WO2013061688A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2013061688A1
WO2013061688A1 PCT/JP2012/072075 JP2012072075W WO2013061688A1 WO 2013061688 A1 WO2013061688 A1 WO 2013061688A1 JP 2012072075 W JP2012072075 W JP 2012072075W WO 2013061688 A1 WO2013061688 A1 WO 2013061688A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
resin
mass
manufactured
Prior art date
Application number
PCT/JP2012/072075
Other languages
French (fr)
Japanese (ja)
Inventor
一彦 鶴井
中村 茂雄
志朗 巽
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to KR1020147010645A priority Critical patent/KR101489175B1/en
Priority to CN201280052315.XA priority patent/CN103890088B/en
Priority to JP2012542279A priority patent/JP5234231B1/en
Priority to TW101139721A priority patent/TWI445728B/en
Publication of WO2013061688A1 publication Critical patent/WO2013061688A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to a resin composition. Furthermore, it is related with the adhesive film, prepreg, multilayer printed wiring board, and semiconductor device containing the said resin composition.
  • Patent Document 1 discloses a resin composition containing a silicone alkoxy oligomer. It is described that the insulating material formed by these compositions can have adhesiveness. In Patent Documents 2 to 4, general compounding studies are also conducted. However, its performance was not always satisfactory.
  • JP 2006-117826 A Japanese Patent No. 46747730 Japanese Patent No. 4686750 Japanese Patent No. 4782870
  • the problem to be solved by the present invention is that, in the wet roughening step, the arithmetic average roughness and root mean square roughness of the insulating layer surface are small, and a plated conductor layer having sufficient peel strength can be formed thereon. It is to provide a resin composition having PCT (Pressure Cooker Test) resistance.
  • the present inventors have identified the inorganic filler in a resin composition containing (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler.
  • the present invention has been completed in a resin composition characterized by being surface-treated with an organic compound.
  • the present invention includes the following contents.
  • a resin composition containing (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler the inorganic filler has a hydroxyl group and a reactive group, and has a boiling point of 100 ° C. or higher.
  • the reactive group of the organic compound is at least one selected from the group consisting of an amino group, an epoxy group, a mercapto group, a methacryl group, an acrylic group, a vinyl group, and a ureido group.
  • the organic compound is one or more selected from the group consisting of a compound of the following formula (1), a compound of the following formula (2), a compound of the following formula (3), an imidazole compound and an imidazole-epoxy adduct.
  • R3 is an alkylene group or phenylene group having 1 to 5 carbon atoms.)
  • R4 is an alkylene group having 1 to 5 carbon atoms or a phenylene group.)
  • R5 is an organic group having a hydroxyl group.
  • R6 is a hydrogen atom, a methyl group, a carboxyl group or a phenyl group.
  • the resin composition is cured to form an insulating layer, the surface of the insulating layer is roughened, and the peel strength between the conductor layer and the insulating layer obtained by plating is 0.4 kgf / cm to 1.5 kgf / Cm, the resin composition is cured to form an insulating layer, the arithmetic average roughness after roughening the surface of the insulating layer is 10 nm to 300 nm, and the root mean square roughness is 10 nm to 480 nm.
  • the resin composition as described in any one of [1] to [6] above, wherein [8] A sheet-like laminate material comprising the resin composition according to any one of [1] to [7].
  • [9] A multilayer printed wiring board in which an insulating layer is formed from a cured product of the resin composition according to any one of [1] to [7].
  • [10] A semiconductor device using the multilayer printed wiring board according to [9].
  • a resin composition can be provided.
  • the present invention relates to a resin composition containing (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler, wherein the inorganic filler has a hydroxyl group and a reactive group, and has a boiling point of 100 ° C.
  • the resin composition is surface-treated with the organic compound as described above.
  • the epoxy resin used in the present invention is not particularly limited, but is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol.
  • Type epoxy resin naphthol type epoxy resin, naphthalene type epoxy resin, naphthylene ether type epoxy resin, glycidylamine type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, anthracene type epoxy resin, linear aliphatic epoxy resin, Epoxy resin having butadiene structure, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, cyclohexanedimethanol type epoxy resin, trimethylol type epoxy resin Resins, and halogenated epoxy resins. These may be used alone or in combination of two or more.
  • bisphenol A type epoxy resin bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy from the viewpoint of improving heat resistance, insulation reliability, and adhesion to metal foil.
  • Resins, anthracene type epoxy resins, and epoxy resins having a butadiene structure are preferred.
  • bisphenol A type epoxy resin (“Epicoat 828EL”, “YL980” manufactured by Mitsubishi Chemical Corporation), bisphenol F type epoxy resin (“jER806H”, “YL983U” manufactured by Mitsubishi Chemical Corporation), Naphthalene type bifunctional epoxy resin (“HP4032”, “HP4032D”, “HP4032SS”, “EXA4032SS” manufactured by DIC Corporation), naphthalene type tetrafunctional epoxy resin (“HP4700”, “HP4710” manufactured by DIC Corporation), Naphthol type epoxy resin (“ESN-475V” manufactured by Toto Kasei Co., Ltd.), epoxy resin having a butadiene structure (“PB-3600” manufactured by Daicel Chemical Industries, Ltd.), epoxy resin having a biphenyl structure (Nippon Kayaku ( "NC3000H”, “NC3000L”, “NC310” 0 ”,“ YX4000 ”,“ YX4000H ”,“ YX4000HK ”,“ YL6121 ”) manufactured
  • Two or more epoxy resins may be used in combination, but it is preferable to contain an epoxy resin having two or more epoxy groups in one molecule.
  • an aromatic epoxy resin having two or more epoxy groups in one molecule and being liquid at a temperature of 20 ° C. (hereinafter referred to as “liquid epoxy resin”) and three or more epoxy groups in one molecule.
  • a solid aromatic epoxy resin (hereinafter referred to as “solid epoxy resin”) at a temperature of 20 ° C. is more preferable.
  • the aromatic epoxy resin as used in the field of this invention means the epoxy resin which has an aromatic ring structure in the molecule
  • the resin composition When using a liquid epoxy resin and a solid epoxy resin together as an epoxy resin, when using the resin composition in the form of an adhesive film, the resin composition has an appropriate flexibility and the cured product of the resin composition has an appropriate breaking strength. Therefore, the blending ratio (liquid epoxy resin: solid epoxy resin) is preferably in the range of 1: 0.1 to 1: 2 by mass ratio, more preferably in the range of 1: 0.3 to 1: 1.8. The range of 1: 0.6 to 1: 1.5 is more preferable.
  • liquid epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, or naphthalene type epoxy resin are preferable, and naphthalene type epoxy resin is more preferable. You may use these 1 type or in combination of 2 or more types.
  • solid epoxy resins include tetrafunctional naphthalene type epoxy resins, cresol novolac type epoxy resins, dicyclopentadiene type epoxy resins, trisphenol epoxy resins, naphthol novolac epoxy resins, biphenyl type epoxy resins, and naphthylene ether type epoxy resins.
  • a tetrafunctional naphthalene type epoxy resin, a biphenyl type epoxy resin, or a naphthylene ether type epoxy resin is more preferable. You may use these 1 type or in combination of 2 or more types.
  • the content of the epoxy resin is 3 to It is preferably 40% by mass, more preferably 5 to 35% by mass, and even more preferably 10 to 30% by mass.
  • the curing agent used in the present invention is not particularly limited, but phenolic curing agent, naphthol curing agent, active ester curing agent, benzoxazine curing agent, cyanate ester curing agent, acid anhydride curing agent, etc. Of these, phenolic curing agents, naphtholic curing agents, and active ester curing agents are preferred. These may be used alone or in combination of two or more.
  • the phenolic curing agent and the naphtholic curing agent are not particularly limited, and examples thereof include a phenolic curing agent having a novolak structure and a naphtholic curing agent having a novolac structure, such as a phenol novolac resin, a triazine skeleton-containing phenol novolac resin, Naphthol novolac resins, naphthol aralkyl type resins, triazine skeleton-containing naphthol resins, and biphenyl aralkyl type phenol resins are preferred.
  • a phenolic curing agent having a novolak structure such as a phenol novolac resin, a triazine skeleton-containing phenol novolac resin, Naphthol novolac resins, naphthol aralkyl type resins, triazine skeleton-containing naphthol resins, and biphenyl aralkyl type phenol resins are preferred.
  • biphenyl aralkyl type phenol resins such as “MEH-7700”, “MEH-7810”, “MEH-7785”, “MEH7851-4H” (Maywa Kasei Co., Ltd.), “GPH” (Nippon Kasei).
  • the active ester curing agent is not particularly limited, but generally an ester group having high reaction activity such as phenol ester, thiophenol ester, N-hydroxyamine ester, heterocyclic hydroxy compound ester, etc. in one molecule.
  • a compound having two or more in the above is preferably used.
  • the active ester curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing agent obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, and m-cresol.
  • P-cresol catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzene
  • Examples include triol, dicyclopentadienyl diphenol, phenol novolac and the like. 1 type (s) or 2 or more types can be used for an active ester type hardening
  • an active ester curing agent disclosed in JP-A-2004-277460 may be used, or a commercially available one may be used.
  • Commercially available active ester curing agents include those containing a dicyclopentadienyl diphenol structure, acetylated phenol novolacs, benzoylated phenol novolacs, etc. Among them, dicyclopentadienyl diphenol structures are preferred. The inclusion is more preferable.
  • EXB9451, EXB9460, EXB9460S-65T, HPC-8000-65T (manufactured by DIC Corporation, active group equivalent of about 223) as an acetylated product of phenol novolak as a dicyclopentadienyl diphenol structure.
  • DC808 Mitsubishi Chemical Co., Ltd., active group equivalent of about 149
  • YLH1026 Mitsubishi Chemical Co., Ltd., active group equivalent of about 200
  • YLH1030 Mitsubishi Chemical Co., Ltd., active group equivalent
  • YLH1048 manufactured by Mitsubishi Chemical Co., Ltd., active group equivalent of about 245
  • HPC-8000-65T is preferable from the viewpoint of the storage stability of the varnish and the thermal expansion coefficient of the cured product.
  • examples of the active ester curing agent containing a dicyclopentadienyl diphenol structure include a compound represented by the following formula (4).
  • R is a phenyl group or a naphthyl group
  • k represents 0 or 1
  • n is 0.05 to 2.5 on the average of repeating units.
  • R is preferably a naphthyl group
  • k is preferably 0, and n is preferably 0.25 to 1.5.
  • the benzoxazine-based curing agent is not particularly limited, and specific examples include Fa, Pd (manufactured by Shikoku Kasei Co., Ltd.), HFB2006M (manufactured by Showa Polymer Co., Ltd.), and the like.
  • cyanate ester type hardening curing agent, Novolac type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester type hardening agent, dicyclopentadiene type cyanate ester type hardening agent, bisphenol type (bisphenol A type, bisphenol) Fate, bisphenol S type, etc.) cyanate ester curing agents, and prepolymers in which these are partially triazines.
  • the weight average molecular weight of the cyanate ester curing agent is not particularly limited, but is preferably 500 to 4500, more preferably 600 to 3000.
  • cyanate ester curing agent examples include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4′-ethylidenediphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3, Bifunctional cyanate resins such as 5-dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether , Phenol novolac, Examples thereof include polyfunctional cyanate resins derived from resole novolac, dicyclopentadiene structure-containing phenol resins
  • cyanate ester resin As a commercially available cyanate ester resin, a phenol novolak type polyfunctional cyanate ester resin represented by the following formula (5) (Lonza Japan Co., Ltd., PT30, cyanate equivalent 124), and the following formula (6): Prepolymer (part Lona Japan Co., Ltd., BA230, cyanate equivalent 232), dicyclopentadiene represented by the following formula (7): a part or all of the bisphenol A dicyanate represented by triazine Structure-containing cyanate ester resin (Lonza Japan Co., Ltd., T-4000, DT-7000), and the like.
  • formula (5) Lionza Japan Co., Ltd., PT30, cyanate equivalent 124
  • (6) Prepolymer (part Lona Japan Co., Ltd., BA230, cyanate equivalent 232), dicyclopentadiene represented by the following formula (7): a part or all of the bisphenol A dicyanate represented by triazine Structure
  • n represents an arbitrary number (preferably 0 to 20) as an average value.
  • n represents a number of 0 to 5 as an average value.
  • the acid anhydride curing agent is not particularly limited, but phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride Hydrogenated methyl nadic anhydride, trialkyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid Acid anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, biphenyl tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, oxydiphthalic dianhydride, 3,3 ' -4
  • the total number of epoxy groups of the epoxy resin and (B) the total of reactive groups of the curing agent is preferably 1: 0.2 to 1: 2, more preferably 1: 0.3 to 1: 1.5, still more preferably 1: 0.4 to 1: 1.
  • the total number of epoxy groups of the epoxy resin present in the resin composition is a value obtained by dividing the solid content mass of each epoxy resin by the epoxy equivalent for all epoxy resins, and the reactive group of the curing agent.
  • the total number of is a value obtained by adding the values obtained by dividing the solid mass of each curing agent by the reactive group equivalent for all curing agents.
  • the content of the curing agent is 3 to It is preferably 30% by mass, more preferably 5 to 25% by mass, and even more preferably 7 to 20% by mass.
  • the inorganic filler (C) used in the present invention is not particularly limited.
  • silica is preferable.
  • silica such as amorphous silica, pulverized silica, fused silica, crystalline silica, synthetic silica, and hollow silica is preferable, and fused silica is more preferable.
  • the silica is preferably spherical. You may use these 1 type or in combination of 2 or more types. Examples of commercially available spherical fused silica include “SOC2” and “SOC1” manufactured by Admatechs.
  • the average particle size of the inorganic filler is not particularly limited, but is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less, from the viewpoint of forming fine wiring on the insulating layer. 7 ⁇ m or less is even more preferable, 0.5 ⁇ m or less is particularly preferable, 0.4 ⁇ m or less is particularly preferable, and 0.3 ⁇ m or less is particularly preferable.
  • the average particle size of the inorganic filler is preferably 0.01 ⁇ m or more from the viewpoint of preventing the viscosity of the varnish from increasing and the handleability from decreasing.
  • the average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter.
  • an inorganic filler dispersed in water by ultrasonic waves can be preferably used.
  • LA-500, 750, 950, etc. manufactured by Horiba Ltd. can be used as a laser diffraction particle size distribution measuring device.
  • the content is preferably 20% by mass or more, and preferably 30% by mass from the viewpoint of reducing the coefficient of thermal expansion of the cured product when the nonvolatile component in the resin composition is 100% by mass.
  • the above is more preferable, 40 mass% or more is still more preferable, and 50 mass% or more is still more preferable.
  • 85 mass% or less is preferable, 80 mass% or less is more preferable, 75 mass% or less is further more preferable, and 70 mass% or less is still more preferable.
  • the inorganic filler one that has been surface-treated with a silazane compound in advance from the viewpoint of improving the dispersibility of the resin varnish, reducing the arithmetic mean roughness, and reducing the root mean square roughness can be used.
  • surface treatment with a silazane compound surface treatment with an organic compound having a hydroxyl group and a reactive group and having a boiling point of 100 ° C. or more is advantageous in terms of improving dispersibility and improving affinity with a conductor layer. Become.
  • silazane compounds include hexamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexa (t-butyl) disilazane, hexabutyldisilazane, hexaoctyl.
  • Disilazane 1,3-diethyltetramethyldisilazane, 1,3-di-n-octyltetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, 1,3-dimethyltetraphenyldisilazane, 1,3 -Diethyltetramethyldisilazane, 1,1,3,3-tetraphenyl-1,3-dimethyldisilazane, 1,3-dipropyltetramethyldisilazane, hexamethylcyclotrisilazane, hexaphenyldisilazane, dimethylamino Trimethylsilazane, trisilazane, cyclotrisilazane, 1,1, 3,3,5,5-hexamethylcyclotrisilazane and the like can be mentioned, and hexamethyldisilazane is particularly preferable. You may use these 1 type
  • the organic compound having a hydroxyl group and a reactive group used in the present invention and having a boiling point of 100 ° C. or more can be sufficiently coated by covalently bonding the hydroxyl group to the inorganic filler, and the reactive group is a resin. Improves dispersibility in the composition. Moreover, when the boiling point is 100 ° C. or higher, the surface treatment of the organic compound can be stably performed while evaporating water generated by dehydration condensation.
  • the upper limit of the boiling point is preferably 500 ° C, more preferably 400 ° C, and still more preferably 300 ° C.
  • the “boiling point” of an organic compound refers to the boiling point under standard atmospheric pressure (0.1001325 MPa).
  • the organic compound is not particularly limited, but the reactive group of the organic compound is at least one selected from an amino group, an epoxy group, a mercapto group, a methacryl group, an acrylic group, a vinyl group, and a ureido group. Are preferable, and an amino group and an epoxy group are more preferable. It is preferable that the organic compound does not substantially contain an element selected from the group consisting of silicon, aluminum, titanium, and zirconium. Here, “substantially free” means that it does not contain an element selected from the group consisting of silicon, aluminum, titanium, and zirconium, unless it is included as an inevitable impurity.
  • the organic compound is more preferably at least one selected from the following formula (1), the following formula (2), the following formula (3), an imidazole compound and an imidazole-epoxy adduct.
  • R1 and R2 are each independently a phenyl group, a benzyl group, a hydrogen atom, or an alkyl group having 1 to 5 carbon atoms.
  • R3 is an alkylene group or phenylene group having 1 to 5 carbon atoms.
  • R1 and R2 are preferably a phenyl group, a benzyl group or a hydrogen atom.
  • R3 is preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
  • R4 is an alkylene group having 1 to 5 carbon atoms or a phenylene group.
  • R4 is preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
  • R5 is an organic group having a hydroxyl group.
  • R6 is a hydrogen atom, a methyl group, a carboxyl group or a phenyl group.
  • R5 is preferably a monovalent organic group having a hydroxyl group and an amino group, and more preferably a monovalent organic group represented by the following formula (8).
  • R6 is preferably a hydrogen atom or a methyl group, more preferably a methyl group.
  • R7 and R8 are each independently a hydroxyl group, a phenol group, a hydroxymethyl group, or a hydroxyethyl group.
  • N is an arbitrary integer of 0 to 5. In the formula, * part is bonded to an N atom.
  • R7 and R8 are each independently preferably a hydroxymethyl group or a hydroxyethyl group, more preferably a hydroxyethyl group.
  • n is preferably 1 to 3.
  • N-benzylaminoethanol N-anilinoethanol, glycidol, imidazole-epoxy adduct, benzotriazole derivative, 3-benzylamino-1-propanol, 4-benzylamino-1-butanol, 5-benzyl Amino-1-pentanol, 2-methylaminoethanol, 2-ethylaminoethanol, 2-propylaminoethanol, 2-isopropylaminoethanol, 2-butylaminoethanol, 2-((1-methylpropyl) amino) ethanol, 2- (tert-butylamino) ethanol, 2-pentylaminoethanol, 3-anilinopropanol, 4-phenylamino-1-butanol, 5-phenylamino-1-pentanol and 1- (2-hydroxyethyl) imidazole Least one element al selected even more preferred.
  • N-benzylaminoethanol N-anilinoethanol, glycidol, 2,2-[ ⁇ (methyl-1H-benzoate) are used from the viewpoint of handling safety, imparting high adhesion to the conductor layer, and improving storage stability.
  • Particularly preferred is one or more selected from triazol-1-yl) methyl ⁇ imino] bisethanol, 1- (2-hydroxyethyl) imidazole and imidazole-epoxy adduct.
  • (C) As a method of surface-treating the inorganic filler with the organic compound, (C) the inorganic filler is put into a rotary mixer and the organic compound is sprayed, and the inorganic filler is sprayed for 5 to 30 minutes. The method of stirring is mentioned.
  • the content of the organic compound is preferably 2% by mass or less, more preferably 1.8% by mass or less, when the inorganic filler (C) is 100% by mass. 1.6 mass% or less is still more preferable, and 1.4 mass% or less is still more preferable. Moreover, from the viewpoint of improving the dispersibility of the resin varnish and improving the coverage of the inorganic filler, it is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.15% by mass or more, 0 .2% by mass or more is even more preferable.
  • silane coupling agent an epoxy silane coupling agent, an aminosilane coupling agent, a mercaptosilane coupling agent, or the like can be used. You may use these 1 type or in combination of 2 or more types. Specifically, for example, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc.
  • Epoxysilane coupling agents aminopropylmethoxysilane, aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-2 (aminoethyl) aminopropyltrimethoxysilane, and other aminosilane coupling agents
  • mercaptosilane coupling agents such as mercaptopropyltrimethoxysilane and mercaptopropyltriethoxysilane.
  • alkoxysilane methyltrimethoxysilane, octadecyltrimethoxysilane, phenyltrimethoxysilane, methacroxypropyltrimethoxysilane, imidazolesilane, triazinesilane, or the like can be used. You may use these 1 type or in combination of 2 or more types.
  • the alkoxy oligomer refers to a low molecular resin having both an organic group and an alkoxysilyl group.
  • examples thereof include an alkoxy group-containing alkoxy oligomer, an amino group-containing alkoxy oligomer, an acrylic group-containing alkoxy oligomer, a methacryl group-containing alkoxy oligomer, a ureido group-containing alkoxy oligomer, an isocyanate group-containing alkoxy oligomer, and a vinyl group-containing alkoxy oligomer. You may use these 1 type or in combination of 2 or more types.
  • Aluminum coupling agents include, for example, aluminum isopropylate, mono-sec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate Acetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), cyclic aluminum oxide isopropylate, cyclic aluminum oxide isopropylate, cyclic aluminum oxide stearate, cyclic aluminum oxide octylate, Examples include cyclic aluminum oxide stearate.You may use these 1 type or in combination of 2 or more types.
  • titanium coupling agents examples include butyl titanate dimer, titanium octylene glycolate, diisopropoxy titanium bis (triethanolaminate), dihydroxy titanium bis lactate, dihydroxy bis (ammonium lactate) titanium, and bis (dioctyl pyrophosphate) ethylene.
  • Titanate bis (dioctylpyrophosphate) oxyacetate titanate, tri-n-butoxytitanium monostearate, tetra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis (Ditridecylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phos Lite titanate, isopropyl trioctanoyl titanate, isopropyl tricumyl phenyl titanate, isopropyl triisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tri (dioctyl
  • zirconium coupling agents examples include zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, trisneodecanolate), zirconium IV (2,2-bis (2-propenolatemethyl).
  • carbon amount per unit area which is bound to the surface of the inorganic filler is preferably from 1.00 mg / m 2 or less, more preferably 0.75 mg / m 2 or less, 0 more preferably .70mg / m 2 or less, still more preferably from 0.65 mg / m 2 or less, especially preferably from 0.60 mg / m 2 or less, particularly preferably 0.55 mg / m 2 or less, 0.50 mg / m 2
  • the carbon amount per unit area which is bonded to the surface thereof 0.05 mg / m 2 or more, more preferably 0.08 mg / m 2 or more, more preferably 0.11 mg / m 2 or more, 0 .14mg / m 2 or more and even more preferably, preferably 0.17 mg / m 2 or more is especially, particularly preferably from 0.20 mg / m 2 or more, 0.23 mg / m 2
  • the degree of the surface treatment of the inorganic filler is determined according to the amount of carbon per unit surface area of the inorganic filler after the surface treatment of the inorganic filler with a solvent (for example, methyl ethyl ketone (MEK)) (that is, the inorganic filler It can be quantified by the amount of carbon per unit area bound to the surface. For example, the amount of carbon per unit area bonded to the surface of the inorganic filler can be calculated by the following procedure. A sufficient amount of MEK as a solvent is added to the inorganic filler after the surface treatment, followed by ultrasonic cleaning.
  • a solvent for example, methyl ethyl ketone (MEK)
  • the amount of carbon bonded to the surface of the inorganic filler is measured using a carbon analyzer. By dividing the obtained amount of carbon by the specific surface area of the inorganic filler, the amount of carbon per unit area bonded to the inorganic filler is calculated.
  • the carbon analyzer “EMIA-320V” manufactured by Horiba, Ltd. can be used.
  • the resin composition of the present invention is cured to form an insulating layer, the surface of the insulating layer is roughened, and the peel strength between the conductor layer and the insulating layer obtained by plating is described in ⁇ Plating conductor layer pulling> It can be grasped by the measurement method described in Measurement of Peel Strength (Peel Strength)>.
  • the peel strength is preferably 0.8 kgf / cm or less, more preferably 0.9 kgf / cm or less, still more preferably 1.0 kgf / cm or less, and even more preferably 1.5 kgf / cm or less.
  • the peel strength is preferably 0.4 kgf / cm or more, and more preferably 0.5 kgf / cm or more.
  • the arithmetic average roughness (Ra value) and the root mean square roughness (Rq value) after curing the resin composition of the present invention to form an insulating layer and roughening the surface of the insulating layer will be described later. It can be grasped by the measuring method described in the section “Measurement of arithmetic average roughness (Ra value) and root mean square roughness (Rq value) after roughening>.
  • the arithmetic average roughness (Ra value) is preferably 300 nm or less, more preferably 260 nm or less, still more preferably 240 nm or less, even more preferably 220 nm or less, and even more preferably 200 nm or less in order to reduce transmission loss of electrical signals. 170 nm or less is particularly preferable, 160 nm or less is particularly preferable, and 150 nm or less is even more preferable.
  • the arithmetic average roughness (Ra value) is preferably 10 nm or more, more preferably 20 nm or more, further preferably 30 nm or more, still more preferably 40 nm or more, and even more preferably 50 nm or more from the viewpoint of improving peel strength. .
  • the root mean square roughness (Rq value) is preferably 480 nm or less, more preferably 440 nm or less, still more preferably 420 nm or less, still more preferably 380 nm or less, and even more preferably 340 nm or less in order to reduce transmission loss of electrical signals.
  • Rq value The root mean square roughness
  • 300 nm or less is particularly preferred, 260 nm or less is particularly preferred, and 220 nm or less is even more preferred.
  • the root mean square roughness (Rq value) is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 50 nm or more, still more preferably 70 nm or more, and even more preferably 90 nm or more from the viewpoint of improving the peel strength. preferable.
  • the resin composition of this invention can harden an epoxy resin and a hardening
  • a hardening accelerator An amine hardening accelerator, a guanidine hardening accelerator, an imidazole hardening accelerator, a phosphonium hardening accelerator, a metal hardening accelerator, etc. are mentioned. These may be used alone or in combination of two or more.
  • the amine curing accelerator is not particularly limited, but trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) Phenol, 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbreviated as DBU) and the like. You may use these 1 type or in combination of 2 or more types.
  • trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) Phenol, 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbreviated as DBU) and the like. You may use these 1 type or in combination of 2 or more types.
  • the guanidine curing accelerator is not particularly limited, but dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine.
  • Diphenylguanidine trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide 1-cyclohexyl biguanide, 1-allyl biguanide, 1-fur Nirubiguanido, 1-(o-tolyl) biguanide, and the like. You may use these 1 type or in combination of 2 or more types.
  • the imidazole curing accelerator is not particularly limited, but 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimer Rete 1-cyanoethyl-2-phenylimidazolium trimell
  • the phosphonium curing accelerator is not particularly limited, but triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4- Methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, and the like. You may use these 1 type or in combination of 2 or more types.
  • the content of the curing accelerator (excluding the metal-based curing accelerator) is in the range of 0.005 to 1% by mass when the nonvolatile component in the resin composition is 100% by mass.
  • the range of 0.01 to 0.5% by mass is more preferable. If it is less than 0.005% by mass, curing tends to be slow and a long thermosetting time is required, and if it exceeds 1% by mass, the storage stability of the resin composition tends to decrease.
  • the metal-based curing accelerator is not particularly limited, and examples thereof include an organometallic complex or an organometallic salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. These may be used alone or in combination of two or more.
  • the addition amount of the metal-based curing accelerator is such that the metal content based on the metal-based curing catalyst is in the range of 25 to 500 ppm when the nonvolatile component in the resin composition is 100% by mass.
  • the range of 40 to 200 ppm is more preferable. If it is less than 25 ppm, it tends to be difficult to form a conductor layer excellent in adhesion to the surface of the insulating layer having a low arithmetic average roughness. If it exceeds 500 ppm, the storage stability and insulation of the resin composition are lowered. Tend to.
  • thermoplastic resin The resin composition of the present invention can further improve the mechanical strength of the cured product by further containing (E) a thermoplastic resin, and further improve the film molding ability when used in the form of an adhesive film.
  • thermoplastic resins include phenoxy resin, polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate resin, polyetheretherketone resin, and polyester resin. Can be mentioned. These thermoplastic resins may be used alone or in combination of two or more.
  • the weight average molecular weight of the thermoplastic resin is preferably in the range of 5,000 to 200,000 from the viewpoints of improving film molding ability, mechanical strength, and compatibility of the resin varnish.
  • the weight average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion).
  • GPC gel permeation chromatography
  • the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured using chloroform or the like as a mobile phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.
  • the content of the thermoplastic resin in the resin composition is not particularly limited, but the nonvolatile component in the resin composition 0.1 to 10% by mass is preferable with respect to 100% by mass, and 1 to 5% by mass is more preferable. If the content of the thermoplastic resin is too small, the effect of improving the film forming ability and mechanical strength tends to not be exhibited. If the content is too large, the melt viscosity increases and the arithmetic average roughness of the insulating layer surface after the wet roughening process is low. It tends to increase.
  • the resin composition of the present invention can further improve plating peel strength by containing (F) rubber particles, and can also improve drill workability, decrease dielectric loss tangent, and obtain stress relaxation effects.
  • the rubber particles that can be used in the present invention are, for example, those that do not dissolve in the organic solvent used when preparing the varnish of the resin composition and are incompatible with the essential components such as the curing agent and epoxy resin. . Accordingly, the rubber particles exist in a dispersed state in the varnish of the resin composition of the present invention.
  • Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles.
  • Preferred examples of rubber particles that can be used in the present invention include core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, and acrylic rubber particles.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • a two-layer structure in which an outer shell layer is made of a glassy polymer and an inner core layer is made of a rubbery polymer or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer.
  • the glassy polymer layer is made of, for example, a polymer of methyl methacrylate
  • the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).
  • Two or more rubber particles may be used in combination.
  • Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N, IM-401 modified 1, IM-401 modified 7-17 (trade name, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name, Mitsubishi). Rayon Co., Ltd.).
  • Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size: 0.5 ⁇ m, manufactured by JSR Corporation).
  • SBR crosslinked styrene butadiene rubber
  • acrylic rubber particles include Methbrene W300A (average particle size 0.1 ⁇ m) and W450A (average particle size 0.2 ⁇ m) (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the average particle diameter of the rubber particles is preferably in the range of 0.005 to 1 ⁇ m, more preferably in the range of 0.2 to 0.6 ⁇ m.
  • the average particle diameter of the rubber particles used in the present invention can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and a particle size distribution of rubber particles is created on a mass basis using a concentrated particle size analyzer (FPAR-1000; manufactured by Otsuka Electronics Co., Ltd.). And it can measure by making the median diameter into an average particle diameter.
  • FPAR-1000 concentrated particle size analyzer
  • the content of the rubber particles is preferably 1 to 10% by mass, more preferably 2 to 5% by mass with respect to 100% by mass of the nonvolatile component in the resin composition.
  • the resin composition of the present invention can impart flame retardancy by further containing (G) a flame retardant.
  • the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide.
  • organic phosphorus flame retardants include phenanthrene-type phosphorus compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., and phosphorus-containing benzoxazines such as HFB-2006M manufactured by Showa Polymer Co., Ltd.
  • Phosphorus-containing phenoxy resins such as ERF001 manufactured by Japan, and phosphorus such as YL7613 manufactured by Japan Epoxy Resin Co., Ltd. Yes epoxy resins.
  • organic nitrogen-containing phosphorus compounds include phosphate ester amide compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and Fushimi Pharmaceutical Co., Ltd. Examples thereof include phosphazene compounds such as FP-series.
  • metal hydroxide examples include magnesium hydroxide such as UD65, UD650 and UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315 and B manufactured by Sakai Kogyo Co., Ltd. And aluminum hydroxide such as ⁇ 308, B-303, and UFH-20.
  • thermosetting resins such as vinyl benzyl compounds, acrylic compounds, maleimide compounds, and blocked isocyanate compounds
  • organic fillers such as silicon powder, nylon powder, and fluorine powder
  • thickeners such as olben and benton.
  • silicone-based, fluorine-based, polymer-based antifoaming or leveling agents imidazole-based, thiazole-based, triazole-based, silane-based coupling agents, etc., phthalocyanine blue, phthalocyanine green, iodin Examples thereof include colorants such as green, disazo yellow, and carbon black.
  • the method for preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method in which the components are added with a solvent or the like as necessary and mixed using a rotary mixer or the like.
  • the use of the resin composition of the present invention is not particularly limited, but sheet-like laminated materials such as adhesive films and prepregs, circuit boards (laminated boards, multilayer printed wiring boards, etc.), solder resists, underfill materials, die bonding materials, It can be used in a wide range of applications where a resin composition is required, such as a semiconductor sealing material, hole filling resin, and component filling resin. Especially, in manufacture of a multilayer printed wiring board, it can be used suitably as a resin composition for forming an insulating layer, and can be used more suitably as a resin composition for forming a conductor layer by plating. I can do it.
  • the resin composition of the present invention can be applied to a circuit board in a varnish state to form an insulating layer, but in general, it is preferably used in the form of a sheet-like laminated material such as an adhesive film or a prepreg. .
  • the softening point of the resin composition is preferably 40 to 150 ° C. from the viewpoint of the laminating property of the sheet-like laminated material.
  • the adhesive film of the present invention is prepared by a method known to those skilled in the art, for example, by preparing a resin varnish in which a resin composition is dissolved in an organic solvent, and applying the resin varnish to a support using a die coater or the like. It can be produced by drying the organic solvent by heating or blowing hot air to form the resin composition layer.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol.
  • ketones such as acetone, methyl ethyl ketone and cyclohexanone
  • acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol.
  • Aromatic hydrocarbons such as toluene and xylene
  • amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Two
  • Drying conditions are not particularly limited, but drying is performed so that the content of the organic solvent in the resin composition layer is 10% by mass or less, preferably 5% by mass or less.
  • a varnish containing 30 to 60% by mass of an organic solvent is dried at 50 to 150 ° C. for about 3 to 10 minutes, whereby the resin composition is supported.
  • An adhesive film having a layer formed thereon can be formed.
  • the thickness of the resin composition layer formed in the adhesive film is preferably equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the resin composition layer preferably has a thickness of 10 to 100 ⁇ m, more preferably 20 to 80 ⁇ m.
  • the support examples include polyolefin films such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester films such as polyethylene naphthalate, polycarbonate films, and polyimide films.
  • PET polyethylene terephthalate
  • polyester films such as polyethylene naphthalate, polycarbonate films, and polyimide films.
  • release foil metal foil, such as copper foil and aluminum foil.
  • the support and a protective film described later may be subjected to surface treatment such as mud treatment or corona treatment.
  • the release treatment may be performed with a release agent such as a silicone resin release agent, an alkyd resin release agent, or a fluororesin release agent.
  • the thickness of the support is not particularly limited, but is preferably 10 to 150 ⁇ m, more preferably 25 to 50 ⁇ m.
  • a protective film according to the support can be further laminated on the surface of the resin composition layer on which the support is not in close contact.
  • the thickness of the protective film is not particularly limited, but is, for example, 1 to 40 ⁇ m. By laminating the protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
  • the adhesive film can also be stored in a roll.
  • the adhesive film is laminated on one or both sides of the circuit board using a vacuum laminator.
  • the substrate used for the circuit substrate include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, and the like.
  • a circuit board means here that the conductor layer (circuit) patterned was formed in the one or both surfaces of the above boards.
  • one of the outermost layers of the multilayer printed wiring board is a conductor layer (circuit) in which one or both sides are patterned. It is included in the circuit board.
  • the surface of the conductor layer may be previously roughened by blackening, copper etching, or the like.
  • the adhesive film when the adhesive film has a protective film, after removing the protective film, the adhesive film and the circuit board are preheated as necessary, and the adhesive film is pressed and heated to the circuit board. Crimp.
  • a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is preferably used.
  • the laminating conditions are not particularly limited.
  • the pressure bonding temperature is preferably 70 to 140 ° C.
  • the pressure bonding pressure is preferably 1 to 11 kgf / cm 2 (9.8 ⁇ 10 4 to 107 9.9 ⁇ 10 4 N / m 2 ), and lamination is preferably performed under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less.
  • the laminating method may be a batch method or a continuous method using a roll.
  • the vacuum lamination can be performed using a commercially available vacuum laminator.
  • vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like.
  • the lamination process which heats and pressurizes under reduced pressure can also be performed using a general vacuum hot press machine.
  • a general vacuum hot press machine For example, it can be performed by pressing a metal plate such as a heated SUS plate from the support layer side.
  • the pressing condition is that the degree of vacuum is usually 1 ⁇ 10 ⁇ 2 MPa or less, preferably 1 ⁇ 10 ⁇ 3 MPa or less.
  • heating and pressurization can be carried out in one stage, it is preferable to carry out the conditions separately in two or more stages from the viewpoint of controlling the oozing of the resin.
  • the first stage press has a temperature of 70 to 150 ° C.
  • the second stage press has a temperature of 150 to 200 ° C. and a pressure of 1 to 40 kgf / cm 2 It is preferable to carry out within a range.
  • the time for each stage is preferably 30 to 120 minutes.
  • Examples of commercially available vacuum hot presses include MNPC-V-750-5-200 (manufactured by Meiki Seisakusho), VH1-1603 (manufactured by Kitagawa Seiki Co., Ltd.), and the like.
  • thermosetting conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but are preferably 150 to 220 ° C. for 20 to 180 minutes, more preferably 160 to 210 ° C. It is selected in the range of 30 to 120 minutes at ° C.
  • Drilling can be performed, for example, by a known method such as drilling, laser, or plasma, or by combining these methods as necessary. However, drilling by a laser such as a carbon dioxide gas laser or a YAG laser is the most common method. is there.
  • a conductor layer is formed on the insulating layer by dry plating or wet plating.
  • dry plating a known method such as vapor deposition, sputtering, or ion plating can be used.
  • wet plating the surface of the insulating layer is subjected to a swelling treatment with a swelling solution, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing solution in this order to form an uneven anchor.
  • the swelling treatment with the swelling liquid is performed by immersing the insulating layer in the swelling liquid at 50 to 80 ° C. for 5 to 20 minutes.
  • the swelling liquid include an alkaline solution and a surfactant solution, and an alkaline solution is preferable.
  • Examples of the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution.
  • Examples of commercially available swelling liquids include Swelling Dip Securiganth P (Swelling Dip Securiganth P), Swelling Dip Securiganth SBU (Swelling Dip Securiganth SBU) manufactured by Atotech Japan Co., Ltd. be able to.
  • the roughening treatment with an oxidizing agent is performed by immersing the insulating layer in an oxidizing agent solution at 60 to 80 ° C. for 10 to 30 minutes.
  • the oxidizing agent examples include alkaline permanganate solution in which potassium permanganate and sodium permanganate are dissolved in an aqueous solution of sodium hydroxide, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. it can.
  • the concentration of permanganate in the alkaline permanganate solution is preferably 5 to 10% by weight.
  • Examples of commercially available oxidizing agents include alkaline permanganate solutions such as Concentrate Compact CP and Dosing Solution Securigans P manufactured by Atotech Japan Co., Ltd.
  • the neutralization treatment with the neutralizing solution is performed by immersing in the neutralizing solution at 30 to 50 ° C. for 3 to 10 minutes.
  • an acidic aqueous solution is preferable, and as a commercially available product, Reduction Solution / Secligant P manufactured by Atotech Japan Co., Ltd. may be mentioned.
  • a conductive layer is formed by combining electroless plating and electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • a subsequent pattern formation method for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.
  • the prepreg of the present invention can be produced by impregnating the resin composition of the present invention into a sheet-like reinforcing base material by a hot melt method or a solvent method, and heating and semi-curing it. That is, it can be set as the prepreg which the resin composition of this invention impregnated the sheet-like reinforcement base material.
  • a sheet-like reinforcement base material what consists of a fiber currently used as prepreg fibers, such as glass cloth and an aramid fiber, can be used, for example.
  • the resin is once coated on a coated paper having good releasability from the resin without dissolving it in an organic solvent, and then laminated on a sheet-like reinforcing substrate, or the resin is used in an organic solvent.
  • This is a method for producing a prepreg by directly coating a sheet-like reinforcing substrate with a die coater without dissolving it.
  • a resin varnish is prepared by dissolving a resin in an organic solvent in the same manner as the adhesive film, and a sheet-like reinforcing base material is immersed in the varnish, and then the resin-like varnish is impregnated into the sheet-like reinforcing base material. It is a method of drying.
  • ⁇ Multilayer printed wiring board using prepreg> an example of a method for producing a multilayer printed wiring board using the prepreg produced as described above will be described.
  • One or several prepregs of the present invention are stacked on a circuit board, sandwiched between metal plates through a release film, and vacuum press laminated under pressure and heating conditions.
  • the pressurizing and heating conditions are preferably a pressure of 5 to 40 kgf / cm 2 (49 ⁇ 10 4 to 392 ⁇ 10 4 N / m 2 ) and a temperature of 120 to 200 ° C. for 20 to 100 minutes.
  • the prepreg can be laminated on a circuit board by a vacuum laminating method and then cured by heating. Thereafter, in the same manner as described above, the surface of the cured prepreg is roughened, and then a conductor layer is formed by plating to produce a multilayer printed wiring board.
  • a semiconductor device can be manufactured by using the multilayer printed wiring board of the present invention.
  • a semiconductor device can be manufactured by mounting a semiconductor chip in a conductive portion of the multilayer printed wiring board of the present invention.
  • the “conduction location” is a “location where an electrical signal is transmitted in a multilayer printed wiring board”, and the location may be a surface or an embedded location.
  • the semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
  • the semiconductor chip mounting method for manufacturing the semiconductor device of the present invention is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, and no bumps.
  • Examples include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
  • “Mounting method by buildup layer without bump (BBUL)” means “a mounting method in which a semiconductor chip is directly embedded in a recess of a multilayer printed wiring board and the semiconductor chip and wiring on the printed wiring board are connected”. Furthermore, the method is roughly divided into the following BBUL method 1) and BBUL method 2). BBUL method 1) Mounting method in which semiconductor chip is mounted in recess of multilayer printed wiring board using underfill agent BBUL method 2) Mounting method in which semiconductor chip is mounted in recess of multilayer printed wiring board using adhesive film or prepreg
  • the BBUL method 1) specifically includes the following steps.
  • Step 1) A multi-layer printed wiring board with a conductor layer removed from both sides is provided, and a through hole is formed by a laser or a mechanical drill.
  • Step 2) Adhesive tape is attached to one side of the multilayer printed wiring board, and the bottom surface of the semiconductor chip is disposed in the through hole so as to be fixed on the adhesive tape.
  • the semiconductor chip at this time is preferably lower than the height of the through hole.
  • Step 3) The semiconductor chip is fixed to the through hole by injecting and filling an underfill agent into the gap between the through hole and the semiconductor chip.
  • Step 4) The adhesive tape is then peeled off to expose the bottom surface of the semiconductor chip.
  • Step 5) The adhesive film or prepreg of the present invention is laminated on the bottom surface side of the semiconductor chip to cover the semiconductor chip.
  • Step 6) After curing the adhesive film or prepreg, drill with a laser to expose the bonding pad on the bottom surface of the semiconductor chip, and connect with wiring by performing the roughening treatment, electroless plating, and electrolytic plating described above To do. You may laminate
  • the BBUL method 2) specifically includes the following steps.
  • Step 1) A photoresist film is formed on the conductor layers on both sides of the multilayer printed wiring board, and an opening is formed only on one side of the photoresist film by a photolithography method.
  • Step 2) The conductor layer exposed in the opening is removed with an etching solution to expose the insulating layer, and then the resist films on both sides are removed.
  • Step 3) Using a laser or a drill, all of the exposed insulating layer is removed and drilled to form a recess.
  • the laser energy is preferably a laser whose energy can be adjusted so as to lower the laser absorption rate of copper and increase the laser absorption rate of the insulating layer, and more preferably a carbon dioxide laser.
  • Step 4) The bottom surface of the semiconductor chip is placed in the recess with the opening side facing, the adhesive film or prepreg of the present invention is laminated from the opening side, the semiconductor chip is covered, and the gap between the semiconductor chip and the recess is formed. Embed.
  • the semiconductor chip at this time is preferably lower than the height of the recess.
  • Step 5) After the adhesive film or prepreg is cured, holes are formed with a laser to expose the bonding pad on the bottom surface of the semiconductor chip.
  • Step 6) By performing the roughening treatment, electroless plating, and electrolytic plating described above, the wiring is connected, and if necessary, an adhesive film or a prepreg is further laminated.
  • the semiconductor device is miniaturized and transmission loss is reduced, and since no solder is used, the semiconductor chip does not have its thermal history, and solder and resin distortion may occur in the future.
  • a mounting method using a bumpless build-up layer (BBUL) is preferable, the BBUL method 1) and the BBUL method 2) are more preferable, and the BBUL method 2) is more preferable.
  • the inner layer circuit board on which the insulating layer is formed is a swelling liquid, diethylene glycol monobutyl ether-containing swelling dip securigant P (glycol ethers, aqueous solution of sodium hydroxide) of Atotech Japan Co., Ltd. Dip at 60 ° C. for 5 minutes, and for Example 7 at 60 ° C. for 10 minutes.
  • a roughening solution Atotech Japan Co., Ltd. Concentrate Compact P (KMnO 4 : 60 g / L, NaOH: 40 g / L aqueous solution) at 80 ° C. for 15 minutes, and in Example 10 at 80 ° C. for 20 minutes.
  • the inner layer circuit board is immersed in an electroless plating solution containing PdCl 2 at 40 ° C. for 5 minutes, and then in an electroless copper plating solution. It was immersed for 20 minutes at 25 ° C. After annealing for 30 minutes at 150 ° C., an etching resist was formed, and after pattern formation by etching, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 35 ⁇ 5 ⁇ m. Next, annealing was performed at 200 ° C. for 60 minutes. The circuit board was measured for peel strength (peel strength) of the plated conductor layer.
  • peel strength peel strength of plated conductor layer
  • a gripping tool TSE Co., Ltd., Autocom type testing machine AC-50C-SL
  • Ra value and Rq value were obtained from numerical values obtained with a measurement range of 121 ⁇ m ⁇ 92 ⁇ m using a VSI contact mode and a 50 ⁇ lens. And it measured by calculating
  • a PCT test Pressure Cooker Test
  • PM422 manufactured by ETAC advanced accelerated life test apparatus
  • a cross cut was made on the surface of the insulating layer, and it was confirmed whether the insulating layer was chipped.
  • the sample and 30 g of MEK (methyl ethyl ketone) were placed in a centrifuge tube, stirred to suspend the solid content, and irradiated with 500 W ultrasonic waves for 5 minutes. Thereafter, solid-liquid separation was performed by centrifugation, and the supernatant was removed. Furthermore, 30 g of MEK was added, the solid content was suspended by stirring, and 500 W ultrasonic waves were irradiated for 5 minutes. Thereafter, solid-liquid separation was performed by centrifugation, and the supernatant was removed. The solid content was dried at 150 ° C. for 30 minutes.
  • 0.3 g of this dried sample was accurately weighed in a measuring crucible, and a combustion aid (3.0 g of tungsten, 0.3 g of tin) was further placed in the measuring crucible.
  • the measurement crucible was set in a carbon analyzer and the amount of carbon was measured.
  • the carbon analyzer EMIA-320V manufactured by HORIBA, Ltd. was used. A value obtained by dividing the measured carbon amount by the specific surface area of the inorganic filler was defined as the carbon amount per unit area.
  • SOC2 spherical silica
  • N-benzylaminoethanol manufactured by Tokyo Chemical Industry Co., Ltd., boiling point 280 ° C.
  • spherical silica (“Advertex” SC2050-SQ, average particle size 0.5 ⁇ m) is charged into a Henschel-type powder mixer, glycidol (“Epiol OH” manufactured by NOF Corporation), boiling point The spherical silica was stirred
  • MTMS-A methyl group-containing alkoxy oligomer
  • SC2050-SQ manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m
  • ⁇ Production Example 7 100 parts by weight of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) was charged into a Henschel-type powder mixer, and 2,2-[ ⁇ (methyl-1H-benzotriazole-1 -Il) methyl ⁇ imino] bisethanol (“TT-LYK” manufactured by Johoku Chemical Co., Ltd., MEK solution containing 60% non-volatile components) was stirred for 10 minutes while spraying spherical silica for 10 minutes.
  • SC2050-SQ manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m
  • a product 7 (carbon amount per unit area of 0.16 mg / m 2 ) was prepared by spraying 0.3 parts by mass of a contained alkoxy oligomer (“MTMS-A” manufactured by Tama Chemical Co., Ltd.) while spraying for 5 minutes. .
  • MTMS-A alkoxy oligomer
  • silane coupling agent (“KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd.
  • ⁇ Production Example 9 100 parts by weight of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) was charged into a Henschel-type powder mixer, and 1- (2-hydroxyethyl) imidazole (Nippon Synthetic Industrial Chemical ( After the spherical silica was stirred for 10 minutes while spraying 0.5 parts by mass of a MEK solution having a boiling point of 120 ° C.
  • SC2050-SQ manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m
  • SC2050-SQ spherical silica manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m
  • KBM- phenyltrimethoxysilane
  • “KBM403” oiling point 290 ° C.
  • Example 1 5 parts by mass of a naphthalene type epoxy resin (epoxy equivalent 144, “HP4700” manufactured by DIC Corporation), 14 parts by mass of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “jER828EL” manufactured by Mitsubishi Chemical Corporation), biphenyl type epoxy 14 parts by mass of a resin (epoxy equivalent 269, “NC3000H” manufactured by Nippon Kayaku Co., Ltd.) was dissolved in 30 parts by mass of solvent naphtha with stirring, and then cooled to room temperature to prepare a mixture 1.
  • a naphthalene type epoxy resin epoxy equivalent 144, “HP4700” manufactured by DIC Corporation
  • liquid bisphenol A type epoxy resin epoxy equivalent 180, “jER828EL” manufactured by Mitsubishi Chemical Corporation
  • biphenyl type epoxy 14 parts by mass of a resin epoxy equivalent 269, “NC3000H” manufactured by Nippon Kayaku Co., Ltd.
  • a phenol novolac-based curing agent (“LA-7054” manufactured by DIC Corporation, MEK solution having a non-volatile component of 60% by mass of phenolic hydroxyl group equivalent 124), naphthalene-based phenol resin (phenolic hydroxyl group equivalent 215, "SN485" manufactured by Nippon Steel Chemical Co., Ltd., 10 parts by mass of MEK solution having a nonvolatile component of 60% by mass, phenoxy resin (weight average molecular weight 35000, "YL7553” manufactured by Mitsubishi Chemical Corporation), MEK having a nonvolatile component of 30% by mass And 7 parts by weight of cyclohexanone), 2 parts by weight of MEK solution of 5% by weight of 4-dimethylaminopyridine as a curing accelerator, and 4 parts by weight of MEK were mixed and dispersed uniformly with a rotary mixer to obtain a resin varnish.
  • LA-7054 manufactured by DIC Corporation
  • the resin varnish is uniformly applied by a die coater on the release surface of a polyethylene terephthalate film with a alkyd release treatment (thickness 38 ⁇ m) so that the thickness of the resin composition layer after drying is 40 ⁇ m. And dried at 80 to 110 ° C. (average 95 ° C.) for 5 minutes (residual solvent amount in the resin composition layer: about 2% by mass). Subsequently, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film on the surface of a resin composition layer. The roll-like adhesive film was slit to a width of 507 mm to obtain a sheet-like adhesive film having a size of 507 ⁇ 336 mm.
  • Example 2 A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 2. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 3 A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 3. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 4 A resin varnish was prepared in exactly the same manner except that the product 1 of Example 1 was changed to the product 4. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 5 A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 5. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 6 A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 6. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 7 A resin varnish was prepared in exactly the same manner except that the product 1 of Example 1 was changed to the product 7. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 8 A resin varnish was prepared in the same manner except that the product 1 of Example 1 was changed to the product 8. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 9 A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 9. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 10 10 parts by mass of a naphthalene type epoxy resin (epoxy equivalent 144, “EXA4032SS” manufactured by DIC Corporation), 1 part by mass of a bixylenol type epoxy resin (epoxy equivalent 190, “YX4000HK” manufactured by Mitsubishi Chemical Corporation), modified naphthalene type 12 parts by mass of an epoxy resin (epoxy equivalent: about 330, “ESN475V” manufactured by Nippon Steel Chemical Co., Ltd.) was dissolved in 20 parts by mass of solvent naphtha while stirring, and then cooled to room temperature to prepare a mixture 3.
  • a naphthalene type epoxy resin epoxy equivalent 144, “EXA4032SS” manufactured by DIC Corporation
  • a bixylenol type epoxy resin epoxy equivalent 190, “YX4000HK” manufactured by Mitsubishi Chemical Corporation
  • modified naphthalene type 12 parts by mass of an epoxy resin epoxy equivalent: about 330, “ESN4
  • an active ester curing agent active group equivalent: about 223, “HPC-8000-65T” manufactured by DIC Corporation, toluene solution of 65% by mass of non-volatile components
  • 10 parts by mass phenoxy resin (weight average molecular weight 35000, Mitsubishi) “YL7553” manufactured by Chemical Co., Ltd.
  • 10 parts by mass of a 1: 1 solution of MEK and cyclohexanone having a nonvolatile content of 30% by mass and 11 parts by mass of bisphenol A dicyanate (Primase BADCy manufactured by Lonza Japan Co., Ltd.) are added.
  • Example 1 A resin varnish was prepared in exactly the same manner except that the product 1 of Example 1 was changed to 100 parts by mass of spherical silica (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m). Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • SOC2 spherical silica
  • Example 2 The product 1 of Example 1 was changed to 100 parts by mass of spherical silica (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m), and separately N-benzylaminoethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) A resin varnish was prepared in exactly the same manner except that 0.3 part by mass was added. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • SOC2 spherical silica
  • N-benzylaminoethanol manufactured by Tokyo Chemical Industry Co., Ltd.
  • a resin composition in which a plating conductor layer having a small arithmetic average roughness and root mean square roughness on the surface of an insulating layer in a wet roughening step and having a sufficient peel strength can be formed thereon and also has PCT resistance.
  • an adhesive film, a prepreg, a multilayer printed wiring board, and a semiconductor device using the same can be provided.
  • electric products such as computers, mobile phones, digital cameras, and televisions, and vehicles such as motorcycles, automobiles, trains, ships, and airplanes equipped with these can be provided.

Abstract

A resin composition, containing an epoxy resin (A), a curing agent (B), and an inorganic filler (C), and characterized by the inorganic filler being surface treated using a specified organic compound. This resin composition: has a low arithmetic average roughness and root-mean-square roughness on an insulating layer surface in a wet roughening step; is capable of forming a plated conductive layer having sufficient peel strength on the insulating layer; and has PCT resistance.

Description

樹脂組成物Resin composition
 本発明は、樹脂組成物に関する。さらに当該樹脂組成物を含有する、接着フィルム、プリプレグ、多層プリント配線板、半導体装置に関する。 The present invention relates to a resin composition. Furthermore, it is related with the adhesive film, prepreg, multilayer printed wiring board, and semiconductor device containing the said resin composition.
 近年、電子機器の小型化、高性能化が進み、多層プリント配線板においては、ビルドアップ層が複層化され、配線の微細化及び高密度化が求められている。 In recent years, electronic devices have become smaller and higher in performance, and in multilayer printed wiring boards, the build-up layer has been multi-layered, and miniaturization and higher density of wiring are required.
 これに対して様々な取組みがなされてきた。例えば、特許文献1には、シリコーンアルコキシオリゴマーを含む樹脂組成物が開示されている。これらの組成物により形成される絶縁材料は、接着性を具備しうることが記載されている。また、特許文献2~4では一般的な配合検討もされている。しかし、その性能は必ずしも満足いくものではなかった。 ¡Various efforts have been made for this. For example, Patent Document 1 discloses a resin composition containing a silicone alkoxy oligomer. It is described that the insulating material formed by these compositions can have adhesiveness. In Patent Documents 2 to 4, general compounding studies are also conducted. However, its performance was not always satisfactory.
特開2006-117826号公報JP 2006-117826 A 特許第4674730号Japanese Patent No. 46747730 特許第4686750号Japanese Patent No. 4686750 特許第4782870号Japanese Patent No. 4782870
 本発明が解決しようとする課題は、湿式粗化工程において絶縁層表面の算術平均粗さ、二乗平均平方根粗さが小さく、その上に十分なピール強度を有するメッキ導体層を形成することができ、PCT(Pressure Cooker Test)耐性も有する樹脂組成物を提供することである。 The problem to be solved by the present invention is that, in the wet roughening step, the arithmetic average roughness and root mean square roughness of the insulating layer surface are small, and a plated conductor layer having sufficient peel strength can be formed thereon. It is to provide a resin composition having PCT (Pressure Cooker Test) resistance.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、(A)エポキシ樹脂、(B)硬化剤、(C)無機充填材を含有する樹脂組成物において、前記無機充填材が、特定の有機化合物で表面処理されていることを特徴とする樹脂組成物において、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have identified the inorganic filler in a resin composition containing (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler. The present invention has been completed in a resin composition characterized by being surface-treated with an organic compound.
 すなわち、本発明は以下の内容を含むものである。
〔1〕(A)エポキシ樹脂、(B)硬化剤、(C)無機充填材を含有する樹脂組成物において、前記無機充填材が、水酸基及び反応性基を有し、かつ沸点が100℃以上である有機化合物で表面処理されていることを特徴とする樹脂組成物。
〔2〕前記有機化合物の反応性基が、アミノ基、エポキシ基、メルカプト基、メタクリル基、アクリル基、ビニル基及びウレイド基からなる群より選択される1種以上であることを特徴とする上記〔1〕に記載の樹脂組成物。
〔3〕前記有機化合物が、下式(1)の化合物、下式(2)の化合物、下式(3)の化合物、イミダゾール化合物及びイミダゾール-エポキシアダクトからなる群より選択される1種以上であることを特徴とする上記〔1〕に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(R1、R2は、それぞれ独立にフェニル基、ベンジル基、水素原子又は炭素数1~5のアルキル基である。R3は、炭素数1~5のアルキレン基又はフェニレン基である。)
Figure JPOXMLDOC01-appb-C000005
(R4は、炭素数1~5のアルキレン基又はフェニレン基である。)
Figure JPOXMLDOC01-appb-C000006
(R5は、水酸基を有する有機基である。R6は、水素原子、メチル基、カルボキシル基又はフェニル基である。)
〔4〕(C)無機充填材を100質量%とした場合、前記有機化合物が0.05~2質量%であることを特徴とする上記〔1〕~〔3〕のいずれかに記載の樹脂組成物。
〔5〕(C)無機充填材が前記有機化合物で表面処理された後に、さらにシランカップリング剤、アルコキシシラン、アルコキシオリゴマー、アルミニウム系カップリング剤、チタン系カップリング剤及びジルコニウム系カップリング剤からなる群より選択される1種以上で表面処理されていることを特徴とする上記〔1〕~〔4〕のいずれかに記載の樹脂組成物。
〔6〕(C)無機充填材の表面に結合している単位面積当たりのカーボン量が0.05~1.00mg/mであることを特徴とする上記〔1〕~〔5〕のいずれかに記載の樹脂組成物。
〔7〕樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理し、メッキして得られる導体層と絶縁層とのピール強度が0.4kgf/cm~1.5kgf/cmであり、樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さが10nm~300nmであり、二乗平均平方根粗さが10nm~480nmであることを特徴とする上記〔1〕~〔6〕のいずれかに記載の樹脂組成物。
〔8〕上記〔1〕~〔7〕のいずれかに記載の樹脂組成物を含有することを特徴とするシート状積層材料。
〔9〕上記〔1〕~〔7〕のいずれかに記載の樹脂組成物の硬化物により絶縁層が形成された多層プリント配線板。
〔10〕上記〔9〕に記載の多層プリント配線板を用いることを特徴とする、半導体装置。
That is, the present invention includes the following contents.
[1] In a resin composition containing (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the inorganic filler has a hydroxyl group and a reactive group, and has a boiling point of 100 ° C. or higher. A resin composition characterized by being surface-treated with an organic compound.
[2] The reactive group of the organic compound is at least one selected from the group consisting of an amino group, an epoxy group, a mercapto group, a methacryl group, an acrylic group, a vinyl group, and a ureido group. [1] The resin composition according to [1].
[3] The organic compound is one or more selected from the group consisting of a compound of the following formula (1), a compound of the following formula (2), a compound of the following formula (3), an imidazole compound and an imidazole-epoxy adduct. The resin composition as described in [1] above, wherein
Figure JPOXMLDOC01-appb-C000004
(R1 and R2 are each independently a phenyl group, a benzyl group, a hydrogen atom, or an alkyl group having 1 to 5 carbon atoms. R3 is an alkylene group or phenylene group having 1 to 5 carbon atoms.)
Figure JPOXMLDOC01-appb-C000005
(R4 is an alkylene group having 1 to 5 carbon atoms or a phenylene group.)
Figure JPOXMLDOC01-appb-C000006
(R5 is an organic group having a hydroxyl group. R6 is a hydrogen atom, a methyl group, a carboxyl group or a phenyl group.)
[4] The resin as described in any one of [1] to [3] above, wherein the organic compound is 0.05 to 2% by mass when the inorganic filler is 100% by mass (C). Composition.
[5] (C) After the inorganic filler is surface-treated with the organic compound, further from a silane coupling agent, an alkoxysilane, an alkoxy oligomer, an aluminum coupling agent, a titanium coupling agent, and a zirconium coupling agent The resin composition as described in any one of [1] to [4] above, which is surface-treated with at least one selected from the group consisting of
[6] Any of the above [1] to [5], wherein the amount of carbon bonded to the surface of the inorganic filler (C) per unit area is 0.05 to 1.00 mg / m 2 A resin composition according to claim 1.
[7] The resin composition is cured to form an insulating layer, the surface of the insulating layer is roughened, and the peel strength between the conductor layer and the insulating layer obtained by plating is 0.4 kgf / cm to 1.5 kgf / Cm, the resin composition is cured to form an insulating layer, the arithmetic average roughness after roughening the surface of the insulating layer is 10 nm to 300 nm, and the root mean square roughness is 10 nm to 480 nm. The resin composition as described in any one of [1] to [6] above, wherein
[8] A sheet-like laminate material comprising the resin composition according to any one of [1] to [7].
[9] A multilayer printed wiring board in which an insulating layer is formed from a cured product of the resin composition according to any one of [1] to [7].
[10] A semiconductor device using the multilayer printed wiring board according to [9].
 (A)エポキシ樹脂、(B)硬化剤、(C)無機充填材を含有する樹脂組成物において、前記無機充填材が、特定の有機化合物で表面処理されていることを特徴とする樹脂組成物を用いることにより、湿式粗化工程において絶縁層表面の算術平均粗さ、二乗平均平方根粗さが小さく、その上に十分なピール強度を有するメッキ導体層を形成することができ、PCT耐性も有する樹脂組成物を提供できるようになった。 (A) A resin composition containing an epoxy resin, (B) a curing agent, and (C) an inorganic filler, wherein the inorganic filler is surface-treated with a specific organic compound. Can be used to form a plated conductor layer having small arithmetic mean roughness and root mean square roughness on the surface of the insulating layer in the wet roughening step, and having sufficient peel strength, and also has PCT resistance. A resin composition can be provided.
 本発明は、(A)エポキシ樹脂、(B)硬化剤、(C)無機充填材を含有する樹脂組成物において、前記無機充填材が、水酸基及び反応性基を有し、かつ沸点が100℃以上である有機化合物で表面処理されていることを特徴とする樹脂組成物である。 The present invention relates to a resin composition containing (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler, wherein the inorganic filler has a hydroxyl group and a reactive group, and has a boiling point of 100 ° C. The resin composition is surface-treated with the organic compound as described above.
 <(A)エポキシ樹脂>
 本発明に使用するエポキシ樹脂としては、特に限定されないが、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アントラセン型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、トリメチロール型エポキシ樹脂、ハロゲン化エポキシ樹脂等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
<(A) Epoxy resin>
The epoxy resin used in the present invention is not particularly limited, but is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol. Type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, naphthylene ether type epoxy resin, glycidylamine type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, anthracene type epoxy resin, linear aliphatic epoxy resin, Epoxy resin having butadiene structure, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, cyclohexanedimethanol type epoxy resin, trimethylol type epoxy resin Resins, and halogenated epoxy resins. These may be used alone or in combination of two or more.
 これらの中でも、耐熱性向上、絶縁信頼性向上、金属箔との密着性向上の観点から、ビスフェノールA型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂が好ましい。具体的には、例えば、ビスフェノールA型エポキシ樹脂(三菱化学(株)製「エピコート828EL」、「YL980」)、ビスフェノールF型エポキシ樹脂(三菱化学(株)製「jER806H」、「YL983U」)、ナフタレン型2官能エポキシ樹脂(DIC(株)製「HP4032」、「HP4032D」、「HP4032SS」、「EXA4032SS」)、ナフタレン型4官能エポキシ樹脂(DIC(株)製「HP4700」、「HP4710」)、ナフトール型エポキシ樹脂(東都化成(株)製「ESN-475V」)、ブタジエン構造を有するエポキシ樹脂(ダイセル化学工業(株)製「PB-3600」)、ビフェニル構造を有するエポキシ樹脂(日本化薬(株)製「NC3000H」、「NC3000L」、「NC3100」、三菱化学(株)製「YX4000」、「YX4000H」、「YX4000HK」、「YL6121」)、アントラセン型エポキシ樹脂(三菱化学(株)製「YX8800」)、ナフチレンエーテル型エポキシ樹脂(DIC(株)製「EXA-7310」、「EXA-7311」、「EXA-7311L」、「EXA7311-G3」)などが挙げられる。 Among these, bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy from the viewpoint of improving heat resistance, insulation reliability, and adhesion to metal foil. Resins, anthracene type epoxy resins, and epoxy resins having a butadiene structure are preferred. Specifically, for example, bisphenol A type epoxy resin (“Epicoat 828EL”, “YL980” manufactured by Mitsubishi Chemical Corporation), bisphenol F type epoxy resin (“jER806H”, “YL983U” manufactured by Mitsubishi Chemical Corporation), Naphthalene type bifunctional epoxy resin (“HP4032”, “HP4032D”, “HP4032SS”, “EXA4032SS” manufactured by DIC Corporation), naphthalene type tetrafunctional epoxy resin (“HP4700”, “HP4710” manufactured by DIC Corporation), Naphthol type epoxy resin (“ESN-475V” manufactured by Toto Kasei Co., Ltd.), epoxy resin having a butadiene structure (“PB-3600” manufactured by Daicel Chemical Industries, Ltd.), epoxy resin having a biphenyl structure (Nippon Kayaku ( "NC3000H", "NC3000L", "NC310" 0 ”,“ YX4000 ”,“ YX4000H ”,“ YX4000HK ”,“ YL6121 ”) manufactured by Mitsubishi Chemical Corporation, anthracene type epoxy resin (“ YX8800 ”manufactured by Mitsubishi Chemical Corporation), naphthylene ether type epoxy resin (DIC) ("EXA-7310", "EXA-7311", "EXA-7311L", "EXA7311-G3") manufactured by KK).
 エポキシ樹脂は2種以上を併用してもよいが、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含有するのが好ましい。中でも、1分子中に2個以上のエポキシ基を有し、温度20℃で液状の芳香族系エポキシ樹脂(以下、「液状エポキシ樹脂」という。)と、1分子中に3個以上のエポキシ基を有し、温度20℃で固体状の芳香族系エポキシ樹脂(以下、「固体状エポキシ樹脂」という。)を含有する態様がより好ましい。なお、本発明でいう芳香族系エポキシ樹脂とは、その分子内に芳香環構造を有するエポキシ樹脂を意味する。エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂を併用する場合、樹脂組成物を接着フィルム形態で使用する場合に適度な可撓性を有する点や樹脂組成物の硬化物が適度な破断強度を有する点から、その配合割合(液状エポキシ樹脂:固体状エポキシ樹脂)は質量比で1:0.1~1:2の範囲が好ましく、1:0.3~1:1.8の範囲がより好ましく、1:0.6~1:1.5の範囲が更に好ましい。 Two or more epoxy resins may be used in combination, but it is preferable to contain an epoxy resin having two or more epoxy groups in one molecule. Among them, an aromatic epoxy resin having two or more epoxy groups in one molecule and being liquid at a temperature of 20 ° C. (hereinafter referred to as “liquid epoxy resin”) and three or more epoxy groups in one molecule. And a solid aromatic epoxy resin (hereinafter referred to as “solid epoxy resin”) at a temperature of 20 ° C. is more preferable. In addition, the aromatic epoxy resin as used in the field of this invention means the epoxy resin which has an aromatic ring structure in the molecule | numerator. When using a liquid epoxy resin and a solid epoxy resin together as an epoxy resin, when using the resin composition in the form of an adhesive film, the resin composition has an appropriate flexibility and the cured product of the resin composition has an appropriate breaking strength. Therefore, the blending ratio (liquid epoxy resin: solid epoxy resin) is preferably in the range of 1: 0.1 to 1: 2 by mass ratio, more preferably in the range of 1: 0.3 to 1: 1.8. The range of 1: 0.6 to 1: 1.5 is more preferable.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、又はナフタレン型エポキシ樹脂が好ましく、ナフタレン型エポキシ樹脂がより好ましい。これらは1種または2種以上組み合わせて使用してもよい。
 固体状エポキシ樹脂としては、4官能ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノールエポキシ樹脂、ナフトールノボラックエポキシ樹脂、ビフェニル型エポキシ樹脂、又はナフチレンエーテル型エポキシ樹脂が好ましく、4官能ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、又はナフチレンエーテル型エポキシ樹脂がより好ましい。これらは1種または2種以上組み合わせて使用してもよい。
As the liquid epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, or naphthalene type epoxy resin are preferable, and naphthalene type epoxy resin is more preferable. You may use these 1 type or in combination of 2 or more types.
Examples of solid epoxy resins include tetrafunctional naphthalene type epoxy resins, cresol novolac type epoxy resins, dicyclopentadiene type epoxy resins, trisphenol epoxy resins, naphthol novolac epoxy resins, biphenyl type epoxy resins, and naphthylene ether type epoxy resins. A tetrafunctional naphthalene type epoxy resin, a biphenyl type epoxy resin, or a naphthylene ether type epoxy resin is more preferable. You may use these 1 type or in combination of 2 or more types.
 本発明の樹脂組成物において、樹脂組成物の硬化物の機械強度や耐水性を向上させるという観点から、樹脂組成物中の不揮発成分を100質量%とした場合、エポキシ樹脂の含有量は3~40質量%であるのが好ましく、5~35質量%であるのがより好ましく、10~30質量%であるのが更に好ましい。 In the resin composition of the present invention, from the viewpoint of improving the mechanical strength and water resistance of the cured product of the resin composition, when the nonvolatile component in the resin composition is 100% by mass, the content of the epoxy resin is 3 to It is preferably 40% by mass, more preferably 5 to 35% by mass, and even more preferably 10 to 30% by mass.
 <(B)硬化剤>
 本発明に使用する硬化剤としては、特に限定されないが、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、酸無水物系硬化剤等が挙げられ、なかでもフェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤が好ましい。これらは1種又は2種以上組み合わせて使用してもよい。
<(B) Curing agent>
The curing agent used in the present invention is not particularly limited, but phenolic curing agent, naphthol curing agent, active ester curing agent, benzoxazine curing agent, cyanate ester curing agent, acid anhydride curing agent, etc. Of these, phenolic curing agents, naphtholic curing agents, and active ester curing agents are preferred. These may be used alone or in combination of two or more.
 フェノール系硬化剤、ナフトール系硬化剤としては、特に制限はないが、ノボラック構造を有するフェノール系硬化剤やノボラック構造を有するナフトール系硬化剤が挙げられ、フェノールノボラック樹脂、トリアジン骨格含有フェノールノボラック樹脂、ナフトールノボラック樹脂、ナフトールアラルキル型樹脂、トリアジン骨格含有ナフトール樹脂、ビフェニルアラルキル型フェノール樹脂が好ましい。市販品としては、ビフェニルアラルキル型フェノール樹脂として、「MEH-7700」、「MEH-7810」、「MEH-7851」、「MEH7851-4H」(明和化成(株)製)、「GPH」(日本化薬(株)製)、ナフトールノボラック樹脂として、「NHN」、「CBN」(日本化薬(株)製)、ナフトールアラルキル型樹脂として、「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495」、「SN395」、「SN375」(東都化成(株)製)、フェノールノボラック樹脂として「TD2090」(DIC(株)製)、トリアジン骨格含有フェノールノボラック樹脂「LA3018」、「LA7052」、「LA7054」、「LA1356」(DIC(株)製)等が挙げられる。これらは1種又は2種以上を併用してもよい。 The phenolic curing agent and the naphtholic curing agent are not particularly limited, and examples thereof include a phenolic curing agent having a novolak structure and a naphtholic curing agent having a novolac structure, such as a phenol novolac resin, a triazine skeleton-containing phenol novolac resin, Naphthol novolac resins, naphthol aralkyl type resins, triazine skeleton-containing naphthol resins, and biphenyl aralkyl type phenol resins are preferred. Commercially available products include biphenyl aralkyl type phenol resins such as “MEH-7700”, “MEH-7810”, “MEH-7785”, “MEH7851-4H” (Maywa Kasei Co., Ltd.), “GPH” (Nippon Kasei). (Manufactured by Yakuhin Co., Ltd.), as naphthol novolak resin, “NHN”, “CBN” (manufactured by Nippon Kayaku Co., Ltd.), as naphthol aralkyl type resins, “SN170”, “SN180”, “SN190”, “SN475” , “SN485”, “SN495”, “SN395”, “SN375” (manufactured by Toto Kasei Co., Ltd.), “TD2090” (manufactured by DIC Corporation) as a phenol novolak resin, phenol novolak resin “LA3018” containing a triazine skeleton “LA7052”, “LA7054”, “LA1356” (manufactured by DIC Corporation), etc. It is. These may be used alone or in combination of two or more.
 活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えばハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。活性エステル系硬化剤は1種又は2種以上を使用することができる。活性エステル系硬化剤としては、特開2004-277460号公報に開示されている活性エステル系硬化剤を用いてもよく、また市販のものを用いることもできる。市販されている活性エステル系硬化剤としては、ジシクロペンタジエニルジフェノール構造を含むもの、フェノールノボラックのアセチル化物、フェノールノボラックのベンゾイル化物等が好ましく、なかでもジシクロペンタジエニルジフェノール構造を含むものがより好ましい。具体的には、ジシクロペンタジエニルジフェノール構造を含むものとしてEXB9451、EXB9460、EXB9460S-65T、HPC-8000-65T(DIC(株)製、活性基当量約223)、フェノールノボラックのアセチル化物としてDC808(三菱化学(株)製、活性基当量約149)、フェノールノボラックのベンゾイル化物としてYLH1026(三菱化学(株)製、活性基当量約200)、YLH1030(三菱化学(株)製、活性基当量約201)、YLH1048(三菱化学(株)製、活性基当量約245)、等が挙げられ、中でもHPC-8000-65Tがワニスの保存安定性、硬化物の熱膨張率の観点から好ましい。 The active ester curing agent is not particularly limited, but generally an ester group having high reaction activity such as phenol ester, thiophenol ester, N-hydroxyamine ester, heterocyclic hydroxy compound ester, etc. in one molecule. A compound having two or more in the above is preferably used. The active ester curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing agent obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, and m-cresol. P-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzene Examples include triol, dicyclopentadienyl diphenol, phenol novolac and the like. 1 type (s) or 2 or more types can be used for an active ester type hardening | curing agent. As the active ester curing agent, an active ester curing agent disclosed in JP-A-2004-277460 may be used, or a commercially available one may be used. Commercially available active ester curing agents include those containing a dicyclopentadienyl diphenol structure, acetylated phenol novolacs, benzoylated phenol novolacs, etc. Among them, dicyclopentadienyl diphenol structures are preferred. The inclusion is more preferable. Specifically, EXB9451, EXB9460, EXB9460S-65T, HPC-8000-65T (manufactured by DIC Corporation, active group equivalent of about 223) as an acetylated product of phenol novolak as a dicyclopentadienyl diphenol structure. DC808 (Mitsubishi Chemical Corporation, active group equivalent of about 149), YLH1026 (Mitsubishi Chemical Corporation, active group equivalent of about 200), YLH1030 (Mitsubishi Chemical Co., Ltd., active group equivalent) as a benzoylated phenol novolak 201), YLH1048 (manufactured by Mitsubishi Chemical Co., Ltd., active group equivalent of about 245), and the like. Among them, HPC-8000-65T is preferable from the viewpoint of the storage stability of the varnish and the thermal expansion coefficient of the cured product.
 ジシクロペンタジエニルジフェノール構造を含む活性エステル系硬化剤として、より具体的には下式(4)の化合物が挙げられる。 More specifically, examples of the active ester curing agent containing a dicyclopentadienyl diphenol structure include a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000007
(式中、Rはフェニル基、ナフチル基であり、kは0又は1を表し、nは繰り返し単位の平均で0.05~2.5である。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, R is a phenyl group or a naphthyl group, k represents 0 or 1, and n is 0.05 to 2.5 on the average of repeating units.)
 誘電正接を低下させ、耐熱性を向上させるという観点から、Rはナフチル基が好ましく、一方、kは0が好ましく、また、nは0.25~1.5が好ましい。 From the viewpoint of reducing the dielectric loss tangent and improving the heat resistance, R is preferably a naphthyl group, k is preferably 0, and n is preferably 0.25 to 1.5.
 ベンゾオキサジン系硬化剤としては、特に制限はないが、具体例としては、F-a、P-d(四国化成(株)製)、HFB2006M(昭和高分子(株)製)などが挙げられる。 The benzoxazine-based curing agent is not particularly limited, and specific examples include Fa, Pd (manufactured by Shikoku Kasei Co., Ltd.), HFB2006M (manufactured by Showa Polymer Co., Ltd.), and the like.
 シアネートエステル系硬化剤としては、特に制限はないが、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型など)シアネートエステル系硬化剤、ジシクロペンタジエン型シアネートエステル系硬化剤、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、ビスフェノールS型など)シアネートエステル系硬化剤、及びこれらが一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の重量平均分子量は、特に限定されるものではないが、500~4500が好ましく、600~3000がより好ましい。シアネートエステル系硬化剤の具体例としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、ビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック、クレゾールノボラック、ジシクロペンタジエン構造含有フェノール樹脂等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。市販されているシアネートエステル樹脂としては、下式(5)で表されるフェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製、PT30、シアネート当量124)、下式(6)で表されるビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー(ロンザジャパン(株)製、BA230、シアネート当量232)、下式(7)で表されるジシクロペンタジエン構造含有シアネートエステル樹脂(ロンザジャパン(株)製、DT-4000、DT-7000)等が挙げられる。 Although there is no restriction | limiting in particular as cyanate ester type hardening | curing agent, Novolac type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester type hardening agent, dicyclopentadiene type cyanate ester type hardening agent, bisphenol type (bisphenol A type, bisphenol) Fate, bisphenol S type, etc.) cyanate ester curing agents, and prepolymers in which these are partially triazines. The weight average molecular weight of the cyanate ester curing agent is not particularly limited, but is preferably 500 to 4500, more preferably 600 to 3000. Specific examples of the cyanate ester curing agent include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4′-ethylidenediphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3, Bifunctional cyanate resins such as 5-dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether , Phenol novolac, Examples thereof include polyfunctional cyanate resins derived from resole novolac, dicyclopentadiene structure-containing phenol resins, prepolymers in which these cyanate resins are partially triazines, and these may be used alone or in combination of two or more. As a commercially available cyanate ester resin, a phenol novolak type polyfunctional cyanate ester resin represented by the following formula (5) (Lonza Japan Co., Ltd., PT30, cyanate equivalent 124), and the following formula (6): Prepolymer (part Lona Japan Co., Ltd., BA230, cyanate equivalent 232), dicyclopentadiene represented by the following formula (7): a part or all of the bisphenol A dicyanate represented by triazine Structure-containing cyanate ester resin (Lonza Japan Co., Ltd., T-4000, DT-7000), and the like.
Figure JPOXMLDOC01-appb-C000008
[式中、nは平均値として任意の数(好ましくは0~20)を示す。]
Figure JPOXMLDOC01-appb-C000008
[Wherein n represents an arbitrary number (preferably 0 to 20) as an average value. ]
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式中、nは平均値として0~5の数を表す。)
Figure JPOXMLDOC01-appb-C000010
(In the formula, n represents a number of 0 to 5 as an average value.)
 酸無水物系硬化剤としては、特に限定されるものではないが、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸が共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。 The acid anhydride curing agent is not particularly limited, but phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride Hydrogenated methyl nadic anhydride, trialkyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid Acid anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, biphenyl tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, oxydiphthalic dianhydride, 3,3 ' -4,4'-diphenylsulfonetetracarboxylic dianhydride, 1,3 a, 4,5,9b-Hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-C] furan-1,3-dione, ethylene glycol bis (anhydrotrimelli Tate), and polymer-type acid anhydrides such as styrene / maleic acid resin obtained by copolymerization of styrene and maleic acid.
 本発明の樹脂組成物において、樹脂組成物の硬化物の機械強度や耐水性を向上させるという観点から、(A)エポキシ樹脂のエポキシ基の合計数と、(B)硬化剤の反応基の合計数との比が、1:0.2~1:2が好ましく、1:0.3~1:1.5がより好ましく、1:0.4~1:1が更に好ましい。なお樹脂組成物中に存在するエポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の固形分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基の合計数とは、各硬化剤の固形分質量を反応基当量で除した値をすべての硬化剤について合計した値である。 In the resin composition of the present invention, from the viewpoint of improving the mechanical strength and water resistance of the cured product of the resin composition, (A) the total number of epoxy groups of the epoxy resin and (B) the total of reactive groups of the curing agent The ratio to the number is preferably 1: 0.2 to 1: 2, more preferably 1: 0.3 to 1: 1.5, still more preferably 1: 0.4 to 1: 1. The total number of epoxy groups of the epoxy resin present in the resin composition is a value obtained by dividing the solid content mass of each epoxy resin by the epoxy equivalent for all epoxy resins, and the reactive group of the curing agent. The total number of is a value obtained by adding the values obtained by dividing the solid mass of each curing agent by the reactive group equivalent for all curing agents.
 本発明の樹脂組成物において、樹脂組成物の硬化物の機械強度や耐水性を向上させるという観点から、樹脂組成物中の不揮発成分を100質量%とした場合、硬化剤の含有量は3~30質量%であるのが好ましく、5~25質量%であるのがより好ましく、7~20質量%であるのが更に好ましい。 In the resin composition of the present invention, from the viewpoint of improving the mechanical strength and water resistance of the cured product of the resin composition, when the nonvolatile component in the resin composition is 100% by mass, the content of the curing agent is 3 to It is preferably 30% by mass, more preferably 5 to 25% by mass, and even more preferably 7 to 20% by mass.
 <(C)無機充填材>
 本発明に使用する(C)無機充填材としては、特に限定されないが、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。なかでも、シリカが好ましい。また、無定形シリカ、粉砕シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等のシリカが好ましく、溶融シリカがより好ましい。また、シリカとしては球状のものが好ましい。これらは1種または2種以上組み合わせて使用してもよい。市販されている球状溶融シリカとして、(株)アドマテックス製「SOC2」、「SOC1」が挙げられる。
<(C) Inorganic filler>
The inorganic filler (C) used in the present invention is not particularly limited. For example, silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, oxidation Examples thereof include magnesium, boron nitride, aluminum borate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. Of these, silica is preferable. In addition, silica such as amorphous silica, pulverized silica, fused silica, crystalline silica, synthetic silica, and hollow silica is preferable, and fused silica is more preferable. Further, the silica is preferably spherical. You may use these 1 type or in combination of 2 or more types. Examples of commercially available spherical fused silica include “SOC2” and “SOC1” manufactured by Admatechs.
 無機充填材の平均粒径は、特に限定されるものではないが、絶縁層上へ微細配線形成を行うという観点から、5μm以下が好ましく、3μm以下がより好ましく、1μm以下が更に好ましく、0.7μm以下が更に一層好ましく、0.5μm以下が殊更好ましく、0.4μm以下が特に好ましく、0.3μm以下がとりわけ好ましい。一方、エポキシ樹脂組成物を樹脂ワニスとした場合に、ワニスの粘度が上昇し、取り扱い性が低下するのを防止するという観点から、無機充填材の平均粒径は、0.01μm以上が好ましく、0.03μm以上がより好ましく、0.05μm以上が更に好ましく、0.07μm以上が殊更好ましく、0.1μm以上が特に好ましい。上記無機充填材の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製  LA-500、750、950等を使用することができる。 The average particle size of the inorganic filler is not particularly limited, but is preferably 5 μm or less, more preferably 3 μm or less, still more preferably 1 μm or less, from the viewpoint of forming fine wiring on the insulating layer. 7 μm or less is even more preferable, 0.5 μm or less is particularly preferable, 0.4 μm or less is particularly preferable, and 0.3 μm or less is particularly preferable. On the other hand, when the epoxy resin composition is a resin varnish, the average particle size of the inorganic filler is preferably 0.01 μm or more from the viewpoint of preventing the viscosity of the varnish from increasing and the handleability from decreasing. It is more preferably 0.03 μm or more, more preferably 0.05 μm or more, particularly preferably 0.07 μm or more, and particularly preferably 0.1 μm or more. The average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction particle size distribution measuring device, LA-500, 750, 950, etc. manufactured by Horiba Ltd. can be used.
 無機充填材を配合する場合の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、硬化物の熱膨張率を低下させるという観点から、20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上が更に好ましく、50質量%以上が更に一層好ましい。また、硬化物の機械特性向上という観点から、85質量%以下が好ましく、80質量%以下がより好ましく、75質量%以下が更に好ましく、70質量%以下が更に一層好ましい。 When the inorganic filler is blended, the content is preferably 20% by mass or more, and preferably 30% by mass from the viewpoint of reducing the coefficient of thermal expansion of the cured product when the nonvolatile component in the resin composition is 100% by mass. The above is more preferable, 40 mass% or more is still more preferable, and 50 mass% or more is still more preferable. Moreover, from a viewpoint of the mechanical characteristic improvement of hardened | cured material, 85 mass% or less is preferable, 80 mass% or less is more preferable, 75 mass% or less is further more preferable, and 70 mass% or less is still more preferable.
 (C)無機充填材は、樹脂ワニスの分散性向上、算術平均粗さの低減、二乗平均平方根粗さの低減の観点から、予めシラザン化合物で表面処理したものを用いることができる。シラザン化合物で表面処理した後に、水酸基及び反応性基を有し、かつ沸点が100℃以上である有機化合物で表面処理することで、分散性向上、導体層との親和性向上という点で有利となる。シラザン化合物としては、例えばヘキサメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、オクタメチルトリシラザン、ヘキサ(t-ブチル)ジシラザン、ヘキサブチルジシラザン、ヘキサオクチルジシラザン、1,3-ジエチルテトラメチルジシラザン、1,3-ジ-n-オクチルテトラメチルジシラザン、1,3-ジフェニルテトラメチルジシラザン、1,3-ジメチルテトラフェニルジシラザン、1,3-ジエチルテトラメチルジシラザン、1,1,3,3-テトラフェニル-1,3-ジメチルジシラザン、1,3-ジプロピルテトラメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5-ヘキサメチルシクロトリシラザン等を挙げることができ、特にヘキサメチルジシラザンが好ましい。これらは1種または2種以上組み合わせて使用してもよい。ヘキサメチルジシラザンで表面処理した球状溶融シリカとしては、(株)アドマテックス製「SC2050-SQ」が挙げられる。 (C) As the inorganic filler, one that has been surface-treated with a silazane compound in advance from the viewpoint of improving the dispersibility of the resin varnish, reducing the arithmetic mean roughness, and reducing the root mean square roughness can be used. After surface treatment with a silazane compound, surface treatment with an organic compound having a hydroxyl group and a reactive group and having a boiling point of 100 ° C. or more is advantageous in terms of improving dispersibility and improving affinity with a conductor layer. Become. Examples of silazane compounds include hexamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, octamethyltrisilazane, hexa (t-butyl) disilazane, hexabutyldisilazane, hexaoctyl. Disilazane, 1,3-diethyltetramethyldisilazane, 1,3-di-n-octyltetramethyldisilazane, 1,3-diphenyltetramethyldisilazane, 1,3-dimethyltetraphenyldisilazane, 1,3 -Diethyltetramethyldisilazane, 1,1,3,3-tetraphenyl-1,3-dimethyldisilazane, 1,3-dipropyltetramethyldisilazane, hexamethylcyclotrisilazane, hexaphenyldisilazane, dimethylamino Trimethylsilazane, trisilazane, cyclotrisilazane, 1,1, 3,3,5,5-hexamethylcyclotrisilazane and the like can be mentioned, and hexamethyldisilazane is particularly preferable. You may use these 1 type or in combination of 2 or more types. Examples of the spherical fused silica surface-treated with hexamethyldisilazane include “SC2050-SQ” manufactured by Admatechs Co., Ltd.
 本発明に使用する、水酸基及び反応性基を有し、かつ沸点が100℃以上である有機化合物は、水酸基が無機充填材と共有結合することで十分な被覆が可能となり、反応性基が樹脂組成物中の分散性を向上させる。また、沸点が100℃以上であることで、脱水縮合により発生する水を蒸発させながら、該有機化合物の表面処理を安定して行うことができる。沸点の好ましい上限値は500℃、より好ましくは400℃、更に好ましくは300℃である。なお、本発明において有機化合物の「沸点」とは、標準気圧(0.101325MPa)下における沸点をいう。該有機化合物としては、特に限定されないが、該有機化合物の反応性基は、アミノ基、エポキシ基、メルカプト基、メタクリル基、アクリル基、ビニル基、ウレイド基から選択される1種以上であることが好ましく、アミノ基、エポキシ基がより好ましい。該有機化合物は、ケイ素、アルミニウム、チタン、ジルコニウムからなる群から選択される元素を実質的に含まないことが好ましい。ここで、「実質的に含まない」とは、不可避的な不純物として含む場合を除き、ケイ素、アルミニウム、チタン、ジルコニウムからなる群から選択される元素を含まないことをいう。そして、該有機化合物としては、下式(1)の化合物、下式(2)の化合物、下式(3)の化合物、イミダゾール化合物及びイミダゾール-エポキシアダクトから選択される1種以上が更に好ましい。 The organic compound having a hydroxyl group and a reactive group used in the present invention and having a boiling point of 100 ° C. or more can be sufficiently coated by covalently bonding the hydroxyl group to the inorganic filler, and the reactive group is a resin. Improves dispersibility in the composition. Moreover, when the boiling point is 100 ° C. or higher, the surface treatment of the organic compound can be stably performed while evaporating water generated by dehydration condensation. The upper limit of the boiling point is preferably 500 ° C, more preferably 400 ° C, and still more preferably 300 ° C. In the present invention, the “boiling point” of an organic compound refers to the boiling point under standard atmospheric pressure (0.1001325 MPa). The organic compound is not particularly limited, but the reactive group of the organic compound is at least one selected from an amino group, an epoxy group, a mercapto group, a methacryl group, an acrylic group, a vinyl group, and a ureido group. Are preferable, and an amino group and an epoxy group are more preferable. It is preferable that the organic compound does not substantially contain an element selected from the group consisting of silicon, aluminum, titanium, and zirconium. Here, “substantially free” means that it does not contain an element selected from the group consisting of silicon, aluminum, titanium, and zirconium, unless it is included as an inevitable impurity. The organic compound is more preferably at least one selected from the following formula (1), the following formula (2), the following formula (3), an imidazole compound and an imidazole-epoxy adduct.
Figure JPOXMLDOC01-appb-C000011
(R1、R2は、それぞれ独立にフェニル基、ベンジル基、水素原子又は炭素数1~5のアルキル基である。R3は、炭素数1~5のアルキレン基又はフェニレン基である。)
Figure JPOXMLDOC01-appb-C000011
(R1 and R2 are each independently a phenyl group, a benzyl group, a hydrogen atom, or an alkyl group having 1 to 5 carbon atoms. R3 is an alkylene group or phenylene group having 1 to 5 carbon atoms.)
 R1、R2は、好ましくはフェニル基、ベンジル基又は水素原子である。R3は、好ましくは炭素数1~5のアルキレン基であり、より好ましくは炭素数1~3のアルキレン基である。 R1 and R2 are preferably a phenyl group, a benzyl group or a hydrogen atom. R3 is preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
Figure JPOXMLDOC01-appb-C000012
(R4は、炭素数1~5のアルキレン基又はフェニレン基である。)
Figure JPOXMLDOC01-appb-C000012
(R4 is an alkylene group having 1 to 5 carbon atoms or a phenylene group.)
 R4は、好ましくは炭素数1~5のアルキレン基であり、より好ましくは炭素数1~3のアルキレン基である。 R4 is preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
Figure JPOXMLDOC01-appb-C000013
(R5は、水酸基を有する有機基である。R6は、水素原子、メチル基、カルボキシル基又はフェニル基である。)
Figure JPOXMLDOC01-appb-C000013
(R5 is an organic group having a hydroxyl group. R6 is a hydrogen atom, a methyl group, a carboxyl group or a phenyl group.)
 R5は、好ましくは水酸基及びアミノ基を有する1価の有機基であり、より好ましくは下式(8)で表わされる1価の有機基である。R6は、好ましくは水素原子又はメチル基であり、より好ましくはメチル基である。 R5 is preferably a monovalent organic group having a hydroxyl group and an amino group, and more preferably a monovalent organic group represented by the following formula (8). R6 is preferably a hydrogen atom or a methyl group, more preferably a methyl group.
Figure JPOXMLDOC01-appb-C000014
(R7、R8はそれぞれ独立に、水酸基、フェノール基、ヒドロキシメチル基、ヒドロキシエチル基である。nは0~5の任意の整数である。式中、*部がN原子と結合する。)
Figure JPOXMLDOC01-appb-C000014
(R7 and R8 are each independently a hydroxyl group, a phenol group, a hydroxymethyl group, or a hydroxyethyl group. N is an arbitrary integer of 0 to 5. In the formula, * part is bonded to an N atom.)
 R7、R8はそれぞれ独立に、好ましくはヒドロキシメチル基又はヒドロキシエチル基であり、より好ましくはヒドロキシエチル基である。nは、好ましくは1~3である。 R7 and R8 are each independently preferably a hydroxymethyl group or a hydroxyethyl group, more preferably a hydroxyethyl group. n is preferably 1 to 3.
 また、下式(9)の化合物を使用することもできる。 Also, a compound of the following formula (9) can be used.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 より具体的には、N-ベンジルアミノエタノール、N-アニリノエタノール、グリシドール、イミダゾール-エポキシアダクト、ベンゾトリアゾール誘導体、3-ベンジルアミノ-1-プロパノール、4-ベンジルアミノ-1-ブタノール、5-ベンジルアミノ-1-ペンタノール、2-メチルアミノエタノール、2-エチルアミノエタノール、2-プロピルアミノエタノール、2-イソプロピルアミノエタノール、2-ブチルアミノエタノール、2-((1-メチルプロピル)アミノ)エタノール、2-(tert- ブチルアミノ)エタノール、2-ペンチルアミノエタノール、3-アニリノプロパノール、4-フェニルアミノ-1-ブタノール、5-フェニルアミノ-1-ペンタノール及び1-(2-ヒドロキシエチル)イミダゾールから選択される1種以上が更に一層好ましい。なかでも、取扱安全性、導体層との高密着性付与、保存安定性向上という観点から、N-ベンジルアミノエタノール、N-アニリノエタノール、グリシドール、2,2-[{(メチル-1H-ベンゾトリアゾール-1-イル)メチル}イミノ]ビスエタノール、1-(2-ヒドロキシエチル)イミダゾール及びイミダゾール-エポキシアダクトから選択される1種以上が特に好ましい。 More specifically, N-benzylaminoethanol, N-anilinoethanol, glycidol, imidazole-epoxy adduct, benzotriazole derivative, 3-benzylamino-1-propanol, 4-benzylamino-1-butanol, 5-benzyl Amino-1-pentanol, 2-methylaminoethanol, 2-ethylaminoethanol, 2-propylaminoethanol, 2-isopropylaminoethanol, 2-butylaminoethanol, 2-((1-methylpropyl) amino) ethanol, 2- (tert-butylamino) ethanol, 2-pentylaminoethanol, 3-anilinopropanol, 4-phenylamino-1-butanol, 5-phenylamino-1-pentanol and 1- (2-hydroxyethyl) imidazole Least one element al selected even more preferred. Among these, N-benzylaminoethanol, N-anilinoethanol, glycidol, 2,2-[{(methyl-1H-benzoate) are used from the viewpoint of handling safety, imparting high adhesion to the conductor layer, and improving storage stability. Particularly preferred is one or more selected from triazol-1-yl) methyl} imino] bisethanol, 1- (2-hydroxyethyl) imidazole and imidazole-epoxy adduct.
 (C)無機充填材を該有機化合物で表面処理する方法としては、(C)無機充填材を回転ミキサーに投入し、該有機化合物を噴霧しながら、(C)無機充填材を5~30分間攪拌する方法が挙げられる。 (C) As a method of surface-treating the inorganic filler with the organic compound, (C) the inorganic filler is put into a rotary mixer and the organic compound is sprayed, and the inorganic filler is sprayed for 5 to 30 minutes. The method of stirring is mentioned.
 該有機化合物の含有量は、溶融粘度の上昇を防止するという観点から、(C)無機充填材を100質量%とした場合、2質量%以下が好ましく、1.8質量%以下がより好ましく、1.6質量%以下が更に好ましく、1.4質量%以下が更に一層好ましい。また、樹脂ワニスの分散性向上、無機充填材の被覆率向上という観点から、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.15質量%以上が更に好ましく、0.2質量%以上が更に一層好ましい。 From the viewpoint of preventing increase in melt viscosity, the content of the organic compound is preferably 2% by mass or less, more preferably 1.8% by mass or less, when the inorganic filler (C) is 100% by mass. 1.6 mass% or less is still more preferable, and 1.4 mass% or less is still more preferable. Moreover, from the viewpoint of improving the dispersibility of the resin varnish and improving the coverage of the inorganic filler, it is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.15% by mass or more, 0 .2% by mass or more is even more preferable.
 (C)無機充填材を該有機化合物で表面処理した後、疎水性向上、未反応のシラノール基と反応させることによる分散性のさらなる向上という観点から、シランカップリング剤、アルコキシシラン、アルコキシオリゴマー、アルミニウム系カップリング剤、チタン系カップリング剤、ジルコニウム系カップリング剤から選択される1種以上で更に表面処理してもよい。 (C) After the surface treatment of the inorganic filler with the organic compound, from the viewpoint of improving hydrophobicity and further improving dispersibility by reacting with an unreacted silanol group, a silane coupling agent, an alkoxysilane, an alkoxy oligomer, Surface treatment may be performed with one or more selected from an aluminum coupling agent, a titanium coupling agent, and a zirconium coupling agent.
 シランカップリング剤としては、エポキシシラン系カップリング剤、アミノシラン系カップリング剤、メルカプトシラン系カップリング剤等を用いることができる。これらは1種または2種以上組み合わせて使用してもよい。具体的には、例えばグリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系カップリング剤、アミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)アミノプロピルトリメトキシシラン等のアミノシラン系カップリング剤、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン等のメルカプトシラン系カップリング剤が挙げられる。 As the silane coupling agent, an epoxy silane coupling agent, an aminosilane coupling agent, a mercaptosilane coupling agent, or the like can be used. You may use these 1 type or in combination of 2 or more types. Specifically, for example, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc. Epoxysilane coupling agents, aminopropylmethoxysilane, aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-2 (aminoethyl) aminopropyltrimethoxysilane, and other aminosilane coupling agents And mercaptosilane coupling agents such as mercaptopropyltrimethoxysilane and mercaptopropyltriethoxysilane.
 アルコキシシランとしては、メチルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、メタクロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等を用いることができる。これらは1種または2種以上組み合わせて使用してもよい。 As the alkoxysilane, methyltrimethoxysilane, octadecyltrimethoxysilane, phenyltrimethoxysilane, methacroxypropyltrimethoxysilane, imidazolesilane, triazinesilane, or the like can be used. You may use these 1 type or in combination of 2 or more types.
 アルコキシオリゴマーは、有機基とアルコキシシリル基を併せ持つ低分子樹脂のことをいい、例えば、メチル基含有アルコキシオリゴマー、フェニル基含有アルコキシオリゴマー、メチル/フェニル基含有アルコキシオリゴマー、エポキシ基含有アルコキシオリゴマー、メルカプト基含有アルコキシオリゴマー、アミノ基含有アルコキシオリゴマー、アクリル基含有アルコキシオリゴマー、メタクリル基含有アルコキシオリゴマー、ウレイド基含有アルコキシオリゴマー、イソシアネート基含有アルコキシオリゴマー、ビニル基含有アルコキシオリゴマー等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The alkoxy oligomer refers to a low molecular resin having both an organic group and an alkoxysilyl group. For example, a methyl group-containing alkoxy oligomer, a phenyl group-containing alkoxy oligomer, a methyl / phenyl group-containing alkoxy oligomer, an epoxy group-containing alkoxy oligomer, a mercapto group Examples thereof include an alkoxy group-containing alkoxy oligomer, an amino group-containing alkoxy oligomer, an acrylic group-containing alkoxy oligomer, a methacryl group-containing alkoxy oligomer, a ureido group-containing alkoxy oligomer, an isocyanate group-containing alkoxy oligomer, and a vinyl group-containing alkoxy oligomer. You may use these 1 type or in combination of 2 or more types.
 アルミニウム系カップリング剤としては、例えば、アルミニウムイソプロピレート、モノsec―ブトキシアルミニウムジイソプロピレート、アルミニウムsec―ブチレート、アルミニウムエチレート、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、環状アルミニウムオキサイドイソプロピレート、環状アルミニウムオキサイドイソプロピレート、環状アルミニウムオキサイドステアレート、環状アルミニウムオキサイドオクチレート、環状アルミニウムオキサイドステアレート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Aluminum coupling agents include, for example, aluminum isopropylate, mono-sec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate Acetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), cyclic aluminum oxide isopropylate, cyclic aluminum oxide isopropylate, cyclic aluminum oxide stearate, cyclic aluminum oxide octylate, Examples include cyclic aluminum oxide stearate.You may use these 1 type or in combination of 2 or more types.
 チタン系カップリング剤としては、例えば、ブチルチタネートダイマー、チタンオクチレングリコレート、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジヒドロキシチタンビスラクテート、ジヒドロキシビス(アンモニウムラクテート)チタニウム、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリ-n-ブトキシチタンモノステアレート、テトラ-n-ブチルチタネート、テトラ(2-エチルヘキシル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミドエチル・アミノエチル)チタネート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Examples of titanium coupling agents include butyl titanate dimer, titanium octylene glycolate, diisopropoxy titanium bis (triethanolaminate), dihydroxy titanium bis lactate, dihydroxy bis (ammonium lactate) titanium, and bis (dioctyl pyrophosphate) ethylene. Titanate, bis (dioctylpyrophosphate) oxyacetate titanate, tri-n-butoxytitanium monostearate, tetra-n-butyl titanate, tetra (2-ethylhexyl) titanate, tetraisopropylbis (dioctylphosphite) titanate, tetraoctylbis (Ditridecylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phos Lite titanate, isopropyl trioctanoyl titanate, isopropyl tricumyl phenyl titanate, isopropyl triisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tridodecylbenzenesulfonyl titanate, Examples thereof include isopropyl tris (dioctyl pyrophosphate) titanate, isopropyl tri (N-amidoethyl / aminoethyl) titanate, and the like. You may use these 1 type or in combination of 2 or more types.
 ジルコニウム系カップリング剤としては、例えば、ジルコニウムIV(2,2-ビス(2-プロペノラートメチル)ブタノラート,トリスネオデカノラート)、ジルコニウムIV(2,2-ビス(2-プロペノラートメチル)ブタノラート,トリス(ドデシルベンジルスルフォナート))、ジルコニウムIV(2,2-ビス(2-プロペノラートメチル)ブタノラート,トリス(ジオクチル)ホスフェート)、ジルコニウムIV(2,2-ビス(2-プロペノラートメチル)ブタノラート,トリス2-メチル2-プロペノラート)、ジルコニウムIV-ビス(2,2-ビス(2-プロペノラートメチル)ブタノラート,ビスパラアミノベンゾエート)、ジルコニウムIV(2,2-ビス(2-プロペノラートメチル)ブタノラート,トリス(ジイソオクチル)ピロホスフェ-ト)、ジルコニウムIV(2,2-ビス(2-プロペノラートメチル)ブタノラート,トリス2-プロペノエ-ト)、ジルコニウムIV(2,2-ビス(2-プロペノラートメチル)ブタノラート,トリス(2-エチレンジアミノ)エチレート)、ジルコニウムIV,ビス(2,2-ビス(2-プロペノラートメチル)ブタノラート,ビス(3-メルカプトプロパノエート))、ジルコニウムIV(2,2-ビス(2-プロペノラートメチル)ブタノラート,トリス(2-アミノ)フェニレート)、ジルコニウムIV(2,2-ビス(2-プロペノラートメチル)ブタノラート,トリス(ジイソオクチル)ピロホスフェ-ト),N-置換メタクリルアミド付加物、ジルコニウムIV(2-エチル,2-プロペノラートメチル)-1,3-プロペンジオクレート,シクロジ2,2-(ビス-2-プロペノラートメチル)ブタノラート,ピロホスフェート)、ジルコニウムIV(テトラキス-2,2-(ビス-2-プロぺノラートメチル)ブタノラート,ジトリデシルハイドロゲンホスファイト2モル付加物、等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 Examples of zirconium coupling agents include zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, trisneodecanolate), zirconium IV (2,2-bis (2-propenolatemethyl). ) Butanolate, tris (dodecylbenzylsulfonate)), zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, tris (dioctyl) phosphate), zirconium IV (2,2-bis (2-propene) Noratomethyl) butanolate, tris-2-methyl-2-propenolate), zirconium IV-bis (2,2-bis (2-propenolatemethyl) butanolate, bisparaaminobenzoate), zirconium IV (2,2-bis (2 -Propenolate methyl) butanolate, tris (diisooctyl) Pyrophosphate), zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, tris2-propenoate), zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, tris (2-ethylenediamino) ethylate), zirconium IV, bis (2,2-bis (2-propenolatemethyl) butanolate, bis (3-mercaptopropanoate)), zirconium IV (2,2-bis (2 -Propenolatemethyl) butanolate, tris (2-amino) phenylate), zirconium IV (2,2-bis (2-propenolatemethyl) butanolate, tris (diisooctyl) pyrophosphate), N-substituted methacrylamide Adduct, zirconium IV (2-ethyl, 2-propenolate methyl) -1,3-pro Ndiocrete, cyclodi-2,2- (bis-2-propenolatemethyl) butanolate, pyrophosphate), zirconium IV (tetrakis-2,2- (bis-2-propenolatemethyl) butanolate, 2 moles of ditridecyl hydrogen phosphite) Examples thereof include adducts, etc. These may be used alone or in combination of two or more.
 (C)無機充填材の表面処理後、無機充填材の表面に結合している単位面積当たりのカーボン量は1.00mg/m以下が好ましく、0.75mg/m以下がより好ましく、0.70mg/m以下が更に好ましく、0.65mg/m以下が更に一層好ましく、0.60mg/m以下が殊更好ましく、0.55mg/m以下が特に好ましく、0.50mg/m以下がとりわけ好ましい。一方、その表面に結合している単位面積当たりのカーボン量は、0.05mg/m以上が好ましく、0.08mg/m以上がより好ましく、0.11mg/m以上が更に好ましく、0.14mg/m以上が更に一層好ましく、0.17mg/m以上が殊更好ましく、0.20mg/m以上が特に好ましく、0.23mg/m以上がとりわけ好ましく、0.26mg/m以上がなおさら好ましい。これにより、湿式粗化工程後の算術平均粗さ、二乗平均平方根粗さが安定し、かつ高いピール強度の導体層を安定的に形成できるものとなる。 After the surface treatment of the inorganic filler (C), carbon amount per unit area which is bound to the surface of the inorganic filler is preferably from 1.00 mg / m 2 or less, more preferably 0.75 mg / m 2 or less, 0 more preferably .70mg / m 2 or less, still more preferably from 0.65 mg / m 2 or less, especially preferably from 0.60 mg / m 2 or less, particularly preferably 0.55 mg / m 2 or less, 0.50 mg / m 2 The following are particularly preferred: On the other hand, the carbon amount per unit area which is bonded to the surface thereof, 0.05 mg / m 2 or more, more preferably 0.08 mg / m 2 or more, more preferably 0.11 mg / m 2 or more, 0 .14mg / m 2 or more and even more preferably, preferably 0.17 mg / m 2 or more is especially, particularly preferably from 0.20 mg / m 2 or more, 0.23 mg / m 2 or more is especially preferable, 0.26 mg / m 2 The above is even more preferable. Thereby, the arithmetic mean roughness and the root mean square roughness after the wet roughening step are stabilized, and a conductor layer having high peel strength can be stably formed.
 無機充填材の表面処理の程度は、表面処理後の無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後の無機充填材の単位表面積当たりのカーボン量(すなわち、無機充填材の表面に結合している単位面積当たりのカーボン量)をもって定量化できる。例えば、無機充填材の表面に結合している単位面積当たりのカーボン量は、以下の手順で算出することができる。表面処理後の無機充填材に溶剤として十分な量のMEKを加えて、超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて無機充填材の表面に結合しているカーボン量を測定する。得られたカーボン量を無機充填材の比表面積で除すことにより、無機充填材に結合している単位面積当たりのカーボン量を算出する。
 なお、カーボン分析計としては、堀場製作所製「EMIA-320V」等を使用することができる。
The degree of the surface treatment of the inorganic filler is determined according to the amount of carbon per unit surface area of the inorganic filler after the surface treatment of the inorganic filler with a solvent (for example, methyl ethyl ketone (MEK)) (that is, the inorganic filler It can be quantified by the amount of carbon per unit area bound to the surface. For example, the amount of carbon per unit area bonded to the surface of the inorganic filler can be calculated by the following procedure. A sufficient amount of MEK as a solvent is added to the inorganic filler after the surface treatment, followed by ultrasonic cleaning. After removing the supernatant and drying the solid content, the amount of carbon bonded to the surface of the inorganic filler is measured using a carbon analyzer. By dividing the obtained amount of carbon by the specific surface area of the inorganic filler, the amount of carbon per unit area bonded to the inorganic filler is calculated.
As the carbon analyzer, “EMIA-320V” manufactured by Horiba, Ltd. can be used.
 本発明の樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理し、メッキして得られる導体層と絶縁層とのピール強度は、後述する<メッキ導体層の引き剥がし強さ(ピール強度)の測定>に記載の測定方法により把握することができる。 The resin composition of the present invention is cured to form an insulating layer, the surface of the insulating layer is roughened, and the peel strength between the conductor layer and the insulating layer obtained by plating is described in <Plating conductor layer pulling> It can be grasped by the measurement method described in Measurement of Peel Strength (Peel Strength)>.
 ピール強度は、0.8kgf/cm以下が好ましく、0.9kgf/cm以下がより好ましく、1.0kgf/cm以下が更に好ましく、1.5kgf/cm以下が更に一層好ましい。また、ピール強度は、0.4kgf/cm以上が好ましく、0.5kgf/cm以上がより好ましい。 The peel strength is preferably 0.8 kgf / cm or less, more preferably 0.9 kgf / cm or less, still more preferably 1.0 kgf / cm or less, and even more preferably 1.5 kgf / cm or less. The peel strength is preferably 0.4 kgf / cm or more, and more preferably 0.5 kgf / cm or more.
 本発明の樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)は、後述する<粗化後の算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)の測定>に記載の測定方法により把握することができる。 The arithmetic average roughness (Ra value) and the root mean square roughness (Rq value) after curing the resin composition of the present invention to form an insulating layer and roughening the surface of the insulating layer will be described later. It can be grasped by the measuring method described in the section “Measurement of arithmetic average roughness (Ra value) and root mean square roughness (Rq value) after roughening>.
 算術平均粗さ(Ra値)は、電気信号の伝送ロスを軽減するために、300nm以下が好ましく、260nm以下がより好ましく、240nm以下が更に好ましく、220nm以下が更に一層好ましく、200nm以下が殊更好ましく、170nm以下が特に好ましく、160nm以下がとりわけ好ましく、150nm以下がなおさら好ましい。一方、算術平均粗さ(Ra値)は、ピール強度を向上させるという観点から、10nm以上が好ましく、20nm以上がより好ましく、30nm以上が更に好ましく、40nm以上が更に一層好ましく、50nm以上が殊更好ましい。 The arithmetic average roughness (Ra value) is preferably 300 nm or less, more preferably 260 nm or less, still more preferably 240 nm or less, even more preferably 220 nm or less, and even more preferably 200 nm or less in order to reduce transmission loss of electrical signals. 170 nm or less is particularly preferable, 160 nm or less is particularly preferable, and 150 nm or less is even more preferable. On the other hand, the arithmetic average roughness (Ra value) is preferably 10 nm or more, more preferably 20 nm or more, further preferably 30 nm or more, still more preferably 40 nm or more, and even more preferably 50 nm or more from the viewpoint of improving peel strength. .
 二乗平均平方根粗さ(Rq値)は、電気信号の伝送ロスを軽減するために、480nm以下が好ましく、440nm以下がより好ましく、420nm以下が更に好ましく、380nm以下が更に一層好ましく、340nm以下が殊更好ましく、300nm以下が特に好ましく、260nm以下がとりわけ好ましく、220nm以下がなおさら好ましい。一方、二乗平均平方根粗さ(Rq値)は、ピール強度を向上させるという観点から、10nm以上が好ましく、30nm以上がより好ましく、50nm以上が更に好ましく、70nm以上が更に一層好ましく、90nm以上が殊更好ましい。 The root mean square roughness (Rq value) is preferably 480 nm or less, more preferably 440 nm or less, still more preferably 420 nm or less, still more preferably 380 nm or less, and even more preferably 340 nm or less in order to reduce transmission loss of electrical signals. Preferably, 300 nm or less is particularly preferred, 260 nm or less is particularly preferred, and 220 nm or less is even more preferred. On the other hand, the root mean square roughness (Rq value) is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 50 nm or more, still more preferably 70 nm or more, and even more preferably 90 nm or more from the viewpoint of improving the peel strength. preferable.
 <(D)硬化促進剤>
 本発明の樹脂組成物は、さらに硬化促進剤を含有させることにより、エポキシ樹脂と硬化剤を効率的に硬化させることができる。硬化促進剤としては、特に限定されないが、アミン系硬化促進剤、グアニジン系硬化促進剤、イミダゾール系硬化促進剤、ホスホニウム系硬化促進剤、金属系硬化促進剤等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
<(D) Curing accelerator>
The resin composition of this invention can harden an epoxy resin and a hardening | curing agent efficiently by containing a hardening accelerator further. Although it does not specifically limit as a hardening accelerator, An amine hardening accelerator, a guanidine hardening accelerator, an imidazole hardening accelerator, a phosphonium hardening accelerator, a metal hardening accelerator, etc. are mentioned. These may be used alone or in combination of two or more.
 アミン系硬化促進剤としては、特に限定されるものではないが、トリエチルアミン、トリブチルアミンなどのトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン(以下、DBUと略記する。)等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The amine curing accelerator is not particularly limited, but trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) Phenol, 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbreviated as DBU) and the like. You may use these 1 type or in combination of 2 or more types.
 グアニジン系硬化促進剤としては、特に限定されるものではないが、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The guanidine curing accelerator is not particularly limited, but dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine. , Diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide 1-cyclohexyl biguanide, 1-allyl biguanide, 1-fur Nirubiguanido, 1-(o-tolyl) biguanide, and the like. You may use these 1 type or in combination of 2 or more types.
 イミダゾール系硬化促進剤としては、特に限定されるものではないが、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、 1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The imidazole curing accelerator is not particularly limited, but 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimer Rete 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2'-Undecylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s- Triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5- Dihydroxymethylimidazole, 2-phenyl-4-methyl-5hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole 1-dodecyl-2-methyl-3-benzyl-imidazolium chloride, 2-methyl-imidazoline, adduct of 2-phenyl-imidazo imidazole compounds such as phosphorus and imidazole compound and an epoxy resin. You may use these 1 type or in combination of 2 or more types.
 ホスホニウム系硬化促進剤としては、特に限定されるものではないが、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。 The phosphonium curing accelerator is not particularly limited, but triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4- Methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, and the like. You may use these 1 type or in combination of 2 or more types.
 本発明の樹脂組成物において、硬化促進剤(金属系硬化促進剤を除く)の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、0.005~1質量%の範囲が好ましく、0.01~0.5質量%の範囲がより好ましい。0.005質量%未満であると、硬化が遅くなり熱硬化時間が長く必要となる傾向にあり、1質量%を超えると樹脂組成物の保存安定性が低下する傾向となる。 In the resin composition of the present invention, the content of the curing accelerator (excluding the metal-based curing accelerator) is in the range of 0.005 to 1% by mass when the nonvolatile component in the resin composition is 100% by mass. The range of 0.01 to 0.5% by mass is more preferable. If it is less than 0.005% by mass, curing tends to be slow and a long thermosetting time is required, and if it exceeds 1% by mass, the storage stability of the resin composition tends to decrease.
 金属系硬化促進剤としては、特に限定されるものではないが、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体などが挙げられる。有機金属塩の具体例としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。 The metal-based curing accelerator is not particularly limited, and examples thereof include an organometallic complex or an organometallic salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Specific examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. These may be used alone or in combination of two or more.
  本発明の樹脂組成物において、金属系硬化促進剤の添加量は、樹脂組成物中の不揮発成分を100質量%とした場合、金属系硬化触媒に基づく金属の含有量が25~500ppmの範囲が好ましく、40~200ppmの範囲がより好ましい。25ppm未満であると、低算術平均粗さの絶縁層表面への密着性に優れる導体層の形成が困難となる傾向にあり、500ppmを超えると、樹脂組成物の保存安定性、絶縁性が低下する傾向となる。 In the resin composition of the present invention, the addition amount of the metal-based curing accelerator is such that the metal content based on the metal-based curing catalyst is in the range of 25 to 500 ppm when the nonvolatile component in the resin composition is 100% by mass. The range of 40 to 200 ppm is more preferable. If it is less than 25 ppm, it tends to be difficult to form a conductor layer excellent in adhesion to the surface of the insulating layer having a low arithmetic average roughness. If it exceeds 500 ppm, the storage stability and insulation of the resin composition are lowered. Tend to.
 <(E)熱可塑性樹脂>
 本発明の樹脂組成物には、更に(E)熱可塑性樹脂を含有させることにより硬化物の機械強度を向上させることができ、更に接着フィルムの形態で使用する場合のフィルム成型能を向上させることもできる。このような熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂を挙げることができる。これらの熱可塑性樹脂は1種又は2種以上を組み合わせて使用してもよい。フィルム成型能や機械強度向上、樹脂ワニスの相溶性向上という点から、熱可塑性樹脂の重量平均分子量は5000~200000の範囲であるのが好ましい。なお本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工(株)社製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
<(E) Thermoplastic resin>
The resin composition of the present invention can further improve the mechanical strength of the cured product by further containing (E) a thermoplastic resin, and further improve the film molding ability when used in the form of an adhesive film. You can also. Examples of such thermoplastic resins include phenoxy resin, polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate resin, polyetheretherketone resin, and polyester resin. Can be mentioned. These thermoplastic resins may be used alone or in combination of two or more. The weight average molecular weight of the thermoplastic resin is preferably in the range of 5,000 to 200,000 from the viewpoints of improving film molding ability, mechanical strength, and compatibility of the resin varnish. In addition, the weight average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured using chloroform or the like as a mobile phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.
 本発明の樹脂組成物に、(E)熱可塑性樹脂を配合する場合には、樹脂組成物中の熱可塑性樹脂の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分100質量%に対し、0.1~10質量%が好ましく、1~5質量%がより好ましい。熱可塑性樹脂の含有量が少なすぎるとフィルム成型能や機械強度向上の効果が発揮されない傾向にあり、多すぎると溶融粘度の上昇と、湿式粗化工程後の絶縁層表面の算術平均粗さが増す傾向にある。 When (E) a thermoplastic resin is blended with the resin composition of the present invention, the content of the thermoplastic resin in the resin composition is not particularly limited, but the nonvolatile component in the resin composition 0.1 to 10% by mass is preferable with respect to 100% by mass, and 1 to 5% by mass is more preferable. If the content of the thermoplastic resin is too small, the effect of improving the film forming ability and mechanical strength tends to not be exhibited. If the content is too large, the melt viscosity increases and the arithmetic average roughness of the insulating layer surface after the wet roughening process is low. It tends to increase.
 <(F)ゴム粒子>
 本発明の樹脂組成物は、更に(F)ゴム粒子を含有させる事により、メッキピール強度を向上させることができ、ドリル加工性の向上、誘電正接の低下、応力緩和効果を得ることもできる。本発明において使用され得るゴム粒子は、例えば、当該樹脂組成物のワニスを調製する際に使用する有機溶剤にも溶解せず、必須成分である硬化剤やエポキシ樹脂などとも相溶しないものである。従って、該ゴム粒子は、本発明の樹脂組成物のワニス中では分散状態で存在する。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製される。
<(F) Rubber particles>
The resin composition of the present invention can further improve plating peel strength by containing (F) rubber particles, and can also improve drill workability, decrease dielectric loss tangent, and obtain stress relaxation effects. The rubber particles that can be used in the present invention are, for example, those that do not dissolve in the organic solvent used when preparing the varnish of the resin composition and are incompatible with the essential components such as the curing agent and epoxy resin. . Accordingly, the rubber particles exist in a dispersed state in the varnish of the resin composition of the present invention. Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles.
 本発明で使用され得るゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、又は外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。ゴム粒子は2種以上を組み合わせて使用してもよい。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N、IM-401改1、IM-401改7-17(商品名、ガンツ化成(株)製)、メタブレンKW-4426(商品名、三菱レイヨン(株)製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒径0.5μm、JSR(株)製)などが挙げられる。架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.2μm)(三菱レイヨン(株)製)を挙げることができる。 Preferred examples of rubber particles that can be used in the present invention include core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, and acrylic rubber particles. The core-shell type rubber particles are rubber particles having a core layer and a shell layer. For example, a two-layer structure in which an outer shell layer is made of a glassy polymer and an inner core layer is made of a rubbery polymer, or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer. The glassy polymer layer is made of, for example, a polymer of methyl methacrylate, and the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber). Two or more rubber particles may be used in combination. Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N, IM-401 modified 1, IM-401 modified 7-17 (trade name, manufactured by Ganz Kasei Co., Ltd.), and Metabrene KW-4426 (trade name, Mitsubishi). Rayon Co., Ltd.). Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size: 0.5 μm, manufactured by JSR Corporation). Specific examples of the crosslinked styrene butadiene rubber (SBR) particles include XSK-500 (average particle size: 0.5 μm, manufactured by JSR Corporation). Specific examples of the acrylic rubber particles include Methbrene W300A (average particle size 0.1 μm) and W450A (average particle size 0.2 μm) (manufactured by Mitsubishi Rayon Co., Ltd.).
 ゴム粒子の平均粒径は、好ましくは0.005~1μmの範囲であり、より好ましくは0.2~0.6μmの範囲である。本発明で使用されるゴム粒子の平均粒径は、動的光散乱法を用いて測定することができる。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、濃厚系粒径アナライザー(FPAR-1000;大塚電子(株)製)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。 The average particle diameter of the rubber particles is preferably in the range of 0.005 to 1 μm, more preferably in the range of 0.2 to 0.6 μm. The average particle diameter of the rubber particles used in the present invention can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and a particle size distribution of rubber particles is created on a mass basis using a concentrated particle size analyzer (FPAR-1000; manufactured by Otsuka Electronics Co., Ltd.). And it can measure by making the median diameter into an average particle diameter.
 ゴム粒子の含有量は、樹脂組成物中の不揮発成分100質量%に対し、好ましくは1~10質量%であり、より好ましくは2~5質量%である。 The content of the rubber particles is preferably 1 to 10% by mass, more preferably 2 to 5% by mass with respect to 100% by mass of the nonvolatile component in the resin composition.
 <(G)難燃剤>
 本発明の樹脂組成物は、更に(G)難燃剤を含有させることにより、難燃性を付与することができる。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤の具体例としては、三光(株)製のHCA、HCA-HQ、HCA-NQ等のフェナントレン型リン化合物、昭和高分子(株)製のHFB-2006M等のリン含有ベンゾオキサジン化合物、味の素ファインテクノ(株)製のレオフォス30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、TIBP、北興化学工業(株)製のTPPO、PPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX305、TX0712等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂、ジャパンエポキシレジン(株)製のYL7613等のリン含有エポキシ樹脂等が挙げられる。有機系窒素含有リン化合物の具体例としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルアミド化合物、大塚化学(株)社製のSPB100、SPE100、(株)伏見製薬所製FP-series等のホスファゼン化合物等が挙げられる。金属水酸化物の具体例としては、宇部マテリアルズ(株)製のUD65、UD650、UD653等の水酸化マグネシウム、巴工業(株)社製のB-30、B-325、B-315、B-308、B-303、UFH-20等の水酸化アルミニウム等が挙げられる。
<(G) Flame retardant>
The resin composition of the present invention can impart flame retardancy by further containing (G) a flame retardant. Examples of the flame retardant include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide. Specific examples of organic phosphorus flame retardants include phenanthrene-type phosphorus compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., and phosphorus-containing benzoxazines such as HFB-2006M manufactured by Showa Polymer Co., Ltd. Compound, Leophos 30, 50, 65, 90, 110, Ajinomoto Fine Techno Co., Ltd., TPP, RPD, BAPP, CPD, TCP, TXP, TBP, TOP, KP140, TIBP, TPPO manufactured by Hokuko Chemical Industries, Ltd. , PPQ, phosphoric acid ester compounds such as OP930 manufactured by Clariant Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd., phosphorus-containing epoxy resins such as FX289, FX305, TX0712 manufactured by Toto Kasei Co., Ltd., Toto Kasei Co., Ltd. ) Phosphorus-containing phenoxy resins such as ERF001 manufactured by Japan, and phosphorus such as YL7613 manufactured by Japan Epoxy Resin Co., Ltd. Yes epoxy resins. Specific examples of organic nitrogen-containing phosphorus compounds include phosphate ester amide compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and Fushimi Pharmaceutical Co., Ltd. Examples thereof include phosphazene compounds such as FP-series. Specific examples of the metal hydroxide include magnesium hydroxide such as UD65, UD650 and UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315 and B manufactured by Sakai Kogyo Co., Ltd. And aluminum hydroxide such as −308, B-303, and UFH-20.
 <他の成分>
 本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、必要に応じて他の成分を配合することができる。他の成分としては、例えば、ビニルベンジル化合物、アクリル化合物、マレイミド化合物、ブロックイソシアネート化合物のような熱硬化性樹脂、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シラン系カップリング剤等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。
<Other ingredients>
In the resin composition of the present invention, other components can be blended as necessary within a range not inhibiting the effects of the present invention. Other components include, for example, thermosetting resins such as vinyl benzyl compounds, acrylic compounds, maleimide compounds, and blocked isocyanate compounds, organic fillers such as silicon powder, nylon powder, and fluorine powder, and thickeners such as olben and benton. Agents, silicone-based, fluorine-based, polymer-based antifoaming or leveling agents, imidazole-based, thiazole-based, triazole-based, silane-based coupling agents, etc., phthalocyanine blue, phthalocyanine green, iodin Examples thereof include colorants such as green, disazo yellow, and carbon black.
 本発明の樹脂組成物の調製方法は、特に限定されるものではなく、例えば、配合成分を、必要により溶媒等を添加し、回転ミキサーなどを用いて混合する方法などが挙げられる。 The method for preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method in which the components are added with a solvent or the like as necessary and mixed using a rotary mixer or the like.
 本発明の樹脂組成物の用途は、特に限定されないが、接着フィルム、プリプレグ等のシート状積層材料、回路基板(積層板、多層プリント配線板等)、ソルダーレジスト、アンダーフィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が必要とされる用途の広範囲に使用できる。なかでも、多層プリント配線板の製造において、絶縁層を形成するための樹脂組成物として好適に使用することができ、メッキにより導体層を形成するための樹脂組成物としてより好適に使用することが出来る。本発明の樹脂組成物は、ワニス状態で回路基板に塗布して絶縁層を形成することもできるが、工業的には一般に、接着フィルム、プリプレグ等のシート状積層材料の形態で用いるのが好ましい。樹脂組成物の軟化点は、シート状積層材料のラミネート性の観点から40~150℃が好ましい。 The use of the resin composition of the present invention is not particularly limited, but sheet-like laminated materials such as adhesive films and prepregs, circuit boards (laminated boards, multilayer printed wiring boards, etc.), solder resists, underfill materials, die bonding materials, It can be used in a wide range of applications where a resin composition is required, such as a semiconductor sealing material, hole filling resin, and component filling resin. Especially, in manufacture of a multilayer printed wiring board, it can be used suitably as a resin composition for forming an insulating layer, and can be used more suitably as a resin composition for forming a conductor layer by plating. I can do it. The resin composition of the present invention can be applied to a circuit board in a varnish state to form an insulating layer, but in general, it is preferably used in the form of a sheet-like laminated material such as an adhesive film or a prepreg. . The softening point of the resin composition is preferably 40 to 150 ° C. from the viewpoint of the laminating property of the sheet-like laminated material.
 <接着フィルム>
 本発明の接着フィルムは、当業者に公知の方法、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、この樹脂ワニスを、ダイコーターなどを用いて、支持体に塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させることにより製造することができる。
<Adhesive film>
The adhesive film of the present invention is prepared by a method known to those skilled in the art, for example, by preparing a resin varnish in which a resin composition is dissolved in an organic solvent, and applying the resin varnish to a support using a die coater or the like. It can be produced by drying the organic solvent by heating or blowing hot air to form the resin composition layer.
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は2種以上を組みわせて用いてもよい。 Examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol. , Aromatic hydrocarbons such as toluene and xylene, amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Two or more organic solvents may be used in combination.
 乾燥条件は特に限定されないが、樹脂組成物層への有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。ワニス中の有機溶剤量、有機溶剤の沸点によっても異なるが、例えば30~60質量%の有機溶剤を含むワニスを50~150℃で3~10分程度乾燥させることにより、樹脂組成物が支持体上に層形成された接着フィルムを形成することができる。 Drying conditions are not particularly limited, but drying is performed so that the content of the organic solvent in the resin composition layer is 10% by mass or less, preferably 5% by mass or less. Depending on the amount of organic solvent in the varnish and the boiling point of the organic solvent, for example, a varnish containing 30 to 60% by mass of an organic solvent is dried at 50 to 150 ° C. for about 3 to 10 minutes, whereby the resin composition is supported. An adhesive film having a layer formed thereon can be formed.
 接着フィルムにおいて形成される樹脂組成物層の厚さは、導体層の厚さ以上とするのが好ましい。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層は10~100μmの厚さを有するのが好ましく、20~80μmの厚さを有するのがより好ましい。 The thickness of the resin composition layer formed in the adhesive film is preferably equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the resin composition layer preferably has a thickness of 10 to 100 μm, more preferably 20 to 80 μm.
 支持体としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィンのフィルム、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステルのフィルム、ポリカーボネートフィルム、ポリイミドフィルムなどの各種プラスチックフィルムが挙げられる。また離型紙や銅箔、アルミニウム箔等の金属箔などを使用してもよい。支持体及び後述する保護フィルムには、マッド処理、コロナ処理等の表面処理が施してあってもよい。また、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤で離型処理が施してあってもよい。 Examples of the support include polyolefin films such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester films such as polyethylene naphthalate, polycarbonate films, and polyimide films. Various plastic films are listed. Moreover, you may use release foil, metal foil, such as copper foil and aluminum foil. The support and a protective film described later may be subjected to surface treatment such as mud treatment or corona treatment. The release treatment may be performed with a release agent such as a silicone resin release agent, an alkyd resin release agent, or a fluororesin release agent.
 支持体の厚さは特に限定されないが、10~150μmが好ましく、25~50μmがより好ましい。 The thickness of the support is not particularly limited, but is preferably 10 to 150 μm, more preferably 25 to 50 μm.
 樹脂組成物層の支持体が密着していない面には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚みは、特に限定されるものではないが、例えば、1~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを防止することができる。接着フィルムは、ロール状に巻きとって貯蔵することもできる。 A protective film according to the support can be further laminated on the surface of the resin composition layer on which the support is not in close contact. The thickness of the protective film is not particularly limited, but is, for example, 1 to 40 μm. By laminating the protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches. The adhesive film can also be stored in a roll.
 <接着フィルムを用いた多層プリント配線板>
 次に、上記のようにして製造した接着フィルムを用いて多層プリント配線板を製造する方法の一例を説明する。
<Multilayer printed wiring board using adhesive film>
Next, an example of a method for producing a multilayer printed wiring board using the adhesive film produced as described above will be described.
 まず、接着フィルムを、真空ラミネーターを用いて回路基板の片面又は両面にラミネートする。回路基板に用いられる基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層とを交互に積層してなる多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっているものも、ここでいう回路基板に含まれる。なお導体層表面には、黒化処理、銅エッチング等により予め粗化処理が施されていてもよい。 First, the adhesive film is laminated on one or both sides of the circuit board using a vacuum laminator. Examples of the substrate used for the circuit substrate include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, and the like. In addition, a circuit board means here that the conductor layer (circuit) patterned was formed in the one or both surfaces of the above boards. Also, in a multilayer printed wiring board in which conductor layers and insulating layers are alternately laminated, one of the outermost layers of the multilayer printed wiring board is a conductor layer (circuit) in which one or both sides are patterned. It is included in the circuit board. The surface of the conductor layer may be previously roughened by blackening, copper etching, or the like.
 上記ラミネートにおいて、接着フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、必要に応じて接着フィルム及び回路基板をプレヒートし、接着フィルムを加圧及び加熱しながら回路基板に圧着する。本発明の接着フィルムにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。ラミネートの条件は、特に限定されるものではないが、例えば、圧着温度(ラミネート温度)を好ましくは70~140℃、圧着圧力を好ましくは1~11kgf/cm(9.8×10~107.9×10N/m)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法は、バッチ式であってもロールでの連続式であってもよい。真空ラミネートは、市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製バキュームアップリケーター、(株)名機製作所製真空加圧式ラミネーター、(株)日立インダストリイズ製ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。 In the above laminate, when the adhesive film has a protective film, after removing the protective film, the adhesive film and the circuit board are preheated as necessary, and the adhesive film is pressed and heated to the circuit board. Crimp. In the adhesive film of the present invention, a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is preferably used. The laminating conditions are not particularly limited. For example, the pressure bonding temperature (laminating temperature) is preferably 70 to 140 ° C., and the pressure bonding pressure is preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107 9.9 × 10 4 N / m 2 ), and lamination is preferably performed under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less. The laminating method may be a batch method or a continuous method using a roll. The vacuum lamination can be performed using a commercially available vacuum laminator. Commercially available vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like.
 また、減圧下、加熱及び加圧を行う積層工程は、一般の真空ホットプレス機を用いて行うことも可能である。例えば、加熱されたSUS板等の金属板を支持体層側からプレスすることにより行うことができる。プレス条件は、減圧度を通常1×10-2 MPa以下、好ましくは1×10-3 MPa以下の減圧下とする。加熱及び加圧は、1段階で行うことも出来るが、樹脂のしみだしを制御する観点から2段階以上に条件を分けて行うのが好ましい。例えば、1段階目のプレスを、温度が70~150℃、圧力が1~15kgf/cmの範囲、2段階目のプレスを、温度が150~200℃、圧力が1~40kgf/cmの範囲で行うのが好ましい。各段階の時間は30~120分で行うのが好ましい。市販されている真空ホットプレス機としては、例えば、MNPC-V-750-5-200(株)名機製作所製)、VH1-1603(北川精機(株)製)等が挙げられる。 Moreover, the lamination process which heats and pressurizes under reduced pressure can also be performed using a general vacuum hot press machine. For example, it can be performed by pressing a metal plate such as a heated SUS plate from the support layer side. The pressing condition is that the degree of vacuum is usually 1 × 10 −2 MPa or less, preferably 1 × 10 −3 MPa or less. Although heating and pressurization can be carried out in one stage, it is preferable to carry out the conditions separately in two or more stages from the viewpoint of controlling the oozing of the resin. For example, the first stage press has a temperature of 70 to 150 ° C. and the pressure is in a range of 1 to 15 kgf / cm 2 , and the second stage press has a temperature of 150 to 200 ° C. and a pressure of 1 to 40 kgf / cm 2 It is preferable to carry out within a range. The time for each stage is preferably 30 to 120 minutes. Examples of commercially available vacuum hot presses include MNPC-V-750-5-200 (manufactured by Meiki Seisakusho), VH1-1603 (manufactured by Kitagawa Seiki Co., Ltd.), and the like.
 接着フィルムを回路基板にラミネートした後、室温付近に冷却してから、支持体を剥離する場合は剥離し、熱硬化することにより回路基板に絶縁層を形成することができる。熱硬化の条件は、樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよいが、好ましくは150℃~220℃で20分~180分、より好ましくは160℃~210℃で30~120分の範囲で選択される。 After laminating the adhesive film on the circuit board, it is cooled to around room temperature, and then the support is peeled off, and the insulating layer can be formed on the circuit board by peeling and thermosetting. The thermosetting conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but are preferably 150 to 220 ° C. for 20 to 180 minutes, more preferably 160 to 210 ° C. It is selected in the range of 30 to 120 minutes at ° C.
 絶縁層を形成した後、硬化前に支持体を剥離しなかった場合は、ここで剥離する。次いで必要により、回路基板上に形成された絶縁層に穴開けを行ってビアホール、スルーホールを形成する。穴あけは、例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけが最も一般的な方法である。 After forming the insulating layer, if the support is not peeled before curing, it is peeled off here. Next, if necessary, holes are formed in the insulating layer formed on the circuit board to form via holes and through holes. Drilling can be performed, for example, by a known method such as drilling, laser, or plasma, or by combining these methods as necessary. However, drilling by a laser such as a carbon dioxide gas laser or a YAG laser is the most common method. is there.
 次いで、乾式メッキ又は湿式メッキにより絶縁層上に導体層を形成する。乾式メッキとしては、蒸着、スパッタリング、イオンプレーティング等の公知の方法を使用することができる。湿式メッキの場合は、絶縁層表面を、膨潤液による膨潤処理、酸化剤による粗化処理及び中和液による中和処理をこの順に行うことによって凸凹のアンカーを形成する。膨潤液による膨潤処理は、絶縁層を50~80℃で5~20分間膨潤液に浸漬させることで行われる。膨潤液としてはアルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液であり、該アルカリ溶液としては、例えば、水酸化ナトリウム溶液、水酸化カリウム溶液等が挙げられる。市販されている膨潤液としては、例えば、アトテックジャパン(株)製のスウェリング・ディップ・セキュリガンスP(Swelling Dip Securiganth P)、スウェリング・ディップ・セキュリガンスSBU(Swelling Dip Securiganth SBU)等を挙げることができる。酸化剤による粗化処理は、絶縁層を60℃~80℃で10分~30分間酸化剤溶液に浸漬させることで行われる。酸化剤としては、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等を挙げることができる。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5~10重量%とするのが好ましい。市販されている酸化剤としては、例えば、アトテックジャパン(株)製のコンセントレート・コンパクト CP、ドージングソリューション セキュリガンスP等のアルカリ性過マンガン酸溶液が挙げられる。中和液による中和処理は、30~50℃で3~10分間中和液に浸漬させることで行われる。中和液としては、酸性の水溶液が好ましく、市販品としては、アトテックジャパン(株)製のリダクションソリューシン・セキュリガントPが挙げられる。 Next, a conductor layer is formed on the insulating layer by dry plating or wet plating. As the dry plating, a known method such as vapor deposition, sputtering, or ion plating can be used. In the case of wet plating, the surface of the insulating layer is subjected to a swelling treatment with a swelling solution, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing solution in this order to form an uneven anchor. The swelling treatment with the swelling liquid is performed by immersing the insulating layer in the swelling liquid at 50 to 80 ° C. for 5 to 20 minutes. Examples of the swelling liquid include an alkaline solution and a surfactant solution, and an alkaline solution is preferable. Examples of the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution. Examples of commercially available swelling liquids include Swelling Dip Securiganth P (Swelling Dip Securiganth P), Swelling Dip Securiganth SBU (Swelling Dip Securiganth SBU) manufactured by Atotech Japan Co., Ltd. be able to. The roughening treatment with an oxidizing agent is performed by immersing the insulating layer in an oxidizing agent solution at 60 to 80 ° C. for 10 to 30 minutes. Examples of the oxidizing agent include alkaline permanganate solution in which potassium permanganate and sodium permanganate are dissolved in an aqueous solution of sodium hydroxide, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. it can. The concentration of permanganate in the alkaline permanganate solution is preferably 5 to 10% by weight. Examples of commercially available oxidizing agents include alkaline permanganate solutions such as Concentrate Compact CP and Dosing Solution Securigans P manufactured by Atotech Japan Co., Ltd. The neutralization treatment with the neutralizing solution is performed by immersing in the neutralizing solution at 30 to 50 ° C. for 3 to 10 minutes. As the neutralizing solution, an acidic aqueous solution is preferable, and as a commercially available product, Reduction Solution / Secligant P manufactured by Atotech Japan Co., Ltd. may be mentioned.
 次いで、無電解メッキと電解メッキとを組み合わせて導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、当業者に公知のサブトラクティブ法、セミアディティブ法などを用いることができる。 Next, a conductive layer is formed by combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. As a subsequent pattern formation method, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.
 <プリプレグ>
 本発明のプリプレグは、本発明の樹脂組成物をシート状補強基材にホットメルト法又はソルベント法により含浸させ、加熱して半硬化させることにより製造することができる。すなわち、本発明の樹脂組成物がシート状補強基材に含浸されたプリプレグとすることができる。シート状補強基材としては、例えば、ガラスクロスやアラミド繊維等のプリプレグ用繊維として常用されている繊維からなるものを用いることができる。
<Prepreg>
The prepreg of the present invention can be produced by impregnating the resin composition of the present invention into a sheet-like reinforcing base material by a hot melt method or a solvent method, and heating and semi-curing it. That is, it can be set as the prepreg which the resin composition of this invention impregnated the sheet-like reinforcement base material. As a sheet-like reinforcement base material, what consists of a fiber currently used as prepreg fibers, such as glass cloth and an aramid fiber, can be used, for example.
 ホットメルト法は、樹脂を、有機溶剤に溶解することなく、該樹脂との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする、あるいは樹脂を、有機溶剤に溶解することなく、ダイコーターによりシート状補強基材に直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、接着フィルムと同様にして樹脂を有機溶剤に溶解して樹脂ワニスを調製し、このワニスにシート状補強基材を浸漬し、樹脂ワニスをシート状補強基材に含浸させ、その後乾燥させる方法である。 In the hot melt method, the resin is once coated on a coated paper having good releasability from the resin without dissolving it in an organic solvent, and then laminated on a sheet-like reinforcing substrate, or the resin is used in an organic solvent. This is a method for producing a prepreg by directly coating a sheet-like reinforcing substrate with a die coater without dissolving it. In the solvent method, a resin varnish is prepared by dissolving a resin in an organic solvent in the same manner as the adhesive film, and a sheet-like reinforcing base material is immersed in the varnish, and then the resin-like varnish is impregnated into the sheet-like reinforcing base material. It is a method of drying.
 <プリプレグを用いた多層プリント配線板>
 次に、上記のようにして製造したプリプレグを用いて多層プリント配線板を製造する方法の一例を説明する。回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートで挟み、加圧・加熱条件下で真空プレス積層する。加圧・加熱条件は、好ましくは、圧力が5~40kgf/cm(49×10~392×10N/m)、温度が120~200℃で20~100分である。また接着フィルムと同様に、プリプレグを真空ラミネート法により回路基板にラミネートした後、加熱硬化することも可能である。その後、上記で記載した方法と同様にして、硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成して多層プリント配線板を製造することができる。
<Multilayer printed wiring board using prepreg>
Next, an example of a method for producing a multilayer printed wiring board using the prepreg produced as described above will be described. One or several prepregs of the present invention are stacked on a circuit board, sandwiched between metal plates through a release film, and vacuum press laminated under pressure and heating conditions. The pressurizing and heating conditions are preferably a pressure of 5 to 40 kgf / cm 2 (49 × 10 4 to 392 × 10 4 N / m 2 ) and a temperature of 120 to 200 ° C. for 20 to 100 minutes. Similarly to the adhesive film, the prepreg can be laminated on a circuit board by a vacuum laminating method and then cured by heating. Thereafter, in the same manner as described above, the surface of the cured prepreg is roughened, and then a conductor layer is formed by plating to produce a multilayer printed wiring board.
 <半導体装置>
 本発明の多層プリント配線板を用いることで半導体装置を製造することができる。本発明の多層プリント配線板の導通箇所に、半導体チップを実装することにより半導体装置を製造することができる。「導通箇所」とは、「多層プリント配線板における電気信号を伝える箇所」であって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体チップは半導体を材料とする電気回路素子であれば特に限定されない。
<Semiconductor device>
A semiconductor device can be manufactured by using the multilayer printed wiring board of the present invention. A semiconductor device can be manufactured by mounting a semiconductor chip in a conductive portion of the multilayer printed wiring board of the present invention. The “conduction location” is a “location where an electrical signal is transmitted in a multilayer printed wiring board”, and the location may be a surface or an embedded location. The semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
 本発明の半導体装置を製造する際の半導体チップの実装方法は、半導体チップが有効に機能しさえすれば、特に限定されないが、具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、非導電性フィルム(NCF)による実装方法、などが挙げられる。 The semiconductor chip mounting method for manufacturing the semiconductor device of the present invention is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, and no bumps. Examples include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
 「バンプなしビルドアップ層(BBUL)による実装方法」とは、「半導体チップを多層プリント配線板の凹部に直接埋め込み、半導体チップとプリント配線板上の配線とを接続させる実装方法」のことであり、更に、以下のBBUL方法1)、BBUL方法2)の実装方法に大別される。
BBUL方法1)アンダーフィル剤を用いて多層プリント配線板の凹部に半導体チップを実装する実装方法
BBUL方法2)接着フィルム又はプリプレグを用いて多層プリント配線板の凹部に半導体チップを実装する実装方法
“Mounting method by buildup layer without bump (BBUL)” means “a mounting method in which a semiconductor chip is directly embedded in a recess of a multilayer printed wiring board and the semiconductor chip and wiring on the printed wiring board are connected”. Furthermore, the method is roughly divided into the following BBUL method 1) and BBUL method 2).
BBUL method 1) Mounting method in which semiconductor chip is mounted in recess of multilayer printed wiring board using underfill agent BBUL method 2) Mounting method in which semiconductor chip is mounted in recess of multilayer printed wiring board using adhesive film or prepreg
 BBUL方法1)は、具体的には以下の工程を含む。
工程1)多層プリント配線板の両面から導体層を除去したものを設け、レーザー、機械ドリルによって貫通孔を形成する。
工程2)多層プリント配線板の片面に粘着テープを貼り付けて、貫通孔の中に半導体チップの底面を粘着テープ上に固定するように配置する。このときの半導体チップは貫通孔の高さより低くすることが好ましい。
工程3)貫通孔と半導体チップの隙間にアンダーフィル剤を注入、充填することによって、半導体チップを貫通孔に固定する。
工程4)その後粘着テープを剥がして、半導体チップの底面を露出させる。
工程5)半導体チップの底面側に本発明の接着フィルム又はプリプレグをラミネートし、半導体チップを被覆する。
工程6)接着フィルム又はプリプレグを硬化後、レーザーによって穴あけし、半導体チップの底面にあるボンディングパットを露出させ、上記で示した粗化処理、無電解メッキ、電解メッキを行うことで、配線と接続する。必要に応じて更に接着フィルム又はプリプレグを積層してもよい。
The BBUL method 1) specifically includes the following steps.
Step 1) A multi-layer printed wiring board with a conductor layer removed from both sides is provided, and a through hole is formed by a laser or a mechanical drill.
Step 2) Adhesive tape is attached to one side of the multilayer printed wiring board, and the bottom surface of the semiconductor chip is disposed in the through hole so as to be fixed on the adhesive tape. The semiconductor chip at this time is preferably lower than the height of the through hole.
Step 3) The semiconductor chip is fixed to the through hole by injecting and filling an underfill agent into the gap between the through hole and the semiconductor chip.
Step 4) The adhesive tape is then peeled off to expose the bottom surface of the semiconductor chip.
Step 5) The adhesive film or prepreg of the present invention is laminated on the bottom surface side of the semiconductor chip to cover the semiconductor chip.
Step 6) After curing the adhesive film or prepreg, drill with a laser to expose the bonding pad on the bottom surface of the semiconductor chip, and connect with wiring by performing the roughening treatment, electroless plating, and electrolytic plating described above To do. You may laminate | stack an adhesive film or a prepreg further as needed.
 BBUL方法2)は、具体的には以下の工程を含む。
工程1)多層プリント配線板の両面の導体層上に、フォトレジスト膜を形成し、フォトリソグラフィー工法でフォトレジスト膜の片面のみに開口部を形成する。
工程2)開口部に露出した導体層をエッチング液により除去し、絶縁層を露出させ、その後両面のレジスト膜を除去する。
工程3)レーザーやドリルを用いて、露出した絶縁層を全て除去して穴あけを行い、凹部を形成する。レーザーのエネルギーは、銅のレーザー吸収率を低くし、絶縁層のレーザー吸収率を高くするようにエネルギーが調整できるレーザーが好ましく、炭酸ガスレーザーがより好ましい。このようなレーザーを用いることで、レーザーは導体層の開口部の対面の導体層を貫通することがなく、絶縁層のみを除去することが可能となる。
工程4)半導体チップの底面を開口部側に向けて凹部に配置し、本発明の接着フィルム又はプリプレグを開口部の側から、ラミネートし、半導体チップを被覆して、半導体チップと凹部の隙間を埋め込む。このときの半導体チップは凹部の高さより低くすることが好ましい。
工程5)接着フィルム又はプリプレグを硬化後、レーザーによって穴あけし、半導体チップの底面のボンディングパットを露出させる。
工程6)上記で示した粗化処理、無電解メッキ、電解メッキを行うことで、配線を接続し、必要に応じて更に接着フィルム又はプリプレグを積層する。
The BBUL method 2) specifically includes the following steps.
Step 1) A photoresist film is formed on the conductor layers on both sides of the multilayer printed wiring board, and an opening is formed only on one side of the photoresist film by a photolithography method.
Step 2) The conductor layer exposed in the opening is removed with an etching solution to expose the insulating layer, and then the resist films on both sides are removed.
Step 3) Using a laser or a drill, all of the exposed insulating layer is removed and drilled to form a recess. The laser energy is preferably a laser whose energy can be adjusted so as to lower the laser absorption rate of copper and increase the laser absorption rate of the insulating layer, and more preferably a carbon dioxide laser. By using such a laser, the laser does not penetrate through the conductor layer facing the opening of the conductor layer, and it is possible to remove only the insulating layer.
Step 4) The bottom surface of the semiconductor chip is placed in the recess with the opening side facing, the adhesive film or prepreg of the present invention is laminated from the opening side, the semiconductor chip is covered, and the gap between the semiconductor chip and the recess is formed. Embed. The semiconductor chip at this time is preferably lower than the height of the recess.
Step 5) After the adhesive film or prepreg is cured, holes are formed with a laser to expose the bonding pad on the bottom surface of the semiconductor chip.
Step 6) By performing the roughening treatment, electroless plating, and electrolytic plating described above, the wiring is connected, and if necessary, an adhesive film or a prepreg is further laminated.
 半導体チップの実装方法の中でも、半導体装置の小型化、伝送損失の軽減という観点や、半田を使用しないため半導体チップにその熱履歴が掛からず、さらに半田と樹脂とのひずみを将来的に生じ得ないという観点から、バンプなしビルドアップ層(BBUL)による実装方法が好ましく、BBUL方法1)、BBUL方法2)がより好ましく、BBUL方法2)が更に好ましい。 Among the semiconductor chip mounting methods, the semiconductor device is miniaturized and transmission loss is reduced, and since no solder is used, the semiconductor chip does not have its thermal history, and solder and resin distortion may occur in the future. In view of the absence, a mounting method using a bumpless build-up layer (BBUL) is preferable, the BBUL method 1) and the BBUL method 2) are more preferable, and the BBUL method 2) is more preferable.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
 <測定方法・評価方法>
 まずは各種測定方法・評価方法について説明する。
<Measurement method / Evaluation method>
First, various measurement methods and evaluation methods will be described.
 <ピール強度、算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)測定用サンプルの調製>
(1)内層回路基板の下地処理
 内層回路を形成したガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.3mm、松下電工(株)製R5715ES)の両面をメック(株)製CZ8100にて1umエッチングして銅表面の粗化処理をおこなった。
<Preparation of Sample for Measuring Peel Strength, Arithmetic Average Roughness (Ra Value), Root Mean Square Roughness (Rq Value)>
(1) Underlayer treatment of inner layer circuit board Both sides of a glass cloth base epoxy resin double-sided copper-clad laminate (copper foil thickness 18 μm, substrate thickness 0.3 mm, Matsushita Electric Works R5715ES) on which an inner layer circuit is formed The copper surface was roughened by etching 1 μm with CZ8100 manufactured by MEC Co., Ltd.
(2)接着フィルムのラミネート
 実施例及び比較例で作成した接着フィルムを、バッチ式真空加圧ラミネーターMVLP-500(名機(株)製商品名)を用いて、内層回路基板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。
(2) Lamination of adhesive film The adhesive film created in Examples and Comparative Examples was laminated on both surfaces of the inner layer circuit board using a batch type vacuum pressure laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). . Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds.
(3)樹脂組成物の硬化
 ラミネートされた接着フィルムからPETフィルムを剥離した後に、100℃、30分、さらに180℃、30分の硬化条件で樹脂組成物を硬化した。実施例10については同条件で熱硬化させた後にPETフィルムを剥離して、絶縁層を形成した。
(3) Curing of resin composition After peeling the PET film from the laminated adhesive film, the resin composition was cured under curing conditions of 100 ° C for 30 minutes, and further at 180 ° C for 30 minutes. About Example 10, after making it thermoset on the same conditions, the PET film was peeled and the insulating layer was formed.
(4)粗化処理
 絶縁層を形成した内層回路基板を、膨潤液である、アトテックジャパン(株)のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガントP(グリコールエーテル類、水酸化ナトリウムの水溶液)に60℃で5分間、実施例7については60℃で10分間、浸漬し、次に粗化液として、アトテックジャパン(株)のコンセントレート・コンパクトP(KMnO:60g/L、NaOH:40g/Lの水溶液)に80℃で15分間、実施例10については80℃で20分間、浸漬し、最後に中和液として、アトテックジャパン(株)のリダクションショリューシン・セキュリガントP(グリオキザール、硫酸の水溶液)に40℃で5分間浸漬した。80℃で30分乾燥後、この粗化処理後の絶縁層表面について、算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)の測定を行った。
(4) Roughening treatment The inner layer circuit board on which the insulating layer is formed is a swelling liquid, diethylene glycol monobutyl ether-containing swelling dip securigant P (glycol ethers, aqueous solution of sodium hydroxide) of Atotech Japan Co., Ltd. Dip at 60 ° C. for 5 minutes, and for Example 7 at 60 ° C. for 10 minutes. Next, as a roughening solution, Atotech Japan Co., Ltd. Concentrate Compact P (KMnO 4 : 60 g / L, NaOH: 40 g / L aqueous solution) at 80 ° C. for 15 minutes, and in Example 10 at 80 ° C. for 20 minutes. Finally, as a neutralizing solution, Atotech Japan Co., Ltd. Reduction Sholyshin Securigant P (glyoxal, sulfuric acid) For 5 minutes at 40 ° C. After drying at 80 ° C. for 30 minutes, arithmetic surface roughness (Ra value) and root mean square roughness (Rq value) were measured on the surface of the insulating layer after the roughening treatment.
(5)セミアディティブ工法によるメッキ
 絶縁層表面に回路を形成するために、内層回路基板を、PdClを含む無電解メッキ用溶液に40℃で5分間浸漬し、次に無電解銅メッキ液に25℃で20分間浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成の後に、硫酸銅電解メッキを行い、35±5μmの厚さで導体層を形成した。次に、アニール処理を200℃にて60分間行った。この回路基板についてメッキ導体層の引き剥がし強さ(ピール強度)の測定を行った。
(5) Plating by semi-additive method In order to form a circuit on the surface of the insulating layer, the inner layer circuit board is immersed in an electroless plating solution containing PdCl 2 at 40 ° C. for 5 minutes, and then in an electroless copper plating solution. It was immersed for 20 minutes at 25 ° C. After annealing for 30 minutes at 150 ° C., an etching resist was formed, and after pattern formation by etching, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 35 ± 5 μm. Next, annealing was performed at 200 ° C. for 60 minutes. The circuit board was measured for peel strength (peel strength) of the plated conductor layer.
 <メッキ導体層の引き剥がし強さ(ピール強度)の測定>
 回路基板の導体層に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具(株式会社ティー・エス・イー、オートコム型試験機 AC-50C-SL)で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(kgf/cm)を測定した。
<Measurement of peel strength (peel strength) of plated conductor layer>
Make a notch of 10mm width and 100mm length in the conductor layer of the circuit board, peel off one end, and hold it with a gripping tool (TSE Co., Ltd., Autocom type testing machine AC-50C-SL) The load (kgf / cm) when peeling 35 mm in the vertical direction at a speed of 50 mm / min at room temperature was measured.
 <粗化後の算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)の測定>
 非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値によりRa値、Rq値を求めた。そして、それぞれ無作為に10点の平均値を求めることにより測定した。
<Measurement of Roughness Arithmetic Average Roughness (Ra Value) and Root Mean Square Roughness (Rq Value)>
Using a non-contact type surface roughness meter (WYKO NT3300 manufactured by BEIKO INSTRUMENTS, Inc.), Ra value and Rq value were obtained from numerical values obtained with a measurement range of 121 μm × 92 μm using a VSI contact mode and a 50 × lens. And it measured by calculating | requiring the average value of 10 points | pieces at random, respectively.
 <PCT耐性の評価>
 実施例及び比較例で作製した接着フィルムを、バッチ式真空加圧ラミネーターMVLP-500(名機(株)製商品名)を用いて、内層回路基板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。ラミネートした接着フィルムからPETフィルムを剥離した後に、190℃、1時間の硬化条件にて樹脂組成物を硬化し絶縁層を形成した。さらに高度加速寿命試験装置(ETAC製PM422)を使用し、121.5℃、100%RHの環境下で100時間放置するPCT試験(Pressure Cooker Test)を実施した。その後室温に戻し、絶縁層と下地銅との界面に膨れが生じているか確認した。また、絶縁層表面にクロスカット(幅1mmの格子状の切込み)を入れ、絶縁層に欠けがあるか確認した。絶縁層及び下地銅界面に膨れが無く、クロスカット後に欠けが生じていない場合を「○」とし、絶縁層及び下地銅界面に膨れが無く、クロスカット後に欠けが生じている場合を「△」とし、絶縁層及び下地銅界面に膨れがあり、クロスカット後に欠けが生じている場合を「×」とした。
<Evaluation of PCT resistance>
The adhesive films prepared in Examples and Comparative Examples were laminated on both surfaces of the inner layer circuit board using a batch type vacuum pressure laminator MVLP-500 (trade name, manufactured by Meiki Co., Ltd.). Lamination was performed by reducing the pressure for 30 seconds to a pressure of 13 hPa or less, and then pressing at 100 ° C. and a pressure of 0.74 MPa for 30 seconds. After peeling the PET film from the laminated adhesive film, the resin composition was cured under curing conditions of 190 ° C. for 1 hour to form an insulating layer. Further, a PCT test (Pressure Cooker Test) was performed using an advanced accelerated life test apparatus (PM422 manufactured by ETAC), which was left in an environment of 121.5 ° C. and 100% RH for 100 hours. Thereafter, the temperature was returned to room temperature, and it was confirmed whether or not the interface between the insulating layer and the base copper was swollen. Further, a cross cut (a grid-like cut having a width of 1 mm) was made on the surface of the insulating layer, and it was confirmed whether the insulating layer was chipped. The case where there is no swelling at the interface between the insulating layer and the base copper and no chipping occurs after the crosscut is indicated as “◯”, and the case where there is no expansion at the interface between the insulating layer and the base copper and there is a chipping after the crosscut is indicated by “△”. In the case where there is a swelling at the interface between the insulating layer and the base copper, and the chipping occurs after cross-cutting, “x” is given.
 <単位面積当たりのカーボン量の測定>
 表面処理された無機充填材の3gを試料として用いた。試料と30gのMEK(メチルエチルケトン)とを遠心分離機の遠心管に入れ、撹拌し固形分を懸濁させて、500Wの超音波を5分間照射した。その後、遠心分離により固液分離し、上澄液を除去した。さらに、30gのMEKを足し、撹拌して固形分を懸濁させて、500Wの超音波を5分間照射した。その後、遠心分離により固液分離し、上澄液を除去した。固形分を150℃にて30分間乾燥させた。この乾燥試料0.3gを測定用坩堝に正確に量りとり、さらに測定用坩堝に助燃剤(タングステン3.0g,スズ0.3g)を入れた。測定用坩堝をカーボン分析計にセットし、カーボン量を測定した。カーボン分析計は、堀場製作所製EMIA-320Vを使用した。測定したカーボン量を無機充填材の比表面積で割った値を単位面積当たりのカーボン量とした。
<Measurement of carbon amount per unit area>
3 g of the surface-treated inorganic filler was used as a sample. The sample and 30 g of MEK (methyl ethyl ketone) were placed in a centrifuge tube, stirred to suspend the solid content, and irradiated with 500 W ultrasonic waves for 5 minutes. Thereafter, solid-liquid separation was performed by centrifugation, and the supernatant was removed. Furthermore, 30 g of MEK was added, the solid content was suspended by stirring, and 500 W ultrasonic waves were irradiated for 5 minutes. Thereafter, solid-liquid separation was performed by centrifugation, and the supernatant was removed. The solid content was dried at 150 ° C. for 30 minutes. 0.3 g of this dried sample was accurately weighed in a measuring crucible, and a combustion aid (3.0 g of tungsten, 0.3 g of tin) was further placed in the measuring crucible. The measurement crucible was set in a carbon analyzer and the amount of carbon was measured. As the carbon analyzer, EMIA-320V manufactured by HORIBA, Ltd. was used. A value obtained by dividing the measured carbon amount by the specific surface area of the inorganic filler was defined as the carbon amount per unit area.
 <製造例1>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、N-ベンジルアミノエタノール(東京化成工業(株)製、沸点280℃)0.3質量部を噴霧しながら球状シリカを10分間攪拌し、製造物1(単位面積あたりのカーボン量0.13mg/m)を作製した。
<Production Example 1>
100 parts by weight of spherical silica (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was put into a Henschel-type powder mixer, and N-benzylaminoethanol (manufactured by Tokyo Chemical Industry Co., Ltd., boiling point 280 ° C.). ) The spherical silica was stirred for 10 minutes while spraying 0.3 part by mass to produce a product 1 (carbon amount per unit area 0.13 mg / m 2 ).
 <製造例2>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、N-アニリノエタノール(東京化成工業(株)製、沸点268℃)0.3質量部を噴霧しながら球状シリカを10分間攪拌した後に、メチル/フェニル基含有アルコキシオリゴマー(信越化学工業(株)製「X-40-9227」)0.3質量部を噴霧しながら10分間攪拌し、製造物2(単位面積あたりのカーボン量0.25mg/m)を作製した。
<Production Example 2>
100 parts by weight of spherical silica (“Advertex” SC2050-SQ, average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and N-anilinoethanol (Tokyo Chemical Industry Co., Ltd., boiling point) (268 ° C.) After the spherical silica was stirred for 10 minutes while spraying 0.3 part by mass, 0.3 part by mass of a methyl / phenyl group-containing alkoxy oligomer (“X-40-9227” manufactured by Shin-Etsu Chemical Co., Ltd.) was added. It stirred for 10 minutes, spraying, and produced the product 2 (The amount of carbons per unit area 0.25 mg / m < 2 >).
 <製造例3>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、グリシドール(日本油脂(株)製「エピオールOH」)、沸点167℃)0.3質量部を噴霧しながら球状シリカを10分間攪拌した後に、フェニルトリメトキシシラン(信越化学工業(株)製「KBM-103」)0.3質量部を噴霧しながら10分間攪拌し、製造物3(単位面積あたりのカーボン量0.18mg/m)を作製した。
<Production Example 3>
100 parts by weight of spherical silica (“Advertex” SC2050-SQ, average particle size 0.5 μm) is charged into a Henschel-type powder mixer, glycidol (“Epiol OH” manufactured by NOF Corporation), boiling point The spherical silica was stirred for 10 minutes while spraying 0.3 part by mass of 167 ° C.) and then for 10 minutes while spraying 0.3 part by mass of phenyltrimethoxysilane (“KBM-103” manufactured by Shin-Etsu Chemical Co., Ltd.) Stirring to produce Product 3 (carbon amount per unit area 0.18 mg / m 2 ).
 <製造例4>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、N-ベンジルアミノエタノール(東京化成工業(株)製、沸点280℃)0.3質量部を噴霧しながら球状シリカを10分間攪拌した後に、フェニルトリメトキシシラン(信越化学工業(株)製「KBM-103」)0.3質量部を噴霧しながら10分間攪拌し、製造物4(単位面積あたりのカーボン量0.27mg/m)を作製した。
<Production Example 4>
100 parts by weight of spherical silica (“Advertex” SC2050-SQ, average particle size 0.5 μm) is charged into a Henschel-type powder mixer, and N-benzylaminoethanol (Tokyo Chemical Industry Co., Ltd., boiling point). The spherical silica was stirred for 10 minutes while spraying 0.3 parts by mass of 280 ° C.) and then for 10 minutes while spraying 0.3 parts by mass of phenyltrimethoxysilane (“KBM-103” manufactured by Shin-Etsu Chemical Co., Ltd.). Stirring to produce Product 4 (carbon amount per unit area 0.27 mg / m 2 ).
 <製造例5>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、N-ベンジルアミノエタノール(東京化成工業(株)製、沸点280℃)0.3質量部を噴霧しながら球状シリカを10分間攪拌した後に、メチル基含有アルコキシオリゴマーで(多摩化学(株)製「MTMS-A」)0.3質量部を噴霧しながら5分間攪拌し、製造物5(単位面積あたりのカーボン量0.18mg/m)を作製した。
<Production Example 5>
100 parts by weight of spherical silica (“Advertex” SC2050-SQ, average particle size 0.5 μm) is charged into a Henschel-type powder mixer, and N-benzylaminoethanol (Tokyo Chemical Industry Co., Ltd., boiling point). (280 ° C.) The spherical silica was stirred for 10 minutes while spraying 0.3 part by mass, and then 5 parts by spraying 0.3 part by mass with a methyl group-containing alkoxy oligomer (“MTMS-A” manufactured by Tama Chemical Co., Ltd.). The mixture was stirred for 5 minutes to prepare a product 5 (carbon amount per unit area 0.18 mg / m 2 ).
 <製造例6>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、イミダゾール-エポキシアダクト(三菱化学(株)製「P200」、不揮発成分30%のシクロヘキサノン溶液)0.9質量部を噴霧しながら球状シリカを10分間攪拌した後に、メチル基含有アルコキシオリゴマーである(多摩化学(株)製「MTMS-A」)0.3質量部を噴霧しながら5分間攪拌し、製造物6(単位面積あたりのカーボン量0.29mg/m)を作製した。
<Production Example 6>
100 parts by weight of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and imidazole-epoxy adduct (“P200” manufactured by Mitsubishi Chemical Corporation), After stirring spherical silica for 10 minutes while spraying 0.9 parts by mass of cyclohexanone solution (non-volatile component 30%), methyl group-containing alkoxy oligomer ("MTMS-A" manufactured by Tama Chemical Co., Ltd.) 0.3 parts by mass The product 6 (carbon amount per unit area 0.29 mg / m 2 ) was produced by stirring for 5 minutes while spraying the part.
 <製造例7>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、2,2-[{(メチル-1H-ベンゾトリアゾール-1-イル)メチル}イミノ]ビスエタノール(城北化学(株)製「TT-LYK」、不揮発成分60%のMEK溶液)0.5質量部を噴霧しながら球状シリカを10分間攪拌した後に、メチル基含有アルコキシオリゴマー(多摩化学(株)製「MTMS-A」)0.3質量部を噴霧しながら5分間攪拌し、製造物7(単位面積あたりのカーボン量0.16mg/m)を作製した。
<Production Example 7>
100 parts by weight of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and 2,2-[{(methyl-1H-benzotriazole-1 -Il) methyl} imino] bisethanol (“TT-LYK” manufactured by Johoku Chemical Co., Ltd., MEK solution containing 60% non-volatile components) was stirred for 10 minutes while spraying spherical silica for 10 minutes. A product 7 (carbon amount per unit area of 0.16 mg / m 2 ) was prepared by spraying 0.3 parts by mass of a contained alkoxy oligomer (“MTMS-A” manufactured by Tama Chemical Co., Ltd.) while spraying for 5 minutes. .
 <製造例8>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、2,2-[{(メチル-1H-ベンゾトリアゾール-1-イル)メチル}イミノ]ビスエタノール(城北化学(株)製「TT-LYK」、不揮発成分60%のMEK溶液)0.5質量部を噴霧しながら球状シリカを10分間攪拌した後に、アミノ基含有シランカップリング剤(信越化学工業(株)製「KBM-573」)0.3質量部を噴霧しながら5分間攪拌し、製造物8(単位面積あたりのカーボン量0.32mg/m)を作製した。
<Production Example 8>
100 parts by weight of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and 2,2-[{(methyl-1H-benzotriazole-1 -Il) methyl} imino] bisethanol (“TT-LYK” manufactured by Johoku Chemical Co., Ltd., MEK solution with a non-volatile component of 60%) was stirred for 10 minutes while spraying spherical silica for 10 minutes. Containing silane coupling agent (“KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd.) while stirring for 5 minutes while spraying, product 8 (carbon amount per unit area 0.32 mg / m 2 ) Was made.
 <製造例9>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、1-(2-ヒドロキシエチル)イミダゾール(日本合成工業化学(株)製、沸点120℃(4.4Pa)、不揮発成分60%のMEK溶液)0.5質量部を噴霧しながら球状シリカを10分間攪拌した後に、ジメチルジエトキシシラン(信越化学工業(株)製「KBE-22」)0.3質量部を噴霧しながら10分間攪拌し、製造物9(単位面積あたりのカーボン量0.12g/m)を作製した。
<Production Example 9>
100 parts by weight of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and 1- (2-hydroxyethyl) imidazole (Nippon Synthetic Industrial Chemical ( After the spherical silica was stirred for 10 minutes while spraying 0.5 parts by mass of a MEK solution having a boiling point of 120 ° C. (4.4 Pa) and a non-volatile component of 60%), dimethyldiethoxysilane (Shin-Etsu Chemical Co., Ltd.) The product 9 (carbon amount per unit area 0.12 g / m 2 ) was produced by stirring for 10 minutes while spraying 0.3 parts by mass of “KBE-22” manufactured by Komatsu.
 <製造例10>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、フェニルトリメトキシシラン(信越化学工業(株)製「KBM-103」、沸点218℃)0.6質量部を噴霧しながら10分間攪拌し、製造物10(単位面積あたりのカーボン量0.09mg/m)を作製した。
<Production Example 10>
100 parts by weight of spherical silica (“SC2050-SQ” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm) was charged into a Henschel-type powder mixer, and phenyltrimethoxysilane (“KBM-” manufactured by Shin-Etsu Chemical Co., Ltd.) was introduced. 103 ”, boiling point 218 ° C.) was stirred for 10 minutes while spraying 0.6 parts by mass to produce a product 10 (carbon amount 0.09 mg / m 2 per unit area).
 <製造例11>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、エポキシ基含有シランカップリング剤(信越化学工業(株)製「KBM403」、沸点290℃)0.6質量部を噴霧しながら5分間攪拌し、製造物11(単位面積あたりのカーボン量0.24mg/m)を作製した。
<Production Example 11>
100 parts by weight of spherical silica (“Advertex” SC2050-SQ, average particle size 0.5 μm) is charged into a Henschel-type powder mixer and an epoxy group-containing silane coupling agent (Shin-Etsu Chemical Co., Ltd.) The mixture was stirred for 5 minutes while spraying 0.6 parts by mass of “KBM403” (boiling point 290 ° C.) to produce a product 11 (carbon amount 0.24 mg / m 2 per unit area).
 <製造例12>
 球状シリカ((株)アドマテックス製「SC2050-SQ」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、アミノ基含有シランカップリング剤(信越化学工業(株)製「KBM903」、沸点215℃)0.6質量部を噴霧しながら5分間攪拌し、製造物12(単位面積あたりのカーボン量0.14mg/m)を作製した。
<Production Example 12>
100 parts by weight of spherical silica (“Advertex” SC2050-SQ, average particle size 0.5 μm) is charged into a Henschel-type powder mixer and an amino group-containing silane coupling agent (Shin-Etsu Chemical Co., Ltd.) While being sprayed with 0.6 parts by mass of “KBM903” (boiling point 215 ° C.), the mixture was stirred for 5 minutes to produce a product 12 (carbon amount 0.14 mg / m 2 per unit area).
 <実施例1>
 ナフタレン型エポキシ樹脂(エポキシ当量144、DIC(株)製「HP4700」)5質量部、液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、三菱化学(株)製「jER828EL」)14質量部、ビフェニル型エポキシ樹脂(エポキシ当量269、日本化薬(株)製「NC3000H」)14質量部をソルベントナフサ30質量部に撹拌しながら加熱溶解させ、その後室温にまで冷却し、混合物1を作製した。次いで、ゴム粒子(ガンツ化成(株)製、スタフィロイドAC3816N)1.5質量部を、ソルベントナフサ6質量部に12時間、20℃で静置膨潤し、混合物2を作製した。混合物1に、混合物2と、製造物1を添加し、さらに難燃剤(三光(株)製「HCA-HQ」、10-(2,5-ジヒドロキシフェニル)-10-ヒドロ-9-オキサ-10-フォスファフェナンスレン-10-オキサイド、平均粒径1μm)5質量部を添加し、3本ロールで混練、均一に分散させた。そこへ、フェノールノボラック系硬化剤(DIC(株)製「LA-7054」、フェノール性水酸基当量124の不揮発成分60質量%のMEK溶液)10質量部、ナフタレン系フェノール樹脂(フェノール性水酸基当量215、新日鐵化学(株)製「SN485」、不揮発成分60質量%のMEK溶液)10質量部、フェノキシ樹脂(重量平均分子量35000、三菱化学(株)製「YL7553」、不揮発成分30質量%のMEKとシクロヘキサノンの1:1溶液)7質量部、硬化促進剤として4-ジメチルアミノピリジンの5質量%のMEK溶液2質量部、MEK4質量部を混合し、回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、かかる樹脂ワニスをアルキド系離型処理付きポリエチレンテレフタレートフィルム(厚さ38μm)の離型面上に、乾燥後の樹脂組成物層の厚みが40μmとなるようにダイコーターにて均一に塗布し、80~110℃(平均95℃)で5分間乾燥した(樹脂組成物層中の残留溶媒量:約2質量%)。次いで、樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、507×336mmサイズのシート状の接着フィルムを得た。
<Example 1>
5 parts by mass of a naphthalene type epoxy resin (epoxy equivalent 144, “HP4700” manufactured by DIC Corporation), 14 parts by mass of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “jER828EL” manufactured by Mitsubishi Chemical Corporation), biphenyl type epoxy 14 parts by mass of a resin (epoxy equivalent 269, “NC3000H” manufactured by Nippon Kayaku Co., Ltd.) was dissolved in 30 parts by mass of solvent naphtha with stirring, and then cooled to room temperature to prepare a mixture 1. Next, 1.5 parts by mass of rubber particles (manufactured by Ganz Kasei Co., Ltd., Staphyloid AC3816N) was allowed to stand and swell in 6 parts by mass of solvent naphtha for 12 hours at 20 ° C. to prepare a mixture 2. Mixture 2 and product 1 are added to mixture 1, and a flame retardant (“HCA-HQ” manufactured by Sanko Co., Ltd., 10- (2,5-dihydroxyphenyl) -10-hydro-9-oxa-10 -Phosphophenanthrene-10-oxide, average particle diameter 1 μm) was added 5 parts by mass, kneaded with three rolls and uniformly dispersed. Thereto, 10 parts by mass of a phenol novolac-based curing agent (“LA-7054” manufactured by DIC Corporation, MEK solution having a non-volatile component of 60% by mass of phenolic hydroxyl group equivalent 124), naphthalene-based phenol resin (phenolic hydroxyl group equivalent 215, "SN485" manufactured by Nippon Steel Chemical Co., Ltd., 10 parts by mass of MEK solution having a nonvolatile component of 60% by mass, phenoxy resin (weight average molecular weight 35000, "YL7553" manufactured by Mitsubishi Chemical Corporation), MEK having a nonvolatile component of 30% by mass And 7 parts by weight of cyclohexanone), 2 parts by weight of MEK solution of 5% by weight of 4-dimethylaminopyridine as a curing accelerator, and 4 parts by weight of MEK were mixed and dispersed uniformly with a rotary mixer to obtain a resin varnish. Was made. Next, the resin varnish is uniformly applied by a die coater on the release surface of a polyethylene terephthalate film with a alkyd release treatment (thickness 38 μm) so that the thickness of the resin composition layer after drying is 40 μm. And dried at 80 to 110 ° C. (average 95 ° C.) for 5 minutes (residual solvent amount in the resin composition layer: about 2% by mass). Subsequently, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film on the surface of a resin composition layer. The roll-like adhesive film was slit to a width of 507 mm to obtain a sheet-like adhesive film having a size of 507 × 336 mm.
 <実施例2>
 実施例1の製造物1を、製造物2に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 2>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 2. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例3>
 実施例1の製造物1を、製造物3に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 3>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 3. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例4>
 実施例1の製造物1を製造物4に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 4>
A resin varnish was prepared in exactly the same manner except that the product 1 of Example 1 was changed to the product 4. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例5>
 実施例1の製造物1を製造物5に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 5>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 5. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例6>
 実施例1の製造物1を製造物6に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 6>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 6. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例7>
 実施例1の製造物1を製造物7に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 7>
A resin varnish was prepared in exactly the same manner except that the product 1 of Example 1 was changed to the product 7. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例8>
 実施例1の製造物1を製造物8に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 8>
A resin varnish was prepared in the same manner except that the product 1 of Example 1 was changed to the product 8. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例9>
 実施例1の製造物1を製造物9に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 9>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 9. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <実施例10>
 ナフタレン型エポキシ樹脂(エポキシ当量144、DIC(株)製「EXA4032SS」)10質量部と、ビキシレノール型エポキシ樹脂(エポキシ当量190、三菱化学(株)製「YX4000HK」)1質量部、変性ナフタレン型エポキシ樹脂(エポキシ当量約330、新日鐵化学(株)製「ESN475V」)12質量部をソルベントナフサ20質量部に撹拌しながら加熱溶解させ、その後室温にまで冷却し、混合物3を作製した。次いで、ゴム粒子(ガンツ化成(株)製、スタフィロイドAC3816N)1.5質量部を、ソルベントナフサ6質量部に12時間、20℃で静置膨潤し、混合物4を作製した。混合物3に、混合物4と、製造物4を添加し、さらに難燃剤(三光(株)製「HCA-HQ」、10-(2,5-ジヒドロキシフェニル)-10-ヒドロ-9-オキサ-10-フォスファフェナンスレン-10-オキサイド、平均粒径1μm)2.5質量部を添加し、3本ロールで混練、均一に分散させた。そこへ、活性エステル系硬化剤(活性基当量約223、DIC(株)製「HPC-8000-65T」、不揮発成分65質量%のトルエン溶液)10質量部、フェノキシ樹脂(重量平均分子量35000、三菱化学(株)製「YL7553」、不揮発成分30質量%のMEKとシクロヘキサノンの1:1溶液)10質量部、ビスフェノールAジシアネート(ロンザジャパン(株)製Primaset BADCy)11質量部、を添加し、さらに硬化促進剤として4-ジメチルアミノピリジンの5質量%のMEK溶液0.6質量部、コバルト(III)アセチルアセトナート(東京化成(株)製、Co(III)AcAc)の1質量%のMEK溶液3質量部を混合し、回転ミキサーで均一に分散して、樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Example 10>
10 parts by mass of a naphthalene type epoxy resin (epoxy equivalent 144, “EXA4032SS” manufactured by DIC Corporation), 1 part by mass of a bixylenol type epoxy resin (epoxy equivalent 190, “YX4000HK” manufactured by Mitsubishi Chemical Corporation), modified naphthalene type 12 parts by mass of an epoxy resin (epoxy equivalent: about 330, “ESN475V” manufactured by Nippon Steel Chemical Co., Ltd.) was dissolved in 20 parts by mass of solvent naphtha while stirring, and then cooled to room temperature to prepare a mixture 3. Next, 1.5 parts by mass of rubber particles (manufactured by Gantz Kasei Co., Ltd., Staphyloid AC3816N) was allowed to stand and swell for 12 hours at 20 ° C. in 6 parts by mass of solvent naphtha to prepare a mixture 4. The mixture 4 and the product 4 are added to the mixture 3, and a flame retardant (“HCA-HQ” manufactured by Sanko Co., Ltd., 10- (2,5-dihydroxyphenyl) -10-hydro-9-oxa-10 -Phosphophenanthrene-10-oxide (average particle size 1 μm) was added in an amount of 2.5 parts by mass, and the mixture was kneaded with three rolls and uniformly dispersed. Thereto, an active ester curing agent (active group equivalent: about 223, “HPC-8000-65T” manufactured by DIC Corporation, toluene solution of 65% by mass of non-volatile components), 10 parts by mass, phenoxy resin (weight average molecular weight 35000, Mitsubishi) “YL7553” manufactured by Chemical Co., Ltd., 10 parts by mass of a 1: 1 solution of MEK and cyclohexanone having a nonvolatile content of 30% by mass, and 11 parts by mass of bisphenol A dicyanate (Primase BADCy manufactured by Lonza Japan Co., Ltd.) are added. As a curing accelerator, 0.6 parts by mass of a 5% by mass MEK solution of 4-dimethylaminopyridine, and a 1% by mass MEK solution of cobalt (III) acetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd., Co (III) AcAc) 3 parts by mass were mixed and dispersed uniformly with a rotary mixer to prepare a resin varnish. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <比較例1>
 実施例1の製造物1を球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部に変更したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 1>
A resin varnish was prepared in exactly the same manner except that the product 1 of Example 1 was changed to 100 parts by mass of spherical silica (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm). Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <比較例2>
 実施例1の製造物1を球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部に変更し、別途N-ベンジルアミノエタノール(東京化成工業(株)製)を0.3質量部加えた以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Comparative example 2>
The product 1 of Example 1 was changed to 100 parts by mass of spherical silica (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 μm), and separately N-benzylaminoethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) A resin varnish was prepared in exactly the same manner except that 0.3 part by mass was added. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <比較例3>
 実施例1の製造物1を製造物10に変更したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 3>
A resin varnish was prepared in exactly the same manner except that the product 1 of Example 1 was changed to the product 10. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <比較例4>
 実施例1の製造物1を製造物11に変更したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 4>
A resin varnish was produced in exactly the same manner except that the product 1 of Example 1 was changed to the product 11. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 <比較例5>
 実施例1の製造物1を製造物12に変更したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
<Comparative Example 5>
A resin varnish was prepared in exactly the same manner except that the product 1 of Example 1 was changed to the product 12. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表1の結果から、実施例1~10の樹脂組成物は、PCT耐性を有し、低算術平均粗さ、低二乗平均平方根粗さでピール強度が十分な値が得られていることが分かる。一方、比較例1~5では、PCT耐性が劣り、算術平均粗さ、二乗平均平方根粗さが大きくなり、メッキが膨れてピール強度が著しく小さい値となった。 From the results shown in Table 1, it can be seen that the resin compositions of Examples 1 to 10 have PCT resistance, and a sufficient value of peel strength is obtained with low arithmetic average roughness and low root mean square roughness. . On the other hand, in Comparative Examples 1 to 5, the PCT resistance was inferior, the arithmetic average roughness and the root mean square roughness were large, the plating was swollen, and the peel strength was extremely small.
 湿式粗化工程において絶縁層表面の算術平均粗さ、二乗平均平方根粗さが小さく、その上に十分なピール強度を有するメッキ導体層を形成することができ、PCT耐性も有する樹脂組成物を提供できるようになった。更にそれを用いた接着フィルム、プリプレグ、多層プリント配線板、半導体装置を提供できるようになった。更にこれらを搭載した、コンピューター、携帯電話、デジタルカメラ、テレビ、等の電気製品や、自動二輪車、自動車、電車、船舶、航空機、等の乗物も提供できるようになった。 Provided is a resin composition in which a plating conductor layer having a small arithmetic average roughness and root mean square roughness on the surface of an insulating layer in a wet roughening step and having a sufficient peel strength can be formed thereon and also has PCT resistance. I can do it now. Furthermore, an adhesive film, a prepreg, a multilayer printed wiring board, and a semiconductor device using the same can be provided. Furthermore, electric products such as computers, mobile phones, digital cameras, and televisions, and vehicles such as motorcycles, automobiles, trains, ships, and airplanes equipped with these can be provided.

Claims (10)

  1.  (A)エポキシ樹脂、(B)硬化剤、(C)無機充填材を含有する樹脂組成物において、前記無機充填材が、水酸基及び反応性基を有し、かつ沸点が100℃以上である有機化合物で表面処理されていることを特徴とする樹脂組成物。 In the resin composition containing (A) an epoxy resin, (B) a curing agent, and (C) an inorganic filler, the inorganic filler has a hydroxyl group and a reactive group, and an organic solvent having a boiling point of 100 ° C. or higher. A resin composition which is surface-treated with a compound.
  2.  前記有機化合物の反応性基が、アミノ基、エポキシ基、メルカプト基、メタクリル基、アクリル基、ビニル基及びウレイド基からなる群より選択される1種以上であることを特徴とする請求項1に記載の樹脂組成物。 The reactive group of the organic compound is at least one selected from the group consisting of an amino group, an epoxy group, a mercapto group, a methacryl group, an acrylic group, a vinyl group, and a ureido group. The resin composition as described.
  3.  前記有機化合物が、下式(1)の化合物、下式(2)の化合物、下式(3)の化合物、イミダゾール化合物及びイミダゾール-エポキシアダクトからなる群より選択される1種以上であることを特徴とする請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (R1、R2は、それぞれ独立にフェニル基、ベンジル基、水素原子又は炭素数1~5のアルキル基である。R3は、炭素数1~5のアルキレン基又はフェニレン基である。)
    Figure JPOXMLDOC01-appb-C000002
    (R4は、炭素数1~5のアルキレン基又はフェニレン基である。)
    Figure JPOXMLDOC01-appb-C000003
    (R5は、水酸基を有する有機基である。R6は、水素原子、メチル基、カルボキシル基又はフェニル基である。)
    The organic compound is at least one selected from the group consisting of a compound of the following formula (1), a compound of the following formula (2), a compound of the following formula (3), an imidazole compound and an imidazole-epoxy adduct. The resin composition according to claim 1, wherein
    Figure JPOXMLDOC01-appb-C000001
    (R1 and R2 are each independently a phenyl group, a benzyl group, a hydrogen atom, or an alkyl group having 1 to 5 carbon atoms. R3 is an alkylene group or phenylene group having 1 to 5 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (R4 is an alkylene group having 1 to 5 carbon atoms or a phenylene group.)
    Figure JPOXMLDOC01-appb-C000003
    (R5 is an organic group having a hydroxyl group. R6 is a hydrogen atom, a methyl group, a carboxyl group or a phenyl group.)
  4.  (C)無機充填材を100質量%とした場合、前記有機化合物が0.05~2質量%であることを特徴とする請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the organic compound is 0.05 to 2 mass% when the inorganic filler is 100 mass%.
  5.  (C)無機充填材が前記有機化合物で表面処理された後に、さらにシランカップリング剤、アルコキシシラン、アルコキシオリゴマー、アルミニウム系カップリング剤、チタン系カップリング剤及びジルコニウム系カップリング剤からなる群より選択される1種以上で表面処理されていることを特徴とする請求項1~4のいずれか1項に記載の樹脂組成物。 (C) After the inorganic filler is surface-treated with the organic compound, the inorganic filler is further composed of a silane coupling agent, an alkoxysilane, an alkoxy oligomer, an aluminum coupling agent, a titanium coupling agent, and a zirconium coupling agent. The resin composition according to any one of claims 1 to 4, wherein the resin composition is surface-treated with one or more selected.
  6.  (C)無機充填材の表面に結合している単位面積当たりのカーボン量が0.05~1.00mg/mであることを特徴とする請求項1~5のいずれか1項に記載の樹脂組成物。 6. The amount of carbon per unit area bonded to the surface of the inorganic filler (C) is 0.05 to 1.00 mg / m 2 , according to any one of claims 1 to 5, Resin composition.
  7.  樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理し、メッキして得られる導体層と絶縁層とのピール強度が0.4kgf/cm~1.5kgf/cmであり、樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さが10nm~300nmであり、二乗平均平方根粗さが10nm~480nmであることを特徴とする請求項1~6のいずれか1項に記載の樹脂組成物。 The resin composition is cured to form an insulating layer, the surface of the insulating layer is roughened, and the peel strength between the conductor layer and the insulating layer obtained by plating is 0.4 kgf / cm to 1.5 kgf / cm. The arithmetic average roughness after curing the resin composition to form an insulating layer and roughening the surface of the insulating layer is 10 nm to 300 nm, and the root mean square roughness is 10 nm to 480 nm. The resin composition according to any one of claims 1 to 6, wherein
  8.  請求項1~7のいずれか1項に記載の樹脂組成物を含有することを特徴とするシート状積層材料。 A sheet-like laminated material comprising the resin composition according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか1項に記載の樹脂組成物の硬化物により絶縁層が形成された多層プリント配線板。 A multilayer printed wiring board in which an insulating layer is formed of a cured product of the resin composition according to any one of claims 1 to 7.
  10.  請求項9に記載の多層プリント配線板を用いることを特徴とする、半導体装置。 A semiconductor device using the multilayer printed wiring board according to claim 9.
PCT/JP2012/072075 2011-10-26 2012-08-30 Resin composition WO2013061688A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147010645A KR101489175B1 (en) 2011-10-26 2012-08-30 Resin composition
CN201280052315.XA CN103890088B (en) 2011-10-26 2012-08-30 Resin combination
JP2012542279A JP5234231B1 (en) 2011-10-26 2012-08-30 Resin composition
TW101139721A TWI445728B (en) 2011-10-26 2012-10-26 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/075242 WO2013061478A1 (en) 2011-10-26 2011-10-26 Resin composition
JPPCT/JP2011/075242 2011-10-26

Publications (1)

Publication Number Publication Date
WO2013061688A1 true WO2013061688A1 (en) 2013-05-02

Family

ID=48167340

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/075242 WO2013061478A1 (en) 2011-10-26 2011-10-26 Resin composition
PCT/JP2012/072075 WO2013061688A1 (en) 2011-10-26 2012-08-30 Resin composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075242 WO2013061478A1 (en) 2011-10-26 2011-10-26 Resin composition

Country Status (3)

Country Link
KR (1) KR101489175B1 (en)
CN (1) CN103890088B (en)
WO (2) WO2013061478A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010231A (en) * 2014-09-25 2015-01-19 太陽インキ製造株式会社 Dry film and printed wiring board
JP2016032923A (en) * 2014-07-31 2016-03-10 味の素株式会社 Resin sheet, laminated sheet, laminate and semiconductor device
JP2016074845A (en) * 2014-10-08 2016-05-12 ナミックス株式会社 Encapsulant composition and semiconductor device using the same
WO2018131569A1 (en) 2017-01-10 2018-07-19 住友精化株式会社 Epoxy resin composition
JP2019041123A (en) * 2018-11-21 2019-03-14 味の素株式会社 Method for manufacturing roughened cured body
WO2019124192A1 (en) * 2017-12-21 2019-06-27 ナミックス株式会社 Resin composition, semiconductor sealing material, one-part adhesive and adhesive film
JP2020105523A (en) * 2020-02-21 2020-07-09 味の素株式会社 Resin composition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484307B2 (en) 2015-01-26 2016-11-01 Advanced Semiconductor Engineering, Inc. Fan-out wafer level packaging structure
JP6579309B2 (en) * 2015-05-01 2019-09-25 味の素株式会社 Curable composition
EP3434734A4 (en) * 2016-04-05 2019-09-25 Hitachi Chemical Co., Ltd. Resin composition, hydrogen gas barrier material, cured product, composite material, and structure
JP6878859B2 (en) * 2016-12-02 2021-06-02 味の素株式会社 Resin composition
JP2018104634A (en) * 2016-12-28 2018-07-05 ナミックス株式会社 Surface-treated silica filler, and resin composition containing surface-treated silica filler
JP7465093B2 (en) * 2017-10-10 2024-04-10 味の素株式会社 Cured product and method for producing same, resin sheet and resin composition
CN112513217B (en) * 2018-08-03 2023-07-14 株式会社力森诺科 Adhesive composition, film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
WO2020136902A1 (en) * 2018-12-28 2020-07-02 日立化成株式会社 Die bonding film, adhesive sheet, and semiconductor package and method for manufacturing same
JP7463736B2 (en) * 2020-01-24 2024-04-09 味の素株式会社 Resin composition
JP7264194B2 (en) * 2020-06-25 2023-04-25 味の素株式会社 resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880340A (en) * 1981-10-22 1983-05-14 シ−メンス・アクチエンゲゼルシヤフト Reactive resin forming material and substance manufactured therefrom
JP2003336034A (en) * 2002-05-20 2003-11-28 Otsuka Chemical Holdings Co Ltd Invisible region light blocking material and optical filter
JP2011178883A (en) * 2010-03-01 2011-09-15 Sumitomo Bakelite Co Ltd Prepreg, laminated board, multilayer printed wiring board, and semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0321703D0 (en) * 2003-09-16 2003-10-15 Imerys Minerals Ltd Surface modified fillers for polymer resin compositions
JP2007231125A (en) 2006-02-28 2007-09-13 Kaneka Corp Thermosetting resin composition and its use
JP2008174624A (en) * 2007-01-17 2008-07-31 Admatechs Co Ltd Surface-treated inorganic powder
KR101148225B1 (en) * 2008-09-01 2012-05-21 세키스이가가쿠 고교가부시키가이샤 Method for producing laminate
TWI477549B (en) * 2009-02-06 2015-03-21 Ajinomoto Kk Resin composition
TWI499690B (en) * 2009-03-13 2015-09-11 Ajinomoto Kk Paste metal laminates
TWI540170B (en) * 2009-12-14 2016-07-01 Ajinomoto Kk Resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880340A (en) * 1981-10-22 1983-05-14 シ−メンス・アクチエンゲゼルシヤフト Reactive resin forming material and substance manufactured therefrom
JP2003336034A (en) * 2002-05-20 2003-11-28 Otsuka Chemical Holdings Co Ltd Invisible region light blocking material and optical filter
JP2011178883A (en) * 2010-03-01 2011-09-15 Sumitomo Bakelite Co Ltd Prepreg, laminated board, multilayer printed wiring board, and semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032923A (en) * 2014-07-31 2016-03-10 味の素株式会社 Resin sheet, laminated sheet, laminate and semiconductor device
JP2015010231A (en) * 2014-09-25 2015-01-19 太陽インキ製造株式会社 Dry film and printed wiring board
JP2016074845A (en) * 2014-10-08 2016-05-12 ナミックス株式会社 Encapsulant composition and semiconductor device using the same
WO2018131569A1 (en) 2017-01-10 2018-07-19 住友精化株式会社 Epoxy resin composition
WO2019124192A1 (en) * 2017-12-21 2019-06-27 ナミックス株式会社 Resin composition, semiconductor sealing material, one-part adhesive and adhesive film
JP2019112486A (en) * 2017-12-21 2019-07-11 ナミックス株式会社 Resin composition
JP7148946B2 (en) 2017-12-21 2022-10-06 ナミックス株式会社 resin composition
US11518867B2 (en) 2017-12-21 2022-12-06 Namics Corporation Resin composition, semiconductor sealing material, one-part adhesive and adhesive film
JP2019041123A (en) * 2018-11-21 2019-03-14 味の素株式会社 Method for manufacturing roughened cured body
JP2020105523A (en) * 2020-02-21 2020-07-09 味の素株式会社 Resin composition
JP7067576B2 (en) 2020-02-21 2022-05-16 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
CN103890088B (en) 2016-05-18
WO2013061478A1 (en) 2013-05-02
CN103890088A (en) 2014-06-25
KR20140062172A (en) 2014-05-22
KR101489175B1 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
JP5413522B1 (en) Resin composition
JP5234229B1 (en) Resin composition
JP6123169B2 (en) Resin composition
JP5950005B2 (en) Resin composition
WO2013061688A1 (en) Resin composition
JP6069887B2 (en) Resin composition
JP6123177B2 (en) Resin composition
JP2014028880A (en) Resin composition
JP6119441B2 (en) Resin composition
JP6534986B2 (en) Resin composition
JP6007663B2 (en) Resin composition
JP6489148B2 (en) Resin composition
JP5918943B2 (en) Manufacturing method of semiconductor package
JP6337917B2 (en) Resin composition
JP5978936B2 (en) Resin composition
JP5234231B1 (en) Resin composition
JP6844636B2 (en) Resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012542279

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147010645

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843290

Country of ref document: EP

Kind code of ref document: A1