WO2013065785A1 - 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 - Google Patents

酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 Download PDF

Info

Publication number
WO2013065785A1
WO2013065785A1 PCT/JP2012/078326 JP2012078326W WO2013065785A1 WO 2013065785 A1 WO2013065785 A1 WO 2013065785A1 JP 2012078326 W JP2012078326 W JP 2012078326W WO 2013065785 A1 WO2013065785 A1 WO 2013065785A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide
oxide sintered
ratio
less
Prior art date
Application number
PCT/JP2012/078326
Other languages
English (en)
French (fr)
Inventor
幸樹 田尾
英雄 畠
守賀 金丸
旭 南部
祐紀 岩崎
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Publication of WO2013065785A1 publication Critical patent/WO2013065785A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to an oxide sintered body and a sputtering target used when a thin film transistor (TFT) oxide semiconductor thin film used in a display device such as a liquid crystal display or an organic EL display is formed by a sputtering method, and a method for manufacturing the oxide sintered body. It is about.
  • TFT thin film transistor
  • An amorphous (amorphous) oxide semiconductor used for a TFT has a higher carrier mobility than a general-purpose amorphous silicon (a-Si), has a large optical band gap, and can be formed at a low temperature. Therefore, it is expected to be applied to next-generation displays that require large size, high resolution, and high-speed driving, and resin substrates with low heat resistance.
  • a-Si general-purpose amorphous silicon
  • ITO In-containing amorphous oxide semiconductors
  • a sputtering method is preferably used in which a sputtering target made of the same material as the film is sputtered.
  • a sputtering target made of the same material as the film is sputtered.
  • prevention of abnormal discharge during sputtering and prevention of cracking of the target are important in order to stabilize the characteristics of the thin film as a product and increase the efficiency of production, and various techniques have been proposed.
  • Patent Document 1 proposes a technique for suppressing abnormal discharge for an ITO target by reducing the average grain size of crystal grains.
  • Patent Document 2 proposes a technique for preventing cracking of the target plate during sputtering by increasing the sintering density and reducing the crystal grain size for the ITO target.
  • Patent Document 3 discloses that an In—Zn—O-based composite oxide is annealed in a reducing atmosphere after sintering, thereby improving the conductivity of the target material, thereby preventing abnormal discharge during sputtering and cracking of the target. Suppression techniques have been proposed.
  • a sputtering target used for manufacturing an oxide semiconductor film for a display device and an oxide sintered body that is a material thereof have high carrier mobility.
  • improvement of the target material and the oxide sintered body used as the material is required. It has been demanded.
  • the objective is the oxide sintered compact suitably used for manufacture of the oxide semiconductor film for display apparatuses, and a sputtering target, Comprising: It has high carrier mobility.
  • An object of the present invention is to provide an oxide sintered body, a sputtering target, and a method for manufacturing the same, which can suppress abnormal discharge in the formation of an oxide semiconductor film and can be stably formed by a sputtering method.
  • the oxide sintered body of the present invention that can solve the above-mentioned problems includes zinc oxide; indium oxide; an oxide of at least one metal selected from the group consisting of Ti, Mg, Al, and Nb;
  • a Zn m In 2 O 3 + m (m is an integer of 5 to 7) phase is obtained.
  • the average grain size of the crystal grains observed by SEM at the fracture surface of the oxide sintered body is 10 ⁇ m or less, and the ratio of crystal grains having a grain size of 30 ⁇ m or more is 15% or less
  • the oxide sintered body has a gist where the relative density is 85% or more.
  • the content (atomic%) of zinc, indium, Ti, Mg, Al, and Nb with respect to all metal elements in the oxide sintered body is respectively [Zn], [In], [In], [Ti], [Mg], [Al], [Nb], the ratio of [In] to [Zn], [Zn] + [In] + [Ti] + [Mg] + [Al] + [Nb] ] [Ti] + [Mg] + [Al] + [Nb] satisfy the following formulas.
  • the volume ratio of the Zn m In 2 O 3 + m to the total of Zn m In 2 O 3 + m , In 2 O 3 , and ZnO contained in the oxide sintered body Satisfy the following formulas.
  • Zn m In 2 O 3 + m is the total of Zn 5 In 2 O 8 , Zn 6 In 2 O 9 , and Zn 7 In 2 O 10.
  • the sputtering target of the present invention that has solved the above problems is a sputtering target obtained using the oxide sintered body according to any one of the above, and has a specific resistance of 0.1 ⁇ ⁇ cm or less. .
  • a preferred method for producing the oxide sintered body of the present invention comprises mixing zinc oxide; indium oxide; and an oxide of at least one metal selected from the group consisting of Ti, Mg, Al, and Nb. After being set in a graphite mold, the temperature is increased to a sintering temperature of 1000 to 1150 ° C. at an average temperature increase rate of 600 ° C./hr or less, and then sintered in a holding time of 0.1 to 5 hours in the temperature range.
  • a sintering temperature 1000 to 1150 ° C. at an average temperature increase rate of 600 ° C./hr or less
  • an oxide sintered body and a sputtering target capable of suppressing abnormal discharge in the formation of an oxide semiconductor film having high carrier mobility and capable of stable film formation by a sputtering method, and a method for manufacturing the same. It is possible to provide.
  • FIG. 1 is a diagram showing a basic process for producing an oxide sintered body and a sputtering target of the present invention.
  • FIG. 2 is a graph showing an example of a sintering process used in the production method of the present invention.
  • the present inventors have made it possible to stably form a film for a long time by suppressing abnormal discharge during sputtering for an oxide sintered body containing zinc oxide and indium oxide, and have high carrier mobility.
  • studies have been made repeatedly.
  • M metal zinc oxide; indium oxide; and powders of oxides of at least one metal selected from the group consisting of Ti, Mg, Al, and Nb (hereinafter referred to as M metal) are mixed and sintered.
  • the oxide sintered body is X-ray diffracted, the Zn m In 2 O 3 + m (m is an integer of 5 to 7) phase is the main phase.
  • SEM observation was performed, it was found that the intended purpose was achieved when the average grain size and coarse crystal grains were controlled and the relative density was 85% or more.
  • phase structure when the oxide sintered body is subjected to X-ray diffraction (i) Zn and In are bonded to each other to form Zn m In 2 O 3 + m (m is an integer of 5 to 7). ) Is capable of significantly suppressing abnormal discharge during sputtering, (ii) M metal exhibits a useful effect in improving carrier mobility, (iii) When observed by SEM For the crystal grains, it is effective to suppress the abnormal discharge by reducing the average crystal grain size and suppressing the ratio of coarse crystal grains, and (iv) by increasing the relative density, It has been found that the effect of suppressing the generation can be further improved. (V) Then, in order to obtain an oxide sintered body having such a phase structure, it was found that the sintering should be performed under predetermined sintering conditions, and the present invention has been achieved.
  • the oxide sintered body of the present invention is an oxide containing Zn m In 2 O 3 + m (m is an integer of 5 to 7) as a main phase when the oxide sintered body is subjected to X-ray diffraction. It is characterized by a product sintered body.
  • the X-ray diffraction conditions in the present invention are as follows. Analysis device: “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation Analysis conditions Target: Cu Monochromatic: Uses a monochrome mate (K ⁇ ) Target output: 40kV-200mA (Continuous measurement) ⁇ / 2 ⁇ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm Monochromator light receiving slit: 0.6mm Scanning speed: 2 ° / min Sampling width: 0.02 ° Measurement angle (2 ⁇ ): 5 to 90 °
  • Zn 6 In 2 O 9 specifies a crystal phase having a crystal structure described in the following references (1) and (2).
  • References (1) M. Nakamura, N. Kimizuka and T. Mohri: J. Solid State Chem. 86 (1990) 16-40
  • Reference (2) M. Nakamura, N. Kimizuka, T. Mohri and M. Isobe: J. Solid State Chem. 105 (1993) 535-549
  • the Zn m In 2 O 3 + m compound (phase) is formed by combining zinc oxide and indium oxide constituting the oxide sintered body of the present invention.
  • the crystal structure of this compound is a hexagonal crystal and greatly contributes to the improvement in carrier mobility of the oxide sintered body.
  • the Zn m In 2 O 3 + m compound is a homologous compound, and m is at least one of 5 (Zn 5 In 2 O 8 ), 6 (Zn 6 In 2 O 9 ), and 7 (Zn 7 In 2 O 10 ). Or one. If m is an integer of 4 or less or an integer of 8 or more, the semiconductor characteristics of the oxide semiconductor film are deteriorated and carrier mobility is lowered, which is not desirable. Since these are crystals of complex oxides of Zn, In, and M metal, m is an integer.
  • In 2 O 3 or ZnO may be included a little.
  • the Zn m In 2 O 3 + m of the present invention includes a case where M metal described later is dissolved.
  • the M metal used in the present invention is an element having a strong binding property to oxygen. By dissolving the M metal, the oxygen vacancies in the Zn—In—O-based target are reduced, and a film formed by sputtering is used. Useful for improving carrier mobility.
  • the M metal is at least one selected from the group consisting of Ti, Mg, Al, and Nb. In this invention, the said M metal may be used independently and may use 2 or more types together. Among these, preferred M metals from the viewpoint of semiconductor characteristics are Ti, Mg, and Al.
  • M metal is an element selected as an element that greatly contributes to improving the carrier mobility of an oxide sintered body composed only of zinc oxide and indium oxide. Compared with the case where no M metal is contained, carrier mobility is improved by using an oxide sintered body containing the M metal specified in the present invention, preferably in a predetermined ratio described later.
  • the M metal is dissolved in the Zn m In 2 O 3 + m phase.
  • the present invention is not limited to this, and a part of the M metal may be present as an oxide (for example, 5% by volume or less) as long as the effect of improving the carrier mobility of the present invention is not inhibited.
  • the M metal may be present in a solid solution state in these compounds.
  • the average grain size of the crystal grains observed by a SEM is 10 ⁇ m or less at the fracture surface of the oxide sintered body and the sputtering target (arbitrary position of the cross section in the thickness direction, hereinafter the same). By doing so, the occurrence of abnormal discharge can be further suppressed.
  • the average particle size is preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the lower limit of the average particle diameter is not particularly limited, but the preferable lower limit of the average particle diameter is about 2 ⁇ m from the viewpoints of the refinement effect and the manufacturing cost.
  • the average grain size of the crystal grains is determined by observing the structure of the fracture surface (arbitrary location) of the oxide sintered body (or sputtering target) with an SEM (magnification: 400 times), and a straight line having a length of 100 ⁇ m in any direction. Then, the number (N) of crystal grains included in the straight line is obtained, and the value calculated from [100 / N] is taken as the average grain size on the straight line.
  • 20 straight lines are created at intervals of 20 ⁇ m or more to calculate “average particle diameter on each straight line”, and further, a value calculated from [total average particle diameter on each straight line / 20] is calculated.
  • the average grain size of the crystal grains is determined by observing the structure of the fracture surface (arbitrary location) of the oxide sintered body (or sputtering target) with an SEM (magnification: 400 times), and a straight line having a length of 100 ⁇ m in any direction. Then, the number (N) of crystal grains included in the straight line is obtained, and the
  • the occurrence of abnormal discharge can be suppressed by controlling the ratio of coarse crystal grains present in the oxide sintered body and the sputtering target. From the viewpoint of suppressing the occurrence of abnormal discharge, it is desirable to suppress the proportion of coarse crystal grains having a particle size of 30 ⁇ m or more, preferably 25 ⁇ m or more, more preferably 20 ⁇ m or more, specifically 15% or less, preferably It is desirable to control to 10% or less, more preferably 5% or less.
  • the ratio of coarse crystal grains is the same as the average grain size described above, by observing with SEM, drawing a straight line having a length of 100 ⁇ m in an arbitrary direction, and coarsening the crystal grains having a length of 30 ⁇ m or more cut on this straight line.
  • the length L total sum of the plurality of particles: ⁇ m in the case where there are a plurality of them
  • the ratio of coarse crystal grains (%) is calculated in the present invention, 20 straight lines are created at intervals of 20 ⁇ m or more, and the ratio of coarse crystal grains on each straight line is calculated, and further calculated from [total ratio of coarse crystal grains on each straight line / 20].
  • the value obtained is defined as the ratio (%) of coarse crystal grains.
  • [Zn], [In], [Ti], [Mg], [Al] for the contents (atomic%) of zinc, indium, Ti, Mg, Al, and Nb with respect to all metal elements in the oxide sintered body, respectively.
  • [Nb] the ratio of [In] to [Zn], [Ti] + [Mg] + for [Zn] + [In] + [Ti] + [Mg] + [Al] + [Nb]
  • the ratio of [Al] + [Nb] is preferably within the following specific range from the viewpoint of obtaining the desired effect.
  • the ratio of [In] to [Zn] ([In] / [Zn]; hereinafter referred to as the ratio (1)) is preferably 0.27 or more, more preferably 0.28 or more, and preferably 0. .45 or less, more preferably 0.4 or less.
  • a complex oxide (Zn 4 In 2 O 7 etc.) with [Zn m In 2 O 3 + m ] of m ⁇ 4 is generated, and the resistivity is increased and carrier movement is increased. The degree decreases.
  • a complex oxide (Zn 8 In 2 O 11 or the like) having [Zn m In 2 O 3 + m ] of m ⁇ 8 is generated, and the carrier mobility is lowered. .
  • Zn m In 2 O 3 + m contained in the oxide sintered body (where Zn m In 2 O 3 + m is Zn 5 In 2 O 8 , Zn 6 In 2 O 9 , Zn 7 In 2 O 10 ).
  • the volume ratio of each crystal phase to the total of In 2 O 3 and ZnO will be described.
  • the ratio of Zn m In 2 O 3 + m to the sum of Zn m In 2 O 3 + m + In 2 O 3 + ZnO is referred to as [Zn m In 2 O 3 + m] ratio.
  • the [Zn m In 2 O 3 + m ] ratio is preferably 0.5 or more. When the [Zn m In 2 O 3 + m ] ratio is less than 0.5, abnormal discharge and cracking increase.
  • a more preferred lower limit is 0.8 or more, and even more preferred is 0.85 or more.
  • the lower limit may be substantially composed only of Zn m In 2 O 3 + m .
  • oxides of M metal for example, Zn 2 TiO 4 , InNbO 4
  • the ratio of the M metal oxide that is inevitably generated is preferably about 5% by volume or less, for example. These can also be measured by XRD.
  • the oxide sintered body of the present invention and the sputtering target obtained using the oxide sintered body are characterized in that the relative density is 85% or more, preferably the specific resistance is 0.1 ⁇ ⁇ cm or less.
  • the oxide sintered body of the present invention has a very high relative density, preferably 85% or more, and more preferably 95% or more.
  • a high relative density not only can prevent the generation of cracks and nodules during sputtering, but also provides advantages such as maintaining a stable discharge continuously to the target life.
  • the oxide sintered body of the present invention has a small specific resistance and is 0.1 ⁇ ⁇ cm or less, preferably 0.01 ⁇ ⁇ cm or less. As a result, it is possible to form a film while suppressing abnormal discharge during one-layer sputtering, and physical vapor deposition (sputtering method) using a sputtering target can be efficiently performed on the production line of the display device.
  • the oxide sintered body of the present invention is obtained by mixing and sintering zinc oxide, indium oxide, and M metal oxide powders.
  • the sputtering target can be manufactured by processing an oxide sintered body.
  • oxide powder obtained by (a) mixing / pulverization ⁇ (b) drying / granulation ⁇ (c) preforming ⁇ (d) degreasing ⁇ (e) hot pressing The basic process until the sputtering target is obtained by bonding the body to (f) processing ⁇ (g) is shown.
  • the present invention is characterized in that the sintering conditions ((e) hot press) are appropriately controlled as described in detail below, and the other steps are not particularly limited, and are usually used steps. Can be appropriately selected.
  • this invention is not the meaning limited to this.
  • each raw material powder is the ratio of [In] to [Zn], [Ti] + [Mg] + to [Zn] + [In] + [Ti] + [Mg] + [Al] + [Nb]. It is preferable to control so that the ratio of [Al] + [Nb] is within the above-described range.
  • (A) Mixing and pulverization are preferably performed by using a pot mill and adding the raw material powder together with water.
  • the balls and beads used in these steps are preferably made of materials such as nylon, alumina, zirconia, and the like.
  • a binder or a binder may be mixed in order to ensure the ease of the subsequent molding process.
  • preforming is performed.
  • the powder after drying and granulation is filled in a mold having a predetermined size, and preformed by a mold press. This pre-molding is performed for the purpose of improving the handleability when setting to a predetermined mold in the hot press process, so if a pressing force of about 0.5 to 1.0 tonf / cm 2 is applied to form a molded body. Good.
  • the heating conditions are not particularly limited as long as the purpose of degreasing can be achieved.
  • the heating conditions may be maintained at about 500 ° C. in the atmosphere for about 5 hours.
  • the compact After degreasing, the compact is set in a graphite mold having a desired shape and (e) sintered by hot pressing.
  • the graphite mold is a reducing material, and since the set molded body can be sintered in a reducing atmosphere, the reduction proceeds efficiently and the specific resistance can be lowered.
  • sintering is performed at a sintering temperature of 1000 to 1150 ° C. and a holding time at the temperature of 0.1 to 5 hours (FIG. 2).
  • the sintering temperature is low, the crystal phase having a main phase of Zn m In 2 O 3 + m (m is an integer of 5 to 7) cannot be obtained, and an effect such as suppression of abnormal discharge cannot be obtained. Further, it cannot be sufficiently densified, and a desired relative density cannot be achieved.
  • the sintering temperature becomes too high, the crystal grains become coarse, the average grain size of the crystal grains cannot be controlled within a predetermined range, and abnormal discharge cannot be suppressed. Therefore, the sintering temperature is 1000 ° C. or higher, preferably 1020 ° C. or higher, 1150 ° C. or lower, preferably 1100 ° C. or lower.
  • the holding time at the sintering temperature is too long, the crystal grains grow and become coarse, so that the average grain size and the ratio of coarse crystal grains cannot be controlled within a predetermined range.
  • the holding time is too short, the crystal phase having the main phase of Zn m In 2 O 3 + m cannot be obtained, and sufficient densification cannot be achieved. Therefore, the holding time is 0.1 hour or longer, preferably 0.5 hour or longer, and 5 hours or shorter.
  • the average rate of temperature rise to the above sintering temperature is 600 ° C./hr or less after preforming.
  • the average heating rate exceeds 600 ° C./hr, abnormal growth of crystal grains occurs, and the ratio of coarse crystal grains increases. Also, the relative density cannot be increased sufficiently.
  • a more preferable average heating rate is 500 ° C./hr or less, and further preferably 300 ° C./hr or less.
  • the lower limit of the average heating rate is not particularly limited, but is preferably 10 ° C./hr or more, more preferably 20 ° C./hr or more from the viewpoint of productivity.
  • the pressurizing conditions during hot pressing in the sintering step are not particularly limited, but it is desirable to apply a pressure of, for example, a surface pressure of 600 kgf / cm 2 or less. If the pressure is too low, densification may not proceed sufficiently. On the other hand, if the pressure is too high, the graphite mold may be damaged, the densification promoting effect is saturated, and the press equipment must be enlarged.
  • Preferred pressure conditions are 150 kgf / cm 2 or more and 400 kgf / cm 2 or less.
  • the sintering process is desirably performed in a reducing gas such as H 2 , methane, and CO, and in an inert gas atmosphere such as Ar and N 2 .
  • a reducing gas such as H 2 , methane, and CO
  • an inert gas atmosphere such as Ar and N 2 .
  • the sintering atmosphere is preferably an inert gas atmosphere in order to suppress oxidation and disappearance of graphite.
  • the atmosphere control method is not particularly limited.
  • the atmosphere may be adjusted by introducing Ar gas or N 2 gas into the furnace.
  • the pressure of the atmospheric gas is preferably atmospheric pressure in order to suppress evaporation of zinc oxide having a high vapor pressure.
  • the sputtering target of the present invention is obtained by performing (f) processing ⁇ (g) bonding by a conventional method.
  • the relative density and specific resistance of the sputtering target thus obtained are also very good as in the case of the oxide sintered body, the preferable relative density is about 85% or more, and the preferable specific resistance is about 0. 0. 1 ⁇ ⁇ cm or less.
  • Table 2 shows zinc oxide powder (purity 99.99%), indium oxide powder (purity 99.99%), and titanium oxide, magnesium oxide, aluminum oxide, and niobium oxide powders (purity 99.99%). It mix
  • the temperature was raised to 500 ° C. in an air atmosphere. Warm and hold at that temperature for 5 hours to degrease.
  • the obtained molded body was set in a graphite mold and hot pressed under the conditions (A to G) shown in Table 3. At this time, N 2 gas was introduced into the hot press furnace and sintered in an N 2 atmosphere. The obtained sintered body was machined and finished to ⁇ 100 ⁇ t5 mm, and bonded to a Cu backing plate to produce a sputtering target.
  • the sputtering target thus obtained was attached to a sputtering apparatus, and DC (direct current) magnetron sputtering was performed.
  • the sputtering conditions were a DC sputtering power of 150 W, an Ar / 0.1 volume% O 2 atmosphere, and a pressure of 0.8 mTorr. Further, a thin film transistor having a channel length of 10 ⁇ m and a channel width of 100 ⁇ m was formed using the thin film formed under these conditions.
  • the relative density was determined by removing the target from the backing plate, mirror polishing after sputtering, and observing with a reflection electron microscope (SEM) and measuring the porosity. Specifically, a SEM observation (1000 times) was taken to take a photograph, and the pore occupation area ratio in a 50 ⁇ m square region was measured to obtain the porosity. 20 different visual fields were observed, and the average value was taken as the average porosity of the sample. The value obtained by subtracting the porosity from 100% was taken as the relative density (%) of the sintered body. A relative density of 85% or more was evaluated as acceptable (see “relative density (%)” in Table 4).
  • the average grain size of the crystal grains is the SEM (magnification: 400 times) of the structure of the fracture surface of the oxide sintered body (the oxide sintered body is cut in the thickness direction at an arbitrary position, and the arbitrary position on the cut surface). ), Draw a straight line with a length of 100 ⁇ m in an arbitrary direction, determine the number of crystal grains (N) contained in this straight line, and calculate the value calculated from [100 / N] on the straight line The average particle size was taken. Similarly, 20 straight lines are created at intervals of 20 to 30 ⁇ m, the average particle diameter on each straight line is calculated, and the value calculated from [sum of average particle diameters on each straight line / 20] Average particle diameter. The crystal grains were evaluated as having passed an average grain size of 10 ⁇ m or less (see “Average grain size ( ⁇ m)” in Table 4).
  • the ratio of coarse crystal grains is the same as the average grain size described above by observing the fracture surface of the oxide sintered body by SEM, drawing a straight line having a length of 100 ⁇ m in an arbitrary direction, and the length cut on this straight line.
  • a crystal grain having a size of 30 ⁇ m or more is defined as a coarse crystal grain, and a length L (sum of plurals if there are a plurality of the coarse crystal grains) is calculated on a straight line, and a value calculated from [L / 100] is obtained. It was set as the ratio (%) of the coarse crystal grain on the said straight line.
  • 20 straight lines are created at intervals of 20 to 30 ⁇ m, and the ratio of coarse crystal grains on each straight line is calculated. Further, the sum of the ratio of coarse crystal grains on each straight line / 20 is calculated. The calculated value was defined as the ratio (%) of coarse crystal grains. As for the ratio of coarse crystal grains, 15% or less was evaluated as acceptable (see “coarse grain ratio (%)” in Table 4).
  • Crystal phase ratio The ratio of each crystal phase was determined by removing the target from the backing plate after sputtering, cutting out a 10 mm square test piece, and measuring the intensity of the diffraction line by X-ray diffraction.
  • Analysis device “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation Analysis conditions: Target: Cu Monochromatic: Uses a monochrome mate (K ⁇ ) Target output: 40kV-200mA (Continuous measurement) ⁇ / 2 ⁇ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm Monochromator light receiving slit: 0.6mm Scanning speed: 2 ° / min Sampling width: 0.02 ° Measurement angle (2 ⁇ ): 5 to 90 °
  • the peak of each crystal phase shown in Table 1 was identified based on an ICDD (International Center for Diffraction Data) card, and the height of the diffraction peak was measured. Since Zn 6 In 2 O 9 is not described in the ICDD card, the peak obtained by calculating the theoretical diffraction intensity by crystal structure factor calculation based on the crystal structure shown in the above references (1) and (2) and measuring it. It was determined. These peaks were selected so that the diffraction intensity of the crystal phase was sufficiently high and the overlap with the peaks of other crystal phases was as small as possible.
  • ICDD International Center for Diffraction Data
  • the measured values of the peak height at the designated peak of each crystal phase are I (Zn m In 2 O 3 + m ), I (In 2 O 3 ), and I (ZnO), respectively (“I” is the measured value)
  • the crystal phase ratio [Zn m In 2 O 3 + m ] was evaluated as 50% or more as acceptable (see “[Zn m In 2 O 3 + m ] phase volume ratio (%)” in Table 4).
  • the sintered body of this research is processed into a shape with a diameter of 4 inches and a thickness of 5 mm, and bonded to a backing plate to obtain a sputtering target.
  • the sputtering target thus obtained is attached to a sputtering apparatus, and DC (direct current) magnetron sputtering is performed.
  • the sputtering conditions are a DC sputtering power of 150 W, an Ar / 0.1 volume% O 2 atmosphere, and a pressure of 0.8 mTorr. At this time, the number of occurrences of arcing per 100 minutes was counted, and the number of occurrences of arcing was evaluated to be 2 or less (see “Abnormal Discharge Count” in Table 4).
  • Carrier mobility The carrier mobility was measured by measuring the mobility of a thin film transistor having a channel length of 10 ⁇ m and a channel width of 100 ⁇ m formed using a thin film formed under the above sputtering conditions. Carrier mobility evaluated 15 cm ⁇ 2 > / Vs or more as the pass (it is not described in Table 4).
  • No. 6 is a low carrier mobility having a carrier mobility of less than 15 cm 2 / Vs.
  • Nos. 10 to 13 abnormal discharge was frequently generated and the carrier mobility was a low carrier mobility of less than 15 cm 2 / Vs, and the desired effect could not be obtained.
  • No. No. 10 exceeded the specified rate of temperature increase of the present invention, abnormal growth of crystal grains occurred, the proportion of coarse crystal grains increased, and abnormal discharge could not be suppressed.
  • No. No. 11 exceeds the specified rate of temperature increase according to the present invention, abnormal growth of crystal grains occurs, the ratio of coarse crystal grains increases, the relative density cannot be sufficiently increased, and abnormal discharge increases. became.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 本発明の酸化物焼結体は、酸化亜鉛と;酸化インジウムと;Ti、Mg、Al、およびNbよりなる群から選択される少なくとも1種の金属の酸化物と、を混合および焼結して得られる酸化物焼結体であって、前記酸化物焼結体をX線回折したとき、ZnmIn23+m(mは5~7の整数)相を主相とし、平均粒径10μm以下、且つ粒径30μm以上の結晶粒の割合が15%以下であり、相対密度85%以上である。本発明によれば、高いキャリア移動度を有する酸化物半導体膜の成膜における異常放電を抑制し、スパッタリング法による安定した成膜が可能な酸化物焼結体を提供することができた。

Description

酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
 本発明は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタ(TFT)の酸化物半導体薄膜をスパッタリング法で成膜するときに用いられる酸化物焼結体およびスパッタリングターゲット、並びにその製造方法に関するものである。
 TFTに用いられるアモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a-Si)に比べて高いキャリア移動度を有し、光学バンドギャップが大きく、低温で成膜できる。そのため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板などへの適用が期待されている。これらの用途に好適な酸化物半導体の組成として、例えばIn含有の非晶質酸化物半導体[In-Ga-Zn-O、In-Zn-O、In-Sn-O(ITO)など]が提案されている。
 上記酸化物半導体(膜)の形成に当たっては、当該膜と同じ材料のスパッタリングターゲットをスパッタリングするスパッタリング法が好適に用いられている。スパッタリング法では、製品である薄膜の特性の安定化、製造の効率化のために、スパッタリング中の異常放電の防止、ターゲットの割れ防止などが重要であり、様々な技術が提案されている。
 例えば特許文献1には、ITOターゲットについて、結晶粒の平均粒径を微細化することによって異常放電を抑制する技術が提案されている。
 また特許文献2には、ITOターゲットについて、焼結密度を高めると共に、結晶粒径を微細化することによって、スパッタリング中のターゲット板の割れを防止する技術が提案されている。
 更に特許文献3には、In-Zn-O系の複合酸化物を焼結後に還元雰囲気中でアニーリング処理することによって、ターゲット材料の導電率を向上させ、スパッタリング中の異常放電やターゲットの割れを抑制する技術が提案されている。
 近年の表示装置の高性能化に伴って、酸化物半導体薄膜の特性の向上や特性の安定化が要求されていると共に、表示装置の生産を一層効率化することが求められている。そのため、表示装置用酸化物半導体膜の製造に用いられるスパッタリングターゲットおよびその素材である酸化物焼結体は、高いキャリア移動度を有することが望まれている。しかし、生産性や製造コストなどを考慮すると、スパッタリング工程での異常放電(アーキング)をより一層抑制することも重要であり、そのためにはターゲット材料およびその素材となる酸化物焼結体の改善が求められている。
特開平7-243036号公報 特開平5-311428号公報 特許第3746094号公報
 本発明は上記事情に鑑みてなされたものであり、その目的は、表示装置用酸化物半導体膜の製造に好適に用いられる酸化物焼結体およびスパッタリングターゲットであって、高いキャリア移動度を有する酸化物半導体膜の成膜における異常放電を抑制し、スパッタリング法による安定した成膜が可能な酸化物焼結体およびスパッタリングターゲット、並びにその製造方法を提供することにある。
 上記課題を解決し得た本発明の酸化物焼結体は、酸化亜鉛と;酸化インジウムと;Ti、Mg、Al、およびNbよりなる群から選択される少なくとも1種の金属の酸化物と、を混合および焼結して得られる酸化物焼結体であって、前記酸化物焼結体をX線回折したとき、ZnmIn23+m(mは5~7の整数)相を主相として含み、前記酸化物焼結体の破断面においてSEMにより観察される結晶粒の平均粒径が10μm以下であり、且つ粒径30μm以上の結晶粒の割合が15%以下であると共に、前記酸化物焼結体の相対密度は85%以上であるところに要旨を有するものである。
 本発明の好ましい実施形態において、前記酸化物焼結体における、全金属元素に対する亜鉛、インジウム、Ti、Mg、Al、Nbの含有量(原子%)をそれぞれ、[Zn]、[In]、[Ti]、[Mg]、[Al]、[Nb]としたとき、[Zn]に対する[In]の比、[Zn]+[In]+[Ti]+[Mg]+[Al]+[Nb]に対する[Ti]+[Mg]+[Al]+[Nb]の比は、それぞれ下式を満足するものである。
  0.27≦[In]/[Zn]≦0.45
  ([Ti]+[Mg]+[Al]+[Nb])/([Zn]+[In]+[Ti]+[Mg]+[Al]+[Nb])≦0.1
 また本発明の好ましい実施形態において、前記酸化物焼結体に含まれるZnmIn23+m、In23、及び前記ZnOの合計に対する前記ZnmIn23+mの体積比は、それぞれ下式を満足するものである。
  ZnmIn23+m/(ZnmIn23+m+In23+ZnO)≧0.5
(但し、ZnmIn23+mはZn5In28、Zn6In29、Zn7In210の合計である。)
 また、上記課題を解決し得た本発明のスパッタリングターゲットは、上記のいずれかに記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、比抵抗が0.1Ω・cm以下である。
 本発明の前記酸化物焼結体の好ましい製造方法は、酸化亜鉛と;酸化インジウムと;Ti、Mg、Al、およびNbよりなる群から選択される少なくとも1種の金属の酸化物とを混合し、黒鉛型にセットした後、600℃/hr以下の平均昇温速度で焼結温度1000~1150℃まで昇温した後、該温度域での保持時間0.1~5時間で焼結することに要旨を有する。
 本発明によれば、高いキャリア移動度を有する酸化物半導体膜の成膜における異常放電を抑制し、スパッタリング法による安定した成膜が可能な酸化物焼結体およびスパッタリングターゲット、並びにその製造方法を提供することが可能である。
図1は、本発明の酸化物焼結体およびスパッタリングターゲットを製造するための基本的な工程を示す図である。 図2は、本発明の製造方法に用いられる焼結工程の一例を示すグラフである。
 本発明者らは、酸化亜鉛と酸化インジウムとを含む酸化物焼結体について、スパッタリング中の異常放電を抑制することで長時間の安定した成膜が可能であり、しかもキャリア移動度が高い酸化物半導体膜を成膜するのに適したスパッタリングターゲット用酸化物焼結体を提供するため、検討を重ねてきた。
 その結果、酸化亜鉛と;酸化インジウムと;Ti、Mg、Al、およびNbよりなる群から選択される少なくとも1種の金属(以下、M金属という)の酸化物の各粉末と、を混合および焼結して得られる酸化物焼結体であって、酸化物焼結体をX線回折したとき、ZnmIn23+m(mは5~7の整数)相を主相とし、更にSEM観察したとき、平均粒径と粗大な結晶粒を制御すると共に、相対密度85%以上である構成としたときに所期の目的が達成されることを見出した。
 詳細には、上記酸化物焼結体をX線回折したときの相構成について、(i)ZnとInは、これらが結合してZnmIn23+m(mは5~7の整数)を主相とする相構成としたときにスパッタリング時の異常放電を大幅に抑制できること、(ii)M金属はキャリア移動度の向上に有用な効果を発揮すること、(iii)SEM観察したときの結晶粒について、平均結晶粒径を微細化すると共に粗大な結晶粒の割合を抑制することが異常放電抑制に効果があること、更に(iv)相対密度を高めることによってスパッタリング中の異常放電の発生の抑制効果を一層向上できること、を突き止めた。(v)そして、このような相構成を有する酸化物焼結体を得るためには、所定の焼結条件で焼結を行えばよいこと、を見出し、本発明に至った。
 まず、本発明に係る酸化物焼結体の構成について、詳しく説明する。上述したように本発明の酸化物焼結体は、上記酸化物焼結体をX線回折したとき、ZnmIn23+m(mは5~7の整数)を主相として含む酸化物焼結体としたところに特徴がある。
 本発明におけるX線回折条件は、以下のとおりである。
 分析装置:理学電機製「X線回折装置RINT-1500」
 分析条件
  ターゲット:Cu
  単色化:モノクロメートを使用(Kα)
  ターゲット出力:40kV-200mA
  (連続測定)θ/2θ走査
  スリット:発散1/2°、散乱1/2°、受光0.15mm
  モノクロメータ受光スリット:0.6mm
  走査速度:2°/min
  サンプリング幅:0.02°
  測定角度(2θ):5~90°
 この測定で得られた回折ピークについて、ICDD(International Center for Diffraction Data)カードの20-1440、20-1441、06-0416、36-1451に記載されている結晶構造を有する結晶相(それぞれ、Zn5In28、Zn7In210、In23、ZnOに対応)を特定する。またZn6In29は、下記参考文献(1)、(2)に記載されている結晶構造を有する結晶相を特定する。
 参考文献(1)M.Nakamura, N.Kimizuka and T.Mohri: J. Solid State Chem. 86(1990) 16-40
 参考文献(2)M.Nakamura, N.Kimizuka, T.Mohri and M.Isobe: J. Solid State Chem. 105(1993) 535-549
 次に上記X線回折によって検出される本発明を特定する化合物について詳しく説明する。
 (ZnmIn23+m化合物について)
 ZnmIn23+m化合物(相)は、本発明の酸化物焼結体を構成する酸化亜鉛と酸化インジウムが結合して形成されるものである。この化合物の結晶構造は六方晶であり、酸化物焼結体のキャリア移動度向上に大きく寄与する。
 ZnmIn23+m化合物はホモロガス化合物であって、mは5(Zn5In28)、6(Zn6In29)、7(Zn7In210)の少なくともいずれか一つである。mが4以下、あるいは8以上の整数であると酸化物半導体膜の半導体特性が劣化し、キャリア移動度が低下するため望ましくない。なお、これらはZn、In、およびM金属との複合酸化物の結晶であるため、mは整数となる。
 本発明では、上記ZnmIn23+m(m=5、6、7)を主相として含んでいる。ここで「主相」とは、ZnmIn23+m(Zn5In28(m=5)、Zn6In29(m=6)、Zn7In210(m=7)の合計)が上記X線回折によって検出される全化合物中、最も比率の多い化合物を意味している。
 また本発明では、ZnmIn23+m(m=5、6、7)相のほか、In23やZnOが若干含まれていてもよい。ZnとInの組成比によっては上記ZnmIn23+m(m=5、6、7)だけでなく、In23やZnOが検出される場合もあるが、In23やZnOは、微量であれば本発明の効果に悪影響を及ぼさないからである。また本発明の上記ZnmIn23+mには、後記するM金属が固溶している場合も含まれる。
 本発明に用いられるM金属は、酸素との結合性の強い元素であって、M金属を固溶させることによって、Zn-In-O系ターゲットの酸素欠損を低減し、スパッタリングによって形成した膜のキャリア移動度の向上に有用である。M金属は、Ti、Mg、AlおよびNbよりなる群から選択される少なくとも1種である。本発明では、上記M金属を単独で用いてもよいし、2種以上を併用してもよい。このうち半導体特性の観点から好ましいM金属は、Ti,Mg,Alである。
 M金属は酸化亜鉛と酸化インジウムのみからなる酸化物焼結体のキャリア移動度向上に大きく寄与する元素として選択された元素である。M金属を含有しない場合に比べ、本発明で規定するM金属を、好ましくは後記する所定の比率で含有する酸化物焼結体を用いることにより、キャリア移動度が向上する。
 なお、キャリア移動度向上効果を発現させる上でM金属は、少なくともその一部(好ましくはその大部分)が上記ZnmIn23+m相に固溶していることが望ましい。但し、これに限定されず、本発明のキャリア移動度向上効果を阻害しない限り、M金属の一部は酸化物として存在していてもよい(例えば5体積%以下)。またIn23やZnOを含む場合は、M金属はこれら化合物中に固溶した状態で存在していてもよい。
 本発明では、酸化物焼結体およびスパッタリングターゲットの破断面(厚み方向の断面の任意の位置、以下同じ。)においてSEM(反射電子顕微鏡)により観察される結晶粒の平均粒径を10μm以下とすることによって、異常放電の発生をより一層抑制することができる。好ましい平均粒径は8μm以下、より好ましくは5μm以下である。一方、平均粒径の下限は特に限定されないが、微細化効果と製造コストの観点から、平均粒径の好ましい下限は2μm程度である。
 結晶粒の平均粒径は、酸化物焼結体(またはスパッタリングターゲット)破断面(任意の箇所)の組織をSEM(倍率:400倍)で観察し、任意の方向に100μmの長さの直線を引き、この直線内に含まれる結晶粒の数(N)を求め、[100/N]から算出される値を当該直線上での平均粒径とする。本発明では20μm以上の間隔で直線を20本作成して「各直線上での平均粒径」を算出し、更に[各直線上での平均粒径の合計/20]から算出される値を結晶粒の平均粒径とする。
 また本発明では、酸化物焼結体およびスパッタリングターゲットに存在する粗大な結晶粒の割合を制御することによって、異常放電の発生を抑制できる。異常放電の発生を抑制する観点からは、粒径30μm以上、好ましくは25μm以上、より好ましくは20μm以上の粗大な結晶粒の割合を抑制することが望ましく、具体的には15%以下、好ましくは10%以下、より好ましくは5%以下に制御することが望ましい。
 粗大な結晶粒の割合は、上記平均粒径と同様、SEM観察して、任意の方向に100μmの長さの直線を引き、この直線上で切り取られる長さが30μm以上となる結晶粒を粗大な結晶粒とし、この粗大な結晶粒が100μmの直線上で占める長さL(複数ある場合はその総和:μm)を求め、[L/100]から算出される値を「当該直線上での粗大な結晶粒の割合(%)」とする。本発明では20μm以上の間隔で直線を20本作成して各直線上での粗大な結晶粒の割合を算出し、更に[各直線上での粗大な結晶粒の割合の合計/20]から算出される値を粗大な結晶粒の割合(%)とする。
 次に、本発明の酸化物焼結体において、酸素を除く全金属元素に対する各金属元素の含有量(原子%)について説明する。酸化物焼結体において全金属元素に対する亜鉛、インジウム、Ti、Mg、Al、Nbの含有量(原子%)をそれぞれ、[Zn]、[In]、[Ti]、[Mg]、[Al]、[Nb]としたとき、[Zn]に対する[In]の比、[Zn]+[In]+[Ti]+[Mg]+[Al]+[Nb]に対する[Ti]+[Mg]+[Al]+[Nb]の比を下記特定の範囲内とすることが上記所望の効果を得る観点からは望ましい。ここで、[Ti]、[Mg]、[Al]、[Nb]はM金属の1種であり、各焼結体において例えばTiを含まない場合は[Ti]=0として算出される。
 [Zn]に対する[In]の比([In]/[Zn];以下、比率(1)という。)は、好ましくは0.27以上、より好ましくは0.28以上であって、好ましくは0.45以下、より好ましくは0.4以下である。比率(1)が小さくなると、[ZnmIn23+m]がm≦4の複合酸化物(Zn4In27など)が生成するようになり、抵抗率が高くなってキャリア移動度が低下する。一方、比率(1)が大きくなると、[ZnmIn23+m]がm≧8の複合酸化物(Zn8In211など)が生成するようになり、キャリア移動度が低下する。
 また[Zn]+[In]+[Ti]+[Mg]+[Al]+[Nb]に対する[Ti]+[Mg]+[Al]+[Nb]の比(([Ti]+[Mg]+[Al]+[Nb])/([Zn]+[In]+[Ti]+[Mg]+[Al]+[Nb]);以下、比率(2)という)は、好ましくは0.1以下、より好ましくは0.05以下、更に好ましくは0.03以下である。比率(2)が大きくなると、M金属がInやZnと複合酸化物を生成して薄膜の半導体特性が劣化し、キャリア移動度が低下するからである。なお、比率(2)の下限については特に限定されないが、上記M金属添加効果を十分に発揮させる観点からは、好ましくは0.001以上、より好ましくは0.005以上である。
 次に酸化物焼結体に含まれるZnmIn23+m(但しZnmIn23+mはZn5In28、Zn6In29、Zn7In210の合計、以下同じ)、In23、及びZnOの合計に対する各結晶相の体積比について説明する。以下では、ZnmIn23+m+In23+ZnOの合計に対するZnmIn23+mの比を[ZnmIn23+m]比と呼ぶ。
 [ZnmIn23+m]比は0.5以上とすることが好ましい。[ZnmIn23+m]比が0.5未満となると、異常放電や割れが多くなる。より好ましい下限は0.8以上、更に好ましくは0.85以上であって、実質的にZnmIn23+mのみで構成されていてもよい。
 本発明の酸化物焼結体に含みうる他の結晶相として、上記In23やZnO以外にも、製造上不可避的に生成されるM金属の酸化物(例えばZn2TiO4、InNbO4など)が挙げられる。なお、不可避的に生成するM金属の酸化物の割合は、例えば5体積%程度以下の割合であることが望ましい。またこれらはXRDによって測定できる。
 本発明の酸化物焼結体、更には当該酸化物焼結体を用いて得られるスパッタリングターゲットは、相対密度85%以上、好ましくは比抵抗0.1Ω・cm以下であるところに特徴がある。
 (相対密度85%以上)
 本発明の酸化物焼結体は、相対密度が非常に高く、好ましくは85%以上であり、より好ましくは95%以上である。高い相対密度は、スパッタリング中での割れやノジュールの発生を防止し得るだけでなく、安定した放電をターゲットライフまで連続して維持するなどの利点をもたらす。
 (比抵抗0.1Ω・cm以下)
 本発明の酸化物焼結体は、比抵抗が小さく、0.1Ω・cm以下であり、好ましくは0.01Ω・cm以下である。これにより、一層スパッタリング中での異常放電を抑制した成膜が可能となり、スパッタリングターゲットを用いた物理蒸着(スパッタリング法)を表示装置の生産ラインで効率よく行うことができる。
 次に、本発明の酸化物焼結体を製造する方法について説明する。
 本発明の酸化物焼結体は、酸化亜鉛と;酸化インジウムと;M金属の酸化物の各粉末を混合および焼結して得られるものである。またスパッタリングターゲットは酸化物焼結体を加工することにより製造できる。図1には、酸化物の粉末を(a)混合・粉砕→(b)乾燥・造粒→(c)予備成形→(d)脱脂→(e)ホットプレスして得られた酸化物焼結体を、(f)加工→(g)ボンディングしてスパッタリングターゲットを得るまでの基本工程を示している。上記工程のうち本発明では、以下に詳述するように焼結条件((e)ホットプレス)を適切に制御したところに特徴があり、それ以外の工程は特に限定されず、通常用いられる工程を適宜選択することができる。以下、各工程を説明するが、本発明はこれに限定する趣旨ではない。
 まず、酸化亜鉛粉末、酸化インジウム粉末、およびM金属の酸化物の粉末を所定の割合に配合し、混合・粉砕する。用いられる各原料粉末の純度はそれぞれ、約99.99%以上が好ましい。微量の不純物元素が存在すると、酸化物半導体膜の半導体特性を損なう恐れがあるためである。各原料粉末の配合割合は、[Zn]に対する[In]の比、[Zn]+[In]+[Ti]+[Mg]+[Al]+[Nb]に対する[Ti]+[Mg]+[Al]+[Nb]の比が上述した範囲内となるように制御することが好ましい。
 (a)混合・粉砕は、ポットミルを使い、原料粉末を水と共に投入して行うことが好ましい。これらの工程に用いられるボールやビーズは、例えばナイロン、アルミナ、ジルコニアなどの材質のものが好ましく用いられる。この際、均一に混合する目的で分散材や、後の成形工程の容易性を確保するためにバインダーを混合してもよい。
 次に、上記工程で得られた混合粉末について例えばスプレードライヤなどで(b)乾燥・造粒を行うことが好ましい。
 乾燥・造粒後、(c)予備成形をする。成形に当たっては、乾燥・造粒後の粉末を所定寸法の金型に充填し、金型プレスで予備成形する。この予備成形は、ホットプレス工程で所定の型にセットする際のハンドリング性を向上させる目的で行われるため、0.5~1.0tonf/cm2程度の加圧力を加えて成形体とすればよい。
 なお、混合粉末に分散材やバインダーを添加した場合には、分散材やバインダーを除去するために予備成形後の成形体を加熱して(d)脱脂を行うことが望ましい。加熱条件は脱脂目的が達成できれば特に限定されないが、例えば大気中、おおむね500℃程度で、5時間程度保持すればよい。
 脱脂後、所望の形状の黒鉛型に成形体をセットして(e)ホットプレスにて焼結を行う。黒鉛型は還元性材料であり、セットした成形体を還元性雰囲気中で焼結できるため、効率よく還元が進行して比抵抗を低くすることができる。
 本発明では焼結温度:1000~1150℃、該温度での保持時間:0.1~5時間で焼結を行う(図2)。焼結温度が低いと、ZnmIn23+m(mは5~7の整数)相を主相とする上記結晶相が得られなくなり、異常放電抑制等の効果が得られない。また十分に緻密化することができず、所望の相対密度を達成できない。一方、焼結温度が高くなりすぎると、結晶粒が粗大化してしまい、結晶粒の平均粒径を所定の範囲に制御できなくなり、異常放電を抑制できなくなる。したがって焼結温度は1000℃以上、好ましくは1020℃以上であって、1150℃以下、好ましくは1100℃以下とすることが望ましい。
 また上記焼結温度での保持時間が長くなりすぎると結晶粒が成長して粗大化するため、結晶粒の平均粒径や粗大な結晶粒の割合を所定の範囲に制御できなくなる。一方、保持時間が短すぎると上記ZnmIn23+mを主相とする上記結晶相が得られず、また十分に緻密化することができなくなる。したがって保持時間は0.1時間以上、好ましくは0.5時間以上であって、5時間以下とする。
 また本発明では予備成形後、上記焼結温度までの平均昇温速度を600℃/hr以下とすることが好ましい。平均昇温速度が600℃/hrを超えると、結晶粒の異常成長が起こり、粗大な結晶粒の割合が増大する。また相対密度を十分に高めることができない。より好ましい平均昇温速度は500℃/hr以下、更に好ましくは300℃/hr以下である。一方、平均昇温速度の下限は特に限定されないが、生産性の観点からは10℃/hr以上とすることが好ましく、より好ましくは20℃/hr以上である。
 上記焼結工程においてホットプレス時の加圧条件は、特に限定されないが、例えば面圧600kgf/cm2以下の圧力を加えることが望ましい。圧力が低すぎると緻密化が十分に進まないことがある。一方、圧力が高すぎると黒鉛型が破損する恐れがあり、また緻密化促進効果が飽和すると共にプレス設備の大型化が必要となる。好ましい加圧条件は150kgf/cm2以上、400kgf/cm2以下である。
 焼結工程では、H2、メタン、CO等の還元性ガス、Ar、N2などの不活性ガス雰囲気で行うことが望ましい。特に黒鉛型を使用する本発明では、黒鉛の酸化、消失を抑制するために、焼結雰囲気を不活性ガス雰囲気とすることが好ましい。雰囲気制御方法は特に限定されず、例えば炉内にArガスやN2ガスを導入することによって雰囲気を調整すればよい。また雰囲気ガスの圧力は、蒸気圧の高い酸化亜鉛の蒸発を抑制するために大気圧とすることが望ましい。
 上記のようにして酸化物焼結体を得た後、常法により、(f)加工→(g)ボンディングを行なうと本発明のスパッタリングターゲットが得られる。このようにして得られるスパッタリングターゲットの相対密度および比抵抗も、酸化物焼結体と同様、非常に良好なものであり、好ましい相対密度はおおむね85%以上であり、好ましい比抵抗はおおむね0.1Ω・cm以下である。
 本願は、2011年11月4日に出願された日本国特許出願第2011-242893号に基づく優先権の利益を主張するものである。2011年11月4日に出願された日本国特許出願第2011-242893号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 酸化亜鉛粉末(純度99.99%)、酸化インジウム粉末(純度99.99%)、および酸化チタン、酸化マグネシウム、酸化アルミニウム、酸化ニオブの各粉末(各純度99.99%)を表2に示す比率で配合し、水と分散剤(ポリカルボン酸アンモニウム)を加えてナイロンボールミルで20時間混合した。次に、上記工程で得られた混合粉末について乾燥、造粒を行った。
 このようにして得られた粉末を金型プレスにて予備成形した後(成形圧力:1.0ton/cm2、成形体サイズ:φ110×t13mm、tは厚み)、大気雰囲気下で500℃に昇温し、該温度で5時間保持して脱脂した。得られた成形体を黒鉛型にセットし、表3に示す条件(A~G)でホットプレスを行った。この際、ホットプレス炉内にはN2ガスを導入し、N2雰囲気下で焼結した。得られた焼結体を機械加工してφ100×t5mmに仕上げ、Cu製バッキングプレートにボンディングし、スパッタリングターゲットを製作した。
 このようにして得られたスパッタリングターゲットをスパッタリング装置に取り付け、DC(直流)マグネトロンスパッタリングを行なった。スパッタリング条件は、DCスパッタリングパワー150W、Ar/0.1体積%O2雰囲気、圧力0.8mTorrとした。さらにこの条件で成膜した薄膜を使用して、チャネル長10μm、チャネル幅100μmの薄膜トランジスタを作成した。
(相対密度の測定)
 相対密度は、スパッタリング後、ターゲットをバッキングプレートから取り外して鏡面研磨し、反射電子顕微鏡(SEM)で観察して気孔率を測定して求めた。具体的にはSEM観察(1000倍)して写真撮影し、50μm角の領域における気孔占有面積率を測定して気孔率とした。異なる任意の20視野を観察し、その平均値を当該試料の平均気孔率とした。100%から気孔率を引いた値を焼結体の相対密度(%)とした。相対密度は85%以上を合格と評価した(表4中、「相対密度(%)」参照)。
(結晶粒の平均粒径)
 結晶粒の平均粒径は、酸化物焼結体破断面(酸化物焼結体を任意の位置で厚み方向に切断し、その切断面表面の任意の位置)の組織をSEM(倍率:400倍)で観察し、任意の方向に100μmの長さの直線を引き、この直線内に含まれる結晶粒の数(N)を求め、[100/N]から算出される値を当該直線上での平均粒径とした。同様に20~30μmの間隔で直線を20本作成して各直線上での平均粒径を算出し、更に[各直線上での平均粒径の合計/20]から算出される値を結晶粒の平均粒径とした。結晶粒は平均粒径10μm以下を合格と評価した(表4中、「平均粒径(μm)参照」)。
(粗大な結晶粒の割合)
 粗大な結晶粒の割合は、上記平均粒径と同様、酸化物焼結体破断面をSEM観察して、任意の方向に100μmの長さの直線を引き、この直線上で切り取られる長さが30μm以上となる結晶粒を粗大な結晶粒とし、この粗大な結晶粒が直線上で占める長さL(複数ある場合はその総和:μm)を求め、[L/100]から算出される値を当該直線上での粗大な結晶粒の割合(%)とした。本発明では20~30μmの間隔で直線を20本作成して各直線上での粗大な結晶粒の割合を算出し、更に[各直線上での粗大な結晶粒の割合の合計/20]から算出される値を粗大な結晶粒の割合(%)とした。粗大な結晶粒の割合は、15%以下を合格と評価した(表4中、「粗大粒率(%)」参照)。
(結晶相の比率)
 各結晶相の比率は、スパッタリング後、ターゲットをバッキングプレートから取り外して10mm角の試験片を切出し、X線回折で回折線の強度を測定して求めた。
 分析装置:理学電機製「X線回折装置RINT-1500」
 分析条件:
  ターゲット:Cu
  単色化:モノクロメートを使用(Kα)
  ターゲット出力:40kV-200mA
  (連続測定)θ/2θ走査
  スリット:発散1/2°、散乱1/2°、受光0.15mm
  モノクロメータ受光スリット:0.6mm
  走査速度:2°/min
  サンプリング幅:0.02°
  測定角度(2θ):5~90°
 この測定で得られた回折ピークについて、ICDD(International Center for Diffraction Data)カードに基づいて表1に示す各結晶相のピークを同定し、回折ピークの高さを測定した。なおZn6In29については、ICDDカードに記載がないため、上記参考文献(1)、(2)に示される結晶構造に基づき、結晶構造因子計算により理論回折強度を求め、測定するピークを決定した。これらのピークは、当該結晶相で回折強度が十分に高く、他の結晶相のピークとの重複がなるべく少ないピークを選択した。各結晶相の指定ピークでのピーク高さの測定値をそれぞれI(ZnmIn23+m)、I(In23)、I(ZnO)とし(「I」は測定値であることを表す意味)、下式によって[ZnmIn23+m]の体積比率を求めた(表4中、[ZnmIn23+m]相体積比率(%))。
 [ZnmIn23+m]=I(ZnmIn23+m)/(I(ZnmIn23+m)+I(In23)+I(ZnO))×100
 結晶相の比率[ZnmIn23+m]は50%以上を合格と評価した(表4中、「[ZnmIn23+m]相体積比率(%)」参照)。
(スパッタ特性)
 本研究の焼結体を直径4インチ、厚さ5mmの形状に加工し、バッキングプレートにボンディングしてスパッタリングターゲットを得る。そのようにして得られたスパッタリングターゲットをスパッタリング装置に取り付け、DC(直流)マグネトロンスパッタリングを行う。スパッタリングの条件は、DCスパッタリングパワー150W、Ar/0.1体積%O2雰囲気、圧力0.8mTorrとする。この時の100分当りのアーキングの発生回数をカウントし2回以下を合格と評価した(表4中、「異常放電回数」参照)。
(キャリア移動度)
 キャリア移動度は、上記のスパッタリング条件で成膜した薄膜を用いて作成したチャネル長10μm、チャネル幅100μmの薄膜トランジスタの移動度を測定した。キャリア移動度は15cm2/Vs以上を合格と評価した(表4には記載せず)。
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の好ましい組成、製造条件を満足するNo.1~5、7~9は異常放電が抑制されていた。すなわち、スパッタリングを行なったところ、異常放電の発生は2回以下であり、安定して放電することが確認された。また、このようにして得られた上記薄膜のキャリア移動度はいずれも15cm2/Vs以上の高いキャリア移動度を有していた。
 一方、本発明の好ましい組成を満足しないNo.6は、キャリア移動度が15cm2/Vs未満の低いキャリア移動度であり、好ましい製造条件を満足しないNo.10~13については、異常放電が多く発生し、キャリア移動度が15cm2/Vs未満の低いキャリア移動度であり、所望の効果を得ることができなかった。
 具体的には、No.6の組成は、InとZnの比率([In]/[Zn])が、本願規定を外れていた。酸化物焼結体には、m=5、6、7のZnmIn23+mは検出されず、Zn4In27(m=4)、Zn8In211(m=8)が検出された。No.6はキャリア移動度が低かった。なお、No.6では、Zn4In27とZn8In211の合計体積比((Zn4In27+Zn8In211+In23+ZnO)に対する割合)は72%であった。
 No.10は、本発明の規定の昇温速度を超えており、結晶粒の異常成長が生じて粗大な結晶粒の割合が多くなり、異常放電を抑制できなかった。
 No.11は、本発明の規定の昇温速度を超えており、結晶粒の異常成長が生じて粗大な結晶粒の割合が多くなると共に、相対密度を十分に高めることができず、異常放電が多くなった。
 No.12は、焼結温度(保持温度)が低いため、相対密度を高めることができず、また[ZnmIn23+m]相は検出されなかった。そのため、異常放電が多かった。
 No.13は、焼結温度(保持温度)が高いため、結晶粒の平均粒径が本発明の規定を超えており、そのため、異常放電が多かった。

Claims (6)

  1.  酸化亜鉛と;酸化インジウムと;Ti、Mg、Al、およびNbよりなる群から選択される少なくとも1種の金属の酸化物と、を混合および焼結して得られる酸化物焼結体であって、
     前記酸化物焼結体をX線回折したとき、ZnmIn23+m(mは5~7の整数)相を主相として含み、
     前記酸化物焼結体の破断面においてSEMにより観察される結晶粒の平均粒径が10μm以下であり、且つ粒径30μm以上の結晶粒の割合が15%以下であると共に、
     前記酸化物焼結体の相対密度は85%以上であることを特徴とする酸化物焼結体。
  2.  前記酸化物焼結体において、全金属元素に対する亜鉛、インジウム、Ti、Mg、Al、Nbの含有量(原子%)をそれぞれ、[Zn]、[In]、[Ti]、[Mg]、[Al]、および[Nb]としたとき、[Zn]に対する[In]の比、[Zn]+[In]+[Ti]+[Mg]+[Al]+[Nb]に対する[Ti]+[Mg]+[Al]+[Nb]の比は、それぞれ下式を満足するものである請求項1に記載の酸化物焼結体。
      0.27≦[In]/[Zn]≦0.45
      ([Ti]+[Mg]+[Al]+[Nb])/([Zn]+[In]+[Ti]+[Mg]+[Al]+[Nb])≦0.1
  3.  前記酸化物焼結体に含まれる前記ZnmIn23+m、In23、及びZnOの合計に対する前記ZnmIn23+mの体積比は、下式を満足するものである請求項1に記載の酸化物焼結体。
      ZnmIn23+m/(ZnmIn23+m+In23+ZnO)≧0.5
     (但し、ZnmIn23+mはZn5In28、Zn6In29、Zn7In210の合計である。)
  4.  前記酸化物焼結体に含まれる前記ZnmIn23+m、In23、及びZnOの合計に対する前記ZnmIn23+mの体積比は、下式を満足するものである請求項2に記載の酸化物焼結体。
      ZnmIn23+m/(ZnmIn23+m+In23+ZnO)≧0.5
     (但し、ZnmIn23+mはZn5In28、Zn6In29、Zn7In210の合計である。)
  5.  請求項1に記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、比抵抗が0.1Ω・cm以下であること特徴とするスパッタリングターゲット。
  6.  請求項1に記載の酸化物焼結体の製造方法であって、酸化亜鉛と;酸化インジウムと;Ti、Mg、Al、およびNbよりなる群から選択される少なくとも1種の金属の酸化物とを混合し、黒鉛型にセットした後、600℃/hr以下の平均昇温速度で焼結温度1000~1150℃まで昇温した後、該温度域での保持時間0.1~5時間で焼結することを特徴とする酸化物焼結体の製造方法。
PCT/JP2012/078326 2011-11-04 2012-11-01 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法 WO2013065785A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-242893 2011-11-04
JP2011242893A JP5255685B2 (ja) 2011-11-04 2011-11-04 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法

Publications (1)

Publication Number Publication Date
WO2013065785A1 true WO2013065785A1 (ja) 2013-05-10

Family

ID=48192123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078326 WO2013065785A1 (ja) 2011-11-04 2012-11-01 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法

Country Status (3)

Country Link
JP (1) JP5255685B2 (ja)
TW (1) TW201336803A (ja)
WO (1) WO2013065785A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024526A1 (ja) * 2014-08-12 2016-02-18 東ソー株式会社 酸化物焼結体及びスパッタリングターゲット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030455A1 (ja) * 2020-08-05 2022-02-10 三井金属鉱業株式会社 スパッタリングターゲット材及び酸化物半導体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062130A (ja) * 1992-06-15 1994-01-11 Mitsubishi Materials Corp 酸化亜鉛系スパッタリング用ターゲット
WO2004079038A1 (ja) * 2003-03-04 2004-09-16 Nikko Materials Co., Ltd. スパッタリングターゲット、光情報記録媒体用薄膜及びその製造方法
JP2004263273A (ja) * 2003-03-04 2004-09-24 Nikko Materials Co Ltd スパッタリングターゲットの製造方法
JP2010150107A (ja) * 2008-12-26 2010-07-08 Tosoh Corp 複合酸化物焼結体、その製造方法及び用途
JP2011098855A (ja) * 2009-11-05 2011-05-19 Idemitsu Kosan Co Ltd 酸化インジウム−酸化亜鉛系焼結体ターゲット及びその製造法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062130A (ja) * 1992-06-15 1994-01-11 Mitsubishi Materials Corp 酸化亜鉛系スパッタリング用ターゲット
WO2004079038A1 (ja) * 2003-03-04 2004-09-16 Nikko Materials Co., Ltd. スパッタリングターゲット、光情報記録媒体用薄膜及びその製造方法
JP2004263273A (ja) * 2003-03-04 2004-09-24 Nikko Materials Co Ltd スパッタリングターゲットの製造方法
JP2010150107A (ja) * 2008-12-26 2010-07-08 Tosoh Corp 複合酸化物焼結体、その製造方法及び用途
JP2011098855A (ja) * 2009-11-05 2011-05-19 Idemitsu Kosan Co Ltd 酸化インジウム−酸化亜鉛系焼結体ターゲット及びその製造法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024526A1 (ja) * 2014-08-12 2016-02-18 東ソー株式会社 酸化物焼結体及びスパッタリングターゲット

Also Published As

Publication number Publication date
JP5255685B2 (ja) 2013-08-07
JP2013095657A (ja) 2013-05-20
TW201336803A (zh) 2013-09-16

Similar Documents

Publication Publication Date Title
JP5883367B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP5883368B2 (ja) 酸化物焼結体およびスパッタリングターゲット
JP5651095B2 (ja) 酸化物焼結体およびスパッタリングターゲット
JP5796812B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP5952891B2 (ja) 酸化物焼結体、およびスパッタリングターゲットの製造方法
WO2013065786A1 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP5318932B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP6781931B2 (ja) スパッタリングターゲット材
WO2017179278A1 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
JP5255685B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP6774624B2 (ja) 酸化物ターゲット材
JP6364562B1 (ja) 酸化物焼結体およびスパッタリングターゲット
WO2012029408A1 (ja) 酸化物焼結体及び酸化物半導体薄膜
JP2017019668A (ja) 酸化物焼結体およびスパッタリングターゲット、並びにそれらの製造方法
JP2023124649A (ja) スパッタリングターゲット部材及びスパッタリングターゲット部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845778

Country of ref document: EP

Kind code of ref document: A1