WO2013061898A1 - Converter transformer, transformer module, and wireless power transmission system - Google Patents

Converter transformer, transformer module, and wireless power transmission system Download PDF

Info

Publication number
WO2013061898A1
WO2013061898A1 PCT/JP2012/077181 JP2012077181W WO2013061898A1 WO 2013061898 A1 WO2013061898 A1 WO 2013061898A1 JP 2012077181 W JP2012077181 W JP 2012077181W WO 2013061898 A1 WO2013061898 A1 WO 2013061898A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
electrostatic shield
magnetic core
power
power transmission
Prior art date
Application number
PCT/JP2012/077181
Other languages
French (fr)
Japanese (ja)
Inventor
篠田悟史
市川敬一
加藤数矢
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013540760A priority Critical patent/JP5741706B2/en
Publication of WO2013061898A1 publication Critical patent/WO2013061898A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Definitions

  • the present invention relates to a converter transformer, a transformer module, and a wireless power transmission system having an open magnetic core around which a primary winding and a secondary winding are wound.
  • Patent Document 1 By the way, in recent years, cellular phones and the like have been miniaturized, and accordingly, it is desired to miniaturize power supply circuits and the like mounted on electronic devices.
  • Patent Document 1 using a transformer having a closed magnetic circuit structure, it is difficult to reduce the core size, resulting in a problem that the transformer becomes large. Therefore, it is conceivable to use a transformer with an open magnetic circuit structure.
  • the electrostatic shield leaks away from the transformer due to the magnetic flux leaking from the transformer. A working eddy current is generated. As a result, the inductance is reduced and the Q value of the transformer is lowered, which causes a problem that efficient power transmission cannot be performed.
  • an object of the present invention is to provide a converter transformer, a transformer module, and a wireless power transmission system that can suppress a decrease in Q value, electrostatically shield, and further realize downsizing.
  • a converter transformer includes a magnetic core that forms an open magnetic path, a winding wound around the magnetic core, and an electrostatic shield that covers the magnetic core around which the winding is wound.
  • the electrostatic shield is characterized in that one or more notches are formed.
  • the winding has a primary winding and a secondary winding wound adjacently, and one of the primary winding and the secondary winding is on a higher voltage side than the other.
  • the radiated electric field can be blocked by the electrostatic shield.
  • the electrostatic shield has at least three surfaces along the axial direction of the magnetic core, and a notch is formed on each of the three surfaces.
  • This configuration makes it difficult for eddy currents to flow on each surface, thereby preventing the problem that the magnetic flux generated by the eddy currents cancels out the magnetic flux of the transformer and lowers the Q value of the transformer.
  • the converter transformer according to the present invention may further include a surrounding portion having one surface that covers the magnetic core together with the three surfaces of the electrostatic shield.
  • electrostatic shielding can be performed more efficiently by covering the magnetic core using an enclosing portion of a member different from the electrostatic shielding.
  • the converter transformer according to the present invention may further include a ferrite member provided between the electrostatic shield and the winding.
  • This configuration can make it difficult for leakage flux to enter the electrostatic shield. Further, since the magnetic shield is provided by the ferrite member, the Q value of the transformer is improved.
  • the notch is a slit extending in a direction orthogonal to the axial direction of the magnetic core.
  • the slit is formed from the peripheral portion toward the inside on each of the three surfaces.
  • This configuration makes it difficult for eddy currents to flow through the electrostatic shield by forming a slit that is not closed in the electrostatic shield.
  • a plurality of the slits are formed along the axial direction of the magnetic core, and the width of the slits in the axial direction is shorter than the distance between adjacent slits.
  • the electrostatic shield has two comb-shaped members, the two comb-shaped members are opposed to each other, and the respective comb teeth are inserted into each other so as to form the slit therebetween. But you can.
  • the slit width is easy to adjust.
  • the present invention it is possible to reduce the size of the converter transformer and to take EMC (Electro-Magnetic Compatibility) measures by shielding noise with the electrostatic shield without lowering the Q value of the transformer.
  • EMC Electro-Magnetic Compatibility
  • FIG. 3 is a top view of the transformer module according to the embodiment.
  • the front view of the transformer module which concerns on embodiment.
  • FIG. 1B is an exploded perspective view of the electrostatic shield shown in FIGS. 1A, 1B, and 1C.
  • Embodiment 1 according to the present invention will be described below.
  • a transformer module using the converter transformer according to the present invention will be described.
  • 1 is a side view of a transformer module according to the present embodiment
  • FIG. 1B is a top view
  • FIG. 1C is a front view.
  • FIG. 2 is a diagram showing a transformer of the transformer module shown in FIGS. 1A, 1B, and 1C.
  • FIG. 3 is an exploded perspective view of the electrostatic shield shown in FIGS. 1A, 1B, and 1C.
  • the transformer module 10 includes a transformer 20 and an electrostatic shield 30 and is mounted on the mounting surface of the mounting substrate 40.
  • the mounting substrate 40 is, for example, a motherboard of a device including the transformer module 10.
  • a ground electrode pattern 40 ⁇ / b> G is provided on the mounting surface of the mounting substrate 40.
  • a transformer 20 and an electrostatic shield 30 described later are provided on the ground electrode pattern 40G.
  • the transformer 20 includes a coil bobbin 21.
  • the coil bobbin 21 is formed of, for example, an insulating resin having excellent withstand voltage characteristics.
  • the coil bobbin 21 has an inner cylinder (not shown) that opens straight.
  • an open magnetic path type core 22 having an I shape with both ends being open ends is inserted so that both ends protrude from the inner cylinder of the coil bobbin 21.
  • the primary winding L1 and the secondary winding L2 are wound around the coil bobbin 21 with the same winding axis.
  • the primary winding L1 is on the high voltage input side
  • the secondary winding L2 is on the low voltage output side.
  • the electrostatic shield 30 is a metal member, and is composed of three planes including two parallel side surfaces and an upper surface perpendicular to the two side surfaces.
  • the configuration of the electrostatic shield 30 can be changed as appropriate, in the present embodiment, as shown in FIG. 3, the first metal member 31 in which two planes are vertically provided in an L shape, and the plate-like second member. It consists of two members, the metal member 32.
  • the electrostatic shield 30 is provided with the first metal member 31 so that one plane of the first metal member 31 is perpendicular to the mounting surface of the mounting substrate 40, parallel to the one plane, and on the mounting surface of the mounting substrate 40.
  • a second metal member 32 is provided so as to be vertical.
  • the electrostatic shield 30 is put on the transformer 20 so that each plane is along the axial direction of the core 22 so that the axial direction of the core 22 is opened.
  • the transformer 20 is covered with the electrostatic shield 30 and the ground electrode pattern 40G of the mounting substrate 40.
  • the first metal member 31 has, for example, a screw hole 31A, and a screw (not shown) is inserted into the screw hole 31A and is fixed to the mounting substrate 40. Further, the second metal member 32 is fixed to another member (not shown) mounted on the mounting substrate 40 or the housing of the transformer module 10 or the like.
  • the first metal member 31, the second metal member 32, and the ground electrode pattern 40G have the same potential.
  • the electrostatic shield 30 covering the transformer 20 blocks radiation of the electric field generated from the transformer 20 to the outside.
  • the ground electrode pattern 40G acts as an electrostatic shield material, like the electrostatic shield 30.
  • the electrostatic shield 30 shields the electric field generated from the transformer 20, so that an EMC countermeasure is taken. If EMC countermeasures are not taken, external electronic devices may interfere with noise and not operate normally. Below, the difference of the presence or absence of the EMC countermeasure by the electrostatic shield 30 is demonstrated.
  • FIG. 4 is a diagram illustrating a voltage waveform of noise in a state where the transformer 20 is not covered with the electrostatic shield 30.
  • FIG. 5 is a diagram illustrating a voltage waveform of noise in a state where the transformer 20 is covered with the electrostatic shield 30.
  • the thick lines shown in FIGS. 4 and 5 indicate EMC standard values. 4 and 5, the horizontal axis is the frequency axis, and the vertical axis is the noise voltage axis.
  • the drive frequency of the transformer 20 is about 230 kHz, which exceeds the EMC standard value of about 62 dB ⁇ V (dotted line arrow in the figure).
  • the transformer 20 is covered with the electrostatic shield 30, as shown in FIG. 5, at the same frequency in FIG. 4, it is lower than the EMC standard value of about 62 dB ⁇ V (dotted line arrow in the figure).
  • sufficient EMC countermeasures can be performed by covering the transformer 20 with the electrostatic shield 30.
  • the first metal member 31 of the electrostatic shield 30 is formed with a plurality of slits 33 extending in the direction perpendicular to the axial direction of the core 22 over the two surfaces.
  • the second metal member 32 is formed with a plurality of slits 34 along the normal direction of the mounting surface of the mounting substrate 40, and the second metal member 32 has a comb shape.
  • the slit 33 is formed from the peripheral part of the first metal member 31 on the second metal member 32 side toward the peripheral part on the opposite side.
  • the slit 34 is formed from the peripheral edge of the second metal member 32 on the first metal member 31 side toward the peripheral edge on the opposite side. In other words, the slits 33 and 34 are not closed.
  • the electrostatic shield 30 may have a configuration in which one metal member is curved to cover the transformer 20. Further, the shape of the ground electrode pattern 40G may be a shape provided with a slit that is not closed.
  • the transformer has a transformer.
  • An eddy current is generated that works in the direction of canceling the magnetic flux of 20. If the slits 33 and 34 are not formed in the electrostatic shield 30, the eddy current increases, and as a result, the energy loss due to the generation of the eddy current increases.
  • FIG. 6 is a diagram showing a change in loss of the transformer 20 when the widths of the slits 33 and 34 are changed.
  • the horizontal axis in FIG. 6 is the L / S value, and the vertical axis is the value obtained by converting the loss into an arbitrary unit.
  • S is the slit width
  • L is the distance between adjacent slits (the width of the comb teeth between adjacent slits)
  • the L / S value is the distance L and the width S. Indicates the value of.
  • the L / S value is (2/2)
  • the slit width is 2 mm and the distance between the slits is 2 mm. Since the length of the magnetic core of the electrostatic shield 30 is constant, the number of comb teeth increases as the L / S value decreases. In FIG. 6, the L / S value and the number of comb teeth are shown together.
  • each point on the graph shown in FIG. 6 indicates the L / S value as (2/2), (3/3), (5/5), (10/10), (17/17), (50 / 50) shows the loss.
  • the loss when the L / S value is (50/50) is used as a reference.
  • the loss of the transformer 20 decreases as the L / S value decreases, that is, as the number of comb teeth increases.
  • the loss is reduced by about 94% compared to the case where the L / S value is (50/50).
  • the distance L is It is more preferable that the width is longer (thicker) than the width S.
  • FIG. 7 is a front view of the transformer module 10 including a ferrite material.
  • FIG. 7 is a drawing corresponding to FIG. 1C.
  • a plate-like ferrite material 45 is affixed inside the first metal member 31 and the second metal member 32 of the electrostatic shield 30.
  • the transformer 20 is in a state where the upper surface and the side surface are covered with the ferrite material 45.
  • the ferrite material 45 acts as a magnetic shield, the Q value of the transformer 20 is improved.
  • FIG. 8 is a diagram showing a change in the Q value due to the slits 33 and 34 being formed in the electrostatic shield 30.
  • the vertical axis indicates the Q value in each pattern.
  • (1) shown on the horizontal axis is a case where the transformer 20 is not covered with the electrostatic shield 30.
  • (2) is a case where the transformer 20 is covered with an electrostatic shield 30 in which no slit is formed.
  • (3), (4), and (5) are electrostatic shields having slits 33 and 34 having L / S values of (2/2), (1 / 1.5), and (1/2), respectively. In this case, the transformer 20 is covered with 30.
  • (6) is a case where the ferrite material 45 is provided in (3).
  • the electrostatic shield 30 has slits 33 and 34 formed on three surfaces of the electrostatic shield 30.
  • the electrostatic shield 30 has a configuration in which slits are formed on one surface or two surfaces. May be.
  • the electrostatic shield 30 covers the transformer 20 together with the ground electrode pattern 40G of the mounting substrate 40.
  • the electrostatic shield 30 may have four surfaces, and the four surfaces may cover the transformer 20.
  • An electrostatic shield 50 shown in FIG. 9 includes a first metal member 51 and a second metal member 52 having two perpendicular surfaces. A plurality of non-closed slits 53 and 54 are formed on each surface of the first metal member 51 and the second metal member 52, and each surface has a comb shape. A first metal member 51 and a second metal member 52 are provided so as to surround the outer periphery of the transformer 20.
  • the electrostatic shield 50 having this configuration can also suppress eddy currents. As a result, a decrease in the Q value of the transformer 20 can be prevented.
  • the electrostatic shield 60 shown in FIG. 10 includes a first metal member 61 having two vertical surfaces, a second metal member 62, a third metal member 63, and a fourth metal member 64.
  • a first metal member 61 having two vertical surfaces
  • a second metal member 62 a third metal member 63
  • a fourth metal member 64 a fourth metal member 64.
  • slits that are not closed are formed on each surface, and each surface of the electrostatic shield 60 has a comb shape.
  • the 1st metal member 61, the 2nd metal member 62, the 3rd metal member 63, and the 4th metal member 64 are provided so that the comb teeth of each surface may mesh with the comb teeth of the adjacent surfaces.
  • the slit width can be easily adjusted.
  • the electrostatic shield 70 shown in FIG. 11 is configured by bending so that one meander-shaped metal member forms two surfaces. Even with this configuration, slits are formed on each surface along the outer periphery of the transformer, and eddy currents can hardly flow.
  • any configuration (shape) that makes it difficult to flow eddy currents that mainly flow along the peripheral edge of the plane can be changed as appropriate. Further, the number of slits formed in the electrostatic shield 30 or the slit width is appropriately changed depending on the size of the transformer module 10.
  • Embodiment 2 according to the present invention will be described below.
  • a wireless power transmission system using the transformer module 10 described in the first embodiment will be described.
  • the wireless power transmission system includes a power transmission device and a power reception device.
  • the power receiving device is, for example, a portable electronic device including a secondary battery. Examples of portable electronic devices include mobile phones, PDAs (Personal Digital Assistants), portable music players, notebook PCs (Personal Computers), and digital cameras.
  • the power transmission device is a charging stand on which the power reception device is mounted and charges a secondary battery of the power reception device.
  • FIG. 12 is a perspective view of the power transmitting device and the power receiving device.
  • the power receiving apparatus 200 includes a substantially rectangular parallelepiped casing 201 having a secondary battery (not shown) therein.
  • a secondary battery not shown
  • one of the two opposing surfaces having the largest area is a front surface and the other is a back surface.
  • the casing 201 is provided with a capacitive input touch panel 202 along the front surface.
  • the casing 201 is provided with an active electrode 203 along the back surface.
  • the active electrode 203 has a rectangular shape and is provided such that the longitudinal direction thereof coincides with the longitudinal direction of the back surface of the housing 201.
  • the active electrode 203 is opposed to an active electrode 103 (described later) provided on the power transmission device 100 via a gap.
  • the housing 201 is provided with a passive electrode 204 along the bottom surface.
  • the bottom surface of the housing 201 has a rectangular shape, and the long side thereof is a surface that coincides with the short sides of the front surface and the back surface.
  • the passive electrode 204 has a rectangular shape and is provided so that the longitudinal direction thereof coincides with the longitudinal direction of the bottom surface of the housing 201.
  • the passive electrode 204 is opposed to or directly connected to a passive electrode 104 (described later) provided in the power transmission device 100 via a gap.
  • the power transmission device 100 includes a placement surface 101A that is substantially horizontal to the installation surface, and a backrest surface 101B and a front surface 101C that are substantially perpendicular to the placement surface 101A and face each other in parallel.
  • the placement surface 101A, the backrest surface 101B, and the front surface 101C each have a rectangular shape.
  • the long side of the mounting surface 101A matches the short side of the backrest surface 101B, and the long side of the mounting surface 101A matches the long side of the front surface 101C.
  • the power receiving device 200 is mounted on the power transmitting device 100 such that the bottom surface of the power receiving device 200 is on the mounting surface 101A side and the back surface of the power receiving device 200 is on the backrest surface 101B side.
  • the power transmission device 100 includes a passive electrode 104 provided along the placement surface 101A.
  • the passive electrode 104 has a rectangular shape and is provided such that the longitudinal direction thereof coincides with the longitudinal direction of the placement surface 101A.
  • the power transmission device 100 includes an active electrode 103 provided along the backrest surface 101B.
  • the active electrode 103 has a rectangular shape and is provided such that the longitudinal direction thereof coincides with the height direction of the power transmission device 100.
  • the active electrode 103 on the power transmitting device 100 side and the active electrode 203 on the power receiving device 200 side face each other.
  • the passive electrodes 104 and 204 face (or directly conduct), and the active electrodes 103 and 203 face each other.
  • a voltage is applied between the active electrode 103 and the passive electrode 104 of the power transmission device 100, an electric field is generated between the active electrodes 103 and 203 that are opposed to each other, and power is transmitted via this electric field to the power transmission device 100.
  • the power is supplied to the load circuit RL of the power receiving device 200, rectified, and the secondary battery is charged.
  • FIG. 13 is a schematic diagram of an equivalent circuit when the passive electrodes of the wireless power transmission system when the power receiving device 200 is mounted on the power transmitting device 100 are capacitively coupled.
  • the power transmission device 100 includes an AC adapter 106 and a voltage generation circuit 107.
  • the AC adapter 106 converts an AC voltage of 100V to 230V into a DC voltage such as 5V, 12V, etc., and outputs it to the voltage generation circuit 107.
  • the voltage generation circuit 107 includes an inverter 108, a step-up transformer TG, and an inductor LG.
  • the voltage generation circuit 107 performs AC conversion and step-up on the voltage input from the AC adapter 106, and applies the voltage between the active electrode 103 and the passive electrode 104.
  • the frequency of the applied voltage is 100 kHz to 10 MHz.
  • the transformer module 10 described in the first embodiment is used for the step-up transformer TG.
  • a step-down circuit 205 including a step-down transformer TL and an inductor LL is connected between the active electrode 203 and the passive electrode 204 of the power receiving apparatus 200.
  • a load circuit RL is connected to the secondary side of the step-down transformer TL.
  • the load circuit RL includes a rectifying / smoothing circuit and a secondary battery (not shown).
  • the transformer module 10 described in the first embodiment is used for the step-down transformer TL.
  • the transformer module 10 of the first embodiment for the step-up transformer TG and the step-down transformer TL, noise can be reduced and sufficient EMC countermeasures can be taken.
  • FIG. 14 is a schematic diagram of an equivalent circuit of the wireless power transmission system when the passive electrodes 104 and 204 of the power receiving device 200 and the power transmitting device 100 are directly conducted.
  • a resistor r is connected between the passive electrode 104 of the power transmission device 100 and the passive electrode 204 of the power reception device 200.
  • the resistance r corresponds to the contact resistance configured at the contact portion between the passive electrodes 104 and 204.
  • 13 is the same as FIG. 13 except that a resistor r is connected between the passive electrodes 104 and 204.
  • the capacitance between the active electrodes 103 and 203 is represented by Cm and the frequency of the applied voltage is represented by f, r ⁇ 1 / (2 ⁇ fCm).
  • the potential of the passive electrode 204 of the power receiving device 200 is stabilized, and leakage of unnecessary electromagnetic fields is prevented.
  • the current flowing through the passive electrodes 104 and 204 may be on the order of several mA.
  • a charging current on the order of several A flows as it is, so that loss due to contact resistance is large. In the present invention, it is not necessary to keep contact resistance low, and various contact means can be applied.
  • transformer module 10 and the like described above can be changed in design as appropriate, and the actions and effects described in the above-described embodiments are merely a list of the most preferable actions and effects resulting from the present invention.
  • the operations and effects of the present invention are not limited to those described in the above embodiment.
  • the active electrodes or the passive electrodes of the power transmitting device and the power receiving device are opposed to each other via a gap.
  • the effect of the present application is not limited to this, and the facing electrodes It is only necessary that the two are capacitively coupled.
  • a dielectric material such as plastic that forms the housing of the device, an insulating liquid, a gas, or the like, that is, a material that insulates the electrodes from each other, or a combination of a plurality of materials that include them is arranged between the electrodes, so that there is no gap between the electrodes. What is necessary is just to become the structure which is not electrically connected in direct current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A transformer module (10) is mounted to a ground electrode pattern (40G) on a mounting substrate (40), and comprises a transformer (20) and an electrostatic shield (30). The transformer (20) comprises a magnetic core (22) forming an open magnetic circuit, and a primary winding and a secondary winding that are wound around the core (22). The electrostatic shield (30) covers the transformer (20), and shields the electric field radiated from the transformer (20). The electrostatic shield (30) is configured from a first metal member (31) and a second metal member (32). Slits (33, 34) for inhibiting the flow of eddy currents generated by leakage flux from the transformer (20) are provided in the first metal member (31) and the second metal member (32). As a result, a converter transformer, the transformer module, and a wireless power transmission system are provided that are capable of suppressing reduction in Q values, electrostatic shielding, and being more compact.

Description

コンバータトランス、トランスモジュールおよびワイヤレス電力伝送システムConverter transformer, transformer module and wireless power transmission system
 本発明は、一次巻線および二次巻線が巻回された開磁型のコアを有するコンバータトランス、トランスモジュールおよびワイヤレス電力伝送システムに関する。 The present invention relates to a converter transformer, a transformer module, and a wireless power transmission system having an open magnetic core around which a primary winding and a secondary winding are wound.
 近年、携帯電話機またはモバイルPCなどの電子機器を充電する際、電子機器に充電用のケーブルを接続するといった煩わしさを無くすために、充電装置に電子機器を設置するだけで充電できるワイヤレス電力伝送が提案されている。このワイヤレス電力伝送では、送電装置側と受電装置側との結合部の電圧を高くするためトランスが用いられ、このトランスで発生するノイズなどを抑制して、効率よく電力伝送を行う必要がある。このため、電源回路で用いられるトランスの一次コイルと二次コイルの間に金属製の静電シールドを設け、トランスで発生するノイズを抑制する技術が知られている(例えば、特許文献1参照)。 In recent years, when charging an electronic device such as a mobile phone or a mobile PC, wireless power transmission that can be charged only by installing the electronic device in the charging device has been performed in order to eliminate the trouble of connecting a charging cable to the electronic device. Proposed. In this wireless power transmission, a transformer is used to increase the voltage at the coupling portion between the power transmitting device side and the power receiving device side, and it is necessary to efficiently transmit power while suppressing noise generated in the transformer. For this reason, a technique is known in which a metal electrostatic shield is provided between a primary coil and a secondary coil of a transformer used in a power supply circuit to suppress noise generated in the transformer (see, for example, Patent Document 1). .
特開昭60-260119号公報JP 60-260119 A
 ところで、近年の携帯電話機などは小型化が進んでおり、そのために、電子機器に搭載する電源回路などを小型化することが望まれている。しかしながら、閉磁路構造のトランスを用いた特許文献1ではコアサイズの小型化が難しく、結果として、トランスが大きくなるといった問題がある。そこで、開磁路構造のトランスを用いることが考えられるが、開磁路構造のトランスを静電シールドで覆った場合、トランスから漏れた磁束によって、静電シールドにはトランスの磁束を打ち消す方向に働く渦電流が発生する。その結果、インダクタンスが減少し、トランスのQ値が低下するため、効率のよい電力伝送が行えないといった問題が発生する。 By the way, in recent years, cellular phones and the like have been miniaturized, and accordingly, it is desired to miniaturize power supply circuits and the like mounted on electronic devices. However, in Patent Document 1 using a transformer having a closed magnetic circuit structure, it is difficult to reduce the core size, resulting in a problem that the transformer becomes large. Therefore, it is conceivable to use a transformer with an open magnetic circuit structure. However, when the transformer with an open magnetic circuit structure is covered with an electrostatic shield, the electrostatic shield leaks away from the transformer due to the magnetic flux leaking from the transformer. A working eddy current is generated. As a result, the inductance is reduced and the Q value of the transformer is lowered, which causes a problem that efficient power transmission cannot be performed.
 そこで、本発明の目的は、Q値の低下を抑制し、静電遮蔽し、さらに、小型化を実現できるコンバータトランス、トランスモジュールおよびワイヤレス電力伝送システムを提供することにある。 Therefore, an object of the present invention is to provide a converter transformer, a transformer module, and a wireless power transmission system that can suppress a decrease in Q value, electrostatically shield, and further realize downsizing.
 本発明に係るコンバータトランスは、開磁路を形成する磁性体コアと、前記磁性体コアに巻回された巻線と、前記巻線が巻回された前記磁性体コアを覆う静電シールドと、を備え、前記静電シールドには一または複数の切欠き部が形成されていることを特徴とする。 A converter transformer according to the present invention includes a magnetic core that forms an open magnetic path, a winding wound around the magnetic core, and an electrostatic shield that covers the magnetic core around which the winding is wound. The electrostatic shield is characterized in that one or more notches are formed.
 この構成では、開磁路型の磁性体コアを用いることでトランスの小型化を実現できる。また、漏れ磁束によって静電シールドに生じる渦電流は、静電シールドに切欠き部が形成されていない場合との対比において、流れにくくなる。この結果、渦電流によって発生する磁束によりトランスの磁束が打ち消されてトランスのQ値が低下するといった問題を防止できる。 In this configuration, it is possible to reduce the size of the transformer by using an open magnetic path type magnetic core. Further, the eddy current generated in the electrostatic shield due to the leakage magnetic flux is less likely to flow in comparison with the case where the notch portion is not formed in the electrostatic shield. As a result, it is possible to prevent a problem that the transformer magnetic flux is canceled by the magnetic flux generated by the eddy current and the transformer Q value is lowered.
 本発明に係るコンバータトランスにおいて、前記巻線は、隣接して巻回された一次巻線および二次巻線を有し、前記一次巻線および前記二次巻線の一方は他方より高電圧側である構成が好ましい。 In the converter transformer according to the present invention, the winding has a primary winding and a secondary winding wound adjacently, and one of the primary winding and the secondary winding is on a higher voltage side than the other. The structure which is is preferable.
 この構成では、一次巻線または二次巻線が高電圧となっても、放射される電界を静電シールドによって遮断できる。 In this configuration, even if the primary winding or the secondary winding has a high voltage, the radiated electric field can be blocked by the electrostatic shield.
 本発明に係るコンバータトランスにおいて、前記静電シールドは前記磁性体コアの軸方向に沿った少なくとも三面を有し、前記三面それぞれに切欠き部が形成されている構成が好ましい。 In the converter transformer according to the present invention, it is preferable that the electrostatic shield has at least three surfaces along the axial direction of the magnetic core, and a notch is formed on each of the three surfaces.
 この構成では、各面において渦電流を流れにくくでき、これにより、渦電流によって発生する磁束によりトランスの磁束が打ち消されてトランスのQ値が低下するといった問題を防止できる。 This configuration makes it difficult for eddy currents to flow on each surface, thereby preventing the problem that the magnetic flux generated by the eddy currents cancels out the magnetic flux of the transformer and lowers the Q value of the transformer.
 本発明に係るコンバータトランスは、前記静電シールドの前記三面と共に前記磁性体コアを覆う一面を有する囲み部をさらに備える構成でもよい。 The converter transformer according to the present invention may further include a surrounding portion having one surface that covers the magnetic core together with the three surfaces of the electrostatic shield.
 この構成では、静電シールドとは異なる部材の囲み部を利用して磁性体コアを覆うことで、静電遮蔽をより効率よく行える。 In this configuration, electrostatic shielding can be performed more efficiently by covering the magnetic core using an enclosing portion of a member different from the electrostatic shielding.
 本発明に係るコンバータトランスにおいて、前記静電シールドおよび前記巻線の間に設けられたフェライト部材をさらに備える構成でもよい。 The converter transformer according to the present invention may further include a ferrite member provided between the electrostatic shield and the winding.
 この構成では、漏れ磁束が静電シールドに入射され難くすることができる。また、フェライト部材により磁気シールドされるため、トランスのQ値が向上する。 This configuration can make it difficult for leakage flux to enter the electrostatic shield. Further, since the magnetic shield is provided by the ferrite member, the Q value of the transformer is improved.
 本発明に係るコンバータトランスにおいて、前記切欠き部は、前記磁性体コアの軸方向の直交方向に延びたスリットである構成が好ましい。 In the converter transformer according to the present invention, it is preferable that the notch is a slit extending in a direction orthogonal to the axial direction of the magnetic core.
 この構成では、スリットにすることで、簡単な構成で渦電流を流れにくくすることができる。 In this configuration, by using a slit, it is possible to make it difficult to flow eddy current with a simple configuration.
 本発明に係るコンバータトランスにおいて、前記スリットは、前記三面の各面それぞれにおいて、周縁部から内側に向かって形成されている構成が好ましい。 In the converter transformer according to the present invention, it is preferable that the slit is formed from the peripheral portion toward the inside on each of the three surfaces.
 この構成では、静電シールドに閉じられていないスリットを形成することで、静電シールドに渦電流が流れ難くすることができる。 This configuration makes it difficult for eddy currents to flow through the electrostatic shield by forming a slit that is not closed in the electrostatic shield.
 本発明に係るコンバータトランスにおいて、前記磁性体コアの軸方向に沿って複数の前記スリットが形成されており、前記軸方向における前記スリットの幅は、隣接するスリット間の距離より短い構成が好ましい。 In the converter transformer according to the present invention, it is preferable that a plurality of the slits are formed along the axial direction of the magnetic core, and the width of the slits in the axial direction is shorter than the distance between adjacent slits.
 この構成では、スリットが形成された静電シールドの面の面積を十分にとることができるため、静電遮蔽を効果的に行える。 In this configuration, since the area of the surface of the electrostatic shield on which the slit is formed can be sufficiently taken, electrostatic shielding can be effectively performed.
 本発明に係るコンバータトランスにおいて、前記静電シールドは二つの櫛歯形部材を有し、前記二つの櫛歯形部材は対向し、それぞれの櫛歯が間に前記スリットを形成するよう互いに入り込んでいる構成でもよい。 In the converter transformer according to the present invention, the electrostatic shield has two comb-shaped members, the two comb-shaped members are opposed to each other, and the respective comb teeth are inserted into each other so as to form the slit therebetween. But you can.
 この構成では、二つの部材でスリットを形成するため、スリット幅が調整しやすい。 In this configuration, since the slit is formed by two members, the slit width is easy to adjust.
 本発明によれば、コンバータトランスの小型化を実現できると共に、トランスのQ値を低下させることなく、静電シールドによりノイズを遮蔽してEMC(Electro-Magnetic Compatibility)対策を行うことができる。 According to the present invention, it is possible to reduce the size of the converter transformer and to take EMC (Electro-Magnetic Compatibility) measures by shielding noise with the electrostatic shield without lowering the Q value of the transformer.
実施形態に係るトランスモジュールの側面図。The side view of the transformer module which concerns on embodiment. 実施形態に係るトランスモジュールの上面図。FIG. 3 is a top view of the transformer module according to the embodiment. 実施形態に係るトランスモジュールの正面図。The front view of the transformer module which concerns on embodiment. 図1A、図1Bおよび図1Cに示すトランスモジュールのトランスを示す図。The figure which shows the transformer of the transformer module shown to FIG. 1A, FIG. 1B, and FIG. 1C. 図1A、図1Bおよび図1Cに示す静電シールドの分解斜視図。FIG. 1B is an exploded perspective view of the electrostatic shield shown in FIGS. 1A, 1B, and 1C. トランスを静電シールドで覆っていない状態のノイズの電圧波形を示す図。The figure which shows the voltage waveform of the noise of the state which has not covered the transformer with the electrostatic shield. トランスを静電シールドで覆った状態のノイズの電圧波形を示す図。The figure which shows the voltage waveform of the noise of the state which covered the transformer with the electrostatic shield. スリットの幅を変化させた場合のトランスの損失の変移を示す図。The figure which shows the transition of the loss of a transformer at the time of changing the width | variety of a slit. フェライト材を備えたトランスモジュールの正面図。The front view of the transformer module provided with the ferrite material. スリットを静電シールドに形成したことによるQ値の変移を示す図。The figure which shows the change of Q value by having formed the slit in the electrostatic shield. 静電シールドの他の構成を示す斜視図。The perspective view which shows the other structure of an electrostatic shield. 静電シールドの他の構成を示す斜視図。The perspective view which shows the other structure of an electrostatic shield. 静電シールドの他の構成を示す斜視図。The perspective view which shows the other structure of an electrostatic shield. 送電装置と受電装置との透視斜視図。The perspective view of a power transmission apparatus and a power receiving apparatus. 受電装置を送電装置に載置した場合のワイヤレス電力伝送システムのパッシブ電極間が容量結合したときの等価回路の概略図。Schematic of an equivalent circuit when the passive electrodes of the wireless power transmission system are capacitively coupled when the power receiving device is placed on the power transmitting device. 受電装置と送電装置とのパッシブ電極を直接導通させた場合のワイヤレス電力伝送システムの等価回路の概略図。The schematic diagram of the equivalent circuit of the wireless power transmission system at the time of making the passive electrode of a power receiving apparatus and a power transmission apparatus directly conduct | electrically_connect.
(実施形態1)
 以下に、本発明に係る実施形態1について説明する。本実施形態では、本発明に係るコンバータトランスを用いたトランスモジュールについて説明する。図1は本実施形態に係るトランスモジュールの側面図、図1Bは上面図、図1Cは正面図である。図2は、図1A、図1Bおよび図1Cに示すトランスモジュールのトランスを示す図である。図3は、図1A、図1Bおよび図1Cに示す静電シールドの分解斜視図である。
(Embodiment 1)
Embodiment 1 according to the present invention will be described below. In the present embodiment, a transformer module using the converter transformer according to the present invention will be described. 1 is a side view of a transformer module according to the present embodiment, FIG. 1B is a top view, and FIG. 1C is a front view. FIG. 2 is a diagram showing a transformer of the transformer module shown in FIGS. 1A, 1B, and 1C. FIG. 3 is an exploded perspective view of the electrostatic shield shown in FIGS. 1A, 1B, and 1C.
 本実施形態に係るトランスモジュール10は、トランス20および静電シールド30を備えており、実装基板40の実装面に実装されている。実装基板40は、例えば、トランスモジュール10を備える機器のマザーボードなどである。実装基板40の実装面には、グランド電極パターン40Gが設けられている。このグランド電極パターン40G上に、後述のトランス20および静電シールド30が設けられる。 The transformer module 10 according to the present embodiment includes a transformer 20 and an electrostatic shield 30 and is mounted on the mounting surface of the mounting substrate 40. The mounting substrate 40 is, for example, a motherboard of a device including the transformer module 10. A ground electrode pattern 40 </ b> G is provided on the mounting surface of the mounting substrate 40. A transformer 20 and an electrostatic shield 30 described later are provided on the ground electrode pattern 40G.
 トランス20はコイルボビン21を備えている。コイルボビン21は、例えば、耐電圧特性に優れた絶縁樹脂により形成されている。このコイルボビン21は、ストレート状に開口する内筒(不図示)を有している。コイルボビン21の内筒には、両端が開放端となるI字形状である開磁路型のコア22が、その両端部がコイルボビン21の内筒から突出するように挿入されている。さらに、コイルボビン21には、一次巻線L1と二次巻線L2とが巻軸を同じにして巻回されている。本実施形態では、一次巻線L1は高電圧入力側、二次巻線L2は低電圧出力側とする。 The transformer 20 includes a coil bobbin 21. The coil bobbin 21 is formed of, for example, an insulating resin having excellent withstand voltage characteristics. The coil bobbin 21 has an inner cylinder (not shown) that opens straight. In the inner cylinder of the coil bobbin 21, an open magnetic path type core 22 having an I shape with both ends being open ends is inserted so that both ends protrude from the inner cylinder of the coil bobbin 21. Further, the primary winding L1 and the secondary winding L2 are wound around the coil bobbin 21 with the same winding axis. In this embodiment, the primary winding L1 is on the high voltage input side, and the secondary winding L2 is on the low voltage output side.
 静電シールド30は、金属製部材であって、平行な二側面と、二側面に垂直な上面との三平面から構成されている。静電シールド30の構成は適宜変更可能であるが、本実施形態では、図3に示すように、二平面がL字状に垂直に設けられた第1金属部材31と、板状の第2金属部材32との二つの部材から構成されている。静電シールド30は、第1金属部材31の一平面が実装基板40の実装面に垂直となるよう第1金属部材31を設け、その一平面に平行で、かつ、実装基板40の実装面に垂直となるよう第2金属部材32が設けられている。これによりコア22の軸方向が開口するように各平面がコア22の軸方向に沿って、静電シールド30がトランス20に被せられた状態となる。そして、トランス20は、静電シールド30と実装基板40のグランド電極パターン40Gとにより覆われた状態となる。 The electrostatic shield 30 is a metal member, and is composed of three planes including two parallel side surfaces and an upper surface perpendicular to the two side surfaces. Although the configuration of the electrostatic shield 30 can be changed as appropriate, in the present embodiment, as shown in FIG. 3, the first metal member 31 in which two planes are vertically provided in an L shape, and the plate-like second member. It consists of two members, the metal member 32. The electrostatic shield 30 is provided with the first metal member 31 so that one plane of the first metal member 31 is perpendicular to the mounting surface of the mounting substrate 40, parallel to the one plane, and on the mounting surface of the mounting substrate 40. A second metal member 32 is provided so as to be vertical. As a result, the electrostatic shield 30 is put on the transformer 20 so that each plane is along the axial direction of the core 22 so that the axial direction of the core 22 is opened. The transformer 20 is covered with the electrostatic shield 30 and the ground electrode pattern 40G of the mounting substrate 40.
 なお、第1金属部材31は、例えばネジ穴31Aを有しており、このネジ穴31Aにネジ(不図示)を挿入して、実装基板40に固定される。また、第2金属部材32は、実装基板40に実装された他の部材(不図示)、またはトランスモジュール10の筐体などに固定される。そして、第1金属部材31、第2金属部材32およびグランド電極パターン40Gは同電位となる。 The first metal member 31 has, for example, a screw hole 31A, and a screw (not shown) is inserted into the screw hole 31A and is fixed to the mounting substrate 40. Further, the second metal member 32 is fixed to another member (not shown) mounted on the mounting substrate 40 or the housing of the transformer module 10 or the like. The first metal member 31, the second metal member 32, and the ground electrode pattern 40G have the same potential.
 トランス20を覆う静電シールド30は、トランス20から発生する電界の外部への放射を遮断している。なお、グランド電極パターン40Gは静電シールド30と同様に、静電シールド材として作用している。静電シールド30がトランス20から発生する電界を遮蔽することで、EMC対策がなされている。EMC対策がなされていない場合、外部の電子機器などがノイズと干渉して正常に動作しなくなるおそれがある。以下に、静電シールド30によるEMC対策の有無の相違について説明する。 The electrostatic shield 30 covering the transformer 20 blocks radiation of the electric field generated from the transformer 20 to the outside. The ground electrode pattern 40G acts as an electrostatic shield material, like the electrostatic shield 30. The electrostatic shield 30 shields the electric field generated from the transformer 20, so that an EMC countermeasure is taken. If EMC countermeasures are not taken, external electronic devices may interfere with noise and not operate normally. Below, the difference of the presence or absence of the EMC countermeasure by the electrostatic shield 30 is demonstrated.
 図4は、トランス20を静電シールド30で覆っていない状態のノイズの電圧波形を示す図である。図5は、トランス20を静電シールド30で覆った状態のノイズの電圧波形を示す図である。図4および図5に示す太線はEMC規格値を示している。また、図4および図5の横軸は周波数軸であり、縦軸はノイズの電圧軸を示す。 FIG. 4 is a diagram illustrating a voltage waveform of noise in a state where the transformer 20 is not covered with the electrostatic shield 30. FIG. 5 is a diagram illustrating a voltage waveform of noise in a state where the transformer 20 is covered with the electrostatic shield 30. The thick lines shown in FIGS. 4 and 5 indicate EMC standard values. 4 and 5, the horizontal axis is the frequency axis, and the vertical axis is the noise voltage axis.
 静電シールド30でトランス20を覆わない場合、図4に示すように、トランス20の駆動周波数とする約230kHzでは、EMC規格値、約62dBμVを上回っている(図中点線矢印)。一方、トランス20を静電シールド30で覆った場合、図5に示すように、図4での同じ周波数では、EMC規格値、約62dBμVを下回っている(図中点線矢印)。このように、静電シールド30でトランス20を覆うことで、十分なEMC対策を行うことができる。 When the transformer 20 is not covered with the electrostatic shield 30, as shown in FIG. 4, the drive frequency of the transformer 20 is about 230 kHz, which exceeds the EMC standard value of about 62 dBμV (dotted line arrow in the figure). On the other hand, when the transformer 20 is covered with the electrostatic shield 30, as shown in FIG. 5, at the same frequency in FIG. 4, it is lower than the EMC standard value of about 62 dBμV (dotted line arrow in the figure). Thus, sufficient EMC countermeasures can be performed by covering the transformer 20 with the electrostatic shield 30.
 図3の説明に戻り、静電シールド30の第1金属部材31には、二面に亘って、コア22の軸方向に直交する方向に延びたスリット33が複数形成されている。また、第2金属部材32には、実装基板40の実装面の法線方向に沿ったスリット34が複数形成されていて、第2金属部材32は櫛歯状となっている。スリット33は、第2金属部材32側となる第1金属部材31の周縁部から反対側の周縁部に向かって形成されている。また、スリット34は、第1金属部材31側となる第2金属部材32の周縁部から反対側の周縁部に向かって形成されている。換言すれば、スリット33,34は、閉じられていないスリットとなる。静電シールド30の三面を構成する金属部材の、特に周縁部に沿って渦電流が流れようとするが、スリット33,34により静電シールド30の三面それぞれは周縁部の一部が切欠きされているため、この渦電流は流れ難くなる。 3, the first metal member 31 of the electrostatic shield 30 is formed with a plurality of slits 33 extending in the direction perpendicular to the axial direction of the core 22 over the two surfaces. The second metal member 32 is formed with a plurality of slits 34 along the normal direction of the mounting surface of the mounting substrate 40, and the second metal member 32 has a comb shape. The slit 33 is formed from the peripheral part of the first metal member 31 on the second metal member 32 side toward the peripheral part on the opposite side. The slit 34 is formed from the peripheral edge of the second metal member 32 on the first metal member 31 side toward the peripheral edge on the opposite side. In other words, the slits 33 and 34 are not closed. An eddy current tends to flow along the peripheral portion of the metal member constituting the three surfaces of the electrostatic shield 30, but a part of the peripheral portion is notched on each of the three surfaces of the electrostatic shield 30 by the slits 33 and 34. Therefore, this eddy current is difficult to flow.
 なお、静電シールド30は、一つの金属部材を湾曲状にして、トランス20を覆う構成としてもよい。また、グランド電極パターン40Gの形状は、閉じられていないスリットを設けた形状としてもよい。 The electrostatic shield 30 may have a configuration in which one metal member is curved to cover the transformer 20. Further, the shape of the ground electrode pattern 40G may be a shape provided with a slit that is not closed.
 以下に、静電シールド30の各平面に生じる渦電流と、各平面に設けられたスリット33,34との関係について説明する。 Hereinafter, the relationship between the eddy current generated in each plane of the electrostatic shield 30 and the slits 33 and 34 provided in each plane will be described.
 トランス20の一次巻線L1および二次巻線L2に電流が流れ、磁束が形成されるが、形成された磁束からの漏れ磁束が静電シールド30の平面に入射すると、その平面には、トランス20の磁束を打ち消す方向に働く渦電流が発生する。静電シールド30にスリット33,34が形成されていないと、渦電流が大きくなり、その結果、渦電流の発生によるエネルギー損失が大きくなる。このため、静電シールド30の各平面にスリット33,34を形成することで、平面の外周に沿って流れようとする渦電流を抑制することができ、その結果、渦電流の発生によるトランス20のエネルギー損失が軽減し、トランス20のQ値が向上する。 A current flows through the primary winding L1 and the secondary winding L2 of the transformer 20, and a magnetic flux is formed. When leakage magnetic flux from the formed magnetic flux is incident on the plane of the electrostatic shield 30, the transformer has a transformer. An eddy current is generated that works in the direction of canceling the magnetic flux of 20. If the slits 33 and 34 are not formed in the electrostatic shield 30, the eddy current increases, and as a result, the energy loss due to the generation of the eddy current increases. For this reason, by forming the slits 33 and 34 in each plane of the electrostatic shield 30, an eddy current that tends to flow along the outer periphery of the plane can be suppressed, and as a result, the transformer 20 due to the generation of the eddy current. Energy loss is reduced, and the Q value of the transformer 20 is improved.
 このスリット33,34によるトランス20の損失の低減率は、スリット33,34の幅によって決まる。図6は、スリット33,34の幅を変化させた場合のトランス20の損失の変移を示す図である。図6の横軸はL/S値であり、縦軸は損失を任意単位に変換した値である。ここで、図1Aで示すように、Sはスリット幅、Lは隣接するスリット間の距離(隣接するスリット間の櫛歯の幅)であり、L/S値とは、距離Lと幅Sとの値を示す。例えば、L/S値が(2/2)の場合、スリット幅が2mm、スリット間の距離が2mmであることを示す。静電シールド30の磁性体コアの長さは一定であるので、L/S値が小さくなるに従い櫛歯の本数は多くなる。図6では、L/S値と櫛歯の本数を併記している。 The loss reduction rate of the transformer 20 due to the slits 33 and 34 is determined by the width of the slits 33 and 34. FIG. 6 is a diagram showing a change in loss of the transformer 20 when the widths of the slits 33 and 34 are changed. The horizontal axis in FIG. 6 is the L / S value, and the vertical axis is the value obtained by converting the loss into an arbitrary unit. Here, as shown in FIG. 1A, S is the slit width, L is the distance between adjacent slits (the width of the comb teeth between adjacent slits), and the L / S value is the distance L and the width S. Indicates the value of. For example, when the L / S value is (2/2), the slit width is 2 mm and the distance between the slits is 2 mm. Since the length of the magnetic core of the electrostatic shield 30 is constant, the number of comb teeth increases as the L / S value decreases. In FIG. 6, the L / S value and the number of comb teeth are shown together.
 図6に示すグラフ上の各点は、L/S値を、(2/2)、(3/3)、(5/5)、(10/10)、(17/17)、(50/50)とした場合の損失を示している。この図6では、L/S値が(50/50)の場合の損失を基準としている。図示したように、L/S値を小さくするに伴い、すなわち、櫛歯の本数が増加するのに伴い、トランス20の損失が小さくなっていることがわかる。具体的には、L/S値が(2/2)の場合、L/S値が(50/50)の場合よりも約94%損失が低減している。 Each point on the graph shown in FIG. 6 indicates the L / S value as (2/2), (3/3), (5/5), (10/10), (17/17), (50 / 50) shows the loss. In FIG. 6, the loss when the L / S value is (50/50) is used as a reference. As shown in the figure, it can be seen that the loss of the transformer 20 decreases as the L / S value decreases, that is, as the number of comb teeth increases. Specifically, when the L / S value is (2/2), the loss is reduced by about 94% compared to the case where the L / S value is (50/50).
 なお、図6では、幅Sと距離Lとを同じにした場合を示しているが、静電シールド性の観点からは、トランス20から放射される電界をより遮断するためには、距離Lは幅Sよりも長い(太い)ことがより好ましい。 6 shows the case where the width S and the distance L are the same, but from the viewpoint of electrostatic shielding properties, in order to further block the electric field radiated from the transformer 20, the distance L is It is more preferable that the width is longer (thicker) than the width S.
 なお、静電シールド30への漏れ磁束の入射を防ぐために、トランス20と静電シールド30との間にフェライト材を介在させることがより好ましい。図7はフェライト材を備えたトランスモジュール10の正面図である。図7は図1Cに相当する図面である。図7では、静電シールド30の第1金属部材31および第2金属部材32の内側に板状のフェライト材45が貼り付けられている。トランス20は、このフェライト材45により、上面および側面が覆われた状態となる。フェライト材45を設けることで、トランス20の漏れ磁束が静電シールド30へ入射されることを防ぎ、静電シールド30に渦電流をより発生し難くできる。また、フェライト材45が磁気シールドとして作用するため、トランス20のQ値が向上する。 In order to prevent leakage magnetic flux from entering the electrostatic shield 30, it is more preferable to interpose a ferrite material between the transformer 20 and the electrostatic shield 30. FIG. 7 is a front view of the transformer module 10 including a ferrite material. FIG. 7 is a drawing corresponding to FIG. 1C. In FIG. 7, a plate-like ferrite material 45 is affixed inside the first metal member 31 and the second metal member 32 of the electrostatic shield 30. The transformer 20 is in a state where the upper surface and the side surface are covered with the ferrite material 45. By providing the ferrite material 45, the leakage magnetic flux of the transformer 20 can be prevented from entering the electrostatic shield 30, and eddy current can be more unlikely to be generated in the electrostatic shield 30. Further, since the ferrite material 45 acts as a magnetic shield, the Q value of the transformer 20 is improved.
 図8は、スリット33,34を静電シールド30に形成したことによるQ値の変移を示す図である。図8では、縦軸に各パターンにおけるQ値を示している。横軸に示す(1)は、トランス20を静電シールド30で覆っていない場合である。(2)は、トランス20を、スリットが形成されていない静電シールド30で覆った場合である。(3)、(4)、(5)は、L/S値がそれぞれ(2/2)、(1/1.5)、(1/2)としたスリット33,34を形成した静電シールド30でトランス20を覆った場合である。(6)は(3)にフェライト材45を設けた場合である。 FIG. 8 is a diagram showing a change in the Q value due to the slits 33 and 34 being formed in the electrostatic shield 30. In FIG. 8, the vertical axis indicates the Q value in each pattern. (1) shown on the horizontal axis is a case where the transformer 20 is not covered with the electrostatic shield 30. (2) is a case where the transformer 20 is covered with an electrostatic shield 30 in which no slit is formed. (3), (4), and (5) are electrostatic shields having slits 33 and 34 having L / S values of (2/2), (1 / 1.5), and (1/2), respectively. In this case, the transformer 20 is covered with 30. (6) is a case where the ferrite material 45 is provided in (3).
 (1)では、最も高いQ値を得ることができる。しかしながら、この場合、上述したEMC対策が施されていない。一方、(2)では、EMC対策が施されているが、最も低いQ値となっている。静電シールド30にスリットを形成した(3)、(4)、(5)、(6)の場合では、(2)より高いQ値が得られる。また、EMCを許容範囲内に収めることができる。さらに、フェライト材45を設けた(6)の場合には、(3)、(4)、(5)よりさらに高いQ値が得られる。 (1) The highest Q value can be obtained. However, in this case, the EMC countermeasure described above is not taken. On the other hand, in (2), EMC measures are taken, but the lowest Q value is obtained. In the case of (3), (4), (5), (6) in which slits are formed in the electrostatic shield 30, a higher Q value than (2) can be obtained. Moreover, EMC can be kept within an allowable range. Furthermore, in the case of (6) in which the ferrite material 45 is provided, a higher Q value is obtained than in (3), (4), and (5).
 なお、本実施形態では、静電シールド30は、図3に示すように、静電シールド30の三面にスリット33,34を形成しているが、一面または二面にスリットを形成する構成であってもよい。また、静電シールド30は、実装基板40のグランド電極パターン40Gと共にトランス20を覆っているが、静電シールド30が四面を有し、その四面でトランス20を覆うような構成としてもよい。 In the present embodiment, as shown in FIG. 3, the electrostatic shield 30 has slits 33 and 34 formed on three surfaces of the electrostatic shield 30. However, the electrostatic shield 30 has a configuration in which slits are formed on one surface or two surfaces. May be. The electrostatic shield 30 covers the transformer 20 together with the ground electrode pattern 40G of the mounting substrate 40. However, the electrostatic shield 30 may have four surfaces, and the four surfaces may cover the transformer 20.
 図9、図10および図11は、静電シールドの他の構成を示す斜視図である。図9に示す静電シールド50は、垂直な二面を有する第1金属部材51と第2金属部材52とを備えている。第1金属部材51および第2金属部材52の各面には、閉じられていないスリット53,54が複数形成されており、各面は櫛歯状となっている。そして、トランス20の外周を囲うようにして、第1金属部材51と第2金属部材52とが設けられる。この構成の静電シールド50でも、渦電流を抑制することができる。この結果、トランス20のQ値の低下を防止できる。 9, 10 and 11 are perspective views showing other configurations of the electrostatic shield. An electrostatic shield 50 shown in FIG. 9 includes a first metal member 51 and a second metal member 52 having two perpendicular surfaces. A plurality of non-closed slits 53 and 54 are formed on each surface of the first metal member 51 and the second metal member 52, and each surface has a comb shape. A first metal member 51 and a second metal member 52 are provided so as to surround the outer periphery of the transformer 20. The electrostatic shield 50 having this configuration can also suppress eddy currents. As a result, a decrease in the Q value of the transformer 20 can be prevented.
 図10に示す静電シールド60は、垂直な二面を有する第1金属部材61と、第2金属部材62と、第3金属部材63と、第4金属部材64とを備えている。各面には、図9の静電シールド50と同様に、閉じられていないスリットが形成されており、静電シールド60の各面は櫛歯状となっている。そして、各面の櫛歯が、隣接する面の櫛歯とスリットを設けて噛み合うように、第1金属部材61と、第2金属部材62と、第3金属部材63と、第4金属部材64とが組み合わせられて構成されている。図10では、二つの金属部材で一面のスリットが形成するようにしているため、スリット幅の調整が容易となる。 The electrostatic shield 60 shown in FIG. 10 includes a first metal member 61 having two vertical surfaces, a second metal member 62, a third metal member 63, and a fourth metal member 64. Similarly to the electrostatic shield 50 in FIG. 9, slits that are not closed are formed on each surface, and each surface of the electrostatic shield 60 has a comb shape. And the 1st metal member 61, the 2nd metal member 62, the 3rd metal member 63, and the 4th metal member 64 are provided so that the comb teeth of each surface may mesh with the comb teeth of the adjacent surfaces. Are combined. In FIG. 10, since the slit of one surface is formed by two metal members, the slit width can be easily adjusted.
 また、図11に示す静電シールド70は、ミアンダ状の一の金属部材が二面を形成するように折り曲げて構成されている。この構成であっても、トランスの外周に沿った各面にスリットが形成されることとなり、渦電流を流れ難くできる。 Further, the electrostatic shield 70 shown in FIG. 11 is configured by bending so that one meander-shaped metal member forms two surfaces. Even with this configuration, slits are formed on each surface along the outer periphery of the transformer, and eddy currents can hardly flow.
 以上のように、主に平面の周縁部に沿って流れる渦電流を流れにくくする構成(形状)であれば、適宜変更可能である。また、静電シールド30に形成するスリットの数、またはスリット幅なども、トランスモジュール10の大きさによって適宜変更される。 As described above, any configuration (shape) that makes it difficult to flow eddy currents that mainly flow along the peripheral edge of the plane can be changed as appropriate. Further, the number of slits formed in the electrostatic shield 30 or the slit width is appropriately changed depending on the size of the transformer module 10.
(実施形態2)
 以下に、本発明に係る実施形態2について説明する。本実施形態では、実施形態1で説明したトランスモジュール10を用いたワイヤレス電力伝送システムについて説明する。
(Embodiment 2)
Embodiment 2 according to the present invention will be described below. In the present embodiment, a wireless power transmission system using the transformer module 10 described in the first embodiment will be described.
 本実施形態に係るワイヤレス電力伝送システムは、送電装置と受電装置とで構成されている。受電装置は二次電池を備えた、例えば携帯電子機器である。携帯電子機器としては携帯電話機、PDA(Personal Digital Assistant)、携帯音楽プレーヤ、ノート型PC(Personal Computer)、デジタルカメラなどが挙げられる。送電装置は受電装置が載置され、この受電装置の二次電池を充電するための充電台である。 The wireless power transmission system according to this embodiment includes a power transmission device and a power reception device. The power receiving device is, for example, a portable electronic device including a secondary battery. Examples of portable electronic devices include mobile phones, PDAs (Personal Digital Assistants), portable music players, notebook PCs (Personal Computers), and digital cameras. The power transmission device is a charging stand on which the power reception device is mounted and charges a secondary battery of the power reception device.
 図12は送電装置と受電装置との透視斜視図である。受電装置200は、内部に二次電池(図示せず)を有する略直方体状の筐体201を備えている。筐体201において、面積の最も広い二つの対向面の一方を前面、他方を背面とする。筐体201には、前面に沿って静電容量式入力式のタッチパネル202が設けられている。 FIG. 12 is a perspective view of the power transmitting device and the power receiving device. The power receiving apparatus 200 includes a substantially rectangular parallelepiped casing 201 having a secondary battery (not shown) therein. In the housing 201, one of the two opposing surfaces having the largest area is a front surface and the other is a back surface. The casing 201 is provided with a capacitive input touch panel 202 along the front surface.
 筐体201には、背面に沿ってアクティブ電極203が設けられている。アクティブ電極203は、長方形状であって、長手方向が筐体201の背面の長手方向と一致するように設けられている。アクティブ電極203は、受電装置200を送電装置100に載置した場合に、送電装置100に設けられた後述のアクティブ電極103と空隙を介して対向するようになっている。 The casing 201 is provided with an active electrode 203 along the back surface. The active electrode 203 has a rectangular shape and is provided such that the longitudinal direction thereof coincides with the longitudinal direction of the back surface of the housing 201. When the power receiving device 200 is placed on the power transmission device 100, the active electrode 203 is opposed to an active electrode 103 (described later) provided on the power transmission device 100 via a gap.
 筐体201には、底面に沿ってパッシブ電極204が設けられている。筐体201の底面は、長方形状で、その長辺が前面及び背面の短辺と一致する面である。パッシブ電極204は、長方形状であって、長手方向が筐体201の底面の長手方向と一致するように設けられている。パッシブ電極204は、受電装置200を送電装置100に配置した場合に、送電装置100に設けられた後述のパッシブ電極104と空隙を介して対向し、または直接導通するようになっている。 The housing 201 is provided with a passive electrode 204 along the bottom surface. The bottom surface of the housing 201 has a rectangular shape, and the long side thereof is a surface that coincides with the short sides of the front surface and the back surface. The passive electrode 204 has a rectangular shape and is provided so that the longitudinal direction thereof coincides with the longitudinal direction of the bottom surface of the housing 201. When the power receiving device 200 is disposed in the power transmission device 100, the passive electrode 204 is opposed to or directly connected to a passive electrode 104 (described later) provided in the power transmission device 100 via a gap.
 送電装置100は、設置面に対して略水平となる載置面101Aと、載置面101Aに対して略垂直となり、互いに平行に対向する背もたれ面101B及び前面101Cとを有している。載置面101A、背もたれ面101B及び前面101Cは、それぞれ長方形状である。載置面101Aの長辺と背もたれ面101Bの短辺とが一致し、また、載置面101Aの長辺と前面101Cの長辺とが一致している。 The power transmission device 100 includes a placement surface 101A that is substantially horizontal to the installation surface, and a backrest surface 101B and a front surface 101C that are substantially perpendicular to the placement surface 101A and face each other in parallel. The placement surface 101A, the backrest surface 101B, and the front surface 101C each have a rectangular shape. The long side of the mounting surface 101A matches the short side of the backrest surface 101B, and the long side of the mounting surface 101A matches the long side of the front surface 101C.
 送電装置100には、受電装置200の底面が載置面101A側となり、受電装置200の背面が背もたれ面101B側となるように、受電装置200が載置される。送電装置100は、載置面101Aに沿って設けられたパッシブ電極104を備えている。パッシブ電極104は、長方形状であって、長手方向が載置面101Aの長手方向と一致するよう設けられている。送電装置100に受電装置200が載置された場合、送電装置100側のパッシブ電極104と、受電装置200側のパッシブ電極204とが空隙を介して対向し、または直接導通するようになっている。 The power receiving device 200 is mounted on the power transmitting device 100 such that the bottom surface of the power receiving device 200 is on the mounting surface 101A side and the back surface of the power receiving device 200 is on the backrest surface 101B side. The power transmission device 100 includes a passive electrode 104 provided along the placement surface 101A. The passive electrode 104 has a rectangular shape and is provided such that the longitudinal direction thereof coincides with the longitudinal direction of the placement surface 101A. When the power receiving device 200 is mounted on the power transmitting device 100, the passive electrode 104 on the power transmitting device 100 side and the passive electrode 204 on the power receiving device 200 side face each other through a gap or are directly conducted. .
 送電装置100は、背もたれ面101Bに沿って設けられたアクティブ電極103を備えている。アクティブ電極103は、長方形状であって、長手方向が送電装置100の高さ方向と一致するよう設けられている。送電装置100に受電装置200が載置された場合、送電装置100側のアクティブ電極103と、受電装置200側のアクティブ電極203とが対向するようになっている。 The power transmission device 100 includes an active electrode 103 provided along the backrest surface 101B. The active electrode 103 has a rectangular shape and is provided such that the longitudinal direction thereof coincides with the height direction of the power transmission device 100. When the power receiving device 200 is mounted on the power transmitting device 100, the active electrode 103 on the power transmitting device 100 side and the active electrode 203 on the power receiving device 200 side face each other.
 本実施形態に係るワイヤレス電力伝送システムにおいて、送電装置100に受電装置200を載置した場合、パッシブ電極104,204が対向(又は直接導通)し、アクティブ電極103,203が対向する。そして、送電装置100のアクティブ電極103とパッシブ電極104との間に電圧が印加されると、対向配置となったアクティブ電極103,203間に電界が生じ、この電界を介して電力が送電装置100から受電装置200へ伝送される。これにより、受電装置200の負荷回路RLに給電され、整流されて、二次電池が充電される。 In the wireless power transmission system according to the present embodiment, when the power receiving device 200 is mounted on the power transmitting device 100, the passive electrodes 104 and 204 face (or directly conduct), and the active electrodes 103 and 203 face each other. When a voltage is applied between the active electrode 103 and the passive electrode 104 of the power transmission device 100, an electric field is generated between the active electrodes 103 and 203 that are opposed to each other, and power is transmitted via this electric field to the power transmission device 100. To the power receiving apparatus 200. As a result, the power is supplied to the load circuit RL of the power receiving device 200, rectified, and the secondary battery is charged.
 以下、ワイヤレス電力伝送システムの回路構成について説明する。図13は、受電装置200を送電装置100に載置した場合のワイヤレス電力伝送システムのパッシブ電極間が容量結合したときの等価回路の概略図である。 Hereinafter, the circuit configuration of the wireless power transmission system will be described. FIG. 13 is a schematic diagram of an equivalent circuit when the passive electrodes of the wireless power transmission system when the power receiving device 200 is mounted on the power transmitting device 100 are capacitively coupled.
 送電装置100は、ACアダプタ106及び電圧発生回路107を備えている。ACアダプタ106は、100V~230Vの交流電圧を、5V、12V等の直流電圧に変換して電圧発生回路107へ出力する。電圧発生回路107は、インバータ108、昇圧トランスTG及びインダクタLGにより構成され、ACアダプタ106から入力された電圧を交流変換及び昇圧して、アクティブ電極103及びパッシブ電極104の間に印加する。印加される電圧の周波数は100kHz乃至10MHzである。この昇圧トランスTGに、実施形態1で説明したトランスモジュール10が用いられる。 The power transmission device 100 includes an AC adapter 106 and a voltage generation circuit 107. The AC adapter 106 converts an AC voltage of 100V to 230V into a DC voltage such as 5V, 12V, etc., and outputs it to the voltage generation circuit 107. The voltage generation circuit 107 includes an inverter 108, a step-up transformer TG, and an inductor LG. The voltage generation circuit 107 performs AC conversion and step-up on the voltage input from the AC adapter 106, and applies the voltage between the active electrode 103 and the passive electrode 104. The frequency of the applied voltage is 100 kHz to 10 MHz. The transformer module 10 described in the first embodiment is used for the step-up transformer TG.
 受電装置200のアクティブ電極203とパッシブ電極204との間には、降圧トランスTL及びインダクタLLによる降圧回路205が接続されている。降圧トランスTLの二次側には負荷回路RLが接続されている。この負荷回路RLは、図示しない整流平滑回路及び二次電池で構成されている。この降圧トランスTLに、実施形態1で説明したトランスモジュール10が用いられる。 Between the active electrode 203 and the passive electrode 204 of the power receiving apparatus 200, a step-down circuit 205 including a step-down transformer TL and an inductor LL is connected. A load circuit RL is connected to the secondary side of the step-down transformer TL. The load circuit RL includes a rectifying / smoothing circuit and a secondary battery (not shown). The transformer module 10 described in the first embodiment is used for the step-down transformer TL.
 このように、昇圧トランスTGおよび降圧トランスTLに、実施形態1のトランスモジュール10を用いることで、ノイズを低減でき、EMC対策を十分に行うことができる。また、受電装置200または送電装置100のトランスで発生したノイズがAC電源ラインに重畳することを防止できる。 Thus, by using the transformer module 10 of the first embodiment for the step-up transformer TG and the step-down transformer TL, noise can be reduced and sufficient EMC countermeasures can be taken. In addition, it is possible to prevent noise generated by the power receiving device 200 or the transformer of the power transmitting device 100 from being superimposed on the AC power line.
 図14は、受電装置200と送電装置100とのパッシブ電極104,204を直接導通させた場合のワイヤレス電力伝送システムの等価回路の概略図である。 FIG. 14 is a schematic diagram of an equivalent circuit of the wireless power transmission system when the passive electrodes 104 and 204 of the power receiving device 200 and the power transmitting device 100 are directly conducted.
 図14において、送電装置100のパッシブ電極104と受電装置200のパッシブ電極204との間には抵抗rが接続されている。この抵抗rは、パッシブ電極104,204の接触部に構成されている接触抵抗に相当する。パッシブ電極104,204間に抵抗rが接続されている以外は、図13と同様である。 14, a resistor r is connected between the passive electrode 104 of the power transmission device 100 and the passive electrode 204 of the power reception device 200. The resistance r corresponds to the contact resistance configured at the contact portion between the passive electrodes 104 and 204. 13 is the same as FIG. 13 except that a resistor r is connected between the passive electrodes 104 and 204.
 アクティブ電極103,203間の容量をCm、印加される電圧の周波数をfで表すと、r≪1/(2πfCm)の関係にある。この構成では受電装置200のパッシブ電極204の電位が安定化され、不要電磁界の漏洩が防止される。また、昇圧して電力伝送するため、パッシブ電極104,204を流れる電流は数mAオーダーでよい。従来の接触式充電装置では、数Aオーダーの充電電流がそのまま流れるため接触抵抗による損失が大きいのに対し、本発明では接触抵抗を低く抑える必要がなく各種接触手段が適用できる。 When the capacitance between the active electrodes 103 and 203 is represented by Cm and the frequency of the applied voltage is represented by f, r << 1 / (2πfCm). With this configuration, the potential of the passive electrode 204 of the power receiving device 200 is stabilized, and leakage of unnecessary electromagnetic fields is prevented. Further, in order to boost the power and transmit power, the current flowing through the passive electrodes 104 and 204 may be on the order of several mA. In a conventional contact-type charging device, a charging current on the order of several A flows as it is, so that loss due to contact resistance is large. In the present invention, it is not necessary to keep contact resistance low, and various contact means can be applied.
 なお、上述したトランスモジュール10などの具体的構成は、適宜設計変更可能であり、上述の実施形態に記載された作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、上述の実施形態に記載されたものに限定されるものではない。 It should be noted that the specific configuration of the transformer module 10 and the like described above can be changed in design as appropriate, and the actions and effects described in the above-described embodiments are merely a list of the most preferable actions and effects resulting from the present invention. The operations and effects of the present invention are not limited to those described in the above embodiment.
 また、上述の例において、送電装置と受電装置のアクティブ電極同士又はパッシブ電極同士は、空隙を介して対向している構成を述べたが、本願の効果はこれに限るものではなく、対向する電極どうしが容量結合していればよい。例えば、電極間に装置の筐体をなすプラスチック等の誘電体や絶縁性の液体、気体など、電極同士を絶縁する物質、あるいはそれらを含む複数の物質の組み合わせが配置されることで電極間が直流的に導通していない構成となっていればよい。 In the above-described example, the active electrodes or the passive electrodes of the power transmitting device and the power receiving device are opposed to each other via a gap. However, the effect of the present application is not limited to this, and the facing electrodes It is only necessary that the two are capacitively coupled. For example, a dielectric material such as plastic that forms the housing of the device, an insulating liquid, a gas, or the like, that is, a material that insulates the electrodes from each other, or a combination of a plurality of materials that include them is arranged between the electrodes, so that there is no gap between the electrodes. What is necessary is just to become the structure which is not electrically connected in direct current.
10-トランスモジュール
20-トランス
21-コイルボビン
22-コア
30-静電シールド
33,34-スリット(切欠き部)
40-実装基板(囲み部)
L1-一次巻線
L2-二次巻線
10-transformer module 20-transformer 21-coil bobbin 22-core 30-electrostatic shield 33, 34-slit (notch)
40-Mounting board (box)
L1-primary winding L2-secondary winding

Claims (11)

  1.  開磁路を形成する磁性体コアと、
     前記磁性体コアに巻回された巻線と、
     前記巻線が巻回された前記磁性体コアを覆う静電シールドと、
     を備え、
     前記静電シールドには一または複数の切欠き部が形成されている、
     コンバータトランス。
    A magnetic core that forms an open magnetic path;
    A winding wound around the magnetic core;
    An electrostatic shield covering the magnetic core around which the winding is wound;
    With
    One or more notches are formed in the electrostatic shield,
    Converter transformer.
  2.  前記巻線は、隣接して巻回された一次巻線および二次巻線を有し、
     前記一次巻線および前記二次巻線の一方は他方より高電圧側である、
     請求項1に記載のコンバータトランス。
    The winding has a primary winding and a secondary winding wound adjacently;
    One of the primary winding and the secondary winding is on the higher voltage side than the other,
    The converter transformer according to claim 1.
  3.  前記静電シールドは前記磁性体コアの軸方向に沿った少なくとも三面を有し、
     前記三面それぞれに切欠き部が形成されている、
     請求項1または2に記載のコンバータトランス。
    The electrostatic shield has at least three surfaces along the axial direction of the magnetic core,
    Notches are formed on each of the three surfaces,
    The converter transformer according to claim 1 or 2.
  4.  前記静電シールドの前記三面と共に前記磁性体コアを覆う一面を有する囲み部をさらに備える請求項3に記載のコンバータトランス。 4. The converter transformer according to claim 3, further comprising an enclosing portion having one surface that covers the magnetic core together with the three surfaces of the electrostatic shield.
  5.  前記静電シールドおよび前記巻線の間に設けられたフェライト部材をさらに備える請求項1から4の何れか一つに記載のコンバータトランス。 The converter transformer according to any one of claims 1 to 4, further comprising a ferrite member provided between the electrostatic shield and the winding.
  6.  前記切欠き部は、前記磁性体コアの軸方向の直交方向に延びたスリットである、
     請求項1から5の何れか一つに記載のコンバータトランス。
    The notch is a slit extending in a direction orthogonal to the axial direction of the magnetic core,
    The converter transformer according to any one of claims 1 to 5.
  7.  前記スリットは、前記三面の各面それぞれにおいて、周縁部から内側に向かって形成されている請求項6に記載のコンバータトランス。 The converter transformer according to claim 6, wherein the slit is formed from the peripheral portion toward the inside on each of the three surfaces.
  8.  前記磁性体コアの軸方向に沿って複数の前記スリットが形成されており、
     前記軸方向における前記スリットの幅は、隣接するスリット間の距離より短い、
     請求項6または7に記載のコンバータトランス。
    A plurality of the slits are formed along the axial direction of the magnetic core,
    The width of the slit in the axial direction is shorter than the distance between adjacent slits,
    The converter transformer according to claim 6 or 7.
  9.  前記静電シールドは二つの櫛歯形部材を有し、
     前記二つの櫛歯形部材は対向し、それぞれの櫛歯が間に前記スリットを形成するよう互いに入り込んでいる、
     請求項6から8の何れか一つに記載のコンバータトランス。
    The electrostatic shield has two comb-shaped members,
    The two comb-shaped members are opposed to each other, and the respective comb teeth are inserted into each other so as to form the slit,
    9. The converter transformer according to any one of claims 6 to 8.
  10.  開磁路を形成する磁性体コア、前記磁性体コアに巻回された一次巻線および二次巻線を有するトランスと、
     該トランスを覆い、一または複数の切欠き部が形成されている静電シールドと、
     前記トランスおよび前記静電シールドが実装された基板と、
     を備えるトランスモジュール。
    A magnetic core that forms an open magnetic path, a transformer having a primary winding and a secondary winding wound around the magnetic core, and
    An electrostatic shield that covers the transformer and has one or more notches formed therein;
    A substrate on which the transformer and the electrostatic shield are mounted;
    Transformer module comprising.
  11.  送電側アクティブ電極、送電側パッシブ電極、並びに、前記送電側アクティブ電極及び送電側パッシブ電極間に電圧を印加する電圧発生回路を有する送電装置と、
     該送電装置に載置した場合に、前記送電側アクティブ電極に対して対向する受電側アクティブ電極、前記送電側パッシブ電極に対して対向又は接触する受電側パッシブ電極、前記受電側アクティブ電極及び受電側パッシブ電極の間に生じる電圧を降圧する降圧回路、並びに、前記降圧回路の出力電圧を電源電圧として入力する負荷回路を有する受電装置と、
     を備え、前記送電側アクティブ電極と前記受電側アクティブ電極とが絶縁体を介して対向し、容量結合することにより前記送電装置側から前記受電装置側へ電力伝送するワイヤレス電力伝送システムにおいて、
     前記電圧発生回路または前記降圧回路は、
     開磁路を形成する磁性体コア、前記磁性体コアに巻回された一次巻線および二次巻線を有するトランスと、
     該トランスを覆い、一または複数の切欠き部が形成されている静電シールドと、
     を有するワイヤレス電力伝送システム。
    A power transmission device having a power generation side active electrode, a power transmission side passive electrode, and a voltage generation circuit for applying a voltage between the power transmission side active electrode and the power transmission side passive electrode;
    A power receiving side active electrode facing the power transmitting side active electrode, a power receiving side passive electrode facing or contacting the power transmitting side passive electrode, the power receiving side active electrode and the power receiving side when mounted on the power transmitting device A step-down circuit for stepping down a voltage generated between the passive electrodes, and a power receiving device having a load circuit for inputting an output voltage of the step-down circuit as a power supply voltage;
    In the wireless power transmission system for transmitting power from the power transmitting device side to the power receiving device side by capacitively coupling the power transmitting side active electrode and the power receiving side active electrode through an insulator,
    The voltage generation circuit or the step-down circuit is
    A magnetic core that forms an open magnetic path, a transformer having a primary winding and a secondary winding wound around the magnetic core, and
    An electrostatic shield that covers the transformer and has one or more notches formed therein;
    Having a wireless power transmission system.
PCT/JP2012/077181 2011-10-28 2012-10-22 Converter transformer, transformer module, and wireless power transmission system WO2013061898A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013540760A JP5741706B2 (en) 2011-10-28 2012-10-22 Converter transformer, transformer module and wireless power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011236570 2011-10-28
JP2011-236570 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013061898A1 true WO2013061898A1 (en) 2013-05-02

Family

ID=48167730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077181 WO2013061898A1 (en) 2011-10-28 2012-10-22 Converter transformer, transformer module, and wireless power transmission system

Country Status (2)

Country Link
JP (1) JP5741706B2 (en)
WO (1) WO2013061898A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066081A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Wireless power feeding system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178513A (en) * 1987-01-20 1988-07-22 Matsushita Electric Ind Co Ltd Dc-dc converter
JPH10256059A (en) * 1997-03-07 1998-09-25 Citizen Electron Co Ltd Circuit with coil magnetic path on circuit board
JP2000348953A (en) * 1999-06-04 2000-12-15 Hitachi Ltd Magnetic shield for stationary induction apparatus
JP2002008928A (en) * 2000-06-23 2002-01-11 Fuji Electric Co Ltd Inductor
WO2011093438A1 (en) * 2010-01-29 2011-08-04 株式会社村田製作所 Power reception device and power transmission device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178513A (en) * 1987-01-20 1988-07-22 Matsushita Electric Ind Co Ltd Dc-dc converter
JPH10256059A (en) * 1997-03-07 1998-09-25 Citizen Electron Co Ltd Circuit with coil magnetic path on circuit board
JP2000348953A (en) * 1999-06-04 2000-12-15 Hitachi Ltd Magnetic shield for stationary induction apparatus
JP2002008928A (en) * 2000-06-23 2002-01-11 Fuji Electric Co Ltd Inductor
WO2011093438A1 (en) * 2010-01-29 2011-08-04 株式会社村田製作所 Power reception device and power transmission device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066081A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Wireless power feeding system
US20210152033A1 (en) * 2018-09-27 2021-05-20 Murata Manufacturing Co., Ltd. Wireless power transfer system
JPWO2020066081A1 (en) * 2018-09-27 2021-06-03 株式会社村田製作所 Wireless power supply system
US11637460B2 (en) 2018-09-27 2023-04-25 Murata Manufacturing Co., Ltd. Wireless power transfer system having an electric field shield member
JP7287402B2 (en) 2018-09-27 2023-06-06 株式会社村田製作所 Wireless power supply system

Also Published As

Publication number Publication date
JPWO2013061898A1 (en) 2015-04-02
JP5741706B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
US9461507B2 (en) Wireless power transmission system
US9264107B2 (en) Wireless power transmitting device for wireless power communication system
JP5266665B2 (en) Electronic equipment, charger and charging system
JP5035477B1 (en) Power transmission system and non-contact charging device
JP5152298B2 (en) Power transmission device, power reception device, and wireless power transmission system
US9698629B2 (en) Wireless power transmission system, power transmitting device, and power receiving device
JP5354030B2 (en) Power transmission system and non-contact charging device
US9960638B2 (en) Wireless power transmission system
JP5403073B2 (en) Power receiving device and power transmitting device
US20120049645A1 (en) Electronic component, power feeding apparatus, power receiving apparatus, and wireless power feeding system
US9973042B2 (en) Power transmission system
JP2023517037A (en) Transmitter for wireless power transmission, system and method for wireless power transmission
JP2009267077A (en) Coil unit and electronic apparatus using the same
WO2012086280A1 (en) Wireless power transmission system
US20210090795A9 (en) Low common mode noise transformer structure with external float wire mount
JP5741706B2 (en) Converter transformer, transformer module and wireless power transmission system
KR20150067520A (en) Apparatus for transmitting wireless power
CN206991926U (en) Circuit arrangement and electrical power transmission system
CN110085397A (en) Transformer unit for resonance converter
EP4213170A1 (en) Planar transformer, power source conversion circuit, and adapter
JP2013125926A (en) Power supply cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842844

Country of ref document: EP

Kind code of ref document: A1