WO2013065342A1 - Stator core manufacturing method and stator core - Google Patents

Stator core manufacturing method and stator core Download PDF

Info

Publication number
WO2013065342A1
WO2013065342A1 PCT/JP2012/060740 JP2012060740W WO2013065342A1 WO 2013065342 A1 WO2013065342 A1 WO 2013065342A1 JP 2012060740 W JP2012060740 W JP 2012060740W WO 2013065342 A1 WO2013065342 A1 WO 2013065342A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
mold
core block
magnetic pole
positioning
Prior art date
Application number
PCT/JP2012/060740
Other languages
French (fr)
Japanese (ja)
Inventor
広田 穣
覚司 脇田
和彦 朴
橋本 昭
鵜飼 義一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201280053298.1A priority Critical patent/CN104025432B/en
Priority to IN4129CHN2014 priority patent/IN2014CN04129A/en
Priority to BR112014009831A priority patent/BR112014009831A2/en
Priority to JP2013541648A priority patent/JP5714122B2/en
Publication of WO2013065342A1 publication Critical patent/WO2013065342A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings

Definitions

  • the present invention relates to a stator core manufacturing method and a stator core for manufacturing a stator core used in, for example, an electric motor or a generator of an automobile or the like.
  • a stator constituting a general electric motor or generator mounted on an automobile or the like includes a stator core and a stator winding wound around the stator core.
  • the stator core is wound with an annular yoke body, a core body having a plurality of magnetic teeth portions projecting from the inner circumferential surface of the yoke body radially inward in the circumferential direction, and a stator winding.
  • the main part of the core main body including the surface of the magnetic pole teeth part is covered, and an insulating member interposed between the stator winding and the main part of the core main body is provided.
  • an insulating film or the like that is provided on the core body by pasting or the like and covers the surface of the core body is used.
  • an insulating resin layer integrally molded at a desired portion of the core body by injection molding as an insulating member. ing.
  • FIG. 11 is a diagram for explaining a conventional method for manufacturing a core having an insulating member.
  • an injection mold is attached to the core body. The state of mold clamping is shown when the outer peripheral surface of the core body is viewed from the radial direction.
  • the core body 50 is configured by connecting a plurality of core block bodies 51 in a ring shape.
  • the core block main body 51 is configured by stacking a plurality of core pieces 54, and each of the core block main bodies 51 includes a yoke portion 52 that forms a part of the annular yoke body 60, and an intermediate portion of the yoke portion 52.
  • the above-mentioned magnetic teeth portion (not shown) that protrudes is provided.
  • the core main body 50 is comprised by connecting several core block main bodies 51 so that the magnetic pole teeth part may face inward and the yoke part 52 is arranged cyclically
  • a plurality of molds for injection molding are clamped to obtain an insulating resin layer. Is formed between the main part of the core body 50 including the surface of the magnetic pole teeth part around which the stator winding is wound and the mold. At this time, a plurality of molds that can form cavities that can be injection-molded at once for all the core block bodies 51 that constitute the core body 50 are used.
  • a gap is provided between the end face of the magnetic pole teeth portion.
  • the dies 55a and 55b are disposed on both sides of the core body 50 in the axial direction so as to contact the outer peripheral sides of both end surfaces of the yoke body 60 in the axial direction.
  • the insulating resin layer is integrally formed on the core body 50 by pouring and cooling the insulating resin melted by heating into the cavity.
  • the cavities are formed together with the other molds in a state where the molds 55a and 55b for injection molding are in contact with the outer peripheral portions of both end faces in the axial direction of the yoke body 60.
  • the insulating resin is formed between the core body 50 and the core block body 51 by one injection molding.
  • the mold 55a is only pressed against a part of the core block body 51, and the other cores There may be a gap between the yoke portion 52 of the block body 51 and the mold 55a. That is, when a plurality of molds for injection molding are clamped, a gap is formed between the cavity and the outer peripheral surface of the yoke body 60 (the outer peripheral surface of the core body 50). In some cases, the resin poured into the cavity leaks to the outer peripheral side of the yoke body 60. Thereby, in the manufactured stator core, there is a problem that unnecessary burrs or the like are generated in the insulating resin due to the resin leaked to the outer peripheral side of the yoke body 60.
  • the present invention has been made to solve the above problems, and a stator core manufacturing method capable of preventing unnecessary burrs from being generated in an insulating resin interposed between the stator winding and the core block body, and The object is to obtain a stator core.
  • the stator core manufacturing method is a stator core configured by annularly connecting a plurality of core blocks, each of the core blocks including a core block body and an insulating resin layer, and the core block body Is formed by laminating a plurality of core pieces in the axial direction, and the core block main body is disposed along the connecting direction of the core block, and the stator winding protrudes from the yoke portion.
  • a stator core manufacturing method having a magnetic teeth portion wound around a core block body, a step of forming a plurality of core block bodies, and an insulating resin layer for each core block body by injection molding And an injection molding process for integrally molding.
  • the insulating resin layer is formed for each core block body. For this reason, even if there is a variation in thickness in the core block body, among the molds used for injection molding, the mold that is placed against the yoke part is placed without forming a gap between it and the yoke part. Can be made. Accordingly, since the resin does not leak from between the mold and the end face of the yoke portion, the insulating resin layer can be molded as desired, and unnecessary burrs can be prevented from being formed in the insulating resin layer.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. It is the principal part top view which looked at the stator core produced with the manufacturing method of the stator core which concerns on one embodiment of this invention from the axial direction. It is a figure explaining the manufacturing apparatus of the stator core used for the manufacturing method of the stator core which concerns on one embodiment of this invention.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG. 4. It is the A section enlarged view of FIG.
  • FIG. 7 is a core block main body just before a mold unit is clamped
  • FIG. 7B shows the positional relationship between the core block body, the first mold, and the pedestal after the mold unit is clamped.
  • FIG. 7B shows the positional relationship between the core block body, the first mold, and the pedestal after the mold unit is clamped.
  • FIG. 1 is a cross-sectional view perpendicular to the axial direction of a stator having a stator core manufactured by a method for manufacturing a stator core according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a top view of the stator core produced by the stator core manufacturing method according to one embodiment of the present invention as seen from the axial direction.
  • FIG. 1 is a cross-sectional view perpendicular to the axial direction of a stator having a stator core manufactured by a method for manufacturing a stator core according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a top view of the stator core produced by the stator core manufacturing method according to one embodiment of the present invention as seen from the axial direction.
  • FIG. 1 is a cross-sectional view perpendicular to the axial direction of a stator having a stator
  • the stator 1 includes an annular stator core 10 and stator windings 25 provided on the stator core 10 at intervals in the circumferential direction of the stator core 10.
  • the stator core 10 is configured by connecting a plurality of core blocks 11 in an annular shape.
  • the number of core blocks 11 is 14 here, the number of core blocks is not limited to this, and may be a multiple of 2 or a multiple of 3.
  • Each core block 11 has a yoke portion 13 disposed along the connecting direction of the core blocks 11, and a core block main body having a magnetic pole teeth portion 15 around which a stator winding 25 is wound. 12 and a predetermined portion of the surface of the core block body 12 including the surface of the magnetic pole tooth portion 15 around which the stator winding 25 is wound, and is interposed between the stator winding 25 and the core block body 12.
  • an insulating resin layer 18 is an insulating resin layer 18.
  • the yoke portion 13 is formed in a long block shape with a flat cross section.
  • the magnetic pole tooth portion 15 includes a teeth base portion 15a that protrudes with a predetermined width from an intermediate portion on one surface side of the yoke portion 13 over the entire length direction of the yoke portion 13, and a teeth base portion 15a extending from the tip of the teeth base portion 15a. And a pair of teeth flange portions 15b protruding on both sides in the width direction.
  • the 14 slots 17 are formed by a space defined by the adjacent magnetic pole tooth portion 15 and the yoke portion 13. More specifically, the slot 17 has an adjacent teeth base portion 15a, a teeth flange portion 15b extending from the teeth base portion 15a so that the tip faces each other, and a portion of the yoke portion 13 located between the adjacent tooth base portions 15a. It is formed by a space partitioned by And slot opening is formed between the front-end
  • a positioning recess 14 having a predetermined depth is formed on the other surface of the yoke portion 13 as shown in FIG.
  • the positioning recess 14 has an isosceles trapezoidal shape in a cross section orthogonal to the longitudinal direction of the yoke portion 13.
  • the width of the positioning recess 14 is gradually narrowed toward the bottom. That is, the wall surfaces on both sides in the width direction of the positioning recess 14 form a pair of first tapered surfaces 14a in which the distance between each other gradually decreases toward the bottom.
  • the angle between the pair of first tapered surfaces 14 a is defined as the taper angle of the positioning recess 14.
  • the front end surfaces of the pair of teeth flange portions 15b protruding from the teeth base portion 15a are formed as a pair of second tapered surfaces 16 whose widths become narrower with distance from the yoke portion 13 side.
  • the angle between the second tapered surfaces 16 is defined as the taper angle of the magnetic pole tooth portion 15.
  • Each core block body 12 is configured by stacking a plurality of core pieces 20 formed by punching a steel plate in the thickness direction. Each core block body 12 is arranged so that the stacking direction of the core pieces 20 coincides with the axial direction of the stator core 10.
  • Each core piece 20 is a plate having a yoke constituting part 21 constituting the yoke part 13 and a magnetic pole tooth constituting part 22 protruding from the yoke constituting part 21 and constituting the magnetic pole tooth part 15.
  • the cross-sectional shape orthogonal to the thickness direction of the core piece 20 is a shape in which one side is shortened out of the substantially parallel sides in the H shape.
  • the core block main body 12 is formed by laminating
  • connection between the core block bodies 12 is a well-known technique as described in, for example, Japanese Patent No. 4121008, and will not be described in detail.
  • connection between adjacent core block bodies (core members) is not described in detail. It passes through each of them and is rotatable around an axis parallel to the stacking direction of the core pieces.
  • the insulating resin layer 18 is injection-molded on the core block body 12 so as to cover the main surface of the core block body 12 including the surface of the magnetic pole tooth portion 15 around which the stator winding 25 is wound.
  • the insulating resin layer 18 is formed on the magnetic pole teeth 15 with respect to the stacking direction of the wall surface forming the slot 17 and the core piece 20 among the both sides in the width direction of the teeth base 15a and one surface of the yoke 13.
  • the core block body 12 is integrally formed so as to cover the main portions of both end faces.
  • FIG. 4 is a diagram for explaining a stator core manufacturing apparatus used in the method for manufacturing a stator core according to one embodiment of the present invention
  • FIG. 5 is a cross-sectional view taken along the line VV of FIG. 4, and
  • FIG. It is an A section enlarged view. 4 to 6, the injection molding apparatus 30 includes a pedestal 31 and a mold unit 40.
  • the pedestal 31 has a substantially trapezoidal cross section perpendicular to the thickness direction.
  • a positioning convex portion 32 that can be fitted into the positioning concave portion 14 formed in the yoke portion 13 protrudes from the support surface 31 a represented by the upper base of the trapezoid.
  • the cross-sectional shape of the positioning convex portion 32 is an isosceles trapezoid whose width gradually decreases toward the tip in the protruding direction.
  • the pair of wall surfaces of the positioning convex portion 32 represented by a straight line connecting the upper base and the lower base of the isosceles trapezoidal cross section has a pair of gaps that gradually narrow toward each other toward the tip of the positioning convex portion 32. It becomes the 3rd taper surface 32a.
  • the angle between the pair of third tapered surfaces 32 a is defined as the taper angle of the positioning convex portion 32.
  • the taper angle of the positioning convex part 32 and the taper angle of the positioning concave part 14 formed in the yoke part 13 are formed to coincide with each other.
  • the width of the distal end portion of the positioning convex portion 32 is slightly narrower than the width of the opening portion of the positioning concave portion 14. And when the positioning convex part 32 and the positioning recessed part 14 are mutually fitted, it fits in the state which the wall surfaces of the opposing positioning convex part 32 and the positioning recessed part 14 contacted each other.
  • a core abutting portion 33 for supporting a part of the core block body 12 protrudes from a portion near one end of the support surface 31 a as shown in FIG. 5. .
  • the pedestal 31 is arranged with the lower bottom side facing downward.
  • the mold unit 40 is for forming a desired cavity in the single core block body 12 and integrally molding the insulating resin layer 18 in the core block body 12 by injection molding.
  • the fifth molds 41 to 45 are provided. Although not shown, any one of the first mold 41 to the fifth mold 45 includes an insulating resin in a cavity formed between the first mold 41 to the fifth mold 45 and the core block 11. A flow path for pouring molten resin for forming the layer 18 is formed.
  • the first mold 41 is formed with respect to the core block body 12 arranged at a predetermined injection molding position.
  • the fifth mold 45 is configured to be movable in the direction described below.
  • the predetermined injection molding position of the core block main body 12 is a position in a state where a part of the yoke portion 13 is applied to the core contact portion 33 and the positioning convex portion 32 and the positioning concave portion 14 are fitted together. Injection molding is performed on the core block main body 12 disposed at the injection molding position.
  • the first mold 41 is configured to be movable in a direction opposite to the protruding end surface of the magnetic pole tooth portion 15 from the yoke portion 13.
  • die 42 is comprised so that a movement in the direction opposite to the one side surface of the width direction of the teeth base 15a is possible.
  • die 43 is comprised so that a movement in the direction opposite to the other side surface of the width direction of the teeth base 15a is possible.
  • die 44 is comprised so that a movement in the direction facing the one end surface of the magnetic pole teeth part 15 when the core block main body 12 is arrange
  • die 44 is comprised by the 1st division
  • the first split mold part 44a and the second split mold part 44b can be moved separately.
  • the first divided mold portion 44 a is configured to press the yoke portion 13 of the core block main body 12 disposed at a predetermined injection molding position and press it toward the pedestal 31.
  • the second split mold part 44b is disposed on the first mold 41 side of the first split mold part 44a and slides on the wall surface of the first split mold part 44a.
  • the fifth mold 45 is configured to be movable in a direction opposite to the other end face of the magnetic pole tooth portion 15 in the stacking direction of the core pieces 20.
  • the first mold 41 is formed with a mold-side recess 41 a that is fitted into a teeth flange 15 b located on the opposite side of the yoke section 13.
  • the mold-side recess 41a has a shape that matches the outer shape of the teeth flange 15b, and has a pair of fourth tapered surfaces 41b in which the width between them gradually decreases from the opening toward the bottom.
  • the angle between the pair of fourth taper surfaces 41 b is defined as the taper angle of the first mold 41.
  • the taper angle of the first mold 41 matches the taper angle of the magnetic pole tooth portion 15.
  • the width of the opening of the mold side recess 41a is slightly larger than the width of the protruding end of the magnetic pole tooth portion 15 from the yoke portion 13, in other words, the width of the teeth flange portion 15b on the inner peripheral surface side.
  • FIG. 7 is a view showing the main part of the stator core manufacturing apparatus used in the stator core manufacturing method according to one embodiment of the present invention.
  • FIG. 7 (a) shows a state immediately before the mold unit is clamped.
  • FIG. 7B shows the positional relationship between the core block body, the first mold, and the pedestal after the mold unit is clamped.
  • FIG. 8 is a cross-sectional view for explaining the injection molding process of the stator core manufacturing method according to the embodiment of the present invention. A cavity is formed between the core block body and the mold unit by the clamping operation of the mold unit. It shows how it was formed.
  • FIG. 7 is a view showing the main part of the stator core manufacturing apparatus used in the stator core manufacturing method according to one embodiment of the present invention.
  • FIG. 7 (a) shows a state immediately before the mold unit is clamped.
  • FIG. 7B shows the positional relationship between the core block body, the first mold, and the pedestal after the mold unit is clamped.
  • FIG. 9 is a cross-sectional view for explaining the injection molding process of the stator core manufacturing method according to one embodiment of the present invention, in which an insulating resin layer is molded in the cavity formed between the core block body and the mold unit. Is shown. 10 is a cross-sectional view for explaining the winding process of the stator winding performed after the stator core is manufactured by the stator core manufacturing method according to one embodiment of the present invention.
  • stator core manufacturing method first, a plurality of core block bodies 12 each formed by laminating the core pieces 20 are arranged in a state where the end portions are connected to each other via the connecting portion.
  • description is abbreviate
  • the injection molding of the insulating resin layer 18 is performed for each core block body 12.
  • the plurality of core block bodies 12 are arranged along the pedestal 31 in a state of being connected to each other. And about the core block main body 12 used as the object which integrally molds the insulating resin layer 18, as shown to (a) of FIG.
  • the first mold 41 is arranged so that the end of the teeth flange 15b and the mold-side recess 41a face each other in the direction in which the magnetic pole teeth 15 protrude from the section 13, and the positioning protrusion 32 and the positioning recess 14 face each other. And the pedestal 31.
  • the core block main body 12 is disposed so that the outer peripheral side of the core piece 20 disposed at one end of the yoke portion 13 is applied to the core contact portion 33 in the stacking direction of the core pieces 20. Is done.
  • the plurality of core block main bodies 12 are rotatable around an axis passing through a connecting portion that connects the core block main bodies 12 to each other, and are adjacent to the core block main bodies 12 disposed on the support surface 31a.
  • the core block body 12 can be disposed along the slope of the pedestal 31.
  • the core block main body 12 is arranged on the pedestal 31 so that the tip of the magnetic pole tooth portion 15 faces the outside of the support surface 31a.
  • the first die 41 to the fifth die 45 are provided in the protruding end face of the magnetic pole tooth portion 15 protruding from the yoke portion 13 and in the width direction of the magnetic pole tooth portion 15.
  • the protruding end surface of the magnetic tooth portion 15 corresponds to the wall surface of the teeth flange portion 15 b that forms the inner peripheral side of the stator core 10.
  • the mold unit 40 is clamped by moving the first mold 41 to the fifth mold 45 toward the respective surfaces of the opposing magnetic pole teeth 15.
  • the protruding end side of the magnetic tooth portion 15 and the mold-side concave portion 41a are fitted together, and the positioning convex portion 32 and the positioning concave portion 14 are fitted together.
  • the core block body 12 is pushed toward the pedestal 31 by the moving force of the one mold 41.
  • the width of the bottom of the mold-side recess 41a is narrower than the width of the protruding end of the magnetic tooth portion 15, in other words, the width on the inner peripheral surface side of the tooth flange portion 15b. Further, the taper angle of the mold-side concave portion 41a and the taper angle of the magnetic pole tooth portion 15 coincide with each other. For this reason, when the magnetic teeth portion 15 is fitted in the mold side recess 41a, the magnetic teeth portion 15 is disposed with a gap between the protruding end of the magnetic pole tooth portion 15 and the bottom of the mold side recess 41a, and the core piece. As seen from the stacking direction of 20, the surface contact is made on both side surfaces in the width direction of the mold side recess 41a.
  • the width of the bottom of the positioning recess 14 is narrower than the width of the tip of the positioning protrusion 32. Further, the taper angle of the positioning concave portion 14 and the taper angle of the positioning convex portion 32 are the same. For this reason, the positioning recess 14 is disposed with a gap between the bottom of the positioning recess 14 and the tip of the positioning projection 32 when fitted to the positioning projection 32, and the core piece 20 is stacked in the stacking direction. From the viewpoint of contact, both sides of the positioning convex portion 32 in the width direction are in surface contact.
  • the core block body 12 is accurately positioned at a predetermined injection molding position by fitting between the mold side recess 41a and the protruding end side of the magnetic pole tooth portion 15 and between the positioning recess 14 and the positioning projection 32.
  • a cavity 48 is formed between the first mold 41 to the fifth mold 45 and the core block body 12.
  • the first divided mold portion 44a and the fifth mold 45 of the fourth mold 44 forming a part of the cavity 48 are in the stacking direction of the core pieces 20 (hereinafter referred to as the thickness direction of the core block body 12). ) Is disposed so as to be pressed against one end surface and the other end surface of the yoke portion 13.
  • the molten resin is poured into the cavity 48 as shown in FIG.
  • the insulating resin layer 18 is formed integrally with the core block body 12, whereby the core block 11 is obtained.
  • the core block 11 is moved along the wall surface of the base 31 together with the core block body 12 before the injection molding of the insulating resin layer 18. Can be shifted.
  • the insulating resin layer 18 is similarly formed on the remaining core block main body 12 by injection molding for each core block main body 12. Since the insulating resin layer 18 is formed for each core block main body 12, when the mold unit 40 is clamped, a part of the fourth mold 44 and the fifth mold 45 is replaced with a yoke portion in the stacking direction of the core pieces 20. 13 can be brought into a state of being surely pressed against both end faces. For this reason, even if the thickness of each core block body 12 varies, no gap is formed between the fourth mold 44 and the fifth mold 45 and the yoke portion 13.
  • the stator core 10 can be obtained.
  • stator windings 25 are provided in a concentrated distributed winding method on each magnetic tooth portion 15 of the core block 11 including the core block body 12 integrally formed with the insulating resin layer 18. (Wounding process of stator winding 25). Furthermore, the stator 1 can be obtained by connecting the core block 11 around which the stator winding 25 is wound in an annular shape.
  • the stator core manufacturing method of the present invention in the injection molding process in which the insulating resin layer 18 is formed integrally with the core block body 12, the insulating resin layer 18 is formed for each core block body 12. For this reason, when the mold unit for injection molding is clamped, a part of the mold unit can be reliably pressed against both end faces of the yoke portion 13 in the stacking direction of the core pieces 20. Specifically, a part of the fourth mold 44 and the fifth mold 45 can be reliably pressed against both end faces of the yoke portion 13.
  • the yoke portion 13 is sandwiched between the molds 41 to 45 used for injection molding so as to sandwich the yoke portion 13 therebetween.
  • the metal molds 44 and 45 to be applied can be reliably arranged without forming a gap between the yoke parts 13. Therefore, when the resin is poured into the cavity 48 during injection molding, the resin does not leak from between the fourth mold 44 or the fifth mold 45 and the yoke portion 13, so that the insulating resin layer 18 is as desired. Thus, it is possible to prevent unnecessary burrs from being formed, for example, by the insulating resin layer 18 protruding outside the yoke portion 13.
  • the mold unit 40 includes the first mold 41 to the fifth mold 45, and the core block body 12 is positioned in order to position the core block body 12 by performing mold clamping at the time of injection molding from five directions. Variations in the insulating resin layer caused by the pressure applied to can be prevented.
  • the positioning concave portion 14 formed in the yoke portion 13 is fitted to the positioning convex portion 32 formed in the pedestal 31 that supports the core block body 12, and the magnetic teeth portion 15 on the protruding end side from the yoke portion 13 is fitted. Since the core block main body 12 is positioned at the injection molding position by fitting the portion, in other words, the teeth flange 15b and the first mold 41, the core block main body 12 can be easily and accurately injection molded. Can be positioned.
  • stator core of the present invention a part of the injection molding die unit 40 used for forming the insulating resin layer 18 is formed, and the protruding end of the magnetic pole tooth part 15 protruding from the yoke part 13 is provided.
  • the projecting end side of the magnetic teeth portion 15 of the core block body 12 can be fitted into a mold side recess 41a formed in the first mold 41 provided to be movable in the opposite direction.
  • the yoke 13 has a positioning projection formed on a pedestal 31 provided at a position opposite to the first mold 41 in the moving direction of the first mold 41 at a predetermined portion opposite to the magnetic pole teeth 15.
  • a positioning concave portion 14 that can be fitted to 32 is formed.
  • the core block body 12 is sandwiched between the first mold 41 and the pedestal 31 by fitting the mold-side recess 41 a and the protruding end side of the magnetic pole tooth portion 15 together with the positioning protrusion 32 and the positioning recess 14. It is possible to arrange them at predetermined positions.
  • the mold side concave portion 41a and the protruding end side of the magnetic pole tooth portion 15 and the positioning convexity during the mold clamping operation of the first mold 41 Since the portion 32 and the positioning recess 14 can be fitted together and placed at a predetermined position between the first mold 41 and the base 31, the molded insulating resin layer 18 can be formed in a desired shape. it can.
  • the protruding end side of the magnetic teeth portion 15 protruding from the yoke portion 13 is formed in a tapered shape that gradually becomes narrower toward the protruding end when viewed from the stacking direction of the core pieces 20, and gradually toward the opening. It can be fitted into a mold-side recess 41a formed in a wide tapered shape. Thereby, at the time of the mold clamping operation of the first mold 41, the protruding end side of the magnetic pole tooth portion 15 and the mold side recess 41 a of the first mold 41 can be smoothly fitted together.
  • the positioning recess 14 is formed in a tapered shape whose width gradually increases toward the opening as viewed from the stacking direction of the core pieces 20, and the positioning protrusion 32 which is formed in a tapered shape whose width gradually decreases toward the end. Can be fitted. Thereby, at the time of the mold clamping operation
  • the mold side recess 41a has a shape in contact with both side surfaces in the width direction without any gap. For this reason, the core block body 12 can be more accurately positioned at a predetermined injection molding position by the clamping operation of the first mold 41. Therefore, generation of unnecessary burrs or the like in the insulating resin layer 18 to be injection-molded is further avoided, and the insulating resin layer 18 can be formed in a desired shape more accurately.
  • the positioning recess 14 is disposed with a gap between the bottom of the positioning recess 14 and the tip of the positioning projection 32 when fitted to the positioning projection 32, and viewed from the stacking direction of the core pieces 20.
  • the positioning convex portion 32 has a shape that is in contact with both side surfaces in the width direction without a gap. Also by this, the core block body 12 can be more accurately positioned at a predetermined injection molding position by the clamping operation of the first mold 41. Therefore, generation of unnecessary burrs or the like in the insulating resin layer 18 to be injection-molded is further avoided, and the insulating resin layer 18 can be formed in a desired shape more accurately.
  • the positioning convex portion 32 is formed on the pedestal 31, the positioning concave portion 14 is formed on the yoke portion 13, and the mold unit 40 is clamped to perform the positioning convex portion 32. It has been described that the core block body 12 is positioned at a predetermined injection molding position with the positioning recesses 14 fitted together. However, a positioning recess may be formed on the pedestal 31 and a positioning projection may be formed on the yoke portion 13 so that the recess of the pedestal 31 and the projection of the yoke portion 13 are fitted together.
  • the positioning convex portion and the positioning concave portion are formed in the yoke portion 13, the positioning convex portion and the positioning concave portion are fitted to the base 31 that supports the core block body 12, and the magnetic tooth portion 15 protrudes from the yoke portion 13.
  • the core block body 12 may be positioned at the injection molding position by fitting the end side portion (the teeth flange 15b) and the first mold 41.
  • the protruding end of the magnetic tooth portion 15 comes into surface contact with both side surfaces in the width direction of the mold side recess 41 a when viewed from the stacking direction of the core piece 20, and the positioning recess 14 Is projected on the protruding side of the magnetic tooth portion 15 described as being in surface contact with both side surfaces of the positioning convex portion 32 in the width direction when viewed from the stacking direction of the core pieces 20 when fitted to the positioning convex portion 32.
  • One of the positioning recesses 14 may be in surface contact with both side surfaces of the mold side recess 41a or both side surfaces of the positioning projections 32.
  • the magnetic pole teeth are not required.
  • the effect that the core block main body 12 is positioned at the injection molding position remains by fitting the projecting end side of the portion 15 and the mold side concave portion 41a and fitting the positioning convex portion 32 and the positioning concave portion 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

In order to prevent unwanted burr formation on an insulating resin that is provided between a stator winding and a main core block body, the present invention provides a stator core manufacturing method for manufacturing a stator core that is constructed by connecting, into a circular shape, multiple core blocks (11), each being constructed by laminating multiple core pieces (20) together in the axial direction, wherein each core block (11) is equipped with a main core block body (12) that has a yoke section (13) and a magnetic pole tooth section (15), and an insulating resin layer (18) that is provided between a stator winding (25) and the main core block body (12) so as to cover a section that includes the surface of the magnetic pole tooth section (15) around which the stator winding (25) is wound. The stator core manufacturing method includes an injection molding step in which the insulating resin layer (18) is integrally formed with the main core block body (12) for each main core block body (12) by means of injection molding.

Description

ステータコアの製造方法及びステータコアStator core manufacturing method and stator core
 この発明は、例えば、自動車等の電動機や発電機に用いられるステータコアを製造するためのステータコアの製造方法およびステータコアに関する。 The present invention relates to a stator core manufacturing method and a stator core for manufacturing a stator core used in, for example, an electric motor or a generator of an automobile or the like.
 自動車等に搭載される一般的な電動機や発電機などを構成するステータは、ステータコア、及びステータコアに巻装されるステータ巻線を備えている。
 ステータコアは、環状のヨーク体、及びヨーク体の内周面から径方向内側に周方向に互いに間隔をあけて突出される複数の磁極ティース部を有するコア本体と、ステータ巻線が巻装される磁極ティース部の表面を含むコア本体の主要部を被覆し、ステータ巻線とコア本体の主要部との間に介装される絶縁部材とを備えている。
A stator constituting a general electric motor or generator mounted on an automobile or the like includes a stator core and a stator winding wound around the stator core.
The stator core is wound with an annular yoke body, a core body having a plurality of magnetic teeth portions projecting from the inner circumferential surface of the yoke body radially inward in the circumferential direction, and a stator winding. The main part of the core main body including the surface of the magnetic pole teeth part is covered, and an insulating member interposed between the stator winding and the main part of the core main body is provided.
 従来より、絶縁部材としては、貼りつけなどによりコア本体に設けられてコア本体の表面を被覆する絶縁フィルム等が用いられている。一方、近年においては、絶縁フィルムをコア本体へ取り付けにかかる手間を省略するため、絶縁部材として、射出成形によりコア本体の所望する部位に一体に成形した絶縁樹脂層を用いるものが主流となってきている。 Conventionally, as the insulating member, an insulating film or the like that is provided on the core body by pasting or the like and covers the surface of the core body is used. On the other hand, in recent years, in order to save the trouble of attaching the insulating film to the core body, it has become the mainstream to use an insulating resin layer integrally molded at a desired portion of the core body by injection molding as an insulating member. ing.
 射出成形によりコア本体に絶縁樹脂層を一体に成形してコア(ステータコア)を製造する製造方法として、従来の絶縁部材を備えたコアの製造方法が開示されている(例えば、特許文献1参照)。 As a manufacturing method for manufacturing a core (stator core) by integrally forming an insulating resin layer on a core body by injection molding, a conventional manufacturing method of a core provided with an insulating member is disclosed (for example, see Patent Document 1). .
 以下、従来の絶縁部材を備えたステータコアの製造方法における絶縁樹脂層の成形工程について説明する。
 図11は従来の絶縁部材を備えたコアの製造方法について説明する図であり、コア本体に絶縁樹脂層を射出成形により一体に成形するために、射出成形用の金型をコア本体に対して型締めした様子を、コア本体の外周面を径方向から見た場合を示している。
Hereinafter, a process for forming an insulating resin layer in a method for manufacturing a stator core having a conventional insulating member will be described.
FIG. 11 is a diagram for explaining a conventional method for manufacturing a core having an insulating member. In order to integrally form an insulating resin layer on the core body by injection molding, an injection mold is attached to the core body. The state of mold clamping is shown when the outer peripheral surface of the core body is viewed from the radial direction.
 一般に、コア本体50は、複数のコアブロック本体51を環状に連結して構成される。
 コアブロック本体51は、複数のコア片54を積層したもので構成され、コアブロック本体51のそれぞれは、環状のヨーク体60の一部を構成するヨーク部52と、ヨーク部52の中間部から突出される図示しない前述の磁極ティース部を備えている。
In general, the core body 50 is configured by connecting a plurality of core block bodies 51 in a ring shape.
The core block main body 51 is configured by stacking a plurality of core pieces 54, and each of the core block main bodies 51 includes a yoke portion 52 that forms a part of the annular yoke body 60, and an intermediate portion of the yoke portion 52. The above-mentioned magnetic teeth portion (not shown) that protrudes is provided.
 そして、コア本体50は、磁極ティース部が内側にむけられ、ヨーク部52が環状に配列されるように、複数のコアブロック本体51同士を連結することにより構成されている。
 このとき、コア片54のそれぞれは、厚みにバラツキがあるため、コア片54の積層方向に沿ったコアブロック本体51毎の厚みがバラついてしまう。
And the core main body 50 is comprised by connecting several core block main bodies 51 so that the magnetic pole teeth part may face inward and the yoke part 52 is arranged cyclically | annularly.
At this time, since the thickness of each of the core pieces 54 varies, the thickness of each core block main body 51 along the stacking direction of the core pieces 54 varies.
 従来の絶縁部材を備えたコアの製造方法において、射出成形により絶縁樹脂層をコア本体50に一体に形成する工程では、射出成形用の複数の金型の型締めを行うことで、絶縁樹脂層を形成するためのキャビティが、ステータ巻線が巻回される磁極ティース部の表面を含むコア本体50の主要部と金型との間に形成される。
 このとき、複数の金型は、コア本体50を構成する全てのコアブロック本体51に対して一度に射出成形可能なキャビティを形成可能なものを用いている。
 コア本体50との間にキャビティを形成する複数の金型のうち、ヨーク体60の軸方向、言い換えれば、コア片54の積層方向について、磁極ティース部の端面との間に隙間をあけて配置される金型55a,55bは、ヨーク体60の軸方向の両端面の外周側に当接させてコア本体50の軸方向の両側に配置されることになる。
In the conventional method for manufacturing a core provided with an insulating member, in the step of integrally forming an insulating resin layer on the core body 50 by injection molding, a plurality of molds for injection molding are clamped to obtain an insulating resin layer. Is formed between the main part of the core body 50 including the surface of the magnetic pole teeth part around which the stator winding is wound and the mold.
At this time, a plurality of molds that can form cavities that can be injection-molded at once for all the core block bodies 51 that constitute the core body 50 are used.
Among a plurality of dies that form a cavity between the core body 50 and the axial direction of the yoke body 60, in other words, in the stacking direction of the core piece 54, a gap is provided between the end face of the magnetic pole teeth portion. The dies 55a and 55b are disposed on both sides of the core body 50 in the axial direction so as to contact the outer peripheral sides of both end surfaces of the yoke body 60 in the axial direction.
 そして、キャビティに加熱して溶融した絶縁性の樹脂を流し込んで、冷却することで、絶縁樹脂層がコア本体50に一体に形成される。 The insulating resin layer is integrally formed on the core body 50 by pouring and cooling the insulating resin melted by heating into the cavity.
特開2003-324913号公報JP 2003-324913 A
 しかしながら、従来のステータコアの製造方法では、射出成形用の金型55a,55bを、ヨーク体60の軸方向の両端面の外周側の部位に当接させた状態で、他の金型とともにキャビティをコア本体50との間に形成し、全てのコアブロック本体51に対して、絶縁樹脂を一度の射出成形により設けている。 However, in the conventional stator core manufacturing method, the cavities are formed together with the other molds in a state where the molds 55a and 55b for injection molding are in contact with the outer peripheral portions of both end faces in the axial direction of the yoke body 60. The insulating resin is formed between the core body 50 and the core block body 51 by one injection molding.
 このとき、コアブロック本体51毎に厚みのバラツキがあるため、図11に示されるように、例えば、金型55aが、一部のコアブロック本体51のみに押し当てられるだけとなり、他部のコアブロック本体51のヨーク部52と金型55aとの間に隙間が出来てしまう場合がある。
 即ち、射出成型用の複数の金型が型締めされたときに、キャビティとヨーク体60の外周面(コア本体50の外周面)とを連通する隙間が生じ、絶縁樹脂の射出成形を行う際、キャビティに流し込んだ樹脂がヨーク体60の外周側に漏れてしまう場合がある。これにより、作製されたステータコアにおいては、ヨーク体60の外周側に漏れた樹脂のために、絶縁樹脂に不要なバリ等が生じてしまうという問題がある。
At this time, since there is a variation in thickness for each core block body 51, as shown in FIG. 11, for example, the mold 55a is only pressed against a part of the core block body 51, and the other cores There may be a gap between the yoke portion 52 of the block body 51 and the mold 55a.
That is, when a plurality of molds for injection molding are clamped, a gap is formed between the cavity and the outer peripheral surface of the yoke body 60 (the outer peripheral surface of the core body 50). In some cases, the resin poured into the cavity leaks to the outer peripheral side of the yoke body 60. Thereby, in the manufactured stator core, there is a problem that unnecessary burrs or the like are generated in the insulating resin due to the resin leaked to the outer peripheral side of the yoke body 60.
 この発明は上記の課題を解決するためになされたものであり、ステータ巻線とコアブロック本体との間に介装される絶縁樹脂に不要なバリが発生することを防止できるステータコアの製造方法及びステータコアを得ることを目的とする。 The present invention has been made to solve the above problems, and a stator core manufacturing method capable of preventing unnecessary burrs from being generated in an insulating resin interposed between the stator winding and the core block body, and The object is to obtain a stator core.
 この発明に係るステータコアの製造方法は、複数のコアブロックを環状に連結して構成されたステータコアであって、前記コアブロックはそれぞれ、コアブロック本体と、絶縁樹脂層とを備え、前記コアブロック本体は、複数枚のコア片を軸方向に積層することで構成され、前記コアブロック本体は、上記コアブロックの連結方向に沿って配置されるヨーク部と、上記ヨーク部から突出されてステータ巻線が巻回される磁極ティース部とを有している、ステータコアの製造方法であって、複数のコアブロック本体を形成する工程と、コアブロック本体毎に、絶縁樹脂層を射出成形によりコアブロック本体に一体成形する射出成形工程とを備えている。 The stator core manufacturing method according to the present invention is a stator core configured by annularly connecting a plurality of core blocks, each of the core blocks including a core block body and an insulating resin layer, and the core block body Is formed by laminating a plurality of core pieces in the axial direction, and the core block main body is disposed along the connecting direction of the core block, and the stator winding protrudes from the yoke portion. A stator core manufacturing method having a magnetic teeth portion wound around a core block body, a step of forming a plurality of core block bodies, and an insulating resin layer for each core block body by injection molding And an injection molding process for integrally molding.
 この発明に係るステータコアの製造方法によれば、コアブロック本体毎に絶縁樹脂層を成形している。このため、コアブロック本体に、厚みのバラツキがあっても、射出成形に用いる金型のうち、ヨーク部に当てて配置される金型を、ヨーク部との間に隙間を形成させることなく配置させることができる。
 従って、金型とヨーク部の端面との間から樹脂が漏れることがなくなるので、絶縁樹脂層が所望する通りに成形され、絶縁樹脂層に不要なバリが形成されることを防止できる。
According to the stator core manufacturing method of the present invention, the insulating resin layer is formed for each core block body. For this reason, even if there is a variation in thickness in the core block body, among the molds used for injection molding, the mold that is placed against the yoke part is placed without forming a gap between it and the yoke part. Can be made.
Accordingly, since the resin does not leak from between the mold and the end face of the yoke portion, the insulating resin layer can be molded as desired, and unnecessary burrs can be prevented from being formed in the insulating resin layer.
この発明の一実施の形態に係るステータコアの製造方法により作製されたステータコアを有するステータの軸方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the axial direction of a stator which has a stator core produced with the manufacturing method of the stator core which concerns on one embodiment of this invention. 図1のII-II矢視要部断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG. この発明の一実施の形態に係るステータコアの製造方法により作製されたステータコアを軸方向からみた要部上面図である。It is the principal part top view which looked at the stator core produced with the manufacturing method of the stator core which concerns on one embodiment of this invention from the axial direction. この発明の一実施の形態に係るステータコアの製造方法に用いられるステータコアの製造装置を説明する図である。It is a figure explaining the manufacturing apparatus of the stator core used for the manufacturing method of the stator core which concerns on one embodiment of this invention. 図4のV-V矢視要部断面図である。FIG. 5 is a cross-sectional view taken along the line VV in FIG. 4. 図4のA部拡大図である。It is the A section enlarged view of FIG. この発明の一実施の形態に係るステータコアの製造方法に用いられるステータコアの製造装置の要部を示す図であり、図7の(a)は、金型ユニットが型締めされる直前のコアブロック本体、第1金型、及び台座の位置関係を示し、図7の(b)は、金型ユニットが型締めされた後のコアブロック本体、第1金型、及び台座の位置関係を示している。It is a figure which shows the principal part of the manufacturing apparatus of the stator core used for the manufacturing method of the stator core which concerns on one embodiment of this invention, (a) of FIG. 7 is a core block main body just before a mold unit is clamped FIG. 7B shows the positional relationship between the core block body, the first mold, and the pedestal after the mold unit is clamped. . この発明の一実施の形態に係るステータコアの製造方法の射出成形工程について説明する断面図であり、金型ユニットの型締め動作により、コアブロック本体と金型ユニットとの間にキャビティが形成された様子を示している。It is sectional drawing explaining the injection molding process of the manufacturing method of the stator core which concerns on one embodiment of this invention, and the cavity was formed between the core block main body and the mold unit by the clamping operation of the mold unit It shows a state. この発明の一実施の形態に係るステータコアの製造方法の射出成形工程について説明する断面図であり、コアブロック本体と金型ユニットとの間に形成したキャビティに絶縁樹脂層を成形した様子を示している。It is sectional drawing explaining the injection molding process of the manufacturing method of the stator core which concerns on one embodiment of this invention, and shows a mode that the insulating resin layer was shape | molded in the cavity formed between the core block main body and the mold unit. Yes. この発明の一実施の形態に係るステータコアの製造方法によりステータコアを製造した後に行うステータ巻線の巻装工程について説明する断面図である。It is sectional drawing explaining the winding process of the stator winding performed after manufacturing a stator core with the manufacturing method of the stator core which concerns on one embodiment of this invention. 従来の従来の絶縁部材を備えたコアの製造方法について説明する図であり、コア本体に絶縁樹脂層を射出成形により一体に成形するために、射出成形用の金型をコア本体に対して型締めした様子を、コア本体の外周面を径方向から見た場合について示している。It is a figure explaining the manufacturing method of the core provided with the conventional conventional insulating member, and in order to shape | mold an insulating resin layer integrally with a core main body by injection molding, the metal mold | die for injection molding is type | molded with respect to a core main body. The tightened state is shown when the outer peripheral surface of the core body is viewed from the radial direction.
 以下、この発明を実施するための最良の形態について、図面を参照して説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
 図1はこの発明の一実施の形態に係るステータコアの製造方法により作製されたステータコアを有するステータの軸方向に垂直な断面図、図2は図1のII-II矢視要部断面図、図3はこの発明の一実施の形態に係るステータコアの製造方法により作製されたステータコアを軸方向からみた上面図である。 FIG. 1 is a cross-sectional view perpendicular to the axial direction of a stator having a stator core manufactured by a method for manufacturing a stator core according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 3 is a top view of the stator core produced by the stator core manufacturing method according to one embodiment of the present invention as seen from the axial direction. FIG.
 図1~図3において、ステータ1は、環状のステータコア10と、ステータコア10の周方向に互いに間隔をあけてステータコア10に設けられたステータ巻線25とを備えている。 1 to 3, the stator 1 includes an annular stator core 10 and stator windings 25 provided on the stator core 10 at intervals in the circumferential direction of the stator core 10.
 ステータコア10は、複数のコアブロック11を環状に連結して構成される。
 ここでは、コアブロック11の数は14個としているが、コアブロックの数は、このものに限定されず、2の倍数または3の倍数などの数であってもよい。
 各コアブロック11は、コアブロック11の連結方向に沿って配置されるヨーク部13、及びヨーク部13から内側に突出され、ステータ巻線25が巻回される磁極ティース部15を有するコアブロック本体12と、ステータ巻線25が巻回される磁極ティース部15の表面を含むコアブロック本体12の表面の所定部位を被覆し、ステータ巻線25とコアブロック本体12との間に介装される絶縁樹脂層18とを備えている。
The stator core 10 is configured by connecting a plurality of core blocks 11 in an annular shape.
Although the number of core blocks 11 is 14 here, the number of core blocks is not limited to this, and may be a multiple of 2 or a multiple of 3.
Each core block 11 has a yoke portion 13 disposed along the connecting direction of the core blocks 11, and a core block main body having a magnetic pole teeth portion 15 around which a stator winding 25 is wound. 12 and a predetermined portion of the surface of the core block body 12 including the surface of the magnetic pole tooth portion 15 around which the stator winding 25 is wound, and is interposed between the stator winding 25 and the core block body 12. And an insulating resin layer 18.
 ヨーク部13は、断面扁平で長尺のブロック状に形成されている。
 磁極ティース部15は、ヨーク部13の長手方向の全域に亘って、ヨーク部13の一面側の中間部から所定の幅で突出されるティース基部15aと、ティース基部15aの先端からティース基部15aの幅方向の両側に突出する一対のティース鍔部15bとを備えている。
The yoke portion 13 is formed in a long block shape with a flat cross section.
The magnetic pole tooth portion 15 includes a teeth base portion 15a that protrudes with a predetermined width from an intermediate portion on one surface side of the yoke portion 13 over the entire length direction of the yoke portion 13, and a teeth base portion 15a extending from the tip of the teeth base portion 15a. And a pair of teeth flange portions 15b protruding on both sides in the width direction.
 また、14個のスロット17が、隣接する磁極ティース部15とヨーク部13とで区画される空間により形成される。さらに詳しくは、スロット17が、隣接するティース基部15a、当該ティース基部15aから先端が互いに相対するように延出されるティース鍔部15b、及び隣接するティース基部15aの間に位置するヨーク部13の部位で区画される空間により形成される。そして、スロット開口が、互いに対向配置されるティース鍔部15bの先端間に形成される。 Further, the 14 slots 17 are formed by a space defined by the adjacent magnetic pole tooth portion 15 and the yoke portion 13. More specifically, the slot 17 has an adjacent teeth base portion 15a, a teeth flange portion 15b extending from the teeth base portion 15a so that the tip faces each other, and a portion of the yoke portion 13 located between the adjacent tooth base portions 15a. It is formed by a space partitioned by And slot opening is formed between the front-end | tips of the teeth collar part 15b opposingly arranged.
 また、ヨーク部13の他面には、図3に示されるように、一面に向かって所定の深さの位置決め凹部14が形成されている。位置決め凹部14は、ヨーク部13の長手方向に直交する断面において、等脚台形となる形状を有する。
 位置決め凹部14の幅は、底部に向かって漸次狭まっている。即ち、位置決め凹部14の幅方向の両側の壁面は、底部に向かって漸次互いの間の距離が狭まる一対の第1テーパ面14aとなっている。
 一対の第1テーパ面14aの互いの間の角度を位置決め凹部14のテーパ角度とする。
Further, as shown in FIG. 3, a positioning recess 14 having a predetermined depth is formed on the other surface of the yoke portion 13 as shown in FIG. The positioning recess 14 has an isosceles trapezoidal shape in a cross section orthogonal to the longitudinal direction of the yoke portion 13.
The width of the positioning recess 14 is gradually narrowed toward the bottom. That is, the wall surfaces on both sides in the width direction of the positioning recess 14 form a pair of first tapered surfaces 14a in which the distance between each other gradually decreases toward the bottom.
The angle between the pair of first tapered surfaces 14 a is defined as the taper angle of the positioning recess 14.
 また、ティース基部15aから突出される一対のティース鍔部15bの先端面は、ヨーク部13側から離れるに従って、互いの間の幅が狭くなる一対の第2テーパ面16に形成されている。
 第2テーパ面16の互いの間の角度を磁極ティース部15のテーパ角度とする。
Moreover, the front end surfaces of the pair of teeth flange portions 15b protruding from the teeth base portion 15a are formed as a pair of second tapered surfaces 16 whose widths become narrower with distance from the yoke portion 13 side.
The angle between the second tapered surfaces 16 is defined as the taper angle of the magnetic pole tooth portion 15.
 各コアブロック本体12は、鋼板を打ち抜いて形成された複数枚のコア片20が厚み方向に積層されて構成されている。なお、各コアブロック本体12は、コア片20の積層方向がステータコア10の軸方向に一致するように配置されている。各コア片20は、ヨーク部13を構成するヨーク構成部21と、ヨーク構成部21から突出し、磁極ティース部15を構成する磁極ティース構成部22とを有する板である。コア片20の厚み方向に直交する断面形状は、概略H字における互いに平行な辺のうち、一辺を短くした形状となっている。
 そして、所定数のコア片20が、厚み方向に積層されることで、コアブロック本体12が形成される。
Each core block body 12 is configured by stacking a plurality of core pieces 20 formed by punching a steel plate in the thickness direction. Each core block body 12 is arranged so that the stacking direction of the core pieces 20 coincides with the axial direction of the stator core 10. Each core piece 20 is a plate having a yoke constituting part 21 constituting the yoke part 13 and a magnetic pole tooth constituting part 22 protruding from the yoke constituting part 21 and constituting the magnetic pole tooth part 15. The cross-sectional shape orthogonal to the thickness direction of the core piece 20 is a shape in which one side is shortened out of the substantially parallel sides in the H shape.
And the core block main body 12 is formed by laminating | stacking the predetermined number of core pieces 20 in the thickness direction.
 コアブロック本体12同士の連結は、例えば、特許4121008号明細書に記載されているように、周知の技術であるので詳細には説明しないが、隣接するコアブロック本体(コア部材)の連結部のそれぞれを通過し、コア片の積層方向に平行な軸まわりに回動可能になされている。 The connection between the core block bodies 12 is a well-known technique as described in, for example, Japanese Patent No. 4121008, and will not be described in detail. However, the connection between adjacent core block bodies (core members) is not described in detail. It passes through each of them and is rotatable around an axis parallel to the stacking direction of the core pieces.
 コアブロック本体12が環状に連結されることで、前述したように、14個のスロット17が形成される。 As the core block body 12 is connected in a ring shape, 14 slots 17 are formed as described above.
 また、上述したように、絶縁樹脂層18は、ステータ巻線25が巻回される磁極ティース部15の表面を含むコアブロック本体12の主要表面を被覆するように、コアブロック本体12に射出成形により一体に形成される。
 具体的には、絶縁樹脂層18は、ティース基部15aの幅方向の両側面及びヨーク部13の一面のうち、スロット17を形成する壁面と、コア片20の積層方向について、磁極ティース部15の両端面の主要部とを被覆するようにコアブロック本体12に一体に形成されている。
Further, as described above, the insulating resin layer 18 is injection-molded on the core block body 12 so as to cover the main surface of the core block body 12 including the surface of the magnetic pole tooth portion 15 around which the stator winding 25 is wound. Are integrally formed.
Specifically, the insulating resin layer 18 is formed on the magnetic pole teeth 15 with respect to the stacking direction of the wall surface forming the slot 17 and the core piece 20 among the both sides in the width direction of the teeth base 15a and one surface of the yoke 13. The core block body 12 is integrally formed so as to cover the main portions of both end faces.
 次いで、コアブロック本体12に、絶縁樹脂層18を射出成形により一体に形成する射出成形装置30について説明する。
 図4はこの発明の一実施の形態に係るステータコアの製造方法に用いられるステータコアの製造装置を説明する図、図5は図4のV-V矢視要部断面図、図6は図4のA部拡大図である。
 図4~図6において、射出成形装置30は、台座31と、金型ユニット40とを備えている。
Next, an injection molding apparatus 30 that integrally forms the insulating resin layer 18 on the core block body 12 by injection molding will be described.
4 is a diagram for explaining a stator core manufacturing apparatus used in the method for manufacturing a stator core according to one embodiment of the present invention, FIG. 5 is a cross-sectional view taken along the line VV of FIG. 4, and FIG. It is an A section enlarged view.
4 to 6, the injection molding apparatus 30 includes a pedestal 31 and a mold unit 40.
 台座31は厚み方向に直交する断面が、概略台形形状に形成されている。
 また、台座31の断面において、台形の上底により表される支持面31aには、ヨーク部13に形成された位置決め凹部14に嵌め合い可能な位置決め凸部32が突設されている。位置決め凸部32の断面形状は、図6に示されるように、突出方向の先端に向かって漸次幅の狭まる等脚台形である。即ち、当該断面等脚台形の上底と下底を結ぶ直線で表される位置決め凸部32の一対の壁面は、位置決め凸部32の先端に向かって、互いの間の間隔が漸次狭まる一対の第3テーパ面32aとなっている。
The pedestal 31 has a substantially trapezoidal cross section perpendicular to the thickness direction.
In the cross section of the pedestal 31, a positioning convex portion 32 that can be fitted into the positioning concave portion 14 formed in the yoke portion 13 protrudes from the support surface 31 a represented by the upper base of the trapezoid. As shown in FIG. 6, the cross-sectional shape of the positioning convex portion 32 is an isosceles trapezoid whose width gradually decreases toward the tip in the protruding direction. In other words, the pair of wall surfaces of the positioning convex portion 32 represented by a straight line connecting the upper base and the lower base of the isosceles trapezoidal cross section has a pair of gaps that gradually narrow toward each other toward the tip of the positioning convex portion 32. It becomes the 3rd taper surface 32a.
 一対の第3テーパ面32aの互いの間の角度を、位置決め凸部32のテーパ角度とする。
 位置決め凸部32のテーパ角度と、ヨーク部13に形成された位置決め凹部14のテーパ角度は、一致するように形成されている。
 ここで、位置決め凸部32の先端部の幅は、位置決め凹部14の開口部の幅より、若干狭くなっている。
 そして、位置決め凸部32と位置決め凹部14とを互いに嵌め合わせたときには、相対する位置決め凸部32と位置決め凹部14との壁面同士が面接触した状態で嵌め合わされる。
 また、台座31の厚み方向に関し、支持面31aの一端近傍の部位には、図5に示されるように、コアブロック本体12の一部を支持するためのコア当接部33が突出されている。台座31は、下底側を下方に向けて配置される。
The angle between the pair of third tapered surfaces 32 a is defined as the taper angle of the positioning convex portion 32.
The taper angle of the positioning convex part 32 and the taper angle of the positioning concave part 14 formed in the yoke part 13 are formed to coincide with each other.
Here, the width of the distal end portion of the positioning convex portion 32 is slightly narrower than the width of the opening portion of the positioning concave portion 14.
And when the positioning convex part 32 and the positioning recessed part 14 are mutually fitted, it fits in the state which the wall surfaces of the opposing positioning convex part 32 and the positioning recessed part 14 contacted each other.
Further, with respect to the thickness direction of the pedestal 31, a core abutting portion 33 for supporting a part of the core block body 12 protrudes from a portion near one end of the support surface 31 a as shown in FIG. 5. . The pedestal 31 is arranged with the lower bottom side facing downward.
 また、金型ユニット40は、単体のコアブロック本体12に対して所望のキャビティを形成して、絶縁樹脂層18を射出成形によりコアブロック本体12に一体成形するためのものであり、第1~第5の金型41~45を有している。
 また、図示しないが、第1金型41~第5金型45のいずれかには、第1金型41~第5金型45とコアブロック11との間に形成されるキャビティに、絶縁樹脂層18を形成するための溶融樹脂を流し込むための流路が形成されている。
The mold unit 40 is for forming a desired cavity in the single core block body 12 and integrally molding the insulating resin layer 18 in the core block body 12 by injection molding. The fifth molds 41 to 45 are provided.
Although not shown, any one of the first mold 41 to the fifth mold 45 includes an insulating resin in a cavity formed between the first mold 41 to the fifth mold 45 and the core block 11. A flow path for pouring molten resin for forming the layer 18 is formed.
 図4及び図5に示されるように、絶縁樹脂層18を射出成形によりコアブロック本体12に形成する際に、所定の射出成形位置に配置されたコアブロック本体12に対し、第1金型41~第5金型45は、以下に説明する方向に移動可能に構成されている。
 コアブロック本体12の所定の射出成形位置とは、ここでは、コア当接部33にヨーク部13の一部を当て、位置決め凸部32と位置決め凹部14とを嵌め合わせた状態の位置であり、射出成形位置に配置したコアブロック本体12に対して射出成形が行われる。
As shown in FIGS. 4 and 5, when the insulating resin layer 18 is formed on the core block body 12 by injection molding, the first mold 41 is formed with respect to the core block body 12 arranged at a predetermined injection molding position. The fifth mold 45 is configured to be movable in the direction described below.
Here, the predetermined injection molding position of the core block main body 12 is a position in a state where a part of the yoke portion 13 is applied to the core contact portion 33 and the positioning convex portion 32 and the positioning concave portion 14 are fitted together. Injection molding is performed on the core block main body 12 disposed at the injection molding position.
 第1金型41は、磁極ティース部15のヨーク部13からの突出端面に相対する方向に移動可能に構成されている。第2金型42は、ティース基部15aの幅方向の一方の側面と相対する方向に移動可能に構成されている。第3金型43は、ティース基部15aの幅方向の他方の側面と相対する方向に移動可能に構成されている。 The first mold 41 is configured to be movable in a direction opposite to the protruding end surface of the magnetic pole tooth portion 15 from the yoke portion 13. The 2nd metal mold | die 42 is comprised so that a movement in the direction opposite to the one side surface of the width direction of the teeth base 15a is possible. The 3rd metal mold | die 43 is comprised so that a movement in the direction opposite to the other side surface of the width direction of the teeth base 15a is possible.
 第4金型44は、コア片20の積層方向について、コアブロック本体12が、所定の射出成形位置に配置されたときの磁極ティース部15の一端面と相対する方向に移動可能に構成されている。
 なお、第4金型44は、図5に示されるように、第1分割金型部44a及び第2分割金型部44bにより構成されている。第1分割金型部44a及び第2分割金型部44bは、それぞれ、別個に移動可能になっている。
 第1分割金型部44aは、所定の射出成形位置に配置されたコアブロック本体12のヨーク部13を、押圧して台座31に向けて押し付けられるように構成されている。
 また、第2分割金型部44bは、第1分割金型部44aの第1金型41側に配置され、第1分割金型部44aの壁面上を摺動する。
The 4th metal mold | die 44 is comprised so that a movement in the direction facing the one end surface of the magnetic pole teeth part 15 when the core block main body 12 is arrange | positioned with respect to the lamination direction of the core piece 20 at a predetermined injection molding position. Yes.
In addition, the 4th metal mold | die 44 is comprised by the 1st division | segmentation mold part 44a and the 2nd division | segmentation mold part 44b, as FIG. 5 shows. The first split mold part 44a and the second split mold part 44b can be moved separately.
The first divided mold portion 44 a is configured to press the yoke portion 13 of the core block main body 12 disposed at a predetermined injection molding position and press it toward the pedestal 31.
The second split mold part 44b is disposed on the first mold 41 side of the first split mold part 44a and slides on the wall surface of the first split mold part 44a.
 第5金型45は、コア片20の積層方向について、磁極ティース部15の他端面と相対する方向に移動可能に構成されている。 The fifth mold 45 is configured to be movable in a direction opposite to the other end face of the magnetic pole tooth portion 15 in the stacking direction of the core pieces 20.
 第1金型41には、ヨーク部13と逆側に位置するティース鍔部15bに嵌め合わされる金型側凹部41aが形成されている。
 金型側凹部41aは、ティース鍔部15bの外形形状に適合する形状であり、互いの間の幅が、開口部から底部に向かって漸次狭まる一対の第4テーパ面41bを有している。
 一対の第4テーパ面41bの互いの間の角度を、第1金型41のテーパ角度とする。
 ここでは、第1金型41のテーパ角度は、磁極ティース部15のテーパ角度に一致している。また、金型側凹部41aの開口部の幅は、ヨーク部13からの磁極ティース部15の突出端、言い換えれば、ティース鍔部15bの内周面側の幅より若干大きくなっている。
The first mold 41 is formed with a mold-side recess 41 a that is fitted into a teeth flange 15 b located on the opposite side of the yoke section 13.
The mold-side recess 41a has a shape that matches the outer shape of the teeth flange 15b, and has a pair of fourth tapered surfaces 41b in which the width between them gradually decreases from the opening toward the bottom.
The angle between the pair of fourth taper surfaces 41 b is defined as the taper angle of the first mold 41.
Here, the taper angle of the first mold 41 matches the taper angle of the magnetic pole tooth portion 15. Further, the width of the opening of the mold side recess 41a is slightly larger than the width of the protruding end of the magnetic pole tooth portion 15 from the yoke portion 13, in other words, the width of the teeth flange portion 15b on the inner peripheral surface side.
 次いで、射出成形装置30を用いたステータコアの製造方法について説明する。
 図7はこの発明の一実施の形態に係るステータコアの製造方法に用いられるステータコアの製造装置の要部を示す図であり、図7の(a)は、金型ユニットが型締めされる直前のコアブロック本体、第1金型、及び台座の位置関係を示し、図7の(b)は、金型ユニットが型締めされた後のコアブロック本体、第1金型、及び台座の位置関係を示している。図8はこの発明の一実施の形態に係るステータコアの製造方法の射出成形工程について説明する断面図であり、金型ユニットの型締め動作により、コアブロック本体と金型ユニットとの間にキャビティが形成された様子を示している。図9はこの発明の一実施の形態に係るステータコアの製造方法の射出成形工程について説明する断面図であり、コアブロック本体と金型ユニットとの間に形成したキャビティに絶縁樹脂層を成形した様子を示している。図10この発明の一実施の形態に係るステータコアの製造方法によりステータコアを製造した後に行うステータ巻線の巻装工程について説明する断面図である。
Next, a method for manufacturing a stator core using the injection molding apparatus 30 will be described.
FIG. 7 is a view showing the main part of the stator core manufacturing apparatus used in the stator core manufacturing method according to one embodiment of the present invention. FIG. 7 (a) shows a state immediately before the mold unit is clamped. FIG. 7B shows the positional relationship between the core block body, the first mold, and the pedestal after the mold unit is clamped. Show. FIG. 8 is a cross-sectional view for explaining the injection molding process of the stator core manufacturing method according to the embodiment of the present invention. A cavity is formed between the core block body and the mold unit by the clamping operation of the mold unit. It shows how it was formed. FIG. 9 is a cross-sectional view for explaining the injection molding process of the stator core manufacturing method according to one embodiment of the present invention, in which an insulating resin layer is molded in the cavity formed between the core block body and the mold unit. Is shown. 10 is a cross-sectional view for explaining the winding process of the stator winding performed after the stator core is manufactured by the stator core manufacturing method according to one embodiment of the present invention.
 ステータコアの製造方法では、まず、コア片20を積層してそれぞれ構成した複数のコアブロック本体12を、連結部を介して端部同士を互いに連結した状態に複数配列する。
 なお、コア片20の製造方法や、その後のコアブロック本体12同士の連結方法については、従来と同様の製造方法であるので説明は省略する。
In the stator core manufacturing method, first, a plurality of core block bodies 12 each formed by laminating the core pieces 20 are arranged in a state where the end portions are connected to each other via the connecting portion.
In addition, about the manufacturing method of the core piece 20, and the subsequent connection method of the core block main bodies 12, since it is a manufacturing method similar to the past, description is abbreviate | omitted.
 次いで、射出成形工程について説明する。
 絶縁樹脂層18の射出成形は、コアブロック本体12毎に行われる。
 図4に示されるように、複数のコアブロック本体12は、互いに連結された状態で、台座31に沿って配置する。
 そして、絶縁樹脂層18を一体成形する対象となるコアブロック本体12については、図7の(a)に示されるように、おおよそ磁極ティース部15の突出端と金型凹部41a、言い換えれば、ヨーク部13からの磁極ティース部15の突出方向についてのティース鍔部15bの端部と金型側凹部41aが相対し、かつ位置決め凸部32と位置決め凹部14が相対するように、第1金型41と台座31の間に配置する。
Next, the injection molding process will be described.
The injection molding of the insulating resin layer 18 is performed for each core block body 12.
As shown in FIG. 4, the plurality of core block bodies 12 are arranged along the pedestal 31 in a state of being connected to each other.
And about the core block main body 12 used as the object which integrally molds the insulating resin layer 18, as shown to (a) of FIG. 7, approximately the protrusion end of the magnetic teeth part 15, and the metal mold | die recessed part 41a, in other words, yoke The first mold 41 is arranged so that the end of the teeth flange 15b and the mold-side recess 41a face each other in the direction in which the magnetic pole teeth 15 protrude from the section 13, and the positioning protrusion 32 and the positioning recess 14 face each other. And the pedestal 31.
 また、コアブロック本体12は、図5に示されるように、コア当接部33に、コア片20の積層方向に関し、ヨーク部13の一端に配置されるコア片20の外周側を当てて配置される。 Further, as shown in FIG. 5, the core block main body 12 is disposed so that the outer peripheral side of the core piece 20 disposed at one end of the yoke portion 13 is applied to the core contact portion 33 in the stacking direction of the core pieces 20. Is done.
 複数のコアブロック本体12は、上述したように、コアブロック本体12同士を互いに連結する連結部を通る軸まわりに回動自在であり、支持面31aに配置したコアブロック本体12に隣接する他のコアブロック本体12を、台座31の斜面沿って配置させることが可能である。 As described above, the plurality of core block main bodies 12 are rotatable around an axis passing through a connecting portion that connects the core block main bodies 12 to each other, and are adjacent to the core block main bodies 12 disposed on the support surface 31a. The core block body 12 can be disposed along the slope of the pedestal 31.
 また、支持面31aの外側に磁極ティース部15の先端が向かうように、コアブロック本体12は、台座31に配列される。 Further, the core block main body 12 is arranged on the pedestal 31 so that the tip of the magnetic pole tooth portion 15 faces the outside of the support surface 31a.
 支持面31aに配置されたコアブロック本体12に対し、第1金型41~第5金型45は、ヨーク部13から突出される磁極ティース部15の突出端面、磁極ティース部15の幅方向の一面、磁極ティース部15の幅方向の他面、コア片20の積層方向についての磁極ティース部15の一端面、及びコア片20の積層方向についての磁極ティース部15の他端面に相対する位置に配置される。
 なお、磁極ティース部15の突出端面は、ステータコア10の内周側を構成するティース鍔部15bの壁面に相当する。
With respect to the core block main body 12 arranged on the support surface 31a, the first die 41 to the fifth die 45 are provided in the protruding end face of the magnetic pole tooth portion 15 protruding from the yoke portion 13 and in the width direction of the magnetic pole tooth portion 15. One surface, the other surface in the width direction of the magnetic teeth portion 15, the one end surface of the magnetic pole teeth portion 15 in the stacking direction of the core pieces 20, and the position opposite to the other end surface of the magnetic pole teeth portion 15 in the stacking direction of the core pieces 20. Be placed.
Note that the protruding end surface of the magnetic tooth portion 15 corresponds to the wall surface of the teeth flange portion 15 b that forms the inner peripheral side of the stator core 10.
 この状態から、第1金型41~第5金型45を、相対する磁極ティース部15の各面に向けて移動させて金型ユニット40の型締め動作を行う。
 これにより、図7の(b)に示されるように、磁極ティース部15の突出端側と金型側凹部41aとが嵌め合わされ、また、位置決め凸部32と位置決め凹部14とが嵌め合わされ、第1金型41の移動力により、コアブロック本体12が、台座31に向けて押し込まれる。
From this state, the mold unit 40 is clamped by moving the first mold 41 to the fifth mold 45 toward the respective surfaces of the opposing magnetic pole teeth 15.
As a result, as shown in FIG. 7B, the protruding end side of the magnetic tooth portion 15 and the mold-side concave portion 41a are fitted together, and the positioning convex portion 32 and the positioning concave portion 14 are fitted together. The core block body 12 is pushed toward the pedestal 31 by the moving force of the one mold 41.
 また、金型側凹部41aの底部の幅が、磁極ティース部15の突出端の幅、言い換えれば、ティース鍔部15bの内周面側の幅より狭くなっている。また、金型側凹部41aのテーパ角度と磁極ティース部15のテーパ角度は、一致している。
 このため、磁極ティース部15は、金型側凹部41aに嵌め合わされたときに、磁極ティース部15の突出端と金型側凹部41aの底部との間に隙間をあけて配置され、かつコア片20の積層方向からみて、金型側凹部41aの幅方向の両側面に面接触される。
Further, the width of the bottom of the mold-side recess 41a is narrower than the width of the protruding end of the magnetic tooth portion 15, in other words, the width on the inner peripheral surface side of the tooth flange portion 15b. Further, the taper angle of the mold-side concave portion 41a and the taper angle of the magnetic pole tooth portion 15 coincide with each other.
For this reason, when the magnetic teeth portion 15 is fitted in the mold side recess 41a, the magnetic teeth portion 15 is disposed with a gap between the protruding end of the magnetic pole tooth portion 15 and the bottom of the mold side recess 41a, and the core piece. As seen from the stacking direction of 20, the surface contact is made on both side surfaces in the width direction of the mold side recess 41a.
 位置決め凹部14の底の幅は、位置決め凸部32の先端の幅より狭くなっている。また、位置決め凹部14のテーパ角度と位置決め凸部32のテーパ角度は同じになっている。
 このため、位置決め凹部14は、位置決め凸部32に嵌め合わされたときに、位置決め凹部14の底部と位置決め凸部32の先端との間に隙間をあけて配置され、かつ、コア片20の積層方向からみて、位置決め凸部32の幅方向の両側面に面接触する。
The width of the bottom of the positioning recess 14 is narrower than the width of the tip of the positioning protrusion 32. Further, the taper angle of the positioning concave portion 14 and the taper angle of the positioning convex portion 32 are the same.
For this reason, the positioning recess 14 is disposed with a gap between the bottom of the positioning recess 14 and the tip of the positioning projection 32 when fitted to the positioning projection 32, and the core piece 20 is stacked in the stacking direction. From the viewpoint of contact, both sides of the positioning convex portion 32 in the width direction are in surface contact.
 金型側凹部41aと磁極ティース部15の突出端側との嵌め合い、及び位置決め凹部14と位置決め凸部32との嵌め合いにより、コアブロック本体12は、所定の射出成形位置に精度よく位置決めされる。 The core block body 12 is accurately positioned at a predetermined injection molding position by fitting between the mold side recess 41a and the protruding end side of the magnetic pole tooth portion 15 and between the positioning recess 14 and the positioning projection 32. The
 金型ユニット40の型締め動作によって、図8に示されるように、キャビティ48が、第1金型41~第5金型45とコアブロック本体12との間に形成される。
 このとき、キャビティ48の一部を形成する第4金型44の第1分割金型部44a及び第5金型45は、コア片20の積層方向(以下、コアブロック本体12の厚み方向とする)について、ヨーク部13の一端面及び他端面に押し当てられるように配置される。
By the mold clamping operation of the mold unit 40, as shown in FIG. 8, a cavity 48 is formed between the first mold 41 to the fifth mold 45 and the core block body 12.
At this time, the first divided mold portion 44a and the fifth mold 45 of the fourth mold 44 forming a part of the cavity 48 are in the stacking direction of the core pieces 20 (hereinafter referred to as the thickness direction of the core block body 12). ) Is disposed so as to be pressed against one end surface and the other end surface of the yoke portion 13.
 次いで、溶融した樹脂を、図9に示されるように、キャビティ48に流し込む。
 そして、樹脂を冷却して硬化することで、絶縁樹脂層18が、コアブロック本体12に一体に成形され、これにより、コアブロック11が得られる。
 そして、第1金型41~第5金型45を、コアブロック本体12から離すことで、コアブロック11を、絶縁樹脂層18の射出成形前のコアブロック本体12とともに、台座31の壁面に沿ってずらすことが可能となる。
Next, the molten resin is poured into the cavity 48 as shown in FIG.
Then, by cooling and curing the resin, the insulating resin layer 18 is formed integrally with the core block body 12, whereby the core block 11 is obtained.
Then, by separating the first mold 41 to the fifth mold 45 from the core block body 12, the core block 11 is moved along the wall surface of the base 31 together with the core block body 12 before the injection molding of the insulating resin layer 18. Can be shifted.
 以下、残りのコアブロック本体12に対しも同様に、コアブロック本体12毎に絶縁樹脂層18を射出成形により形成する。
 コアブロック本体12毎に絶縁樹脂層18を成形するので、金型ユニット40の型締め時、第4金型44及び第5金型45の一部を、コア片20の積層方向についてのヨーク部13の両端面に確実に押し当てた状態にできる。このため、仮にコアブロック本体12毎の厚みに、バラツキがあっても、第4金型44及び第5金型45とヨーク部13との間に隙間が形成されることがない。
Thereafter, the insulating resin layer 18 is similarly formed on the remaining core block main body 12 by injection molding for each core block main body 12.
Since the insulating resin layer 18 is formed for each core block main body 12, when the mold unit 40 is clamped, a part of the fourth mold 44 and the fifth mold 45 is replaced with a yoke portion in the stacking direction of the core pieces 20. 13 can be brought into a state of being surely pressed against both end faces. For this reason, even if the thickness of each core block body 12 varies, no gap is formed between the fourth mold 44 and the fifth mold 45 and the yoke portion 13.
 つまり、射出成形時に、キャビティ48に樹脂を流し込んだ際、第4金型44及び第5金型45の端面とヨーク部13の端面との間から樹脂が漏れることはなく、射出成形により形成された絶縁樹脂層18は、ヨーク部13の外側に突出して不要なバリを形成することがなくなる。
 以上により、ステータコア10を得ることができる。
That is, when the resin is poured into the cavity 48 at the time of injection molding, the resin does not leak between the end surfaces of the fourth mold 44 and the fifth mold 45 and the end surface of the yoke portion 13, and is formed by injection molding. Further, the insulating resin layer 18 does not protrude beyond the yoke portion 13 to form unnecessary burrs.
Thus, the stator core 10 can be obtained.
 次いで、図10に示されるように、絶縁樹脂層18が一体に形成されたコアブロック本体12からなるコアブロック11のそれぞれの磁極ティース部15に、ステータ巻線25を、集中分布巻き方式で設ける(ステータ巻線25の巻装工程)。
 さらに、ステータ巻線25を巻装したコアブロック11を環状に連結することで、ステータ1を得ることができる。
Next, as shown in FIG. 10, stator windings 25 are provided in a concentrated distributed winding method on each magnetic tooth portion 15 of the core block 11 including the core block body 12 integrally formed with the insulating resin layer 18. (Wounding process of stator winding 25).
Furthermore, the stator 1 can be obtained by connecting the core block 11 around which the stator winding 25 is wound in an annular shape.
 この発明のステータコアの製造方法によれば、絶縁樹脂層18をコアブロック本体12に一体に成形する射出成形工程では、コアブロック本体12毎に絶縁樹脂層18を成形している。このため、射出成形用の金型ユニットの型締めを行った際、金型ユニットの一部を、コア片20の積層方向についてのヨーク部13の両端面に確実に押し当てた状態にできる。具体的には、第4金型44及び第5金型45の一部を、ヨーク部13の両端面に確実に押し当てた状態にできる。 According to the stator core manufacturing method of the present invention, in the injection molding process in which the insulating resin layer 18 is formed integrally with the core block body 12, the insulating resin layer 18 is formed for each core block body 12. For this reason, when the mold unit for injection molding is clamped, a part of the mold unit can be reliably pressed against both end faces of the yoke portion 13 in the stacking direction of the core pieces 20. Specifically, a part of the fourth mold 44 and the fifth mold 45 can be reliably pressed against both end faces of the yoke portion 13.
 このため、コア片20の積層方向に沿ったコアブロック本体12毎の厚みに、バラツキがあっても、射出成形に用いる金型41~45のうち、ヨーク部13を挟み込むようにヨーク部13に当てられる金型44,45を、確実にヨーク部13との間に隙間を形成させることなく配置することができる。
 従って、射出成形時に、キャビティ48に樹脂を流し込んだ際、第4金型44または第5金型45とヨーク部13との間から樹脂が漏れることがなくなるので、絶縁樹脂層18が所望する通りに成形され、絶縁樹脂層18が、ヨーク部13の外側に突出するなどして、不要なバリが形成されることを防止できる。
Therefore, even if the thickness of each core block main body 12 along the stacking direction of the core pieces 20 varies, the yoke portion 13 is sandwiched between the molds 41 to 45 used for injection molding so as to sandwich the yoke portion 13 therebetween. The metal molds 44 and 45 to be applied can be reliably arranged without forming a gap between the yoke parts 13.
Therefore, when the resin is poured into the cavity 48 during injection molding, the resin does not leak from between the fourth mold 44 or the fifth mold 45 and the yoke portion 13, so that the insulating resin layer 18 is as desired. Thus, it is possible to prevent unnecessary burrs from being formed, for example, by the insulating resin layer 18 protruding outside the yoke portion 13.
 また、金型ユニット40を第1金型41~第5金型45により構成し、射出成形時の型締めを5方向から行うことで、コアブロック本体12を位置決めするために、コアブロック本体12に付加される圧力が原因で生じる絶縁樹脂層のバラツキを防止できる。 In addition, the mold unit 40 includes the first mold 41 to the fifth mold 45, and the core block body 12 is positioned in order to position the core block body 12 by performing mold clamping at the time of injection molding from five directions. Variations in the insulating resin layer caused by the pressure applied to can be prevented.
 また、ヨーク部13に形成された位置決め凹部14を、コアブロック本体12を支持する台座31に形成された位置決め凸部32に嵌め合わせるとともに、磁極ティース部15のヨーク部13からの突出端側の部位、言い換えれば、ティース鍔部15bと第1金型41とを嵌め合わせて、コアブロック本体12を射出成形位置に位置決めしているので、コアブロック本体12を容易に、かつ、精度よく射出成形位置に位置決めできる。 Further, the positioning concave portion 14 formed in the yoke portion 13 is fitted to the positioning convex portion 32 formed in the pedestal 31 that supports the core block body 12, and the magnetic teeth portion 15 on the protruding end side from the yoke portion 13 is fitted. Since the core block main body 12 is positioned at the injection molding position by fitting the portion, in other words, the teeth flange 15b and the first mold 41, the core block main body 12 can be easily and accurately injection molded. Can be positioned.
 また、この発明に係るステータコアによれば、絶縁樹脂層18の形成に用いられる射出成形用の金型ユニット40の一部を構成し、ヨーク部13から突出される磁極ティース部15の突出端と相対する方向に移動可能に設けられる第1金型41に形成された金型側凹部41aに、コアブロック本体12の磁極ティース部15の突出端側が嵌め合わせ可能な形状である。また、ヨーク部13には、磁極ティース部15と逆側の所定部位に、第1金型41の移動方向について第1金型41と対向する位置に設けられる台座31に形成された位置決め凸部32に嵌め合わせ可能な位置決め凹部14が形成されている。
 コアブロック本体12は、金型側凹部41aと磁極ティース部15の突出端側を嵌め合わせるとともに、位置決め凸部32と位置決め凹部14を嵌め合わせて、第1金型41と台座31とに挟みこまれる所定位置に配置させることが可能となる。
Further, according to the stator core of the present invention, a part of the injection molding die unit 40 used for forming the insulating resin layer 18 is formed, and the protruding end of the magnetic pole tooth part 15 protruding from the yoke part 13 is provided. The projecting end side of the magnetic teeth portion 15 of the core block body 12 can be fitted into a mold side recess 41a formed in the first mold 41 provided to be movable in the opposite direction. In addition, the yoke 13 has a positioning projection formed on a pedestal 31 provided at a position opposite to the first mold 41 in the moving direction of the first mold 41 at a predetermined portion opposite to the magnetic pole teeth 15. A positioning concave portion 14 that can be fitted to 32 is formed.
The core block body 12 is sandwiched between the first mold 41 and the pedestal 31 by fitting the mold-side recess 41 a and the protruding end side of the magnetic pole tooth portion 15 together with the positioning protrusion 32 and the positioning recess 14. It is possible to arrange them at predetermined positions.
 従って、コアブロック本体12毎に、絶縁樹脂層18を射出成形により形成する場合、第1金型41の型締め動作時に、金型側凹部41aと磁極ティース部15の突出端側、及び位置決め凸部32と位置決め凹部14を嵌め合わせて、第1金型41と台座31との間の所定位置に配置させることができるので、成形される絶縁樹脂層18を所望通りの形状に形成することができる。 Accordingly, when the insulating resin layer 18 is formed for each core block body 12 by injection molding, the mold side concave portion 41a and the protruding end side of the magnetic pole tooth portion 15 and the positioning convexity during the mold clamping operation of the first mold 41. Since the portion 32 and the positioning recess 14 can be fitted together and placed at a predetermined position between the first mold 41 and the base 31, the molded insulating resin layer 18 can be formed in a desired shape. it can.
 また、ヨーク部13から突出される磁極ティース部15の突出端側は、コア片20の積層方向からみて、突出端に向かって漸次幅狭となるテーパ形状に形成され、開口部に向かって漸次幅広となるテーパ形状に形成された金型側凹部41aに嵌め合わせ可能である。
 これにより、第1金型41の型締め動作時に、スムーズに磁極ティース部15の突出端側と第1金型41の金型側凹部41aとを嵌め合わせることができる。
Further, the protruding end side of the magnetic teeth portion 15 protruding from the yoke portion 13 is formed in a tapered shape that gradually becomes narrower toward the protruding end when viewed from the stacking direction of the core pieces 20, and gradually toward the opening. It can be fitted into a mold-side recess 41a formed in a wide tapered shape.
Thereby, at the time of the mold clamping operation of the first mold 41, the protruding end side of the magnetic pole tooth portion 15 and the mold side recess 41 a of the first mold 41 can be smoothly fitted together.
 また、位置決め凹部14は、コア片20の積層方向からみて、開口部に向かって漸次幅が広まるテーパ形状に形成され、端部に向かって漸次幅が狭まるテーパ形状に形成された位置決め凸部32に嵌め合わせ可能である。
 これにより、第1金型41の型締め動作時に、スムーズに位置決め凸部14と位置決め凸部32とを嵌め合わせることができる。
The positioning recess 14 is formed in a tapered shape whose width gradually increases toward the opening as viewed from the stacking direction of the core pieces 20, and the positioning protrusion 32 which is formed in a tapered shape whose width gradually decreases toward the end. Can be fitted.
Thereby, at the time of the mold clamping operation | movement of the 1st metal mold | die 41, the positioning convex part 14 and the positioning convex part 32 can be fitted smoothly.
 さらに、磁極ティース部15は、金型側凹部41aに嵌め合わされたときに、磁極ティース部15の突出端と金型側凹部41aの底部との間に隙間をあけて配置され、かつコア片20の積層方向からみて、金型側凹部41aの幅方向の両側面に隙間なく接する形状を有する。このため、第1金型41の型締め動作により、コアブロック本体12を所定の射出成形位置に、より正確に位置決めすることが可能になる。従って、射出成形される絶縁樹脂層18に、不要なバリなどを発生させることが一層回避され、絶縁樹脂層18を、より正確に、所望通りの形状に形成できる。 Further, when the magnetic teeth portion 15 is fitted into the mold side recess 41a, a gap is disposed between the protruding end of the magnetic teeth portion 15 and the bottom of the mold side recess 41a, and the core piece 20 When viewed from the stacking direction, the mold side recess 41a has a shape in contact with both side surfaces in the width direction without any gap. For this reason, the core block body 12 can be more accurately positioned at a predetermined injection molding position by the clamping operation of the first mold 41. Therefore, generation of unnecessary burrs or the like in the insulating resin layer 18 to be injection-molded is further avoided, and the insulating resin layer 18 can be formed in a desired shape more accurately.
 さらに、位置決め凹部14は、位置決め凸部32に嵌め合わされたときに、位置決め凹部14の底部と位置決め凸部32の先端との間に隙間をあけて配置され、かつコア片20の積層方向からみて、位置決め凸部32の幅方向の両側面に隙間なく接する形状を有する。これによっても、第1金型41の型締め動作により、コアブロック本体12を所定の射出成形位置に、より正確に位置決めすることが可能になる。従って、射出成形される絶縁樹脂層18に、不要なバリなどを発生させることが一層回避され、絶縁樹脂層18を、より正確に、所望通りの形状に形成できる。 Further, the positioning recess 14 is disposed with a gap between the bottom of the positioning recess 14 and the tip of the positioning projection 32 when fitted to the positioning projection 32, and viewed from the stacking direction of the core pieces 20. The positioning convex portion 32 has a shape that is in contact with both side surfaces in the width direction without a gap. Also by this, the core block body 12 can be more accurately positioned at a predetermined injection molding position by the clamping operation of the first mold 41. Therefore, generation of unnecessary burrs or the like in the insulating resin layer 18 to be injection-molded is further avoided, and the insulating resin layer 18 can be formed in a desired shape more accurately.
 なお、上記実施の形態では、台座31に位置決め凸部32を形成し、ヨーク部13に位置決め凹部14を形成しておき、金型ユニット40の型締め動作を行うことにより、位置決め凸部32と位置決め凹部14を互いに嵌め合わせた状態で、コアブロック本体12を所定の射出成形用位置に位置決めするものとして説明した。しかし、台座31に位置決め凹部を形成し、ヨーク部13に位置決め凸部を形成しておき、台座31の凹部とヨーク部13の凸部とを嵌め合わせるようにしてもよい。
 つまり、ヨーク部13に位置決め凸部及び位置決め凹部の一方を形成し、コアブロック本体12を支持する台座31に位置決め凸部及び位置決め凹部を嵌め合わせるとともに、磁極ティース部15のヨーク部13からの突出端側の部位(ティース鍔部15b)と第1金型41とを嵌め合わせて、コアブロック本体12を射出成形位置に位置決めするようにすればよい。
In the above-described embodiment, the positioning convex portion 32 is formed on the pedestal 31, the positioning concave portion 14 is formed on the yoke portion 13, and the mold unit 40 is clamped to perform the positioning convex portion 32. It has been described that the core block body 12 is positioned at a predetermined injection molding position with the positioning recesses 14 fitted together. However, a positioning recess may be formed on the pedestal 31 and a positioning projection may be formed on the yoke portion 13 so that the recess of the pedestal 31 and the projection of the yoke portion 13 are fitted together.
That is, one of the positioning convex portion and the positioning concave portion is formed in the yoke portion 13, the positioning convex portion and the positioning concave portion are fitted to the base 31 that supports the core block body 12, and the magnetic tooth portion 15 protrudes from the yoke portion 13. The core block body 12 may be positioned at the injection molding position by fitting the end side portion (the teeth flange 15b) and the first mold 41.
 また、第1金型41の型締め動作時に、磁極ティース部15の突出端が、コア片20の積層方向からみて、金型側凹部41aの幅方向の両側面に面接触し、位置決め凹部14が、位置決め凸部32に嵌め合わされたときに、コア片20の積層方向からみて、位置決め凸部32の幅方向の両側面に面接触するものとして説明した、磁極ティース部15の突出端側、及び位置決め凹部14の一方が、金型側凹部41aの両側面または位置決め凸部32の両側面に面接触するものでもよい。
 さらには、磁極ティース部15の突出端側、及び位置決め凹部14のそれぞれが、金型側凹部41aの両側面または位置決め凸部32の両側面のそれぞれに面接触するものでなくても、磁極ティース部15の突出端側と金型側凹部41aとの嵌め合わせ、及び位置決め凸部32と位置決め凹部14との嵌め合わせにより、コアブロック本体12が射出成形位置に位置決めされるという効果は残る。
Further, during the clamping operation of the first mold 41, the protruding end of the magnetic tooth portion 15 comes into surface contact with both side surfaces in the width direction of the mold side recess 41 a when viewed from the stacking direction of the core piece 20, and the positioning recess 14 Is projected on the protruding side of the magnetic tooth portion 15 described as being in surface contact with both side surfaces of the positioning convex portion 32 in the width direction when viewed from the stacking direction of the core pieces 20 when fitted to the positioning convex portion 32. One of the positioning recesses 14 may be in surface contact with both side surfaces of the mold side recess 41a or both side surfaces of the positioning projections 32.
Further, even if the protruding end side of the magnetic pole tooth portion 15 and the positioning concave portion 14 are not in surface contact with both side surfaces of the mold side concave portion 41a or both side surfaces of the positioning convex portion 32, the magnetic pole teeth are not required. The effect that the core block main body 12 is positioned at the injection molding position remains by fitting the projecting end side of the portion 15 and the mold side concave portion 41a and fitting the positioning convex portion 32 and the positioning concave portion 14.
 11 コアブロック、12 コアブロック本体、13 ヨーク部、14 位置決め凹部、15 磁極ティース部、20 コア片、25 ステータ巻線、31 台座、32 位置決め凸部、40 金型ユニット、41 第1金型、42 第2金型、43 第3金型、44 第4金型、45 第5金型。 11 core block, 12 core block body, 13 yoke part, 14 positioning recess, 15 magnetic teeth part, 20 core piece, 25 stator winding, 31 pedestal, 32 positioning protrusion, 40 mold unit, 41 first mold, 42 2nd mold, 43 3rd mold, 44 4th mold, 45 5th mold.

Claims (8)

  1.  複数のコアブロックを環状に連結して構成されたステータコアであって、
     前記コアブロックはそれぞれ、コアブロック本体と、絶縁樹脂層とを備え、
     前記コアブロック本体は、複数枚のコア片を軸方向に積層することで構成され、
     前記コアブロック本体は、上記コアブロックの連結方向に沿って配置されるヨーク部と、上記ヨーク部から突出されてステータ巻線が巻回される磁極ティース部とを有している、ステータコアの製造方法であって、
     複数の上記コアブロック本体を形成する工程と、
     上記コアブロック本体毎に、上記絶縁樹脂層を射出成形により上記コアブロック本体に一体成形する射出成形工程と
    を備えていることを特徴とするステータコアの製造方法。
    A stator core configured by connecting a plurality of core blocks in an annular shape,
    Each of the core blocks includes a core block body and an insulating resin layer,
    The core block body is configured by laminating a plurality of core pieces in the axial direction,
    The core block body has a yoke part disposed along the connecting direction of the core block, and a magnetic pole teeth part that protrudes from the yoke part and around which a stator winding is wound. A method,
    Forming a plurality of core block bodies;
    A stator core manufacturing method comprising: an injection molding step of integrally molding the insulating resin layer on the core block body by injection molding for each core block body.
  2.  上記射出成形工程では、上記コアブロック本体に上記絶縁樹脂層を一体成形する際、上記磁極ティース部の上記ヨーク部からの突出端面と相対する方向に移動可能な第1金型、上記磁極ティース部の幅方向の一方の側面と相対する方向に移動可能な第2金型、上記磁極ティース部の幅方向の他方の側面と相対する方向に移動可能な第3金型、上記コア片の積層方向について、上記磁極ティース部の一端面と相対する方向に移動可能な第4金型、及び上記コア片の積層方向について、上記磁極ティース部の他端面と相対する方向に移動可能な第5金型を有する金型ユニットの型締め動作時に、上記コアブロック本体を所定の射出成形位置に位置決めすることを特徴とする請求項1に記載のステータコアの製造方法。 In the injection molding step, when the insulating resin layer is integrally formed on the core block body, a first mold that is movable in a direction opposite to the projecting end surface of the magnetic pole teeth portion from the yoke portion, the magnetic pole teeth portion A second mold movable in a direction opposite to one side surface in the width direction, a third mold movable in a direction opposite to the other side surface in the width direction of the magnetic pole teeth portion, and a stacking direction of the core pieces A fourth mold movable in the direction facing the one end surface of the magnetic pole tooth portion, and a fifth mold movable in the direction facing the other end surface of the magnetic pole tooth portion in the stacking direction of the core pieces. 2. The method of manufacturing a stator core according to claim 1, wherein the core block body is positioned at a predetermined injection molding position during a mold clamping operation of the mold unit having the structure.
  3.  上記射出成形工程において、上記金型ユニットの型締め動作を行ったときに、上記ヨーク部に形成された位置決め凸部及び位置決め凹部の一方を、上記コアブロック本体を支持する台座に形成された位置決め凸部及び位置決め凹部の他方に嵌め合わせるとともに、上記磁極ティース部の上記ヨーク部からの突出端側の部位と上記第1金型とを嵌め合わせて、上記コアブロック本体を射出成形位置に位置決めすることを特徴とする請求項2に記載のステータコアの製造方法。 In the injection molding step, when the mold unit is clamped, one of the positioning convex portion and the positioning concave portion formed on the yoke portion is positioned on the pedestal that supports the core block body. The core block main body is positioned at the injection molding position by fitting the other one of the convex portion and the positioning concave portion and fitting the portion of the magnetic pole tooth portion on the protruding end side from the yoke portion and the first mold. The method of manufacturing a stator core according to claim 2.
  4.  複数のコアブロックを環状に連結して構成されたステータコアであって、
     前記コアブロックはそれぞれ、コアブロック本体と、絶縁樹脂層とを備え、
     前記コアブロック本体は、複数枚のコア片を軸方向に積層することで構成され、
     前記コアブロック本体は、上記コアブロックの連結方向に沿って配置されるヨーク部と、上記ヨーク部から突出されてステータ巻線が巻回される磁極ティース部とを有し、
     前記絶縁樹脂層は、前記ステータ巻線が巻回される前記磁極ティース部の表面を含む部位を被覆するように射出成形により形成され、前記ステータ巻線と前記コアブロック本体との間に介装され、
     上記コアブロック本体毎に上記絶縁樹脂層を形成するのに用いられる射出成形用の金型ユニットを構成し、上記コアブロック本体を射出成形位置に配置したときの上記磁極ティース部の上記ヨーク部からの突出端と相対する方向に移動可能に設けられる第1金型に形成された金型側凹部に、上記磁極ティース部の突出端側が嵌め合わせ可能な形状であり、
     上記ヨーク部には、上記磁極ティース部と逆側の所定部位に、上記第1金型の移動方向について上記第1金型と対向する位置に設けられる台座に形成された位置決め凸部及び位置決め凹部の一方に嵌め合わせ可能な上記位置決め凸部及び上記位置決め凹部の他方が形成され、
     上記コアブロック本体は、上記第1金型の型締め動作により、上記磁極ティース部の突出端側に上記金型側凹部を嵌め合わせるとともに、上記位置決め凸部と上記位置決め凹部の他方に上記位置決め凸部と上記位置決め凹部の一方を嵌め合わせて上記射出成形位置に位置決め可能である
    ことを特徴とするステータコア。
    A stator core configured by connecting a plurality of core blocks in an annular shape,
    Each of the core blocks includes a core block body and an insulating resin layer,
    The core block body is configured by laminating a plurality of core pieces in the axial direction,
    The core block main body has a yoke portion disposed along the connecting direction of the core block, and a magnetic pole teeth portion that protrudes from the yoke portion and is wound with a stator winding.
    The insulating resin layer is formed by injection molding so as to cover a portion including the surface of the magnetic pole teeth portion around which the stator winding is wound, and is interposed between the stator winding and the core block body. And
    A mold unit for injection molding used to form the insulating resin layer for each core block main body is configured, and from the yoke portion of the magnetic pole tooth portion when the core block main body is disposed at the injection molding position. The projecting end side of the magnetic pole teeth part can be fitted into a mold side recess formed in the first mold provided to be movable in a direction opposite to the projecting end of
    The yoke portion includes a positioning convex portion and a positioning concave portion formed on a pedestal provided at a position opposite to the first die in a moving direction of the first die at a predetermined portion opposite to the magnetic pole tooth portion. The other of the positioning projection and the positioning recess that can be fitted to one of the two,
    The core block body is configured to fit the mold side concave portion to the protruding end side of the magnetic pole tooth portion by the clamping operation of the first mold, and the positioning convex portion to the other of the positioning convex portion and the positioning concave portion. The stator core can be positioned at the injection molding position by fitting one of the portion and the positioning recess.
  5.  上記磁極ティース部の突出端側は、上記コア片の積層方向からみて、突出端に向かって漸次幅狭となるテーパ形状であり、開口部に向かって漸次幅広となるテーパ形状に形成された上記金型側凹部に嵌め合わせ可能であることを特徴とする請求項4に記載のステータコア。 The protruding end side of the magnetic pole teeth portion has a tapered shape that gradually becomes narrower toward the protruding end when viewed from the stacking direction of the core pieces, and is formed in a tapered shape that gradually becomes wider toward the opening. The stator core according to claim 4, wherein the stator core can be fitted into the concave portion on the mold side.
  6.  上記位置決め凹部が、上記ヨーク部に形成されており、
     上記位置決め凹部は、上記コア片の積層方向からみて、開口部に向かって漸次幅が広まるテーパ形状であり、突出端部に向かって漸次幅が狭まるテーパ形状の上記位置決め凸部に嵌め合わせ可能であることを特徴とする請求項4または請求項5に記載のステータコア。
    The positioning recess is formed in the yoke portion;
    The positioning recess has a tapered shape that gradually increases toward the opening when viewed from the stacking direction of the core pieces, and can be fitted to the positioning protrusion that has a tapered shape that gradually decreases toward the protruding end. The stator core according to claim 4, wherein the stator core is provided.
  7.  上記磁極ティース部は、上記金型側凹部に嵌め合わされたときに、上記磁極ティース部の突出端と上記金型側凹部の底部との間に隙間をあけて配置され、かつ上記コア片の積層方向からみて、上記金型側凹部の幅方向の両側面に面接触する形状を有することを特徴とする請求項4乃至請求項6のいずれか1項に記載のステータコア。 The magnetic teeth portion is disposed with a gap between the protruding end of the magnetic teeth portion and the bottom of the concave portion on the die side when the magnetic teeth portion is fitted into the concave portion on the die side, and the core piece is laminated. The stator core according to any one of claims 4 to 6, wherein the stator core has a shape in surface contact with both side surfaces in the width direction of the mold-side concave portion when viewed from the direction.
  8.  上記位置決め凹部は、上記位置決め凸部に嵌め合わされたときに、上記位置決め凹部の底部と上記位置決め凸部の先端との間に隙間をあけて配置され、かつ上記コア片の積層方向からみて、上記位置決め凸部の幅方向の両側面に面接触する形状を有することを特徴とする請求項4乃至請求項7のいずれか1項に記載のステータコア。 The positioning recess is disposed with a gap between the bottom of the positioning recess and the tip of the positioning projection when fitted to the positioning projection, and viewed from the stacking direction of the core pieces, The stator core according to any one of claims 4 to 7, wherein the stator core has a shape in surface contact with both side surfaces in the width direction of the positioning convex portion.
PCT/JP2012/060740 2011-11-04 2012-04-20 Stator core manufacturing method and stator core WO2013065342A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280053298.1A CN104025432B (en) 2011-11-04 2012-04-20 Stator core manufacturing method and stator core
IN4129CHN2014 IN2014CN04129A (en) 2011-11-04 2012-04-20
BR112014009831A BR112014009831A2 (en) 2011-11-04 2012-04-20 stator core manufacturing method, and stator core
JP2013541648A JP5714122B2 (en) 2011-11-04 2012-04-20 Stator core manufacturing method and stator core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-242154 2011-11-04
JP2011242154 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013065342A1 true WO2013065342A1 (en) 2013-05-10

Family

ID=48191710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060740 WO2013065342A1 (en) 2011-11-04 2012-04-20 Stator core manufacturing method and stator core

Country Status (5)

Country Link
JP (1) JP5714122B2 (en)
CN (1) CN104025432B (en)
BR (1) BR112014009831A2 (en)
IN (1) IN2014CN04129A (en)
WO (1) WO2013065342A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836395A (en) * 2014-02-12 2015-08-12 日本电产高科电机株式会社 Method of molding resin casing and motor
CN104882977A (en) * 2014-02-28 2015-09-02 日本电产高科电机株式会社 Stator for motor and method for manufacturing same
JP2015180150A (en) * 2014-03-19 2015-10-08 マツダ株式会社 Stator core, rotary electric machine, and method of manufacturing stator core
CN111322250A (en) * 2018-12-13 2020-06-23 格兰富控股联合股份公司 Pump assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6685434B2 (en) * 2017-01-11 2020-04-22 三菱電機株式会社 Rotating electric machine stator and method of manufacturing rotating electric machine stator
CN106992612B (en) * 2017-03-20 2023-07-25 卧龙电气驱动集团股份有限公司 Stator structure of single-phase asynchronous alternating current motor
US20210091609A1 (en) * 2017-09-06 2021-03-25 Mitsubishi Electric Corporation Stator of rotating electrical machine and stator manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054245A (en) * 1999-08-09 2001-02-23 Toshiba Corp Molded core of motor
JP2002247788A (en) * 2001-02-22 2002-08-30 Nidec Shibaura Corp Motor
JP2005006481A (en) * 2003-06-16 2005-01-06 Asmo Co Ltd Insulator and manufacturing method thereof
JP2007282469A (en) * 2006-04-06 2007-10-25 Amotech Co Ltd Integrated-stator manufacturing method, bldc motor of radial core type double rotor system that utilizes same, and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4444639B2 (en) * 2003-05-08 2010-03-31 アスモ株式会社 Stator for rotating electrical machine and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054245A (en) * 1999-08-09 2001-02-23 Toshiba Corp Molded core of motor
JP2002247788A (en) * 2001-02-22 2002-08-30 Nidec Shibaura Corp Motor
JP2005006481A (en) * 2003-06-16 2005-01-06 Asmo Co Ltd Insulator and manufacturing method thereof
JP2007282469A (en) * 2006-04-06 2007-10-25 Amotech Co Ltd Integrated-stator manufacturing method, bldc motor of radial core type double rotor system that utilizes same, and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104836395A (en) * 2014-02-12 2015-08-12 日本电产高科电机株式会社 Method of molding resin casing and motor
CN104882977A (en) * 2014-02-28 2015-09-02 日本电产高科电机株式会社 Stator for motor and method for manufacturing same
JP2015163014A (en) * 2014-02-28 2015-09-07 日本電産テクノモータ株式会社 Stator for motor and manufacturing method of the same
JP2015180150A (en) * 2014-03-19 2015-10-08 マツダ株式会社 Stator core, rotary electric machine, and method of manufacturing stator core
CN111322250A (en) * 2018-12-13 2020-06-23 格兰富控股联合股份公司 Pump assembly

Also Published As

Publication number Publication date
IN2014CN04129A (en) 2015-07-17
BR112014009831A2 (en) 2017-05-02
CN104025432B (en) 2017-05-03
JPWO2013065342A1 (en) 2015-04-02
JP5714122B2 (en) 2015-05-07
CN104025432A (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5714122B2 (en) Stator core manufacturing method and stator core
TWI399013B (en) Method for making a molded stator of a rotary electric machinery
US9824806B2 (en) Coil, rotating electrical machine, and method of manufacturing coil
JP4365271B2 (en) Manufacturing method of laminated iron core
WO2012057100A1 (en) Divided iron core and manufacturing method therefor
JP4968928B2 (en) Permanent magnet motor and manufacturing method thereof
JP2016502389A (en) Rotor for electric motor and method for manufacturing the rotor
WO2018131392A1 (en) Split core unit, rotary electric machine, method for manufacturing split core unit, and method for manufacturing rotary electric machine
JP6723348B2 (en) Stator core and electric motor equipped with the stator core
JP5277860B2 (en) Stator core manufacturing method and stator core manufacturing apparatus
JP6076288B2 (en) Rotor manufacturing method, rotor and motor
JP6814568B2 (en) Laminated iron core
JP2006254617A (en) Laminated core for motor
JP2011188650A (en) Laminated core and manufacturing method for the same
JP5144163B2 (en) Split stator core, split stator, stator and stator manufacturing method
JP2008061319A (en) Stator and its manufacturing method and inner diameter ring
WO2018061179A1 (en) Rotor production method, rotor, and motor
KR20180054136A (en) Stator support member of rotating electric machine and manufacturing method of the same
JP4477892B2 (en) Stator core and stator
JP6293382B1 (en) Stator core piece and rotating electric machine
US8390166B2 (en) Segmented core motor stator
JP5207785B2 (en) motor
KR101247685B1 (en) Rotor, motor having the rotor and rotor manufacturing method
WO2018168649A1 (en) Motor stator
JP2004312790A (en) Stator core and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541648

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014009831

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12845450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014009831

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140424