station 31-1, that is, the overlapping range of the cell 1 and the cell 3 is on the right side of the location of the base station 31-1, not at the base station 31-
  • the mobile terminal performs a series of processes such as measurement, reporting, evaluation, etc.
  • the mobile terminal does not have the "slow transition" process described in the background art during the mobile process.
  • the process of switching from the source cell to the target cell there is only “fast transform” described in the background art. process.
  • the instantaneous change of the Doppler frequency of the mobile terminal is significantly reduced, and thus, the normal operation of the communication can be ensured.
  • Figure 7 is a schematic diagram of Doppler frequency simulation when the switching occurrence point is at a different position (Dx) from the target cell.
  • Dx Doppler frequency simulation when the switching occurrence point is at a different position (Dx) from the target cell.
  • the values of the parameters under the high-speed rail model use the values of the parameters shown in Table 1; the specific processing of the simulation is a common technical means for those skilled in the art.
  • the variation of the Puller frequency is 1 Hz.
  • the amount of change in the Doppler frequency of the mobile terminal is significantly reduced during the switching process, in other words, Doppler The frequency is changed around 650 Hz, and the variation interval is not large, so that the communication can be normally performed.
  • one direction along the track may be set to a positive direction, and the cells covered in the positive direction in the positive direction may be numbered, for example: 1, 3, 5, 7, 9 and so on, and form a forward measurement list, numbering the cells covered in the opposite direction of the positive direction, such as: 2, 4, 6, 8, 10, and so on, and form a reverse Measurement list.
  • the measurement list according to cell 1 can be configured as 1, 3, 5, the measurement list of cell 3 can be configured as 3, 5, 7, etc., and so on, when the cell currently serving the mobile terminal is In cell 1, that is, when the mobile terminal is currently working in cell 1, the mobile terminal can only switch to cell 3 when switching, or it is possible to switch to cell 5 without switching to cell 0, cell 2, or Cell 4 and the like; correspondingly, the measurement list of the cell 10 can be configured as 10, 8, 6, 6, and the measurement list of the cell 8 can be configured as 8, 6, 4, etc., and so on, when the current mobile terminal provides the serving cell.
  • the mobile terminal When it is the cell 8, that is, when the mobile terminal is currently working in the cell 8, the mobile terminal can only switch to the cell 6 when the handover is performed, or it is possible to switch to the cell 4 without switching to the cell 3 and the cell 5, Or cell 7 and so on. In other words, follow the above After the measurement list is configured, the mobile terminal performs switching according to a certain switching path. Therefore, when the moving direction of the mobile terminal is the same as the positive direction, the mobile terminal can be prevented from switching to the reverse cell, thereby preventing a wide range of Doppler frequencies. Jump.
  • the environment in which the high-speed traffic road is located is relatively simple, the urban area with complex environment is generally avoided, and the direct transmission from the base station to the mobile terminal can generally be established, and the beam coverage of the narrow pattern in the system deployment base station is also performed. It is possible that the method and system of the present invention can be used to achieve coverage of a wireless mobile communication network.
  • the specific processing for performing the handover can adopt the prior art.
  • the uplink and downlink frequencies are consistent during the baseband processing of the receiver of the mobile terminal.
  • the carrier frequency of the base station is 2 GHz, which is 650 Hz, considering the high-speed movement.
  • the carrier frequency of the receiver of the mobile terminal is 2 GHz-650 Hz.
  • the variation of the Doppler frequency is assumed to be 650 Hz.
  • the carrier frequency of the uplink transmission signal of the mobile terminal is also 2GHz-650Hz.
  • the receiver of the base station is similar to the processing procedure of the mobile terminal.
  • the carrier frequency of the mobile terminal is 2GHz-650 Hz, considering the high-speed movement.
  • the uplink and downlink frequency of the base station does not change much.
  • the downlink transmit carrier frequency of the base station is / c .
  • the base station can perform estimation and compensation of -2 at the time of digital intermediate frequency processing, and performs specific algorithms for estimation and compensation, and no constraint is imposed here.
  • the method may further comprise:
  • the mobile terminal uses the AFC calibration method to compensate for the frequency offset caused by the high-speed movement; wherein the specific processing procedure for compensating the frequency offset caused by the high-speed movement by using the AFC calibration method can adopt the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线移动通信网络覆盖的实现***,该***包括:基站及移动终端;其中,基站的发射天线以波束形式,在覆盖高速交通道路的轨道区域时,沿高速交通道路的轨道,以基站所在的位置为中心,向相反的两个方向覆盖,每个波束上承载一个小区;移动终端,用于在沿所述轨道移动过程中,依据自身的移动方向进行正向切换或反向切换。本发明同时公开了一种无线移动通信网络覆盖的实现方法,采用本发明的***及方法,能在切换过程中,移动终端的多普勒频率的变化量明显降低,从而能在高铁的场景下,有效地实现无线移动通信网络的覆盖,进而保证***通信的性能。

Description

一种无线移动通信网络覆盖的实现***及方法 技术领域
本发明涉及无线移动通信技术, 特别涉及一种无线移动通信网络覆盖 的实现***及方法。 背景技术 里, 所述高速铁路是指: 通过改造原有线路, 比如: 直线化、 轨距标准化 等, 或者, 专门修建新的 "高速新线", 使营运速率达到每小时 200公里以 上的铁路。 在以下的描述中, 将高速铁路称为高铁。 乘坐高铁的一个显著 特点是高速移动。 在这种移动场景下, 会引起很大的多普勒频率, 而这个 频率的频谱展宽与普通的移动场景下比如乘坐出租车或公交车等的多普勒 频率的频谱展宽不同, 主要表现在频率发生了定向偏移。 其中, 多普勒频 率的频谱展宽, 即: U型谱, 是指: 在接收信号的频谱基础上进行了频谱 展开, 这种情况一般发生在通信场景与周围环境相比, 较为复杂、 存在多 反射、 多散射的场景下, 比如: 城市覆盖等; 而多普勒频率的定向偏移, 一般发生在终端与基站之间存在直视的场景, 比如: 一般的卫星通讯、 雷 达通讯、 或沿着轨道或高速公路的移动通信网络覆盖的场景。
一般来说, 与存在固定的多普勒频率的定向偏移的接收处理技术相比, 存在多普勒频率的频谱展宽的接收处理技术要复杂的多, 具体地, 对于存 在多普勒频率的频谱展宽的接收处理, 由于多普勒频率的频谱展宽会引起 时间的选择性衰落, 因此, 接收机一般采用纠错编码加交织技术或分集技 术来处理; 而对于存在固定的多普勒频率的定向偏移的接收处理, 由于是 在发射信号的频谱上引入了固定的频率偏移, 因此, 在接收机端, 只需要 进行适当的频率偏移补偿校准即可。
但是, 对于乘坐高铁的移动场景, 即: 在高铁模型下, 则不能采用传 统的多普勒频率的频谱展宽的接收处理技术, 具体分析如下:
举个例子来说, 根据高铁模型及第三代合作伙伴计划 (3GPP, Third Generation Partnership Projects )协议, 4叚设高铁模型下的各个参数如表 1所 示。 表 1
Figure imgf000003_0001
其中, Z¾表示小区覆盖直径, nin表示基站的发射天线距离轨道的垂 直距离, V表示车速, ^表示最大多普勒频率。 图 1为高铁模型示意图, 从 图 1中可以非常直观地看出什么样的场景称为高铁模型; 其中, 在图 1中,
▽表示基站, ZZZ表示移动终端, 表示轨道。
当高铁模型下的各参数的值为表 1 中的各参数的值时, 随着时间的推 移, 如果采用现有的无线移动通信网络的覆盖方式, 则高铁模型下的多普 勒频率的仿真结果如图 2所示。 从图 2中可以看出, 随着时间的推移, 移 动终端经过基站时, 移动终端相对于基站, 从 "接近" 转换成 "远离", 相 应的多普勒频率由正值逐渐转换成负值,将这个过程称为多普勒频率的 "緩 变换"过程, 如图 2中的 "切换区域 1"所示; 当移动终端离开原来的基站, 切换到另一个基站时, 相对速度会从负值瞬间变成正值, 由于相对速度与 多普勒频率成正比, 这样, 相应的, 就出现了一个多普勒频率的瞬时变化 过程, 将多普勒频率由负变为正的瞬时变化过程称为多普勒频率的 "快变 换" 过程, 如图 2中的 "切换区域 2" 所示。 从图 2中可以看出, 移动终端 经过每个小区, 都会经历上述两次频率的变化, 如果假设小区半径都是相 同的, 则移动终端的多普勒频率就会按照图 2 "周期" 所示的时间, 周期性 地变化。
其中, "緩变换" 过程的快慢程度, 取决于基站与铁轨的垂直距离、 以 及车速的大小, 具体地, 基站距离轨道越近, 车速越快, 则 "緩变换" 过 程就变化的越快, 即: 这个过程持续的时间就会越短, 越接近于 "快变换" 过程。
从上面的描述中可以看出, 移动终端在每个小区中, "緩变换" 过程及 "快变换" 过程这两个过程中的多普勒频率的快速变换, 变化幅度大致为 最大多普勒频率^的两倍。 多普勒频率计算公式如下:
其中, V表示车速, 6»表示基站与移动物体即移动终端之间的角度, c 表示光速, / ^表示载波频率。 这里, vcos6»表示车速的绝对速度向两个基站 之间线段上的投影; 最大多普勒频率 ^为 cos^=l时的多普勒频率。 举个例 子来说, 如果列车的车速为 350km/h, 载波频率为 2GHz, v与基站间平行, 即: θ=0, 则根据公式(1 ), 最大多普勒频率 ^为 650Hz附近。 这里, 2GHz 是典型的 3G的频段。 在这种情况下, 每个小区中, 移动终端将会承受两次 约 1.3kHz的频率跳变。 这样, 对于载波频率更高的 3.9G/4G移动通信, 这 个多普勒频率的瞬间变化就更大了。 而过大的频率变化, 会导致接收失败、 切换失败、 小区更新或小区重选失败, 甚至会导致小区搜索失败等严重后 果, 从而会降低***通信的性能, 为移动业务在高铁场景下的应用带来很 大的挑战。 因此, 现有的无线移动网路覆盖的技术方案不适合高铁场景下 的应用。 发明内容
有鉴于此, 本发明的主要目的在于提供一种无线移动通信网络覆盖的 实现***及方法, 能在高铁的场景下, 有效地实现无线移动通信网络的覆 盖, 进而保证***通信的性能。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种基站, 该基站包括发射天线, 所述发射天线以波束 形式, 在覆盖高速交通道路的轨道区域时, 沿高速交通道路的轨道, 以基 站所在的位置为中心, 向相反的两个方向覆盖, 每个波束上承载一个小区。
上述方案中, 所述基站的个数为两个以上。
上述方案中, 所述向相反的两个方向覆盖, 包括:
一个基站一个方向的覆盖范围与相邻基站相反方向的覆盖范围重叠。 本发明又提供了一种移动终端, 该移动终端包括: 切换模块, 用于在 沿所述轨道移动过程中, 依据移动终端的移动方向进行正向切换或反向切 换。
上述方案中, 该移动终端进一步包括: 校准模块, 用于在接收信号过 程中, 采用自动频率控制 (AFC, Automatic Frequency Control )校准方法 补偿高速移动带来的频率偏移。
本发明还提供了一种无线移动通信网络覆盖的实现***, 该***包括: 基站及移动终端; 所述移动终端包括: 切换模块; 其中,
基站的发射天线以波束形式, 在覆盖高速交通道路的轨道区域时, 沿 高速交通道路的轨道, 以基站所在的位置为中心, 向相反的两个方向覆盖, 每个波束上 载一个小区;
切换模块, 用于在沿所述轨道移动过程中, 依据移动终端的移动方向 进行正向切换或反向切换。 上述方案中, 所述移动终端进一步包括: 校准模块, 用于在接收基站 发送的信号过程中, 采用 AFC校准方法补偿高速移动带来的频率偏移; 所述基站, 还用于向移动终端发送信号。
上述方案中, 该***进一步包括: 配置单元, 用于预先将沿轨道移动 的一个方向设置为正方向, 将每个基站沿所述正方向覆盖的小区配置为移 动终端的正向测量列表, 沿所述正方向的反方向覆盖的小区配置为移动终 端的反向测量列表。
本发明还提供了一种无线移动通信网络覆盖的实现方法, 该方法包括: 在覆盖高速交通道路的轨道区域时, 配置每个基站的发射天线以波束形式, 并沿高速交通道路的轨道, 以所述基站所在的位置为中心, 向相反的两个 方向覆盖, 每个波束上承载一个小区。
本发明又提供了一种无线移动通信网络覆盖的实现方法, 该方法包括: 在沿高速交通道路的轨道移动过程中, 移动终端依据自身的移动方向 进行正向切换或反向切换。
上述方案中, 在依据自身的移动方向进行正向切换或反向切换之前, 该方法进一步包括:
预先将沿轨道移动的一个方向设置为正方向, 将每个基站沿所述正方 向覆盖的小区配置为移动终端的正向测量列表, 沿所述正方向的反方向覆 盖的小区配置为移动终端的反向测量列表。
上述方案中, 所述依据自身的移动方向进行正向切换或反向切换, 为: 当自身的移动方向与所述正方向相同时, 移动终端从所述正向测量列 表中选择小区进行切换;
当自身的移动方向与所述正方向相反时, 移动终端从所述反向测量列 表中选择小区进行切换。
上述方案中, 该方法还进一步包括: 在接收基站发送的信号过程中, 移动终端采用 AFC校准方法补偿高速 移动带来的频率偏移。
本发明无线移动通信网络覆盖的实现***及方法, 在覆盖高速交通道 路的轨道区域时, 配置每个基站的发射天线以波束形式, 并沿高速交通道 路的轨道, 以所述基站所在的位置为中心, 向相反的两个方向覆盖, 每个 波束上承载一个小区; 在沿所述轨道移动的过程中, 移动终端依据自身的 移动方向进行正向切换或反向切换, 如此, 能在切换过程中, 移动终端的 多普勒频率的变化量明显降低, 从而能在高铁的场景下, 有效地实现无线 移动通信网络的覆盖, 进而保证***通信的性能。
另外, 在接收基站发送的信号过程中, 移动终端采用 AFC校准方法补 偿高速移动带来的频率偏移, 如此, 能进一步保证通信的正常进行。 附图说明
图 1为高铁模型示意图;
图 1 为现有的无线移动通信网络的覆盖方式下高铁模型的多普勒频率 的仿真结果示意图;
图 3为本发明无线移动通信网络覆盖的实现***结构示意图; 图 4为本发明***中基站的布网形式示意图;
图 5为本发明无线移动通信网络覆盖的实现方法流程示意图; 图 6为本发明移动终端进行切换的示意图;
图 7为本发明切换发生点在距离目标小区不同的位置的多普勒频率的 仿真结果示意图。 具体实施方式
下面结合附图及具体实施例对本发明再作进一步详细的说明。
本发明的基本思想是: 基站的发射天线以波束形式, 在覆盖高速交通 道路的轨道区域时, 沿高速交通道路的轨道, 以基站所在的位置为中心, 向相反的两个方向覆盖, 每个波束上承载一个小区; 移动终端在沿所述轨 道移动过程中, 依据自身的移动方向进行正向切换或反向切换。
本发明提供的基站包括发射天线, 所述发射天线以波束形式, 在覆盖 高速交通道路的轨道区域时, 沿高速交通道路的轨道, 以基站所在的位置 为中心, 向相反的两个方向覆盖, 每个波束上 载一个小区。
本发明提供的移动终端包括: 切换模块, 用于在沿所述轨道移动过程 中, 依据移动终端的移动方向进行正向切换或反向切换。
其中, 该移动终端进一步包括: 校准模块, 用于在接收信号过程中, 采用 AFC校准方法补偿高速移动带来的频率偏移。
基于上述基站及移动终端, 本发明无线移动通信网络覆盖的实现*** , 如图 3所示, 该***包括: 基站 31及移动终端 32; 其中,
基站 31的发射天线以波束形式, 在覆盖高速交通道路的轨道区域时, 沿高速交通道路的轨道, 以基站所在的位置为中心, 向相反的两个方向覆 盖, 每个波束上承载一个小区;
移动终端 32 , 用于在沿所述轨道移动过程中, 依据自身的移动方向进 行正向切换或反向切换。
其中, 基站 31的个数可以为两个以上。
这里, 所述高速交通道路具体可以是高速铁路、 或高速公路等。
其中, 图 4为本发明***中基站的布网形式示意图, 如图 4所示, 假 设列车行驶方向为从左至右, 换句话说, 移动终端的移动方向为从左至右, 轨道与相邻基站之间的连线平行, 包括三个基站, 分别为基站 31-0、 基站 31-1及基站 31-2, 则基站 31-0、 基站 31-1及基站 31-2的发射天线以波束 形式, 并沿高速交通道路的轨道以相反的两个方向覆盖, 即: 向左及向右 两个方向覆盖, 每个波束上承载一个小区, 具体地, 基站 31-0的发射天线 的两个波束分别覆盖小区 0及小区 1 , 基站 31-1的发射天线的两个波束分 别覆盖小区 2及小区 3 , 31-2的发射天线的两个波束分别覆盖小区 4及小区 5 , 且一个基站的一个方向覆盖的小区会与其相邻的基站的相反方向覆盖的 小区重叠, 即: 一个基站一个方向的覆盖范围与其相邻基站相反方向的覆 盖范围重叠,比如:小区 1与小区 2间会重复覆盖。其中,在图 4中, ^ 表示向左覆盖, 表示向右覆盖。
所述移动终端 32, 还用于在接收基站 31 发送的信号的过程中, 采用 AFC校准方法补偿高速移动带来的频率偏移;
所述基站 31 , 还用于向移动终端 32发送信号。
该***还可以进一步包括: 配置单元, 用于预先将沿轨道移动的一个 方向设置为正方向, 将每个基站 31沿所述正方向覆盖的小区配置为移动终 端 32的正向测量列表, 沿所述正方向的反方向覆盖的小区配置为移动终端 32的反向测量列表。
基站及移动终端的具体处理过程将在下文中详述。
基于上述***, 本发明还提供了一种无线移动通信网络覆盖的实现方 法, 如图 5所示, 该方法包括以下步驟:
步驟 500: 在覆盖高速交通道路区域时, 配置每个基站的发射天线以波 束形式, 并沿高速交通道路的轨道, 以所述基站所在的位置为中心, 向相 反的两个方向覆盖, 每个波束上承载一个小区;
进一步地, 一个基站一个方向的覆盖范围与相邻基站相反方向的覆盖 范围重叠。 并且, 在实际应用过程中, 相邻或次邻的基站间的同一方向的 覆盖范围重叠, 这是移动终端能实现切换的前提条件, 为本领域技术人员 的公知技术手段, 这里不再赘述。
配置每个基站的发射天线以波束形式, 并沿高速交通道路的轨道, 以 基站所在的位置为中心, 向相反的两个方向覆盖, 每个波束上承载一个小 区的具体处理过程为本领域技术人员的惯用技术手段, 这里不再赘述。 步驟 501 : 在沿所述轨道移动的过程中, 移动终端依据自身的移动方向 进行正向切换或反向切换。
这里, 在依据自身的移动方向进行正向切换或反向切换之前, 该方法 还可以进一步包括:
预先将沿轨道移动的一个方向设置为正方向, 将每个基站沿所述正方 向覆盖的小区配置为移动终端的正向测量列表, 沿所述正方向的反方向覆 盖的小区配置为移动终端的反向测量列表。
所述依据移自身的移动方向进行正向切换或反向切换, 具体为: 当自身的移动方向与所述正方向相同时, 移动终端从所述正向测量列 表中选择小区进行切换;
当自身的移动方向与所述正方向相反时, 移动终端从所述反向测量列 表中选择小区进行切换。
当采用本发明的方法配置基站的覆盖范围后, 如图 6所示, 假设移动 终端的移动方向为从左至右, 预先设置从左至右为正方向, 则移动终端在 从小区 1向小区 2的移动过程中, 由于小区 1与小区 3的重叠范围从基站 31 -1的位置开始, 即: 小区 1与小区 3的重叠范围在基站 31-1的所在位置 的右侧, 不在基站 31-0与基站 31- 1的位置之间, 并且, 由于高铁模式下移 动终端的速度较快, 移动终端在进入小区 3 的覆盖范围后, 才进行测量、 上报、 评估等一系列的过程, 从而进行切换, 因此, 移动终端在移动过程 中不存在背景技术中所描述的 "緩变换" 过程, 换句话说, 从源小区切换 到目标小区的过程中, 只存在背景技术中描述的 "快变换"过程。结合图 6, 并根据公式 ( 1 ) , 可以得到在切换过程中, 多普勒频率由 / C0S( )变为 fd cos(^) , 相应的, 多普勒频率的变化量为/ Jcos( )- COsW)] , 在极限情况 下, COS( ) = 0 , cos(^0) = l , 此时, 多普勒频率的变化量为^ , 因此, 采用本 发明的***及方法后, 移动终端的多普勒频率的瞬间的变化明显降低, 如 此, 能保证通信的正常进行。
图 7为当切换发生点在距离目标小区不同的位置 (Dx ) 的多普勒频率 仿真示意图。 这里, 需要说明的是: 在进行仿真的过程中, 高铁模型下的 各参数的值采用表 1 所示的各参数的值; 仿真的具体处理过程为本领域技 术人员的惯用技术手段。在图 7中,从上到下三幅图分别对应: Dx=0.0L¾、 Dx=0.05Z¾、 及 Dx=0.L¾的仿真结果示意图。 从 7 图中可以看出, 当 Dx=0.0L¾时, 多普勒频率的变化量为 110Hz, 当 Dx=0.05Z¾时, 多普勒频 率的变化量为 5Hz, 当 Dx=0.1Z¾时, 多普勒频率的变化量为 1Hz, 从图 7 中可以看出, 采用本发明的***及方法后, 在切换过程中, 移动终端的多 普勒频率的变化量明显降低, 换句话说, 多普勒频率在 650Hz附近变化, 且变化区间不大, 如此, 能保证通信的正常进行。
在实际应用过程中, 在配置测量表时, 可以将沿轨道移动的一个方向 设置为正方向, 并沿所述正方向为所述正方向覆盖的小区进行编号, 比如: 1、 3、 5、 7、 9等以此类推, 并形成正向测量列表, 将沿所述正方向的反方 向覆盖的小区进行编号, 比如: 2、 4、 6、 8、 10等以此类推, 并形成反向 测量列表。 在测量列表中, 按照小区 1的测量列表可以配置为 1、 3、 5 , 小 区 3的测量列表可以配置为 3、 5、 7等等, 以此类推, 当当前为移动终端 提供服务的小区为小区 1 时, 即: 移动终端当前工作在小区 1时, 移动终 端在进行切换时, 只能切换至小区 3 , 或者, 有可能切换至小区 5 , 而不会 切换至小区 0、 小区 2、 或小区 4等等; 相应的, 小区 10的测量列表可以 配置为 10、 8、 6, 小区 8的测量列表可以配置为 8、 6、 4等等, 以此类推, 当当前移动终端提供服务的小区为小区 8 时, 即: 移动终端当前工作在小 区 8时, 移动终端在进行切换时, 只能切换至小区 6, 或者, 有可能切换至 小区 4, 而不会切换至小区 3、 小区 5、 或小区 7等等。 也就是说, 按照上 述测量列表配置后, 移动终端会按照一定的切换路径进行切换, 如此, 能 防止当移动终端的移动方向与正方向相同时, 向反向小区进行切换, 从而 防止了多普勒频率大范围的跳变。
这里, 需要说明的是: 由于高速交通道路所处的环境相对简单, 一般 会避开环境复杂的城区, 基站到移动终端的直射一般可以成立, 也为*** 布网基站进行窄方向图的波束覆盖成为可能, 即: 可以采用本发明的方法 及***, 实现无线移动通信网络的覆盖。
其中, 进行切换的具体处理过程可采用现有技术。
发送或接收信号时, 在移动终端的接收机进行基带处理的过程中, 上 下行频率是一致的, 举个例子来说, 假设基站的载波频率为 2GHz, 为 650Hz, 在考虑高速移动带来的多普勒频率的情况下, 移动终端的接收机接 收信号时的载波频率为 2GHz-650Hz, 这里, 假设多普勒频率的变化量为 650Hz, 相应的, 移动终端上行发射信号的载波频率也为 2GHz-650Hz, 同 样的, 基站的接收机在接收移动终端发送的上行信号时, 与移动终端的处 理过程类似, 此时, 移动终端的载波频率为 2GHz-650 Hz, 在考虑高速移动 带来的多普勒频率的情况下, 即: 考虑到由于移动终端自身的 AFC校准而 带来的上行载波频率的变化为 -650Hz , 则基站的接收机接收信号时的载波 频率为 2GHz-650Hz-650Hz=2GHz- 1.3kHz,也就是说,基站接收的中心频率 就为 2GHz-1.3kHz, 即: 在基站需要补偿这里上行的 -1.3kHz的频率偏移。
从上面的描述中可以看出, 接收信号时, 在移动终端的接收机的基带 处理过程中, 只要 AFC环路补偿掉由于高速移动所带来的约 ^的频率偏移 后, 在切换过程中, 频率的上下行变化不大; 并且, 基站的下行发射载波 频率为 /c, 当接收上行信号时, 即: 接收移动终端发送的信号时, 则需要工 作在载波频率为/ c-2/rf上。 具体地, 基站可以在数字中频处理时进行 -2 的 估计和补偿即可, 进行估计和补偿所采用的具体算法, 这里不进行约束。 该方法还可以进一步包括:
在接收基站发送的信号过程中, 移动终端采用 AFC校准方法补偿高速 移动带来的频率偏移; 其中, 采用 AFC校准方法补偿高速移动带来的频率 偏移的具体处理过程可采用现有技术。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种基站, 其特征在于, 该基站包括发射天线, 所述发射天线以波 束形式, 在覆盖高速交通道路的轨道区域时, 沿高速交通道路的轨道, 以 基站所在的位置为中心, 向相反的两个方向覆盖, 每个波束上承载一个小 区。
2、 根据权利要求 1所述的基站, 其特征在于, 所述基站的个数为两个 以上。
3、 根据权利要求 2所述的基站, 其特征在于, 所述向相反的两个方向 覆盖, 包括:
一个基站一个方向的覆盖范围与相邻基站相反方向的覆盖范围重叠。
4、 一种移动终端, 其特征在于, 该移动终端包括: 切换模块, 用于在 沿所述轨道移动过程中, 依据移动终端的移动方向进行正向切换或反向切 换。
5、 根据权利要求 4所述的移动终端, 其特征在于, 该移动终端进一步 包括: 校准模块, 用于在接收信号过程中, 采用自动频率控制 (AFC )校 准方法补偿高速移动带来的频率偏移。
6、一种无线移动通信网络覆盖的实现***,其特征在于,该***包括: 基站及移动终端; 所述移动终端包括: 切换模块; 其中,
基站的发射天线以波束形式, 在覆盖高速交通道路的轨道区域时, 沿 高速交通道路的轨道, 以基站所在的位置为中心, 向相反的两个方向覆盖, 每个波束上 载一个小区;
切换模块, 用于在沿所述轨道移动过程中, 依据移动终端的移动方向 进行正向切换或反向切换。
7、 根据权利要求 6所述的***, 其特征在于, 所述基站的个数为两个 以上。
8、 根据权利要求 7所述的***, 其特征在于, 所述向相反的两个方向 覆盖, 包括:
一个基站一个方向的覆盖范围与相邻基站相反方向的覆盖范围重叠。
9、 根据权利要求 6、 7或 8所述的***, 其特征在于, 所述移动终端 进一步包括: 校准模块, 用于在接收基站发送的信号过程中, 采用 AFC校 准方法补偿高速移动带来的频率偏移;
所述基站, 还用于向移动终端发送信号。
10、 根据权利要求 6、 7或 8所述的***, 其特征在于, 该***进一步 包括: 配置单元, 用于预先将沿轨道移动的一个方向设置为正方向, 将每 个基站沿所述正方向覆盖的小区配置为移动终端的正向测量列表, 沿所述 正方向的反方向覆盖的小区配置为移动终端的反向测量列表。
11、 一种无线移动通信网络覆盖的实现方法, 其特征在于, 该方法包 括: 在覆盖高速交通道路的轨道区域时, 配置每个基站的发射天线以波束 形式, 并沿高速交通道路的轨道, 以所述基站所在的位置为中心, 向相反 的两个方向覆盖, 每个波束上承载一个小区。
12、 根据权利要求 11所述的实现方法, 其特征在于, 所述向相反的两 个方向覆盖, 包括:
一个基站一个方向的覆盖范围与相邻基站相反方向的覆盖范围重叠。
13、 一种无线移动通信网络覆盖的实现方法, 其特征在于, 该方法包 括:
在沿高速交通道路的轨道移动过程中, 移动终端依据自身的移动方向 进行正向切换或反向切换。
14、 根据权利要求 13所述的方法, 其特征在于, 在依据自身的移动方 向进行正向切换或反向切换之前, 该方法进一步包括:
预先将沿轨道移动的一个方向设置为正方向, 将每个基站沿所述正方 向覆盖的小区配置为移动终端的正向测量列表, 沿所述正方向的反方向覆 盖的小区配置为移动终端的反向测量列表。
15、 根据权利要求 14所述的方法, 其特征在于, 所述依据自身的移动 方向进行正向切换或反向切换, 为:
当自身的移动方向与所述正方向相同时, 移动终端从所述正向测量列 表中选择小区进行切换;
当自身的移动方向与所述正方向相反时, 移动终端从所述反向测量列 表中选择小区进行切换。
16、 根据权利要求 13、 14或 15所述的方法, 其特征在于, 该方法还 进一步包括:
在接收基站发送的信号过程中, 移动终端采用 AFC校准方法补偿高速 移动带来的频率偏移。
PCT/CN2011/082237 2011-11-15 2011-11-15 一种无线移动通信网络覆盖的实现***及方法 WO2013071490A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082237 WO2013071490A1 (zh) 2011-11-15 2011-11-15 一种无线移动通信网络覆盖的实现***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082237 WO2013071490A1 (zh) 2011-11-15 2011-11-15 一种无线移动通信网络覆盖的实现***及方法

Publications (1)

Publication Number Publication Date
WO2013071490A1 true WO2013071490A1 (zh) 2013-05-23

Family

ID=48428932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082237 WO2013071490A1 (zh) 2011-11-15 2011-11-15 一种无线移动通信网络覆盖的实现***及方法

Country Status (1)

Country Link
WO (1) WO2013071490A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172630A (zh) * 2017-06-29 2017-09-15 电子科技大学 用于高铁的基于分布式波束成形毫米波覆盖方法
JP2018514992A (ja) * 2015-03-27 2018-06-07 ゼットティーイー コーポレーションZte Corporation ハンドオーバーバンドの調整方法及び装置、コンピュータ記憶媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984444A (zh) * 2006-05-01 2007-06-20 华为技术有限公司 线性覆盖网络中的小区切换方法
CN101335552A (zh) * 2007-06-26 2008-12-31 中兴通讯股份有限公司 一种带状覆盖的智能天线实现方法与装置
CN101355780A (zh) * 2007-07-23 2009-01-28 中兴通讯股份有限公司 时分同步码分多址接入***的线性覆盖***及通信方法
CN101400133A (zh) * 2007-09-29 2009-04-01 鼎桥通信技术有限公司 无线资源分配方法和***
US20090104911A1 (en) * 2007-10-18 2009-04-23 Fujitsu Limited Communication control appratus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984444A (zh) * 2006-05-01 2007-06-20 华为技术有限公司 线性覆盖网络中的小区切换方法
CN101335552A (zh) * 2007-06-26 2008-12-31 中兴通讯股份有限公司 一种带状覆盖的智能天线实现方法与装置
CN101355780A (zh) * 2007-07-23 2009-01-28 中兴通讯股份有限公司 时分同步码分多址接入***的线性覆盖***及通信方法
CN101400133A (zh) * 2007-09-29 2009-04-01 鼎桥通信技术有限公司 无线资源分配方法和***
US20090104911A1 (en) * 2007-10-18 2009-04-23 Fujitsu Limited Communication control appratus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018514992A (ja) * 2015-03-27 2018-06-07 ゼットティーイー コーポレーションZte Corporation ハンドオーバーバンドの調整方法及び装置、コンピュータ記憶媒体
CN107172630A (zh) * 2017-06-29 2017-09-15 电子科技大学 用于高铁的基于分布式波束成形毫米波覆盖方法
CN107172630B (zh) * 2017-06-29 2019-11-19 电子科技大学 用于高铁的基于分布式波束成形毫米波覆盖方法

Similar Documents

Publication Publication Date Title
US10009093B2 (en) Handoff for satellite communication
JP6469255B2 (ja) 衛星通信のためのハンドオフ
JP6595124B2 (ja) 衛星通信のためのハンドオフ
CN107852228B (zh) 卫星通信位置报告和寻呼的方法及装置
US9762314B2 (en) Handoff for non-geosynchronous satellite communication
US20110092237A1 (en) Wireless communication system, management server, mobile base station apparatus and mobile base station control method
US8914030B2 (en) Handover for an intermediate node in a wireless communication network
JP2009284495A (ja) 移動無線端末の位置を決定する方法およびシステム
WO2009107385A1 (ja) 移動体通信システムにおける中継局、移動局および中継送信方法
US20090247169A1 (en) Base Transceiver Station, Mobile Station, And Wireless Communication Method
CN103237324B (zh) 一种地理位置信息辅助lte***快速切换判决方法
CN101184325B (zh) 通信***中的切换方法及终端
CN101557620A (zh) 实现终端越区切换的方法、装置及***
US20180098260A1 (en) Improved handover in high speed scenario
WO2013071490A1 (zh) 一种无线移动通信网络覆盖的实现***及方法
US20110299505A1 (en) Base station device, mobile terminal, communication system, and method of controlling said communication system
CN101771434A (zh) 移动终端调整频偏的方法和装置
JPH1048322A (ja) 符号分割多元接続システムにおける移動体の測位方法
JP2010226440A (ja) 送信電力制御方法及び無線通信システム
US8588817B2 (en) Wireless communication device and method
JP2017195529A (ja) 基地局及び送信方法
EP3096547A1 (en) Apparatuses, methods and computer programs for a first and a second base station transceiver, the first base station transceiver comprising an antenna being flexibly moveable around a mounting device for the antenna
WO2018207297A1 (ja) 基地局装置、端末装置、送信間隔制御方法及び無線通信システム
WO2023132767A1 (en) Measurement procedure for conditional cell change in a non-terrestrial network (ntn)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875730

Country of ref document: EP

Kind code of ref document: A1