WO2013060222A1 - 显示器件的阵列基板、彩膜基板及其制备方法 - Google Patents

显示器件的阵列基板、彩膜基板及其制备方法 Download PDF

Info

Publication number
WO2013060222A1
WO2013060222A1 PCT/CN2012/082446 CN2012082446W WO2013060222A1 WO 2013060222 A1 WO2013060222 A1 WO 2013060222A1 CN 2012082446 W CN2012082446 W CN 2012082446W WO 2013060222 A1 WO2013060222 A1 WO 2013060222A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
data line
pixel
slit
array substrate
Prior art date
Application number
PCT/CN2012/082446
Other languages
English (en)
French (fr)
Inventor
李成
董学
陈东
木素真
Original Assignee
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US13/805,149 priority Critical patent/US9411199B2/en
Priority to JP2014536102A priority patent/JP6105602B2/ja
Priority to KR20127030809A priority patent/KR20130056248A/ko
Priority to EP12780626.3A priority patent/EP2775345B1/en
Publication of WO2013060222A1 publication Critical patent/WO2013060222A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/40Arrangements for improving the aperture ratio

Definitions

  • Embodiments of the present invention relate to an array substrate of a liquid crystal display (LCD), a color filter substrate, and a method of fabricating the same.
  • LCD liquid crystal display
  • Background technique
  • LCD has the characteristics of small size, low power consumption, no radiation, and relatively low manufacturing cost, and has occupied a dominant position in the current flat panel display market.
  • the Advanced Super Dimension Switch forms a multi-dimensional electric field by forming an electric field generated at the edge of the slit electrode in the same plane and an electric field generated between the slit electrode layer and the plate electrode layer. All the aligned liquid crystal molecules between the slit electrodes in the box and directly above the electrodes can rotate, thereby improving the working efficiency of the liquid crystal and increasing the light transmission efficiency.
  • Advanced super-dimensional field conversion technology can improve the picture quality of TFT-LCD products, with high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration, push mura, etc. advantage.
  • the common electrode and the pixel electrode are made of a transparent conductor, thereby increasing the aperture ratio and the light transmittance.
  • the space between the common electrode and the pixel electrode is narrower than the space between the upper and lower substrates, so that a multi-dimensional electric field formed between the common electrode and the pixel electrode causes the liquid crystal molecules to rotate in a plane direction parallel to the substrate, which improves Light transmission efficiency of the liquid crystal layer.
  • the prior art provides a pixel structure in which the light-shielding area above the data line 1 is removed, and the setting is The slit-shaped common electrode 2 in which the data lines 1 are parallel. A portion of the slit-shaped common electrode 2 is disposed above the pixel electrode 3; another portion of the slit-shaped common electrode 2 covers over the data line 1, and has a width larger than the width of the data line 1.
  • One of the technical problems to be solved by the present invention is to provide an array substrate, a color filter substrate and a preparation method thereof for the display device, which can effectively suppress the interference of the signal of the data line to the upper liquid crystal modulation, and improve the transmittance of the light.
  • An aspect of the invention provides an array substrate, comprising: a base substrate, a gate line disposed on the base substrate, a data line disposed perpendicular to the gate line, and a pixel defined by the intersection of the gate line and the data line a region, wherein the pixel region is provided with a thin film transistor and a pixel electrode, and the pixel electrode cooperates to generate a common electrode of a multi-dimensional electric field, the pixel electrode is a slit electrode, and the common electrode is a plate electrode; or The pixel electrode is a plate electrode, the common electrode is a slit electrode, a first insulating layer is disposed between the common electrode and the pixel electrode, and one end of the plate electrode covers the data line. And a second insulating layer is disposed between the layer where the plate electrode is located and the layer where the data line is located.
  • the second insulating layer is a resin layer made of a resin.
  • the slits of the slit electrodes are arranged equidistantly.
  • Another aspect of the present invention provides a method of fabricating an array substrate, including:
  • a slit-shaped electrode that generates a multi-dimensional electric field is formed on the base substrate on which the plate-shaped electrode is formed, and a first insulating layer is disposed between the slit-shaped electrode and the plate-shaped electrode;
  • the slit electrode is a pixel electrode, the plate electrode is a common electrode; or the plate electrode is a pixel electrode, the slit electrode is a common electrode, and one end of the plate electrode is covered by the Above the data line.
  • the second insulating layer is a resin layer made of a resin.
  • the common electrodes are arranged equidistantly.
  • a color filter substrate comprising: a base substrate, a black matrix formed on the base substrate, and a color resin formed between the black matrices, the black matrix being disposed in a corresponding array a gate line on the substrate, a thin film transistor, and no data line between adjacent pixels Location.
  • Another aspect of the present invention provides a display device including the above array substrate.
  • one end of the plate electrode covers the data line, and a second insulating layer is disposed between the layer where the plate electrode is located and the layer where the data line is located for insulation protection.
  • the solution of this embodiment not only suppresses the interference of the data line to the liquid crystal modulation above it, but also increases the formation range of the multi-dimensional electric field, improves the modulation range of the liquid crystal in the pixel, and further improves the transmittance.
  • FIG. 1 is a schematic cross-sectional structural view of a prior art array substrate
  • FIG. 2 is a schematic cross-sectional structural view of an array substrate according to an embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional structural view of a liquid crystal panel according to an embodiment of the present invention.
  • Embodiments of the present invention provide an array substrate, a color filter substrate, and a method for fabricating the same, which can effectively suppress interference of a signal of a data line to an upper liquid crystal modulation, and improve transmittance of light.
  • the array substrate of the embodiment of the invention includes a plurality of gate lines and a plurality of data lines, the gate lines and the data The lines intersect each other thereby defining pixel regions arranged in a matrix, each of which includes a thin film transistor as a switching element and a pixel electrode and a common electrode for controlling the arrangement of the liquid crystal.
  • the gate of the thin film transistor of each pixel is electrically connected or integrally formed with the corresponding gate line
  • the source is electrically connected or integrally formed with the corresponding data line
  • the drain is electrically connected or integrally formed with the corresponding pixel electrode.
  • the following description is mainly made for a single or a plurality of pixel regions, but other pixel regions may be formed identically.
  • Embodiment 1 of the present invention provides an array substrate as shown in FIG.
  • the array substrate 100 includes: a base substrate 4, a gate line (not shown) provided on the base substrate 4, and a data line 1 disposed perpendicular to the gate line.
  • the gate line and the data line 1 intersect to define a plurality of pixel regions, each of which is provided with a thin film transistor (not shown), a pixel electrode 3, and the pixel electrode 3 cooperate to generate a multi-dimensional
  • the common electrode 2 of the electric field is a plate electrode in which no slit is formed;
  • the common electrode 2 is a slit electrode in which a plurality of slits 21 are formed.
  • a first insulating layer 5 is disposed between the common electrode 2 and the pixel electrode 3, and one end of the pixel electrode 3 which is a plate electrode covers the data line 1 and the layer of the pixel electrode 3 is A second insulating layer 6 is disposed between the layers in which the data lines 1 are located.
  • the pixel electrodes and the data lines do not overlap each other because the interference of the data lines to the pixel electrodes is relatively large in the overlapped design. Therefore, if it is an overlap design, in order to avoid interference of the data line with the pixel electrode, it is generally required to use a resin material as the insulating layer, that is, a layer is disposed between the layer where the pixel electrode 3 is located and the layer where the data line 1 is located. The resin layer is isolated.
  • the array substrate provided in this embodiment covers one end of the pixel electrode over the data line (again, the common electrode is also located above the data line), and is disposed between the layer where the pixel electrode is located and the layer where the data line is located.
  • An insulating layer is used for insulation protection, which not only suppresses the interference of the data line to the liquid crystal modulation above it, but also increases the formation range of the multi-dimensional electric field, improves the modulation range of the liquid crystal in the pixel, and further improves the transmission. rate.
  • the second insulating layer 6 is, for example, a resin layer to avoid interference of the data lines with the pixel electrodes, that is, the layer where the pixel electrode 3 is located and the layer where the data line 1 is located. A layer of resin is placed between them.
  • the common electrodes 2 are arranged equidistantly, and in the pixels, the slit-shaped or plate-shaped common electrodes are formed equidistantly. It should be noted that since the pixel electrode is covered above the data line, the common electrode has no influence on the load of the data line whether it overlaps or overlaps above the data line.
  • the effect of the load on the data line is mainly due to the formation of a capacitance between the data line and the pixel electrode, which can be improved by using a thicker resin material as the insulating layer.
  • a multi-dimensional electric field is formed by the bottom plate-shaped pixel electrode and the upper slit-shaped common electrode, and the upper common electrode and the bottom pixel electrode are separated by an insulating layer, that is, the first insulating layer, and the pixel electrode is used.
  • One end covers the data line, and a resin layer, that is, a second insulating layer, is disposed between the layer where the pixel electrode is located and the layer where the data line is located, for insulation protection.
  • the solution of the embodiment not only suppresses the interference of the data line to the liquid crystal modulation above it, but also increases the formation range of the multi-dimensional electric field, improves the modulation range of the liquid crystal in the pixel, and further improves the transmittance.
  • the common electrode is a plate electrode, and the pixel electrode is a slit electrode; one end of the common electrode of the plate electrode covers the data line, and the pixel electrode of the pole Formed on the common electrode, and a first insulating layer is disposed between the common electrode.
  • the array substrate provided in this embodiment covers one end of the common electrode over the data line (again, the pixel electrode is also located above the data line), and is disposed between the layer where the common electrode is located and the layer where the data line is located.
  • An insulating layer is used for insulation protection, which not only suppresses the interference of the data line to the liquid crystal modulation above it, but also increases the formation range of the multi-dimensional electric field, improves the modulation range of the liquid crystal in the pixel, and further improves the transmission. rate.
  • the embodiment of the invention further provides a liquid crystal panel.
  • a liquid crystal panel As shown in FIG. 3, an example of the liquid crystal panel of the embodiment includes a color filter substrate 100 and the array substrate 200 of the first embodiment, and a liquid crystal layer 10 between the array substrate 200 and the color filter substrate 100.
  • the color filter substrate 100 includes: a base substrate 7, a black matrix 8 formed on the base substrate 7, and a color resin 9 formed between the black matrixes 8, the black matrix 8 being disposed on the array substrate 200 The position of the gate line, the position of the thin film transistor, and the position where the data line is not set between adjacent pixels.
  • the black matrix 8 of the color filter substrate defines a plurality of sub-pixel regions, and each sub-pixel region package
  • the color resin 9 is included, and the color resin 9 includes, for example, a red resin, a green resin, and a blue resin, thereby obtaining red, green, and blue (RGB) sub-pixels, respectively.
  • the sub-pixel regions of the color filter substrate 100 correspond to the sub-pixel regions on the array substrate 200.
  • the array substrate 200 and the color filter substrate 100 are opposed to each other to form a liquid crystal cell, and the liquid crystal material is filled in the liquid crystal cell to obtain the liquid crystal layer 10, whereby a liquid crystal panel is obtained.
  • the pixel electrode and the common electrode of each pixel region of the array substrate 200 are used to apply an electric field to control the degree of rotation of the liquid crystal material to perform a display operation.
  • the liquid crystal display further includes a backlight that provides backlighting for the liquid crystal panel.
  • a structure of a wider common electrode is disposed above the data line 1, and a region covered by the common electrode is not transparent.
  • the pixel electrode 3 since the pixel electrode 3 is covered above the data line 1, only the data line 1 is opaque directly above, which not only removes the signal pair of the data line 1 from the liquid crystal.
  • the interference of the electric field also increases the range of the liquid crystal light modulation; and, since the liquid crystal corresponding to the area above the data line 1 covered by the pixel electrode 3 can be normally driven, the corresponding position of the data line 1 does not need to be on the color film substrate.
  • Set the black matrix 8. Thus, the black matrix 8 is disposed only between adjacent pixels, and the area occupied by the black matrix 8 is reduced, which improves the modulation range of the liquid crystal in the pixel and further improves the transmittance.
  • liquid crystal panel of the present embodiment includes a color filter substrate and the array substrate described in Embodiment 2, and a liquid crystal layer between the array substrate and the color filter substrate.
  • This embodiment of the present invention provides a method of fabricating the array substrate according to the above embodiments.
  • the method includes:
  • Step 101 forming a gate line, a data line, and a thin film transistor on the base substrate, wherein a gate of the thin film transistor is connected to the gate line, and a source is connected to the data line;
  • Step 102 forming a second insulating layer on the base substrate on which the gate lines, the data lines, and the thin film transistors are formed;
  • Step 103 forming a plate electrode on the base substrate on which the second insulating layer is formed;
  • Step 104 forming a slit-shaped electrode that generates a multi-dimensional electric field in cooperation with the plate-shaped electrode on the base substrate on which the plate-shaped electrode is formed, and a first insulating layer is disposed between the slit-shaped electrode and the plate-shaped electrode .
  • the slit electrode is a pixel electrode, the plate electrode is a common electrode; or the plate electrode An extremely pixel electrode, the slit electrode is a common electrode, and one end of the plate electrode covers the data line.
  • the slits of the slit electrodes are arranged equidistantly.
  • the embodiment of the invention further provides a method for preparing a color film substrate, the method comprising:
  • Step 201 Form a black matrix and a color resin on the base substrate, wherein the black matrix is disposed at a position of a gate line on the corresponding array substrate, a position of the thin film transistor, and a position where no data line is disposed between adjacent pixels.
  • a color resin may be formed first, and then a black matrix may be formed; or a black matrix may be formed first, and then a color resin is formed.
  • the example is not limited.
  • the black matrix of the color filter substrate defines a plurality of sub-pixel regions, each of which includes a color tree, and the color resin includes, for example, a red resin, a green resin, and a blue resin, thereby obtaining red, green, and blue (RGB), respectively.
  • the color resin includes, for example, a red resin, a green resin, and a blue resin, thereby obtaining red, green, and blue (RGB), respectively.
  • Subpixel The sub-pixel area of the color filter substrate corresponds to the sub-pixel area i on the array substrate.
  • the liquid crystal display further includes a backlight that provides backlighting for the liquid crystal panel.
  • the plate electrode may be a common electrode
  • the slit electrode may be a pixel electrode, as long as a multi-dimensional electric field can be formed between the two.
  • the electrodes covering the data lines are not necessarily fabricated after the gate lines, gate electrodes, and thin film transistors are formed.
  • a top gate type thin film transistor is a final gate line and a gate electrode, so that a film that can be normally driven can be formed. The transistor can ensure insulation protection above the data line and can form a multi-dimensional electric field.
  • Embodiments of the present invention also provide a display device such as a liquid crystal display, a liquid crystal television, an electronic paper, a digital photo frame, etc., which includes the array substrate described in the above embodiments.
  • the display device is, for example, a liquid crystal display
  • the liquid crystal panel includes an array substrate, a color filter substrate, and a liquid crystal layer between the array substrate and the color filter substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示器件的阵列基板(200),能够有效抑制数据线(1)的信号对上方液晶调制的干扰,且提高了光线的透过率。该阵列基板包括栅线和所述数据线(1)交叉限定的像素区域,所述像素区域内设有薄膜晶体管和像素电极(3),与所述像素电极(3)配合产生多维电场的公共电极(2),所述像素电极(3)为狭缝状电极,所述公共电极(2)为板状电极;或所述像素电极(3)为板状电极,所述公共电极(2)为狭缝状电极,所述公共电极(2)与所述像素电极(3)之间设有第一绝缘层(5),所述板状电极的一端覆盖在所述数据线(1)上方,且所述板状电极所在的层与所述数据线(1)所在的层之间设置有第二绝缘层(6)。还包括一种显示器件的阵列基板(200)的制备方法。

Description

显示器件的阵列基板、 彩膜基板及其制备方法 技术领域
本发明的实施例涉及液晶显示器(Liquid Crystal Display, LCD )的阵列 基板、 彩膜基板及其制备方法。 背景技术
在平板显示技术中, LCD具有体积小、 功耗低、 无辐射、 制造成本相 对较低等特点, 在当前的平板显示器市场占据了主导地位。
高级超维场转换技术( Advanced Super Dimension Switch, ADS )通过在 同一平面内于狭缝电极边缘所产生的电场以及在狭缝电极层与板状电极层之 间产生的电场形成多维电场, 使液晶盒内狭缝电极间、 电极正上方所有取向 液晶分子都能够产生旋转, 从而提高了液晶工作效率并增大透光效率。 高级 超维场转换技术可以提高 TFT-LCD产品的画面品质, 具有高分辨率、 高透 过率、 低功耗、 宽视角、 高开口率、 低色差、 无挤压水波紋(push Mura )等 优点。
在现有的 ADS模式液晶显示器中, 公共电极和像素电极由透明导体制 成, 从而增加了开口率和透光率。 公共电极和像素电极之间的空间比上、 下 基板之间的空间更狭窄, 从而在公共电极和像素电极之间形成的多维电场使 得液晶分子在平行于基板的平面方向上发生旋转,这提高液晶层的透光效率。
为了避免数据线上方的遮光区对开口率的影响, 提高像素的透过率, 如 图 1所示, 现有技术提供了一种像素结构, 其中, 去掉数据线 1上方的遮光 区, 设置与数据线 1相平行的狭缝状的公共电极 2。 狭缝状的公共电极 2的 一部分设置在像素电极 3上方; 狭缝状的公共电极 2的另一部分覆盖在数据 线 1上方, 并且宽度大于数据线 1的宽度。 通过在数据线 1上方形成公共电 极 2来抑制数据线 1对液晶电场的干扰, 防止发生漏光等不利影响, 进而提 高像素的透过率。
然而, 发明人在研究中发现, 上述像素结构中在数据线上较宽的公共电 极使得数据线位置的透过率仍然有所损失。 发明内容
本发明所要解决的技术问题之一在于提供一种显示器件的阵列基板、 彩 膜基板及其制备方法, 能够有效抑制数据线的信号对上方液晶调制的干扰, 且提高了光线的透过率。
本发明的一个方面提供了一种阵列基板, 包括: 基底基板, 设置在基 底基板上的栅线, 与所述栅线垂直设置的数据线, 所述栅线和所述数 据线交叉限定的像素区域, 所述像素区域内设有薄膜晶体管和像素电 极, 与所述像素电极配合产生多维电场的公共电极, 所述像素电极为狭缝 状电极, 所述公共电极为板状电极; 或所述像素电极为板状电极, 所述公共 电极为狭缝状电极, 所述公共电极与所述像素电极之间设有第一绝缘层, 所述板状电极的一端覆盖在所述数据线上方, 且所述板状电极所在的 层与所述数据线所在的层之间设置有第二绝缘层。
例如, 所述第二绝缘层为材质为树脂的树脂层。
例如, 所述狭缝电极的狭缝等距排布。
本发明的另一个方面提供了一种阵列基板的制备方法, 包括:
在基底基板上形成栅线、 数据线和薄膜晶体管, 且所述薄膜晶体管的栅 极与所述栅线连接、 源极与所述数据线连接;
在形成有栅线、 数据线和薄膜晶体管的基底基板上形成第二绝缘层; 在形成有第二绝缘层的基底基板上形成板状电极;
在形成有板状电极的基底基板上形成与所述板状电极配合产生多维电 场的狭缝状电极, 所述狭缝状电极与所述板状电极之间设有第一绝缘层; 其 中, 所述狭缝状电极为像素电极, 所述板状电极为公共电极; 或所述板状电 极为像素电极, 所述狭缝状电极为公共电极, 所述板状电极的一端覆盖在 所述数据线上方。
例如, 所述第二绝缘层为材质为树脂的树脂层。
例如, 所述公共电极等距排布。
本发明的另一个方面提供了一种彩膜基板, 包括: 基底基板、 形成在所 述基底基板上的黑矩阵以及形成在所述黑矩阵之间的彩色树脂, 所述黑矩阵 设置在对应阵列基板上的栅线、 薄膜晶体管以及相邻像素间未设置数据线的 位置。
本发明的另一个方面提供了一种显示器件, 包括上述阵列基板。
在本发明的实施例的技术方案中, 板状电极的一端覆盖在数据线上方, 且板状电极所在的层与数据线所在的层之间设置有第二绝缘层,用于绝缘保 护。 本实施例的方案不仅仅抑制了数据线对其上方的液晶调制的干扰, 还 增大了多维电场的形成范围, 提高了像素内液晶的调制范围, 进一步提高了 透过率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术阵列基板的剖面结构示意图;
图 2为本发明实施例中阵列基板的剖面结构示意图;
图 3为本发明实施例中液晶面板的剖面结构示意图。
附图标记说明
1一数据线; 2—公共电极; 3—像素电极;
4一基底基板; 5—第一绝缘层; 6—第二绝缘层:
7—基底基板; 8—黑矩阵; 9一彩色树脂;
10—液晶层; 21—狭缝; 100—彩膜基板; 200—阵列基板 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供一种显示器件的阵列基板、 彩膜基板及其制备方法, 能够有效抑制数据线的信号对上方液晶调制的干扰,且提高了光线的透过率。
本发明实施例的阵列基板包括多条栅线和多条数据线, 这些栅线和数据 线彼此交叉由此限定了排列为矩阵的像素区域, 每个像素区域包括作为开关 元件的薄膜晶体管和用于控制液晶的排列的像素电极和公共电极。 每个像素 的薄膜晶体管的栅极与相应的栅线电连接或一体形成, 源极与相应的数据线 电连接或一体形成, 漏极与相应的像素电极电连接或一体形成。 下面的描述 主要针对单个或多个像素区域进行, 但是其他像素区域可以相同地形成。
实施例一
本发明的实施例一提供了一种阵列基板, 如图 2所示。 该阵列基板 100 包括: 基底基板 4、 设置在基底基板 4上的栅线 (图中未示出) 、 与所 述栅线垂直设置的数据线 1。所述栅线和所述数据线 1交叉限定了多个 像素区域, 所述像素区域内每个设有薄膜晶体管 (图中未示出) 、 像 素电极 3、 与所述像素电极 3配合产生多维电场的公共电极 2。 在该实 施例之中, 所述像素电极 3为板状电极, 其中没有形成狭缝; 所述公共 电极 2为狭缝状电极, 其中形成有多个狭缝 21。 所述公共电极 2与所述 像素电极 3之间设有第一绝缘层 5 ,为板状电极的像素电极 3的一端覆 盖在所述数据线 1 上方, 且所述像素电极 3所在的层与所述数据线 1 所在的层之间设置有第二绝缘层 6。
在通常的像素结构之中, 像素电极跟数据线是不相互交叠的, 因 为在交叠的设计中数据线对于像素电极的干扰比较大。 因此, 如果是 交叠设计的话, 为了避免数据线对于像素电极的干扰, 一般需要使用 树脂材料做绝缘层, 即在像素电极 3所在的层与所述数据线 1 所在的 层之间设置一层树脂层以进行隔离。
由于在图 1所示的现有技术的方案中,釆用公共电极将数据线完全覆盖, 从而数据线上较宽的面积被公共电极占据, 这造成数据线位置的透过率有所 损失。 因此, 本实施例提供的阵列基板, 将像素电极的一端覆盖在数据线 上方 (同样公共电极也位于数据线之上) , 并在像素电极所在的层与 所述数据线所在的层之间设置一层绝缘层层用于绝缘保护, 这样不仅 仅抑制了数据线对其上方的液晶调制的干扰, 还增大了多维电场的形成范 围, 提高了像素内液晶的调制范围, 进一步提高了透过率。
进一步地, 所述第二绝缘层 6例如为树脂层, 以避免数据线对于像 素电极的干扰, 即, 在像素电极 3所在的层与所述数据线 1所在的层 之间设置一层树脂层。 例如, 所述公共电极 2为等距排布, 在像素内, 狭 缝状或板状的公共电极形成等距排布。 需要说明的是, 由于数据线上方有像 素电极覆盖, 因此公共电极在数据线上方无论是交叠还是非交叠, 对于数据 线的负载都基本没有影响。 数据线上的负载的影响主要就是源于数据线同像 素电极之间形成了电容, 这个可以通过较厚的树脂材料作为绝缘层来改善。 在本实施例的技术方案中, 由底部的板状像素电极和上部的狭缝状公共电极 形成多维电场, 上部公共电极和底部像素电极通过绝缘层, 即第一绝缘层隔 开, 利用像素电极的一端覆盖数据线, 并在像素电极所在的层与所述数据 线所在的层之间设置树脂层, 即第二绝缘层, 用于绝缘保护。 本实施 例的方案不仅仅抑制了数据线对其上方的液晶调制的干扰, 还增大了多维 电场的形成范围, 提高了像素内液晶的调制范围, 进一步提高了透过率。
实施例二
实施例二与实施例一的区别在于: 公共电极作为板状电极, 而像素电极 为狭缝电极; 为板状电极的公共电极的一端覆盖在所述数据线上方, 且所述 极的像素电极形成在公共电极之上, 且与所述公共电极之间设有第一 绝缘层。
因此, 本实施例提供的阵列基板, 将公共电极的一端覆盖在数据线上 方 (同样像素电极也位于数据线之上) , 并在公共电极所在的层与所 述数据线所在的层之间设置一层绝缘层层用于绝缘保护, 这样不仅仅 抑制了数据线对其上方的液晶调制的干扰, 还增大了多维电场的形成范围, 提高了像素内液晶的调制范围, 进一步提高了透过率。
实施例三
本发明实施例还提供一种液晶面板。 如图 3所示, 该实施例的一个示例 的液晶面板包括彩膜基板 100和实施例一所述的阵列基板 200, 以及所述阵 列基板 200和彩膜基板 100之间的液晶层 10。
彩膜基板 100包括: 基底基板 7、 形成在所述基底基板 7上的黑矩阵 8 以及形成在所述黑矩阵 8之间的彩色树脂 9, 所述黑矩阵 8设置在对应于阵 列基板 200上的栅线的位置、 薄膜晶体管的位置以及相邻像素间未设置数据 线的位置。 彩膜基板的黑矩阵 8限定了多个子像素区域, 每个子像素区域包 括彩色树脂 9, 彩色树脂 9包括例如红色树脂、 绿色树脂和蓝色树脂, 由此 分别得到红色、 绿色和蓝色(RGB )子像素。 彩膜基板 100的子像素区域与 阵列基板 200上的子像素区域相对应。
阵列基板 200与彩膜基板 100彼此对置以形成液晶盒, 在液晶盒中填充 液晶材料而得到液晶层 10, 由此得到液晶面板。 阵列基板 200的每个像素区 域的像素电极和公共电极用于施加电场对液晶材料的旋转的程度进行控制从 而进行显示操作。 在一些示例中, 该液晶显示器还包括为液晶面板提供背光 的背光源。
在图 1所示的阵列基板之中, 在数据线 1上方设置较宽的公共电极的结 构, 被公共电极覆盖的区域都不透光。 相比之下, 本实施例的阵列基板 200 之中, 由于在数据线 1上方由像素电极 3覆盖, 所以仅仅是数据线 1正上方 不透光, 这不但去除了数据线 1的信号对液晶电场的干扰, 还增大了液晶光 调制的范围; 并且, 由于由像素电极 3覆盖的数据线 1上方区域对应的液晶 可以正常驱动, 因此数据线 1上方无需再在彩膜基板上的相应位置设置黑矩 阵 8。这样,仅仅在相邻像素间设置黑矩阵 8,黑矩阵 8占据的面积得以减少, 这提高了像素内液晶的调制范围, 进一步提高了透过率。
本实施例的另一个示例的液晶面板包括彩膜基板和实施例二所述的阵列 基板, 以及所述阵列基板和彩膜基板之间的液晶层。
实施例四
本发明的该实施例提供一种上述实施例所述的阵列基板的制备方法。 该 方法包括:
步骤 101、 在基底基板上形成栅线、 数据线和薄膜晶体管, 且所述薄膜 晶体管的栅极与所述栅线连接、 源极与所述数据线连接;
步骤 102、 在形成有栅线、 数据线和薄膜晶体管的基底基板上形成第二 绝缘层;
步骤 103、 在形成有第二绝缘层的基底基板上形成板状电极;
步骤 104、 在形成有板状电极的基底基板上形成与所述板状电极配合产 生多维电场的狭缝状电极, 所述狭缝状电极与所述板状电极之间设有第一绝 缘层。
所述狭缝状电极为像素电极, 所述板状电极为公共电极; 或所述板状电 极为像素电极, 所述狭缝状电极为公共电极, 所述板状电极的一端覆盖在 所述数据线上方。
例如, 所述狭缝电极的狭缝等距排布。
本发明实施例还提供一种彩膜基板的制备方法, 该方法包括:
步骤 201、 在基底基板上形成黑矩阵和彩色树脂, 所述黑矩阵设置在对 应阵列基板上的栅线的位置、 薄膜晶体管的位置以及相邻像素间未设置数据 线的位置。
需要说明的是, 在本发明实施例中, 上述彩膜基板的制备方法有多种示 例, 例如, 可以先形成彩色树脂, 后形成黑矩阵; 或先形成黑矩阵, 后形成 彩色树脂, 本实施例不加以限制。
彩膜基板的黑矩阵限定了多个子像素区域,每个子像素区域包括彩色树 月旨, 彩色树脂包括例如红色树脂、绿色树脂和蓝色树脂, 由此分别得到红色、 绿色和蓝色(RGB )子像素。 彩膜基板的子像素区域与阵列基板上的子像素 区 i或相对应。
阵列基板与彩膜基板彼此对置以形成液晶盒,在液晶盒中填充有液晶材 料, 由此得到液晶面板。 在一些示例中, 该液晶显示器还包括为液晶面板提 供背光的背光源。
当然本发明实施例还可以做一些变化, 比如板状电极可以是公共电极, 狭缝状电极可以是像素电极, 只要二者之间可以形成多维电场即可。 还比如 覆盖数据线的电极不一定就是在栅线、 栅极和薄膜晶体管形成之后再制作, 比如顶栅型的薄膜晶体管, 就是最后制作栅线和栅极, 所以只要能形成可以 正常驱动的薄膜晶体管, 又能保证数据线上方有绝缘保护且可以形成多维电 场即可。
本发明实施例还提供一种显示器件, 比如液晶显示器、 液晶电视、 电子 纸、 数码相框等等, 其包括上述实施例中描述的阵列基板。 当所述显示器件 比如是液晶显示器时, 包括液晶面板, 液晶面板包括阵列基板、 彩膜基板和 位于所述阵列基板和彩膜基板之间的液晶层。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求书
1、 一种阵列基板, 包括:
基底基板,
设置在基底基板上的栅线,
与所述栅线垂直设置的数据线,
所述栅线和所述数据线交叉限定的像素区域, 所述像素区域内设 有薄膜晶体管和像素电极, 与所述像素电极配合产生多维电场的公共电 极,
其中, 所述像素电极为狭缝状电极, 所述公共电极为板状电极; 或所述 像素电极为板状电极, 所述公共电极为狭缝状电极, 所述公共电极与所述 像素电极之间设有第一绝缘层,
其中, 所述板状电极的一端覆盖在所述数据线上方, 且所述板状 电极所在的层与所述数据线所在的层之间设置有第二绝缘层。
2、 根据权利要求 1所述的阵列基板, 其中,
所述第二绝缘层为材质为树脂的树脂层。
3、 根据权利要求 1或 2所述的阵列基板, 其中,
所述狭缝电极的狭缝等距排布。
4、 一种阵列基板的制备方法, 包括:
在基底基板上形成栅线、 数据线和薄膜晶体管, 且所述薄膜晶体管的栅 极与所述栅线连接、 源极与所述数据线连接;
在形成有栅线、 数据线和薄膜晶体管的基底基板上形成第二绝缘层; 在形成有第二绝缘层的基底基板上形成板状电极;
在形成有板状电极的基底基板上形成与所述板状电极配合产生多维电 场的狭缝状电极, 所述狭缝状电极与所述板状电极之间设有第一绝缘层; 其中, 所述狭缝状电极为像素电极, 所述板状电极为公共电极; 或所述 板状电极为像素电极, 所述狭缝状电极为公共电极, 所述板状电极的一端 覆盖在所述数据线上方。
5、 根据权利要求 4所述的方法, 其中,
所述第二绝缘层为材质为树脂的树脂层。
6、 根据权利要求 4或 5所述的方法, 其中,
所述狭缝电极的狭缝等距排布。
7、一种显示器件, 包括:如权利要求 1-3任一权利要求所述的阵列基板。
8、根据权利要求 7所述的显示器件,其中,所述显示器件为液晶显示器, 并且还包括彩膜基板。
9、根据权利要求 8所述的显示器件, 其中, 所述彩膜基板包括黑矩阵以 及形成在所述黑矩阵之间的彩色树脂, 所述黑矩阵设置在对应所述的阵列基 板上的栅线的位置、薄膜晶体管的位置以及相邻像素间未设置数据线的位置。
PCT/CN2012/082446 2011-10-24 2012-09-29 显示器件的阵列基板、彩膜基板及其制备方法 WO2013060222A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/805,149 US9411199B2 (en) 2011-10-24 2012-09-29 Array substrate and color filter substrate of display device and method for manufacturing the same
JP2014536102A JP6105602B2 (ja) 2011-10-24 2012-09-29 表示装置のアレイ基板、カラーフィルター基板およびその製造方法
KR20127030809A KR20130056248A (ko) 2011-10-24 2012-09-29 디스플레이 장치의 어레이 기판 및 컬러 필터 기판, 및 이를 제조하기 위한 방법
EP12780626.3A EP2775345B1 (en) 2011-10-24 2012-09-29 Display device and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110327982.1A CN102629055B (zh) 2011-10-24 2011-10-24 显示器件的阵列基板、彩膜基板及其制备方法
CN201110327982.1 2011-10-24

Publications (1)

Publication Number Publication Date
WO2013060222A1 true WO2013060222A1 (zh) 2013-05-02

Family

ID=46587336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082446 WO2013060222A1 (zh) 2011-10-24 2012-09-29 显示器件的阵列基板、彩膜基板及其制备方法

Country Status (6)

Country Link
US (1) US9411199B2 (zh)
EP (1) EP2775345B1 (zh)
JP (1) JP6105602B2 (zh)
KR (1) KR20130056248A (zh)
CN (1) CN102629055B (zh)
WO (1) WO2013060222A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629055B (zh) 2011-10-24 2015-06-03 北京京东方光电科技有限公司 显示器件的阵列基板、彩膜基板及其制备方法
CN102955621B (zh) * 2012-10-19 2016-04-06 京东方科技集团股份有限公司 基于超高级超维场模式的光学传感式触摸屏及其制备方法
CN102955622B (zh) * 2012-10-19 2016-04-13 京东方科技集团股份有限公司 基于多维电场模式的光学传感式触摸屏及其制备方法
CN103439840B (zh) 2013-08-30 2017-06-06 京东方科技集团股份有限公司 一种阵列基板、显示装置及阵列基板的制造方法
CN103472647B (zh) * 2013-09-22 2016-04-06 合肥京东方光电科技有限公司 一种阵列基板、液晶显示面板及显示装置
CN103488003B (zh) 2013-09-26 2017-02-01 京东方科技集团股份有限公司 一种阵列基板及其制作方法、液晶面板及显示装置
CN103489826B (zh) * 2013-09-26 2015-08-05 京东方科技集团股份有限公司 阵列基板、制备方法以及显示装置
CN103941453A (zh) * 2014-04-09 2014-07-23 合肥京东方光电科技有限公司 一种阵列基板、显示面板和显示装置
CN104360550A (zh) 2014-11-18 2015-02-18 深圳市华星光电技术有限公司 液晶显示器及其阵列基板
CN104597648B (zh) * 2015-01-21 2016-11-30 深圳市华星光电技术有限公司 一种液晶显示面板及装置
CN106024808A (zh) * 2016-06-08 2016-10-12 京东方科技集团股份有限公司 阵列基板及其制备方法、显示器件
WO2019056678A1 (zh) * 2017-09-20 2019-03-28 南京中电熊猫液晶显示科技有限公司 一种液晶显示装置
CN107656402B (zh) * 2017-09-25 2020-09-11 惠科股份有限公司 显示面板及显示面板的制作方法
CN108461533B (zh) * 2018-05-30 2021-03-09 武汉天马微电子有限公司 显示面板和显示装置
CN110412805A (zh) * 2019-07-29 2019-11-05 昆山龙腾光电有限公司 阵列基板及其制作方法、液晶显示装置
CN113632050B (zh) * 2020-01-21 2024-06-18 京东方科技集团股份有限公司 阵列基板和显示面板
CN111308820B (zh) 2020-03-11 2022-07-05 京东方科技集团股份有限公司 阵列基板、显示装置及其控制方法
CN115808818B (zh) * 2022-11-29 2024-01-26 惠科股份有限公司 液晶显示面板、液晶显示面板驱动方法和液晶显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078841A (zh) * 2006-05-22 2007-11-28 三菱电机株式会社 液晶显示装置及其制造方法
CN101174638A (zh) * 2006-10-31 2008-05-07 元太科技工业股份有限公司 电子墨水显示装置及其修补方法
CN101424834A (zh) * 2007-10-31 2009-05-06 索尼株式会社 显示装置
CN102033369A (zh) * 2009-09-25 2011-04-27 北京京东方光电科技有限公司 Ffs型tft-lcd阵列基板的像素结构
US20110216278A1 (en) * 2010-03-08 2011-09-08 Mitsubishi Electric Corporation Array substrate and liquid crystal display device using the same
CN102629055A (zh) * 2011-10-24 2012-08-08 北京京东方光电科技有限公司 显示器件的阵列基板、彩膜基板及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577368B1 (en) * 1997-11-03 2003-06-10 Samsung Electronics Co., Ltd. IPS-LCD having a third electrode having aperture and formed on counter substrate
JP4180690B2 (ja) 1998-06-05 2008-11-12 東芝松下ディスプレイテクノロジー株式会社 液晶表示装置
US7119870B1 (en) 1998-11-27 2006-10-10 Sanyo Electric Co., Ltd. Liquid crystal display device having particular drain lines and orientation control window
US6449026B1 (en) * 1999-06-25 2002-09-10 Hyundai Display Technology Inc. Fringe field switching liquid crystal display and method for manufacturing the same
TW460731B (en) * 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
TW575775B (en) * 2001-01-29 2004-02-11 Hitachi Ltd Liquid crystal display device
JP2002323706A (ja) * 2001-02-23 2002-11-08 Nec Corp 横電界方式のアクティブマトリクス型液晶表示装置及びその製造方法
JP2004341465A (ja) 2003-05-14 2004-12-02 Obayashi Seiko Kk 高品質液晶表示装置とその製造方法
JP4434166B2 (ja) 2005-06-09 2010-03-17 エプソンイメージングデバイス株式会社 液晶装置及び電子機器
JP4813842B2 (ja) * 2005-07-29 2011-11-09 株式会社 日立ディスプレイズ 液晶表示装置
JP2007226175A (ja) 2006-01-26 2007-09-06 Epson Imaging Devices Corp 液晶装置及び電子機器
JP4645488B2 (ja) 2006-03-15 2011-03-09 ソニー株式会社 液晶装置及び電子機器
JP2009103867A (ja) * 2007-10-23 2009-05-14 Sony Corp 表示装置
JP5143583B2 (ja) * 2008-02-08 2013-02-13 株式会社ジャパンディスプレイウェスト 液晶表示パネル
JP2010108963A (ja) * 2008-10-28 2010-05-13 Seiko Epson Corp 電気的固体装置、電気光学装置、および電気的固体装置の製造方法
US8289489B2 (en) * 2009-08-17 2012-10-16 Hydis Technologies Co., Ltd. Fringe-field-switching-mode liquid crystal display and method of manufacturing the same
KR101305378B1 (ko) * 2010-03-19 2013-09-06 엘지디스플레이 주식회사 터치인식 횡전계형 액정표시장치 및 이의 제조 방법
KR20120080885A (ko) * 2011-01-10 2012-07-18 삼성모바일디스플레이주식회사 액정 표시 장치
CN102156369B (zh) 2011-01-18 2013-09-04 京东方科技集团股份有限公司 薄膜晶体管液晶显示阵列基板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078841A (zh) * 2006-05-22 2007-11-28 三菱电机株式会社 液晶显示装置及其制造方法
CN101174638A (zh) * 2006-10-31 2008-05-07 元太科技工业股份有限公司 电子墨水显示装置及其修补方法
CN101424834A (zh) * 2007-10-31 2009-05-06 索尼株式会社 显示装置
CN102033369A (zh) * 2009-09-25 2011-04-27 北京京东方光电科技有限公司 Ffs型tft-lcd阵列基板的像素结构
US20110216278A1 (en) * 2010-03-08 2011-09-08 Mitsubishi Electric Corporation Array substrate and liquid crystal display device using the same
CN102629055A (zh) * 2011-10-24 2012-08-08 北京京东方光电科技有限公司 显示器件的阵列基板、彩膜基板及其制备方法

Also Published As

Publication number Publication date
EP2775345A1 (en) 2014-09-10
EP2775345B1 (en) 2021-05-19
CN102629055B (zh) 2015-06-03
KR20130056248A (ko) 2013-05-29
US20130105831A1 (en) 2013-05-02
EP2775345A4 (en) 2015-06-10
JP6105602B2 (ja) 2017-03-29
JP2014531051A (ja) 2014-11-20
US9411199B2 (en) 2016-08-09
CN102629055A (zh) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2013060222A1 (zh) 显示器件的阵列基板、彩膜基板及其制备方法
US10088720B2 (en) TFT array substrate and display device with tilt angle between strip-like pixel electrodes and direction of initial alignment of liquid crystals
CN103353683B (zh) 一种阵列基板以及包括该阵列基板的显示装置
US8933472B2 (en) Array substrate and display device comprising the same
US20160342048A1 (en) Thin film transistor array substrate, liquid crystal panel and liquid crystal display device
US9323096B2 (en) Pixel unit, method for fabricating the same and liquid crystal display device
US10790306B2 (en) Display substrate, manufacturing method thereof and display device
US10050061B2 (en) Array substrate and manufacturing method thereof, display device
EP2933680B1 (en) Array substrate, liquid crystal display panel and driving method
WO2014190727A1 (zh) 阵列基板及其制造方法、显示装置
US9798171B2 (en) Liquid crystal panel, method for manufacturing the same and display device
WO2015100903A1 (zh) 阵列基板、显示面板及显示装置
KR20130015733A (ko) 횡전계형 액정표시장치
KR20140100383A (ko) 어레이 기판 및 액정 디스플레이 패널
WO2013044783A1 (zh) 阵列基板及其制备方法和显示装置
KR20180107442A (ko) 표시 장치 및 이의 제조 방법
WO2013086919A1 (zh) 阵列基板及其制造方法和显示装置
CN103278986B (zh) 一种阵列基板、显示装置及阵列基板的制造方法
KR20130015734A (ko) 액정표시장치
WO2014201796A1 (zh) 阵列基板及液晶显示装置
US20120169983A1 (en) Liquid crystal display and exposure mask for manufacturing liquid crystal display
KR101799938B1 (ko) 액정표시장치
WO2017049865A1 (zh) 阵列基板、显示装置及其制作方法
TWI685697B (zh) 顯示裝置
KR20130030975A (ko) 액정표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012780626

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127030809

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014536102

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13805149

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12780626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE