WO2013062115A1 - Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2013062115A1
WO2013062115A1 PCT/JP2012/077804 JP2012077804W WO2013062115A1 WO 2013062115 A1 WO2013062115 A1 WO 2013062115A1 JP 2012077804 W JP2012077804 W JP 2012077804W WO 2013062115 A1 WO2013062115 A1 WO 2013062115A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
aligning agent
tetracarboxylic acid
crystal aligning
Prior art date
Application number
PCT/JP2012/077804
Other languages
French (fr)
Japanese (ja)
Inventor
翔一朗 中原
夏樹 佐藤
小野 豪
加名子 鈴木
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2013540863A priority Critical patent/JP6102743B2/en
Priority to CN201280064295.8A priority patent/CN104024932A/en
Priority to KR1020237010556A priority patent/KR20230048163A/en
Priority to KR1020147014037A priority patent/KR20140084279A/en
Priority to KR1020217025922A priority patent/KR20210106012A/en
Priority to KR1020197012285A priority patent/KR20190049909A/en
Publication of WO2013062115A1 publication Critical patent/WO2013062115A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal aligning agent (also referred to as a liquid crystal aligning agent), a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film.
  • a liquid crystal aligning agent also referred to as a liquid crystal aligning agent
  • a liquid crystal aligning film obtained from the liquid crystal aligning agent
  • a liquid crystal display element having the liquid crystal aligning film.
  • the liquid crystal alignment film is a film for controlling the alignment direction of the liquid crystal molecules to be constant in a liquid crystal display element or a retardation plate using a polymerizable liquid crystal.
  • the liquid crystal alignment film is a very important constituent member together with the liquid crystal or the like in a liquid crystal display element or the like.
  • liquid crystal alignment film is required to have heat resistance, solvent resistance, and the like in addition to the performance of controlling the alignment of liquid crystals (hereinafter also referred to as liquid crystal alignment). Furthermore, various other characteristics are required so that the liquid crystal display element can exhibit high performance.
  • the liquid crystal alignment film As one of the characteristics required for the liquid crystal alignment film, there is a characteristic related to improvement in display quality of the liquid crystal display element.
  • a liquid crystal display element is required to improve display defects, and as a countermeasure against display defects, improvement in characteristics of the liquid crystal alignment film is required.
  • high display quality is also required for the liquid crystal display elements used in mobile phones and tablet terminals that have recently been rapidly increasing in definition.
  • the specifications for display defects such as so-called “afterimage phenomenon” or simply “afterimage” are becoming increasingly severe. For example, realization of a liquid crystal alignment film having a characteristic that even if an afterimage occurs is quickly eliminated.
  • liquid crystal display elements In mobile terminals such as mobile phones, there is a demand for lower power consumption of liquid crystal display elements. Such a portable terminal can be used for a long period of time by charging the battery once due to low power consumption of the liquid crystal display element. In order to reduce the power consumption of the liquid crystal display element, increasing the transmittance of the liquid crystal display element is effective. Therefore, in the liquid crystal display element, in addition to a high aperture ratio of the pixel and the like, an improvement in transmittance is required for constituent members such as a liquid crystal alignment film.
  • the liquid crystal alignment film is required to have high resistance to the rubbing treatment from the viewpoint of applicability to the manufacturing process of the liquid crystal display element.
  • the rubbing process is known as a method of forming a liquid crystal alignment film in the manufacturing process of a liquid crystal display element, and is still widely used industrially today.
  • an alignment process is performed in which a polymer film such as polyimide is formed on a substrate and the surface is rubbed with a cloth.
  • the liquid crystal alignment film is required to have resistance to rubbing treatment (hereinafter also referred to as rubbing resistance).
  • rubbing resistance As a method for forming a liquid crystal alignment film having high rubbing resistance, a method of adding various additives to polyimide constituting the liquid crystal alignment film and a polyimide precursor for forming the polyimide is known (for example, see Patent Documents 1 and 2.)
  • a polyimide structure having good rubbing resistance has been proposed (see, for example, Patent Documents 3 and 4).
  • An object of the present invention is a liquid crystal alignment that has high liquid crystal alignment and rubbing resistance, is effective in reducing afterimages over a wide temperature range in a liquid crystal display element, and can form a liquid crystal alignment film with high light transmittance. Is to provide an agent.
  • Another object of the present invention is to use a liquid crystal aligning agent as described above, which has high liquid crystal alignment and rubbing resistance, is effective in reducing afterimages over a wide temperature range in a liquid crystal display element, and has high light It is to provide a liquid crystal alignment film having transmittance. Furthermore, it is providing the liquid crystal display element which has this liquid crystal aligning film.
  • the present invention has the following gist.
  • a liquid crystal aligning agent containing a polyimide precursor obtained by reacting a diamine component with a tetracarboxylic acid derivative contains a diamine compound represented by the following formula (1) in a content of 20 mol% or more and 100 mol% or less, and the tetracarboxylic acid derivative contains an aromatic tetracarboxylic derivative of 50 mol% or more and less than 100 mol%.
  • the diamine compound contains a diamine compound represented by the following formula (1) in a content of 20 mol% or more and less than 100 mol%, and the tetracarboxylic acid derivative contains 50 mol of an aromatic tetracarboxylic acid derivative.
  • the liquid crystal aligning agent characterized by including by content of% -100 mol%.
  • R 5 has the above formula (a-1), formula (a-4), formula (a-5), formula (a-6), formula
  • the liquid crystal alignment according to the above (2) which is a diamine compound having one structure selected from the group consisting of (a-10), formula (a-16), formula (a-19) and formula (a-20) Agent.
  • liquid crystal aligning agent according to any one of (1) to (3), wherein the diamine component contains a diamine compound represented by the above formula (1) in a content of 50 mol% or more and less than 100 mol%. .
  • the tetracarboxylic acid derivative is one or more compounds selected from the group consisting of compounds represented by the following formulas (2-a) to (2-e): (1) to (4)
  • the liquid crystal aligning agent in any one of.
  • R 7 represents an alkyl group
  • R 6 is one selected from the group consisting of the following formulas (b-1) to (b-8): Represents a tetravalent organic group having a structure.
  • a liquid crystal display element comprising the liquid crystal alignment film according to (7).
  • the present invention provides a liquid crystal aligning agent that has high liquid crystal alignment and rubbing resistance, is effective in reducing afterimages in liquid crystal display elements, and can form a liquid crystal alignment film with high light transmittance. it can.
  • the present invention also provides a liquid crystal alignment film having high liquid crystal alignment and rubbing resistance, effective for reducing afterimages in liquid crystal display elements, and having high light transmittance, using the liquid crystal aligning agent. Can do.
  • the present invention can provide a liquid crystal display element using a liquid crystal alignment film having the above characteristics.
  • the liquid crystal aligning agent of the present invention contains a polyimide precursor obtained by reacting a diamine component with a tetracarboxylic acid derivative.
  • the polyimide precursor include polyamic acid and polyamic acid ester.
  • the polyimide precursor contained in the liquid crystal aligning agent of the present invention is formed using a diamine component having a characteristic structure and a tetracarboxylic acid derivative suitable for realizing desired characteristics by a combination of the diamine component.
  • a diamine component having a characteristic structure and a tetracarboxylic acid derivative suitable for realizing desired characteristics by a combination of the diamine component.
  • the liquid crystal aligning agent of this invention uses the specific diamine compound of the specific structure represented by following formula (1) as a diamine component for obtaining polyimide precursors, such as a polyamic acid and polyamic acid ester to contain.
  • diamine compound represented by the formula (1) include compounds represented by the following formula. Among these, compounds represented by formula (1-1), formula (1-5) to formula (1-8) are preferable.
  • the diamine component for obtaining the polyimide precursor contained in the liquid crystal aligning agent of this invention contains the specific diamine compound of the said Formula (1) as an essential component, as content of the specific diamine compound contained, Can be any value.
  • the specific diamine compound of the said Formula (1) is 20 mol% or more in all the diamine components (100 mol%). It is preferable that it is preferably 30 mol% or more, and more preferably 50 mol% or more.
  • the content of the specific diamine compound represented by the above formula (1) is 100 mol% in all diamine components, that is, when all the diamine components are specific diamine compounds represented by the above formula (1).
  • the content of the aromatic tetracarboxylic acid derivative in the tetracarboxylic acid derivative used for forming the polyimide precursor is 50 mol% or more and less than 100 mol% in the total tetracarboxylic acid component. Therefore, in the liquid crystal aligning agent of this invention, all diamine components are the specific diamine compounds of said formula (1), and not all tetracarboxylic acid derivatives are aromatic tetracarboxylic acid derivatives.
  • the polyimide precursor contained in the liquid crystal aligning agent of this invention is obtained by reaction with the diamine component which contains the specific diamine compound represented by the said Formula (1) as an essential component, and a tetracarboxylic acid derivative.
  • the diamine component for obtaining the polyimide precursor of this invention uses the diamine compound represented by a following formula (AM1) together with the specific diamine compound represented by the said Formula (1), and a tetracarboxylic acid derivative and It is preferable to use for this reaction.
  • R 5 represents a divalent organic group having one structure selected from the group consisting of the following formulas (a-1) to (a-20), and R 3 and R 4 are And independently represents a hydrogen atom or a monovalent organic group.
  • the diamine compound represented by the above formula (AM1) is formed from a polyimide precursor contained in a liquid crystal aligning agent, and then, from the viewpoint of afterimage reduction when applied to a liquid crystal display element as a liquid crystal alignment film.
  • R 5 is the above formula (a-1), formula (a-4), formula (a-5), formula (a-6), formula (a-10), formula (a-16), formula ( A diamine compound having one structure selected from the group consisting of a-19) and formula (a-20) is preferred. Particularly preferred is a diamine compound having one structure selected from the group consisting of (a-1), (A-4), (A-19) and (a-20).
  • the diamine component for obtaining the polyimide precursor contained in the liquid crystal aligning agent of this invention uses the specific diamine compound of the said Formula (1) as an essential component,
  • the diamine compound represented by the said formula (AM1) is used.
  • the diamine component for obtaining the polyimide precursor contained in the liquid crystal aligning agent of this invention is the range which does not impair the effect of this invention, the specific diamine compound of said Formula (1), and the diamine of said Formula (AM1). It is also possible to contain a diamine compound other than the compound.
  • the tetracarboxylic acid derivative that can be used for obtaining the polyimide precursor contained in the liquid crystal aligning agent of the present invention is not particularly limited.
  • Examples of the tetracarboxylic acid derivative of the present invention include tetracarboxylic dianhydride (represented by the following formula (2-a)), tetracarboxylic acid monoanhydride (represented by the following formula (2-b)), Tetracarboxylic acid (represented by the following formula (2-d)), dicarboxylic acid dialkyl ester (represented by the following formula (2-c)), dicarboxylic acid chloride dialkyl ester (represented by the following formula (2-e)) And the like.
  • the tetracarboxylic acid derivative is not limited to these as long as the reaction with the diamine proceeds.
  • the tetracarboxylic acid derivative that can be used for obtaining the polyimide precursor contained in the liquid crystal aligning agent of the present invention it is particularly preferable to use an aromatic tetracarboxylic acid derivative.
  • All of the tetracarboxylic acid derivatives may be aromatic tetracarboxylic acid derivatives.
  • two or more tetracarboxylic acid derivatives can be used for the reaction with the diamine component. Even in such a case, it is preferable to use one or more aromatic tetracarboxylic acid derivatives in the tetracarboxylic acid derivative.
  • the liquid crystal alignment property of the obtained liquid crystal alignment film can be improved by being used for forming a polyimide precursor.
  • the content of the aromatic tetracarboxylic acid derivative is preferably 50 mol% or more with respect to the total amount of the tetracarboxylic acid derivative used.
  • the content of the aromatic tetracarboxylic acid derivative is as described above. It is less than 100 mol% with respect to the total amount of the acid derivative.
  • the aromatic tetracarboxylic acid derivatives preferably used for obtaining the polyimide precursor contained in the liquid crystal aligning agent of the present invention include compounds represented by the above formulas (2-a) to (2-e) One or more compounds selected from the group consisting of: R 7 is an alkyl group, and R 6 is one structure selected from the group consisting of the following formulas (b-1) to (b-8): An aromatic tetracarboxylic acid derivative which represents a tetravalent organic group having the same can be given.
  • aromatic tetracarboxylic acid derivative having a structure represented by the above formulas (2-a) to (2-e) and R 6 represented by the above formula (b-1) is a specific example of R 6 described above.
  • aromatic tetracarboxylic acid derivatives of the structure wherein R 6 is represented by the formula (b-2) specific examples of R 6 are applicable to the tetracarboxylic acid derivative is the above formula [A-27] .
  • aromatic tetracarboxylic acid derivative having a structure in which R 6 is represented by the above formula (b-3) corresponds to a tetracarboxylic acid derivative in which a specific example of R 6 is the above formula [A-28].
  • Aromatic tetracarboxylic acid derivative having the structure R 6 is represented by the above formula (b-4) are specific examples of R 6 are applicable to the tetracarboxylic acid derivative is the above formula [A-29].
  • Aromatic tetracarboxylic acid derivative having the structure R 6 is represented by the above formula (b-5) are specific examples of R 6 are applicable to the tetracarboxylic acid derivative is the above formula [A-31].
  • Aromatic tetracarboxylic acid derivative having the structure R 6 is represented by the above formula (b-6) is a specific example of R 6 is, corresponds to the tetracarboxylic acid derivative is the above formula [A-30].
  • Aromatic tetracarboxylic acid derivative having the structure R 6 is represented by the above formula (b-7) are specific examples of R 6 are applicable to the tetracarboxylic acid derivative is the above formula [A-32].
  • Aromatic tetracarboxylic acid derivative having the structure R 6 is represented by the above formula (b-8) may, specific examples of R 6 are applicable to the tetracarboxylic acid derivative is the above formula [A-47].
  • aromatic tetracarboxylic acid derivatives used for obtaining a polyimide precursor contained in the liquid crystal aligning agent of the present invention are represented by the above formulas (2-a) to (2-e).
  • R 7 is an alkyl group
  • R 6 is represented by the above formula (b-1), formula (b-2), or formula (b-7).
  • ⁇ Polyimide precursor> As a method for obtaining the polyimide precursor contained in the liquid crystal aligning agent of the present invention, a known method can be used. A diamine component containing the specific diamine compound of the above formula (1) as an essential component is reacted with a tetracarboxylic acid derivative containing an aromatic tetracarboxylic acid derivative to obtain a polyimide precursor.
  • tetracarboxylic dianhydride is used as the tetracarboxylic acid derivative will be described below as an example.
  • the polymerization reaction method of the diamine component and the tetracarboxylic acid derivative used for producing the polyimide precursor contained in the liquid crystal aligning agent of the present invention is not particularly limited. By mixing them in an organic solvent, a polymerization reaction can be performed to obtain a polyamic acid that is a polyimide precursor. Moreover, polyamic acid ester can be obtained by esterifying a carboxylic acid group using a known esterifying agent. Polyimide can be obtained by dehydrating and ring-closing the obtained polyamic acid and polyamic acid ester.
  • a solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid derivative component is added as it is, or tetracarboxylic acid
  • examples thereof include a method in which the derivative component is added after being dispersed or dissolved in an organic solvent.
  • a method of adding a diamine component to a solution in which a tetracarboxylic acid derivative is dispersed or dissolved in an organic solvent a method of alternately adding a tetracarboxylic acid derivative and a diamine, and the like can be mentioned.
  • the plurality of types of components may be preliminarily mixed and may be polymerized individually or sequentially.
  • the ratio of the tetracarboxylic acid derivative and the diamine used in the polymerization reaction for obtaining the polyamic acid is preferably 1: 0.8 to 1: 1.2 in terms of molar ratio, and the closer this molar ratio is to 1: 1.
  • the molecular weight of the resulting polyamic acid is increased. If the molecular weight of the polyamic acid (ester) is too small, the strength of the resulting coating film may be insufficient. Conversely, if the molecular weight of the polyamic acid (ester) is too large, the resulting liquid crystal aligning agent has a high viscosity. As a result, the workability at the time of forming the coating film, the uniformity of the coating film, and the like may deteriorate. Accordingly, the weight average molecular weight of the polyamic acid (ester) used in the liquid crystal aligning agent of the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000.
  • polyamic acid can be represented by a repeating unit of the following formula (3).
  • polyamic acid ester can be represented by following formula (4).
  • R a , R b , and R c are each independently a group derived from a diamine compound represented by the above formula (1) or the above formula (AM1).
  • R a and R b are hydrogen atoms
  • R c is -phenylene-Y 1 -NH-CX-HN-R 2 -Y 2 -phenylene- It is.
  • R a is R 3
  • R b is R 4
  • R c is R 5 .
  • R 6 has the same meaning as R 6 in the tetracarboxylic acid derivatives represented by the above formulas (2-a) to (2-e).
  • R in Formula (4) is a group derived from the esterifying agent used.
  • organic solvent used in the liquid crystal aligning agent of the present invention include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone and N-ethyl.
  • examples include pyrrolidone, N-vinyl pyrrolidone, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone. You may use these 1 type or in mixture of 2 or more types.
  • liquid crystal aligning agent of this invention even if it is a solvent which does not dissolve polymers, such as a polyimide precursor or a polyimide, if it is a range in which a polymer does not precipitate, it can be mixed with the liquid crystal aligning agent of this invention.
  • ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy -2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxy Propoxy) propanol, lactic acid methyl ester, lactic acid ethyl ester, lactic acid N-propyl ester, lactic acid N-butyl ester, lactic acid isoamyl ester and other solvents having low surface tension are It is possible to improve the coating uniformity of the substrates of the liquid crystal aligning
  • a solvent having a low surface tension is preferably used, but the amount used is more preferably 5 to 80% by mass of the total solvent contained in the liquid crystal aligning agent, and still more preferably. 20 to 60% by mass.
  • the liquid crystal aligning agent of the present invention may contain various additives in addition to the above polyimide precursor, a polymer such as polyimide, and an organic solvent as long as the effects of the present invention are not impaired.
  • the liquid crystal aligning agent of the present invention can contain an additive for improving the film thickness uniformity and surface smoothness of the liquid crystal aligning film to be formed.
  • additives include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants, and the like.
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. is there.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. . If the amount is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected. If the amount exceeds 30 parts by mass, the liquid crystal alignment property of the formed liquid crystal alignment film may be lowered.
  • the concentration of the solid content in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the film thickness of the target liquid crystal aligning film.
  • the concentration of the polymer is preferably 1 to 20% by mass, more preferably 2 to 20% so that a film having no defect can be formed and a film thickness suitable as a liquid crystal alignment film can be obtained. 10% by mass.
  • liquid crystal aligning agent of the present invention it is also possible to contain a blend of soluble polyimide, polyamic acid, polyamic acid ester and the like having different molecular structures together with the polyimide precursor described above.
  • the content of the polyimide precursor of the present invention described above, other soluble polyimide, polyamic acid, polyamic acid ester and the like is preferably 5 to 95 mol%, more preferably 10 to 90 mol%, based on the total amount (100 mol%).
  • the liquid crystal aligning agent of the present invention is applied on a substrate to form a coating film, baked, and then subjected to an alignment treatment by rubbing treatment, light irradiation, etc., and used as a liquid crystal alignment film, or in a vertical alignment application, etc. It can be used as a liquid crystal alignment film without treatment.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as a glass substrate, an acrylic substrate, or a polycarbonate substrate can be used, and the use of a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving a liquid crystal is used can simplify the process.
  • an opaque substance such as a silicon wafer can be used only on one substrate. In this case, a material that reflects light such as aluminum can also be used as the electrode.
  • the application method of the liquid crystal aligning agent is not particularly limited, but industrially, application methods such as screen printing, offset printing, flexographic printing, and inkjet can be applied.
  • application methods such as screen printing, offset printing, flexographic printing, and inkjet can be applied.
  • other coating methods there are coating methods using a dip, a roll coater, a slit coater, a spinner, etc., and these can be used according to the purpose.
  • the substrate coated with the liquid crystal aligning agent can be baked at an arbitrary temperature of 100 to 350 ° C., preferably 150 to 300 ° C., more preferably 180 to 250 ° C.
  • the liquid crystal aligning agent contains a polyamic acid or a polyamic acid ester
  • the conversion rate to polyimide varies depending on the baking temperature, but the liquid crystal aligning agent of the present invention does not necessarily need to be imidized 100%.
  • the baking time of the coating film of a liquid crystal aligning agent can be set to arbitrary time. If the baking time is too short, display failure may occur due to the influence of the residual solvent, and therefore it is preferably 5 to 60 minutes, more preferably 10 to 40 minutes.
  • the thickness of the coating film after baking is preferably 5 to 300 nm, more preferably 10 to 100 nm.
  • the liquid crystal is aligned horizontally or tilted, it is preferable to perform an alignment treatment on the baked coating film by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention uses a substrate with electrodes, etc., and after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, a liquid crystal cell is prepared by a known method, and the liquid crystal display element Can be configured.
  • a pair of substrates on which electrodes and the like for driving the liquid crystal are formed on at least one side is prepared.
  • the liquid crystal alignment film of the present invention is formed on the pair of substrates, and a pair of substrates on which the liquid crystal alignment film is formed is prepared.
  • spacers are dispersed on the liquid crystal alignment film of one substrate, the other substrate is bonded so that the liquid crystal alignment film surface is on the inside, and liquid crystal is injected under reduced pressure to seal. In this way, a liquid crystal display element is produced.
  • the thickness of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the liquid crystal display element of the present invention produced by using the liquid crystal aligning agent of the present invention is excellent in display quality with reduced afterimage phenomenon and excellent in reliability and high luminance. Therefore, it can be suitably used for display elements such as large-screen high-definition liquid crystal televisions, smartphones, and tablet devices.
  • DA-1 1,3-bis (4-aminophenethyl) urea
  • DA-2 paraphenylenediamine
  • DA-3 1,5-bis (4-aminophenoxy) pentane
  • DA-4 N-methyl 4-aminophenethylamine
  • DA-5 4,4'-diaminodiphenylmethane
  • DA-6 4,4'-diaminodiphenylamine
  • DA-7 1,3-bis (4-aminophenoxy) benzene
  • CA-1 pyromellitic dianhydride
  • CA- 2 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • CA-3 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid
  • Acid anhydride CA-4: 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalen
  • Example 1 A 200 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube was charged with 8.96 g (30.0 mmol) of DA-1 and 3.24 g (30.0 mmol) of DA-2, and N-methyl-2-pyrrolidone. 141 g was added and dissolved by stirring while feeding nitrogen. Next, while stirring this diamine solution, 12.82 g (58.7 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. The mixture was stirred at a water temperature for 20 hours to obtain a polyamic acid (P1) solution.
  • P1 polyamic acid
  • Table 1 collectively shows the amount (mol) of each tetracarboxylic acid derivative component used in the synthesis of polyamic acid A1 and the amount (mol) of each diamine component. Similarly, Table 1 shows the amounts (moles) of the respective tetracarboxylic acid derivative components used for the synthesis of polyamic acids (P2 to P8 and A1 to A6) in Examples 2 to 8 and Comparative Examples 1 to 6 below. ) And the amount (mole) of each diamine component. Table 2 shows A7 which is a mixed solution of polyamic acid.
  • the obtained liquid crystal aligning agent is filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 50 ° C. for 5 minutes, and then baked at 230 ° C. for 30 minutes to form a film.
  • a polyimide film having a thickness of 70 nm was obtained. This polyimide film was rubbed with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 30 mm / sec, and pushing amount 0.4 mm). The surface of the film was observed using a confocal laser microscope (manufactured by Lasertec Corporation), and the presence and size of scraped residue were observed at a magnification of 10 times.
  • the aligning agent is spin-coated on a quartz substrate, dried on a hot plate at 50 ° C. for 5 minutes, and then baked at 230 ° C. for 30 minutes. A 70 nm thick polyimide film was formed. A double-sided tape was applied only on the two sides facing the coating surface of the substrate, and was bonded to a quartz substrate on which nothing was formed. Liquid paraffin was injected into the obtained simple cell, and the transmittance was measured using UV-3100PC manufactured by Shimadzu Corporation.
  • Luminous transmittance was calculated from the obtained data, and a value of 96% or more was defined as “good” and less than 96% was defined as “bad”. The evaluation results are shown in Table 3. The luminous transmittance was calculated using commercially available software (color measurement software manufactured by Shimadzu Corporation: P / N 206-65207).
  • a liquid crystal cell having a configuration of an IPS (In-Plane Switching) mode liquid crystal display element is manufactured.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 50 mm and a thickness of 0.7 mm.
  • an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed on the substrate.
  • a SiN (silicon nitride) film formed by a CVD method is formed as a second layer on the counter electrode of the first layer.
  • the film thickness of the second SiN film is 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. is doing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements in the shape of a letter with a bent central portion.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements having a bent central portion, the shape of each pixel is not a rectangular shape, and the central portion is similar to the electrode element.
  • each pixel has a shape similar to that of a bold-faced koji that bends at Furthermore, each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise).
  • the direction of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate plane is It is comprised so that it may become a mutually reverse direction.
  • the obtained liquid crystal aligning agent was filtered through a 1.0 ⁇ m filter, and then spin-coated on each of the prepared substrate with electrodes and a glass substrate on which an ITO film was formed on the back surface. Subsequently, after drying for 5 minutes on a 50 degreeC hotplate, it baked for 30 minutes at 230 degreeC, and obtained the polyimide film on each board
  • This polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then ultrasonicated in pure water for 1 minute. Irradiated and dried at 80 ° C. for 10 minutes.
  • Afterimage recovery time evaluation (afterimage evaluation)
  • the afterimage was evaluated using the following optical system and the like.
  • the prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted.
  • a VT curve voltage-transmittance curve
  • an AC voltage with a relative transmittance of 23% was calculated as a drive voltage.
  • a DC voltage of 2 V was simultaneously applied to drive the liquid crystal cell by applying an AC voltage of 30 Hz with a relative transmittance of 23%, and the liquid crystal cell was driven for 120 minutes. Thereafter, the applied DC voltage value was set to 0 V, and only the application of the DC voltage was stopped, and the device was further driven for 60 minutes in this state.
  • the afterimage evaluation was evaluated as “good” when the relative transmittance recovered to 25% or less by 60 minutes after the application of the DC voltage was stopped. When it took 60 minutes or more for the relative transmittance to recover to 25% or less, it was evaluated as “bad”.
  • the afterimage evaluation according to the above-described method was performed under two types of temperature conditions: a liquid crystal cell temperature of 23 ° C. and a temperature of 60 ° C. The evaluation results are shown in Table 3.
  • the liquid crystal cell After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted. Further, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as the angle ⁇ . Similarly, for the second pixel, the second area was compared with the first area, and a similar angle ⁇ was calculated. Furthermore, the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell.
  • Example 2 In a 200 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube, 7.46 g (25.0 mmol) of DA-1 and 7.15 g (25.0 mmol) of DA-3 were placed, and N-methyl-2-pyrrolidone was added. 143.3 g was added and dissolved while stirring while feeding nitrogen. While stirring this diamine solution, 10.26 g (47.0 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass, and the water temperature was changed under a nitrogen atmosphere. And stirred for 20 hours to obtain a solution of polyamic acid (P2).
  • P2 polyamic acid
  • Example 3 In a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 4.47 g (15.0 mmol) of DA-1 and 1.62 g (15.0 mmol) of DA-2 were placed, and N-methyl-2- 62.9 g of pyrrolidone was added and dissolved while stirring while feeding nitrogen. While stirring this diamine solution, 1.59 g (6.0 mmol) of CA-3 and 9.0 g of N-methyl-2-pyrrolidone were added and stirred while feeding nitrogen.
  • this polyamic acid (P3) solution is 26.92 g of N-methyl-2-pyrrolidone and 9.60 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 40.0 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P3 concentration of 6.0% by mass.
  • N-methyl-2-pyrrolidone solution containing 27.64 g of N-methyl-2-pyrrolidone and 1.0% by mass of 3-aminopropyltriethoxysilane in 82.76 g of this polyamic acid (P4) solution
  • P4 solution containing 40.0 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P4 concentration of 6.0% by mass.
  • this polyamic acid (P5) solution was 26.19 g of N-methyl-2-pyrrolidone and 9.60 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 40.0 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P5 concentration of 6.0% by mass.
  • Example 6 In a 100 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube, 4.61 g (15.5 mmol) of DA-1 and 1.68 g (15.5 mmol) of DA-2 were placed, and N-methyl-2-pyrrolidone was added. 62.9 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 1.22 g (6.2 mmol) of CA-2 and 8.7 g of N-methyl-2-pyrrolidone were added and stirred while feeding nitrogen.
  • this polyamic acid (P6) solution is 25.44 g of N-methyl-2-pyrrolidone and 9.60 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 40.0 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P6 concentration of 6.0% by mass.
  • Example 7 A 200 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube was charged with 10.39 g (34.8 mmol) of DA-1 and 2.51 g (23.2 mmol) of DA-2, and N-methyl-2-pyrrolidone. 142.9g was added and it stirred and dissolved, sending nitrogen. While stirring this diamine solution, 3.87 g (19.7 mmol) of CA-2 and 35.0 g of N-methyl-2-pyrrolidone were added and stirred while feeding nitrogen.
  • Example 8 In a 200 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 4.18 g (14.0 mmol) of DA-1 and 2.10 g (14.0 mmol) of DA-4 were placed, and N-methyl-2-pyrrolidone was added. 70.5 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.86 g (26.9 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. The solution was stirred for a time to obtain a polyamic acid (P8) solution.
  • P8 polyamic acid
  • Example 9 In a 200 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 7.94 g (28.1 mmol) of CA-5 and 136.5 g of N-methyl-2-pyrrolidone were added and completely dissolved. Next, 6.16 g of triethylamine was added, 4.31 g (14.5 mmol) of DA-1 and 2.18 g (14.5 mmol) of DA-4 were added and completely dissolved.
  • reaction liquid was cooled with water, and while stirring with a magnetic stirrer, 23.35 g (60.9 mmol) of diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate was added, and 18.75 g of N-methyl-2-pyrrolidone was added and stirring was continued for 5 hours. Thereafter, the reaction solution was poured little by little while stirring isopropyl alcohol having a mass six times that of the reaction solution, and stirring was continued for 1 hour. Thereafter, the precipitate obtained by filtration was stirred with double mass of isopropyl alcohol for 1 hour, and then filtered again to collect the precipitate.
  • Example 10 In a 100 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 1.50 g (5.03 mmol) of DA-1 and 5.85 g (20.0 mmol) of DA-7 were placed, and N-methyl-2-pyrrolidone was added. 73 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.21 g (24.0 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. And stirred for 20 hours to obtain a solution of polyamic acid (P10).
  • P10 polyamic acid
  • Example 11 In a 100 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 3.71 g (12.5 mmol) of DA-1 and 3.65 g (12.5 mmol) of DA-7 were placed, and N-methyl-2-pyrrolidone was added. 73 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.18 g (23.8 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. And stirred for 20 hours to obtain a solution of polyamic acid (P11).
  • P11 polyamic acid
  • Example 13 In a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.41 g (4.80 mmol) of DA-1 and 5.61 g (19.2 mmol) of DA-7 were placed, and N-methyl-2- Pyrrolidone 79 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 6.77 g (23.0 mmol) of CA-6 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. The mixture was stirred at a water temperature for 20 hours to obtain a polyamic acid (P13) solution.
  • P13 polyamic acid
  • the films formed using the liquid crystal aligning agents of Examples 1 to 13 had good rubbing resistance and good transmittance. Further, when applied as a liquid crystal alignment film in the evaluation of a liquid crystal cell, there was no temperature dependency of the afterimage evaluation, and the result of the afterimage evaluation by long-term driving was also good.
  • the liquid crystal alignment films formed using the liquid crystal alignment agents of Comparative Examples 1 to 6 are difficult to combine afterimage characteristics, high transmittance, and rubbing resistance, and all these items cannot be improved. I understood that. It was found that in Comparative Examples 1 and 2 in which DA-1 was not used as the diamine component, and in Comparative Example 5 in which the amount of DA-1 used as the diamine component was small, the rubbing resistance was poor. In Comparative Example 4 in which CA-1 is not used for the tetracarboxylic acid derivative component and in Comparative Example 3 in which the introduction amount is small, afterimage recovery at 23 ° C. is poor. It turned out to be bad. It was also found that high luminous transmittance could not be obtained in Comparative Example 6 in which DA-1 was not used.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, a liquid crystal aligning film having high transmittance, excellent rubbing resistance, and improved display defects such as afterimages in a wide temperature range can be obtained.
  • the liquid crystal alignment film can be used in large-sized liquid crystal televisions, which have conventionally been required to have high display quality, and in liquid crystal display elements for mobile phones and tablet devices that have recently been required to rapidly improve display quality. It is.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2011-235976 filed on October 27, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided are: a liquid crystal aligning agent which is capable of forming a liquid crystal alignment film that has high transmittance and high rubbing resistance, while achieving an improvement in display failure over a wide temperature range; a liquid crystal alignment film; and a liquid crystal display element. A liquid crystal aligning agent which contains a polyimide precursor that is obtained by reacting a diamine containing from 20% by mole to 100% by mole (inclusive) of a diamine represented by formula (1) with a tetracarboxylic acid derivative containing 50% by mole or more but less than 100% by mole of an aromatic tetracarboxylic acid derivative, or alternatively a polyimide precursor that is obtained by reacting a diamine containing 20% by mole or more but less than 100% by mole of a diamine represented by formula (1) with a tetracarboxylic acid derivative containing from 50% by mole to 100% by mole (inclusive) of an aromatic tetracarboxylic acid derivative. (In the formula, X represents O or S; each of Y1 and Y2 represents a single bond, -O-, -S-, -OCO- or COO-; and each of R1 and R2 represents an alkylene group having 1-3 carbon atoms.)

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向剤(液晶配向処理剤ともいう。)、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent (also referred to as a liquid crystal aligning agent), a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film.
 液晶配向膜は、液晶表示素子や重合性液晶を用いた位相差板等において、液晶分子の配向方向が一定となるように制御するための膜である。液晶配向膜は、液晶表示素子等において、液晶等とともに非常に重要な構成部材となる。 The liquid crystal alignment film is a film for controlling the alignment direction of the liquid crystal molecules to be constant in a liquid crystal display element or a retardation plate using a polymerizable liquid crystal. The liquid crystal alignment film is a very important constituent member together with the liquid crystal or the like in a liquid crystal display element or the like.
 近年、益々進歩する液晶表示素子の分野において、液晶配向膜は、液晶の配向を制御する性能(以下、液晶配向性とも言う。)に加え、耐熱性や耐溶剤性等が求められている。さらに、液晶表示素子が高い性能を発揮できるように、その他にも多様な特性が求められるようになっている。 In recent years, in the field of liquid crystal display elements, which are becoming more and more advanced, a liquid crystal alignment film is required to have heat resistance, solvent resistance, and the like in addition to the performance of controlling the alignment of liquid crystals (hereinafter also referred to as liquid crystal alignment). Furthermore, various other characteristics are required so that the liquid crystal display element can exhibit high performance.
 液晶配向膜に求められる特性の1つとして、液晶表示素子の表示品位向上に関する特性がある。例えば、液晶表示素子においては表示不良の改善が求められており、表示不良対策として、液晶配向膜の特性の向上が求められている。
 特に、最近急速に高精細化している携帯電話やタブレット型の端末では、用いられる液晶表示素子にも高い表示品位が求められている。その結果、所謂「残像現象」もしくは単に「残像」と称されるような表示不良に対するスペックも益々厳しいものとなっている。例えば、残像が発生しても、それを素早く消失させる特性をもつ液晶配向膜の実現が求められている。近年の液晶表示素子においては使用環境が室内に留まらないため、屋外・車内といった高温になる場所でも高い品質性能が求められており、残像特性が室温と高温で変わらない液晶配向膜が求められている。
As one of the characteristics required for the liquid crystal alignment film, there is a characteristic related to improvement in display quality of the liquid crystal display element. For example, a liquid crystal display element is required to improve display defects, and as a countermeasure against display defects, improvement in characteristics of the liquid crystal alignment film is required.
In particular, high display quality is also required for the liquid crystal display elements used in mobile phones and tablet terminals that have recently been rapidly increasing in definition. As a result, the specifications for display defects such as so-called “afterimage phenomenon” or simply “afterimage” are becoming increasingly severe. For example, realization of a liquid crystal alignment film having a characteristic that even if an afterimage occurs is quickly eliminated. In recent liquid crystal display elements, since the usage environment does not stay indoors, high quality performance is required even in places where the temperature is high, such as outdoors or in the car, and a liquid crystal alignment film whose afterimage characteristics do not change at room temperature and high temperature is required. Yes.
 また、携帯電話等のモバイル端末においては、液晶表示素子の低消費電力化が求められている。こうした携帯可能な端末では、液晶表示素子の低消費電力化により、1回のバッテリー充電によって長期間の使用ができるようになる。液晶表示素子の低消費電力化には、液晶表示素子の高透過率化が有効である。したがって、液晶表示素子では、画素の高開口率等とともに、液晶配向膜等の構成部材に対して、透過率の向上が求められている。 In mobile terminals such as mobile phones, there is a demand for lower power consumption of liquid crystal display elements. Such a portable terminal can be used for a long period of time by charging the battery once due to low power consumption of the liquid crystal display element. In order to reduce the power consumption of the liquid crystal display element, increasing the transmittance of the liquid crystal display element is effective. Therefore, in the liquid crystal display element, in addition to a high aperture ratio of the pixel and the like, an improvement in transmittance is required for constituent members such as a liquid crystal alignment film.
 さらに、液晶配向膜は、液晶表示素子の製造工程への適用性の観点から、ラビング処理に対する高い耐性が求められている。ラビング処理は、液晶表示素子の製造工程において液晶配向膜を形成する方法として知られ、現在も工業的に広く用いられている。ラビング処理では、基板上にポリイミド等の高分子膜を形成し、その表面を布で擦る配向処理が行われる。 Furthermore, the liquid crystal alignment film is required to have high resistance to the rubbing treatment from the viewpoint of applicability to the manufacturing process of the liquid crystal display element. The rubbing process is known as a method of forming a liquid crystal alignment film in the manufacturing process of a liquid crystal display element, and is still widely used industrially today. In the rubbing process, an alignment process is performed in which a polymer film such as polyimide is formed on a substrate and the surface is rubbed with a cloth.
 ラビング処理においては、液晶配向膜が削れることで発生する粉塵や液晶配向膜に付いた傷が、表示品位を低下させるという問題がある。そのため、液晶配向膜にはラビング処理に対する耐性(以下、ラビング耐性とも言う。)が求められている。
 高いラビング耐性を有する液晶配向膜を形成するための方法としては、液晶配向膜を構成するポリイミドや、そのポリイミドを形成するためのポリイミド前駆体に種々の添加剤を加える方法が知られている(例えば、特許文献1、2を参照。)。
 その他にも、ラビング耐性の良好なポリイミド構造等が提案されている(例えば、特許文献3、4を参照。)。
 こうした方法により、ラビング処理時の液晶配向膜の削れ(ラビング削れとも言う。)や液晶配向膜の傷(ラビング傷とも言う。)を発生させ難くすることができる。
In the rubbing treatment, there is a problem that dust generated by scraping the liquid crystal alignment film or scratches on the liquid crystal alignment film deteriorates display quality. For this reason, the liquid crystal alignment film is required to have resistance to rubbing treatment (hereinafter also referred to as rubbing resistance).
As a method for forming a liquid crystal alignment film having high rubbing resistance, a method of adding various additives to polyimide constituting the liquid crystal alignment film and a polyimide precursor for forming the polyimide is known ( For example, see Patent Documents 1 and 2.)
In addition, a polyimide structure having good rubbing resistance has been proposed (see, for example, Patent Documents 3 and 4).
By such a method, it is possible to make it difficult to cause the liquid crystal alignment film to be scraped (also referred to as rubbing scraping) or to the liquid crystal alignment film (also referred to as rubbing scratch) during the rubbing treatment.
 しかしながら、近年、液晶表示素子の一部の用途では、ラビング処理において、ポリイミド等の高分子膜を布でより強く擦って配向処理を行う傾向がある。こうした強いラビング処理は、液晶の配向状態をより均一に、かつより強固なものにしようとする目的による。そのため、液晶配向膜に対して、より高いレベルのラビング耐性が求められるようになっている。 However, in recent years, in some applications of liquid crystal display elements, in the rubbing treatment, there is a tendency to perform the orientation treatment by rubbing a polymer film such as polyimide more strongly with a cloth. Such a strong rubbing treatment depends on the purpose of making the alignment state of the liquid crystal more uniform and stronger. Therefore, a higher level of rubbing resistance is required for the liquid crystal alignment film.
日本特開平7-120769号公報Japanese Unexamined Patent Publication No. 7-120769 日本特開平9-146100号公報Japanese Unexamined Patent Publication No. 9-146100 日本特開2008-90297号公報Japanese Unexamined Patent Publication No. 2008-90297 日本特開平9-258229号公報Japanese Unexamined Patent Publication No. 9-258229
 本発明の目的は、高い液晶配向性とラビング耐性を有し、液晶表示素子において広い温度範囲での残像低減に有効であり、かつ高い光透過率の液晶配向膜を形成することができる液晶配向剤を提供することである。 An object of the present invention is a liquid crystal alignment that has high liquid crystal alignment and rubbing resistance, is effective in reducing afterimages over a wide temperature range in a liquid crystal display element, and can form a liquid crystal alignment film with high light transmittance. Is to provide an agent.
 また、本発明の目的は、上記のような液晶配向剤を使用して、高い液晶配向性とラビング耐性を有し、液晶表示素子において広い温度範囲での残像低減に有効であり、かつ高い光透過率の液晶配向膜を提供することである。さらに、該液晶配向膜を有する液晶表示素子を提供することである。 Another object of the present invention is to use a liquid crystal aligning agent as described above, which has high liquid crystal alignment and rubbing resistance, is effective in reducing afterimages over a wide temperature range in a liquid crystal display element, and has high light It is to provide a liquid crystal alignment film having transmittance. Furthermore, it is providing the liquid crystal display element which has this liquid crystal aligning film.
 本発明者らは、上記の課題を解決するため鋭意検討を重ねた結果、本発明を完成するに至った。
 すなわち、本発明は、以下の要旨を有するものである。
(1)ジアミン成分とテトラカルボン酸誘導体とを反応させて得られるポリイミド前駆体を含有する液晶配向剤であって、
 ジアミン成分が下記式(1)で表されるジアミン化合物を20モル%以上100モル%以下の含有量で含み、かつテトラカルボン酸誘導体が芳香族テトラカルボン誘導体を50モル%以上100モル%未満の含有量で含むか、ジアミン成分が下記式(1)で表されるジアミン化合物を20モル%以上100モル%未満の含有量で含み、かつテトラカルボン酸誘導体が芳香族テトラカルボン酸誘導体を50モル%以上100モル%以下の含有量で含むことを特徴とする液晶配向剤。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the present invention has the following gist.
(1) A liquid crystal aligning agent containing a polyimide precursor obtained by reacting a diamine component with a tetracarboxylic acid derivative,
The diamine component contains a diamine compound represented by the following formula (1) in a content of 20 mol% or more and 100 mol% or less, and the tetracarboxylic acid derivative contains an aromatic tetracarboxylic derivative of 50 mol% or more and less than 100 mol%. The diamine compound contains a diamine compound represented by the following formula (1) in a content of 20 mol% or more and less than 100 mol%, and the tetracarboxylic acid derivative contains 50 mol of an aromatic tetracarboxylic acid derivative. The liquid crystal aligning agent characterized by including by content of% -100 mol%.
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Xは、酸素原子又は硫黄原子であり、Y及びYは、独立して、単結合、-O-、-S-、-OCO-、又はCOO-であり、R及びRは、独立して炭素数1~3のアルキレン基である。)
Figure JPOXMLDOC01-appb-C000006
(In the formula (1), X is an oxygen atom or a sulfur atom, and Y 1 and Y 2 are each independently a single bond, —O—, —S—, —OCO—, or COO—; R 1 and R 2 are each independently an alkylene group having 1 to 3 carbon atoms.)
(2)前記ジアミン成分は、下記式(AM1)で表されるジアミン化合物をさらに含有する上記(1)に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000007
(式(AM1)中、Rは下記の式(a-1)~式(a-20)からなる群より選ばれる1つの構造を有する2価の有機基を表し、R及びRは、独立して、水素原子又は1価の有機基を表す。)
(2) The liquid crystal aligning agent according to (1), wherein the diamine component further contains a diamine compound represented by the following formula (AM1).
Figure JPOXMLDOC01-appb-C000007
(In the formula (AM1), R 5 represents a divalent organic group having one structure selected from the group consisting of the following formulas (a-1) to (a-20), and R 3 and R 4 are And independently represents a hydrogen atom or a monovalent organic group.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(3)上記式(AM1)で表されるジアミン化合物は、Rが上記の式(a-1)、式(a-4)、式(a-5)、式(a-6)、式(a-10)、式(a-16)、式(a-19)及び式(a-20)からなる群より選ばれる1つの構造を有するジアミン化合物である上記(2)に記載の液晶配向剤。 (3) In the diamine compound represented by the above formula (AM1), R 5 has the above formula (a-1), formula (a-4), formula (a-5), formula (a-6), formula The liquid crystal alignment according to the above (2), which is a diamine compound having one structure selected from the group consisting of (a-10), formula (a-16), formula (a-19) and formula (a-20) Agent.
(4)前記ジアミン成分は、上記式(1)で表されるジアミン化合物を50モル%以上100モル%未満の含有量で含む上記(1)~(3)のいずれかに記載の液晶配向剤。 (4) The liquid crystal aligning agent according to any one of (1) to (3), wherein the diamine component contains a diamine compound represented by the above formula (1) in a content of 50 mol% or more and less than 100 mol%. .
(5)前記テトラカルボン酸誘導体は、下記式(2-a)~式(2-e)で表される化合物からなる群より選ばれる1種以上の化合物である上記(1)~(4)のいずれかに記載の液晶配向剤。 (5) The tetracarboxylic acid derivative is one or more compounds selected from the group consisting of compounds represented by the following formulas (2-a) to (2-e): (1) to (4) The liquid crystal aligning agent in any one of.
Figure JPOXMLDOC01-appb-C000009

(式(2-a)~式(2-e)中、Rはアルキル基を表し、Rは下記の式(b-1)~式(b-8)からなる群より選ばれる1つの構造を有する4価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000009

(In the formulas (2-a) to (2-e), R 7 represents an alkyl group, and R 6 is one selected from the group consisting of the following formulas (b-1) to (b-8): Represents a tetravalent organic group having a structure.)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(6)前記テトラカルボン酸誘導体は、上記式(2-a)である上記(5)に記載の液晶配向剤。 (6) The liquid crystal aligning agent according to (5), wherein the tetracarboxylic acid derivative is the formula (2-a).
(7)上記(1)~(6)のいずれかに記載の液晶配向剤から得られる液晶配向膜。 (7) A liquid crystal alignment film obtained from the liquid crystal aligning agent according to any one of (1) to (6) above.
(8)上記(7)に記載の液晶配向膜を有することを特徴とする液晶表示素子。 (8) A liquid crystal display element comprising the liquid crystal alignment film according to (7).
 本発明は、高い液晶配向性とラビング耐性を有し、液晶表示素子における残像低減に有効であり、かつ高い光透過率の液晶配向膜を形成することが可能な液晶配向剤を提供することができる。 The present invention provides a liquid crystal aligning agent that has high liquid crystal alignment and rubbing resistance, is effective in reducing afterimages in liquid crystal display elements, and can form a liquid crystal alignment film with high light transmittance. it can.
 また、本発明は、上記の液晶配向剤を用いて、高い液晶配向性とラビング耐性を有し、液晶表示素子における残像低減に有効であり、かつ高い光透過率の液晶配向膜を提供することができる。 The present invention also provides a liquid crystal alignment film having high liquid crystal alignment and rubbing resistance, effective for reducing afterimages in liquid crystal display elements, and having high light transmittance, using the liquid crystal aligning agent. Can do.
 さらに、本発明は、上記のような特性を有する液晶配向膜を用いた液晶表示素子を提供することができる。 Furthermore, the present invention can provide a liquid crystal display element using a liquid crystal alignment film having the above characteristics.
 本発明の液晶配向剤は、ジアミン成分とテトラカルボン酸誘導体とを反応させて得られるポリイミド前駆体を含有する。ポリイミド前駆体としては、ポリアミック酸、ポリアミック酸エステル等が含まれる。 The liquid crystal aligning agent of the present invention contains a polyimide precursor obtained by reacting a diamine component with a tetracarboxylic acid derivative. Examples of the polyimide precursor include polyamic acid and polyamic acid ester.
 本発明の液晶配向剤が含有するポリイミド前駆体は、特徴ある構造のジアミン成分と、該ジアミン成分との組み合わせにより所望する特性の実現に好適なテトラカルボン酸誘導体とを用いて形成される。
 以下、本発明の液晶配向剤に含有されるポリイミド前駆体を得るために用いられるジアミン成分及びテトラカルボン酸誘導体等について詳しく説明する。
The polyimide precursor contained in the liquid crystal aligning agent of the present invention is formed using a diamine component having a characteristic structure and a tetracarboxylic acid derivative suitable for realizing desired characteristics by a combination of the diamine component.
Hereinafter, the diamine component and tetracarboxylic acid derivative used for obtaining the polyimide precursor contained in the liquid crystal aligning agent of the present invention will be described in detail.
<特定ジアミン化合物(1)>
 本発明の液晶配向剤は、含有するポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体を得るためのジアミン成分として、下記式(1)で表される特定構造の特定ジアミン化合物を使用する。
<Specific diamine compound (1)>
The liquid crystal aligning agent of this invention uses the specific diamine compound of the specific structure represented by following formula (1) as a diamine component for obtaining polyimide precursors, such as a polyamic acid and polyamic acid ester to contain.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(1)中、Xは酸素原子又は硫黄原子であり、Y及びYは、独立して、単結合、-O-、-S-、-OCO-、又はCOO-であり、R及びRは、独立して炭素数1~3のアルキレン基である。
 上記式(1)中のXが酸素原子の場合は、上記式(1)の特定ジアミン化合物は、ウレア基を有するジアミン化合物であり、Xが硫黄原子の場合は、チオウレア基(以下、ウレア基及びチオウレア基を総称して(チオ)ウレア基ということがある。)を有するジアミン化合物である。
In the above formula (1), X is an oxygen atom or a sulfur atom, Y 1 and Y 2 are each independently a single bond, —O—, —S—, —OCO—, or COO—, and R 1 and R 2 are each independently an alkylene group having 1 to 3 carbon atoms.
When X in the formula (1) is an oxygen atom, the specific diamine compound of the formula (1) is a diamine compound having a urea group, and when X is a sulfur atom, a thiourea group (hereinafter referred to as a urea group). And thiourea groups are sometimes collectively referred to as (thio) urea groups).
 前記式(1)で表されるジアミン化合物の好ましい例としては、下記式の化合物が挙げられる。その中でも、式(1-1),式(1-5)~式(1-8)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
Preferable examples of the diamine compound represented by the formula (1) include compounds represented by the following formula. Among these, compounds represented by formula (1-1), formula (1-5) to formula (1-8) are preferable.
Figure JPOXMLDOC01-appb-C000012
 本発明の液晶配向剤に含有されるポリイミド前駆体を得るためのジアミン成分は、上記式(1)の特定ジアミン化合物を必須の成分として含有するが、含有される特定ジアミン化合物の含有量としては、任意の値とすることができる。 Although the diamine component for obtaining the polyimide precursor contained in the liquid crystal aligning agent of this invention contains the specific diamine compound of the said Formula (1) as an essential component, as content of the specific diamine compound contained, Can be any value.
 本発明の液晶配向剤から得られる液晶配向膜が、十分なラビング耐性を得るためには、全ジアミン成分(100モル%)中、上記式(1)の特定ジアミン化合物は、20モル%以上であることが好ましく、より好ましくは30モル%以上、さらに好ましくは50モル%以上である。 In order that the liquid crystal aligning film obtained from the liquid crystal aligning agent of this invention may acquire sufficient rubbing tolerance, the specific diamine compound of the said Formula (1) is 20 mol% or more in all the diamine components (100 mol%). It is preferable that it is preferably 30 mol% or more, and more preferably 50 mol% or more.
 また、液晶配向剤に含有されるポリイミド前駆体からポリイミドを形成し、液晶配向膜として液晶表示素子に適用した場合の液晶のプレチルト角の最適化や、蓄積電荷の低減などの観点からは、上記式(1)で表される特定ジアミン化合物の含有量は、全ジアミン成分中、100モル%未満であることが好ましく、より好ましくは、30~60%である。
 上記式(1)で表される特定ジアミン化合物の含有量が全ジアミン成分中で100モル%である場合、すなわち、ジアミン成分が全て上記式(1)で表される特定ジアミン化合物である場合、後述するように、ポリイミド前駆体の形成のために用いられるテトラカルボン酸誘導体中の芳香族テトラカルボン酸誘導体の含有量は、全テトラカルボン酸成分中、50モル%以上100モル%未満である。したがって、本発明の液晶配向剤では、ジアミン成分が全て上記式(1)の特定ジアミン化合物であるとともに、テトラカルボン酸誘導体が全て芳香族テトラカルボン酸誘導体であることはない。
In addition, from the viewpoint of optimization of the pretilt angle of the liquid crystal when the polyimide is formed from the polyimide precursor contained in the liquid crystal aligning agent and applied to the liquid crystal display element as the liquid crystal alignment film, or the reduction of the accumulated charge, the above The content of the specific diamine compound represented by the formula (1) is preferably less than 100 mol%, more preferably 30 to 60% in the total diamine component.
When the content of the specific diamine compound represented by the above formula (1) is 100 mol% in all diamine components, that is, when all the diamine components are specific diamine compounds represented by the above formula (1), As will be described later, the content of the aromatic tetracarboxylic acid derivative in the tetracarboxylic acid derivative used for forming the polyimide precursor is 50 mol% or more and less than 100 mol% in the total tetracarboxylic acid component. Therefore, in the liquid crystal aligning agent of this invention, all diamine components are the specific diamine compounds of said formula (1), and not all tetracarboxylic acid derivatives are aromatic tetracarboxylic acid derivatives.
<ジアミン化合物(AM1)>
 本発明の液晶配向剤に含有されるポリイミド前駆体は、上記式(1)で表される特定ジアミン化合物を必須の成分として含むジアミン成分と、テトラカルボン酸誘導体との反応で得られる。
 また、本発明のポリイミド前駆体を得るためのジアミン成分は、上記式(1)で表される特定ジアミン化合物とともに、下記式(AM1)で表されるジアミン化合物を併用し、テトラカルボン酸誘導体との反応に使用することが好ましい。
<Diamine compound (AM1)>
The polyimide precursor contained in the liquid crystal aligning agent of this invention is obtained by reaction with the diamine component which contains the specific diamine compound represented by the said Formula (1) as an essential component, and a tetracarboxylic acid derivative.
Moreover, the diamine component for obtaining the polyimide precursor of this invention uses the diamine compound represented by a following formula (AM1) together with the specific diamine compound represented by the said Formula (1), and a tetracarboxylic acid derivative and It is preferable to use for this reaction.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式(AM1)中、Rは下記の式(a-1)~式(a-20)からなる群より選ばれる1つの構造を有する2価の有機基を表し、R及びRは、独立して、水素原子又は1価の有機基を表す。 In the above formula (AM1), R 5 represents a divalent organic group having one structure selected from the group consisting of the following formulas (a-1) to (a-20), and R 3 and R 4 are And independently represents a hydrogen atom or a monovalent organic group.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(AM1)で表されるジアミン化合物は、液晶配向剤に含有されるポリイミド前駆体からポリイミドを形成し、その後、液晶配向膜として液晶表示素子に適用した場合における残像低減などの観点からは、Rが上記の式(a-1)、式(a-4)、式(a-5)、式(a-6)、式(a-10)、式(a-16)、式(a-19)及び式(a-20)からなる群より選ばれる1つの構造を有するジアミン化合物であることが好ましい。特に好ましくは、(a-1)、(A-4)、(A-19)及び(a-20)からなる群より選ばれる1つの構造を有するジアミン化合物である。 The diamine compound represented by the above formula (AM1) is formed from a polyimide precursor contained in a liquid crystal aligning agent, and then, from the viewpoint of afterimage reduction when applied to a liquid crystal display element as a liquid crystal alignment film. , R 5 is the above formula (a-1), formula (a-4), formula (a-5), formula (a-6), formula (a-10), formula (a-16), formula ( A diamine compound having one structure selected from the group consisting of a-19) and formula (a-20) is preferred. Particularly preferred is a diamine compound having one structure selected from the group consisting of (a-1), (A-4), (A-19) and (a-20).
 また、本発明の液晶配向剤に含有されるポリイミド前駆体を得るためのジアミン成分は、上記式(1)の特定ジアミン化合物を必須の成分とし、上記式(AM1)で表されるジアミン化合物を含有することが可能であるが、さらにそれら以外のジアミン化合物を含有することも可能である。
 すなわち、本発明の液晶配向剤に含有されるポリイミド前駆体を得るためのジアミン成分は、本発明の効果を損なわない範囲で、上記式(1)の特定ジアミン化合物及び上記式(AM1)のジアミン化合物以外のジアミン化合物を含有することも可能である。
Moreover, the diamine component for obtaining the polyimide precursor contained in the liquid crystal aligning agent of this invention uses the specific diamine compound of the said Formula (1) as an essential component, The diamine compound represented by the said formula (AM1) is used. Although it is possible to contain, it is also possible to contain diamine compounds other than those.
That is, the diamine component for obtaining the polyimide precursor contained in the liquid crystal aligning agent of this invention is the range which does not impair the effect of this invention, the specific diamine compound of said Formula (1), and the diamine of said Formula (AM1). It is also possible to contain a diamine compound other than the compound.
<テトラカルボン酸誘導体>
 本発明の液晶配向剤に含有されるポリイミド前駆体を得るために使用可能なテトラカルボン酸誘導体は特に限定されない。
 本発明のテトラカルボン酸誘導体としては、テトラカルボン酸二無水物(下記式(2-a)で表わされる。)、テトラカルボン酸一無水物(下記式(2-b)で表わされる。)、テトラカルボン酸(下記式(2-d)で表わされる。)、ジカルボン酸ジアルキルエステル(下記式(2-c)で表わされる。)、ジカルボン酸クロライドジアルキルエステル(下記式(2-e)で表わされる。)等が挙げられる。テトラカルボン酸誘導体としては、ジアミンとの反応が進むものであればこれらに限定させるものではない。
<Tetracarboxylic acid derivative>
The tetracarboxylic acid derivative that can be used for obtaining the polyimide precursor contained in the liquid crystal aligning agent of the present invention is not particularly limited.
Examples of the tetracarboxylic acid derivative of the present invention include tetracarboxylic dianhydride (represented by the following formula (2-a)), tetracarboxylic acid monoanhydride (represented by the following formula (2-b)), Tetracarboxylic acid (represented by the following formula (2-d)), dicarboxylic acid dialkyl ester (represented by the following formula (2-c)), dicarboxylic acid chloride dialkyl ester (represented by the following formula (2-e)) And the like. The tetracarboxylic acid derivative is not limited to these as long as the reaction with the diamine proceeds.
 本発明において好ましく用いるテトラカルボン酸誘導体は、下記式(2-a)~式(2-e)で表される化合物からなる群より選ばれる1種以上の化合物である。
 ここで、Rはアルキル基を示す。
 また、Rの具体例としては、以下の式[A-1]~式[A-47]を挙げることができる。
The tetracarboxylic acid derivative preferably used in the present invention is one or more compounds selected from the group consisting of compounds represented by the following formulas (2-a) to (2-e).
Here, R 7 represents an alkyl group.
Further, specific examples of R 6 include the following formulas [A-1] to [A-47].
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 本発明の液晶配向剤に含有されるポリイミド前駆体を得るために使用可能なテトラカルボン酸誘導体としては、特に、芳香族テトラカルボン酸誘導体の使用が好ましい。テトラカルボン酸誘導体の全てを芳香族テトラカルボン酸誘導体とすることも可能である。
 上記ポリイミド前駆体を得るためには、テトラカルボン酸誘導体を2種以上使用して、ジアミン成分との反応に用いることが可能である。その場合においても、テトラカルボン酸誘導体中に芳香族テトラカルボン酸誘導体を1種以上含有させて使用することが好ましい。
 また、テトラカルボン酸誘導体の全てを芳香族テトラカルボン酸誘導体とし、構造の異なる芳香族テトラカルボン酸誘導体を2種以上使用することが可能である。
As the tetracarboxylic acid derivative that can be used for obtaining the polyimide precursor contained in the liquid crystal aligning agent of the present invention, it is particularly preferable to use an aromatic tetracarboxylic acid derivative. All of the tetracarboxylic acid derivatives may be aromatic tetracarboxylic acid derivatives.
In order to obtain the polyimide precursor, two or more tetracarboxylic acid derivatives can be used for the reaction with the diamine component. Even in such a case, it is preferable to use one or more aromatic tetracarboxylic acid derivatives in the tetracarboxylic acid derivative.
Moreover, it is possible to use all of the tetracarboxylic acid derivatives as aromatic tetracarboxylic acid derivatives and to use two or more types of aromatic tetracarboxylic acid derivatives having different structures.
 テトラカルボン酸誘導体として、芳香族テトラカルボン酸誘導体を含むことにより、ポリイミド前駆体の形成に使用されて、得られる液晶配向膜の液晶配向性を向上させることが可能となる。このとき、用いるテトラカルボン酸誘導体全量に対し芳香族テトラカルボン酸誘導体の含有量は、50モル%以上であることが好ましい。但し、ポリイミド前駆体の形成に使用されるジアミン成分が、全て上記式(1)で表されるジアミン化合物である場合、上述したように、芳香族テトラカルボン酸誘導体の含有量は、用いるテトラカルボン酸誘導体全量に対し100モル%未満である。 By including an aromatic tetracarboxylic acid derivative as the tetracarboxylic acid derivative, the liquid crystal alignment property of the obtained liquid crystal alignment film can be improved by being used for forming a polyimide precursor. At this time, the content of the aromatic tetracarboxylic acid derivative is preferably 50 mol% or more with respect to the total amount of the tetracarboxylic acid derivative used. However, when all the diamine components used for forming the polyimide precursor are diamine compounds represented by the above formula (1), the content of the aromatic tetracarboxylic acid derivative is as described above. It is less than 100 mol% with respect to the total amount of the acid derivative.
 本発明の液晶配向剤に含有されるポリイミド前駆体を得るために使用することが好ましい芳香族テトラカルボン酸誘導体としては、上記式(2-a)~式(2-e)で表される化合物からなる群より選ばれる1種以上の化合物であり、Rがアルキル基であり、Rが下記の式(b-1)~式(b-8)からなる群より選ばれる1つの構造を有する4価の有機基を表す、芳香族テトラカルボン酸誘導体を挙げることができる。 The aromatic tetracarboxylic acid derivatives preferably used for obtaining the polyimide precursor contained in the liquid crystal aligning agent of the present invention include compounds represented by the above formulas (2-a) to (2-e) One or more compounds selected from the group consisting of: R 7 is an alkyl group, and R 6 is one structure selected from the group consisting of the following formulas (b-1) to (b-8): An aromatic tetracarboxylic acid derivative which represents a tetravalent organic group having the same can be given.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(2-a)~式(2-e)で表され、Rが上記式(b-1)で表される構造の芳香族テトラカルボン酸誘導体は、上述したRの具体例が、上記式[A-26]であるテトラカルボン酸誘導体に該当する。
 同様に、Rが上記式(b-2)で表される構造の芳香族テトラカルボン酸誘導体は、Rの具体例が、上記式[A-27]であるテトラカルボン酸誘導体に該当する。
 Rが上記式(b-3)で表される構造の芳香族テトラカルボン酸誘導体は、Rの具体例が上記式[A-28]であるテトラカルボン酸誘導体に該当する。
 Rが上記式(b-4)で表される構造の芳香族テトラカルボン酸誘導体は、Rの具体例が、上記式[A-29]であるテトラカルボン酸誘導体に該当する。
 Rが上記式(b-5)で表される構造の芳香族テトラカルボン酸誘導体は、Rの具体例が、上記式[A-31]であるテトラカルボン酸誘導体に該当する。
 Rが上記式(b-6)で表される構造の芳香族テトラカルボン酸誘導体は、Rの具体例が、上記式[A-30]であるテトラカルボン酸誘導体に該当する。
 Rが上記式(b-7)で表される構造の芳香族テトラカルボン酸誘導体は、Rの具体例が、上記式[A-32]であるテトラカルボン酸誘導体に該当する。
 Rが上記式(b-8)で表される構造の芳香族テトラカルボン酸誘導体は、Rの具体例が、上記式[A-47]であるテトラカルボン酸誘導体に該当する。
The aromatic tetracarboxylic acid derivative having a structure represented by the above formulas (2-a) to (2-e) and R 6 represented by the above formula (b-1) is a specific example of R 6 described above. Corresponds to the tetracarboxylic acid derivative represented by the above formula [A-26].
Similarly, aromatic tetracarboxylic acid derivatives of the structure wherein R 6 is represented by the formula (b-2), specific examples of R 6 are applicable to the tetracarboxylic acid derivative is the above formula [A-27] .
The aromatic tetracarboxylic acid derivative having a structure in which R 6 is represented by the above formula (b-3) corresponds to a tetracarboxylic acid derivative in which a specific example of R 6 is the above formula [A-28].
Aromatic tetracarboxylic acid derivative having the structure R 6 is represented by the above formula (b-4) are specific examples of R 6 are applicable to the tetracarboxylic acid derivative is the above formula [A-29].
Aromatic tetracarboxylic acid derivative having the structure R 6 is represented by the above formula (b-5) are specific examples of R 6 are applicable to the tetracarboxylic acid derivative is the above formula [A-31].
Aromatic tetracarboxylic acid derivative having the structure R 6 is represented by the above formula (b-6) is a specific example of R 6 is, corresponds to the tetracarboxylic acid derivative is the above formula [A-30].
Aromatic tetracarboxylic acid derivative having the structure R 6 is represented by the above formula (b-7) are specific examples of R 6 are applicable to the tetracarboxylic acid derivative is the above formula [A-32].
Aromatic tetracarboxylic acid derivative having the structure R 6 is represented by the above formula (b-8) may, specific examples of R 6 are applicable to the tetracarboxylic acid derivative is the above formula [A-47].
 本発明の液晶配向剤に含有されるポリイミド前駆体を得るために使用することが、特に好ましい芳香族テトラカルボン酸誘導体としては、上記式(2-a)~式(2-e)で表される化合物からなる群より選ばれる1種以上の化合物であり、Rがアルキル基であり、Rが上記式(b-1)、式(b-2)、式(b-7)で表される構造の芳香族テトラカルボン酸誘導体を挙げることができる。 Particularly preferred aromatic tetracarboxylic acid derivatives used for obtaining a polyimide precursor contained in the liquid crystal aligning agent of the present invention are represented by the above formulas (2-a) to (2-e). R 7 is an alkyl group, R 6 is represented by the above formula (b-1), formula (b-2), or formula (b-7). An aromatic tetracarboxylic acid derivative having a structure of
<ポリイミド前駆体>
 本発明の液晶配向剤に含有されるポリイミド前駆体を得る方法としては、公知の方法を利用することができる。
 上述した上記式(1)の特定ジアミン化合物を必須の成分として含むジアミン成分と、芳香族テトラカルボン酸誘導体を含むテトラカルボン酸誘導体とを反応させ、ポリイミド前駆体を得る。
 テトラカルボン酸誘導体として、テトラカルボン酸二無水物を用いる場合を例にして、以下で説明する。
<Polyimide precursor>
As a method for obtaining the polyimide precursor contained in the liquid crystal aligning agent of the present invention, a known method can be used.
A diamine component containing the specific diamine compound of the above formula (1) as an essential component is reacted with a tetracarboxylic acid derivative containing an aromatic tetracarboxylic acid derivative to obtain a polyimide precursor.
The case where tetracarboxylic dianhydride is used as the tetracarboxylic acid derivative will be described below as an example.
 本発明の液晶配向剤に含有されるポリイミド前駆体の製造に用いられる、ジアミン成分とテトラカルボン酸誘導体との重合反応方法は特に限定されない。有機溶剤中でそれらを混合することにより重合反応して、ポリイミド前駆体であるポリアミック酸とすることができる。また、ポリアミック酸を公知のエステル化剤を用いてカルボン酸基をエステル化させることで、ポリアミック酸エステルを得ることができる。ポリイミドは、得られたポリアミック酸及びポリアミック酸エステルを脱水閉環させることにより得ることができる。 The polymerization reaction method of the diamine component and the tetracarboxylic acid derivative used for producing the polyimide precursor contained in the liquid crystal aligning agent of the present invention is not particularly limited. By mixing them in an organic solvent, a polymerization reaction can be performed to obtain a polyamic acid that is a polyimide precursor. Moreover, polyamic acid ester can be obtained by esterifying a carboxylic acid group using a known esterifying agent. Polyimide can be obtained by dehydrating and ring-closing the obtained polyamic acid and polyamic acid ester.
 ジアミン成分とテトラカルボン酸誘導体とを有機溶媒中で混合させる方法としては、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸誘導体成分をそのまま添加する方法、又はテトラカルボン酸誘導体成分を有機溶媒に分散あるいは溶解させて添加する方法が挙げられる。
 さらに、テトラカルボン酸誘導体を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法や、テトラカルボン酸誘導体とジアミンとを交互に添加する方法などが挙げられる。また、テトラカルボン酸誘導体成分及びジアミンのうち少なくとも一方が複数種の化合物からなる場合は、これら複数種の成分をあらかじめ混合した状態で重合反応させてもよく、個別に順次重合反応させてもよい。
As a method of mixing the diamine component and the tetracarboxylic acid derivative in an organic solvent, a solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid derivative component is added as it is, or tetracarboxylic acid Examples thereof include a method in which the derivative component is added after being dispersed or dissolved in an organic solvent.
Furthermore, a method of adding a diamine component to a solution in which a tetracarboxylic acid derivative is dispersed or dissolved in an organic solvent, a method of alternately adding a tetracarboxylic acid derivative and a diamine, and the like can be mentioned. In addition, when at least one of the tetracarboxylic acid derivative component and the diamine is composed of a plurality of types of compounds, the plurality of types of components may be preliminarily mixed and may be polymerized individually or sequentially. .
 ジアミン成分とテトラカルボン酸誘導体とを有機溶剤中で重合反応させる際の温度は、通常0~150°C、好ましくは5~100°C、より好ましくは10~80°Cである。温度が高い方が、重合反応は早く終了するが、高すぎると高分子量の重合体が得られない場合がある。また、重合反応は任意の仕込み濃度で行うことができるが、仕込み濃度が低すぎると高分子量の重合体を得ることが難しくなり、仕込み濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、好ましくは1~50質量%、より好ましくは5~30質量%である。重合反応初期は高濃度で行い、その後、有機溶媒を追加してもよい。なお、上述の仕込み濃度とは、ジアミン成分とテトラカルボン酸誘導体を合わせた合計質量の濃度である。 The temperature at which the diamine component and the tetracarboxylic acid derivative are polymerized in an organic solvent is usually 0 to 150 ° C., preferably 5 to 100 ° C., more preferably 10 to 80 ° C. When the temperature is higher, the polymerization reaction is completed earlier, but when it is too high, a high molecular weight polymer may not be obtained. In addition, the polymerization reaction can be carried out at any charge concentration, but if the charge concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the charge concentration is too high, the reaction solution will become too viscous and uniform. Therefore, the amount is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the polymerization reaction may be performed at a high concentration, and then an organic solvent may be added. In addition, the above-mentioned preparation density | concentration is a density | concentration of the total mass which match | combined the diamine component and the tetracarboxylic acid derivative.
 上述した重合反応の際に用いられる有機溶媒は、生成したポリアミック酸及びポリアミック酸エステル(以下、ポリアミック酸(エステル)と言うことがある。)が溶解するものであれば特に限定されない。具体的な例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン等を挙げることができる。これらは単独でも、また混合して使用してもよい。さらに、ポリアミック酸(エステル)を溶解させない溶媒であっても、生成したポリアミック酸(エステル)が析出しない範囲で、上記溶媒に混合して使用してもよい。 The organic solvent used in the polymerization reaction described above is not particularly limited as long as the generated polyamic acid and polyamic acid ester (hereinafter sometimes referred to as polyamic acid (ester)) are dissolved. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, Examples thereof include γ-butyrolactone. These may be used alone or in combination. Furthermore, even if the solvent does not dissolve the polyamic acid (ester), it may be used by mixing with the above solvent as long as the produced polyamic acid (ester) does not precipitate.
 また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸(エステル)を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。 In addition, since water in the organic solvent inhibits the polymerization reaction and further causes the resulting polyamic acid (ester) to hydrolyze, it is preferable to use a dehydrated and dried organic solvent as much as possible.
 ポリアミック酸を得るための重合反応に用いるテトラカルボン酸誘導体とジアミンの比率は、モル比で1:0.8~1:1.2であることが好ましく、このモル比が1:1に近いほど、得られるポリアミック酸の分子量は大きくなる。ポリアミック酸(エステル)の分子量が小さすぎると、得られる塗膜の強度が不十分となる場合があり、逆にポリアミック酸(エステル)の分子量が大きすぎると、得られる液晶配向剤の粘度が高くなり過ぎて、塗膜形成時の作業性、塗膜の均一性等が悪くなる場合がある。従って、本発明の液晶配向剤に用いるポリアミック酸(エステル)の重量平均分子量は、2,000~500,000が好ましく、より好ましくは5,000~300,000である。 The ratio of the tetracarboxylic acid derivative and the diamine used in the polymerization reaction for obtaining the polyamic acid is preferably 1: 0.8 to 1: 1.2 in terms of molar ratio, and the closer this molar ratio is to 1: 1. The molecular weight of the resulting polyamic acid is increased. If the molecular weight of the polyamic acid (ester) is too small, the strength of the resulting coating film may be insufficient. Conversely, if the molecular weight of the polyamic acid (ester) is too large, the resulting liquid crystal aligning agent has a high viscosity. As a result, the workability at the time of forming the coating film, the uniformity of the coating film, and the like may deteriorate. Accordingly, the weight average molecular weight of the polyamic acid (ester) used in the liquid crystal aligning agent of the present invention is preferably 2,000 to 500,000, more preferably 5,000 to 300,000.
 本発明の液晶配向剤に含有させるポリアミック酸(エステル)は、ジアミン成分とテトラカルボン酸誘導体との反応により得られるが、ジアミン成分として、上記式(1)で表される特定ジアミン化合物が、必須の成分として使用される。
 また、ジアミン成分としては、上記式(1)で表される特定ジアミン化合物に加えて、上記式(AM1)で表されるジアミン化合物を含むジアミン成分や、さらにそれら以外のジアミン化合物を含むジアミン成分が使用される。
The polyamic acid (ester) contained in the liquid crystal aligning agent of the present invention is obtained by a reaction between a diamine component and a tetracarboxylic acid derivative. As the diamine component, the specific diamine compound represented by the above formula (1) is essential. Used as a component of
Moreover, as a diamine component, in addition to the specific diamine compound represented by the said Formula (1), the diamine component containing the diamine compound represented by the said Formula (AM1), and also the diamine component other than those diamine compounds Is used.
 テトラカルボン酸誘導体としては、上述した芳香族テトラカルボン酸誘導体を含有するテトラカルボン酸誘導体の使用が好ましい。 As the tetracarboxylic acid derivative, it is preferable to use a tetracarboxylic acid derivative containing the above-described aromatic tetracarboxylic acid derivative.
 得られたポリアミック酸は、下記式(3)の繰り返し単位で表すことができる。
 また、ポリアミック酸エステルは下記式(4)で表すことができる。
The obtained polyamic acid can be represented by a repeating unit of the following formula (3).
Moreover, polyamic acid ester can be represented by following formula (4).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(3)、(4)中、R、R、及びRは、独立して、上記式(1)又は上記式(AM1)で表わされるジアミン化合物由来の基である。
 上記式(1)で表わされる特定ジアミン化合物を使用した場合、R及びRは水素原子であり、Rは-フェニレン-Y-NH-CX-HN-R-Y-フェニレン-である。上記式(AM1)で表わされるジアミン化合物を使用した場合、RはRであり、RはRであり、RはRである。
 Rは、上記の式(2-a)~式(2-e)で表わされるテトラカルボン酸誘導体におけるRと同じ意味である。
 式(4)中のRは、使用したエステル化剤に由来する基である。
In the above formulas (3) and (4), R a , R b , and R c are each independently a group derived from a diamine compound represented by the above formula (1) or the above formula (AM1).
When the specific diamine compound represented by the above formula (1) is used, R a and R b are hydrogen atoms, and R c is -phenylene-Y 1 -NH-CX-HN-R 2 -Y 2 -phenylene- It is. When the diamine compound represented by the above formula (AM1) is used, R a is R 3 , R b is R 4 , and R c is R 5 .
R 6 has the same meaning as R 6 in the tetracarboxylic acid derivatives represented by the above formulas (2-a) to (2-e).
R in Formula (4) is a group derived from the esterifying agent used.
 上記のようにして得られたポリアミック酸又はポリアミック酸エステルは、そのまま本発明の液晶配向剤に用いることが可能である。また、本発明の液晶配向剤に、上記のようにして得られたポリアミック酸又はポリアミック酸エステルを脱水閉環させたポリイミドを含有させることも可能である。 The polyamic acid or polyamic acid ester obtained as described above can be used as it is for the liquid crystal aligning agent of the present invention. Moreover, the liquid crystal aligning agent of this invention can also contain the polyimide which carried out the dehydration ring closure of the polyamic acid or polyamic acid ester obtained by making it above.
<液晶配向剤>
 本発明の液晶配向剤は、以上のようにして得られたポリイミド前駆体を含有するものであり、通常は、これらの重合体を有機溶媒に溶解させた塗布液とすることができる。
 本発明の液晶配向剤は、上述のポリイミド前駆体以外に、該ポリイミド前駆体から得られたポリイミドや、その他の構造を有する重合体を含有していてもよい。
 本発明の液晶配向剤中における、ポリイミド前駆体の含有量は、液晶配向剤の全量に対して1~20質量%が好ましく、2~20質量%がより好ましい。
 本発明の液晶配向剤に含有される有機溶媒は、含有する重合体を溶解させるものであれば特に限定されない。
 有機溶媒の使用量は、液晶配向剤の全量に対して、80~99質量%が好ましく、80~98質量%がより好ましい。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of this invention contains the polyimide precursor obtained by making it above, Usually, it can be set as the coating liquid which dissolved these polymers in the organic solvent.
The liquid crystal aligning agent of this invention may contain the polymer obtained from this polyimide precursor other than the above-mentioned polyimide precursor, and the polymer which has another structure.
The content of the polyimide precursor in the liquid crystal aligning agent of the present invention is preferably 1 to 20% by mass and more preferably 2 to 20% by mass with respect to the total amount of the liquid crystal aligning agent.
The organic solvent contained in the liquid crystal aligning agent of this invention will not be specifically limited if the polymer to contain is dissolved.
The amount of the organic solvent used is preferably 80 to 99% by mass and more preferably 80 to 98% by mass with respect to the total amount of the liquid crystal aligning agent.
 本発明の液晶配向剤に用いる有機溶媒の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。 Specific examples of the organic solvent used in the liquid crystal aligning agent of the present invention include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone and N-ethyl. Examples include pyrrolidone, N-vinyl pyrrolidone, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone. You may use these 1 type or in mixture of 2 or more types.
 また、単独ではポリイミド前駆体又はポリイミド等の重合体を溶解させない溶媒であっても、重合体が析出しない範囲であれば、本発明の液晶配向剤に混合することができる。
 特に、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸N-プロピルエステル、乳酸N-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する溶媒は、混在させることで液晶配向剤の基板への塗膜均一性を向上させることができる。これらの溶媒を用いる場合は、1種類でも複数種類を混合して用いても良い。
Moreover, even if it is a solvent which does not dissolve polymers, such as a polyimide precursor or a polyimide, if it is a range in which a polymer does not precipitate, it can be mixed with the liquid crystal aligning agent of this invention.
In particular, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy -2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxy Propoxy) propanol, lactic acid methyl ester, lactic acid ethyl ester, lactic acid N-propyl ester, lactic acid N-butyl ester, lactic acid isoamyl ester and other solvents having low surface tension are It is possible to improve the coating uniformity of the substrates of the liquid crystal aligning agent by causing Zaisa. When these solvents are used, one kind or a plurality of kinds may be mixed and used.
 本発明の液晶配向剤においても低表面張力を有する溶媒は好適に用いられるが、その使用量は、液晶配向剤に含まれる溶媒全体の5~80質量%であることがより好ましく、さらに好ましくは20~60質量%である。 In the liquid crystal aligning agent of the present invention, a solvent having a low surface tension is preferably used, but the amount used is more preferably 5 to 80% by mass of the total solvent contained in the liquid crystal aligning agent, and still more preferably. 20 to 60% by mass.
 本発明の液晶配向剤には、上記のポリイミド前駆体、ポリイミド等の重合体、及び有機溶媒の他に、本発明の効果を損なわない範囲で、各種の添加剤を含有していてもよい。 The liquid crystal aligning agent of the present invention may contain various additives in addition to the above polyimide precursor, a polymer such as polyimide, and an organic solvent as long as the effects of the present invention are not impaired.
 本発明の液晶配向剤は、形成される液晶配向膜の膜厚均一性や表面平滑性を向上させる添加剤の含有が可能である。そのような添加剤としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。 The liquid crystal aligning agent of the present invention can contain an additive for improving the film thickness uniformity and surface smoothness of the liquid crystal aligning film to be formed. Examples of such additives include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants, and the like.
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)等が挙げられる。これらの界面活性剤の使用割合は、液晶配向剤中に含有される重合体成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. is there.
 本発明の液晶配向剤は、形成される液晶配向膜と基板との密着性を向上させる添加剤の含有が可能である。そのような添加剤の具体例としては、官能性シラン含有化合物、エポキシ基含有化合物等が挙げることができる。 The liquid crystal aligning agent of the present invention can contain an additive for improving the adhesion between the liquid crystal aligning film to be formed and the substrate. Specific examples of such additives include functional silane-containing compounds and epoxy group-containing compounds.
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。 For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10- Riethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyl Trimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3- Aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6- Tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′, N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane and the like.
 これらの化合物を添加する場合は、液晶配向剤中に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると、形成される液晶配向膜の液晶配向性が低下する場合がある。 When these compounds are added, the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. . If the amount is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected. If the amount exceeds 30 parts by mass, the liquid crystal alignment property of the formed liquid crystal alignment film may be lowered.
 本発明の液晶配向剤には、上述した添加剤の他、本発明の効果が損なわれない範囲であれば、重合体以外のポリマー成分、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体もしくは導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物等を添加することができる。 In addition to the additives described above, the liquid crystal aligning agent of the present invention has electrical properties such as a polymer component other than the polymer and the dielectric constant and conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired. It is possible to add a dielectric material or conductive material to be changed, and a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film.
 本発明の液晶配向剤における固形分の濃度は、目的とする液晶配向膜の膜厚によって適宜変更することができる。また、欠陥のない塗膜を形成させ、且つ液晶配向膜として適切な膜厚を得ることができるように、重合体の濃度は、1~20質量%とすることが好ましく、より好ましくは2~10質量%である。 The concentration of the solid content in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the film thickness of the target liquid crystal aligning film. The concentration of the polymer is preferably 1 to 20% by mass, more preferably 2 to 20% so that a film having no defect can be formed and a film thickness suitable as a liquid crystal alignment film can be obtained. 10% by mass.
 また、本発明の液晶配向剤において、上述したポリイミド前駆体とともに、異なる分子構造からなる可溶性ポリイミド、ポリアミック酸、ポリアミック酸エステル等をブレンドして含有させることも可能である。その場合、得られるポリイミド膜が所望の特性を有することを考慮して、上述した本発明のポリイミド前駆体の含有量を、他に含有される可溶性ポリイミドや、ポリアミック酸や、ポリアミック酸エステル等と併せた全量(100モル%)に対し、5~95モル%とすることが好ましく、10~90モル%がより好ましい。 In addition, in the liquid crystal aligning agent of the present invention, it is also possible to contain a blend of soluble polyimide, polyamic acid, polyamic acid ester and the like having different molecular structures together with the polyimide precursor described above. In that case, considering that the obtained polyimide film has the desired characteristics, the content of the polyimide precursor of the present invention described above, other soluble polyimide, polyamic acid, polyamic acid ester and the like The amount is preferably 5 to 95 mol%, more preferably 10 to 90 mol%, based on the total amount (100 mol%).
 本発明の液晶配向剤は、基板上に塗布して塗膜を形成し、焼成した後、ラビング処理や光照射などで配向処理をして液晶配向膜として用いる、又は垂直配向用途などでは、配向処理無しで液晶配向膜として用いることができる。
 使用する基板としては透明性の高い基板であれば特に限定されない。例えば、ガラス基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、 液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることが、プロセスを簡素化する観点から好ましい。また、反射型の液晶表示素子を構成する場合では、片側の基板のみにシリコンウエハー等の不透明な物質でも使用できる。この場合の電極としてはアルミニウム等の光を反射する材料も使用できる。
The liquid crystal aligning agent of the present invention is applied on a substrate to form a coating film, baked, and then subjected to an alignment treatment by rubbing treatment, light irradiation, etc., and used as a liquid crystal alignment film, or in a vertical alignment application, etc. It can be used as a liquid crystal alignment film without treatment.
The substrate to be used is not particularly limited as long as it is a highly transparent substrate. For example, a plastic substrate such as a glass substrate, an acrylic substrate, or a polycarbonate substrate can be used, and the use of a substrate on which an ITO (Indium Tin Oxide) electrode or the like for driving a liquid crystal is used can simplify the process. To preferred. In the case of configuring a reflective liquid crystal display element, an opaque substance such as a silicon wafer can be used only on one substrate. In this case, a material that reflects light such as aluminum can also be used as the electrode.
 液晶配向剤の塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット等の塗布方法を適用できる。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナー等を用いる塗布方法があり、目的に応じてこれらを用いることが可能である。 The application method of the liquid crystal aligning agent is not particularly limited, but industrially, application methods such as screen printing, offset printing, flexographic printing, and inkjet can be applied. As other coating methods, there are coating methods using a dip, a roll coater, a slit coater, a spinner, etc., and these can be used according to the purpose.
 液晶配向剤を塗布した基板の焼成は、100~350℃の任意の温度で行うことができ、好ましくは150~300℃であり、さらに好ましくは180~250℃である。
 液晶配向剤中にポリアミック酸やポリアミック酸エステルを含有する場合は、この焼成温度によってポリイミドへの転化率が変化するが、本発明の液晶配向剤は、必ずしも100%イミド化させる必要は無い。
 さらに、液晶配向剤の塗膜の焼成時間は、任意の時間に設定することができる。焼成時間が短すぎる場合、残存溶媒の影響で、表示不良が発生する場合があるため、好ましくは5~60分間、より好ましくは10~40分間である。
The substrate coated with the liquid crystal aligning agent can be baked at an arbitrary temperature of 100 to 350 ° C., preferably 150 to 300 ° C., more preferably 180 to 250 ° C.
When the liquid crystal aligning agent contains a polyamic acid or a polyamic acid ester, the conversion rate to polyimide varies depending on the baking temperature, but the liquid crystal aligning agent of the present invention does not necessarily need to be imidized 100%.
Furthermore, the baking time of the coating film of a liquid crystal aligning agent can be set to arbitrary time. If the baking time is too short, display failure may occur due to the influence of the residual solvent, and therefore it is preferably 5 to 60 minutes, more preferably 10 to 40 minutes.
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合がある。したがって、塗膜の厚みは、好ましくは5~300nm、より好ましくは10~100nmである。
 液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射などで配向処理をすることが好ましい。
If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, the thickness of the coating film is preferably 5 to 300 nm, more preferably 10 to 100 nm.
When the liquid crystal is aligned horizontally or tilted, it is preferable to perform an alignment treatment on the baked coating film by rubbing or irradiation with polarized ultraviolet rays.
<液晶表示素子>
 本発明の液晶表示素子は、電極付きの基板等を用い、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子として構成することができる。
<Liquid crystal display element>
The liquid crystal display element of the present invention uses a substrate with electrodes, etc., and after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method, a liquid crystal cell is prepared by a known method, and the liquid crystal display element Can be configured.
 液晶セルの作製方法については、例えば、以下のようにすることができる。
 少なくとも一方に液晶を駆動するための電極等が形成された一対の基板を準備する。この一対の基板上に、本発明の液晶配向膜を形成し、液晶配向膜の形成された一対の基板を用意する。次に、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する。こうして液晶表示素子を作製する。
 また、本発明の液晶配向膜の形成された一対の基板を用意した後、スペーサを散布した液晶配向膜面に液晶を滴下し、その後、それら基板を貼り合わせて封止を行い、液晶表示素子を作製する。尚、これらの場合、スペーサの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。
About the manufacturing method of a liquid crystal cell, it can carry out as follows, for example.
A pair of substrates on which electrodes and the like for driving the liquid crystal are formed on at least one side is prepared. The liquid crystal alignment film of the present invention is formed on the pair of substrates, and a pair of substrates on which the liquid crystal alignment film is formed is prepared. Next, spacers are dispersed on the liquid crystal alignment film of one substrate, the other substrate is bonded so that the liquid crystal alignment film surface is on the inside, and liquid crystal is injected under reduced pressure to seal. In this way, a liquid crystal display element is produced.
In addition, after preparing a pair of substrates on which the liquid crystal alignment film of the present invention is formed, liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed, and then the substrates are bonded together for sealing, thereby providing a liquid crystal display element Is made. In these cases, the thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 以上のようにして、本発明の液晶配向剤を用いて作製された、本発明の液晶表示素子は、残像現象が低減されて表示品位に優れるとともに、信頼性に優れて高輝度である。したがって、大画面で高精細の液晶テレビや、スマートフォン及びタブレット型のデバイス等の表示素子に好適に利用できる。 As described above, the liquid crystal display element of the present invention produced by using the liquid crystal aligning agent of the present invention is excellent in display quality with reduced afterimage phenomenon and excellent in reliability and high luminance. Therefore, it can be suitably used for display elements such as large-screen high-definition liquid crystal televisions, smartphones, and tablet devices.
 以下に、実施例及び比較例を挙げ、本発明をより具体的に説明するが、本発明は、これらの実施例に限定して解釈されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not construed as being limited to these examples.
 実施例及び比較例で用いる略語は、以下のとおりである。
DA-1:  1,3-ビス(4-アミノフェネチル)ウレア
DA-2:  パラフェニレンジアミン
DA-3:  1,5-ビス(4-アミノフェノキシ)ペンタン
DA-4:  N-メチル4-アミノフェネチルアミン
DA-5:  4,4’-ジアミノジフェニルメタン
DA-6:  4,4’-ジアミノジフェニルアミン
DA-7:  1,3-ビス(4-アミノフェノキシ)ベンゼン
CA-1:  ピロメリット酸二無水物
CA-2:  1,2,3,4-シクロブタンテトラカルボン酸二無水物
CA-3:  5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物
CA-4:  3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
CA-5:  2,5-ジカルボメトキシテレフタル酸
CA-6:  3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
Abbreviations used in Examples and Comparative Examples are as follows.
DA-1: 1,3-bis (4-aminophenethyl) urea DA-2: paraphenylenediamine DA-3: 1,5-bis (4-aminophenoxy) pentane DA-4: N-methyl 4-aminophenethylamine DA-5: 4,4'-diaminodiphenylmethane DA-6: 4,4'-diaminodiphenylamine DA-7: 1,3-bis (4-aminophenoxy) benzene CA-1: pyromellitic dianhydride CA- 2: 1,2,3,4-cyclobutanetetracarboxylic dianhydride CA-3: 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid Acid anhydride CA-4: 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride CA-5: 2,5-dicar Bomethoxyterephthalic acid CA-6: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
[実施例1]
 撹拌装置及び窒素導入管付きの200ml四つ口フラスコに、DA-1を8.96g(30.0mmol)、及びDA-2を3.24g(30.0mmol)入れ、N-メチル-2-ピロリドン141gを加え、窒素を送りながら撹拌し溶解させた。次いで、このジアミン溶液を撹拌しながらCA-1を12.82g(58.7mmol)添加し、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌して、ポリアミック酸(P1)の溶液を得た。このポリアミック酸(P1)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、297mPa・sであった。
 このポリアミック酸(P1)溶液50.30gにN-メチル-2-ピロリドンを23.37g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を5.83g、及びブチルセロソルブ26.49g加え、P1の濃度が5.5質量%の液晶配向剤を得た。
[Example 1]
A 200 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube was charged with 8.96 g (30.0 mmol) of DA-1 and 3.24 g (30.0 mmol) of DA-2, and N-methyl-2-pyrrolidone. 141 g was added and dissolved by stirring while feeding nitrogen. Next, while stirring this diamine solution, 12.82 g (58.7 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. The mixture was stirred at a water temperature for 20 hours to obtain a polyamic acid (P1) solution. It was 297 mPa * s when the viscosity at 25 degrees C of this polyamic acid (P1) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
50.30 g of this polyamic acid (P1) solution is 23.37 g of N-methyl-2-pyrrolidone and 5.83 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 26.49 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P1 concentration of 5.5% by mass.
 表1には、ポリアミック酸A1の合成に使用された各テトラカルボン酸誘導体成分の量(モル)と各ジアミン成分の量(モル)とをまとめて示した。
同様に表1には、以下の実施例2~8及び比較例1~6において、ポリアミック酸(P2~P8及びA1~A6)の合成に使用された、各テトラカルボン酸誘導体成分の量(モル)と各ジアミン成分の量(モル)もまとめて示した。
 また、表2にはポリアミック酸の混合液であるA7について示した。
Table 1 collectively shows the amount (mol) of each tetracarboxylic acid derivative component used in the synthesis of polyamic acid A1 and the amount (mol) of each diamine component.
Similarly, Table 1 shows the amounts (moles) of the respective tetracarboxylic acid derivative components used for the synthesis of polyamic acids (P2 to P8 and A1 to A6) in Examples 2 to 8 and Comparative Examples 1 to 6 below. ) And the amount (mole) of each diamine component.
Table 2 shows A7 which is a mixed solution of polyamic acid.
(ラビング耐性評価)
 得られた液晶配向剤を1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、50℃のホットプレート上で5分間乾燥後、230℃で30分間焼成して、膜厚70nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング(ロール径120mm、回転数1000rpm、移動速度30mm/sec、及び押し込み量0.4mm)した。この膜表面を、共焦点レーザー顕微鏡(レーザーテック社製)を用いて表面状態を観察し、倍率10倍で、削れカスの有無とそのサイズを観察した。ラビングによる膜削れが多い場合、又は30μm以上の大きさを有する膜削れが発生している場合は、「不良」と判断した。そうした現象がいずれも発生していない場合は、ラビング耐性は「良好」と判断した。評価結果は表3に示す。
(Rubbing resistance evaluation)
The obtained liquid crystal aligning agent is filtered through a 1.0 μm filter, spin-coated on a glass substrate with a transparent electrode, dried on a hot plate at 50 ° C. for 5 minutes, and then baked at 230 ° C. for 30 minutes to form a film. A polyimide film having a thickness of 70 nm was obtained. This polyimide film was rubbed with a rayon cloth (roll diameter 120 mm, rotation speed 1000 rpm, moving speed 30 mm / sec, and pushing amount 0.4 mm). The surface of the film was observed using a confocal laser microscope (manufactured by Lasertec Corporation), and the presence and size of scraped residue were observed at a magnification of 10 times. When film abrasion due to rubbing was large, or when film abrasion having a size of 30 μm or more occurred, it was judged as “bad”. When none of such phenomena occurred, the rubbing resistance was judged as “good”. The evaluation results are shown in Table 3.
(透過率測定(視感透過率(Y値(%)))
 得られた液晶配向剤を1.0μmのフィルターで濾過した後、石英基板上に配向剤をスピンコート塗布し、50℃のホットプレート上で5分間乾燥後、230℃で30分焼成し、膜厚70nmのポリイミド膜を形成した。この基板の塗膜面に向かい合う二辺のみ両面テープを貼り、何も成膜されていない石英基板と貼り合わせた。得られた簡易セルに流動パラフィンを注入し、島津製作所社製のUV-3100PCを使用して透過率を測定した。得られたデータから、視感透過率を算出し、その値が96%以上のものを「良好」、96%未満を「不良」と定義して評価した。評価結果は表3に示す。なお、視感透過率は、市販のソフトウエア(島津製作所社製カラー測定ソフトウエア:P/N206-65207)を使用して算出した。
(Measurement of transmittance (luminous transmittance (Y value (%)))
After the obtained liquid crystal aligning agent is filtered through a 1.0 μm filter, the aligning agent is spin-coated on a quartz substrate, dried on a hot plate at 50 ° C. for 5 minutes, and then baked at 230 ° C. for 30 minutes. A 70 nm thick polyimide film was formed. A double-sided tape was applied only on the two sides facing the coating surface of the substrate, and was bonded to a quartz substrate on which nothing was formed. Liquid paraffin was injected into the obtained simple cell, and the transmittance was measured using UV-3100PC manufactured by Shimadzu Corporation. Luminous transmittance was calculated from the obtained data, and a value of 96% or more was defined as “good” and less than 96% was defined as “bad”. The evaluation results are shown in Table 3. The luminous transmittance was calculated using commercially available software (color measurement software manufactured by Shimadzu Corporation: P / N 206-65207).
(液晶セルの作製)
 IPS(In-Planes Switching)モード液晶表示素子の構成を備えた液晶セルを作製する。
(Production of liquid crystal cell)
A liquid crystal cell having a configuration of an IPS (In-Plane Switching) mode liquid crystal display element is manufactured.
 初めに、電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された、櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。 First, a substrate with electrodes was prepared. The substrate is a glass substrate having a size of 30 mm × 50 mm and a thickness of 0.7 mm. On the substrate, an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed. A SiN (silicon nitride) film formed by a CVD method is formed as a second layer on the counter electrode of the first layer. The film thickness of the second SiN film is 500 nm and functions as an interlayer insulating film. On the second SiN film, a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. is doing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
 第3層目の画素電極は、中央部分が屈曲した、くの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した、くの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。さらに、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements in the shape of a letter with a bent central portion. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements having a bent central portion, the shape of each pixel is not a rectangular shape, and the central portion is similar to the electrode element. It has a shape similar to that of a bold-faced koji that bends at Furthermore, each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が、互いに逆方向となるように構成されている。 When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel. The electrode elements of the electrode are formed so as to form an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the direction of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate plane is It is comprised so that it may become a mutually reverse direction.
 次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と、裏面にITO膜が成膜されているガラス基板のそれぞれにスピンコートした。次いで、50℃のホットプレート上で5分間乾燥後、230℃で30分間焼成して、膜厚70nmの塗膜として、各基板上にポリイミド膜を得た。このポリイミド膜上を、所定のラビング方向で、レーヨン布によりラビング(ロール径120mm、回転数500rpm、移動速度30mm/sec、及び押し込み量0.3mm)した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。 Next, the obtained liquid crystal aligning agent was filtered through a 1.0 μm filter, and then spin-coated on each of the prepared substrate with electrodes and a glass substrate on which an ITO film was formed on the back surface. Subsequently, after drying for 5 minutes on a 50 degreeC hotplate, it baked for 30 minutes at 230 degreeC, and obtained the polyimide film on each board | substrate as a 70 nm-thick coating film. This polyimide film is rubbed with a rayon cloth in a predetermined rubbing direction (roll diameter 120 mm, rotation speed 500 rpm, moving speed 30 mm / sec, pushing amount 0.3 mm), and then ultrasonicated in pure water for 1 minute. Irradiated and dried at 80 ° C. for 10 minutes.
 その後、片方の基板にのみ、4μmのビーズスペーサ(日揮触媒化成社製)を散布した。このように処理された液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.6μmの空セルを作製した。この空セルに液晶(MLC-2041、メルク社製)を常温で真空注入した後、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、IPSモード液晶表示素子を構成する。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。 Thereafter, 4 μm bead spacers (manufactured by JGC Catalysts & Chemicals) were sprayed on only one substrate. Using two types of substrates with a liquid crystal alignment film treated in this way, the rubbing directions are combined so as to be antiparallel, the periphery is sealed leaving a liquid crystal injection port, and the cell gap is 3.6 μm. An empty cell was produced. Liquid crystal (MLC-2041, manufactured by Merck & Co., Inc.) was vacuum-injected into the empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell. The obtained liquid crystal cell constitutes an IPS mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
(残像回復時間評価(残像評価))
 以下の光学系等を用いて残像の評価を行った。
 作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。
 次に、この液晶セルに周波数30Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
(Afterimage recovery time evaluation (afterimage evaluation))
The afterimage was evaluated using the following optical system and the like.
The prepared liquid crystal cell is installed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
Next, a VT curve (voltage-transmittance curve) was measured while applying an AC voltage with a frequency of 30 Hz to the liquid crystal cell, and an AC voltage with a relative transmittance of 23% was calculated as a drive voltage.
 残像評価では、相対透過率が23%となる、周波数30Hzの交流電圧を印加して液晶セルを駆動させながら、同時に2Vの直流電圧を印加し、120分間駆動させた。その後、印加直流電圧値を0Vにして直流電圧の印加のみを停止し、その状態でさらに60分駆動した。 In the afterimage evaluation, a DC voltage of 2 V was simultaneously applied to drive the liquid crystal cell by applying an AC voltage of 30 Hz with a relative transmittance of 23%, and the liquid crystal cell was driven for 120 minutes. Thereafter, the applied DC voltage value was set to 0 V, and only the application of the DC voltage was stopped, and the device was further driven for 60 minutes in this state.
 残像評価は、直流電圧の印加を停止した時点から60分間が経過するまでに、相対透過率が25%以下に回復した場合に、「良好」として評価を行った。相対透過率が25%以下に回復するまでに60分間以上を要した場合には、「不良」として評価した。
 上述した方法に従う残像評価は、液晶セルの温度が23℃の状態と60℃の状態の2種類の温度条件下で行った。評価結果は表3に示す。
The afterimage evaluation was evaluated as “good” when the relative transmittance recovered to 25% or less by 60 minutes after the application of the DC voltage was stopped. When it took 60 minutes or more for the relative transmittance to recover to 25% or less, it was evaluated as “bad”.
The afterimage evaluation according to the above-described method was performed under two types of temperature conditions: a liquid crystal cell temperature of 23 ° C. and a temperature of 60 ° C. The evaluation results are shown in Table 3.
(長期駆動評価(残像評価))
 上記した残像評価に使用した液晶セルと同様の構造の液晶セルを準備した。
 この液晶セルを用い、60℃の恒温環境下、周波数30Hzで8VPPの交流電圧を100時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
(Long-term drive evaluation (afterimage evaluation))
A liquid crystal cell having the same structure as the liquid crystal cell used for the above-described afterimage evaluation was prepared.
Using this liquid crystal cell, an AC voltage of 8 V PP was applied for 100 hours at a frequency of 30 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。さらに、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで、液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。さらに、第1画素と第2画素の角度Δ値の平均値を、液晶セルの角度Δとして算出した。この液晶セルの角度Δの値が0.2度を越える場合には、「不良」と定義し評価した。この液晶セルの角度Δの値が0.2度を越えない場合には、「良好」として評価した。評価結果は表3に示す。 After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Further, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as the angle Δ. Similarly, for the second pixel, the second area was compared with the first area, and a similar angle Δ was calculated. Furthermore, the average value of the angle Δ values of the first pixel and the second pixel was calculated as the angle Δ of the liquid crystal cell. When the value of the angle Δ of the liquid crystal cell exceeded 0.2 degrees, it was defined as “defective” and evaluated. When the value of the angle Δ of the liquid crystal cell did not exceed 0.2 degrees, it was evaluated as “good”. The evaluation results are shown in Table 3.
[実施例2]
 撹拌装置及び窒素導入管付きの200ml四つ口フラスコに、DA-1を7.46g(25.0mmol)、及びDA-3を7.15g(25.0mmol)入れ、N-メチル-2-ピロリドン143.3gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を10.26g(47.0mmol)添加し、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌して、ポリアミック酸(P2)の溶液を得た。このポリアミック酸(P2)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、305mPa・sであった。
 このポリアミック酸(P2)溶液50.40gにN-メチル-2-ピロリドンを22.07g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を5.74g、及びブチルセロソルブ26.07g加え、P2の濃度が5.5質量%の液晶配向剤を得た。
[Example 2]
In a 200 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube, 7.46 g (25.0 mmol) of DA-1 and 7.15 g (25.0 mmol) of DA-3 were placed, and N-methyl-2-pyrrolidone was added. 143.3 g was added and dissolved while stirring while feeding nitrogen. While stirring this diamine solution, 10.26 g (47.0 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass, and the water temperature was changed under a nitrogen atmosphere. And stirred for 20 hours to obtain a solution of polyamic acid (P2). It was 305 mPa * s when the viscosity at 25 degrees C of this polyamic acid (P2) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
50.40 g of this polyamic acid (P2) solution is 22.07 g of N-methyl-2-pyrrolidone and 5.74 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 26.07 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P2 concentration of 5.5% by mass.
[実施例3]
 撹拌装置及び窒素導入管付きの100ml四つ口フラスコに、DA-1を4.47 g(15.0mmol)、及びDA-2を1.62g(15.0mmol)入れ、N-メチル-2-ピロリドン62.9gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-3を1.59g(6.0mmol)、及びN-メチル-2-ピロリドン9.0gを加え、窒素を送りながら撹拌した。3時間攪拌後、CA-1を5.04g(23.1mmol)加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌してポリアミック酸(P3)の溶液を得た。このポリアミック酸(P3)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、280mPa・sであった。
 このポリアミック酸(P3)溶液83.48gにN-メチル-2-ピロリドンを26.92g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を9.60g、及びブチルセロソルブ40.0g加え、P3の濃度が6.0質量%の液晶配向剤を得た。
[Example 3]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 4.47 g (15.0 mmol) of DA-1 and 1.62 g (15.0 mmol) of DA-2 were placed, and N-methyl-2- 62.9 g of pyrrolidone was added and dissolved while stirring while feeding nitrogen. While stirring this diamine solution, 1.59 g (6.0 mmol) of CA-3 and 9.0 g of N-methyl-2-pyrrolidone were added and stirred while feeding nitrogen. After stirring for 3 hours, 5.04 g (23.1 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at a water temperature for 20 hours under a nitrogen atmosphere. Thus, a solution of polyamic acid (P3) was obtained. It was 280 mPa * s when the viscosity at 25 degrees C of this polyamic acid (P3) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
83.48 g of this polyamic acid (P3) solution is 26.92 g of N-methyl-2-pyrrolidone and 9.60 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 40.0 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P3 concentration of 6.0% by mass.
[実施例4]
 撹拌装置及び窒素導入管付きの100ml四つ口フラスコに、DA-1を4.83g(16.2mmol)、及びDA-2を1.17g(10.8mmol)入れ、N-メチル-2-ピロリドン62.4gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-3を2.85g(10.8mmol)、及びN-メチル-2-ピロリドン8.9gを加え、窒素を送りながら撹拌した。3時間攪拌後、CA-1を3.30g(15.1mmol)加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌してポリアミック酸(P4)の溶液を得た。このポリアミック酸(P4)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、288mPa・sであった。
 このポリアミック酸(P4)溶液82.76gにN-メチル-2-ピロリドンを27.64g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を9.60g、及びブチルセロソルブ40.0g加え、P4の濃度が6.0質量%の液晶配向剤を得た。
[Example 4]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 4.83 g (16.2 mmol) of DA-1 and 1.17 g (10.8 mmol) of DA-2 were placed, and N-methyl-2-pyrrolidone was added. 62.4 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 2.85 g (10.8 mmol) of CA-3 and 8.9 g of N-methyl-2-pyrrolidone were added and stirred while feeding nitrogen. After stirring for 3 hours, 3.30 g (15.1 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at a water temperature in a nitrogen atmosphere for 20 hours. Thus, a solution of polyamic acid (P4) was obtained. It was 288 mPa * s when the viscosity at 25 degrees C of this polyamic acid (P4) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
9.60 g of N-methyl-2-pyrrolidone solution containing 27.64 g of N-methyl-2-pyrrolidone and 1.0% by mass of 3-aminopropyltriethoxysilane in 82.76 g of this polyamic acid (P4) solution And 40.0 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P4 concentration of 6.0% by mass.
[実施例5]
 撹拌装置及び窒素導入管付きの100ml四つ口フラスコに、DA-1を1.85g(6.2mmol)、及びDA-2を1.34g(12.4mmol)及びDA-3を3.55g(12.4mmol)入れ、N-メチル-2-ピロリドン64.7gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-2を2.43g(12.4mmol)、及びN-メチル-2-ピロリドン9.5gを加え、窒素を送りながら撹拌した。1時間攪拌後、CA-1を3.58g(16.4mmol)加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌してポリアミック酸(P5)の溶液を得た。このポリアミック酸(P5)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、264mPa・sであった。
 このポリアミック酸(P5)溶液84.21gにN-メチル-2-ピロリドンを26.19g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を9.60g、及びブチルセロソルブ40.0g加え、P5の濃度が6.0質量%の液晶配向剤を得た。
[Example 5]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.85 g (6.2 mmol) of DA-1, 1.34 g (12.4 mmol) of DA-2, and 3.55 g of DA-3 ( 12.4 mmol), 64.7 g of N-methyl-2-pyrrolidone was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.43 g (12.4 mmol) of CA-2 and 9.5 g of N-methyl-2-pyrrolidone were added and stirred while feeding nitrogen. After stirring for 1 hour, 3.51 g (16.4 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at a water temperature in a nitrogen atmosphere for 20 hours. Thus, a solution of polyamic acid (P5) was obtained. It was 264 mPa * s when the viscosity at 25 degrees C of this polyamic acid (P5) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
84.21 g of this polyamic acid (P5) solution was 26.19 g of N-methyl-2-pyrrolidone and 9.60 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 40.0 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P5 concentration of 6.0% by mass.
[実施例6]
 撹拌装置及び窒素導入管付きの100ml四つ口フラスコに、DA-1を4.62g(15.5mmol)、及びDA-2を1.68g(15.5mmol)入れ、N-メチル-2-ピロリドン62.9gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-2を1.22g(6.2mmol)、及びN-メチル-2-ピロリドン8.7gを加え、窒素を送りながら撹拌した。1時間攪拌後、CA-1を5.04g(23.1mmol)加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌してポリアミック酸(P6)の溶液を得た。このポリアミック酸(P6)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、262mPa・sであった。
 このポリアミック酸(P6)溶液84.96gにN-メチル-2-ピロリドンを25.44g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を9.60g、及びブチルセロソルブ40.0g加え、P6の濃度が6.0質量%の液晶配向剤を得た。
[Example 6]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube, 4.61 g (15.5 mmol) of DA-1 and 1.68 g (15.5 mmol) of DA-2 were placed, and N-methyl-2-pyrrolidone was added. 62.9 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 1.22 g (6.2 mmol) of CA-2 and 8.7 g of N-methyl-2-pyrrolidone were added and stirred while feeding nitrogen. After stirring for 1 hour, 5.04 g (23.1 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at a water temperature in a nitrogen atmosphere for 20 hours. Thus, a solution of polyamic acid (P6) was obtained. It was 262 mPa * s when the viscosity at 25 degrees C of this polyamic acid (P6) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
84.96 g of this polyamic acid (P6) solution is 25.44 g of N-methyl-2-pyrrolidone and 9.60 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 40.0 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P6 concentration of 6.0% by mass.
[実施例7]
 撹拌装置及び窒素導入管付きの200ml四つ口フラスコに、DA-1を10.39g(34.8mmol)、及びDA-2を2.51g(23.2mmol)入れ、N-メチル-2-ピロリドン142.9gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-2を3.87g(19.7mmol)、及びN-メチル-2-ピロリドン35.0gを加え、窒素を送りながら撹拌した。2時間攪拌後、CA-1を7.82g(35.9mmol)加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌してポリアミック酸(P7)の溶液を得た。このポリアミック酸(P7)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、328mPa・sであった。
 このポリアミック酸(P7)溶液105.08gにN-メチル-2-ピロリドンを42.93g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を12.0g、及びブチルセロソルブ40.0g加え、P7の濃度が6.0質量%の液晶配向剤を得た。
[Example 7]
A 200 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube was charged with 10.39 g (34.8 mmol) of DA-1 and 2.51 g (23.2 mmol) of DA-2, and N-methyl-2-pyrrolidone. 142.9g was added and it stirred and dissolved, sending nitrogen. While stirring this diamine solution, 3.87 g (19.7 mmol) of CA-2 and 35.0 g of N-methyl-2-pyrrolidone were added and stirred while feeding nitrogen. After stirring for 2 hours, 7.82 g (35.9 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass, and the mixture was stirred at a water temperature in a nitrogen atmosphere for 20 hours. Thus, a solution of polyamic acid (P7) was obtained. It was 328 mPa * s when the viscosity at 25 degrees C of this polyamic acid (P7) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
12.0 g of N-methyl-2-pyrrolidone solution containing 42.93 g of N-methyl-2-pyrrolidone and 1.0% by mass of 3-aminopropyltriethoxysilane in 105.08 g of this polyamic acid (P7) solution And 40.0 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P7 concentration of 6.0% by mass.
[実施例8]
 撹拌装置及び窒素導入管付きの200ml四つ口フラスコに、DA-1を4.18g(14.0mmol)、及びDA-4を2.10g(14.0mmol)入れ、N-メチル-2-ピロリドン70.5gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を5.86g(26.9mmol)加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌してポリアミック酸(P8)の溶液を得た。このポリアミック酸(P8)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、311mPa・sであった。
 このポリアミック酸(P8)溶液55.74gにN-メチル-2-ピロリドンを15.61g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を6.2g、及びブチルセロソルブ25.85g加え、P8の濃度が6.0質量%の液晶配向剤を得た。
[Example 8]
In a 200 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 4.18 g (14.0 mmol) of DA-1 and 2.10 g (14.0 mmol) of DA-4 were placed, and N-methyl-2-pyrrolidone was added. 70.5 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.86 g (26.9 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. The solution was stirred for a time to obtain a polyamic acid (P8) solution. It was 311 mPa * s when the viscosity at 25 degrees C of this polyamic acid (P8) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
55.74 g of this polyamic acid (P8) solution is 15.61 g of N-methyl-2-pyrrolidone and 6.2 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 25.85 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P8 concentration of 6.0% by mass.
[実施例9]
 撹拌装置及び窒素導入管付きの200ml四つ口フラスコに、CA-5を7.94g(28.1mmol)、及びN-メチル-2-ピロリドン136.5gを入れ、完全に溶解させた。次に、トリエチルアミンを6.16g加え、DA-1を4.33g(14.5mmol)、及びDA-4を2.18g(14.5mmol)入れ、完全に溶解させた。その後、反応液を水冷し、マグネチックスターラーにて攪拌しながら、ジフェニル(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホナートを23.35g(60.9mmol)添加し、さらにN-メチル-2-ピロリドン18.75gを加えて、5時間撹拌を続けた。その後、反応溶液の6倍質量のイソプロピルアルコールを攪拌しているところに、反応溶液を少しずつ注ぎ1時間攪拌を続けた。その後、ろ過によって得られた析出物を、2倍質量のイソプロピルアルコールとともに1時間攪拌を行った後、再度ろ過して析出物を回収した。その後、この作業を2回繰り返し、得られた析出物を100℃、減圧下で24時間乾燥させて、10.54gのポリアミック酸エステル(P9)を得た。得られた固形物のうちの5.14gを、N-メチル-2-ピロリドン37.69gで完全に溶解させた。次に、その溶液にN-メチル-2-ピロリドン38.55g、及びブチルセロソルブ20.10gを加え、P9の濃度が4.5質量%の液晶配向剤を得た。
[Example 9]
In a 200 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 7.94 g (28.1 mmol) of CA-5 and 136.5 g of N-methyl-2-pyrrolidone were added and completely dissolved. Next, 6.16 g of triethylamine was added, 4.31 g (14.5 mmol) of DA-1 and 2.18 g (14.5 mmol) of DA-4 were added and completely dissolved. Thereafter, the reaction liquid was cooled with water, and while stirring with a magnetic stirrer, 23.35 g (60.9 mmol) of diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate was added, and 18.75 g of N-methyl-2-pyrrolidone was added and stirring was continued for 5 hours. Thereafter, the reaction solution was poured little by little while stirring isopropyl alcohol having a mass six times that of the reaction solution, and stirring was continued for 1 hour. Thereafter, the precipitate obtained by filtration was stirred with double mass of isopropyl alcohol for 1 hour, and then filtered again to collect the precipitate. Thereafter, this operation was repeated twice, and the resulting precipitate was dried at 100 ° C. under reduced pressure for 24 hours to obtain 10.54 g of a polyamic acid ester (P9). 5.14 g of the obtained solid was completely dissolved with 37.69 g of N-methyl-2-pyrrolidone. Next, 38.55 g of N-methyl-2-pyrrolidone and 20.10 g of butyl cellosolve were added to the solution to obtain a liquid crystal aligning agent having a P9 concentration of 4.5 mass%.
[実施例10]
 撹拌装置及び窒素導入管付きの100ml四つ口フラスコに、DA-1を1.50g(5.03mmol)、及びDA-7を5.85g(20.0mmol)入れ、N-メチル-2-ピロリドン73gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を5.23g(24.0mmol)添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌して、ポリアミック酸(P10)の溶液を得た。このポリアミック酸溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、327mPa・sであった。
 このポリアミック酸溶液35.10gにN-メチル-2-ピロリドンを15.49g、及びブチルセロソルブ16.86g加え、P10の濃度が6.0質量%の液晶配向剤を得た。
[Example 10]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 1.50 g (5.03 mmol) of DA-1 and 5.85 g (20.0 mmol) of DA-7 were placed, and N-methyl-2-pyrrolidone was added. 73 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.21 g (24.0 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. And stirred for 20 hours to obtain a solution of polyamic acid (P10). It was 327 mPa * s when the viscosity at 25 degrees C of this polyamic acid solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
To 35.10 g of this polyamic acid solution, 15.49 g of N-methyl-2-pyrrolidone and 16.86 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P10 concentration of 6.0% by mass.
[実施例11]
 撹拌装置及び窒素導入管付きの100ml四つ口フラスコに、DA-1を3.73g(12.5mmol)、及びDA-7を3.65g(12.5mmol)入れ、N-メチル-2-ピロリドン73gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を5.18g(23.8mmol)添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌して、ポリアミック酸(P11)の溶液を得た。このポリアミック酸溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、289mPa・sであった。
 このポリアミック酸溶液11.92gに、N-メチル-2-ピロリドンを10.74g、及びブチルセロソルブ8.00g加え、P11の濃度が4.5質量%の液晶配向剤を得た。
[Example 11]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 3.71 g (12.5 mmol) of DA-1 and 3.65 g (12.5 mmol) of DA-7 were placed, and N-methyl-2-pyrrolidone was added. 73 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.18 g (23.8 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. And stirred for 20 hours to obtain a solution of polyamic acid (P11). It was 289 mPa * s when the viscosity at 25 degrees C of this polyamic acid solution was confirmed with the E-type viscosity meter (made by the Toki Sangyo company).
To 11.92 g of this polyamic acid solution, 10.74 g of N-methyl-2-pyrrolidone and 8.00 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P11 concentration of 4.5 mass%.
[実施例12]
 撹拌装置及び窒素導入管付きの100ml四つ口フラスコに、DA-1を2.21g(7.41mmol)、及びDA-7を5.01g(17.1mmol)入れ、N-メチル-2-ピロリドン73gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-1を5.07g(23.2mmol)添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌して、ポリアミック酸(P12)の溶液を得た。このポリアミック酸溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、267mPa・sであった。
 このポリアミック酸溶液49.84gに、N-メチル-2-ピロリドンを20.62g、及びブチルセロソルブ23.49g加え、P12の濃度が6.0質量%の液晶配向剤を得た。
[Example 12]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 2.21 g (7.41 mmol) of DA-1 and 5.01 g (17.1 mmol) of DA-7 were placed, and N-methyl-2-pyrrolidone was added. 73 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 5.07 g (23.2 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. And stirred for 20 hours to obtain a solution of polyamic acid (P12). It was 267 mPa * s when the viscosity at 25 degrees C of this polyamic acid solution was confirmed with the E-type viscosity meter (made by the Toki Sangyo company).
To 49.84 g of this polyamic acid solution, 20.62 g of N-methyl-2-pyrrolidone and 23.49 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P12 concentration of 6.0% by mass.
[実施例13]
 撹拌装置及び窒素導入管付きの100ml四つ口フラスコに、DA-1を1.43 g(4.80mmol)、及びDA-7を5.61g(19.2mmol)入れ、N-メチル-2-ピロリドン79gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-6を6.77g(23.0mmol)を添加し、更に固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、水温で20時間撹拌して、ポリアミック酸(P13)の溶液を得た。このポリアミック酸溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、240mPa・sであった。
 このポリアミック酸溶液14.76gにN-メチル-2-ピロリドンを7.22g、及びブチルセロソルブ7.32g加え、P13の濃度が6.0質量%の液晶配向剤を得た。
[Example 13]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.41 g (4.80 mmol) of DA-1 and 5.61 g (19.2 mmol) of DA-7 were placed, and N-methyl-2- Pyrrolidone 79 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 6.77 g (23.0 mmol) of CA-6 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. The mixture was stirred at a water temperature for 20 hours to obtain a polyamic acid (P13) solution. It was 240 mPa * s when the viscosity at 25 degrees C of this polyamic acid solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
To 14.76 g of this polyamic acid solution, 7.22 g of N-methyl-2-pyrrolidone and 7.32 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a P13 concentration of 6.0% by mass.
[比較例1]
 撹拌装置及び窒素導入管付きの200ml四つ口フラスコに、DA-3を17.75g(62.0mmol)入れ、N-メチル-2-ピロリドン139.1gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を12.91g(59.2mmol)加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、50度で加熱しながら20時間撹拌してポリアミック酸(A1)の溶液を得た。このポリアミック酸(A1)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、530mPa・sであった。
 このポリアミック酸(A1)溶液50.00gにN-メチル-2-ピロリドンを43.95g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を5.6g、及びブチルセロソルブ24.89g加え、A1の濃度が4.5質量%の液晶配向剤を得た。
[Comparative Example 1]
In a 200 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 17.75 g (62.0 mmol) of DA-3 was added, 139.1 g of N-methyl-2-pyrrolidone was added, and the mixture was stirred and dissolved while feeding nitrogen. It was. While stirring this diamine solution under water cooling, 12.91 g (59.2 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. The mixture was stirred for 20 hours while heating at 50 degrees to obtain a solution of polyamic acid (A1). It was 530 mPa * s when the viscosity at 25 degrees C of this polyamic acid (A1) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
5.6 g of N-methyl-2-pyrrolidone solution containing 43.95 g of N-methyl-2-pyrrolidone and 1.0% by mass of 3-aminopropyltriethoxysilane in 50.00 g of this polyamic acid (A1) solution And 24.89 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having an A1 concentration of 4.5 mass%.
[比較例2]
 撹拌装置及び窒素導入管付きの200ml四つ口フラスコに、DA-2を3.25g(30.0mmol)、及びDA-3を8.60g(30.0mmol)入れ、N-メチル-2-ピロリドン138.1gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を12.59g(57.7mmol)加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、20時間撹拌してポリアミック酸(A2)の溶液を得た。このポリアミック酸(A2)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、310mPa・sであった。
 このポリアミック酸(A2)溶液52.34gにN-メチル-2-ピロリドンを23.18g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を5.98g、及びブチルセロソルブ27.17g加え、A2の濃度が5.5質量%の液晶配向剤を得た。
[Comparative Example 2]
A 200 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube was charged with 3.25 g (30.0 mmol) of DA-2 and 8.60 g (30.0 mmol) of DA-3, and N-methyl-2-pyrrolidone. 138.1 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 12.59 g (57.7 mmol) of CA-1 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. The solution was stirred for 20 hours to obtain a polyamic acid (A2) solution. It was 310 mPa * s when the viscosity at 25 degrees C of this polyamic acid (A2) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
52.34 g of this polyamic acid (A2) solution is 23.18 g of N-methyl-2-pyrrolidone and 5.98 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 27.17 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a concentration of A2 of 5.5% by mass.
[比較例3]
 撹拌装置及び窒素導入管付きの200ml四つ口フラスコに、DA-1を7.64g(25.6mmol)、及びDA-2を4.15g(38.4mmol)入れ、N-メチル-2-ピロリドン141.6gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を6.81g(34.7mmol)及びN-メチル-2-ピロリドン35.4gを加え、窒素を送りながら撹拌した。2時間攪拌後、CA-1を5.58g(25.6mmol)加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、20時間撹拌してポリアミック酸(A3)の溶液を得た。このポリアミック酸(A3)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、276mPa・sであった。
 このポリアミック酸(A3)溶液53.33gにN-メチル-2-ピロリドンを22.01g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を6.12g、及びブチルセロソルブ20.35g加え、A3の濃度が6.0質量%の液晶配向剤を得た。
[Comparative Example 3]
In a 200 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube, 7.64 g (25.6 mmol) of DA-1 and 4.15 g (38.4 mmol) of DA-2 were placed, and N-methyl-2-pyrrolidone was added. 141.6 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 6.81 g (34.7 mmol) of CA-2 and 35.4 g of N-methyl-2-pyrrolidone were added and stirred while feeding nitrogen. After stirring for 2 hours, 5.58 g (25.6 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid concentration was 12% by mass, and the mixture was stirred for 20 hours under a nitrogen atmosphere. A solution of polyamic acid (A3) was obtained. It was 276 mPa * s when the viscosity at 25 degrees C of this polyamic acid (A3) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
53.33 g of this polyamic acid (A3) solution was 22.01 g of N-methyl-2-pyrrolidone and 6.12 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane. And 20.35 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having a concentration of A3 of 6.0% by mass.
[比較例4]
 撹拌装置及び窒素導入管付きの100ml四つ口フラスコに、DA-1を3.14g(10.5mmol)、及びDA-2を2.64g(24.4mmol)入れ、N-メチル-2-ピロリドン71.6gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を6.55g(33.4mmol)を加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、20時間撹拌してポリアミック酸(A4)の溶液を得た。このポリアミック酸(A4)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、274mPa・sであった。
 このポリアミック酸(A4)溶液20.09gにN-メチル-2-ピロリドンを8.64g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を2.32g、及びブチルセロソルブ7.76g加え、A4の濃度が6.0質量%の液晶配向剤を得た。
[Comparative Example 4]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen introduction tube, 3.14 g (10.5 mmol) of DA-1 and 2.64 g (24.4 mmol) of DA-2 were placed, and N-methyl-2-pyrrolidone was added. 71.6 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 6.55 g (33.4 mmol) of CA-2 was added, and N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass. Under stirring for 20 hours, a solution of polyamic acid (A4) was obtained. It was 274 mPa * s when the viscosity at 25 degrees C of this polyamic acid (A4) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
20.64 g of N-methyl-2-pyrrolidone and 20.32 g of N-methyl-2-pyrrolidone solution containing 1.0% by mass of 3-aminopropyltriethoxysilane were added to 20.09 g of this polyamic acid (A4) solution. And 7.76 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having an A4 concentration of 6.0% by mass.
[比較例5]
 撹拌装置及び窒素導入管付きの100ml四つ口フラスコに、DA-1を0.84g(2.8mmol)、及びDA-2を1.21g(11.2mmol)、DA-3を4.01g(14.0mmol)入れ、N-メチル-2-ピロリドン72.6gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を2.67g(10.1mmol)を加えた。2時間攪拌後、CA-1を3.66g(16.8mmol)加え、さらに固形分濃度が12質量%になるようにN-メチル-2-ピロリドンを加え、窒素雰囲気下、20時間撹拌してポリアミック酸(A5)の溶液を得た。このポリアミック酸(A5)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、358mPa・sであった。
 このポリアミック酸(A5)溶液50.59gにN-メチル-2-ピロリドンを14.51g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を5.66g、及びブチルセロソルブ23.59g加え、A5の濃度が6.0質量%の液晶配向剤を得た。
[Comparative Example 5]
In a 100 ml four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.81 g (2.8 mmol) of DA-1, 1.21 g (11.2 mmol) of DA-2, 4.01 g of DA-3 ( 14.0 mmol), 72.6 g of N-methyl-2-pyrrolidone was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 2.67 g (10.1 mmol) of CA-3 was added. After stirring for 2 hours, 3.66 g (16.8 mmol) of CA-1 was added, N-methyl-2-pyrrolidone was further added so that the solid content concentration was 12% by mass, and the mixture was stirred for 20 hours under a nitrogen atmosphere. A solution of polyamic acid (A5) was obtained. It was 358 mPa * s when the viscosity at 25 degrees C of this polyamic acid (A5) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
5.66 g of an N-methyl-2-pyrrolidone solution containing 14.51 g of N-methyl-2-pyrrolidone and 1.0% by mass of 3-aminopropyltriethoxysilane in 50.59 g of this polyamic acid (A5) solution. And 23.59 g of butyl cellosolve were added to obtain a liquid crystal aligning agent having an A5 concentration of 6.0% by mass.
[比較例6]
 撹拌装置及び窒素導入管付きの200ml四つ口フラスコに、DA-6を7.97g(40.0mmol)入れ、N-メチル-2-ピロリドン98.6gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を6.96g(35.5mmol)とN-メチル-2-ピロリドンを35.9g加えて、窒素雰囲気下、水冷下で3時間攪拌した。その後、DA-5を1.98g(10.0mmol)とN-メチル-2-ピロリドン17.9gを加えて攪拌し溶解させた。DA-5が溶解した後、CA-4を3.00g(10.0mmol)とN-メチル-2-ピロリドンを26.9g加えて、再び窒素雰囲気下、水冷下で3時間攪拌してポリアミック酸(A6)の溶液を得た。このポリアミック酸(A6)溶液の25℃における粘度を、E型粘度計(東機産業社製)で確認したところ、165mPa・sであった。
 このポリアミック酸(A6)溶液50.00gにN-メチル-2-ピロリドンを10.55g、3-アミノプロピルトリエトキシシランが1.0質量%入ったN-メチル-2-ピロリドン溶液を4.9g、及びブチルセロソルブ16.37g加え、A6の濃度が6.0質量%の溶液を得た。
[Comparative Example 6]
In a 200 ml four-necked flask equipped with a stirrer and a nitrogen introducing tube, 7.97 g (40.0 mmol) of DA-6 was added, 98.6 g of N-methyl-2-pyrrolidone was added, and the mixture was stirred and dissolved while feeding nitrogen. It was. While stirring this diamine solution under water cooling, 6.96 g (35.5 mmol) of CA-2 and 35.9 g of N-methyl-2-pyrrolidone were added, and the mixture was stirred under water cooling for 3 hours under a nitrogen atmosphere. Thereafter, 1.98 g (10.0 mmol) of DA-5 and 17.9 g of N-methyl-2-pyrrolidone were added and dissolved by stirring. After dissolution of DA-5, 3.00 g (10.0 mmol) of CA-4 and 26.9 g of N-methyl-2-pyrrolidone were added, and the mixture was again stirred under a nitrogen atmosphere for 3 hours under water cooling to polyamic acid. A solution of (A6) was obtained. It was 165 mPa * s when the viscosity at 25 degrees C of this polyamic acid (A6) solution was confirmed with the E-type viscosity meter (made by Toki Sangyo Co., Ltd.).
4.9 g of an N-methyl-2-pyrrolidone solution containing 10.55 g of N-methyl-2-pyrrolidone and 1.0% by mass of 3-aminopropyltriethoxysilane in 50.00 g of this polyamic acid (A6) solution. And 16.37 g of butyl cellosolve were added to obtain a solution having a concentration of A6 of 6.0% by mass.
 また、A1のポリアミック酸溶液50.00gにN-メチル-2-ピロリドンを24.67g及びブチルセロソルブを18.66g加え、A1の濃度が6.0質量%の液晶配向剤も得た。この二つの6.0質量%の溶液を、A1:A6が2:8となる分量で混合し、ポリアミック酸溶液A7を得た。 Further, 24.67 g of N-methyl-2-pyrrolidone and 18.66 g of butyl cellosolve were added to 50.00 g of the polyamic acid solution of A1, and a liquid crystal aligning agent having an A1 concentration of 6.0% by mass was also obtained. These two 6.0% by mass solutions were mixed in an amount such that A1: A6 was 2: 8 to obtain a polyamic acid solution A7.
 実施例2~13、及び比較例1~6で得られた液晶配向剤を用いて、実施例1と同様にして、膜や液晶セル等の評価試料を作製し、ラビング耐性、視感透過率評価、残像評価、及び長期駆動による残像評価を行った。得られた結果は、表3に示す。 Using the liquid crystal aligning agents obtained in Examples 2 to 13 and Comparative Examples 1 to 6, evaluation samples such as films and liquid crystal cells were prepared in the same manner as in Example 1, and rubbing resistance and luminous transmittance were obtained. Evaluation, afterimage evaluation, and afterimage evaluation by long-term driving were performed. The results obtained are shown in Table 3.
 実施例1~13の液晶配向剤を用いて形成された膜では、ラビング耐性が良好であり、透過率も良好であった。さらに、液晶セルの評価における液晶配向膜として適用された場合、残像評価の温度依存性もなく、長期駆動による残像評価の結果も良好であった。 The films formed using the liquid crystal aligning agents of Examples 1 to 13 had good rubbing resistance and good transmittance. Further, when applied as a liquid crystal alignment film in the evaluation of a liquid crystal cell, there was no temperature dependency of the afterimage evaluation, and the result of the afterimage evaluation by long-term driving was also good.
 一方、比較例1~6の液晶配向剤を用いて形成された液晶配向膜では、残像特性と高い透過率、さらにはラビング耐性を兼ね備えることが難しく、これら全ての項目を良好とすることができないことが分かった。ジアミン成分としてDA-1を用いていない比較例1及び比較例2、並びにジアミン成分としてDA-1の使用量が少ない比較例5では、ラビング耐性が不良であることが分かった。
テトラカルボン酸誘導体成分にCA-1を用いない比較例4及び導入量が少ない比較例3では、23℃での残像回復が不良であり、比較例4に関しては、長期駆動による残像評価の結果も不良であることがわかった。
 また、DA-1を用いない比較例6では高い視感透過率が得られないことがわかった。
On the other hand, the liquid crystal alignment films formed using the liquid crystal alignment agents of Comparative Examples 1 to 6 are difficult to combine afterimage characteristics, high transmittance, and rubbing resistance, and all these items cannot be improved. I understood that. It was found that in Comparative Examples 1 and 2 in which DA-1 was not used as the diamine component, and in Comparative Example 5 in which the amount of DA-1 used as the diamine component was small, the rubbing resistance was poor.
In Comparative Example 4 in which CA-1 is not used for the tetracarboxylic acid derivative component and in Comparative Example 3 in which the introduction amount is small, afterimage recovery at 23 ° C. is poor. It turned out to be bad.
It was also found that high luminous transmittance could not be obtained in Comparative Example 6 in which DA-1 was not used.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 
Figure JPOXMLDOC01-appb-T000023
 
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 本発明の液晶配向剤を用いることにより、高い透過率を有し、ラビング耐性に優れ、残像等の表示不良が広い温度範囲で改善された液晶配向膜を得ることができる。該液晶配向膜は、従来から高い表示品位が求められてきた大型液晶テレビにおける利用や、近年急速に表示品位の向上が求められている携帯電話やタブレット型デバイス用の液晶表示素子における利用が可能である。
 なお、2011年10月27日に出願された日本特許出願2011-235976号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
By using the liquid crystal aligning agent of the present invention, a liquid crystal aligning film having high transmittance, excellent rubbing resistance, and improved display defects such as afterimages in a wide temperature range can be obtained. The liquid crystal alignment film can be used in large-sized liquid crystal televisions, which have conventionally been required to have high display quality, and in liquid crystal display elements for mobile phones and tablet devices that have recently been required to rapidly improve display quality. It is.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2011-235976 filed on October 27, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (8)

  1.  ジアミン成分とテトラカルボン酸誘導体とを反応させて得られるポリイミド前駆体を含有する液晶配向剤であって、
     前記ジアミン成分が下記式(1)で表されるジアミン化合物を20モル%以上100モル%以下の含有量で含み、かつ前記テトラカルボン酸誘導体が芳香族テトラカルボン酸誘導体を50モル%以上100モル%未満の含有量で含むか、又は、
     前記ジアミン成分が下記式(1)で表されるジアミン化合物を20モル%以上100モル%未満の含有量で含み、かつ前記テトラカルボン酸誘導体が芳香族テトラカルボン酸誘導体を50モル%以上100モル%以下の含有量で含むことを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは、酸素原子又は硫黄原子であり、Y及びYは、独立して、単結合、-O-、-S-、-OCO-、又はCOO-であり、R及びRは、独立して炭素数1~3のアルキレン基である。)
    A liquid crystal aligning agent containing a polyimide precursor obtained by reacting a diamine component and a tetracarboxylic acid derivative,
    The diamine component contains a diamine compound represented by the following formula (1) in a content of 20 mol% or more and 100 mol% or less, and the tetracarboxylic acid derivative contains an aromatic tetracarboxylic acid derivative of 50 mol% or more and 100 mol%. Containing less than% content, or
    The diamine component contains a diamine compound represented by the following formula (1) in a content of 20 mol% or more and less than 100 mol%, and the tetracarboxylic acid derivative contains an aromatic tetracarboxylic acid derivative of 50 mol% or more and 100 mol%. The liquid crystal aligning agent characterized by including by content below%.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), X is an oxygen atom or a sulfur atom, and Y 1 and Y 2 are each independently a single bond, —O—, —S—, —OCO—, or COO—; R 1 and R 2 are each independently an alkylene group having 1 to 3 carbon atoms.)
  2.  前記ジアミン成分は、下記式(AM1)で表されるジアミン化合物をさらに含有する請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(AM1)中、Rは下記の式(a-1)~式(a-20)からなる群より選ばれる1つの構造を有する2価の有機基を表し、R及びRは、独立して水素原子又は1価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    The liquid crystal aligning agent according to claim 1, wherein the diamine component further contains a diamine compound represented by the following formula (AM1).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (AM1), R 5 represents a divalent organic group having one structure selected from the group consisting of the following formulas (a-1) to (a-20), and R 3 and R 4 are And independently represents a hydrogen atom or a monovalent organic group.)
    Figure JPOXMLDOC01-appb-C000003
  3.  上記式(AM1)で表されるジアミン化合物は、Rが上記の式(a-1)、式(a-4)、式(a-5)、式(a-6)、式(a-10)、式(a-16)、式(a-19)及び式(a-20)からなる群より選ばれる1つの構造を有するジアミン化合物である請求項2に記載の液晶配向剤。 In the diamine compound represented by the above formula (AM1), R 5 has the above formula (a-1), formula (a-4), formula (a-5), formula (a-6), formula (a- The liquid crystal aligning agent according to claim 2, which is a diamine compound having one structure selected from the group consisting of 10), formula (a-16), formula (a-19) and formula (a-20).
  4.  前記ジアミン成分は、上記式(1)で表されるジアミン化合物を50モル%以上100モル%未満の含有量で含む請求項1~3のいずれか1項に記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the diamine component contains a diamine compound represented by the formula (1) in a content of 50 mol% or more and less than 100 mol%.
  5.  前記テトラカルボン酸誘導体は、下記式(2-a)~式(2-e)で表される化合物からなる群より選ばれる1種以上の化合物である請求項1~4のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004

    (式(2-a)~式(2-e)中、Rはアルキル基を表し、Rは下記の式(b-1)~式(b-8)からなる群より選ばれる1つの構造を有する4価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000005
    5. The tetracarboxylic acid derivative is one or more compounds selected from the group consisting of compounds represented by the following formulas (2-a) to (2-e): The liquid crystal aligning agent of description.
    Figure JPOXMLDOC01-appb-C000004

    (In the formulas (2-a) to (2-e), R 7 represents an alkyl group, and R 6 is one selected from the group consisting of the following formulas (b-1) to (b-8): Represents a tetravalent organic group having a structure.)
    Figure JPOXMLDOC01-appb-C000005
  6.  前記テトラカルボン酸誘導体は、上記式(2-a)で表される化合物である請求項5に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 5, wherein the tetracarboxylic acid derivative is a compound represented by the above formula (2-a).
  7.  請求項1~6のいずれか1項に記載の液晶配向剤から得られることを特徴とする液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment agent according to any one of claims 1 to 6.
  8.  請求項7に記載の液晶配向膜を有することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 7.
PCT/JP2012/077804 2011-10-27 2012-10-26 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element WO2013062115A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013540863A JP6102743B2 (en) 2011-10-27 2012-10-26 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN201280064295.8A CN104024932A (en) 2011-10-27 2012-10-26 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020237010556A KR20230048163A (en) 2011-10-27 2012-10-26 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020147014037A KR20140084279A (en) 2011-10-27 2012-10-26 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020217025922A KR20210106012A (en) 2011-10-27 2012-10-26 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020197012285A KR20190049909A (en) 2011-10-27 2012-10-26 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-235976 2011-10-27
JP2011235976 2011-10-27

Publications (1)

Publication Number Publication Date
WO2013062115A1 true WO2013062115A1 (en) 2013-05-02

Family

ID=48167939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077804 WO2013062115A1 (en) 2011-10-27 2012-10-26 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6102743B2 (en)
KR (4) KR20140084279A (en)
CN (1) CN104024932A (en)
TW (1) TWI596137B (en)
WO (1) WO2013062115A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180069025A (en) 2015-10-14 2018-06-22 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN110325903A (en) * 2016-12-21 2019-10-11 日产化学株式会社 Manufacturing method, liquid crystal orientation film and the liquid crystal of liquid crystal orientation film indicate element
KR20230038513A (en) 2020-07-17 2023-03-20 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638645B2 (en) * 2014-03-17 2020-01-29 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
WO2016043230A1 (en) * 2014-09-18 2016-03-24 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20180085003A (en) * 2015-11-25 2018-07-25 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6852347B2 (en) * 2016-01-29 2021-03-31 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
CN112602013A (en) * 2018-08-20 2021-04-02 日产化学株式会社 Liquid crystal aligning agent, method for producing same, liquid crystal alignment film, and liquid crystal display element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115118A1 (en) * 2010-03-15 2011-09-22 日産化学工業株式会社 Liquid crystal alignment agent containing polyamic acid ester, and liquid crystal alignment film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191535B2 (en) 1993-10-21 2001-07-23 ジェイエスアール株式会社 Liquid crystal alignment agent and liquid crystal display device
JP3206401B2 (en) 1995-11-20 2001-09-10 ジェイエスアール株式会社 Liquid crystal alignment agent and liquid crystal display device
JP3603460B2 (en) 1996-03-25 2004-12-22 Jsr株式会社 Liquid crystal alignment agent and liquid crystal display device
JP2008090297A (en) 2006-09-08 2008-04-17 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
KR101671659B1 (en) * 2008-11-06 2016-11-01 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent
WO2011136375A1 (en) * 2010-04-30 2011-11-03 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115118A1 (en) * 2010-03-15 2011-09-22 日産化学工業株式会社 Liquid crystal alignment agent containing polyamic acid ester, and liquid crystal alignment film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180069025A (en) 2015-10-14 2018-06-22 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN110325903A (en) * 2016-12-21 2019-10-11 日产化学株式会社 Manufacturing method, liquid crystal orientation film and the liquid crystal of liquid crystal orientation film indicate element
CN110325903B (en) * 2016-12-21 2023-01-06 日产化学株式会社 Method for producing liquid crystal alignment film, and liquid crystal display element
KR20230038513A (en) 2020-07-17 2023-03-20 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Also Published As

Publication number Publication date
TWI596137B (en) 2017-08-21
JPWO2013062115A1 (en) 2015-04-02
KR20210106012A (en) 2021-08-27
CN104024932A (en) 2014-09-03
TW201333075A (en) 2013-08-16
KR20230048163A (en) 2023-04-10
KR20190049909A (en) 2019-05-09
JP6102743B2 (en) 2017-03-29
KR20140084279A (en) 2014-07-04

Similar Documents

Publication Publication Date Title
JP6102743B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TW556029B (en) Aligning agent for liquid crystal for in-plane switching, liquid-crystal alignment film, and liquid-crystal display element
CN106575061B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2010074269A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5633714B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102000322B1 (en) Method for preparing polyimide varnish, and liquid crystal aligning agent
TW201604237A (en) Liquid crystal alignment agent containing polyamic acid ester-polyamic acid compolymer, and liquid crystal alignment film using same
KR20180098328A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN109891310B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6278216B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element using the same
JP6638645B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
KR20120104987A (en) Liquid crystal aligning agent and liquid crystal display element using same
JP6996509B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
CN104969123B (en) Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display element
KR102597729B1 (en) Liquid crystal orientation agent, liquid crystal oriented film, and liquid crystal display element
JPWO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540863

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147014037

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12843231

Country of ref document: EP

Kind code of ref document: A1