WO2013066084A2 - 하향링크 제어채널 모니터링 방법 및 무선기기 - Google Patents

하향링크 제어채널 모니터링 방법 및 무선기기 Download PDF

Info

Publication number
WO2013066084A2
WO2013066084A2 PCT/KR2012/009139 KR2012009139W WO2013066084A2 WO 2013066084 A2 WO2013066084 A2 WO 2013066084A2 KR 2012009139 W KR2012009139 W KR 2012009139W WO 2013066084 A2 WO2013066084 A2 WO 2013066084A2
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
epdcch
control channel
downlink control
subframe
Prior art date
Application number
PCT/KR2012/009139
Other languages
English (en)
French (fr)
Other versions
WO2013066084A3 (ko
Inventor
김학성
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201280065712.0A priority Critical patent/CN104025532B/zh
Priority to KR1020167002963A priority patent/KR101890045B1/ko
Priority to US14/355,409 priority patent/US9510219B2/en
Priority to KR1020147011399A priority patent/KR101612207B1/ko
Priority to EP12845621.7A priority patent/EP2779557B1/en
Priority to JP2014538725A priority patent/JP5980938B2/ja
Publication of WO2013066084A2 publication Critical patent/WO2013066084A2/ko
Publication of WO2013066084A3 publication Critical patent/WO2013066084A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0093Neighbour cell search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for monitoring a downlink control channel in a wireless communication system and a wireless device using the same.
  • LTE Long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • a physical channel is a downlink channel. It may be divided into a Physical Downlink Shared Channel (PDSCH), a Physical Downlink Control Channel (PDCCH), a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • MIMO Multiple Input Multiple Ouput
  • the control channel designed in 3GPP LTE / LTE-A carries various control information. As new technologies are introduced, it is required to increase the capacity of the control channel and to improve the scheduling flexibility.
  • the present invention provides a method for monitoring a downlink control channel and a wireless device using the same.
  • a method for monitoring downlink control channel in a wireless communication system includes the wireless device monitoring a first downlink control channel in a first search space and the wireless device monitoring a second downlink control channel in a second search space.
  • the first downlink control channel is demodulated by a first reference signal generated based on an identifier of a first serving cell
  • the second downlink control channel is a second reference generated based on an identifier of a second serving cell. Demodulated by the signal.
  • the maximum number of blind decodings for the first downlink control channel may be the same as the maximum number of blind decodings for the second downlink control channel.
  • the maximum number of blind decodings for the first downlink control channel may be different from the maximum number of blind decodings for the second downlink control channel.
  • a wireless device for monitoring a control channel in a wireless communication system includes an RF (radio freqeuncy) unit for transmitting and receiving a radio signal and a processor coupled to the RF unit, wherein the processor is configured to generate a first search space.
  • RF radio freqeuncy
  • the processor is configured to generate a first search space.
  • One downlink control channel is monitored and a second downlink control channel is monitored in a second search space.
  • the complexity of blind decoding for detecting the downlink control channel can be reduced, and the efficiency of transmission resources for the downlink control channel can be improved.
  • 1 shows a structure of a downlink radio frame in 3GPP LTE-A.
  • FIG. 2 is a block diagram showing the configuration of a PDCCH.
  • 3 is an exemplary diagram illustrating monitoring of a PDCCH.
  • FIG. 4 shows an example in which a reference signal and a control channel are arranged in a DL subframe of 3GPP LTE.
  • 5 is an example of a subframe having an EPDCCH.
  • FIG. 6 shows a subframe configuration according to an embodiment of the present invention.
  • FIG 7 illustrates control channel monitoring according to an embodiment of the present invention.
  • FIG 8 illustrates downlink control channel monitoring according to an embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • Wireless devices may be fixed or mobile, and may include user equipment (UE), mobile station (MS), mobile terminal (MT), user terminal (UT), subscriber station (SS), and personal digital assistant (PDA). ), A wireless modem, a handheld device, or other terms.
  • the wireless device may be a device that supports only data communication, such as a machine-type communication (MTC) device.
  • MTC machine-type communication
  • a base station generally refers to a fixed station that communicates with a wireless device.
  • the base station BS may be referred to in other terms, such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point an access point
  • LTE long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • 3GPP LTE-A 3rd Generation Partnership Project TS Release 10. Describe what happens.
  • LTE includes LTE and / or LTE-A.
  • the wireless device may be served by a plurality of serving cells.
  • Each serving cell may be defined as a downlink (DL) component carrier (CC) or a pair of DL CC and UL (uplink) CC.
  • DL downlink
  • CC downlink component carrier
  • uplink uplink
  • the serving cell may be divided into a primary cell and a secondary cell.
  • the primary cell is a cell that operates at the primary frequency, performs an initial connection establishment process, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, may be established after a Radio Resource Control (RRC) connection is established, and may be used to provide additional radio resources.
  • RRC Radio Resource Control
  • At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, radio resource control (RRC) message).
  • RRC Radio Resource Control
  • the cell index (CI) of the primary cell may be fixed.
  • the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • 3GPP LTE-A shows a structure of a downlink radio frame in 3GPP LTE-A. It may be referred to section 6 of 3GPP TS 36.211 V10.2.0 (2011-06) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)".
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • R-UTRA Physical Channels and Modulation
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to four OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • physical control channels in 3GPP LTE / LTE-A include a physical downlink control channel (PDCCH), a physical control format indicator channel (PCFICH), and a physical hybrid-ARQ indicator channel (PHICH). .
  • PDCCH physical downlink control channel
  • PCFICH physical control format indicator channel
  • PHICH physical hybrid-ARQ indicator channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the ACK / NACK signal for uplink (UL) data on the PUSCH transmitted by the wireless device is transmitted on the PHICH.
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • transmission of a DL transport block is performed by a pair of PDCCH and PDSCH.
  • Transmission of the UL transport block is performed by a pair of PDCCH and PUSCH.
  • the wireless device receives a DL transport block on a PDSCH indicated by the PDCCH.
  • the wireless device monitors the PDCCH in the DL subframe and receives the DL resource allocation on the PDCCH.
  • the wireless device receives the DL transport block on the PDSCH indicated by the DL resource allocation.
  • FIG. 2 is a block diagram showing the configuration of a PDCCH.
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the base station determines the PDCCH format according to the DCI to be sent to the wireless device, and then attaches a cyclic redundancy check (CRC) to the DCI. ) To the CRC (block 210).
  • CRC cyclic redundancy check
  • a unique identifier of the wireless device for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI)
  • P-RNTI P-RNTI
  • SI-RNTI system information-RNTI
  • RA-RNTI random access-RNTI
  • TPC-RNTI transmit power control
  • the PDCCH carries control information for a specific wireless device (called UE-specific control information). If another RNTI is used, the PDCCH is received by all or a plurality of wireless devices in a cell. Carries common control information.
  • the DCI to which the CRC is added is encoded to generate coded data (block 220).
  • Encoding includes channel encoding and rate matching.
  • the coded data is modulated to generate modulation symbols (block 230).
  • the modulation symbols are mapped to physical resource elements (block 240). Each modulation symbol is mapped to an RE.
  • the control region in the subframe includes a plurality of control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
  • the REG includes a plurality of resource elements.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • One REG includes four REs and one CCE includes nine REGs.
  • ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
  • the number of CCEs used for transmission of the PDDCH is determined by the base station according to the channel state. For example, for a wireless device having a good downlink channel state, one CCE may be used for PDCCH transmission. Eight CCEs may be used for PDCCH transmission for a wireless device having a poor downlink channel state.
  • a control channel composed of one or more CCEs performs interleaving in units of REGs and is mapped to physical resources after a cyclic shift based on a cell ID.
  • 3 is an exemplary diagram illustrating monitoring of a PDCCH. This may be referred to in section 9 of 3GPP TS 36.213 V10.2.0 (2011-06).
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a PDCCH candidate), and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the wireless device does not know where its PDCCH is transmitted using which CCE aggregation level or DCI format at which position in the control region.
  • a plurality of PDCCHs may be transmitted in one subframe.
  • the wireless device monitors the plurality of PDCCHs every subframe.
  • monitoring means that the wireless device attempts to decode the PDCCH according to the monitored PDCCH format.
  • a search space is used to reduce the burden of blind decoding.
  • the search space may be referred to as a monitoring set of the CCE for the PDCCH.
  • the wireless device monitors the PDCCH in the corresponding search space.
  • the search space is divided into a common search space and a UE-specific search space.
  • the common search space is a space for searching for a PDCCH having common control information.
  • the common search space includes 16 CCEs up to CCE indexes 0 to 15 and supports a PDCCH having a CCE aggregation level of ⁇ 4, 8 ⁇ .
  • PDCCHs (DCI formats 0 and 1A) carrying UE specific information may also be transmitted in the common search space.
  • the UE-specific search space supports a PDCCH having a CCE aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
  • Table 1 below shows the number of PDCCH candidates monitored by the wireless device.
  • the size of the search space is determined by Table 1, and the starting point of the search space is defined differently from the common search space and the terminal specific search space.
  • the starting point of the common search space is fixed irrespective of the subframe, but the starting point of the UE-specific search space is for each subframe according to the terminal identifier (eg, C-RNTI), the CCE aggregation level and / or the slot number in the radio frame. Can vary.
  • the terminal specific search space and the common search space may overlap.
  • the search space S (L) k is defined as a set of PDCCH candidates.
  • the CCE corresponding to the PDCCH candidate m in the search space S (L) k is given as follows.
  • N CCE, k can be used to transmit the PDCCH in the control region of subframe k.
  • the control region includes a set of CCEs numbered from 0 to N CCE, k ⁇ 1.
  • M (L) is the number of PDCCH candidates at CCE aggregation level L in a given search space.
  • variable Y k is defined as follows.
  • n s is a slot number in a radio frame.
  • a DCI format and a search space to be monitored are determined according to a transmission mode of the PDSCH.
  • the following table shows an example of PDCCH monitoring configured with C-RNTI.
  • the uses of the DCI format are classified as shown in the following table.
  • DCI format 0 Used for PUSCH scheduling
  • DCI format 1 Used for scheduling one PDSCH codeword
  • DCI format 1A Used for compact scheduling and random access of one PDSCH codeword
  • DCI format 1B Used for simple scheduling of one PDSCH codeword with precoding information
  • DCI format 1C Used for very compact scheduling of one PDSCH codeword
  • DCI format 1D Used for simple scheduling of one PDSCH codeword with precoding and power offset information
  • DCI format 2 Used for PDSCH scheduling of terminals configured in closed loop spatial multiplexing mode
  • DCI format 2A Used for PDSCH scheduling of UEs configured in an open-loop spatial multiplexing mode
  • DCI format 3 Used to transmit TPC commands of PUCCH and PUSCH with 2-bit power adjustments
  • DCI format 3A Used to transmit TPC commands of PUCCH and PUSCH with 1-bit power adjustment
  • FIG. 4 shows an example in which a reference signal and a control channel are arranged in a DL subframe of 3GPP LTE.
  • the control region (or PDCCH region) includes the preceding three OFDM symbols, and the data region to which the PDSCH is transmitted includes the remaining OFDM symbols.
  • PCFICH, PHICH and / or PDCCH are transmitted in the control region.
  • the CFI of the PCFICH indicates three OFDM symbols.
  • the region excluding the resource for transmitting the PCFICH and / or PHICH becomes the PDCCH region for monitoring the PDCCH.
  • the cell-specific reference signal can be received by all radio devices in the cell and is transmitted over the entire downlink band.
  • 'R0' is a resource element (RE) through which the CRS for the first antenna port is transmitted
  • 'R1' is a RE through which the CRS is transmitted for the second antenna port
  • 'R2' is a CRS for the third antenna port. Is transmitted, 'R3' indicates the RE is transmitted CRS for the fourth antenna port.
  • RS sequence r l, ns (m) for CRS is defined as follows.
  • N maxRB is the maximum number of RBs
  • ns is a slot number in a radio frame
  • l is an OFDM symbol number in a slot.
  • the pseudo-random sequence c (i) is defined by a Gold sequence of length 31 as follows.
  • Nc 1600
  • N cell ID is a physical cell identity (PCI) of a cell
  • N CP 1 in a normal CP
  • N CP 0 in an extended CP.
  • a UE-specific reference signal is transmitted in the subframe.
  • the CRS is transmitted in the entire region of the subframe
  • the URS is transmitted in the data region of the subframe and used for demodulation of the corresponding PDSCH.
  • 'R5' indicates the RE to which the URS is transmitted.
  • URS is also called a dedicated reference signal (DRS) or a demodulation reference signal (DM-RS).
  • DRS dedicated reference signal
  • DM-RS demodulation reference signal
  • the URS is transmitted only in the RB to which the corresponding PDSCH is mapped.
  • R5 is displayed in addition to the region in which the PDSCH is transmitted, but this is to indicate the location of the RE to which the URS is mapped.
  • URS is used only by a wireless device that receives the corresponding PDSCH.
  • RS sequence r ns (m) for US is the same as Equation (3).
  • m 0, 1, ..., 12 N PDSCH, RB -1, N PDSCH, RB is the number of RB of the corresponding PDSCH transmission.
  • n RNTI is an identifier of a wireless device.
  • n SCID is a parameter obtained from a DL grant (eg, DCI format 2B or 2C) associated with PDSCH transmission.
  • the URS supports MIMO (Multiple Input Multiple Ouput) transmission.
  • the RS sequence for the URS may be spread in the following spreading sequence.
  • a layer may be defined as an information path input to a precoder.
  • the rank is the number of non-zero eigenvalues of the MIMO channel matrix, which is equal to the number of layers or the number of spatial streams.
  • the layer may correspond to an antenna port for distinguishing a URS and / or a spreading sequence applied to the URS.
  • the PDCCH is monitored in a limited region called a control region in a subframe, and the CRS transmitted in all bands is used for demodulation of the PDCCH.
  • the type of control information is diversified and the amount of control information increases, the scheduling flexibility is inferior to the existing PDCCH alone.
  • EPDCCH enhanced PDCCH
  • 5 is an example of a subframe having an EPDCCH.
  • the subframe may include zero or one PDCCH region 410 and zero or more EPDCCH regions 420 and 430.
  • the EPDCCH regions 420 and 430 are regions where the wireless device monitors the EPDCCH.
  • the PDCCH region 410 is located in up to four OFDM symbols before the subframe, but the EPDCCH regions 420 and 430 can be flexibly scheduled in the OFDM symbols after the PDCCH region 410.
  • One or more EPDCCH regions 420 and 430 are designated to the wireless device, and the wireless device may monitor the EPDCCH in the designated EPDCCH regions 420 and 430.
  • Information about the number / location / size of the EPDCCH regions 420 and 430 and / or subframes to monitor the EPDCCH may be notified to the wireless device through an RRC message.
  • the PDCCH may be demodulated based on the CRS.
  • a DM (demodulation) RS rather than a CRS, may be defined for demodulation of the EPDCCH.
  • the associated DM RS may be sent in the corresponding EPDCCH region 420, 430.
  • RS sequence r ns (m) for the associated DM RS is the same as Equation (3).
  • m 0, 1, ..., 12N RB -1
  • N RB is the maximum number of RB.
  • ns is a slot number in a radio frame
  • N EPDCCH ID is a cell index associated with a corresponding EPDCCH region
  • SCID is a parameter given from higher layer signaling.
  • Each EPDCCH region 420 and 430 may be used for scheduling for different cells.
  • the EPDCCH in the EPDCCH region 420 may carry scheduling information for the primary cell
  • the EPDCCH in the EPDCCH region 430 may carry scheduling information for two.
  • the same precoding as that of the EPDCCH may be applied to the DM RS in the EPDCCH regions 420 and 430.
  • the EPDDCH search space may correspond to the EPDCCH region.
  • one or more EPDCCH candidates may be monitored for one or more aggregation levels.
  • the base station may transmit the DCI in the PDSCH region instead of transmitting control information in the existing limited PDCCH region, thereby enabling flexible scheduling.
  • EPDCCH may contribute to reducing inter-cell interference in a wireless network having a macro cell and a pico cell.
  • the EPDDCH region is previously designated through an RRC message or the like, and the wireless device can perform blind decoding only in the EPDCCH region.
  • the wireless device can perform blind decoding only in the EPDCCH region.
  • a situation in which the EPDCCH cannot be normally monitored may occur.
  • monitoring the PDCCH instead of the EPDCCH may make the system operation more robust. That is, the wireless device monitors the EPDCCH in the normal mode, but may switch to a fallback mode in which the PDCCH is monitored instead of the EPDCCH in a specific situation.
  • the wireless device In order to switch to the fallback mode, it is necessary to specify a subframe capable of monitoring the PDCCH.
  • the wireless device operates in a fallback mode in a designated subframe. For example, even if the wireless device fails to decode the EPDCCH due to inter-cell interference, the wireless device may acquire the DCI through the PDCCH of the subframe in the fallback mode.
  • the DCI on the PDCCH in the fallback mode may include the same contents as the DCI on the EPDCCH or may include new contents.
  • the wireless device may monitor only the PDCCH thereafter.
  • the specific condition may be that 1) the EPDCCH reception quality is less than or equal to a threshold value, 2) the EPDCCH decoding failure is more than N times during the specified time interval, or 3) after the N subframes after the EPDCCH decoding failure is started, 4) A timer is started when an EPDCCH decoding failure occurs and may include at least one of when the timer expires.
  • FIG. 6 shows a subframe configuration according to an embodiment of the present invention.
  • the wireless device monitors the EPDCCH in subframes # 1, # 2, and # 3, and the wireless device monitors the EPDCCH in subframes # 4, # 5.
  • Subframes # 1, # 2, and # 3 are subframes for monitoring the EPDCCH and may be referred to as normal subframes, EPDCCH subframes, and first type subframes.
  • the EPDDCH subframe may monitor the PDCCH in addition to the EDPCCH.
  • Subframes # 4 and # 5 are subframes that monitor the PDCCH, not the EPDCCH, and may be referred to as fallback subframes, PDCCH subframes, and second type subframes. The number and position of subframes is only an example.
  • the PDCCH subframe may be designated in units of radio frames or every integer multiple of the radio frames. For example, it may be designated in a specific pattern or bitmap form in units of radio frames.
  • the bitmaps ⁇ 0001100011 ⁇ for the subframes # 1 to # 10 may indicate that the subframes # 4, # 5, # 9, and # 10 are PDCCH subframes.
  • a subframe in which a specific signal (eg, PBCH, synchronization signal) is transmitted may be designated as a PDCCH subframe.
  • the PDCCH subframe and the EPDCCH subframe may be appropriately combined and operated according to the characteristics of the control information. For example, information such as change and update of important information such as system information, cell selection / reselection or broadcast information or information masked with SI-RNTI, P-RNTI, RA-RNTI is monitored in the PDCCH region, Scheduling information (eg, DL grant and UL grant) may be monitored on the EPDCCH. Information transmitted on the PDCCH is not transmitted on the EPDCCH. Alternatively, the common search space (CSS) does not exist in the EPDCCH region, but only a UE-specific search space (USS) exists.
  • SCS common search space
  • USS UE-specific search space
  • Both CSS and USS may exist in the EPDCCH region, but important information such as system information may be monitored in the CSS of the PDCCH region instead of the CSS of the EPDCCH region in a designated subframe (eg, the first and sixth subframes of the radio frame). .
  • the blind decoding complexity between subframes may be designed to keep the complexity / capability / trial the same.
  • the wireless device may attempt various blind decoding in a range not exceeding the capability in the PDCCH subframe and the EPDCCH subframe. For example, assume that the blind decoding capability of a wireless device is up to 44 times. If there is only one DCI format to be monitored in the EPDCCH subframe, all blind decoding capabilities can be used for it. If there are two DCI formats, blind decoding may be attempted for each DCI format. 22 decoding attempts can be made per DCI format. As in the case of DCI format 1A and DCI format 0, a DCI format of the same size may be regarded as one DCI format.
  • blind decoding complexity may be distributed between search spaces or between DCI formats or candidate positions in the same subframe.
  • the number of candidate EPDCCHs and / or the aggregation level of the EPDCCHs may change.
  • the wireless device can perform a total of N blind decoding in one subframe. If the K blind decoding is performed in the PDCCH region in the subframe k, the blind decoding may be performed up to (N-K) times in the EPDCCH region. In subframe k + 1, if the PDCCH region is not monitored, blind decoding of up to N times can be performed in the EPDCCH region.
  • the number of aggregation levels / candidate EPDDCHs of the EPDCCH region monitored by the wireless device is adjusted differently depending on the subframe, particularly depending on whether or not the PDCCH is decoded in the subframe. Suggest.
  • FIG 7 illustrates control channel monitoring according to an embodiment of the present invention.
  • subframe n it is assumed that the wireless device monitors the PDCCH region 710 and the EPDCCH region 720, and in subframe n + 1, the wireless device monitors the EPDCCH region 780.
  • the wireless device monitors the PDCCH candidate 1 in the PDCCH region 710 and monitors the PDCCH candidate 2 3 4 in the EPDCCH region 720.
  • the wireless device monitors the PDCCH candidates 1234 in the EPDCCH region 780. Therefore, the maximum number of blind decoding times in all subframes may be equal to four.
  • the location / number of the PDCCH / EPDCCH region, the aggregation level, the number of PDCCH candidates, and the number of CCEs are merely examples.
  • PDCCH and EPDCCH use the same set of CCEs
  • PDCCH and EPDCCH can be independently allocated resources.
  • PDCCH may use an existing CCE set
  • EPDDCH may use an ECCE set.
  • the PDCCH may perform decoding on the preceding (N-K) PDCCH candidates.
  • floor ⁇ x ⁇ means the largest integer smaller than x.
  • the following shows an example of a formula for partitioning PDCCH and EPDCCH.
  • N is the total number of PDCCH candidates in the divided search space
  • K is the number of PDCCH candidates to be allocated to the PDCCH or E-PDCCH
  • i is the index of the selected PDCCH candidate.
  • a, b, and c are parameters according to the split ratio and the selection pattern.
  • the base station may set the location and number of (N-K) PDCCH candidates to the terminal through a higher layer signal.
  • USS and CSS refer to USS and CSS in the PDCCH region
  • Enhanced-USS (E-USS) and Enhanced-CSS (E-CSS) refer to USS and CSS in the EPDCCH region.
  • CSS is an area monitored by a plurality of radios in a cell or all radios in a cell.
  • the CSS of the existing PDCCH region has an aggregation level of ⁇ 4, 8 ⁇ and has a fixed starting point.
  • the E-CSS allows some or all of the E-USS to overlap.
  • the overlapping region may be configured depending on the position of the EPDCCH candidate of the E-CSS.
  • the E-CSS may use a different aggregation level than the E-USS.
  • the duplication of E-USS and E-CSS can be applied at some or all aggregation levels.
  • the E-CSS in the EPDCCH region may be monitored by a wireless device or a specific wireless device group sharing the DM RS.
  • the following table is an example of the proposed subframe configuration.
  • 'O' indicates that a corresponding search space exists in a corresponding subframe.
  • Subframe setting 7 indicates search space partitioning in a normal subframe.
  • CSS is defined in the stable PDCCH region and E-USS is defined in the EPDCCH region.
  • the EPDCCH transmits scheduling information of the wireless device, and the PDCCH transmits common control information.
  • Subframe setting 13 indicates that E-CSS and E-USS are defined in the EPDCCH region, but CSS is further defined in the PDCCH region. Since the blind decoding complexity largely depends on the number of blind decodings, the complexity may not be increased by properly designing three search spaces without increasing the maximum number of times. More specifically, the number or aggregation level of candidate EPDDCH candidates may be distributed between the CSS and the E-CSS. For example, CSS may use aggregation level 4 and E-CSS may use aggregation level 8. The number of blind decoding times between the CSS and the E-CSS may be the same or different. The blind decoding distribution according to the search space may also be applied to the subframe settings 6, 7, 9, 12, 13, 14, and 15.
  • CSS / USS is defined in both the PDCCH region and the EPDCCH region.
  • subframe configuration 5 only CSS / USS of the PDCCH region is defined. This can be considered as a kind of PDCCH fallback.
  • the wireless device may switch to a fallback mode, that is, a mode for monitoring the PDCCH in a specific situation. In the fallback mode, unlike 3GPP LTE, more aggregation levels or more PDCCH candidates may be defined.
  • Subframe configuration 11 may be utilized to additionally secure E-CSS due to a lack of CSS in the PDCCH region.
  • the subframe configuration 12 is based on monitoring a safely designed PDCCH region and is a method of securing an E-USS additionally to the E-PDCCH region.
  • Subframe configuration 13 indicates additionally securing E-CSS in subframe configuration 7. On the contrary, it can be said to construct an E-PDCCH and additionally secure CSS in the PDCCH region.
  • Subframe configuration 14 is to additionally monitor the USS of the PDCCH region in the EPDCCH monitoring mode.
  • the above-described subframe settings 1 to 16 may be combined.
  • the subframe setting may be changed in subframe units, periodically or aperiodically. Because there is an advantage for each subframe configuration, it may be more efficient to select the appropriate subframe configuration depending on the situation.
  • subframe settings 10 and 5 may be combined.
  • only EPDCCH can be monitored by subframe configuration 10 and only PDCCH can be monitored by subframe configuration 5 in another subframe.
  • Subframe settings 7 and 5 may be combined.
  • the CSS of the PDCCH region and the USS of the EPDCCH region may be monitored by subframe configuration 7, and only the PDCCH may be monitored by subframe configuration 5 in another subframe. This can be usefully applied to the special subframe of TDD.
  • the special subframe may depend on the PDCCH according to the subframe configuration 5 and the subframe configuration 7 on the remaining TDD subframes.
  • Subframe settings 9 and 6 may be combined.
  • the USS of the PDCCH region and the E-USS of the EPDCCH region can be monitored by subframe configuration 9
  • the CSS of the PDCCH region and E-CSS of the EPDCCH region can be monitored by subframe configuration 6 in another subframe. have.
  • the combination is merely an example, and various combinations of the subframe settings 1 to 16 are possible. Alternatively, one or more subframe settings may be applied to one subframe.
  • the subframe setting may be changed when a specific condition is satisfied or may be changed according to a predetermined pattern.
  • the subframe setting may be set in a subframe unit or a radio frame unit.
  • the base station may set a period and / or a change condition for changing the subframe setting to the wireless device.
  • the base station may allocate the available subframe configuration set to the wireless device and activate / deactivate the available subframe configuration set. For example, the base station informs the wireless device that the available subframe settings are subframe settings 7 and 5.
  • the base station may inform the subframe configuration in the subframe unit or the radio frame unit. For example, when the base station transmits a bitmap ⁇ 0001100000 ⁇ to the wireless device for 10 subframes belonging to the radio frame, the wireless device applies subframe configuration 5 to the subframes having indexes 3 and 4, and the rest Subframe setting 7 may be applied to the subframe. Then, in order to change the subframe configuration, the base station may transmit only the changed bitmap to the wireless device.
  • Subframe configuration may vary according to bandwidth. For example, suppose a wireless network supports 20 MHz bandwidth and 1 MHz bandwidth. In this case, the number of REs allocated to the data region may be insufficient in the subframe corresponding to the 1 MHz bandwidth. Accordingly, subframe setting 7 may be used for the 20 MHz bandwidth, and subframe setting 5 may be used for the 1 MHz bandwidth.
  • FIG 8 illustrates downlink control channel monitoring according to an embodiment of the present invention.
  • the EPDCCH region may be divided into a plurality of sub regions 810 and 820. Assume that the EPDCCH region includes N ECCEs.
  • the first subregion 810 may start with the ECCE having the index 0, and the second subregion 820 may start with the ECCE having the index 4.
  • the number or starting point of the subregions is only an example.
  • the sub regions 810 and 820 may be defined for each serving cell, and may be referred to as an EPDCCH set in other terms. Hereinafter, it is assumed that the first sub region 810 corresponds to the EPDCCH set 1, and the second sub region 820 corresponds to the EPDCCH set 2.
  • the first DM RS used for demodulation of EPDCCH set 1 and the second DM RS used for demodulation of EPDCCH set 2 may be generated based on different cell IDs.
  • the first DM RS may be generated based on the cell ID of the first serving cell
  • the second DM RS may be generated based on the cell ID of the second serving cell.
  • the number of EPDCCH sets may be changed for each subframe.
  • the subframe configuration of Table 5 described above may be applied to each EPDCCH set.
  • Each EPDCCH set may have a different starting point in the EPDCCH region. Alternatively, each EPDCCH set may have the same starting point in the EPDCCH region.
  • the configuration of the plurality of EPDCCH sets may be informed by the base station through the RRC message to the wireless device.
  • Dividing an EPDCCH region into a plurality of EPDCCH sets has many advantages. First, more reliable transmission is possible by applying different transmission modes to a plurality of EPDCCH sets. For example, EPDCCH set 1 may apply localized transmission, and EPDCCH set 2 may apply distributed transmission. Although monitoring of one EPDCCH set is difficult due to poor channel conditions, monitoring of another EPDCCH set may be easier. Second, flexibility in transmission resource allocation can be increased. EPDCCHs are allocated in units of PRB pairs. If the payload is not large, different EPDCCH sets may be allocated to one PRB pair.
  • the blind decoding capability for the EPDCCH region may be divided into blind decoding capabilities for a plurality of EPDCCH sets.
  • the maximum number of blind decodings for each of the plurality of EPDCCH sets may be all the same or different.
  • Configuration 0 and 1 equally distribute EPDCCH set 1 and set 2.
  • Configuration 2 gives EPDCCH set 1 more blind decoding times and gives priority to lower aggregation levels.
  • Configuration 3 gives EPDCCH set 1 more blind decoding times and prioritizes a higher set level.
  • Configuration 4 allocates different aggregation levels to EPDCCH set 1 and EPDCCH set 2.
  • FIG. 9 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
  • the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
  • the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 51.
  • the processor 51 may set a search space for the EPDCCH and / or PDCCH, and transmit the EPDCCH and the PDCCH.
  • the wireless device 60 includes a processor 61, a memory 62, and an RF unit 63.
  • the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
  • the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the wireless device may be implemented by the processor 61.
  • the processor 61 may monitor the EPDCCH and the PDCCH in the search space.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 하향링크 제어채널을 모니터링하는 방법 및 무선기기가 제공된다. 무선기기가 제1 검색 공간에서 제1 하향링크 제어채널을 모니터링하고, 제2 검색 공간에서 제2 하향링크 제어채널을 모니터링한다. 상기 제1 하향링크 제어채널은 제1 서빙셀의 식별자를 기반으로 생성되는 제1 기준신호에 의해 복조되고, 상기 제2 하향링크 제어채널은 제2 서빙셀의 식별자를 기반으로 생성되는 제2 기준신호에 의해 복조된다.

Description

하향링크 제어채널 모니터링 방법 및 무선기기
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 하향링크 제어채널을 모니터링하는 방법 및 이를 이용한 무선기기에 관한 것이다.
3GPP(3rd Generation Partnership Project) TS(Technical Specification) 릴리이즈(Release) 8을 기반으로 하는 LTE(long term evolution)는 유력한 차세대 이동통신 표준이다. 최근에는, 다중 반송파를 지원하는 3GPP TS 릴리이즈 10을 기반으로 하는 LTA-A(LTE-advanced)의 표준화가 진행 중이다.
3GPP TS 36.211 V10.2.0 (2011-06) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"에 개시된 바와 같이, 3GPP LTE/LTE-A에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
증가하는 데이터 트래픽에 대처하기 위해, 이동 통신 시스템의 전송 용량을 증가시키는 다양한 기술이 도입되고 있다. 예를 들어, 다수의 안테나를 사용하는 MIMO(Multiple Input Multiple Ouput) 기술, 다수의 셀을 지원하는 반송파 집성(carrier aggregation) 기술 등이 도입되고 있다.
3GPP LTE/LTE-A에서 설계된 제어채널은 다양한 제어 정보를 나른다. 새로운 기술이 도입됨에 따라 제어채널의 용량을 증가시키고, 스케줄링의 유연성을 향상시키는 것이 요구된다.
본 발명은 하향링크 제어채널을 모니터링하는 방법 및 이를 이용한 무선기기를 제공한다.
일 양태에서, 무선 통신 시스템에서 하향링크 제어채널 모니터링 방법이 제공된다. 상기 방법은 무선기기가 제1 검색 공간에서 제1 하향링크 제어채널을 모니터링하는 단계 및 상기 무선기기가 제2 검색 공간에서 제2 하향링크 제어채널을 모니터링하는 단계를 포함한다. 상기 제1 하향링크 제어채널은 제1 서빙셀의 식별자를 기반으로 생성되는 제1 기준신호에 의해 복조되고, 상기 제2 하향링크 제어채널은 제2 서빙셀의 식별자를 기반으로 생성되는 제2 기준신호에 의해 복조된다.
상기 제1 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수는 상기 제2 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수와 동일할 수 있다.
상기 제1 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수는 상기 제2 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수와 다를 수 있다.
다른 양태에서, 무선 통신 시스템에서 제어채널을 모니터링하는 무선기기는 무선 신호를 송신 및 수신하는 RF(radio freqeuncy)부 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 제1 검색 공간에서 제1 하향링크 제어채널을 모니터링하고, 제2 검색 공간에서 제2 하향링크 제어채널을 모니터링한다.
하향링크 제어채널을 검출하기 위한 블라인드 디코딩에 따른 복잡도를 줄일 수 있고, 하향링크 제어채널을 위한 전송 자원의 효율을 높일 수 있다.
도 1은 3GPP LTE-A에서 하향링크 무선 프레임의 구조를 나타낸다.
도 2는 PDCCH의 구성을 나타낸 블록도이다.
도 3은 PDCCH의 모니터링을 나타낸 예시도이다.
도 4는 3GPP LTE의 DL 서브프레임에서 기준신호와 제어채널이 배치되는 예를 나타낸다.
도 5는 EPDCCH를 갖는 서브프레임의 일 예이다.
도 6은 본 발명의 실시예에 따른 서브프레임 설정을 나타낸다.
도 7은 본 발명의 일 실시예에 따른 제어채널 모니터링을 나타낸다.
도 8은 본 발명의 일 실시예에 따른 하향링크 제어채널 모니터링을 나타낸다.
도 9는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
무선기기(wireless device)는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 또는, 무선기기는 MTC(Machine-Type Communication) 기기와 같이 데이터 통신만을 지원하는 기기일 수 있다.
기지국(base stationm BS)은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) TS(Technical Specification) 릴리이즈(Release) 8을 기반으로 하는 3GPP LTE(long term evolution) 또는 3GPP TS 릴리이즈 10을 기반으로 하는 3GPP LTE-A를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고 본 발명은 다양한 무선 통신 네트워크에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
무선기기는 복수의 서빙셀에 의해 서빙될 수 있다. 각 서빙셀은 DL(downlink) CC(component carrier) 또는 DL CC와 UL(uplink) CC의 쌍으로 정의될 수 있다.
서빙셀은 1차 셀(primary cell)과 2차 셀(secondary cell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC(Radio Resource Control) 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC(radio resource control) 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI(cell index)는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
도 1은 3GPP LTE-A에서 하향링크 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V10.2.0 (2011-06) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 6절을 참조할 수 있다.
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V10.2.0에 의하면, 정규 CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 4개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V10.2.0에 개시된 바와 같이, 3GPP LTE/LTE-A에서 물리 제어채널은 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel)가 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
33GPP LTE/LTE-A에서 DL 전송블록의 전송은 PDCCH와 PDSCH의 쌍으로 수행된다. UL 전송블록의 전송은 PDCCH와 PUSCH의 쌍으로 수행된다. 예를 들어, 무선기기는 PDCCH에 의해 지시되는 PDSCH 상으로 DL 전송블록을 수신한다. 무선기기는 DL 서브프레임에서 PDCCH를 모니터링하여, DL 자원 할당을 PDCCH 상으로 수신한다. 무선기기는 상기 DL 자원 할당이 가리키는 PDSCH 상으로 DL 전송 블록을 수신한다.
도 2는 PDCCH의 구성을 나타낸 블록도이다.
3GPP LTE/LTE-A에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다.
기지국은 무선기기에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(Cyclic Redundancy Check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다(블록 210).
특정 무선기기를 위한 PDCCH라면 무선기기의 고유 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information-RNTI)가 CRC에 마스킹될 수 있다. 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다. 복수의 무선기기에 대한 TPC(transmit power control) 명령을 지시하기 위해 TPC-RNTI가 CRC에 마스킹될 수 있다.
C-RNTI가 사용되면 PDCCH는 해당하는 특정 무선기기를 위한 제어정보(이를 단말 특정(UE-specific) 제어정보라 함)를 나르고, 다른 RNTI가 사용되면 PDCCH는 셀내 모든 또는 복수의 무선기기가 수신하는 공용(common) 제어정보를 나른다.
CRC가 부가된 DCI를 인코딩하여 부호화된 데이터(coded data)를 생성한다(블록 220). 인코딩은 채널 인코딩과 레이트 매칭(rate matching)을 포함한다.
부호화된 데이터는 변조되어 변조 심벌들이 생성된다(블록 230).
변조심벌들은 물리적인 RE(resource element)에 맵핑된다(블록 240). 변조심벌 각각은 RE에 맵핑된다.
서브프레임내의 제어영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. REG는 복수의 자원요소(resource element)를 포함한다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
하나의 REG는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집합 레벨(aggregation level)이라 한다.
PDDCH의 전송에 사용되는 CCE의 개수는 기지국이 채널 상태에 따라 결정한다. 예를 들어, 좋은 하향링크 채널 상태를 갖는 무선기기에게는 하나의 CCE를 PDCCH 전송에 사용할 수 있다. 나쁜(poor) 하향링크 채널 상태를 갖는 무선기기에게는 8개의 CCE를 PDCCH 전송에 사용할 수 있다.
하나 또는 그 이상의 CCE로 구성된 제어채널은 REG 단위의 인터리빙을 수행하고, 셀 ID(identifier)에 기반한 순환 쉬프트(cyclic shift)가 수행된 후에 물리적 자원에 매핑된다.
도 3은 PDCCH의 모니터링을 나타낸 예시도이다. 이는 3GPP TS 36.213 V10.2.0 (2011-06)의 9절을 참조할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 PDCCH 후보(candidate)라 함)의 CRC에 원하는 식별자를 디마스킹하여, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 무선기기는 자신의 PDCCH가 제어영역내에서 어느 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷을 사용하여 전송되는지 알지 못한다.
하나의 서브프레임내에서 복수의 PDCCH가 전송될 수 있다. 무선기기는 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 무선기기가 모니터링되는 PDCCH 포맷에 따라 PDCCH의 디코딩을 시도하는 것을 말한다.
3GPP LTE에서는 블라인드 디코딩으로 인한 부담을 줄이기 위해, 검색 공간(search space)을 사용한다. 검색 공간은 PDCCH를 위한 CCE의 모니터링 집합(monitoring set)이라 할 수 있다. 무선기기는 해당되는 검색 공간내에서 PDCCH를 모니터링한다.
검색 공간은 공용 검색 공간(common search space)과 단말 특정 검색 공간(UE-specific search space)로 나뉜다. 공용 검색 공간은 공용 제어정보를 갖는 PDCCH를 검색하는 공간으로 CCE 인덱스 0~15까지 16개 CCE로 구성되고, {4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다. 하지만 공용 검색 공간에도 단말 특정 정보를 나르는 PDCCH (DCI 포맷 0, 1A)가 전송될 수도 있다. 단말 특정 검색 공간은 {1, 2, 4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다.
다음 표 1은 무선기기에 의해 모니터링되는 PDCCH 후보의 개수를 나타낸다.
표 1
Search Space Type Aggregation level L Size [in CCEs] Number of PDCCH candidates DCI formats
UE-specific 1 6 6 0, 1, 1A,1B,1D, 2, 2A
2 12 6
4 8 2
8 16 2
Common 4 16 4 0, 1A, 1C, 3/3A
8 16 2
검색 공간의 크기는 상기 표 1에 의해 정해지고, 검색 공간의 시작점은 공용 검색 공간과 단말 특정 검색 공간이 다르게 정의된다. 공용 검색 공간의 시작점은 서브프레임에 상관없이 고정되어 있지만, 단말 특정 검색 공간의 시작점은 단말 식별자(예를 들어, C-RNTI), CCE 집합 레벨 및/또는 무선프레임내의 슬롯 번호에 따라 서브프레임마다 달라질 수 있다. 단말 특정 검색 공간의 시작점이 공용 검색 공간 내에 있을 경우, 단말 특정 검색 공간과 공용 검색 공간은 중복될(overlap) 수 있다.
집합 레벨 L∈{1,2,4,8}에서 검색 공간 S(L) k는 PDCCH 후보의 집합으로 정의된다. 검색 공간 S(L) k의 PDCCH 후보 m에 대응하는 CCE는 다음과 같이 주어진다.
수학식 1
Figure PCTKR2012009139-appb-M000001
여기서, i=0,1,...,L-1, m=0,...,M(L)-1, NCCE,k는 서브프레임 k의 제어영역내에서 PDCCH의 전송에 사용할 수 있는 CCE의 전체 개수이다. 제어영역은 0부터 NCCE,k-1로 넘버링된 CCE들의 집합을 포함한다. M(L)은 주어진 검색 공간에서의 CCE 집합 레벨 L에서 PDCCH 후보의 개수이다.
무선기기에게 CIF(carrier indicator field)가 설정되면, m'=m+M(L)ncif이다. ncif는 CIF의 값이다. 무선기기에게 CIF가 설정되지 않으면, m'=m이다.
공용 검색 공간에서, Yk는 2개의 집합 레벨, L=4 및 L=8에 대해 0으로 셋팅된다.
집합 레벨 L의 단말 특정 검색 공간에서, 변수 Yk는 다음과 같이 정의된다.
수학식 2
Figure PCTKR2012009139-appb-M000002
여기서, Y-1=nRNTI≠0, A=39827, D=65537, k=floor(ns/2), ns는 무선 프레임내의 슬롯 번호(slot number)이다.
무선기기가 C-RNTI를 기반으로 PDCCH를 모니터링할 때, PDSCH의 전송 모드(transmission mode)에 따라 모니터링할 DCI 포맷과 검색 공간이 결정된다. 다음 표는 C-RNTI가 설정된 PDCCH 모니터링의 예를 나타낸다.
표 2
전송모드 DCI 포맷 검색 공간 PDCCH에 따른 PDSCH의 전송모드
모드 1 DCI 포맷 1A 공용 및 단말 특정 싱글 안테나 포트, 포트 0
DCI 포맷 1 단말 특정 싱글 안테나 포트, 포트 0
모드 2 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티(transmit diversity)
DCI 포맷 1 단말 특정 전송 다이버시티
모드 3 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 2A 단말 특정 CDD(Cyclic Delay Diversity) 또는 전송 다이버시티
모드 4 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 2 단말 특정 폐루프 공간 다중화(closed-loop spatial multiplexing)
모드 5 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 1D 단말 특정 MU-MIMO(Multi-user Multiple Input Multiple Output)
모드 6 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 1B 단말 특정 폐루프 공간 다중화
모드 7 DCI 포맷 1A 공용 및 단말 특정 PBCH 전송 포트의 수가 1이면, 싱 글 안테나 포트, 포트 0, 아니면, 전송 다이버시티
DCI 포맷 1 단말 특정 싱글 안테나 포트, 포트 5
모드 8 DCI 포맷 1A 공용 및 단말 특정 PBCH 전송 포트의 수가 1이면, 싱 글 안테나 포트, 포트 0, 아니면, 전송 다이버시티
DCI 포맷 2B 단말 특정 이중 계층(dual layer) 전송(포트 7 또는 8), 또는 싱 글 안테나 포트, 포트 7 또는 8
DCI 포맷의 용도는 다음 표와 같이 구분된다.
표 3
DCI 포맷 내 용
DCI 포맷 0 PUSCH 스케줄링에 사용
DCI 포맷 1 하나의 PDSCH 코드워드(codeword)의 스케줄링에 사용
DCI 포맷 1A 하나의 PDSCH 코드워드의 간단(compact) 스케줄링 및 랜덤 액세스 과정에 사용
DCI 포맷 1B 프리코딩 정보를 가진 하나의 PDSCH 코드워드의 간단 스케줄링에 사용
DCI 포맷 1C 하나의 PDSCH 코드워드(codeword)의 매우 간단(very compact) 스케줄링에 사용
DCI 포맷 1D 프리코딩 및 파워 오프셋(pwwer offset) 정보를 가진 하나의 PDSCH 코드워드의 간단 스케줄링에 사용
DCI 포맷 2 폐루프 공간 다중화 모드로 설정된 단말들의 PDSCH 스케줄링에 사용
DCI 포맷 2A 개루프(open-loop) 공간 다중화 모드로 설정된 단말들의 PDSCH 스케줄링에 사용
DCI 포맷 3 2비트 파워 조정(power adjustments)을 가진 PUCCH 및 PUSCH의 TPC 명령의 전송에 사용
DCI 포맷 3A 1비트 파워 조정을 가진 PUCCH 및 PUSCH의 TPC 명령의 전송에 사용
도 4는 3GPP LTE의 DL 서브프레임에서 기준신호와 제어채널이 배치되는 예를 나타낸다.
제어 영역(또는 PDCCH 영역)은 앞선 3개의 OFDM 심벌을 포함하고, PDSCH가 전송되는 데이터 영역은 나머지 OFDM 심벌들을 포함한다.
제어 영역내에서는 PCFICH, PHICH 및/또는 PDCCH가 전송된다. PCFICH의 CFI는 3개의 OFDM 심벌을 가리킨다. 제어 영역에서 PCFICH 및/또는 PHICH가 전송되는 자원을 제외한 영역이 PDCCH를 모니터링하는 PDCCH 영역이 된다.
서브프레임에는 또한 다양한 기준신호(reference signal)가 전송된다.
CRS(cell-specific reference signal)은 셀 내 모든 무선기기가 수신할 수 있고, 전 하향링크 대역에 걸쳐서 전송된다. 도면에서, 'R0'는 제1 안테나 포트에 대한 CRS가 전송되는 RE(resource element), 'R1'는 제2 안테나 포트에 대한 CRS가 전송되는 RE, 'R2'는 제3 안테나 포트에 대한 CRS가 전송되는 RE, 'R3'는 제4 안테나 포트에 대한 CRS가 전송되는 RE를 가리킨다.
CRS를 위한 RS 시퀀스 rl,ns(m)은 다음과 같이 정의된다.
수학식 3
Figure PCTKR2012009139-appb-M000003
여기서, m=0,1,...,2NmaxRB-1, NmaxRB는 RB의 최대 개수, ns는 무선 프레임내 슬롯 번호, l은 슬롯내 OFDM 심벌 번호이다.
의사 난수 시퀀스(pseudo-random sequence) c(i)는 다음과 같은 길이 31의 골드(Gold) 시퀀스에 의해 정의된다.
수학식 4
Figure PCTKR2012009139-appb-M000004
여기서, Nc=1600, 첫번째 m-시퀀스는 x1(0)=1, x1(n)=0, m=1,2,...,30으로 초기화된다.
두번째 m-시퀀스는 각 OFDM 심벌의 시작에서 cinit=210(7(ns+1)+l+1)(2Ncell ID+1)+2Ncell ID+NCP로 초기화된다. Ncell ID는 셀의 PCI(physical cell identity)이고, 정규 CP 에서 NCP=1, 확장 CP에서 NCP=0이다.
서브프레임에는 URS(UE-specific Reference Signal)이 전송된다. CRS가 서브프레임의 전 영역에서 전송되지만, URS는 서브프레임의 데이터 영역 내에서 전송되고, 대응하는 PDSCH의 복조에 사용된다. 도면에서, 'R5'는 URS가 전송되는 RE를 가리킨다. URS는 DRS(dedicated Reference Signal) 또는 DM-RS(Demodulation Reference Signal)이라고도 한다.
URS는 대응하는 PDSCH가 맵핑되는 RB에서만 전송된다. 도면에는 PDSCH가 전송되는 영역외에도 R5가 표시되어 있지만, 이는 URS가 맵핑되는 RE의 위치를 나타내기 위한 것이다.
URS는 대응하는 PDSCH를 수신하는 무선기기만이 사용한다. US를 위한 RS 시퀀스 rns(m)은 수학식 3과 동일하다. 이때, m=0,1,...,12NPDSCH,RB-1 이고, NPDSCH,RB는 대응하는 PDSCH 전송의 RB 개수이다. 의사 난수 시퀀스 생성기는 각 서브프레임의 시작에서 cinit=(floor(ns/2)+1)(2Ncell ID+1)216+nRNTI로 초기화된다. nRNTI는 무선기기의 식별자이다.
상기는 URS가 싱글 안테나를 통해 전송되는 경우이고, URS가 다중 안테나를 통해 전송될 때, 의사 난수 시퀀스 생성기는 각 서브프레임의 시작에서 cinit=(floor(ns/2)+1)(2Ncell ID+1)216+nSCID로 초기화된다. nSCID는 PDSCH 전송과 관련된 DL 그랜트(예를 들어, DCI 포맷 2B 또는 2C)로부터 얻어지는 파라미터이다.
URS는 MIMO(Multiple Input Multiple Ouput) 전송을 지원한다. 안테나 포트 또는 계층(layer)에 따라 URS를 위한 RS 시퀀스는 다음과 같은 확산 시퀀스로 확산될 수 있다.
표 4
계층 [ w(0) w(1) w(2) w(3) ]
1 [ +1 +1 +1 +1 ]
2 [ +1 -1 +1 -1 ]
3 [ +1 +1 +1 +1 ]
4 [ +1 -1 +1 -1 ]
5 [ +1 +1 -1 -1 ]
6 [ -1 -1 +1 +1 ]
7 [ +1 -1 -1 +1 ]
8 [ -1 +1 +1 -1 ]
계층(layer)은 프리코더로 입력되는 정보 경로(information path)로 정의될 수 있다. 랭크(rank)는 MIMO 채널 행렬의 영이 아닌 고유값(non-zero eigenvalue)의 수로, 계층의 개수 또는 공간 스트림의 개수와 같다. 계층은 URS를 구분하는 안테나 포트 및/또는 URS에 적용되는 확산 시퀀스에 대응될 수 있다.
한편, PDCCH는 서브프레임내의 제어영역이라는 한정된 영역에서 모니터링되고, 또한 PDCCH의 복조를 위해서는 전 대역에서 전송되는 CRS가 사용된다. 제어 정보의 종류가 다양해지고, 제어정보의 양이 증가함에 따라 기존 PDCCH 만으로는 스케줄링의 유연성이 떨어진다. 또한, CRS 전송으로 인한 부담을 줄이기 위해, EPDCCH(enhanced PDCCH)의 도입되고 있다.
도 5는 EPDCCH를 갖는 서브프레임의 일 예이다.
서브프레임은 영 또는 하나의 PDCCH 영역(410) 및 영 또는 그 이상의 EPDCCH 영역(420, 430)을 포함할 수 있다.
EPDCCH 영역(420, 430)은 무선기기가 EPDCCH를 모니터링하는 영역이다. PDCCH 영역(410)은 서브프레임의 앞선 최대 4개의 OFDM 심벌내에서 위치하지만, EPDCCH 영역(420, 430)은 PDCCH 영역(410) 이후의 OFDM 심벌에서 유연하게 스케줄링될 수 있다.
무선기기에 하나 이상의 EPDCCH 영역(420, 430)이 지정되고, 무선기기는 지정된 EPDCCH 영역(420, 430)에서 EPDCCH를 모니터링할 수 있다.
EPDCCH 영역(420, 430)의 개수/위치/크기 및/또는 EPDCCH를 모니터링할 서브프레임에 관한 정보는 기지국이 무선기기에게 RRC 메시지 등을 통해 알려줄 수 있다.
PDCCH 영역(410)에서는 CRS를 기반으로 PDCCH를 복조할 수 있다. EPDCCH 영역(420, 430)에서는 EPDCCH의 복조를 위해 CRS가 아닌 DM(demodulation) RS를 정의할 수 있다. 연관된 DM RS는 대응하는 EPDCCH 영역(420, 430)에서 전송될 수 있다.
연관된 DM RS를 위한 RS 시퀀스 rns(m)은 수학식 3과 동일하다. 이때, m=0,1,...,12NRB-1 이고, NRB는 최대 RB의 개수이다. 의사 난수 시퀀스 생성기는 각 서브프레임의 시작에서 cinit=(floor(ns/2)+1)(2NEPDCCH,ID+1)216+nEPDCCH,SCID로 초기화될 수 있다. ns는 무선 프레임내 슬롯 번호, NEPDCCH,ID는 해당되는 EPDCCH 영역과 관련된 셀 인덱스, nEPDCCH,SCID는 상위 계층 시그널링으로부터 주어지는 파라미터이다.
각 EPDCCH 영역(420, 430)은 서로 다른 셀을 위한 스케줄링에 사용될 수 있다. 예를 들어, EPDCCH 영역(420)내의 EPDCCH는 1차셀을 위한 스케줄링 정보를 나르고, EPDCCH 영역(430)내의 EPDCCH는 2위한 스케줄링 정보를 나를 수 있다.
EPDCCH 영역(420, 430)에서 EPDCCH가 다중 안테나를 통해 전송될 때, EPDCCH 영역(420, 430)내의 DM RS는 EPDCCH와 동일한 프리코딩이 적용될 수 있다.
PDCCH가 전송 자원 단위로 CCE를 사용하는 것과 비교하여, EPCCH를 위한 전송 자원 단위를 ECCE(Enhanced Control Channel Element)라 한다. 집합 레벨(aggregation level)은 EPDCCH를 모니터링하는 자원 단위로 정의될 수 있다. 예를 들어, 1 ECCE가 EPDCCH를 위한 최소 자원이라고 할 때, 집합 레벨 L={1, 2, 4, 8, 16}과 같이 정의될 수 있다.
이하에서 EPDDCH 검색 공간(search space)은 EPDCCH 영역에 대응될 수 있다. EPDCCH 검색 공간에서는 하나 또는 그 이상의 집합 레벨 마다 하나 또는 그 이상의 EPDCCH 후보가 모니터링될 수 있다.
EPDCCH는 기존의 한정된 PDCCH 영역에 제어정보를 전송되는 것이 아닌, PDSCH 영역에서 DCI를 기지국이 전송할 수 있으므로, 유연한 스케줄링이 가능한다. 또한, EPDCCH는 매크로 셀과 피코 셀(Pico cell)을 갖은 무선 네트워크에서 셀간 간섭을 줄이는데 기여할 수 있다.
EPDDCH 영역은 RRC 메시지 등을 통해서 사전에 지정되고, EPDCCH 영역에 한해서 무선기기기는 블라인드 디코딩을 수행할 수 있다. 하지만, 예기치 않은 간섭, EPDCCH 재설정(reconfiguration), RRC 재설정 등으로 인해서 EPDCCH를 정상적으로 모니터링할 수 없는 상황이 발생할 수 있다. 이 경우 EPDCCH 대신 PDCCH를 모니터링하는 것이 시스템 동작을 더 강건하게(robust) 할 수 있다. 즉, 무선기기는 정규 모드(normal mode)에서는 EPDCCH를 모니터링하지만, 특정 상황에서 EPDCCH 대신 PDCCH를 모니터링하는 폴백 모드(fallback mode)로 전환할 수 있다.
폴백 모드로 전환하기 위해서는 PDCCH를 모니터링할 수 있는 서브프레임이 지정되는 것이 필요하다. 무선기기가 지정된 서브프레임에서 폴백 모드로 동작하도록 하는 것이다. 예를 들어, 무선기기는 셀간 간섭으로 인해 EPDCCH의 디코딩에 실패하더라도, 폴백 모드의 서브프레임의 PDCCH를 통해 DCI를 획득할 수 있다. 폴백 모드의 PDCCH 상의 DCI는 EPDCCH 상의 DCI와 동일한 내용을 포함하거나, 새로운 내용을 포함할 수 있다.
만약 특정 조건을 만족하여 EPDCCH를 수신할 수 없는 상황이 일정 시간 구간을 넘어서면, 무선기기는 그 이후에 PDCCH 만을 모니터링할 수 있다. 예를 들어, 상기 특정 조건은 1) EPDCCH 수신 품질이 임계값 이하보다 작아지거나, 2) EPDCCH 디코딩 실패가 지정된 시간 구간 동안 N번 이상이거나, 3) EPDCCH 디코딩 실패가 시작된 이후로 N 서브프레임 이후, 4) EPDCCH 디코딩 실패가 발생함에 따라 타이머를 개시하고, 상기 타이머가 만료된 때 중 적어도 어느 하나를 포함할 수 있다.
도 6은 본 발명의 실시예에 따른 서브프레임 설정을 나타낸다.
서브프레임 #1, #2, #3에서 무선기기는 EPDCCH를 모니터링하고, 서브프레임 #4, #5에서 무선기기는 EPDCCH를 모니터링한다. 서브프레임 #1, #2, #3은 EPDCCH를 모니터링하는 서브프레임으로, 정규(normal) 서브프레임, EPDCCH 서브프레임, 제1 타입 서브프레임이라고 불릴 수 있다. EPDDCH 서브프레임은 EDPCCH 외에 PDCCH도 모니터링할 수 있다. 서브프레임 #4, #5는 EPDCCH가 아닌 PDCCH를 모니터링하는 서브프레임으로, 폴백 서브프레임, PDCCH 서브프레임, 제2 타입 서브프레임이라고 불릴 수 있다. 서브프레임의 개수, 위치는 예시에 불과하다.
PDCCH 서브프레임은 무선 프레임(Radio frame) 단위로 지정되거나, 무선 프레임의 정수배 마다 지정될 수 있다. 예를 들어, 무선 프레임 단위로 특정 패턴 또는 비트맵 형태로 지정될 수 있다. 서브프레임 #1~#10에 대한 비트맵 {0001100011}은 서브프레임 #4, #5, #9, #10이 PDCCH 서브프레임임을 지시할 수 있다. 또는, 특정 신호(예, PBCH, 동기신호)가 전송되는 서브프레임이 PDCCH 서브프레임으로 지정될 수 있다.
제어 정보의 특성에 따라 PDCCH 서브프레임과 EPDCCH 서브프레임을 적절히 조합하여 운영할 수 있다. 예를 들어, 시스템 정보, 셀 선택/재선택과 같은 중요한 정보의 변경 및 갱신과 같은 정보 또는 브로트캐스트 정보 또는 SI-RNTI, P-RNTI, RA-RNTI로 마스킹되는 정보는 PDCCH 영역에서 모니터링되고, 스케줄링 정보(예, DL 그랜트와 UL 그랜트)는 EPDCCH에서 모니터링될 수 있다. PDCCH 상으로 전송되는 정보는 EPDCCH 상으로 전송되지 않는다. 또는, EPDCCH 영역에는 공용 검색 공간(Common Search Space, 이하 CSS)는 존재하지 않고 단말 특정 검색 공간(UE-Specific Search Space, 이하 USS)만 존재한다고 할 수 있다.
EPDCCH 영역에는 CSS와 USS가 모두 존재할 수 있으나, 시스템 정보와 같은 중요 정보는 지정된 서브프레임(예, 무선 프레임의 첫번째와 여섯번째 서브프레임)에서는 EPDCCH 영역의 CSS 대신 PDCCH 영역의 CSS에서 모니터링될 수 있다.
이제, CSS와 USS를 PDCCH 영역과 EPDCCH 영역에서 구현하는 다양한 방법을 제안한다.
일 실시예로, 서브프레임간 블라인드 디코딩 복잡도 복잡도(complexity)/역량(capability)/횟수(trial)을 동일하게 유지하도록 설계할 수 있다.
매 서브프레임마다 블라인드 디코딩 횟수가 변하지 않는다고 가정하면, 무선기기는 PDCCH 서브프레임과 EPDCCH 서브프레임에서 역량을 초과하지 않는 범위에서 다양한 블라인드 디코딩을 시도할 수 있다. 예를 들어, 무선기기의 블라인드 디코딩 역량이 최대 44 횟수라고 하자. EPDCCH 서브프레임에서 모니터링될 DCI 포맷이 하나라면, 이에 모든 블라인드 디코딩 역량을 사용할 수 있다. 2개의 DCI 포맷이 있다면, DCI 포맷 별로 나누어 블라인드 디코딩을 시도할 수 있다. DCI 포맷 당 22 회의 디코딩을 시도할 수 있다. DCI 포맷 1A 와 DCI 포맷 0의 경우처럼 크기가 같은 DCI 포맷은 하나의 DCI 포맷으로 간주될 수 있다.
PDCCH 서브프레임에는 CSS만 존재하고, DCI 포맷 1A/1C만 모니터링되고, EPDCCH 서브프레임에는 USS만 존재한다고 하자. CSS에서의 블라인드 디코딩 복잡도와 USS에서의 블라인드 디코딩 복잡도가 실질적으로 동일하도록 설정될 수 있다.
제2 실시예에서, 동일 서브프레임에서 검색 공간사이 또는 DCI 포맷 사이 또는 후보 위치(candidate position) 사이에 블라인드 디코딩 복잡도를 배분할 수 있다.
무선기기가 하나의 서브프레임에서 수행할 수 있는 블라인드 디코딩의 총 횟수가 고정될 때, 후보 EPDCCH의 개수 및/또는 EPDCCH의 집합 레벨은 변할 수 있다.
무선기기가 총 N번의 블라인드 디코딩을 하나의 서브프레임에서 수행할 수 있다고 하자. 서브프레임 k에서 PDCCH 영역에서 K번의 블라인드 디코딩을 수행하면, EPDCCH 영역에서는 최대 (N-K)번의 블라인드 디코딩을 수행할 수 있다. 서브프레임 k+1에서, PDCCH 영역을 모니터링하지 않으면, EPDCCH 영역에서는 최대 N번의 블라인드 디코딩을 수행할 수 있다.
DCI 전송의 블록킹 확률(blocking probability)을 최소화하기 위해서, 무선기기가 모니터링하는 EPDCCH 영역의 집합 레벨/후보 EPDDCH의 개수를 서브프레임에 따라, 특히 해당 서브프레임에서 PDCCH를 디코딩하는지 여부에 따라서 다르게 조절할 것을 제안한다.
도 7은 본 발명의 일 실시예에 따른 제어채널 모니터링을 나타낸다.
16개의 CCE가 있고, 인덱스 0~15가 있다. 집합 레벨 L=4이고, ①②③④의 4개의 PDCCH 후보가 있다고 하자. 따라서, 집합 레벨 L=4에서, 최대 블라인드 디코딩 횟수는 4이다.
서브프레임 n에서, 무선기기는 PDCCH 영역(710)과 EPDCCH 영역(720)을 모니터링하고, 서브프레임 n+1에서, 무선기기는 EPDCCH 영역(780)을 모니터링한다고 하자.
서브프레임 n에서, 무선기기는 PDCCH 영역(710)에서 PDCCH 후보 ①을 모니터링하고, EPDCCH 영역(720)에서 PDCCH 후보 ②③④을 모니터링한다. 서브프레임 n+1에서, 무선기기는 EPDCCH 영역(780)에서 PDCCH 후보 ①②③④를 모니터링한다. 따라서, 모든 서브프레임에서 최대 블라인드 디코딩 횟수는 4로 동일하게 할 수 있다.
PDCCH/EPDCCH 영역의 위치/개수, 집합 레벨, PDCCH 후보의 갯수, CCE 갯수는 예시에 불과하다.
도면에서, PDCCH와 EPDCCH가 동일한 CCE 집합을 사용하는 것을 예시하고 있으나, PDCCH와 EPDCCH는 독립적인 자원 할당이 가능하다. PDCCH는 기존 CCE 집합을 사용하고, EPDDCH는 ECCE 집합을 사용할 수 있다.
N개의 PDCCH/EPDDCH 후보가 있다고 하고, PDCCH는 앞선 (N-K)개의 PDCCH 후보에 대해 디코딩을 수행할 수 있다. CCE 집합 내에서 PDCCH 후보의 위치를 균일하게 하기 위해, floor{n*N/(N-K)} (n=0, 1, .., N-K-1)의 연산을 통하여 나오는 CCE 인덱스를 해당 PDCCH 후보의 시작점으로 선택할 수도 있다. 여기서, floor{x}는 x보다 작은 최대의 정수를 의미한다.
아래는 PDCCH와 EPDCCH의 분할(partitioning)을 위한 공식의 일 예를 나타낸다.
수학식 5
Figure PCTKR2012009139-appb-M000005
여기서, N은 분할되는 검색 공간에서 PDCCH 후보의 전체 수, K는 PDCCH 또는 E-PDCCH에 할당하고자 하는 PDCCH 후보의 수, i는 선택되는 PDCCH 후보의 인덱스이다. a, b, c는 분할 비율, 선택 패턴에 따른 파라미터이다.
또 다른 방법으로, 상위 계층 신호를 통해서 (N-K)개의 PDCCH 후보의 위치와 개수를 기지국이 단말에게 설정할 수 있다.
이제, CSS를 EPDCCH 영역에서 정의하는 방법을 제안한다.
이하에서 USS, CSS는 PDCCH 영역내의 USS, CSS를 말하고, E-USS(Enhanced-USS), E-CSS(Enhanced-CSS)는 EPDCCH 영역내의 USS, CSS를 말한다. CSS는 셀 내 복수의 무선기기 또는 셀 내 모든 무선기기에 의해 모니터링되는 영역이다.
기존 PDCCH 영역의 CSS는 집합 레벨이 {4, 8}이고, 그 시작점이 고정되어 있다. EPDCCH 영역에서 E-CSS는 E-USS와 일부 또는 전체가 겹치도록 한다. 여기서, 겹치는 영역은 E-CSS의 EPDCCH 후보의 위치에 의존하여 구성될 수 있다.
E-CSS는 다수의 무선기기에게 대한 제어 정보 및 시스템 정보의 전달을 목적으로 하므로, 높은 신뢰성이 요구된다. 따라서, 예를 들어, {4, 8}과 같이 상대적으로 높은 집합 레벨이 사용되는 것이 바람직하다. 만약 E-USS가 집합 레벨 L={1, 2, 4, 8}에 대해서 정의되어 있다면, 무선기기는 L={4, 8}에서 E-CSS DCI 포맷이 검출될 수도 있다는 사실을 알고 있어야 한다. 이경우 E-CSS를 DCI 포맷 1A/0와 동일한 크기로 구성하게 되면, DCI 포맷 1A/0를 구분하는 것과 유사한 방식을 E-CSS DCI 포맷에 적용할 수 있어서 블라인드 디코딩 복잡도가 줄어들 수 있다. E-CSS를 구분하기 위해, 별도의 RNTI를 사용하거나 DCI가 CSS/USS를 구분하는 지시자를 포함하도록 할 수 있다.
특정 집합 레벨 (예, 4, 8)에 대해서는 E-CSS DCI 포맷만 모니터링되도록 할 수 있다. 또한, L=12와 같이, E-CSS는 E-USS와 다른 집합 레벨을 사용할 수도 있다. E-USS와 E-CSS의 중복은 일부 집합 레벨 또는 모든 집합 레벨에 대해서 적용할 수 있다. 또는 E-USS가 사용가능한 집합 레벨 중에서 일부를 E-CSS에 할당하고, E-USS는 해당 집합 레벨을 사용하지 않는 것을 가정할 수 있다. 예를 들어, E-USS에 L={1, 2, 4, 8}이 정의되어 있지만, E-CSS가 L=4로 설정되면, 무선기기는 E-USS에서 L={1, 2, 8}에 대해서만 EPDCCH 검출을 시도할 수 있다.
EPDCCH 영역내의 E-CSS는 DM RS를 공유하는 무선기기 또는 특정 무선기기 그룹에 의해서 모니터링될 수 있다.
이제 PDCCH와 EPDCCH를 위한 서브프레임 설정에 대해 기술한다.
아래 표는 제안된 서브프레임 설정의 일 예이다.
표 5
서브프레임 설정 CSS(PDCCH) USS(PDCCH) E-CSS E-USS 사용 예
1 O CSS 폴백
2 O USS 폴백
3 O E-CSS only
4 O E-USS only
5 O O PDCCH only
6 O O CSS/E-CSS partitioning
7 O O CSS/USS partitioning
8 O O
9 O O
10 O O EPDCCH only
11 O O O
12 O O O CSS fallback
13 O O O
14 O O O
15 O O O O
16 N/A
상기에서 'O'는 해당 서브프레임에 해당 검색 공간이 존재함을 나타낸다.
서브프레임 설정 7은 정규 서브프레임에서의 검색 공간 분할을 나타낸다. 안정적인 PDCCH 영역에 CSS를 정의하고, EPDCCH 영역에 E-USS를 정의한다. EPDCCH가 무선기기의 스케줄링 정보를 전송하고, PDCCH가 공용 제어정보를 전송한다.
서브프레임 설정 13은 EPDCCH 영역에 E-CSS 및 E-USS가 정의되지만, 추가적으로 PDCCH 영역에 CSS가 정의되는 것을 나타낸다. 블라인드 디코딩 복잡도는 블라인드 디코딩 횟수에 크게 좌우되므로, 최대 횟수를 증가시키지 않는 범위에서 3개의 검색 공간을 적절히 설계하면 복잡도는 증가되지 않을 수 있다. 보다 구체적으로, CSS와 E-CSS 사이에 후보 EPDDCH 후보의 개수나 또는 집합 레벨을 배분할 수 있다. 예를 들어, CSS는 집합 레벨 4를 사용하고, E-CSS는 집합 레벨 8을 사용할 수 있다. CSS와 E-CSS 사이에 블라인드 디코딩 횟수가 동일하게 하거나 또는 서로 다르게 할 수 있다. 검색 공간에 따른 블라인드 디코딩 배분은 서브프레임 설정 6, 7, 9, 12, 13, 14, 15에도 적용될 수 있다.
서브프레임 설정 15에서는 PDCCH 영역과 EPDCCH 영역에서 모두 CSS/USS가 정의된다.
서브프레임 설정 5에서는 PDCCH 영역의 CSS/USS 만이 정의된다. 이는 일종의 PDCCH 폴백으로 간주될 수 있다. 무선기기는 EPDCCH 영역을 모니터링하다가, 특정한 상황에서 폴백 모드, 즉 PDCCH를 모니터링하는 모드로 전환될 수 있다. 폴백 모드에서는 3GPP LTE와 달리 더 많은 집합 레벨 또는 더 많은 PDCCH 후보의 수가 정의될 수 있다.
서브프레임 설정 11은 PDCCH 영역내의 CSS가 부족하여 추가적으로 E-CSS를 확보하기 위해 활용될 수 있다.
서브프레임 설정 12는 안전하게 설계된 PDCCH 영역을 모니터링하는 것을 기본으로 하고, E-PDCCH 영역에 추가적으로 E-USS를 확보하는 방법이다.
서브프레임 설정 13은 서브프레임 설정 7에서 추가적으로 E-CSS를 확보하는 것을 나타낸다. 반대로 해석하여, E-PDCCH를 구성하고 추가적으로 CSS을 PDCCH 영역에 확보하는 것이라고도 할 수 있다.
서브프레임 설정 14는 EPDCCH 모니터링 모드에서 추가적으로 PDCCH 영역의 USS을 모니터링하는 것이다.
전술한 서브프레임 설정 1~16은 조합될 수 있다. 서브프레임 설정은 서브프레임 단위, 주기적 또는 비주기적으로 변경될 수 있다. 왜냐하면, 각 서브프레임 설정마다의 잇점이 있으므로, 상황에 따라 적절한 서브프레임 설정을 선택하는 것이 보다 효율적일 수 있다.
예를 들어, 서브프레임 설정 10과 5가 조합될 수 있다. 특정 서브프레임에서는 서브프레임 설정 10에 의해 EPDCCH만 모니터링하고, 다른 서브프레임에서 서브프레임 설정 5에 의해 PDCCH 만 모니터링할 수 있다.
서브프레임 설정 7과 5가 조합될 수 있다. 특정 서브프레임에서는 서브프레임 설정 7에 의해 PDCCH 영역의 CSS와 EPDCCH 영역의 USS를 모니터링하고, 다른 서브프레임에서 서브프레임 설정 5에 의해 PDCCH 만 모니터링할 수 있다. 이는 TDD의 special subframe에 유용하게 적용될 수 있다. Special subframe에서는 서브프레임 설정 5에 따라 PDCCH에 의존하고, 나머지 TDD 서브프레임에는 서브프레임 설정 7에 따를 수 있다.
서브프레임 설정 9와 6이 조합될 수 있다. 특정 서브프레임에서는 서브프레임 설정 9에 의해 PDCCH 영역의 USS와 EPDCCH 영역의 E-USS를 모니터링하고, 다른 서브프레임에서 서브프레임 설정 6에 의해 PDCCH 영역의 CSS와 EPDCCH 영역의 E-CSS를 모니터링할 수 있다.
상기 조합은 예시에 불과하며, 상기 서브프레임 설정 1~16의 다양한 조합이 가능하다. 또는 하나의 서브프레임에 하나 이상의 서브프레임 설정이 적용될 수도 있다. 서브프레임 설정은 특정 조건이 만족하면 바뀌거나 또는 미리 지정된 패턴에 따라 바뀔 수 있다.
서브프레임 설정은 서브프레임 단위 또는 무선 프레임 단위로 설정될 수 있다. 기지국은 서브프레임 설정이 바뀌는 주기 및/또는 변경 조건을 무선기기에게 설정할 수 있다,
기지국은 가용한 서브프레임 설정 집합을 무선기기에 할당하고, 가용한 서브프레임 설정 집합을 활성화/비활성화 할 수 있다. 예를 들어, 기지국은 무선기기에게 가용한 서브프레임 설정이 서브프레임 설정 7과 5 임을 알려준다. 그리고, 기지국은 서브프레임 단위 또는 무선 프레임 단위로 서브프레임 설정을 알려줄 수 있다. 예를 들어, 기지국이 무선 프레임에 속하는 10개의 서브프레임에 대해 비트맵 {0001100000}을 무선기기에 전송하면, 무선기기는 인덱스 3와 4를 갖는 서브프레임에 대해 서브프레임 설정 5를 적용하고, 나머지 서브프레임에 대해 서브프레임 설정 7을 적용할 수 있다. 이후 서브프레임 설정을 변경하기 위해, 기지국은 변경된 비트맵만을 무선기기에게 전송할 수 있다.
대역폭에 따라 서브프레임 설정을 달리할 수 있다. 예를 들어, 무선 네트워크가 20MHz 대역폭과 1MHz 대역폭을 지원한다고 하자. 이때, 1MHz 대역폭에 대응하는 서브프레임에서는 데이터 영역에 할당되는 RE의 수가 부족할 수 있다. 따라서, 20MHz 대역폭에서는 서브프레임 설정 7을 사용하고, 1MHz 대역폭에서는 서브프레임 설정 5를 사용할 수 있다.
도 8은 본 발명의 일 실시예에 따른 하향링크 제어채널 모니터링을 나타낸다.
EPDCCH 영역은 복수의 서브 영역(810, 820)으로 나뉠 수 있다. EPDCCH 영역이 N개의 ECCE를 포함한다고 하자. 제1 서브 영역(810)은 인덱스 0인 ECCE부터 시작하고, 제2 서브 영역(820)은 인덱스 4인 ECCE부터 시작할 수 있다.
서브 영역의 개수나 시작점은 예시에 불과하다.
서브 영역(810, 820)은 각 서빙셀마다 정의될 수 있으며, 다른 용어로 EPDCCH 집합이라고 할 수 있다. 이하에서, 제1 서브 영역(810)은 EPDCCH 집합 1에 대응되고, 제2 서브 영역(820)은 EPDCCH 집합 2에 대응된다고 하자.
EPDCCH 집합 1의 복조에 사용되는 제1 DM RS와 EPDCCH 집합 2의 복조에 사용되는 제2 DM RS는 서로 다른 셀 ID에 기반하여 생성될 수 있다. 예를 들어, 제1 DM RS는 제1 서빙셀의 셀 ID를 기반으로 생성되고, 제2 DM RS는 제2 서빙의 셀 ID를 기반으로 생성될 수 있다.
EPDCCH 집합의 개수는 서브프레임마다 변경될 수 있다. 각 EPDCCH 집합마다 전술한 표 5의 서브프레임 설정이 적용될 수 있다.
각 EPDCCH 집합은 EPDCCH 영역내에서 서로 다른 시작점을 가질 수 있다. 또는, 각 EPDCCH 집합은 EPDCCH 영역내에서 동일한 시작점을 가질 수 있다.
복수의 EPDCCH 집합에 관한 설정은 기지국이 무선기기에게 RRC 메시지 등을 통해 알려줄 수 있다.
EPDCCH 영역을 복수의 EPDCCH 집합으로 나누는 것은 많은 잇점이 있다. 첫째로, 복수의 EPDCCH 집합에 서로 다른 전송 모드를 적용하여 좀더 신뢰성 높은 전송이 가능하다. 예를 들어, EPDCCH 집합 1은 로컬 전송(localized transmission)을 적용하고, EPDCCH 집합 2는 분배 전송(distributed transmission)을 적용할 수 있다. 채널 상황이 좋지 않아 어느 EPDCCH 집합의 모니터링이 어렵더라도, 다른 EPDCCH 집합의 모니터링은 좀더 용이할 수 있다. 둘째, 전송 자원 할당에 유연성을 높일 수 있다. EPDCCH는 PRB 쌍(pair) 단위로 할당되는데, 페이로드가 크지 않다면 하나의 PRB 쌍에 서로 다른 EPDCCH 집합을 할당할 수 있다.
EPDCCH 영역이 복수의 EPDCCH 집합으로 나뉘더라도, 블라인드 디코딩의 최대 횟수는 유지하는 것이 바람직하다. EPDCCH 영역을 위한 블라인드 디코딩 역량은 복수의 EPDCCH 집합에 대한 블라인드 디코딩 역량으로 나누어질 수 있다.
복수의 EPDCCH 집합 각각에 대한 블라인드 디코딩의 최대 횟수는 모두 동일하거나 또는 다를 수 있다.
이하의 표는 EPDCCH 집합 1과 2가 있고, 집합 레벨 L={1, 2, 4, 8, 16}이 정의될 때, 각 집합 레벨에 따른 EPDCCH 후보의 수를 나타낸다.
표 6
설정 EPDCCH 집합 L=1 L=2 L=4 L=8 L=16
0 1 3 3 1 1 0
2 3 3 1 1 0
1 1 0 4 2 1 1
2 0 4 2 1 1
2 1 4 4 2 2 0
2 2 2 0 0 0
3 1 0 6 2 2 2
2 0 2 2 0 0
4 1 0 0 4 2 2
2 4 4 0 0 0
설정 0 및 1은 EPDCCH 집합 1과 집합 2를 균등하게 배분한 것이다. 설정 2는 EPDCCH 집합 1에 더 많은 블라인드 디코딩 횟수를 주고, 낮은 집합 레벨에 우선순위를 준것이다. 설정 3는 EPDCCH 집합 1에 더 많은 블라인드 디코딩 횟수를 주고, 높은 집합 레벨에 우선순위를 준것이다. 설정 4는 EPDCCH 집합 1과 EPDCCH 집합 2에 서로 다른 집합 레벨을 할당한 것이다.
다음 표는 다양한 실시예를 보여준다.
표 7
설정 EPDCCH 집합 L=1 L=2 L=4 L=8 L=16
0 1 0 4 4 0 0
2 0 4 4 0 0
1 1 0 3 3 1 1
2 0 3 3 1 1
2 1 0 6 6 0 0
2 0 2 2 0 0
3 1 0 4 4 2 2
2 0 2 2 0 0
4 1 0 0 4 2 2
2 4 4 0 0 0
표 8
설정 EPDCCH 집합 L=1 L=2 L=4 L=8 L=16
0 1 3 3 1 1 0
2 3 3 1 1 0
1 1 0 4 2 1 1
2 0 4 2 1 1
2 1 4 4 2 2 0
2 2 2 0 0 0
3 1 0 6 2 2 0
2 0 2 2 0 0
4 1 0 0 4 2 2
2 4 4 0 0 0
표 9
설정 EPDCCH 집합 L=1 L=2 L=4 L=8 L=16
0 1 0 4 4 0 0
2 0 4 4 0 0
1 1 0 3 3 1 1
2 0 3 3 1 1
2 1 0 6 6 0 0
2 0 2 2 0 0
3 1 0 4 4 2 2
2 0 2 2 0 0
4 1 0 0 4 2 2
2 4 4 0 0 0
도 9는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 기지국의 동작은 프로세서(51)에 의해 구현될 수 있다. 프로세서(51)는 EPDCCH 및/또는 PDCCH을 위한 검색 공간을 설정하고, EPDCCH 및 PDCCH를 전송할 수 있다.
무선기기(60)는 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 무선기기의 동작은 프로세서(61)에 의해 구현될 수 있다. 프로세서(61)는 검색 공간에서 EPDCCH 및 PDCCH를 모니터링할 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (11)

  1. 무선 통신 시스템에서 하향링크 제어채널 모니터링 방법에 있어서,
    무선기기가 제1 검색 공간에서 제1 하향링크 제어채널을 모니터링하는 단계; 및
    상기 무선기기가 제2 검색 공간에서 제2 하향링크 제어채널을 모니터링하는 단계를 포함하되,
    상기 제1 하향링크 제어채널은 제1 서빙셀의 식별자를 기반으로 생성되는 제1 기준신호에 의해 복조되고,
    상기 제2 하향링크 제어채널은 제2 서빙셀의 식별자를 기반으로 생성되는 제2 기준신호에 의해 복조되는 것을 특징으로 하는 하향링크 제어채널 모니터링 방법.
  2. 제 1 항에 있어서,
    상기 제1 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수는 상기 제2 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수와 동일한 것을 특징으로 하는 하향링크 제어채널 모니터링 방법.
  3. 제 1 항에 있어서,
    상기 제1 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수는 상기 제2 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수와 다른 것을 특징으로 하는 하향링크 제어채널 모니터링 방법.
  4. 제 1 항에 있어서,
    상기 제1 검색 공간을 위한 집합 레벨과 상기 제2 검색 공간을 위한 집합 레벨은 서로 다른 것을 특징으로 하는 하향링크 제어채널 모니터링 방법.
  5. 제 1 항에 있어서,
    상기 제1 및 제2 검색 공간에서 상기 제1 및 제2 하향링크 제어채널은 상기 무선기기의 식별자를 기반으로 디코딩되는 것을 특징으로 하는 하향링크 제어채널 모니터링 방법.
  6. 제 1 항에 있어서,
    상기 제1 기준신호는 상기 제1 검색 공간 내에서 수신되고,
    상기 제2 기준신호는 상기 제2 검색 공간내에서 수신되는 것을 특징으로 하는 하향링크 제어채널 모니터링 방법.
  7. 무선 통신 시스템에서 제어채널을 모니터링하는 무선기기에 있어서,
    무선 신호를 송신 및 수신하는 RF(radio freqeuncy)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는
    제1 검색 공간에서 제1 하향링크 제어채널을 모니터링하고; 및
    제2 검색 공간에서 제2 하향링크 제어채널을 모니터링하되,
    상기 제1 하향링크 제어채널은 제1 서빙셀의 식별자를 기반으로 생성되는 제1 기준신호에 의해 복조되고,
    상기 제2 하향링크 제어채널은 제2 서빙셀의 식별자를 기반으로 생성되는 제2 기준신호에 의해 복조되는 것을 특징으로 하는 무선기기.
  8. 제 7 항에 있어서,
    상기 제1 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수는 상기 제2 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수와 동일한 것을 특징으로 하는 무선기기.
  9. 제 7 항에 있어서,
    상기 제1 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수는 상기 제2 하향링크 제어채널을 위한 블라인드 디코딩의 최대 횟수와 다른 것을 특징으로 하는 무선기기.
  10. 제 7 항에 있어서,
    상기 제1 검색 공간을 위한 집합 레벨과 상기 제2 검색 공간을 위한 집합 레벨은 서로 다른 것을 특징으로 하는 무선기기.
  11. 제 7 항에 있어서,
    상기 제1 기준신호는 상기 제1 검색 공간 내에서 수신되고,
    상기 제2 기준신호는 상기 제2 검색 공간내에서 수신되는 것을 특징으로 하는 무선기기.
PCT/KR2012/009139 2011-11-01 2012-11-01 하향링크 제어채널 모니터링 방법 및 무선기기 WO2013066084A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280065712.0A CN104025532B (zh) 2011-11-01 2012-11-01 用于监测下行链路控制信道的方法和无线装置
KR1020167002963A KR101890045B1 (ko) 2011-11-01 2012-11-01 하향링크 제어채널 모니터링 방법 및 무선기기
US14/355,409 US9510219B2 (en) 2011-11-01 2012-11-01 Method and wireless device for monitoring downlink control channel
KR1020147011399A KR101612207B1 (ko) 2011-11-01 2012-11-01 하향링크 제어채널 모니터링 방법 및 무선기기
EP12845621.7A EP2779557B1 (en) 2011-11-01 2012-11-01 Method and wireless device for monitoring downlink control channel
JP2014538725A JP5980938B2 (ja) 2011-11-01 2012-11-01 ダウンリンク制御チャネルモニタリング方法及び無線機器

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161554485P 2011-11-01 2011-11-01
US61/554,485 2011-11-01
US201261619927P 2012-04-03 2012-04-03
US61/619,927 2012-04-03
US201261679050P 2012-08-02 2012-08-02
US61/679,050 2012-08-02

Publications (2)

Publication Number Publication Date
WO2013066084A2 true WO2013066084A2 (ko) 2013-05-10
WO2013066084A3 WO2013066084A3 (ko) 2013-06-27

Family

ID=48192957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009139 WO2013066084A2 (ko) 2011-11-01 2012-11-01 하향링크 제어채널 모니터링 방법 및 무선기기

Country Status (6)

Country Link
US (1) US9510219B2 (ko)
EP (1) EP2779557B1 (ko)
JP (1) JP5980938B2 (ko)
KR (2) KR101890045B1 (ko)
CN (1) CN104025532B (ko)
WO (1) WO2013066084A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002983A4 (en) * 2013-07-16 2016-06-15 Huawei Tech Co Ltd METHOD FOR TRANSMITTING TAX INFORMATION, USER DEVICE AND BASE STATION
KR20170109680A (ko) * 2015-02-13 2017-09-29 다탕 링크테스터 테크놀로지 코., 엘티디. Pdcch 블라인드 검출 방법 및 시스템

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8582527B2 (en) * 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
EP2564611B1 (en) 2011-07-01 2015-02-18 Ofinno Technologies, LLC Synchronization signal and control messages in multicarrier OFDM
US8369280B2 (en) 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
US8842637B2 (en) 2011-12-04 2014-09-23 Ofinno Technologies, Llc Carrier information transmission to wireless devices
US9144065B2 (en) * 2011-12-16 2015-09-22 Samsung Electronics Co., Ltd Communication support for low capability devices
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
US10448379B2 (en) * 2012-05-04 2019-10-15 Texas Instruments Incorporated Enhanced downlink control channel configuration for LTE
CN110266453B (zh) * 2012-11-09 2023-11-28 北京三星通信技术研究有限公司 盲检公共搜索空间和ue特定搜索空间的方法及设备
US9807737B2 (en) 2013-01-17 2017-10-31 Lg Electronics Inc. Method for receiving control information in wireless communications system and apparatus therefor
US11283574B2 (en) * 2013-04-03 2022-03-22 Interdigital Patent Holdings, Inc. EPDCCH common search space design for one or more carrier types
JP6381217B2 (ja) * 2014-01-30 2018-08-29 株式会社Nttドコモ ユーザ装置、基地局、及び制御情報検出方法
KR20160089844A (ko) 2015-01-19 2016-07-28 주식회사 케이티 Mtc 단말을 위한 하향 링크 공용 제어 채널 송수신 방법 및 장치
US9647864B2 (en) * 2015-04-10 2017-05-09 Motorola Mobility Llc Method and apparatus for reception of control signaling
TWI763633B (zh) 2015-08-25 2022-05-11 美商Idac控股公司 無線傳輸/接收單元及在其中執行的方法
US11496872B2 (en) 2015-11-06 2022-11-08 Qualcomm Incorporated Search spaces and grants in eMTC
CN106686741B (zh) * 2015-11-11 2020-04-14 华为技术有限公司 传输调度信息的方法、装置、存储介质和通信***
KR20180068677A (ko) * 2016-12-14 2018-06-22 삼성전자주식회사 무선 통신 시스템에서 하향링크 제어채널의 송수신 방법 및 장치
US10644914B2 (en) * 2016-12-19 2020-05-05 Mediatek Singapore Pte. Ltd. Reference signal detection for reducing control decoding complexity
RU2734025C1 (ru) 2017-05-12 2020-10-12 Телефонактиеболагет Лм Эрикссон (Пабл) Мониторинг пространств поиска
JP7046942B2 (ja) 2017-06-16 2022-04-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、受信方法及び集積回路
CN111447688B (zh) * 2017-07-08 2023-04-07 上海琦予通信科技服务中心 一种被用于动态调度的用户设备、基站中的方法和装置
EP3711237A1 (en) * 2017-11-17 2020-09-23 Telefonaktiebolaget LM Ericsson (publ) Efficient coreset configuration
CN109819475B (zh) * 2017-11-20 2021-10-26 中兴通讯股份有限公司 一种搜索空间资源的确定方法、和装置
WO2019210517A1 (zh) * 2018-05-04 2019-11-07 Oppo广东移动通信有限公司 无线通信方法、通信设备、芯片和***
WO2019237310A1 (zh) 2018-06-14 2019-12-19 Oppo广东移动通信有限公司 一种信息传输方法及装置、终端设备、网络设备
CN112567672B (zh) * 2018-08-09 2024-05-28 联想(新加坡)私人有限公司 用于下行链路控制信道的下行链路指派
US11903023B2 (en) 2019-01-11 2024-02-13 Lg Electronics Inc. Method for transmitting and receiving signal in wireless communication system and apparatus for supporting same
CN113439480B (zh) 2019-01-11 2022-11-04 Lg 电子株式会社 在无线通信***中发送和接收信号的方法和装置
US11470596B2 (en) 2019-07-18 2022-10-11 Samsung Electronics Co., Ltd. Determination of start time of PDCCH monitoring occasion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110020708A (ko) * 2009-08-24 2011-03-03 삼성전자주식회사 Ofdm 시스템에서 셀간 간섭 조정을 위한 제어 채널 구성과 다중화 방법 및 장치
CN102055519B (zh) * 2009-11-05 2014-12-17 中兴通讯股份有限公司 解调数据参考符号序列的方法及装置
CN102123013B (zh) * 2010-01-08 2015-06-03 中兴通讯股份有限公司 一种解调参考符号的映射方法和装置
US9306723B2 (en) * 2010-02-20 2016-04-05 Google Technology Holdings LLC Multi-carrier control signaling in wireless communication system
US20120281555A1 (en) * 2011-05-02 2012-11-08 Research In Motion Limited Systems and Methods of Wireless Communication with Remote Radio Heads

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10", 3GPP TS 36.211 V10.2.0, June 2011 (2011-06-01)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002983A4 (en) * 2013-07-16 2016-06-15 Huawei Tech Co Ltd METHOD FOR TRANSMITTING TAX INFORMATION, USER DEVICE AND BASE STATION
US10524241B2 (en) 2013-07-16 2019-12-31 Huawei Technologies Co., Ltd. Control information transmission method, user equipment, and base station
CN111565100A (zh) * 2013-07-16 2020-08-21 华为技术有限公司 控制信息的传输方法、用户设备和基站
US10779269B2 (en) 2013-07-16 2020-09-15 Huawei Technologies Co., Ltd. Control information transmission method, user equipment, and base station
US11464003B2 (en) 2013-07-16 2022-10-04 Huawei Technologies Co., Ltd. Control information transmission method, user equipment, and base station
KR20170109680A (ko) * 2015-02-13 2017-09-29 다탕 링크테스터 테크놀로지 코., 엘티디. Pdcch 블라인드 검출 방법 및 시스템
KR101886397B1 (ko) * 2015-02-13 2018-08-08 다탕 링크테스터 테크놀로지 코., 엘티디. Pdcch 블라인드 검출 방법 및 시스템
US10165562B2 (en) 2015-02-13 2018-12-25 Datang Linktester Technology Co., Ltd. Blind detection method and system for physical downlink control channel (PDCCH)

Also Published As

Publication number Publication date
US20140254420A1 (en) 2014-09-11
WO2013066084A3 (ko) 2013-06-27
JP5980938B2 (ja) 2016-08-31
KR101612207B1 (ko) 2016-04-12
EP2779557B1 (en) 2019-03-13
JP2015501595A (ja) 2015-01-15
US9510219B2 (en) 2016-11-29
KR20140098064A (ko) 2014-08-07
CN104025532B (zh) 2017-11-24
EP2779557A2 (en) 2014-09-17
KR101890045B1 (ko) 2018-08-20
EP2779557A4 (en) 2015-08-05
KR20160018871A (ko) 2016-02-17
CN104025532A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2013066084A2 (ko) 하향링크 제어채널 모니터링 방법 및 무선기기
WO2013066083A2 (ko) 제어채널 모니터링 방법 및 무선기기
WO2014163302A1 (ko) 소규모 셀에서의 수신 방법 및 사용자 장치
WO2013077677A1 (ko) 제어 채널 모니터링 방법 및 무선기기
WO2018044114A1 (ko) 다수의 검색 공간에 대해 블라인드 디코딩을 수행하는 순서를 결정하는 방법 및 단말
WO2013069984A1 (ko) 데이터 수신 방법 및 무선기기
WO2014137105A1 (ko) Epdcch를 통한 제어 정보 수신 방법
WO2010131926A2 (ko) 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
WO2013115571A1 (ko) Mtc 단말을 위한 연결 설정 방법 및 장치
WO2017135682A1 (ko) 상향링크 제어 채널 전송 방법 및 이를 수행하는 사용자 장치
WO2014062041A1 (ko) 무선 통신 시스템에서 하향링크 제어채널을 모니터링하는 방법 및 장치
WO2017010798A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2015076501A1 (ko) 랜덤 액세스 절차를 수행하는 방법
WO2013141582A1 (ko) Harq 수행 방법 및 무선기기
WO2014185660A1 (ko) 셀 커버리지 확장 영역 위치한 mtc 기기의 정보 수신 방법
WO2013147532A1 (ko) 무선 통신 시스템에서 트래킹 참조 신호를 이용한 채널 측정 방법 및 이를 이용하는 장치
WO2010131929A2 (ko) 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
WO2013125873A1 (ko) 무선 통신 시스템에서 초기 접속 방법 및 장치
WO2014208940A1 (ko) Mtc 기기의 동작 방법
WO2013070035A1 (ko) 제어 채널 모니터링 방법 및 무선기기
WO2013176511A1 (ko) Harq ack/nack 전송 방법 및 이를 이용한 무선기기
WO2014017746A1 (ko) Harq 수행 방법 및 단말
WO2014123388A1 (ko) 간섭 제거를 위해 네트워크 지원 정보를 전송하는 방법 및 서빙셀 기지국
WO2016018068A1 (ko) 무선 통신 시스템에서 d2d 통신을 위한 자원 정보 송신 송신 방법 및 이를 위한 장치
WO2019209085A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845621

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014538725

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20147011399

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14355409

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012845621

Country of ref document: EP