WO2013069777A1 - Method for producing liquid crystal polymer composition, and molded article - Google Patents

Method for producing liquid crystal polymer composition, and molded article Download PDF

Info

Publication number
WO2013069777A1
WO2013069777A1 PCT/JP2012/079151 JP2012079151W WO2013069777A1 WO 2013069777 A1 WO2013069777 A1 WO 2013069777A1 JP 2012079151 W JP2012079151 W JP 2012079151W WO 2013069777 A1 WO2013069777 A1 WO 2013069777A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
group
component
polymer composition
Prior art date
Application number
PCT/JP2012/079151
Other languages
French (fr)
Japanese (ja)
Inventor
晋太郎 小松
原田 博史
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013069777A1 publication Critical patent/WO2013069777A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92714Degree of crosslinking, solidification, crystallinity or homogeneity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0008Magnetic or paramagnetic

Definitions

  • the present invention relates to a molded article having electromagnetic shielding properties and electrical insulation, and a method for producing a liquid crystal polymer composition for obtaining the molded article.
  • Electromagnetic shielding materials include insulating materials that attenuate by absorbing electromagnetic waves and conductive materials that reflect electromagnetic waves, but the viewpoint of preventing malfunction of electrical and electronic equipment due to reflected electromagnetic waves Therefore, the former insulating one is preferable. Therefore, a molded product obtained from an insulating resin composition containing a resin and a magnetic filler has been studied as an electromagnetic wave shielding material.
  • a liquid crystal polyester composition containing a liquid crystal polyester and a magnetic filler has a melt fluidity. Since it is excellent and easy to mold and has high heat resistance and mechanical strength, it has been studied as a preferable molded body material.
  • Patent Document 1 discloses a liquid crystal polyester composition containing liquid crystal polyester and a soft magnetic powder subjected to coupling treatment.
  • a molded body obtained from a conventional liquid crystal polyester composition containing liquid crystal polyester and a magnetic filler has a problem that electromagnetic wave shielding properties are not always sufficient.
  • the present invention has been made in view of the above circumstances, and provides a molded article excellent in electromagnetic wave shielding properties obtained from a liquid crystal polymer composition containing a liquid crystal polymer and a magnetic filler, and a method for producing the liquid crystal polymer composition The task is to do.
  • the present invention has the following aspects.
  • the first aspect of the present invention is: [1] Using a melt-kneading extruder equipped with a nozzle, a cylinder and a screw installed in the cylinder, the following components (A) and (B) are supplied to the cylinder from a supply port provided in the cylinder.
  • the component (A) and the component (B) are melt-kneaded to obtain a kneaded product, the kneaded product is extruded from the nozzle to the outside of the melt-kneaded extruder, and the kneaded product is cooled at a cooling rate of 60. And cooling at a temperature not higher than ° C./second.
  • Component (B) Magnetic filler obtained by heat-treating a composite material composed of ceramic powder and soft magnetic metal powder in an inert gas atmosphere
  • the component (A) is a repeating unit represented by the following general formula (1), a repeating unit represented by the following general formula (2), and a repeating unit represented by the following general formula (3).
  • Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes
  • X and Y are each independently an oxygen atom or imino group
  • one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.
  • Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group
  • Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfon
  • the ratio (L / D) of the effective length (L) of the screw to the diameter (D) of the screw is 20 or more
  • the supply port is the first supply port
  • obtaining the kneaded product is 50% by mass or more of the total supply amount of the component (A)
  • the component (B) 50% by mass or less of the total supply amount is supplied to the cylinder from the first supply port
  • the remaining part of the component (A) and the remaining part of the component (B) are supplied to the second supply port.
  • the liquid crystal polymer composition according to any one of [1] to [9], wherein the composition (A) and the component (B) are supplied to the cylinder from the melt and kneaded to obtain a kneaded product Manufacturing method.
  • the second aspect of the present invention is: [11] A molded body obtained by molding the liquid crystal polymer composition obtained by the production method according to any one of [1] to [10].
  • a third aspect of the present invention uses a melt-kneading extruder provided with a cylinder and a screw installed in the cylinder, and supplies the following components (A) and (B) from a supply port provided in the cylinder.
  • a method for producing a liquid crystal polymer composition by supplying to a cylinder and melt-kneading, wherein the kneaded product extruded from the nozzle of the melt-kneading extruder is cooled at a cooling rate of 60 ° C./sec or less.
  • a method for producing a liquid crystal polymer composition is provided.
  • the component (A) is preferably a wholly aromatic liquid crystal polyester.
  • the component (A) is preferably a liquid crystal polyester having repeating units represented by the following general formulas (1), (2) and (3).
  • Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes
  • X and Y are each independently an oxygen atom or imino group
  • one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.
  • Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group
  • Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfon
  • the soft magnetic metal powder is preferably composed mainly of iron or an iron alloy.
  • the soft magnetic metal powder preferably has an aspect ratio of 2 or more.
  • the composite material is preferably formed by coating the soft magnetic metal powder with the ceramic powder.
  • the component (B) is preferably obtained by heat-treating the composite material at 800 ° C. or higher in the inert gas atmosphere.
  • the supply amount of the component (B) is preferably 100 to 450 parts by mass with respect to 100 parts by mass of the component (A).
  • the melt-kneading extruder has a ratio (L / D) of the effective length (L) of the screw to the diameter (D) of the screw of 20 or more.
  • the fourth aspect of the present invention provides a molded article obtained by molding the liquid crystal polymer composition obtained by the production method of the present invention.
  • a molded article obtained from a liquid crystal polymer composition containing a liquid crystal polymer and a magnetic filler and having excellent electromagnetic shielding properties, and a method for producing the liquid crystal polymer composition.
  • the method for producing a liquid crystal polymer composition according to the first aspect of the present invention uses a melt-kneading extruder provided with a nozzle, a cylinder and a screw installed in the cylinder, from a supply port provided in the cylinder, The following components (A) and (B) are supplied to the cylinder to melt and knead the component (A) and the component (B) to obtain a kneaded product, and the kneaded product is extruded from the nozzle by the melt kneading extrusion.
  • the cooling rate of the extruded kneaded product is set to 60 ° C./second or less, and the liquid crystal polymer composition capable of producing a molded article having excellent electromagnetic wave shielding properties can be obtained by reducing the cooling rate compared to the conventional method.
  • the method for producing a liquid crystal polymer composition according to the third aspect of the present invention uses a melt-kneading extruder equipped with a cylinder and a screw installed in the cylinder, and from the supply port provided in the cylinder, the following components
  • a method for producing a liquid crystal polymer composition by supplying (A) and (B) to the cylinder and melt-kneading, wherein the kneaded product extruded outside from the nozzle of the melt-kneading extruder is cooled. It is characterized by cooling at a rate of 60 ° C./second or less.
  • the cooling rate of the extruded kneaded product is set to 60 ° C./second or less, and the liquid crystal polymer composition capable of producing a molded article having excellent electromagnetic wave shielding properties can be obtained by reducing the cooling rate compared to the conventional method.
  • the liquid crystal polymer (component (A)) is not particularly limited, but is preferably liquid crystal polyester.
  • the said liquid crystal polymer may be used individually by 1 type, and may use 2 or more types together.
  • the liquid crystalline polyester is a liquid crystalline polyester exhibiting liquid crystallinity in a molten state, preferably melted at a temperature of 450 ° C. or less, more preferably melted at a temperature of 270 to 400 ° C., 300 More preferably, it melts at a temperature of ⁇ 360 ° C.
  • the liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide.
  • the “liquid crystal polyester amide” has an ester bond (—O—CO—) and an amide bond (—NH—CO—) in the polymer skeleton.
  • Liquid crystal polyester ether has an ester bond and an ether bond (—O—) in the polymer skeleton.
  • the “liquid crystal polyester carbonate” has an ester bond and a carbonate bond (—O—CO—O—) in the polymer skeleton.
  • the “liquid crystal polyester imide” has an ester bond and an imide structure represented by the following chemical formula in a polymer skeleton.
  • the liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer.
  • the “fully aromatic liquid crystal polyester” is, for example, a polyester called a thermotropic liquid crystal polymer, (1) Composed of a combination of aromatic dicarboxylic acid, aromatic diol and aromatic hydroxycarboxylic acid (2) Consisting of different types of aromatic hydroxycarboxylic acid (3) Combination of aromatic dicarboxylic acid and aromatic diol The thing which consists of etc. is mentioned.
  • aromatic dicarboxylic acids aromatic diols and aromatic hydroxycarboxylic acids, their ester-forming derivatives may be used as raw materials.
  • “Aromatic” is a group of cyclic unsaturated organic compounds represented by benzene.
  • liquid crystal polyester As a typical example of liquid crystal polyester, (I) An aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine are polymerized (polycondensed). thing, (II) a polymer obtained by polymerizing plural kinds of aromatic hydroxycarboxylic acids, (III) A polymer obtained by polymerizing an aromatic dicarboxylic acid and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine, (IV) What polymerizes polyester, such as a polyethylene terephthalate, and aromatic hydroxycarboxylic acid is mentioned.
  • the “aromatic hydroxycarboxylic acid” is a compound represented by the following general formula (a).
  • the “aromatic dicarboxylic acid” is a compound represented by the following general formula (b).
  • the “aromatic diol” is a compound represented by the following general formula (c).
  • the “aromatic hydroxyamine” is a compound represented by the following general formula (d).
  • the “aromatic diamine” is a compound represented by the following general formula (e).
  • Examples of polymerizable derivatives of a compound having a carboxyl group such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid include those obtained by converting a carboxyl group into an alkoxycarbonyl group or an aryloxycarbonyl group (ester), carboxyl Examples include those obtained by converting a group into a haloformyl group (acid halide), and those obtained by converting a carboxyl group into an acyloxycarbonyl group (acid anhydride).
  • polymerizable derivatives of hydroxyl group-containing compounds such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines include those obtained by acylating hydroxyl groups and converting them to acyloxyl groups (acylated products) ).
  • polymerizable derivatives of amino group-containing compounds such as aromatic hydroxyamines and aromatic diamines include those obtained by acylating an amino group and converting it to an acylamino group (acylated product).
  • the liquid crystalline polyester preferably has a repeating unit represented by the following general formula (1) (hereinafter sometimes referred to as “repeating unit (1)”).
  • the repeating unit (1) and the following general formula (2) ) (Hereinafter sometimes referred to as “repeat unit (2)”) and a repeat unit represented by the following general formula (3) (hereinafter referred to as “repeat unit (3)”). More preferably).
  • Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group
  • Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes
  • X and Y are each independently an oxygen atom or imino group
  • one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.
  • Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group
  • Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfon
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • alkyl group those having 1 to 10 carbon atoms are preferable. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group Group, 2-ethylhexyl group, n-octyl group, n-nonyl group and n-decyl group.
  • the aryl group preferably has 6 to 20 carbon atoms.
  • Specific examples include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • the number is as follows for each group represented by Ar 1 , Ar 2, or Ar 3 , respectively. Independently, it is preferably 2 or less, more preferably 1.
  • the number of carbon atoms is preferably 1 to 10.
  • Specific examples include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, and a 2-ethylhexylidene group.
  • the repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
  • Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid), and Ar 1 is a 2,6-naphthylene group (6-hydroxy Preferred is a repeating unit derived from -2-naphthoic acid.
  • the repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
  • Ar 2 is a 1,4-phenylene group (repeating unit derived from terephthalic acid), Ar 2 is a 1,3-phenylene group (repeating unit derived from isophthalic acid) ), Ar 2 is a 2,6-naphthylene group (repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is a diphenyl ether-4,4′-diyl group (diphenyl) Preferred is a repeating unit derived from ether-4,4′-dicarboxylic acid).
  • the repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • Ar 3 is a 1,4-phenylene group (a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is a 4,4′-biphenylylene group. (Repeating units derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl) are preferred.
  • Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid), and Ar 1 is At least one repeating unit selected from the group consisting of 2,6-naphthylene groups (repeating units derived from 6-hydroxy-2-naphthoic acid);
  • Ar 2 is 1,4 as the repeating unit (2) -Phenylene group (repeating unit derived from terephthalic acid), Ar 2 is 1,3-phenylene group (repeating unit derived from isophthalic acid), Ar 2 is 2,6-naphthylene group (a repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is diphenyl ether - what is ether-4,4'-diyl group (diphenyl ether - ether-4,4'- At least one repeating unit selected from the group consisting of repeating units) derived from carboxy
  • Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid);
  • Ar 2 is 1,4 A group having a phenylene group (repeating unit derived from terephthalic acid) and a group in which Ar 2 is a 1,3-phenylene group (repeating unit derived from isophthalic acid);
  • Ar 3 is 4 as the repeating unit (3) , 4′-biphenylylene groups (repeating units derived from 4,4′-dihydroxybiphenyl) are more preferred.
  • the content of the repeating unit (1) is the total amount of all repeating units constituting the liquid crystal polyester (the substance of each repeating unit is obtained by dividing the mass of each repeating unit constituting the liquid crystal polyester by the formula weight of each repeating unit).
  • the equivalent amount (mole) is obtained and the total of these is preferably 30 mol% or more, more preferably 30 to 80 mol%, still more preferably 40 to 70 mol%, particularly preferably 45 to 65 mol%. Mol%.
  • the content of the repeating unit (2) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Particularly preferred is 17.5 to 27.5 mol%.
  • the content of the repeating unit (3) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Particularly preferred is 17.5 to 27.5 mol%.
  • the higher the content of the repeating unit (1) the easier it is to improve the melt flowability, heat resistance, strength and rigidity of the liquid crystalline polyester. However, if the content is too large, the melting temperature and melt viscosity tend to increase, and the temperature required for molding. Tends to be high.
  • the ratio between the content of the repeating unit (2) and the content of the repeating unit (3) is expressed as [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol).
  • the ratio is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and still more preferably 0.98 / 1 to 1 / 0.98.
  • the liquid crystal polyester may have two or more repeating units (1) to (3) independently.
  • the liquid crystal polyester may have a repeating unit other than the repeating units (1) to (3), but the content thereof is preferably 10 with respect to the total amount of all repeating units constituting the liquid crystal polyester.
  • the mol% or less more preferably 5 mol% or less.
  • the liquid crystal polyester preferably has, as the repeating unit (3), X and Y each having an oxygen atom, that is, a repeating unit derived from a predetermined aromatic diol.
  • X and Y each have only an oxygen atom.
  • the liquid crystal polyester is preferably produced by melt polymerizing raw material monomers corresponding to the repeating units constituting the liquid crystal polyester and solid-phase polymerizing the obtained polymer (prepolymer). Thereby, high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity can be produced with good operability.
  • Melt polymerization may be carried out in the presence of a catalyst.
  • the catalyst in this case include metals such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide.
  • nitrogen-containing heterocyclic compounds such as 4- (dimethylamino) pyridine and 1-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used.
  • the liquid crystal polyester has a flow start temperature of preferably 270 ° C. or higher, more preferably 270 ° C. to 400 ° C., and further preferably 280 ° C. to 380 ° C. As the flow start temperature is higher, the heat resistance, strength, and rigidity are more likely to be improved. However, if the flow start temperature is too high, the melting temperature and the melt viscosity are likely to be high, and the temperature required for molding is likely to be high.
  • the flow start temperature is also called flow temperature or flow temperature, and the temperature is raised at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer while liquid crystal polyester is used.
  • the liquid crystal polymer composition according to the present invention comprises the liquid crystal polymer and a magnetic filler (component (B)) obtained by heat-treating a composite material (composite) made of ceramic powder and soft magnetic metal powder in an inert gas atmosphere. It is obtained by blending and melt-kneading, and includes these liquid crystal polymer and magnetic filler.
  • a liquid crystal polymer composition having excellent electromagnetic shielding properties and insulating properties and easy granulation can be obtained.
  • the volume average particle size of the magnetic filler is preferably 1 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, from the viewpoint of dispersibility with respect to the liquid crystal polymer.
  • the “volume average particle diameter” is a value obtained by measurement by a laser diffraction method.
  • the soft magnetic metal powder is a powder containing a soft magnetic metal, and is preferably a powder made of a soft magnetic metal.
  • the “soft magnetic metal” is a high magnetic permeability material, and preferably has a high magnetic permeability and a low coercive force (Science Chronology (Science Chronic Publication) P413, 415). Soft magnetic metal powders may be used alone or in combination of two or more.
  • the magnetic permeability of the soft magnetic metal is preferably 100 or more, more preferably 200 or more, expressed as the relative permeability divided by the vacuum permeability. Specifically, the magnetic permeability of the soft magnetic metal is preferably 100 to 100,000, more preferably 200 to 50,000.
  • Soft magnetic metals with a relative permeability of 100 or more include, for example, Science Chronology (Science Publishing), Nonamiyuki Namba and Fumitaka Kaneko "Electric Materials-Dielectric Materials / Magnetic Materials", page 208 (Science Publishing, Showa) (Issued in Mar. 1955), preferably cobalt, iron or nickel, more preferably iron or nickel.
  • the soft magnetic metal powder may be a powder containing a soft magnetic metal alloy.
  • the soft magnetic metal powder is preferably a powder made of a soft magnetic metal alloy.
  • Such alloys include Fe-Si alloys (silicon steel), Fe-Al alloys (Alpalm), Fe-Ni alloys (Permalloy), Fe-Co alloys, Fe-V alloys (Per Menjur), Fe—Cr alloy, Fe—Al—Si alloy, Fe—Cr—Al alloy, Fe—Cu—Nb—Si—B alloy, Fe—Ni—Cr alloy (mu metal), etc.
  • the relative magnetic permeability of these alloys is also preferably 100 or more, more preferably 200 or more. Specifically, the relative magnetic permeability of these alloys is preferably 100 to 100,000, more preferably 200 to 50,000.
  • soft magnetic metals and their alloys can be made into a soft magnetic metal powder in the form of powder by suitable known pulverization means or classification means.
  • the soft magnetic metal powder is preferably composed mainly of iron or an iron alloy, and the proportion of iron or its alloy in the soft magnetic metal powder is preferably 50 to 100% by mass, more preferably 80 to 100% by mass. is there. Since the soft magnetic metal powder of such a material has a particularly high relative magnetic permeability, the obtained molded body has a better electromagnetic shielding property and is advantageous from the viewpoint of economy.
  • the flatness of the soft magnetic metal powder is preferably 2 or more, more preferably 2.5 or more.
  • the flatness referred to here means that the appearance of soft magnetic metal powder is observed at a magnification of about 100 to 300 times using a scanning electron microscope or optical microscope, and about 100 particles have the shortest diameter in each particle. It is a value obtained by calculating the ratio (L / S) of the longest diameter (major axis L) to (minor axis S) and number averaging them.
  • the flatness of the soft magnetic metal powder is 2 or more, when the liquid crystal polymer composition is melt-molded, the major axis of the magnetic filler is easily oriented in the flow direction (MD), and the plane parallel to the MD
  • the shield surface is used, the area ratio of the magnetic filler occupying this surface is likely to increase, and the electromagnetic shielding properties of the magnetic filler can be more effectively utilized.
  • the ceramic powder is preferably composed mainly of silicon oxide, and examples of components other than the main component include silicon nitride and silicon carbide, which may contain an organic group (organic component).
  • the proportion of silicon oxide in the total mass of the ceramic powder is preferably 50 to 100% by mass, more preferably 80 to 100% by mass.
  • a ceramic powder may be used individually by 1 type, and may use 2 or more types together.
  • silica As such ceramic powder mainly composed of silicon oxide, various products generally called silica are available as commercial products. Such commercially available silica includes natural silica and synthetic silica (artificial silica).
  • Natural silica is preferably obtained by pulverizing quartz in terms of high purity of silicon oxide, and natural silica produced by combining pulverization and melting from quartz is also preferable because of high purity of silicon oxide. is there.
  • Synthetic silica includes dry synthetic silica and wet synthetic silica.
  • Examples of the dry synthetic silica include those obtained by baking a mixture of silicon tetrachloride and hydrogen at about 1000 to 1200 ° C. in the air, or melting metal silicon and spraying it into the air from a nozzle. What was obtained in this way is mentioned. Dry synthetic silica obtained by such a production method may contain Si—H bonds in a small amount in the silica. As the ceramic powder, those containing a small amount of Si—H bonds can be used.
  • examples of the wet synthetic silica include those obtained by hydrolyzing silicon tetrachloride and silicate alkoxide.
  • Some wet synthetic silicas obtained by such a production method contain organic substances and chlorine which are reaction impurities, or contain silanol groups (Si—OH) in the molecule. In addition, there are those in which such silanol groups are hydrated to have water of hydration.
  • Such wet synthetic silica can also be used as the ceramic powder, but such wet synthetic silica is preferably used after being treated at a high temperature of about 800 ° C. to remove hydrated water and organic substances. .
  • silica for example, commercial products manufactured by Admatechs and Tosoh Silica are available, and are suitable as ceramic powder.
  • the composite material can be obtained, for example, by mixing ceramic powder and soft magnetic metal powder using a mixer that can be mixed in a dry manner, such as a ball mill, a planetary ball mill, or a sand mill. At that time, when a planetary ball mill is used as a mixer, a composite material obtained by coating soft magnetic metal powder with ceramic powder is preferentially obtained. By using the magnetic filler obtained from such a composite material, liquid crystal is obtained. The electrical insulation of the molded product obtained from the polymer composition tends to be even better. As described above, the composite material is preferably formed by coating soft magnetic metal powder with ceramic powder.
  • the use amount ratio (for example, mass ratio) of the soft magnetic metal powder and the ceramic powder so that the ceramic powder covers the soft magnetic metal powder.
  • the use ratio of the soft magnetic metal powder and the ceramic powder is preferably 20: 1 to 1: 1, expressed as soft magnetic metal powder: ceramic powder (mass ratio), and 10: 1 to 5: 1. Is more preferable.
  • the mixing of the soft magnetic metal powder and the ceramic powder is preferably performed in an inert gas atmosphere such as nitrogen or argon in order to prevent the soft magnetic metal powder from being significantly oxidized.
  • a composite material formed by coating soft magnetic metal powder with ceramic powder for example, a composite material (manufactured by Hitachi High-Technologies Corporation) obtained by coating iron powder with silica particles is available.
  • the composite material manufactured by Hitachi High-Technologies Corporation is described in a non-patent document “September 2008 issue of electronic materials”.
  • the ceramic powder covers at least part of the surface of the soft magnetic metal powder, and the entire surface may be covered.
  • the magnetic filler can be obtained by heat-treating the composite material in an inert gas atmosphere such as nitrogen or argon.
  • Heat treatment refers to heat treatment.
  • the heat treatment temperature is preferably 700 ° C. or higher, more preferably 800 ° C. or higher, and particularly preferably 900 ° C. or higher.
  • the heat treatment time is preferably 5 hours or more, and more preferably 12 hours or more.
  • the heat treatment time is preferably 1 to 20 hours, and more preferably 1 to 10 hours.
  • the said magnetic filler may be used individually by 1 type, and may use 2 or more types together.
  • liquid crystal polymer and the magnetic filler are supplied (blended) within the range that does not impede the effects of the present invention as necessary during melt-kneading, and the liquid crystal polymer composition These components may be included.
  • the other components include fibrous reinforcing agents such as glass fiber, silica alumina fiber, alumina fiber, and carbon fiber; acicular reinforcing agents such as aluminum borate whisker and potassium titanate whisker; glass beads, talc, mica Inorganic fillers such as graphite, wollastonite and dolomite; Mold release improvers such as fluororesins and metal soaps; Colorants such as dyes and pigments; Antioxidants; Thermal stabilizers; UV absorbers; Is mentioned. Further, additives having an external lubricant effect such as higher fatty acid, higher fatty acid ester, higher fatty acid metal salt, fluorocarbon surfactant and the like can be mentioned.
  • a resin other than a small amount of liquid crystal polymer can be mentioned, and examples thereof include polyamide, crystalline polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyphenylene ether and modified products thereof, polysulfone, polyethersulfone, polyetherimide, and the like.
  • Thermosetting resins such as phenol resins and epoxy resins.
  • the other components may be used alone or in combination of two or more.
  • the supply amount of the magnetic filler is preferably 100 parts by mass or more, more preferably 100 to 450 parts by mass, and more preferably 100 to 300 parts by mass with respect to 100 parts by mass of the supply amount of the liquid crystal polymer. Is more preferably 120 to 250 parts by mass. By setting it as such a range, it is excellent by the balance of the electromagnetic wave shielding property of a molded object, and the moldability of a liquid crystal polymer composition. When a plurality of magnetic fillers are used in combination, the total supply amount is within the above range. Similarly, when a plurality of liquid crystal polymers are used in combination, the total supply amount Is within the above range.
  • the liquid crystal polymer composition is preferably obtained by extrusion melting and kneading the liquid crystal polymer and magnetic filler, and is preferably obtained by extrusion melting and kneading into a pellet form.
  • a typical melt kneading extruder used for extrusion melt kneading includes a nozzle that is a small hole for extruding a heated melt, a cylinder having heating means, and a screw for extruding the heated melt into the cylinder. It may be a single-screw melt kneading extruder provided so that one screw is driven to rotate in the cylinder, or the two screws in the cylinder may be in different directions or in the same direction.
  • a biaxial melt kneading extruder provided to be driven to rotate may be used, but a biaxial melt kneading extruder is preferable.
  • the ratio (L / D) of the effective length (L) of the screw to the diameter (D) of the screw is preferably 20 or more (where L and D are the same scale unit). By doing so, the magnetic filler is more uniformly dispersed in the liquid crystal polymer.
  • the effective length of the screw means the length in the axial direction of the screw
  • the diameter of the screw means the nominal outer diameter of the screw.
  • the melt-kneading extruder includes a plurality of supply ports for supplying raw materials to be melt-kneaded.
  • a liquid melt is formed from the liquid crystal polymer and the magnetic filler to obtain a liquid crystal polymer composition in the form of pellets
  • the liquid crystal polymer is supplied from the first supply port provided upstream in the extrusion direction of the melt-kneading extruder.
  • 50% by mass or more of the total supply amount and 50% by mass or less of the total supply amount of the magnetic filler are supplied to the melt-kneading extruder.
  • the mass% is preferably supplied to the melt-kneading extruder.
  • the remainder of the liquid crystal polymer ([total supply amount of liquid crystal polymer]-[supply amount of liquid crystal polymer from the first supply port]) and the remainder of the magnetic filler ([total supply amount of magnetic filler]-[first It is preferable to supply the magnetic filler supply amount from one supply port]) to the melt-kneading extruder from a second supply port provided downstream in the extrusion direction from the first supply port.
  • the supply amount of the liquid crystal polymer from a 1st supply port is 60 mass% or more of the total supply amount.
  • the supply amount of the liquid crystal polymer from the first supply port is preferably 60 to 100% by mass of the total supply amount.
  • the supply amount of the said magnetic filler from a 1st supply port is 20 mass% or less of the total supply amount.
  • the kneaded product (liquid crystal polymer composition) extruded from the nozzle of the melt kneading extruder to the outside of the extruder is cooled at a cooling rate of 60 ° C./second or less.
  • the said cooling rate can be adjusted with the cooling method of the kneaded material extruded from the melt-kneading extruder, and the extrusion amount of a kneaded material, for example.
  • the cooling rate is, for example, the temperature a (° C.) of the kneaded product immediately after being extruded from the nozzle of the melt-kneading extruder, and the time after the kneaded product is extruded from the nozzle (after measuring the temperature a (° C.)).
  • the temperature of the kneaded product can be easily measured using, for example, an infrared radiation thermometer. By setting the time t to 3 to 10 seconds, for example, the cooling rate can be measured with higher accuracy.
  • the kneaded product extruded from the nozzle is cooled at a cooling rate of 60 ° C./second or less during cooling until it is heated again, such as until it is used for production of a molded product as a liquid crystal polymer composition. And it is sufficient.
  • the cooling temperature is preferably 10 to 60 ° C./second, more preferably 20 to 60 ° C./second.
  • the cooling rate during this cooling operation is 60 ° C./second or less.
  • This cooling operation may be continued until at least the cooling rate does not exceed 60 ° C./second in a state where heat is naturally radiated. If the forced kneading operation is not performed on the kneaded material immediately after being extruded, the cooling rate is generally considered not to exceed 60 ° C./sec. Is.
  • the temperature b is preferably set to the temperature of the kneaded product immediately before the entrance of the cutting machine.
  • the time t is a time until the extruded kneaded material reaches the entrance of the cutting machine from the nozzle.
  • the forced cooling of the kneaded product is preferably performed by air cooling, water cooling, or the like.
  • Air cooling refers to blowing air or cold air onto the kneaded material.
  • Water cooling means spraying a cooling shower or the like on the kneaded product, or immersing the kneaded product in water.
  • a strand cooling take-up device is used, the cooling rate of the kneaded product can be adjusted relatively easily by adjusting the conditions for spraying cooling shower water and blowing air. Examples of such a strand cooling and taking device include those manufactured by Isuzu Chemical Industries and Tanaka.
  • the cooling rate during water cooling can be 60 ° C./second or less, and the cooling rate during air cooling can be 40 ° C./second or less.
  • the cooling rate during water cooling is preferably 20 to 60 ° C./second.
  • the cooling rate during air cooling is preferably 20 to 40 ° C./second.
  • the extrusion rate of the kneaded product is preferably 5 to 300 kg / hour, more preferably 10 to 100 kg / hour. By setting it as such a range, the cooling rate of a kneaded material can be adjusted more easily.
  • the molded body according to the second aspect of the present invention is characterized in that the liquid crystal polymer composition obtained by the production method according to the first aspect of the present invention is molded.
  • Such a molded article is excellent in electromagnetic wave shielding properties in addition to insulating properties by using the liquid crystal polymer composition.
  • the molded body according to the fourth aspect of the present invention is formed by molding the liquid crystal polymer composition obtained by the production method according to the third aspect of the present invention.
  • Such a molded article is excellent in electromagnetic wave shielding properties in addition to insulating properties by using the liquid crystal polymer composition.
  • Examples of the molding method of the liquid crystal polymer composition include an injection molding method, an extrusion molding method, a transfer molding method, a blow molding method, a press molding method, an injection press molding method, and an extrusion injection molding method. Two or more of these may be combined. Among these, for the production of electrical / electronic components used as components of electrical / electronic devices, melt molding methods such as injection molding and extrusion injection molding are preferable, and injection molding is more preferable.
  • the liquid crystal polymer composition is melted using an injection molding machine (for example, “hydraulic horizontal molding machine PS40E5ASE type” manufactured by Nissei Plastic Industry Co., Ltd.), and the molten liquid crystal polymer composition is brought to an appropriate temperature. This can be done by heating and injecting into a mold having the desired cavity shape.
  • the temperature at which the liquid crystal polymer composition is heated and melted for injection is set to [Tp ′ + 10] ° C. or more and [Tp ′ + 50] ° C. or less based on the flow start temperature Tp ′ ° C. of the liquid crystal polymer composition to be used. Is preferred.
  • the temperature of the mold is preferably selected from the range of room temperature (for example, 23 ° C.) to 180 ° C. from the viewpoint of the cooling rate and productivity of the liquid crystal polymer composition.
  • the molded article may have a volume specific resistance value at 23 ° C. of preferably 1 ⁇ 10 6 ⁇ m or more.
  • the volume resistivity value at 23 ° C. is preferably 1 ⁇ 10 10 to 1 ⁇ 10 18 ⁇ m, and more preferably 1 ⁇ 10 13 to 1 ⁇ 10 15 ⁇ m.
  • the “volume specific resistance value” is a value measured according to “ASTM D257”.
  • the molded body having a volume resistivity of 1 ⁇ 10 6 ⁇ m or more at 23 ° C. was provided in the cylinder using, for example, a melt kneading extruder provided with a nozzle, a cylinder, and a screw installed in the cylinder.
  • Component (A) Liquid crystal polymer
  • Component (B) Magnetic filler obtained by heat-treating composite material composed of ceramic powder and soft magnetic metal powder in an inert gas atmosphere.
  • the molded body having 1 dB or more uses, for example, a melt-kneading extruder provided with a nozzle, a cylinder, and a screw installed in the cylinder. 100 parts by mass of the following component (A) and 150 to 250 parts by mass of the following component (B) are supplied to the cylinder from the supply port provided in the cylinder to melt the component (A) and the component (B).
  • the molded body can be applied to various uses, but is particularly preferably used as a surface-mounted component because it can effectively utilize its electrical insulation and electromagnetic shielding properties.
  • surface mount components include housings for electric / electronic components, choke coils, and connectors. That is, the molded body is suitable for use as a housing for electric / electronic parts, a choke coil, or a connector.
  • the molded body is used as a surface mount component, an effect of absorbing electromagnetic wave noise is expected, which is extremely useful.
  • Example 1 (Production of liquid crystal polyester composition)
  • the liquid crystal polyester obtained in Production Example 1 and the magnetic filler obtained in Production Example 2 were mixed in the same direction biaxial melt-kneading extruder ("PCM-30HS" manufactured by Ikekai Tekko Co., Ltd.) at the ratio shown in Table 1.
  • the cylinder was supplied from a supply port provided in the cylinder.
  • the strand-like kneaded material was cooled by air cooling by blowing air using a strand cooling take-up device (manufactured by Isuzu Chemical Industries Ltd.).
  • the cooling rate is the time t from the nozzle to the strand cutter, which is the difference between the temperature a of the kneaded product immediately after being extruded from the nozzle of the extruder and the temperature b of the kneaded product immediately before the strand cutter entrance. The value was divided.
  • Examples 2 to 4 Comparative Example 1
  • a liquid crystal polyester composition and a molded body were produced in the same manner as in Example 1 except that the production conditions were as shown in Table 1.
  • the strand-shaped kneaded product was water-cooled by spraying cooling shower water.
  • the present invention can be used as an electromagnetic shielding material in electrical / electronic equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

A method for producing a liquid crystal polymer composition includes: using a melt-kneading extrusion machine provided with a nozzle, a cylinder, and a screw positioned within the cylinder; obtaining a mixture by supplying component (A), a liquid crystal polymer, and component (B), a magnetic filler obtained by subjecting a composite material comprising a ceramic powder and a soft-magnetic metal powder to thermal processing in an inert gas atmosphere, to the cylinder via the supply port in the cylinder, and melt-kneading the components (A, B); extruding the mixture via the nozzle to the exterior of the melt-kneading extrusion machine; and cooling the mixture at a cooling rate of 60°C or less per second. Also, a molded article is obtained by molding the liquid crystal polymer composition obtained using this production method.

Description

液晶ポリマー組成物の製造方法及び成形体Method for producing liquid crystal polymer composition and molded product
 本発明は、電磁波シールド性及び電気絶縁性を有する成形体、及び該成形体を得るための液晶ポリマー組成物の製造方法に関する。
 本願は、2011年11月11日に、日本に出願された特願2011-247741号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a molded article having electromagnetic shielding properties and electrical insulation, and a method for producing a liquid crystal polymer composition for obtaining the molded article.
This application claims priority based on Japanese Patent Application No. 2011-247741 filed in Japan on November 11, 2011, the contents of which are incorporated herein by reference.
 近年、電気・電子機器、例えば、携帯電話等の通信機器やパーソナルコンピュータ等のOA機器の高性能化に伴い、その動作周波数の高周波数化が進んでいる。一方、高周波の動作周波数で作動する電気・電子機器は、高周波数の電磁波を放射し易いプロセッサや通信ケーブル等の電気・電子部品を有するため、この電磁波により誤作動が起き易いという問題点がある。また、この電磁波は、近接する他の電気・電子機器の誤作動を引き起こす原因にもなり、その人体への影響も懸念されている。そこで、高周波数の電磁波を放射し易い電気・電子部品には、電磁波シールド材からなる筐体が設けられている。 In recent years, with the increase in performance of electrical / electronic devices such as communication devices such as mobile phones and OA devices such as personal computers, the operating frequency has been increased. On the other hand, since electric / electronic devices that operate at high operating frequencies have electric / electronic components such as processors and communication cables that easily emit high-frequency electromagnetic waves, malfunctions are likely to occur due to the electromagnetic waves. . In addition, this electromagnetic wave causes a malfunction of other nearby electric / electronic devices, and there is a concern about the influence on the human body. Therefore, a case made of an electromagnetic shielding material is provided in an electrical / electronic component that easily emits a high-frequency electromagnetic wave.
 電磁波シールド材には、電磁波を吸収することにより減衰させる絶縁性のものと、電磁波を反射する導電性のものとがあるが、反射された電磁波による電気・電子機器の誤作動を防止するという観点から、前者の絶縁性のものが好ましい。そこで、電磁波シールド材として、樹脂及び磁性フィラーを含む絶縁性の樹脂組成物から得られる成形体が検討されており、なかでも、液晶ポリエステル及び磁性フィラーを含む液晶ポリエステル組成物は、溶融流動性に優れて成形し易く、耐熱性や機械強度も高いことから、好ましい成形体材料として検討されている。例えば、特許文献1には、液晶ポリエステルとカップリング処理された軟磁性粉末とを含む液晶ポリエステル組成物が開示されている。 Electromagnetic shielding materials include insulating materials that attenuate by absorbing electromagnetic waves and conductive materials that reflect electromagnetic waves, but the viewpoint of preventing malfunction of electrical and electronic equipment due to reflected electromagnetic waves Therefore, the former insulating one is preferable. Therefore, a molded product obtained from an insulating resin composition containing a resin and a magnetic filler has been studied as an electromagnetic wave shielding material. Among them, a liquid crystal polyester composition containing a liquid crystal polyester and a magnetic filler has a melt fluidity. Since it is excellent and easy to mold and has high heat resistance and mechanical strength, it has been studied as a preferable molded body material. For example, Patent Document 1 discloses a liquid crystal polyester composition containing liquid crystal polyester and a soft magnetic powder subjected to coupling treatment.
特開2001-237591号公報Japanese Patent Laid-Open No. 2001-237591
 しかし、液晶ポリエステル及び磁性フィラーを含む従来の液晶ポリエステル組成物から得られた成形体は、電磁波シールド性が必ずしも十分ではないという問題点があった。
 本発明は、上記事情に鑑みてなされたものであり、液晶ポリマー及び磁性フィラーを含む液晶ポリマー組成物から得られ、電磁波シールド性に優れた成形体、及び前記液晶ポリマー組成物の製造方法を提供することを課題とする。
However, a molded body obtained from a conventional liquid crystal polyester composition containing liquid crystal polyester and a magnetic filler has a problem that electromagnetic wave shielding properties are not always sufficient.
The present invention has been made in view of the above circumstances, and provides a molded article excellent in electromagnetic wave shielding properties obtained from a liquid crystal polymer composition containing a liquid crystal polymer and a magnetic filler, and a method for producing the liquid crystal polymer composition The task is to do.
上記課題を解決するため、本発明は以下の態様を有する。 In order to solve the above problems, the present invention has the following aspects.
本発明の第一の態様は、
[1]ノズル、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)及び(B)を前記シリンダに供給して前記成分(A)と前記成分(B)とを溶融混練して混練物を得ること、前記ノズルから前記混練物を前記溶融混練押出機の外部に押し出すこと、及び前記混練物を冷却速度60℃/秒以下で冷却すること、を含む液晶ポリマー組成物の製造方法に関する。
 成分(A)液晶ポリマー
 成分(B)セラミック粉及び軟磁性金属粉からなる複合材料を不活性ガス雰囲気下で熱処理してなる磁性フィラー
The first aspect of the present invention is:
[1] Using a melt-kneading extruder equipped with a nozzle, a cylinder and a screw installed in the cylinder, the following components (A) and (B) are supplied to the cylinder from a supply port provided in the cylinder. The component (A) and the component (B) are melt-kneaded to obtain a kneaded product, the kneaded product is extruded from the nozzle to the outside of the melt-kneaded extruder, and the kneaded product is cooled at a cooling rate of 60. And cooling at a temperature not higher than ° C./second.
Component (A) Liquid crystal polymer Component (B) Magnetic filler obtained by heat-treating a composite material composed of ceramic powder and soft magnetic metal powder in an inert gas atmosphere
[2]前記成分(A)が、全芳香族液晶ポリエステルである[1]に記載の液晶ポリマー組成物の製造方法。 [2] The method for producing a liquid crystal polymer composition according to [1], wherein the component (A) is a wholly aromatic liquid crystal polyester.
[3]前記成分(A)が、下記一般式(1)で表される繰返し単位、下記一般式(2)で表される繰返し単位、及び下記一般式(3)で表される繰返し単位を有する液晶ポリエステルである[1]又は[2]に記載の液晶ポリマー組成物の製造方法。
 (1)-O-Ar-CO-
 (2)-CO-Ar-CO-
 (3)-X-Ar-Y-
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の一つ以上の水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
 (4)-Ar-Z-Ar
(式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
[3] The component (A) is a repeating unit represented by the following general formula (1), a repeating unit represented by the following general formula (2), and a repeating unit represented by the following general formula (3). The method for producing a liquid crystal polymer composition according to [1] or [2], which is a liquid crystal polyester.
(1) —O—Ar 1 —CO—
(2) —CO—Ar 2 —CO—
(3) —X—Ar 3 —Y—
(In the formula, Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group; Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes; X and Y are each independently an oxygen atom or imino group; one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.)
(4) —Ar 4 —Z—Ar 5
(In the formula, Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group; Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group.)
[4]前記セラミック粉が酸化ケイ素を主成分とする[1]~[3]のいずれか一項に記載の液晶ポリマー組成物の製造方法。 [4] The method for producing a liquid crystal polymer composition according to any one of [1] to [3], wherein the ceramic powder contains silicon oxide as a main component.
[5]前記軟磁性金属粉が鉄又は鉄合金を主成分とする[1]~[4]のいずれか一項に記載の液晶ポリマー組成物の製造方法。 [5] The method for producing a liquid crystal polymer composition according to any one of [1] to [4], wherein the soft magnetic metal powder contains iron or an iron alloy as a main component.
[6]前記軟磁性金属粉の扁平率が2以上である[1]~[5]のいずれか一項に記載の液晶ポリマー組成物の製造方法。 [6] The method for producing a liquid crystal polymer composition according to any one of [1] to [5], wherein the soft magnetic metal powder has an aspect ratio of 2 or more.
[7]前記複合材料が、前記軟磁性金属粉を前記セラミック粉で被覆してなる[1]~[6]のいずれか一項に記載の液晶ポリマー組成物の製造方法。 [7] The method for producing a liquid crystal polymer composition according to any one of [1] to [6], wherein the composite material is obtained by coating the soft magnetic metal powder with the ceramic powder.
[8]前記成分(B)が、前記熱処理が800℃以上で行われる[1]~[7]のいずれか一項に記載の液晶ポリマー組成物の製造方法。 [8] The method for producing a liquid crystal polymer composition according to any one of [1] to [7], wherein the component (B) is subjected to the heat treatment at 800 ° C. or higher.
[9]前記成分(B)の供給量が、前記成分(A)100質量部に対して、100~450質量部である[1]~[8]のいずれか一項に記載の液晶ポリマー組成物の製造方法。 [9] The liquid crystal polymer composition according to any one of [1] to [8], wherein a supply amount of the component (B) is 100 to 450 parts by mass with respect to 100 parts by mass of the component (A). Manufacturing method.
[10]前記スクリューにおいて、スクリューの直径(D)に対するスクリューの有効長さ(L)の比率(L/D)が20以上であり、前記供給口が、第一の供給口と、前記第一の供給口よりも押出方向下流側に位置する第二の供給口とを備え、前記混練物を得ることが、前記成分(A)の全供給量の50質量%以上と、前記成分(B)の全供給量の50質量%以下とを、前記第一の供給口から前記シリンダに供給し、前記成分(A)の残部と、前記成分(B)の残部とを、前記第二の供給口から前記シリンダに供給して前記成分(A)と前記成分(B)とを溶融混練して混練物を得ることを含む、[1]~[9]のいずれか一項に記載の液晶ポリマー組成物の製造方法。 [10] In the screw, the ratio (L / D) of the effective length (L) of the screw to the diameter (D) of the screw is 20 or more, the supply port is the first supply port, and the first A second supply port located downstream of the supply port in the extrusion direction, and obtaining the kneaded product is 50% by mass or more of the total supply amount of the component (A), and the component (B) 50% by mass or less of the total supply amount is supplied to the cylinder from the first supply port, and the remaining part of the component (A) and the remaining part of the component (B) are supplied to the second supply port. The liquid crystal polymer composition according to any one of [1] to [9], wherein the composition (A) and the component (B) are supplied to the cylinder from the melt and kneaded to obtain a kneaded product Manufacturing method.
本発明の第二の態様は、
[11][1]~[10]のいずれか一項に記載の製造方法で得られた液晶ポリマー組成物を成形してなる成形体に関する。
The second aspect of the present invention is:
[11] A molded body obtained by molding the liquid crystal polymer composition obtained by the production method according to any one of [1] to [10].
 本発明の第三の態様は、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)及び(B)を前記シリンダに供給して溶融混練することにより、液晶ポリマー組成物を製造する方法であって、前記溶融混練押出機のノズルから外部に押し出された混練物を、冷却速度60℃/秒以下で冷却することを特徴とする液晶ポリマー組成物の製造方法を提供する。
 (A)液晶ポリマー
 (B)セラミック粉及び軟磁性金属粉の複合材料を不活性ガス雰囲気下で熱処理してなる磁性フィラー
 本発明の第三の態様の液晶ポリマー組成物の製造方法においては、前記成分(A)が、全芳香族液晶ポリエステルであることが好ましい。
 本発明の液晶ポリマー組成物の製造方法においては、前記成分(A)が、下記一般式(1)、(2)及び(3)で表される繰返し単位を有する液晶ポリエステルであることが好ましい。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の一つ以上の水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
(4)-Ar-Z-Ar
(式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
 本発明の第三の態様の液晶ポリマー組成物の製造方法においては、前記セラミック粉が酸化ケイ素を主成分とすることが好ましい。
 本発明の第三の態様の液晶ポリマー組成物の製造方法においては、前記軟磁性金属粉が鉄又は鉄合金を主成分とすることが好ましい。
 本発明の第三の態様の液晶ポリマー組成物の製造方法においては、前記軟磁性金属粉の扁平率が2以上であることが好ましい。
 本発明の第三の態様の液晶ポリマー組成物の製造方法においては、前記複合材料が、前記軟磁性金属粉を前記セラミック粉で被覆してなることが好ましい。
 本発明の第三の態様の液晶ポリマー組成物の製造方法においては、前記成分(B)が、前記複合材料を前記不活性ガス雰囲気下で、800℃以上で熱処理してなることが好ましい。
 本発明の第三の態様の液晶ポリマー組成物の製造方法においては、前記成分(B)の供給量が、前記成分(A)100質量部に対して、100~450質量部であることが好ましい。
 本発明の第三の態様の液晶ポリマー組成物の製造方法においては、前記溶融混練押出機が、スクリューの直径(D)に対するスクリューの有効長さ(L)の比率(L/D)が20以上であるスクリューと、第一の供給口と、前記第一の供給口よりも押出方向下流側に位置する第二の供給口とを備え、前記成分(A)の全供給量の50質量%以上と、前記成分(B)の全供給量の50質量%以下とを、前記第一の供給口から供給し、前記成分(A)の残部と、前記成分(B)の残部とを、前記第二の供給口から供給して、溶融混練することが好ましい。
 また、本発明の第四の態様は、上記本発明の製造方法で得られた液晶ポリマー組成物を成形してなることを特徴とする成形体を提供する。
A third aspect of the present invention uses a melt-kneading extruder provided with a cylinder and a screw installed in the cylinder, and supplies the following components (A) and (B) from a supply port provided in the cylinder. A method for producing a liquid crystal polymer composition by supplying to a cylinder and melt-kneading, wherein the kneaded product extruded from the nozzle of the melt-kneading extruder is cooled at a cooling rate of 60 ° C./sec or less. A method for producing a liquid crystal polymer composition is provided.
(A) Liquid crystal polymer (B) Magnetic filler obtained by heat-treating a composite material of ceramic powder and soft magnetic metal powder in an inert gas atmosphere In the method for producing a liquid crystal polymer composition of the third aspect of the present invention, The component (A) is preferably a wholly aromatic liquid crystal polyester.
In the method for producing a liquid crystal polymer composition of the present invention, the component (A) is preferably a liquid crystal polyester having repeating units represented by the following general formulas (1), (2) and (3).
(1) —O—Ar 1 —CO—
(2) —CO—Ar 2 —CO—
(3) —X—Ar 3 —Y—
(In the formula, Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group; Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes; X and Y are each independently an oxygen atom or imino group; one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.)
(4) —Ar 4 —Z—Ar 5
(In the formula, Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group; Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group.)
In the method for producing a liquid crystal polymer composition according to the third aspect of the present invention, the ceramic powder preferably contains silicon oxide as a main component.
In the method for producing a liquid crystal polymer composition according to the third aspect of the present invention, the soft magnetic metal powder is preferably composed mainly of iron or an iron alloy.
In the method for producing a liquid crystal polymer composition according to the third aspect of the present invention, the soft magnetic metal powder preferably has an aspect ratio of 2 or more.
In the method for producing a liquid crystal polymer composition according to the third aspect of the present invention, the composite material is preferably formed by coating the soft magnetic metal powder with the ceramic powder.
In the method for producing a liquid crystal polymer composition according to the third aspect of the present invention, the component (B) is preferably obtained by heat-treating the composite material at 800 ° C. or higher in the inert gas atmosphere.
In the method for producing a liquid crystal polymer composition of the third aspect of the present invention, the supply amount of the component (B) is preferably 100 to 450 parts by mass with respect to 100 parts by mass of the component (A). .
In the method for producing a liquid crystal polymer composition according to the third aspect of the present invention, the melt-kneading extruder has a ratio (L / D) of the effective length (L) of the screw to the diameter (D) of the screw of 20 or more. And a second supply port located downstream in the extrusion direction from the first supply port, and 50% by mass or more of the total supply amount of the component (A) And 50% by mass or less of the total supply amount of the component (B) is supplied from the first supply port, and the remaining part of the component (A) and the remaining part of the component (B) It is preferable to supply from two supply ports and melt-knead.
The fourth aspect of the present invention provides a molded article obtained by molding the liquid crystal polymer composition obtained by the production method of the present invention.
 本発明によれば、液晶ポリマー及び磁性フィラーを含む液晶ポリマー組成物から得られ、電磁波シールド性に優れた成形体、及び前記液晶ポリマー組成物の製造方法を提供できる。 According to the present invention, it is possible to provide a molded article obtained from a liquid crystal polymer composition containing a liquid crystal polymer and a magnetic filler and having excellent electromagnetic shielding properties, and a method for producing the liquid crystal polymer composition.
<液晶ポリマー組成物の製造方法>
 本発明の第一の態様に係る液晶ポリマー組成物の製造方法は、ノズル、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)及び(B)を前記シリンダに供給して前記成分(A)と前記成分(B)とを溶融混練して混練物を得ること、前記ノズルから前記混練物を前記溶融混練押出機の外部に押し出すこと、及び前記混練物を冷却速度60℃/秒以下で冷却すること、を含むことを特徴とする。
 成分(A)液晶ポリマー
 成分(B)セラミック粉及び軟磁性金属粉からなる複合材料を不活性ガス雰囲気下で熱処理してなる磁性フィラー(以下、単に「磁性フィラー」ということがある。)
 本発明によれば、押し出された混練物の冷却速度を60℃/秒以下とし、従来よりも低減することで、電磁波シールド性に優れた成形体を製造可能な液晶ポリマー組成物が得られる。
<Method for producing liquid crystal polymer composition>
The method for producing a liquid crystal polymer composition according to the first aspect of the present invention uses a melt-kneading extruder provided with a nozzle, a cylinder and a screw installed in the cylinder, from a supply port provided in the cylinder, The following components (A) and (B) are supplied to the cylinder to melt and knead the component (A) and the component (B) to obtain a kneaded product, and the kneaded product is extruded from the nozzle by the melt kneading extrusion. And extruding to the outside of the machine, and cooling the kneaded material at a cooling rate of 60 ° C./second or less.
Component (A) Liquid crystal polymer Component (B) Magnetic filler obtained by heat-treating a composite material composed of ceramic powder and soft magnetic metal powder in an inert gas atmosphere (hereinafter sometimes simply referred to as “magnetic filler”)
According to the present invention, the cooling rate of the extruded kneaded product is set to 60 ° C./second or less, and the liquid crystal polymer composition capable of producing a molded article having excellent electromagnetic wave shielding properties can be obtained by reducing the cooling rate compared to the conventional method.
本発明の第三の態様に係る液晶ポリマー組成物の製造方法は、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)及び(B)を前記シリンダに供給して溶融混練することにより、液晶ポリマー組成物を製造する方法であって、前記溶融混練押出機のノズルから外部に押し出された混練物を、冷却速度60℃/秒以下で冷却することを特徴とする。
 (A)液晶ポリマー
 (B)セラミック粉及び軟磁性金属粉の複合材料を不活性ガス雰囲気下で熱処理してなる磁性フィラー(以下、単に「磁性フィラー」ということがある。)
 本発明によれば、押し出された混練物の冷却速度を60℃/秒以下とし、従来よりも低減することで、電磁波シールド性に優れた成形体を製造可能な液晶ポリマー組成物が得られる。
The method for producing a liquid crystal polymer composition according to the third aspect of the present invention uses a melt-kneading extruder equipped with a cylinder and a screw installed in the cylinder, and from the supply port provided in the cylinder, the following components A method for producing a liquid crystal polymer composition by supplying (A) and (B) to the cylinder and melt-kneading, wherein the kneaded product extruded outside from the nozzle of the melt-kneading extruder is cooled. It is characterized by cooling at a rate of 60 ° C./second or less.
(A) Liquid crystal polymer (B) Magnetic filler obtained by heat-treating a composite material of ceramic powder and soft magnetic metal powder in an inert gas atmosphere (hereinafter sometimes simply referred to as “magnetic filler”)
According to the present invention, the cooling rate of the extruded kneaded product is set to 60 ° C./second or less, and the liquid crystal polymer composition capable of producing a molded article having excellent electromagnetic wave shielding properties can be obtained by reducing the cooling rate compared to the conventional method.
 前記液晶ポリマー(成分(A))は、特に限定されないが、液晶ポリエステルであることが好ましい。
 前記液晶ポリマーは、一種を単独で用いてもよいし、二種以上を併用してもよい。
The liquid crystal polymer (component (A)) is not particularly limited, but is preferably liquid crystal polyester.
The said liquid crystal polymer may be used individually by 1 type, and may use 2 or more types together.
 前記液晶ポリエステルは、溶融状態で液晶性を示す液晶ポリエステルであり、450℃以下の温度で溶融するものであることが好ましく、270~400℃の温度で溶融するものであることがより好ましく、300~360℃の温度で溶融するものであることがさらに好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。ここで、「液晶ポリエステルアミド」とは、エステル結合(-O-CO-)とアミド結合(-NH-CO-)をポリマー骨格中に有するものである。「液晶ポリエステルエーテル」とは、エステル結合とエーテル結合(-O-)をポリマー骨格中に有するものである。「液晶ポリエステルカーボネート」とは、エステル結合とカーボネート結合(-O-CO-O-)をポリマー骨格中に有するものである。「液晶ポリエステルイミド」とは、エステル結合と下記化学式で表されるイミド構造をポリマー骨格中に有するものである。 The liquid crystalline polyester is a liquid crystalline polyester exhibiting liquid crystallinity in a molten state, preferably melted at a temperature of 450 ° C. or less, more preferably melted at a temperature of 270 to 400 ° C., 300 More preferably, it melts at a temperature of ˜360 ° C. The liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide. Here, the “liquid crystal polyester amide” has an ester bond (—O—CO—) and an amide bond (—NH—CO—) in the polymer skeleton. “Liquid crystal polyester ether” has an ester bond and an ether bond (—O—) in the polymer skeleton. The “liquid crystal polyester carbonate” has an ester bond and a carbonate bond (—O—CO—O—) in the polymer skeleton. The “liquid crystal polyester imide” has an ester bond and an imide structure represented by the following chemical formula in a polymer skeleton.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
液晶ポリエステルは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。ここで「全芳香族液晶ポリエステル」とは、例えば、サーモトロピック液晶ポリマーと呼ばれるポリエステルであり、
(1)芳香族ジカルボン酸と芳香族ジオールと芳香族ヒドロキシカルボン酸との組み合わせからなるもの
(2)異種の芳香族ヒドロキシカルボン酸からなるもの
(3)芳香族ジカルボン酸と芳香族ジオールとの組み合わせからなるもの
等が挙げられる。なお、これらの芳香族ジカルボン酸、芳香族ジオールおよび芳香族ヒドロキシカルボン酸の代わりにそれらのエステル形成性誘導体が原料として使用されることもある。「芳香族」とは、ベンゼンを代表とする環状不飽和有機化合物の一群である。
The liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer. Here, the “fully aromatic liquid crystal polyester” is, for example, a polyester called a thermotropic liquid crystal polymer,
(1) Composed of a combination of aromatic dicarboxylic acid, aromatic diol and aromatic hydroxycarboxylic acid (2) Consisting of different types of aromatic hydroxycarboxylic acid (3) Combination of aromatic dicarboxylic acid and aromatic diol The thing which consists of etc. is mentioned. In addition, instead of these aromatic dicarboxylic acids, aromatic diols and aromatic hydroxycarboxylic acids, their ester-forming derivatives may be used as raw materials. “Aromatic” is a group of cyclic unsaturated organic compounds represented by benzene.
 液晶ポリエステルの典型的な例としては、
 (I)芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合(重縮合)させてなるもの、
 (II)複数種の芳香族ヒドロキシカルボン酸を重合させてなるもの、
 (III)芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合させてなるもの、
 (IV)ポリエチレンテレフタレート等のポリエステルと、芳香族ヒドロキシカルボン酸と、を重合させてなるもの
が挙げられる。ここで、「芳香族ヒドロキシカルボン酸」とは、下記一般式(a)で表される化合物である。「芳香族ジカルボン酸」とは、下記一般式(b)で表される化合物である。「芳香族ジオール」とは、下記一般式(c)で表される化合物である。「芳香族ヒドロキシアミン」とは、下記一般式(d)で表される化合物である。「芳香族ジアミン」とは、下記一般式(e)で表される化合物である。
(a)HO-Ar10-COOH
 (b)HOOC-Ar20-COOH
 (c)HO-Ar30-OH
 (d)NH-Ar40-OH
 (e)NH-Ar50-NH
(ただし、式中のAr10、Ar20、Ar30、Ar40 およびAr50はそれぞれ同一または相異なり2価の芳香族基を表す。)
2価の芳香族基としては、例えば、フェニレン基、ナフチレン基、ビフェニリレン基があげられる。
ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、それぞれ独立に、その一部又は全部に代えて、その重合可能な誘導体が用いられてもよい。
As a typical example of liquid crystal polyester,
(I) An aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine are polymerized (polycondensed). thing,
(II) a polymer obtained by polymerizing plural kinds of aromatic hydroxycarboxylic acids,
(III) A polymer obtained by polymerizing an aromatic dicarboxylic acid and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine,
(IV) What polymerizes polyester, such as a polyethylene terephthalate, and aromatic hydroxycarboxylic acid is mentioned. Here, the “aromatic hydroxycarboxylic acid” is a compound represented by the following general formula (a). The “aromatic dicarboxylic acid” is a compound represented by the following general formula (b). The “aromatic diol” is a compound represented by the following general formula (c). The “aromatic hydroxyamine” is a compound represented by the following general formula (d). The “aromatic diamine” is a compound represented by the following general formula (e).
(A) HO—Ar 10 —COOH
(B) HOOC-Ar 20 -COOH
(C) HO—Ar 30 —OH
(D) NH 2 —Ar 40 —OH
(E) NH 2 —Ar 50 —NH 2
(However, Ar 10 , Ar 20 , Ar 30 , Ar 40, and Ar 50 in the formula are the same or different and each represents a divalent aromatic group.)
Examples of the divalent aromatic group include a phenylene group, a naphthylene group, and a biphenylylene group.
Here, the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine, and the aromatic diamine are each independently replaced with a part or all of the polymerizable derivative. Also good.
 芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシル基を有する化合物の重合可能な誘導体の例としては、カルボキシル基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるもの(エステル)、カルボキシル基をハロホルミル基に変換してなるもの(酸ハロゲン化物)、及びカルボキシル基をアシルオキシカルボニル基に変換してなるもの(酸無水物)が挙げられる。
 芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシル基を有する化合物の重合可能な誘導体の例としては、ヒドロキシル基をアシル化してアシルオキシル基に変換してなるもの(アシル化物)が挙げられる。
 芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
Examples of polymerizable derivatives of a compound having a carboxyl group such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid include those obtained by converting a carboxyl group into an alkoxycarbonyl group or an aryloxycarbonyl group (ester), carboxyl Examples include those obtained by converting a group into a haloformyl group (acid halide), and those obtained by converting a carboxyl group into an acyloxycarbonyl group (acid anhydride).
Examples of polymerizable derivatives of hydroxyl group-containing compounds such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines include those obtained by acylating hydroxyl groups and converting them to acyloxyl groups (acylated products) ).
Examples of polymerizable derivatives of amino group-containing compounds such as aromatic hydroxyamines and aromatic diamines include those obtained by acylating an amino group and converting it to an acylamino group (acylated product).
 液晶ポリエステルは、下記一般式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、繰返し単位(1)と、下記一般式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、下記一般式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)とを有することがより好ましい。 The liquid crystalline polyester preferably has a repeating unit represented by the following general formula (1) (hereinafter sometimes referred to as “repeating unit (1)”). The repeating unit (1) and the following general formula (2) ) (Hereinafter sometimes referred to as “repeat unit (2)”) and a repeat unit represented by the following general formula (3) (hereinafter referred to as “repeat unit (3)”). More preferably).
 (1)-O-Ar-CO-
 (2)-CO-Ar-CO-
 (3)-X-Ar-Y-
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の一つ以上の水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
 (4)-Ar-Z-Ar
 (式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
(1) —O—Ar 1 —CO—
(2) —CO—Ar 2 —CO—
(3) —X—Ar 3 —Y—
(In the formula, Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group; Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes; X and Y are each independently an oxygen atom or imino group; one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.)
(4) —Ar 4 —Z—Ar 5
(In the formula, Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group; Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group.)
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 前記アルキル基の例としては、炭素数は、1~10であるものが好ましい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、2-エチルヘキシル基、n-オクチル基、n-ノニル基及びn-デシル基が挙げられる。
 前記アリール基の例としては、炭素数は、6~20であることが好ましい。具体的には、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基及び2-ナフチル基が挙げられる。
 前記Ar、Ar及びAr中の一つ以上の水素原子がこれらの基で置換されている場合、その数は、Ar、Ar又はArで表される前記基毎に、それぞれ独立に2個以下であることが好ましく、1個であることがより好ましい。
As said halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
As examples of the alkyl group, those having 1 to 10 carbon atoms are preferable. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group Group, 2-ethylhexyl group, n-octyl group, n-nonyl group and n-decyl group.
For example, the aryl group preferably has 6 to 20 carbon atoms. Specific examples include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group, and a 2-naphthyl group.
When one or more hydrogen atoms in Ar 1 , Ar 2, and Ar 3 are substituted with these groups, the number is as follows for each group represented by Ar 1 , Ar 2, or Ar 3 , respectively. Independently, it is preferably 2 or less, more preferably 1.
 前記アルキリデン基の例としては、炭素数は1~10であることが好ましい。具体的には、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基及び2-エチルヘキシリデン基が挙げられる。 As an example of the alkylidene group, the number of carbon atoms is preferably 1 to 10. Specific examples include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, and a 2-ethylhexylidene group.
 繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)としては、Arが1,4-フェニレン基であるもの(p-ヒドロキシ安息香酸に由来する繰返し単位)、及びArが2,6-ナフチレン基であるもの(6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)が好ましい。 The repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid. As the repeating unit (1), Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid), and Ar 1 is a 2,6-naphthylene group (6-hydroxy Preferred is a repeating unit derived from -2-naphthoic acid.
 繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arが1,4-フェニレン基であるもの(テレフタル酸に由来する繰返し単位)、Arが1,3-フェニレン基であるもの(イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基であるもの(2,6-ナフタレンジカルボン酸に由来する繰返し単位)、及びArがジフェニルエ-テル-4,4’-ジイル基であるもの(ジフェニルエ-テル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましい。 The repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid. As the repeating unit (2), Ar 2 is a 1,4-phenylene group (repeating unit derived from terephthalic acid), Ar 2 is a 1,3-phenylene group (repeating unit derived from isophthalic acid) ), Ar 2 is a 2,6-naphthylene group (repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is a diphenyl ether-4,4′-diyl group (diphenyl) Preferred is a repeating unit derived from ether-4,4′-dicarboxylic acid).
 繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arが1,4-フェニレン基であるもの(ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する繰返し単位)、及びArが4,4’-ビフェニリレン基であるもの(4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましい。 The repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine. As the repeating unit (3), Ar 3 is a 1,4-phenylene group (a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is a 4,4′-biphenylylene group. (Repeating units derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl) are preferred.
繰返し単位(1)~(3)の組合せとしては、繰返し単位(1)として、Arが1,4-フェニレン基であるもの(p-ヒドロキシ安息香酸に由来する繰返し単位)、及びArが2,6-ナフチレン基であるもの(6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)からなる群から選択される少なくとも一種の繰返し単位;繰返し単位(2)として、Arが1,4-フェニレン基であるもの(テレフタル酸に由来する繰返し単位)、Arが1,3-フェニレン基であるもの(イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基であるもの(2,6-ナフタレンジカルボン酸に由来する繰返し単位)、及びArがジフェニルエ-テル-4,4’-ジイル基であるもの(ジフェニルエ-テル-4,4’-ジカルボン酸に由来する繰返し単位)からなる群から選択される少なくとも一種の繰返し単位;繰返し単位(3)として、Arが1,4-フェニレン基であるもの(ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する繰返し単位)、及びArが4,4’-ビフェニリレン基であるもの(4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する繰返し単位)からなる群から選択される少なくとも一種の繰返し単位からなる組合せが好ましい。具体的には、繰返し単位(1)として、Arが1,4-フェニレン基であるもの(p-ヒドロキシ安息香酸に由来する繰返し単位);繰返し単位(2)として、Arが1,4-フェニレン基であるもの(テレフタル酸に由来する繰返し単位)、及びArが1,3-フェニレン基であるもの(イソフタル酸に由来する繰返し単位);繰返し単位(3)として、Arが4,4’-ビフェニリレン基であるもの(4,4’-ジヒドロキシビフェニルに由来する繰返し単位)からなる組合せがより好ましい。 As a combination of the repeating units (1) to (3), as the repeating unit (1), Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid), and Ar 1 is At least one repeating unit selected from the group consisting of 2,6-naphthylene groups (repeating units derived from 6-hydroxy-2-naphthoic acid); Ar 2 is 1,4 as the repeating unit (2) -Phenylene group (repeating unit derived from terephthalic acid), Ar 2 is 1,3-phenylene group (repeating unit derived from isophthalic acid), Ar 2 is 2,6-naphthylene group (a repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is diphenyl ether - what is ether-4,4'-diyl group (diphenyl ether - ether-4,4'- At least one repeating unit selected from the group consisting of repeating units) derived from carboxylic acids; as repeating unit (3), as Ar 3 is 1,4-phenylene group (hydroquinone, p- aminophenol or p- Repeating units derived from phenylenediamine) and those in which Ar 3 is a 4,4′-biphenylylene group (4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl) A combination consisting of at least one repeating unit selected from the group consisting of (derived repeating units) is preferred. Specifically, as repeating unit (1), Ar 1 is a 1,4-phenylene group (repeating unit derived from p-hydroxybenzoic acid); as repeating unit (2), Ar 2 is 1,4 A group having a phenylene group (repeating unit derived from terephthalic acid) and a group in which Ar 2 is a 1,3-phenylene group (repeating unit derived from isophthalic acid); Ar 3 is 4 as the repeating unit (3) , 4′-biphenylylene groups (repeating units derived from 4,4′-dihydroxybiphenyl) are more preferred.
 繰返し単位(1)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量(液晶ポリエステルを構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値)に対して、好ましくは30モル%以上、より好ましくは30~80モル%、さらに好ましくは40~70モル%、特に好ましくは45~65モル%である。
 繰返し単位(2)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10~35モル%、さらに好ましくは15~30モル%、特に好ましくは17.5~27.5モル%である。
 繰返し単位(3)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10~35モル%、さらに好ましくは15~30モル%、特に好ましくは17.5~27.5モル%である。
 繰返し単位(1)の含有量が多いほど、液晶ポリエステルの溶融流動性、耐熱性、強度・剛性が向上し易いが、あまり多いと、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。
The content of the repeating unit (1) is the total amount of all repeating units constituting the liquid crystal polyester (the substance of each repeating unit is obtained by dividing the mass of each repeating unit constituting the liquid crystal polyester by the formula weight of each repeating unit). The equivalent amount (mole) is obtained and the total of these is preferably 30 mol% or more, more preferably 30 to 80 mol%, still more preferably 40 to 70 mol%, particularly preferably 45 to 65 mol%. Mol%.
The content of the repeating unit (2) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Particularly preferred is 17.5 to 27.5 mol%.
The content of the repeating unit (3) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Particularly preferred is 17.5 to 27.5 mol%.
The higher the content of the repeating unit (1), the easier it is to improve the melt flowability, heat resistance, strength and rigidity of the liquid crystalline polyester. However, if the content is too large, the melting temperature and melt viscosity tend to increase, and the temperature required for molding. Tends to be high.
 繰返し単位(2)の含有量と繰返し単位(3)の含有量との割合は、[繰返し単位(2)の含有量]/[繰返し単位(3)の含有量](モル/モル)で表して、好ましくは0.9/1~1/0.9、より好ましくは0.95/1~1/0.95、さらに好ましくは0.98/1~1/0.98である。 The ratio between the content of the repeating unit (2) and the content of the repeating unit (3) is expressed as [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol). The ratio is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and still more preferably 0.98 / 1 to 1 / 0.98.
 なお、液晶ポリエステルは、繰返し単位(1)~(3)を、それぞれ独立に二種以上有してもよい。また、液晶ポリエステルは、繰返し単位(1)~(3)以外の繰返し単位を有してもよいが、その含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは10モル%以下、より好ましくは5モル%以下である。 The liquid crystal polyester may have two or more repeating units (1) to (3) independently. The liquid crystal polyester may have a repeating unit other than the repeating units (1) to (3), but the content thereof is preferably 10 with respect to the total amount of all repeating units constituting the liquid crystal polyester. The mol% or less, more preferably 5 mol% or less.
 液晶ポリエステルは、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるものを有すること、すなわち、所定の芳香族ジオールに由来する繰返し単位を有することが好ましく、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるもののみを有することがより好ましい。このようにすることで、液晶ポリエステルは溶融粘度が低くなり易い。 The liquid crystal polyester preferably has, as the repeating unit (3), X and Y each having an oxygen atom, that is, a repeating unit derived from a predetermined aromatic diol. As the repeating unit (3), More preferably, X and Y each have only an oxygen atom. By doing in this way, liquid crystalline polyester tends to become low in melt viscosity.
 液晶ポリエステルは、これを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物(プレポリマー)を固相重合させることにより、製造することが好ましい。これにより、耐熱性や強度・剛性が高い高分子量の液晶ポリエステルを操作性よく製造することができる。溶融重合は、触媒の存在下で行ってもよく、この場合の触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物や、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾール等の含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。 The liquid crystal polyester is preferably produced by melt polymerizing raw material monomers corresponding to the repeating units constituting the liquid crystal polyester and solid-phase polymerizing the obtained polymer (prepolymer). Thereby, high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity can be produced with good operability. Melt polymerization may be carried out in the presence of a catalyst. Examples of the catalyst in this case include metals such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide. And nitrogen-containing heterocyclic compounds such as 4- (dimethylamino) pyridine and 1-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used.
 液晶ポリエステルは、その流動開始温度が、好ましくは270℃以上、より好ましくは270℃~400℃、さらに好ましくは280℃~380℃である。流動開始温度が高いほど、耐熱性や強度・剛性が向上し易いが、高過ぎると、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。 The liquid crystal polyester has a flow start temperature of preferably 270 ° C. or higher, more preferably 270 ° C. to 400 ° C., and further preferably 280 ° C. to 380 ° C. As the flow start temperature is higher, the heat resistance, strength, and rigidity are more likely to be improved. However, if the flow start temperature is too high, the melting temperature and the melt viscosity are likely to be high, and the temperature required for molding is likely to be high.
 なお、流動開始温度は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度であり、液晶ポリエステルの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。 The flow start temperature is also called flow temperature or flow temperature, and the temperature is raised at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer while liquid crystal polyester is used. Is a temperature showing a viscosity of 4800 Pa · s (48000 poise) when extruded from a nozzle having an inner diameter of 1 mm and a length of 10 mm, and is a measure of the molecular weight of the liquid crystalline polyester (Naide Koide, “ “Liquid Crystal Polymers—Synthesis / Molding / Application—”, see CMC Corporation, June 5, 1987, p.
 本発明に係る液晶ポリマー組成物は、前記液晶ポリマーと、セラミック粉及び軟磁性金属粉からなる複合材料(コンポジット)を不活性ガス雰囲気下で熱処理してなる磁性フィラー(成分(B))とを配合し、溶融混練することにより得られ、これら液晶ポリマー及び磁性フィラーを含む。このように、液晶ポリマー及び所定の磁性フィラーを配合することにより、電磁波シールド性及び絶縁性に優れ、造粒が容易な液晶ポリマー組成物が得られる。 The liquid crystal polymer composition according to the present invention comprises the liquid crystal polymer and a magnetic filler (component (B)) obtained by heat-treating a composite material (composite) made of ceramic powder and soft magnetic metal powder in an inert gas atmosphere. It is obtained by blending and melt-kneading, and includes these liquid crystal polymer and magnetic filler. Thus, by blending the liquid crystal polymer and the predetermined magnetic filler, a liquid crystal polymer composition having excellent electromagnetic shielding properties and insulating properties and easy granulation can be obtained.
 前記磁性フィラーの体積平均粒径は、液晶ポリマーに対する分散性の点から、好ましくは1~100μm、より好ましくは10~50μmである。ここで、「体積平均粒径」とは、レーザー回折法による測定で求められる値である。 The volume average particle size of the magnetic filler is preferably 1 to 100 μm, more preferably 10 to 50 μm, from the viewpoint of dispersibility with respect to the liquid crystal polymer. Here, the “volume average particle diameter” is a value obtained by measurement by a laser diffraction method.
 前記軟磁性金属粉は、軟磁性金属を含む粉体であり、軟磁性金属からなる粉体であることが好ましい。ここで、「軟磁性金属」とは、高透磁率材料のことであり、透磁率が大きく、保磁力が小さいものが好ましい(理科年表(理工図書出版)P413、415)。 軟磁性金属粉は、一種を単独で用いてもよいし、二種以上を併用してもよい。 The soft magnetic metal powder is a powder containing a soft magnetic metal, and is preferably a powder made of a soft magnetic metal. Here, the “soft magnetic metal” is a high magnetic permeability material, and preferably has a high magnetic permeability and a low coercive force (Science Chronology (Science Chronicle Publication) P413, 415). Soft magnetic metal powders may be used alone or in combination of two or more.
 前記軟磁性金属の透磁率は、真空の透磁率で除した比透磁率で表して、好ましくは100以上、より好ましくは200以上である。具体的には、前記軟磁性金属の透磁率は、100~100,000が好ましく、200~50,000がより好ましい。そして、比透磁率100以上の軟磁性金属は、例えば、理科年表(理工図書出版)や、難波典之、金子文隆共著「電気材料-誘電材料・磁性材料-」208頁(理工図書出版、昭和55年3月発行)に記載されたものから選択することができ、好ましくはコバルト、鉄又はニッケルであり、より好ましくは鉄又はニッケルである。 The magnetic permeability of the soft magnetic metal is preferably 100 or more, more preferably 200 or more, expressed as the relative permeability divided by the vacuum permeability. Specifically, the magnetic permeability of the soft magnetic metal is preferably 100 to 100,000, more preferably 200 to 50,000. Soft magnetic metals with a relative permeability of 100 or more include, for example, Science Chronology (Science Publishing), Nonamiyuki Namba and Fumitaka Kaneko "Electric Materials-Dielectric Materials / Magnetic Materials", page 208 (Science Publishing, Showa) (Issued in Mar. 1955), preferably cobalt, iron or nickel, more preferably iron or nickel.
 軟磁性金属粉は、軟磁性金属の合金を含む粉体であってもよく、その場合、軟磁性金属の合金からなる粉体であることが好ましい。このような合金の例としては、Fe-Si系合金(ケイ素鋼)、Fe-Al系合金(アルパーム)、Fe-Ni系合金(パーマロイ)、Fe-Co系合金、Fe-V系合金(パーメンジュール)、Fe-Cr系合金、Fe-Al-Si系合金、Fe-Cr-Al系合金、Fe-Cu-Nb-Si-B系合金、Fe-Ni-Cr系合金(ミューメタル)等の鉄合金が挙げられ、これらの合金の比透磁率も、好ましくは100以上、より好ましくは200以上である。具体的には、これらの合金の比透磁率は、100~100,000が好ましく、200~50,000がより好ましい。 The soft magnetic metal powder may be a powder containing a soft magnetic metal alloy. In this case, the soft magnetic metal powder is preferably a powder made of a soft magnetic metal alloy. Examples of such alloys include Fe-Si alloys (silicon steel), Fe-Al alloys (Alpalm), Fe-Ni alloys (Permalloy), Fe-Co alloys, Fe-V alloys (Per Menjur), Fe—Cr alloy, Fe—Al—Si alloy, Fe—Cr—Al alloy, Fe—Cu—Nb—Si—B alloy, Fe—Ni—Cr alloy (mu metal), etc. The relative magnetic permeability of these alloys is also preferably 100 or more, more preferably 200 or more. Specifically, the relative magnetic permeability of these alloys is preferably 100 to 100,000, more preferably 200 to 50,000.
 これら軟磁性金属及びその合金は、適した公知の粉砕手段又は分級手段により粉体状として、軟磁性金属粉とすることができる。 These soft magnetic metals and their alloys can be made into a soft magnetic metal powder in the form of powder by suitable known pulverization means or classification means.
 軟磁性金属粉は、鉄又は鉄合金を主成分とするものが好ましく、軟磁性金属粉に占める鉄又はその合金の割合は、好ましくは50~100質量%、より好ましくは80~100質量%である。このような材質の軟磁性金属粉は、比透磁率が特に高いことから、得られる成形体は、電磁波シールド性がより優れたものとなり、経済性の点からも有利である。 The soft magnetic metal powder is preferably composed mainly of iron or an iron alloy, and the proportion of iron or its alloy in the soft magnetic metal powder is preferably 50 to 100% by mass, more preferably 80 to 100% by mass. is there. Since the soft magnetic metal powder of such a material has a particularly high relative magnetic permeability, the obtained molded body has a better electromagnetic shielding property and is advantageous from the viewpoint of economy.
 軟磁性金属粉の扁平率は、好ましくは2以上、より好ましくは2.5以上である。ここでいう扁平率とは、軟磁性金属粉を、走査型電子顕微鏡又は光学顕微鏡を用いて、100~300倍程度の倍率で外観観察し、100個程度の粒子について、各粒子における最も短い径(短径S)に対する最も長い径(長径L)の比率(L/S)を求め、それらを数平均して得られる値である。軟磁性金属粉の扁平率が2以上であれば、液晶ポリマー組成物を溶融成形する際、その流動方向(MD)に前記磁性フィラーの長軸が配向し易くなり、MDに平行な面を電磁波シールド面とすると、この面に占める前記磁性フィラーの面積割合が増大し易くなり、前記磁性フィラーの電磁波シールド性をより有効活用できる。 The flatness of the soft magnetic metal powder is preferably 2 or more, more preferably 2.5 or more. The flatness referred to here means that the appearance of soft magnetic metal powder is observed at a magnification of about 100 to 300 times using a scanning electron microscope or optical microscope, and about 100 particles have the shortest diameter in each particle. It is a value obtained by calculating the ratio (L / S) of the longest diameter (major axis L) to (minor axis S) and number averaging them. When the flatness of the soft magnetic metal powder is 2 or more, when the liquid crystal polymer composition is melt-molded, the major axis of the magnetic filler is easily oriented in the flow direction (MD), and the plane parallel to the MD When the shield surface is used, the area ratio of the magnetic filler occupying this surface is likely to increase, and the electromagnetic shielding properties of the magnetic filler can be more effectively utilized.
 前記セラミック粉は、酸化ケイ素を主成分とするものが好ましく、主成分以外の他の成分の例としては、窒化ケイ素、炭化ケイ素が挙げられ、有機基(有機成分)を含んでいてもよい。セラミック粉の総質量に占める酸化ケイ素の割合は、好ましくは50~100質量%、より好ましくは80~100質量%である。
 セラミック粉は、一種を単独で用いてもよいし、二種以上を併用してもよい。
The ceramic powder is preferably composed mainly of silicon oxide, and examples of components other than the main component include silicon nitride and silicon carbide, which may contain an organic group (organic component). The proportion of silicon oxide in the total mass of the ceramic powder is preferably 50 to 100% by mass, more preferably 80 to 100% by mass.
A ceramic powder may be used individually by 1 type, and may use 2 or more types together.
 このような酸化ケイ素を主成分とするセラミック粉としては、一般にシリカと称されている種々のものが市販品として入手できる。このような市販品シリカには、天然シリカ及び合成シリカ(人工シリカ)がある。 As such ceramic powder mainly composed of silicon oxide, various products generally called silica are available as commercial products. Such commercially available silica includes natural silica and synthetic silica (artificial silica).
 天然シリカとしては、酸化ケイ素の純度が高い点で、石英を粉砕して得られたものが好ましく、石英から粉砕及び溶融を組み合わせて製造された天然シリカも、酸化ケイ素の純度が高いので好適である。 Natural silica is preferably obtained by pulverizing quartz in terms of high purity of silicon oxide, and natural silica produced by combining pulverization and melting from quartz is also preferable because of high purity of silicon oxide. is there.
 合成シリカとしては、乾式合成シリカ及び湿式合成シリカが挙げられる。
 乾式合成シリカとしては、例えば、四塩化ケイ素及び水素の混合物を、空気中において1000~1200℃程度で焼成して得られたものや、金属シリコンを溶融させ、これをノズルから空気中に噴霧して得られたものが挙げられる。このような製造方法で得られた乾式合成シリカは、シリカ中に少量ながらSi-H結合を含んでいることがある。セラミック粉としては、このように少量のSi-H結合を含むものも使用できる。
 一方、湿式合成シリカとしては、例えば、四塩化ケイ素やケイ酸アルコキシドを加水分解して得られたものが挙げられる。このような製造方法で得られた湿式合成シリカには、反応不純物である有機物や塩素が混入していたり、分子内にシラノール基(Si-OH)を含んだものがある。さらに、かかるシラノール基が水和して水和水を有しているものもある。セラミック粉としては、このような湿式合成シリカも使用できるが、このような湿式合成シリカは、例えば、800℃程度の高温下で処理し、水和水や有機物を除去して使用することが好ましい。このようなシリカとしては、例えば、アドマテックス社製、東ソー・シリカ社製の市販品が入手可能であり、セラミック粉として好適である。
Synthetic silica includes dry synthetic silica and wet synthetic silica.
Examples of the dry synthetic silica include those obtained by baking a mixture of silicon tetrachloride and hydrogen at about 1000 to 1200 ° C. in the air, or melting metal silicon and spraying it into the air from a nozzle. What was obtained in this way is mentioned. Dry synthetic silica obtained by such a production method may contain Si—H bonds in a small amount in the silica. As the ceramic powder, those containing a small amount of Si—H bonds can be used.
On the other hand, examples of the wet synthetic silica include those obtained by hydrolyzing silicon tetrachloride and silicate alkoxide. Some wet synthetic silicas obtained by such a production method contain organic substances and chlorine which are reaction impurities, or contain silanol groups (Si—OH) in the molecule. In addition, there are those in which such silanol groups are hydrated to have water of hydration. Such wet synthetic silica can also be used as the ceramic powder, but such wet synthetic silica is preferably used after being treated at a high temperature of about 800 ° C. to remove hydrated water and organic substances. . As such silica, for example, commercial products manufactured by Admatechs and Tosoh Silica are available, and are suitable as ceramic powder.
 前記複合材料は、例えば、セラミック粉及び軟磁性金属粉を、ボールミル、遊星ボールミル、サンドミル等の、乾式で混合できる混合機を用いて混合することにより得られる。
 その際、混合機として遊星ボールミルを用いると、軟磁性金属粉をセラミック粉で被覆してなる複合材料が優先して得られ、このような複合材料から得られる前記磁性フィラーを用いることにより、液晶ポリマー組成物から得られる成形体の電気絶縁性は、より一層優れる傾向がある。このように、前記複合材料は、軟磁性金属粉をセラミック粉で被覆してなるものが好ましい。また、このような点から、軟磁性金属粉及びセラミック粉の使用量比(例えば、質量比)も、セラミック粉が軟磁性金属粉を被覆するように、選択することが好ましい。そのためには、例えば、軟磁性金属粉及びセラミック粉の使用量比を変化させて数水準の予備実験を行い、これで得られた複合材料の断面を走査型電子顕微鏡(SEM)等で観察し、軟磁性金属粉のセラミック粉による被覆状態を確認することで、適した使用量比を選択すればよい。具体的には、軟磁性金属粉及びセラミック粉の使用量比は、軟磁性金属粉:セラミック粉(質量比)で表して、20:1~1:1が好ましく、10:1~5:1がより好ましい。また、軟磁性金属粉及びセラミック粉の混合は、軟磁性金属粉が著しく酸化することを防止するため、窒素やアルゴン等の不活性ガス雰囲気下で行うことが好ましい。
The composite material can be obtained, for example, by mixing ceramic powder and soft magnetic metal powder using a mixer that can be mixed in a dry manner, such as a ball mill, a planetary ball mill, or a sand mill.
At that time, when a planetary ball mill is used as a mixer, a composite material obtained by coating soft magnetic metal powder with ceramic powder is preferentially obtained. By using the magnetic filler obtained from such a composite material, liquid crystal is obtained. The electrical insulation of the molded product obtained from the polymer composition tends to be even better. As described above, the composite material is preferably formed by coating soft magnetic metal powder with ceramic powder. From such a point, it is also preferable to select the use amount ratio (for example, mass ratio) of the soft magnetic metal powder and the ceramic powder so that the ceramic powder covers the soft magnetic metal powder. For that purpose, for example, several levels of preliminary experiments are performed by changing the usage ratio of the soft magnetic metal powder and the ceramic powder, and the cross section of the composite material thus obtained is observed with a scanning electron microscope (SEM) or the like. By checking the covering state of the soft magnetic metal powder with the ceramic powder, a suitable usage amount ratio may be selected. Specifically, the usage ratio of the soft magnetic metal powder and the ceramic powder is preferably 20: 1 to 1: 1, expressed as soft magnetic metal powder: ceramic powder (mass ratio), and 10: 1 to 5: 1. Is more preferable. The mixing of the soft magnetic metal powder and the ceramic powder is preferably performed in an inert gas atmosphere such as nitrogen or argon in order to prevent the soft magnetic metal powder from being significantly oxidized.
 軟磁性金属粉をセラミック粉で被覆してなる複合材料の市販品としては、例えば、鉄粉をシリカ粒子で被覆してなる複合材料(日立ハイテクノロジーズ社製)が入手可能である。この日立ハイテクノロジーズ社製の複合材料に関しては、非特許文献「電子材料2008年9月号」に記載されている。 As a commercial product of a composite material formed by coating soft magnetic metal powder with ceramic powder, for example, a composite material (manufactured by Hitachi High-Technologies Corporation) obtained by coating iron powder with silica particles is available. The composite material manufactured by Hitachi High-Technologies Corporation is described in a non-patent document “September 2008 issue of electronic materials”.
 なお、軟磁性金属粉をセラミック粉で被覆してなる複合材料においては、セラミック粉が軟磁性金属粉の表面の少なくとも一部を被覆していればよく、表面全面を被覆していてもよい。 In addition, in the composite material formed by coating the soft magnetic metal powder with the ceramic powder, it is sufficient that the ceramic powder covers at least part of the surface of the soft magnetic metal powder, and the entire surface may be covered.
 前記磁性フィラーは、前記複合材料を、窒素やアルゴン等の不活性ガス雰囲気下で熱処理することで得られる。「熱処理」とは、加熱処理のことである。ここで、熱処理温度は、700℃以上であることが好ましく、800℃以上であることがより好ましく、900℃以上であることが特に好ましい。また、熱処理時間は、5時間以上であることが好ましく、12時間以上であることがより好ましい。具体的には、熱処理時間は、1~20時間が好ましく、1~10時間がより好ましい。
 前記磁性フィラーは、一種を単独で用いてもよいし、二種以上を併用してもよい。
The magnetic filler can be obtained by heat-treating the composite material in an inert gas atmosphere such as nitrogen or argon. “Heat treatment” refers to heat treatment. Here, the heat treatment temperature is preferably 700 ° C. or higher, more preferably 800 ° C. or higher, and particularly preferably 900 ° C. or higher. Further, the heat treatment time is preferably 5 hours or more, and more preferably 12 hours or more. Specifically, the heat treatment time is preferably 1 to 20 hours, and more preferably 1 to 10 hours.
The said magnetic filler may be used individually by 1 type, and may use 2 or more types together.
 本発明においては、溶融混練時に必要に応じて、本発明の効果を妨げない範囲内において、前記液晶ポリマー及び磁性フィラー以外の他の成分を供給(配合)し、液晶ポリマー組成物を、これら他の成分を含むものとしてもよい。
 前記他の成分の例としては、ガラス繊維、シリカアルミナ繊維、アルミナ繊維、炭素繊維等の繊維状補強剤;ホウ酸アルミニウムウィスカー、チタン酸カリウムウィスカー等の針状補強剤;ガラスビーズ、タルク、マイカ、グラファイト、ウォラストナイト、ドロマイト等の無機充填剤;フッ素樹脂、金属石鹸類等の離型改良剤;染料、顔料等の着色剤;酸化防止剤;熱安定剤;紫外線吸収剤;界面活性剤が挙げられる。また、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸金属塩、フルオロカーボン系界面活性剤等の外部滑剤効果を有する添加剤が挙げられる。さらに、少量の液晶ポリマー以外の樹脂が挙げられ、その例としては、ポリアミド、結晶性ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリフェニレンエーテル及びその変性物、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド等の熱可塑性樹脂;フェノール樹脂、エポキシ樹脂等の熱硬化性樹脂が挙げられる。
 前記他の成分は、一種を単独で用いてもよく、二種以上を併用してもよい。
In the present invention, other components other than the liquid crystal polymer and the magnetic filler are supplied (blended) within the range that does not impede the effects of the present invention as necessary during melt-kneading, and the liquid crystal polymer composition These components may be included.
Examples of the other components include fibrous reinforcing agents such as glass fiber, silica alumina fiber, alumina fiber, and carbon fiber; acicular reinforcing agents such as aluminum borate whisker and potassium titanate whisker; glass beads, talc, mica Inorganic fillers such as graphite, wollastonite and dolomite; Mold release improvers such as fluororesins and metal soaps; Colorants such as dyes and pigments; Antioxidants; Thermal stabilizers; UV absorbers; Is mentioned. Further, additives having an external lubricant effect such as higher fatty acid, higher fatty acid ester, higher fatty acid metal salt, fluorocarbon surfactant and the like can be mentioned. Furthermore, a resin other than a small amount of liquid crystal polymer can be mentioned, and examples thereof include polyamide, crystalline polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyphenylene ether and modified products thereof, polysulfone, polyethersulfone, polyetherimide, and the like. Thermosetting resins such as phenol resins and epoxy resins.
The other components may be used alone or in combination of two or more.
 前記磁性フィラーの供給量は、液晶ポリマーの供給量100質量部に対して、100質量部以上であることが好ましく、100~450質量部であることがより好ましく、100~300質量部であることがさらに好ましく、120~250質量部であることが特に好ましい。このような範囲とすることで、成形体の電磁波シールド性、及び液晶ポリマー組成物の成形加工性のバランスにより優れる。なお、前記磁性フィラーとして複数種のものを併用する場合には、その全供給量が前記範囲となるようにし、同様に、液晶ポリマーとして複数種のものを併用する場合には、その全供給量が前記範囲となるようにする。 The supply amount of the magnetic filler is preferably 100 parts by mass or more, more preferably 100 to 450 parts by mass, and more preferably 100 to 300 parts by mass with respect to 100 parts by mass of the supply amount of the liquid crystal polymer. Is more preferably 120 to 250 parts by mass. By setting it as such a range, it is excellent by the balance of the electromagnetic wave shielding property of a molded object, and the moldability of a liquid crystal polymer composition. When a plurality of magnetic fillers are used in combination, the total supply amount is within the above range. Similarly, when a plurality of liquid crystal polymers are used in combination, the total supply amount Is within the above range.
 液晶ポリマー組成物は、前記液晶ポリマー及び磁性フィラーを押出溶融混練して得られ、押出溶融混練してペレット状として得ることが好ましい。 The liquid crystal polymer composition is preferably obtained by extrusion melting and kneading the liquid crystal polymer and magnetic filler, and is preferably obtained by extrusion melting and kneading into a pellet form.
 押出溶融混練に用いられる典型的な溶融混練押出機は、加熱溶融体押し出し用の小さな孔であるノズルを備え、加熱手段を有するシリンダを備え、加熱溶融体を押し出すためのスクリューを前記シリンダ内に備えたものであり、シリンダ内に1本のスクリューが回転駆動されるように設けられている単軸溶融混練押出機でもよいし、シリンダ内に2本のスクリューが互いに異なる方向に又は同じ方向に回転駆動されるように設けられている二軸溶融混練押出機でもよいが、二軸溶融混練押出機が好ましい。 A typical melt kneading extruder used for extrusion melt kneading includes a nozzle that is a small hole for extruding a heated melt, a cylinder having heating means, and a screw for extruding the heated melt into the cylinder. It may be a single-screw melt kneading extruder provided so that one screw is driven to rotate in the cylinder, or the two screws in the cylinder may be in different directions or in the same direction. A biaxial melt kneading extruder provided to be driven to rotate may be used, but a biaxial melt kneading extruder is preferable.
 溶融混練押出機は、スクリューの直径(D)に対するスクリューの有効長さ(L)の比率(L/D)が20以上(ここでLとDは同一のスケール単位である)であることが好ましく、このようにすることで、液晶ポリマーに前記磁性フィラーがより均一に分散する。
なお、ここで「スクリューの有効長さ」とは、スクリューの軸方向における長さを意味し、「スクリューの直径」とは、スクリューの呼び外径寸法を意味する。
In the melt-kneading extruder, the ratio (L / D) of the effective length (L) of the screw to the diameter (D) of the screw is preferably 20 or more (where L and D are the same scale unit). By doing so, the magnetic filler is more uniformly dispersed in the liquid crystal polymer.
Here, “the effective length of the screw” means the length in the axial direction of the screw, and “the diameter of the screw” means the nominal outer diameter of the screw.
 溶融混練押出機は、溶融混練の対象となる原材料を供給するための供給口を複数備えていることが好ましい。前記液晶ポリマー及び磁性フィラーから加熱溶融体を形成して、液晶ポリマー組成物をペレット状として得るときには、まず、溶融混練押出機の押出方向上流側に設けられた第一の供給口から、液晶ポリマーの全供給量の50質量%以上と、前記磁性フィラーの全供給量の50質量%以下とを、溶融混練押出機に供給することが好ましい。具体的には、溶融混練押出機の押出方向上流側に設けられた第一の供給口から、液晶ポリマーの全供給量の60~100質量%と、前記磁性フィラーの全供給量の0~40質量%とを、溶融混練押出機に供給することが好ましい。そして、液晶ポリマーの残部([液晶ポリマーの全供給量]-[第一の供給口からの液晶ポリマーの供給量])と、前記磁性フィラーの残部([磁性フィラーの全供給量]-[第一の供給口からの磁性フィラーの供給量])とを、第一の供給口よりも押出方向下流側に設けられた第二の供給口から溶融混練押出機に供給することが好ましい。このようにすることで、加熱溶融体において液晶ポリマーと前磁性フィラーとの接触時間が比較的短くなり、液晶ポリマーの劣化が抑制される傾向がある。そしてこのような効果により優れる点から、第一の供給口からの液晶ポリマーの供給量は、その全供給量の60質量%以上であることが好ましい。具体的には、第一の供給口からの液晶ポリマーの供給量は、その全供給量の60~100質量%であることが好ましい。また、第一の供給口からの前記磁性フィラーの供給量は、その全供給量の20質量%以下であることが好ましい。なお、上述のように、液晶ポリマー及び前記磁性フィラー以外の他の成分を供給する場合、前記他の成分は、第二の供給口から前記磁性フィラーと共に供給することが好ましい。 It is preferable that the melt-kneading extruder includes a plurality of supply ports for supplying raw materials to be melt-kneaded. When a liquid melt is formed from the liquid crystal polymer and the magnetic filler to obtain a liquid crystal polymer composition in the form of pellets, first, the liquid crystal polymer is supplied from the first supply port provided upstream in the extrusion direction of the melt-kneading extruder. Preferably, 50% by mass or more of the total supply amount and 50% by mass or less of the total supply amount of the magnetic filler are supplied to the melt-kneading extruder. Specifically, from the first supply port provided on the upstream side in the extrusion direction of the melt-kneading extruder, 60 to 100% by mass of the total supply amount of the liquid crystal polymer and 0 to 40% of the total supply amount of the magnetic filler. The mass% is preferably supplied to the melt-kneading extruder. The remainder of the liquid crystal polymer ([total supply amount of liquid crystal polymer]-[supply amount of liquid crystal polymer from the first supply port]) and the remainder of the magnetic filler ([total supply amount of magnetic filler]-[first It is preferable to supply the magnetic filler supply amount from one supply port]) to the melt-kneading extruder from a second supply port provided downstream in the extrusion direction from the first supply port. By doing in this way, the contact time of a liquid crystal polymer and a premagnetic filler in a heating melt becomes comparatively short, and there exists a tendency for deterioration of a liquid crystal polymer to be suppressed. And from the point which is excellent by such an effect, it is preferable that the supply amount of the liquid crystal polymer from a 1st supply port is 60 mass% or more of the total supply amount. Specifically, the supply amount of the liquid crystal polymer from the first supply port is preferably 60 to 100% by mass of the total supply amount. Moreover, it is preferable that the supply amount of the said magnetic filler from a 1st supply port is 20 mass% or less of the total supply amount. In addition, as mentioned above, when supplying other components other than a liquid crystal polymer and the said magnetic filler, it is preferable to supply the said other component with the said magnetic filler from the 2nd supply port.
 本発明においては、溶融混練押出機のノズルからこの押出機の外部に押し出された混練物(液晶ポリマー組成物)を、冷却速度60℃/秒以下で冷却する。このようにすることで、液晶ポリマー組成物から得られた成形体は、優れた電磁波シールド性を有するものとなる。 In the present invention, the kneaded product (liquid crystal polymer composition) extruded from the nozzle of the melt kneading extruder to the outside of the extruder is cooled at a cooling rate of 60 ° C./second or less. By doing in this way, the molded object obtained from the liquid crystal polymer composition will have the outstanding electromagnetic wave shielding property.
 前記冷却速度は、例えば、溶融混練押出機から押し出された混練物の冷却方法、及び混練物の押出量で調節できる。
 前記冷却速度は、例えば、溶融混練押出機のノズルから押し出された直後の混練物の温度a(℃)と、混練物がノズルから押し出されて(温度a(℃)を測定してから)時間t(秒)が経過した後の混練物の温度b(℃)とを測定し、温度aと温度bとの差を時間tで除する((a-b)/t)ことにより求められる。混練物の温度は、例えば、赤外放射温度計を用いて簡便に測定できる。時間tは、例えば、3~10秒に設定することで、より高い精度で冷却速度を測定できる。
The said cooling rate can be adjusted with the cooling method of the kneaded material extruded from the melt-kneading extruder, and the extrusion amount of a kneaded material, for example.
The cooling rate is, for example, the temperature a (° C.) of the kneaded product immediately after being extruded from the nozzle of the melt-kneading extruder, and the time after the kneaded product is extruded from the nozzle (after measuring the temperature a (° C.)). This is obtained by measuring the temperature b (° C.) of the kneaded material after elapse of t (seconds) and dividing the difference between the temperature a and the temperature b by the time t ((ab) / t). The temperature of the kneaded product can be easily measured using, for example, an infrared radiation thermometer. By setting the time t to 3 to 10 seconds, for example, the cooling rate can be measured with higher accuracy.
 本発明においては、ノズルから押し出された混練物は、液晶ポリマー組成物として成形体の製造に供するまでの間など、再度加熱を行うまでの間における冷却中に、冷却速度を60℃/秒以下とすればよい。具体的には、冷却温度を10~60℃/秒とすることが好ましく、20~60℃/秒とすることがより好ましい。そして、通常は、ノズルから押し出された直後の混練物は高温なので、これに何らかの強制的な冷却操作を加えて冷却する場合には、例えば、この冷却操作時の冷却速度を60℃/秒以下に制御し、少なくとも、自然に放熱させた状態で冷却速度が60℃/秒を越えないようになるまで、この冷却操作を継続すればよい。押し出された直後の混練物に、強制的な冷却操作を行わない場合には、冷却速度は通常、60℃/秒を越えることはないと考えられるが、工程に長時間を要するため、非効率的である。 In the present invention, the kneaded product extruded from the nozzle is cooled at a cooling rate of 60 ° C./second or less during cooling until it is heated again, such as until it is used for production of a molded product as a liquid crystal polymer composition. And it is sufficient. Specifically, the cooling temperature is preferably 10 to 60 ° C./second, more preferably 20 to 60 ° C./second. Usually, since the kneaded material immediately after being extruded from the nozzle is hot, when cooling is performed by adding some forced cooling operation to this, for example, the cooling rate during this cooling operation is 60 ° C./second or less. This cooling operation may be continued until at least the cooling rate does not exceed 60 ° C./second in a state where heat is naturally radiated. If the forced kneading operation is not performed on the kneaded material immediately after being extruded, the cooling rate is generally considered not to exceed 60 ° C./sec. Is.
 本発明においては、切断機を用いてノズルから押し出された混練物をペレット状等の形状に切断する場合には、前記温度bを切断機の入り口直前の混練物の温度とすることが好ましい。この場合、前記時間tは、押し出された混練物がノズルから前記切断機の入り口に到達するまでの時間となる。 In the present invention, when the kneaded product extruded from the nozzle using a cutting machine is cut into a pellet or the like, the temperature b is preferably set to the temperature of the kneaded product immediately before the entrance of the cutting machine. In this case, the time t is a time until the extruded kneaded material reaches the entrance of the cutting machine from the nozzle.
 混練物の強制的な冷却は、空冷、水冷等で行うことが好ましい。「空冷」とは、エアーや冷風などを混錬物に吹き付けることである。「水冷」とは、冷却シャワーなどを混錬物に吹き付けることや、混錬物を水に浸すことである。例えば、ストランド冷却引取装置を用いれば、冷却シャワー水の噴霧やエアーの吹き付けの条件を調節することで、比較的容易に混練物の冷却速度を調節できる。このようなストランド冷却引取装置としては、例えば、いすず化工機社製やタナカ社製のものが挙げられる。
 例えば、水冷時の冷却速度は60℃/秒以下、空冷時の冷却速度は40℃/秒以下とすることができる。具体的には、水冷時の冷却速度は20~60℃/秒が好ましい。また、空冷時の冷却速度は20~40℃/秒が好ましい。なかでも、空冷で冷却速度22~53℃/秒で冷却することが好ましい。
The forced cooling of the kneaded product is preferably performed by air cooling, water cooling, or the like. “Air cooling” refers to blowing air or cold air onto the kneaded material. “Water cooling” means spraying a cooling shower or the like on the kneaded product, or immersing the kneaded product in water. For example, if a strand cooling take-up device is used, the cooling rate of the kneaded product can be adjusted relatively easily by adjusting the conditions for spraying cooling shower water and blowing air. Examples of such a strand cooling and taking device include those manufactured by Isuzu Chemical Industries and Tanaka.
For example, the cooling rate during water cooling can be 60 ° C./second or less, and the cooling rate during air cooling can be 40 ° C./second or less. Specifically, the cooling rate during water cooling is preferably 20 to 60 ° C./second. The cooling rate during air cooling is preferably 20 to 40 ° C./second. In particular, it is preferable to cool by air cooling at a cooling rate of 22 to 53 ° C./second.
 混練物の押出量は、5~300kg/時間であることが好ましく、10~100kg/時間であることがより好ましい。このような範囲とすることで、混練物の冷却速度をより容易に調節できる。 The extrusion rate of the kneaded product is preferably 5 to 300 kg / hour, more preferably 10 to 100 kg / hour. By setting it as such a range, the cooling rate of a kneaded material can be adjusted more easily.
<成形体>
 本発明の第二の態様に係る成形体は、前記本発明の第一の態様における製造方法で得られた液晶ポリマー組成物を成形してなることを特徴とする。
 かかる成形体は、前記液晶ポリマー組成物を用いたことで、絶縁性に加え電磁波シールド性にも優れる。
<Molded body>
The molded body according to the second aspect of the present invention is characterized in that the liquid crystal polymer composition obtained by the production method according to the first aspect of the present invention is molded.
Such a molded article is excellent in electromagnetic wave shielding properties in addition to insulating properties by using the liquid crystal polymer composition.
本発明の第四の態様に係る成形体は、前記本発明の第三の態様における製造方法で得られた液晶ポリマー組成物を成形してなることを特徴とする。
 かかる成形体は、前記液晶ポリマー組成物を用いたことで、絶縁性に加え電磁波シールド性にも優れる。
The molded body according to the fourth aspect of the present invention is formed by molding the liquid crystal polymer composition obtained by the production method according to the third aspect of the present invention.
Such a molded article is excellent in electromagnetic wave shielding properties in addition to insulating properties by using the liquid crystal polymer composition.
 液晶ポリマー組成物の成形方法の例としては、射出成形法、押出成形法、トランスファー成形法、ブロー成形法、プレス成形法、射出プレス成形法、押出射出成形法が挙げられ、必要に応じて、これらの2種以上を組み合わせてもよい。これらの中でも、電気・電子機器の部品として用いられる電気・電子部品の製造には、射出成形法、押出射出成形法等の溶融成形法が好ましく、射出成形法がより好ましい。 Examples of the molding method of the liquid crystal polymer composition include an injection molding method, an extrusion molding method, a transfer molding method, a blow molding method, a press molding method, an injection press molding method, and an extrusion injection molding method. Two or more of these may be combined. Among these, for the production of electrical / electronic components used as components of electrical / electronic devices, melt molding methods such as injection molding and extrusion injection molding are preferable, and injection molding is more preferable.
 射出成形は、射出成形機(例えば、日精樹脂工業社製「油圧式横型成形機PS40E5ASE型」)を用いて、前記液晶ポリマー組成物を溶融させ、溶融した液晶ポリマー組成物を、適切な温度に加熱して、所望のキャビティ形状を有する金型内に射出することにより行うことができる。射出するために液晶ポリマー組成物を加熱溶融させる温度は、使用する液晶ポリマー組成物の流動開始温度Tp’℃を基点として、[Tp’+10]℃以上、[Tp’+50]℃以下とすることが好ましい。また、金型の温度は、液晶ポリマー組成物の冷却速度と生産性の点から、室温(例えば、23℃)~180℃の範囲から選択することが好ましい。 For injection molding, the liquid crystal polymer composition is melted using an injection molding machine (for example, “hydraulic horizontal molding machine PS40E5ASE type” manufactured by Nissei Plastic Industry Co., Ltd.), and the molten liquid crystal polymer composition is brought to an appropriate temperature. This can be done by heating and injecting into a mold having the desired cavity shape. The temperature at which the liquid crystal polymer composition is heated and melted for injection is set to [Tp ′ + 10] ° C. or more and [Tp ′ + 50] ° C. or less based on the flow start temperature Tp ′ ° C. of the liquid crystal polymer composition to be used. Is preferred. The temperature of the mold is preferably selected from the range of room temperature (for example, 23 ° C.) to 180 ° C. from the viewpoint of the cooling rate and productivity of the liquid crystal polymer composition.
 前記成形体は、例えば、23℃における体積固有抵抗値を、好ましくは1×10Ωm以上とすることができる。具体的には、23℃における体積固有抵抗値を、1×1010~1×1018Ωmとすることが好ましく、1×1013~1×1015Ωmとすることがより好ましい。ここで、「体積固有抵抗値」は、「ASTM D257」に準拠して測定した値である。
23℃における体積固有抵抗値が1×10Ωm以上である成形体は、例えば、ノズル、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)100質量部と、下記成分(B)100~250質量部を前記シリンダに供給して前記成分(A)と前記成分(B)とを溶融混練して、前記ノズルから前記混練物を前記溶融混練押出機の外部に押し出し、前記混練物を冷却速度10~60℃/秒で空冷し、得られた前記混錬物を射出成形することで得られる。
 成分(A)液晶ポリマー
 成分(B)セラミック粉及び軟磁性金属粉からなる複合材料を不活性ガス雰囲気下で熱処理してなる磁性フィラー
 また、前記成形体は、例えば、電磁波シールド性を周波数2.5GHzの高周波に対する減衰効果で表して、好ましくは1dB以上、より好ましくは2.5dB以上とすることができる。
電磁波シールド性を周波数2.5GHzの高周波に対する減衰効果で表して、1dB以上である成形体は、例えば、ノズル、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)100質量部と、下記成分(B)150~250質量部を前記シリンダに供給して前記成分(A)と前記成分(B)とを溶融混練して、前記ノズルから前記混練物を前記溶融混練押出機の外部に押し出し、前記混練物を冷却速度23℃/秒で空冷し、得られた前記混錬物を射出成形することで得られる。
 成分(A)液晶ポリマー
 成分(B)セラミック粉及び軟磁性金属粉からなる複合材料を不活性ガス雰囲気下で熱処理してなる磁性フィラー
For example, the molded article may have a volume specific resistance value at 23 ° C. of preferably 1 × 10 6 Ωm or more. Specifically, the volume resistivity value at 23 ° C. is preferably 1 × 10 10 to 1 × 10 18 Ωm, and more preferably 1 × 10 13 to 1 × 10 15 Ωm. Here, the “volume specific resistance value” is a value measured according to “ASTM D257”.
The molded body having a volume resistivity of 1 × 10 6 Ωm or more at 23 ° C. was provided in the cylinder using, for example, a melt kneading extruder provided with a nozzle, a cylinder, and a screw installed in the cylinder. 100 parts by mass of the following component (A) and 100 to 250 parts by mass of the following component (B) are supplied from the supply port to the cylinder, and the component (A) and the component (B) are melt-kneaded, The kneaded product is extruded from the nozzle to the outside of the melt-kneading extruder, the kneaded product is air-cooled at a cooling rate of 10 to 60 ° C./sec, and the obtained kneaded product is injection-molded.
Component (A) Liquid crystal polymer Component (B) Magnetic filler obtained by heat-treating composite material composed of ceramic powder and soft magnetic metal powder in an inert gas atmosphere. Expressed by an attenuation effect with respect to a high frequency of 5 GHz, it can be preferably 1 dB or more, more preferably 2.5 dB or more.
Expressing the electromagnetic wave shielding property by a damping effect with respect to a high frequency of 2.5 GHz, the molded body having 1 dB or more uses, for example, a melt-kneading extruder provided with a nozzle, a cylinder, and a screw installed in the cylinder. 100 parts by mass of the following component (A) and 150 to 250 parts by mass of the following component (B) are supplied to the cylinder from the supply port provided in the cylinder to melt the component (A) and the component (B). It is obtained by kneading, extruding the kneaded material from the nozzle to the outside of the melt-kneading extruder, air-cooling the kneaded material at a cooling rate of 23 ° C./sec, and injection molding the obtained kneaded material. .
Component (A) Liquid crystal polymer Component (B) Magnetic filler obtained by heat-treating a composite material composed of ceramic powder and soft magnetic metal powder in an inert gas atmosphere
 前記成形体は、各種用途に適用できるが、特にその電気絶縁性及び電磁波シールド性を有効活用できる点から、表面実装部品として好適に用いられる。かかる表面実装部品としては、例えば、電気・電子部品のハウジング、チョークコイル、コネクターが挙げられる。すなわち、前記成形体は、電気・電子部品のハウジング、チョークコイル、又はコネクターとしての使用が好適である。前記成形体を表面実装部品として用いると、電磁波ノイズを吸収するという効果が期待されるので、極めて有用である。 The molded body can be applied to various uses, but is particularly preferably used as a surface-mounted component because it can effectively utilize its electrical insulation and electromagnetic shielding properties. Examples of such surface mount components include housings for electric / electronic components, choke coils, and connectors. That is, the molded body is suitable for use as a housing for electric / electronic parts, a choke coil, or a connector. When the molded body is used as a surface mount component, an effect of absorbing electromagnetic wave noise is expected, which is extremely useful.
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。なお、液晶ポリエステルの流動開始温度は、以下の方法で測定した。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples. In addition, the flow start temperature of liquid crystalline polyester was measured with the following method.
(液晶ポリエステルの流動開始温度の測定)
 フローテスター(島津製作所社製、CFT-500型)を用いて、液晶ポリエステル約2gを、内径1mm及び長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48000ポイズ)の粘度を示す温度を測定した。
(Measurement of flow start temperature of liquid crystal polyester)
Using a flow tester (manufactured by Shimadzu Corporation, CFT-500 type), about 2 g of liquid crystal polyester was filled into a cylinder equipped with a die having a nozzle having an inner diameter of 1 mm and a length of 10 mm, and 9.8 MPa (100 kg / cm 2). The liquid crystal polyester was melted while being heated at a rate of 4 ° C./min under a load of 4), extruded from a nozzle, and a temperature showing a viscosity of 4800 Pa · s (48000 poise) was measured.
<液晶ポリエステルの製造>
[製造例1]
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)及び無水酢酸1347.6g(13.2モル)を仕込み、反応器内を十分に窒素ガスで置換した後、窒素ガス気流下で撹拌しながら30分かけて150℃まで昇温し、この温度(150℃)を保持して3時間還流させた。
 次いで、留出する副生成物の酢酸及び未反応の無水酢酸を留去しながら、2時間50分かけて320℃まで昇温し、トルクの上昇が認められた時点で、反応器から内容物を取り出し、室温まで冷却後、粗粉砕機で粉砕して粉末とした。
 この粉末を、窒素ガス雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から285℃まで5時間かけて昇温し、この温度(285℃)で3時間保持することにより、固相重合を行った後、冷却し、液晶ポリエステルを得た。この液晶ポリエステルの流動開始温度は327℃であった。
<Manufacture of liquid crystal polyester>
[Production Example 1]
To a reactor equipped with a stirrer, a torque meter, a nitrogen gas inlet tube, a thermometer and a reflux condenser, 994.5 g (7.2 mol) of p-hydroxybenzoic acid, 446.9 g of 4,4′-dihydroxybiphenyl ( 2.4 mol), 299.0 g (1.8 mol) of terephthalic acid, 99.7 g (0.6 mol) of isophthalic acid, and 1347.6 g (13.2 mol) of acetic anhydride. After substituting with nitrogen gas, the temperature was raised to 150 ° C. over 30 minutes while stirring under a nitrogen gas stream, and this temperature (150 ° C.) was maintained and refluxed for 3 hours.
Next, while distilling off the by-product acetic acid and unreacted acetic anhydride distilled off, the temperature was raised to 320 ° C. over 2 hours and 50 minutes, and when an increase in torque was observed, the contents were discharged from the reactor. After cooling to room temperature, it was pulverized with a coarse pulverizer to obtain a powder.
The powder was heated from room temperature to 250 ° C. over 1 hour under a nitrogen gas atmosphere, heated from 250 ° C. to 285 ° C. over 5 hours, and held at this temperature (285 ° C.) for 3 hours, After performing solid phase polymerization, the mixture was cooled to obtain a liquid crystal polyester. The liquid crystal polyester had a flow initiation temperature of 327 ° C.
<磁性フィラーの製造(複合材料の熱処理)>
[製造例2]
 鉄粉をシリカ粒子で被覆してなる複合材料である電磁波吸収フィラー(日立ハイテクノロジーズ社製、体積平均粒径20μm、扁平率2.7)をるつぼに投入し、これを電気炉に入れ、窒素ガス雰囲気下、表1に示す温度及び時間で熱処理を行い、磁性フィラーを得た。
<Manufacture of magnetic filler (heat treatment of composite material)>
[Production Example 2]
An electromagnetic wave absorbing filler (manufactured by Hitachi High-Technologies Corporation, volume average particle size 20 μm, flatness 2.7), which is a composite material obtained by coating iron powder with silica particles, is put into a crucible, and this is put into an electric furnace and nitrogen Under a gas atmosphere, heat treatment was performed at the temperature and time shown in Table 1 to obtain a magnetic filler.
<液晶ポリエステル組成物及び成形体の製造>
[実施例1]
(液晶ポリエステル組成物の製造)
 製造例1で得られた液晶ポリエステルと、製造例2で得られた磁性フィラーとを、表1に示す割合で、同方向二軸溶融混練押出機(池貝鉄工社製「PCM-30HS」)のシリンダに、このシリンダに設けられた供給口から供給した。このとき、液晶ポリエステルの全供給量のうち70質量%を、前記押出機の上流側に位置する第一の供給口から供給し、液晶ポリエステルの残部である全供給量の30質量%と、磁性フィラーの全量とを、前記押出機の第一の供給口よりも押出方向下流側に位置する第二の供給口から供給した。次いで、供給した成分を溶融混練した後、表1に示すように、混練物を前記押出機のノズルからストランド状に押し出して冷却し、ストランドカッターで裁断して造粒することにより、ペレット状の液晶ポリエステル組成物を得た。このとき、ストランド状の混練物は、ストランド冷却引取装置(いすず化工機社製)を用い、エアーの吹き付けによる空冷で冷却した。また、冷却速度は、押出機のノズルから押し出された直後の混練物の温度aと、ストランドカッター入り口直前の混練物の温度bとの差を、ノズルからストランドカッターに到達するまでの時間tで割った値とした。
<Production of Liquid Crystalline Polyester Composition and Molded Body>
[Example 1]
(Production of liquid crystal polyester composition)
The liquid crystal polyester obtained in Production Example 1 and the magnetic filler obtained in Production Example 2 were mixed in the same direction biaxial melt-kneading extruder ("PCM-30HS" manufactured by Ikekai Tekko Co., Ltd.) at the ratio shown in Table 1. The cylinder was supplied from a supply port provided in the cylinder. At this time, 70% by mass of the total supply amount of the liquid crystal polyester is supplied from the first supply port located on the upstream side of the extruder, and 30% by mass of the total supply amount which is the remainder of the liquid crystal polyester, and magnetic The total amount of filler was supplied from a second supply port located downstream of the first supply port of the extruder in the extrusion direction. Next, after melt-kneading the supplied components, as shown in Table 1, the kneaded product is extruded in a strand form from the nozzle of the extruder, cooled, cut with a strand cutter and granulated, thereby forming a pellet-like shape. A liquid crystal polyester composition was obtained. At this time, the strand-like kneaded material was cooled by air cooling by blowing air using a strand cooling take-up device (manufactured by Isuzu Chemical Industries Ltd.). The cooling rate is the time t from the nozzle to the strand cutter, which is the difference between the temperature a of the kneaded product immediately after being extruded from the nozzle of the extruder and the temperature b of the kneaded product immediately before the strand cutter entrance. The value was divided.
(成形体の製造)
 射出成形機(日精樹脂工業社製「PS40E5ASE型」)を用いて、上記で得られた液晶ポリエステル組成物を、シリンダー温度340℃、金型温度130℃、射出率30cm3/sの条件で射出成形し、サイズが64mm×64mm×1mmの成形体を得た。
(Manufacture of molded products)
Using the injection molding machine (“PS40E5ASE type” manufactured by Nissei Plastic Industry Co., Ltd.), the liquid crystal polyester composition obtained above was injected under the conditions of a cylinder temperature of 340 ° C., a mold temperature of 130 ° C., and an injection rate of 30 cm 3 / s. Molding was performed to obtain a molded body having a size of 64 mm × 64 mm × 1 mm.
[実施例2~4、比較例1]
 製造条件を表1に示す通りとしたこと以外は、実施例1と同様に液晶ポリエステル組成物及び成形体を製造した。なお、ストランド状の混練物の水冷は、冷却シャワー水の噴霧により行った。
[Examples 2 to 4, Comparative Example 1]
A liquid crystal polyester composition and a molded body were produced in the same manner as in Example 1 except that the production conditions were as shown in Table 1. The strand-shaped kneaded product was water-cooled by spraying cooling shower water.
<成形体の評価>
(電磁波減衰効果の測定)
 上記各実施例及び比較例で得られた成形体を用いて、「ASTM D4935」に準拠した同軸管タイプ(キーコム社製「S-39D」)により、周波数2.5GHzで、成形体の電磁波減衰効果を測定し、電磁波シールド性を評価した。結果を表1に示す。
<Evaluation of molded body>
(Measurement of electromagnetic wave attenuation effect)
Using the molded body obtained in each of the above Examples and Comparative Examples, the electromagnetic wave attenuation of the molded body at a frequency of 2.5 GHz using a coaxial tube type (“S-39D” manufactured by Keycom) according to “ASTM D4935”. The effect was measured and the electromagnetic shielding properties were evaluated. The results are shown in Table 1.
(体積固有抵抗値の測定)
 上記各実施例及び比較例で得られた成形体を用いて、「ASTM D257」に準拠し、東亜電波工業社製「SM-10E型超絶縁計」により体積固有抵抗値を測定した。結果を表1に示す。
(Measurement of volume resistivity)
Using the molded bodies obtained in the above Examples and Comparative Examples, the volume resistivity value was measured by “SM-10E type super insulation meter” manufactured by Toa Denpa Kogyo Co., Ltd. according to “ASTM D257”. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 上記結果から明らかなように、押出機のノズルから押し出した混練物を、22~53℃/秒の冷却速度で冷却した実施例1~4の成形体は、いずれも優れた電磁波シールド性を示した。これに対して、押出機のノズルから押し出した混練物を、67℃/秒の冷却速度で冷却した比較例1の成形体は、電磁波シールド性が劣っていた。 As is apparent from the above results, the molded products of Examples 1 to 4 in which the kneaded product extruded from the nozzle of the extruder was cooled at a cooling rate of 22 to 53 ° C./second exhibited excellent electromagnetic shielding properties. It was. On the other hand, the molded product of Comparative Example 1 in which the kneaded product extruded from the nozzle of the extruder was cooled at a cooling rate of 67 ° C./second was inferior in electromagnetic shielding properties.
 本発明は、電気・電子機器における電磁波シールド材に利用可能である。 The present invention can be used as an electromagnetic shielding material in electrical / electronic equipment.

Claims (11)

  1.  ノズル、シリンダ及び前記シリンダ内に設置されたスクリューを備えた溶融混練押出機を用い、前記シリンダに設けられた供給口から、下記成分(A)及び(B)を前記シリンダに供給して前記成分(A)と前記成分(B)とを溶融混練して混練物を得ること、
     前記ノズルから前記混練物を前記溶融混練押出機の外部に押し出すこと、及び
    前記混練物を冷却速度60℃/秒以下で冷却すること、
    を含む液晶ポリマー組成物の製造方法。
     成分(A)液晶ポリマー
     成分(B)セラミック粉及び軟磁性金属粉からなる複合材料を不活性ガス雰囲気下で熱処理してなる磁性フィラー
    Using a melt-kneading extruder equipped with a nozzle, a cylinder and a screw installed in the cylinder, the following components (A) and (B) are supplied to the cylinder from a supply port provided in the cylinder, and the component Melt kneading (A) and the component (B) to obtain a kneaded product,
    Extruding the kneaded material from the nozzle to the outside of the melt-kneading extruder, and cooling the kneaded material at a cooling rate of 60 ° C./second or less,
    A method for producing a liquid crystal polymer composition comprising:
    Component (A) Liquid crystal polymer Component (B) Magnetic filler obtained by heat-treating a composite material composed of ceramic powder and soft magnetic metal powder in an inert gas atmosphere
  2.  前記成分(A)が、全芳香族液晶ポリエステルである請求項1に記載の液晶ポリマー組成物の製造方法。 The method for producing a liquid crystal polymer composition according to claim 1, wherein the component (A) is a wholly aromatic liquid crystal polyester.
  3.  前記成分(A)が、下記一般式(1)で表される繰返し単位、下記一般式(2)で表される繰返し単位、及び下記一般式(3)で表される繰返し単位を有する液晶ポリエステルである請求項1又は2に記載の液晶ポリマー組成物の製造方法。
     (1)-O-Ar-CO-
     (2)-CO-Ar-CO-
     (3)-X-Ar-Y-
    (式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の一つ以上の水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
     (4)-Ar-Z-Ar
    (式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
    Liquid crystal polyester in which the component (A) has a repeating unit represented by the following general formula (1), a repeating unit represented by the following general formula (2), and a repeating unit represented by the following general formula (3) The method for producing a liquid crystal polymer composition according to claim 1 or 2.
    (1) —O—Ar 1 —CO—
    (2) —CO—Ar 2 —CO—
    (3) —X—Ar 3 —Y—
    (In the formula, Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group; Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes; X and Y are each independently an oxygen atom or imino group; one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.)
    (4) —Ar 4 —Z—Ar 5
    (In the formula, Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group; Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group.)
  4.  前記セラミック粉が酸化ケイ素を主成分とする請求項1~3のいずれか一項に記載の液晶ポリマー組成物の製造方法。 The method for producing a liquid crystal polymer composition according to any one of claims 1 to 3, wherein the ceramic powder contains silicon oxide as a main component.
  5.  前記軟磁性金属粉が鉄又は鉄合金を主成分とする請求項1~4のいずれか一項に記載の液晶ポリマー組成物の製造方法。 The method for producing a liquid crystal polymer composition according to any one of claims 1 to 4, wherein the soft magnetic metal powder contains iron or an iron alloy as a main component.
  6.  前記軟磁性金属粉の扁平率が2以上である請求項1~5のいずれか一項に記載の液晶ポリマー組成物の製造方法。 6. The method for producing a liquid crystal polymer composition according to claim 1, wherein the soft magnetic metal powder has an aspect ratio of 2 or more.
  7.  前記複合材料が、前記軟磁性金属粉を前記セラミック粉で被覆してなる請求項1~6のいずれか一項に記載の液晶ポリマー組成物の製造方法。 The method for producing a liquid crystal polymer composition according to any one of claims 1 to 6, wherein the composite material is formed by coating the soft magnetic metal powder with the ceramic powder.
  8.  前記成分(B)が、前記熱処理が800℃以上で行われる請求項1~7のいずれか一項に記載の液晶ポリマー組成物の製造方法。 The method for producing a liquid crystal polymer composition according to any one of claims 1 to 7, wherein the component (B) is subjected to the heat treatment at 800 ° C or higher.
  9.  前記成分(B)の供給量が、前記成分(A)100質量部に対して、100~450質量部である請求項1~8のいずれか一項に記載の液晶ポリマー組成物の製造方法。 The method for producing a liquid crystal polymer composition according to any one of claims 1 to 8, wherein a supply amount of the component (B) is 100 to 450 parts by mass with respect to 100 parts by mass of the component (A).
  10.  前記スクリューにおいて、スクリューの直径(D)に対するスクリューの有効長さ(L)の比率(L/D)が20以上であり、
    前記供給口が、第一の供給口と、前記第一の供給口よりも押出方向下流側に位置する第二の供給口とを備え、
    前記混練物を得ることが、前記成分(A)の全供給量の50質量%以上と、前記成分(B)の全供給量の50質量%以下とを、前記第一の供給口から前記シリンダに供給し、前記成分(A)の残部と、前記成分(B)の残部とを、前記第二の供給口から前記シリンダに供給して前記成分(A)と前記成分(B)とを溶融混練して混練物を得ることを含む、請求項1~9のいずれか一項に記載の液晶ポリマー組成物の製造方法。
    In the screw, the ratio (L / D) of the effective length (L) of the screw to the screw diameter (D) is 20 or more,
    The supply port includes a first supply port and a second supply port located on the downstream side in the extrusion direction from the first supply port,
    In order to obtain the kneaded material, 50% by mass or more of the total supply amount of the component (A) and 50% by mass or less of the total supply amount of the component (B) are transferred from the first supply port to the cylinder. The remaining part of the component (A) and the remaining part of the component (B) are supplied from the second supply port to the cylinder to melt the component (A) and the component (B). The method for producing a liquid crystal polymer composition according to any one of claims 1 to 9, comprising kneading to obtain a kneaded product.
  11.  請求項1~10のいずれか一項に記載の製造方法で得られた液晶ポリマー組成物を成形してなる成形体。
     
    A molded article obtained by molding the liquid crystal polymer composition obtained by the production method according to any one of claims 1 to 10.
PCT/JP2012/079151 2011-11-11 2012-11-09 Method for producing liquid crystal polymer composition, and molded article WO2013069777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-247741 2011-11-11
JP2011247741A JP2013103967A (en) 2011-11-11 2011-11-11 Method for producing liquid crystalline polymer composition, and molded article

Publications (1)

Publication Number Publication Date
WO2013069777A1 true WO2013069777A1 (en) 2013-05-16

Family

ID=48290144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079151 WO2013069777A1 (en) 2011-11-11 2012-11-09 Method for producing liquid crystal polymer composition, and molded article

Country Status (3)

Country Link
JP (1) JP2013103967A (en)
TW (1) TW201335246A (en)
WO (1) WO2013069777A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294690B2 (en) * 2014-02-07 2018-03-14 住友化学株式会社 Liquid crystalline polyester composition
JP6359835B2 (en) * 2014-02-07 2018-07-18 住友化学株式会社 Liquid crystalline polyester composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119097A (en) * 1974-03-05 1975-09-18
JPH0776018A (en) * 1993-09-08 1995-03-20 Mitsubishi Gas Chem Co Inc Preparation of resin molding material
JPH08192425A (en) * 1995-01-18 1996-07-30 Polyplastics Co Cooling of string like thermoplastic resin or string like molten thermoplastic resin composition
JP2001237591A (en) * 2000-02-25 2001-08-31 Sony Corp Electromagnetic wave shield material and manufacturing method thereof
JP2010095669A (en) * 2008-10-20 2010-04-30 Sumitomo Chemical Co Ltd Liquid crystalline polymer composition and molded article
JP2010168410A (en) * 2009-01-20 2010-08-05 Sumitomo Chemical Co Ltd Liquid crystalline polymer composition and molded article obtained by using the same
JP2011224924A (en) * 2010-04-22 2011-11-10 Umg Abs Ltd Method of manufacturing polylactic acid thermoplastic resin pellet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119097A (en) * 1974-03-05 1975-09-18
JPH0776018A (en) * 1993-09-08 1995-03-20 Mitsubishi Gas Chem Co Inc Preparation of resin molding material
JPH08192425A (en) * 1995-01-18 1996-07-30 Polyplastics Co Cooling of string like thermoplastic resin or string like molten thermoplastic resin composition
JP2001237591A (en) * 2000-02-25 2001-08-31 Sony Corp Electromagnetic wave shield material and manufacturing method thereof
JP2010095669A (en) * 2008-10-20 2010-04-30 Sumitomo Chemical Co Ltd Liquid crystalline polymer composition and molded article
JP2010168410A (en) * 2009-01-20 2010-08-05 Sumitomo Chemical Co Ltd Liquid crystalline polymer composition and molded article obtained by using the same
JP2011224924A (en) * 2010-04-22 2011-11-10 Umg Abs Ltd Method of manufacturing polylactic acid thermoplastic resin pellet

Also Published As

Publication number Publication date
TW201335246A (en) 2013-09-01
JP2013103967A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP6062579B2 (en) High thermal conductive resin molding and method for producing the same
US9538694B2 (en) Method of producing a liquid-crystalline polymer composition and molded article thereof
JP5396810B2 (en) Liquid crystal polymer composition and molded article
JP5767809B2 (en) High thermal conductive resin molding
JP4169322B2 (en) Totally aromatic liquid crystal polyester resin molding
JP5141568B2 (en) Liquid crystal polymer composition and molded product using the same
JP2008075063A (en) Liquid crystalline polymer molding
JP2010007067A (en) Liquid crystal polymer composition containing nano-structured hollow carbon material, and molded article thereof
JP2009001639A (en) Resin composition excellent in heat resistance and method for producing the same
JP5542513B2 (en) High thermal conductivity thermoplastic resin composition for extrusion molding
JP2010215905A (en) Thermoplastic resin composition, method for producing the same, and molded article
TWI797724B (en) Liquid crystal polyester resin composition for ultra-thin injection and manufacturing method thereof
JP2011052204A (en) Highly thermally conductive thermoplastic resin composition for blow molding
JP5468975B2 (en) High heat conductivity thermoplastic resin heat sink
WO2013069777A1 (en) Method for producing liquid crystal polymer composition, and molded article
JP6294690B2 (en) Liquid crystalline polyester composition
WO2013069782A1 (en) Method for producing thermoplastic resin composition, and molded article
JP2008111010A (en) Liquid crystal polyester resin composition and electromagnetic wave shielding member
JP6359835B2 (en) Liquid crystalline polyester composition
JP2010065179A (en) Liquid crystalline polyester resin composition and molded product formed by using the same
WO2023136196A1 (en) Liquid crystal polyester composition and molded body
JP2008112785A (en) Liquid crystal polyester resin composition and electromagnetic shielding member
JP2012193304A (en) Liquid crystal polyester resin composition and molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847027

Country of ref document: EP

Kind code of ref document: A1