WO2013058387A1 - ホスホノスルホン酸化合物を含有する非水電解液、及びリチウム二次電池 - Google Patents

ホスホノスルホン酸化合物を含有する非水電解液、及びリチウム二次電池 Download PDF

Info

Publication number
WO2013058387A1
WO2013058387A1 PCT/JP2012/077162 JP2012077162W WO2013058387A1 WO 2013058387 A1 WO2013058387 A1 WO 2013058387A1 JP 2012077162 W JP2012077162 W JP 2012077162W WO 2013058387 A1 WO2013058387 A1 WO 2013058387A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
carbon atoms
compound represented
mass
Prior art date
Application number
PCT/JP2012/077162
Other languages
English (en)
French (fr)
Inventor
三尾 茂
中村 光雄
野木 栄信
藤山 聡子
秀俊 角田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2013539716A priority Critical patent/JP5695209B2/ja
Priority to US14/350,415 priority patent/US9425484B2/en
Priority to CN201280049604.4A priority patent/CN103875117B/zh
Priority to EP12842359.7A priority patent/EP2770573B1/en
Priority to KR1020147009453A priority patent/KR101562754B1/ko
Publication of WO2013058387A1 publication Critical patent/WO2013058387A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/3804Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se) not used, see subgroups
    • C07F9/3808Acyclic saturated acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4075Esters with hydroxyalkyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids RP(=O)(OH)2; Thiophosphonic acids, i.e. RP(=X)(XH)2 (X = S, Se)
    • C07F9/40Esters thereof
    • C07F9/4071Esters thereof the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/409Compounds containing the structure P(=X)-X-acyl, P(=X) -X-heteroatom, P(=X)-X-CN (X = O, S, Se)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65742Esters of oxyacids of phosphorus non-condensed with carbocyclic rings or heterocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65748Esters of oxyacids of phosphorus the cyclic phosphorus atom belonging to more than one ring system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte containing a phosphonosulfonic acid compound, a lithium secondary battery using the non-aqueous electrolyte, an additive for a lithium secondary battery containing a phosphonosulfonic acid compound, and a phosphonosulfonate. It relates to a sulfonic acid compound.
  • a lithium secondary battery is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium, and a non-aqueous electrolyte containing a lithium salt and a non-aqueous solvent.
  • the positive electrode active material used for the positive electrode for example, lithium metal oxides such as LiCoO 2 , LiMnO 2 , LiNiO 2 , and LiFePO 4 are used.
  • non-aqueous electrolyte a mixed solvent (non-aqueous solvent) of carbonates such as ethylene carbonate, propylene carbonate, ethylene carbonate, and methyl carbonate, LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN ( A solution in which a Li electrolyte such as SO 2 CF 2 CF 3 ) 2 is mixed is used.
  • a Li electrolyte such as SO 2 CF 2 CF 3
  • carbon materials are known, and in particular, occluding lithium.
  • lithium secondary batteries using coke, artificial graphite, and natural graphite that can be released have been put into practical use.
  • a film formed by a decomposition product of a solvent or an inorganic salt formed on the negative electrode surface is known.
  • the negative electrode surface is known to undergo a reductive decomposition reaction of an electrolytic solution because lithium metal is present in the negative electrode active material under charging conditions. If such reductive decomposition occurs continuously, the resistance of the battery increases, the charge / discharge efficiency decreases, and the energy density of the battery decreases.
  • a technology for improving the battery capacity and battery voltage by improving the impregnation property to the battery separator by containing a specific sulfonic acid ester compound see, for example, JP-A-9-27328
  • a specific sulfone A technique for improving cycle characteristics by containing 1,3-propane sultone, which is a cyclic sulfonate derivative as an acid ester see, for example, Japanese Patent No. 3658506
  • electrolysis by containing a specific phosphonocarboxylic acid A technique for improving the flame retardancy of the liquid and the charge / discharge characteristics of the battery (for example, see JP-A-10-189039) has been studied.
  • the present invention has been made to meet the above-mentioned problems, and an object of the present invention is to provide a non-aqueous electrolyte capable of achieving both improvement in low-temperature discharge characteristics of a battery and improvement in storage characteristics of the battery, and the non-aqueous electrolyte. It is to provide a lithium secondary battery using A further object of the present invention is to provide an additive for a lithium secondary battery useful for the non-aqueous electrolyte and a phosphonosulfonic acid compound useful as an additive for the lithium secondary battery.
  • the present inventor has improved the low-temperature discharge characteristics of the battery and improved the battery performance by including a specific phosphonosulfonic acid compound in the non-aqueous electrolyte of the lithium secondary battery.
  • the present invention has been completed by finding out that the storage characteristics can be improved. That is, specific means for solving the above-described problems are as follows.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group, or Represents a group represented by the formula (II), R 4 and R 5 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 6 To express.
  • R 6 , R 7 and R 8 each independently represents an alkyl group having 1 to 6 carbon atoms, a phenyl group or a benzyl group, and m represents an integer of 0 to 2. * Represents a bonding position with an oxygen atom in the general formula (I).
  • R 4 and R 5 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms
  • R 6 , R 7 and R 8 are each independently Represents an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a benzyl group
  • n represents an integer of 1 to 6.
  • Y 1 and Y 2 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • X 1 , X 2 , X 3 and X 4 are each independently a vinyl group, an alkyl group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, a hydrogen atom, a fluorine atom, Or a chlorine atom is shown. However, X 1 , X 2 , X 3 and X 4 are not simultaneously hydrogen atoms.
  • R 9 and R 10 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a group represented by general formula (VII), or a formula (VIII). Represents a group.
  • R 11 is represented by a halogen atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or formula (IX). Represents a group.
  • * In General Formula (VII), Formula (VIII), and Formula (IX) represents a bonding position.
  • M represents an alkali metal.
  • the content of the phosphonosulfonic acid compound represented by the general formula (I) is 0.001% by mass to 10% by mass with respect to the total mass of the nonaqueous electrolytic solution.
  • ⁇ 1> to ⁇ 6> The non-aqueous electrolyte of any one of these.
  • ⁇ 8> The nonaqueous electrolytic solution according to ⁇ 3>, wherein the content of the compound represented by the general formula (IV) is 0.001% by mass to 10% by mass with respect to the total mass of the nonaqueous electrolytic solution.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group, or Represents a group represented by the formula (II), R 4 and R 5 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 6 To express.
  • R 6 , R 7 and R 8 each independently represents an alkyl group having 1 to 6 carbon atoms, a phenyl group or a benzyl group, and m represents an integer of 0 to 2. * Represents a bonding position with an oxygen atom in the general formula (I).
  • R 4 and R 5 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms
  • R 6 , R 7, and R 8 each independently represent carbon Represents an alkyl group, a phenyl group, or a benzyl group of formula 1-6.
  • Positive electrode metal lithium, lithium-containing alloy, metal or alloy capable of alloying with lithium, oxide capable of doping / de-doping lithium ion, transition metal capable of doping / dedoping lithium ion
  • the negative electrode containing at least one selected from the group consisting of a nitride and a carbon material capable of being doped / undoped with lithium ions as a negative electrode active material, and any one of ⁇ 1> to ⁇ 11> And a non-aqueous electrolyte solution.
  • Positive electrode metallic lithium, lithium-containing alloy, metal or alloy capable of alloying with lithium, oxide capable of doping / de-doping lithium ion, transition metal capable of doping / dedoping lithium ion
  • the negative electrode containing at least one selected from the group consisting of a nitride and a carbon material capable of being doped / undoped with lithium ions as a negative electrode active material, and any one of ⁇ 1> to ⁇ 11>
  • a lithium secondary battery obtained by charging and discharging a lithium secondary battery containing the nonaqueous electrolyte solution.
  • the non-aqueous electrolyte which can make compatible the improvement of the low temperature discharge characteristic of a battery and the storage characteristic of a battery, and the lithium secondary battery using this non-aqueous electrolyte can be provided.
  • non-aqueous electrolyte using the phosphonosulfonic acid compound of the present invention a lithium secondary battery using the non-aqueous electrolyte
  • an additive for a lithium secondary battery useful for the non-aqueous electrolyte To do a lithium secondary battery useful for the non-aqueous electrolyte
  • the nonaqueous electrolytic solution of the present invention contains a phosphonosulfonic acid compound represented by the following general formula (I).
  • the nonaqueous electrolytic solution of the present invention may contain other components as desired. With this configuration, the nonaqueous electrolytic solution of the present invention can improve both the low-temperature discharge characteristics of the battery and the storage characteristics of the battery when used in a battery. Therefore, when the non-aqueous electrolyte of the present invention is used for a lithium secondary battery, a lithium secondary battery having excellent low-temperature discharge characteristics and excellent storage characteristics can be realized.
  • the phosphonosulfone compound in the present invention is a phosphonosulfonic acid compound represented by the following general formula (I) (hereinafter also simply referred to as “compound represented by the general formula (I)”).
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, a phenyl group, a benzyl group, or Represents a group represented by the general formula (II),
  • R 4 and R 5 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms, and n is an integer of 1 to 6 Represents.
  • n represents an integer of 2 to 6
  • a plurality of R 4 and R 5 may be the same or different from each other.
  • R 6 , R 7 and R 8 represent an alkyl group having 1 to 6 carbon atoms, a phenyl group or a benzyl group, and m represents an integer of 0 to 2. * Represents a bonding position with an oxygen atom in the general formula (I).
  • the two or more groups represented by general formula (II) are the same, May be different.
  • the “alkyl group” includes a linear alkyl group (linear alkyl group), a branched alkyl group, and a cyclic alkyl group.
  • the “haloalkyl group” means a halogenated alkyl group.
  • the “alkyl group having 1 to 6 carbon atoms” is preferably a linear alkyl group having 1 to 6 carbon atoms or an alkyl group having a branched chain.
  • Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, 2-methylbutyl group, 1-methylpentyl group, neopentyl group, 1-ethylpropyl group Specific examples include hexyl group and 3,3-dimethylbutyl group.
  • the alkyl group is preferably a linear alkyl group having 1 to 4 carbon atoms or a branched alkyl group.
  • the “haloalkyl group having 1 to 6 carbon atoms” means that at least one hydrogen atom in the straight chain alkyl group having 1 to 6 carbon atoms or the branched alkyl group is a halogen atom.
  • the haloalkyl group having 1 to 6 carbon atoms is more preferably a haloalkyl group having 1 to 3 carbon atoms.
  • halogen atom in the general formula (I) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom is preferable.
  • the phenyl group may be unsubstituted or may have a substituent.
  • substituents that can be introduced into the phenyl group include a halogen atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms.
  • a fluorine atom is preferable.
  • the “alkyl group having 1 to 6 carbon atoms” has the same meaning as the above-mentioned “alkyl group having 1 to 6 carbon atoms”, and the preferred embodiment is also the same.
  • haloalkyl group having 1 to 6 carbon atoms has the same meaning as the above-mentioned “haloalkyl group having 1 to 6 carbon atoms”, and the preferred embodiment is also the same.
  • the “alkoxy group having 1 to 6 carbon atoms” is a straight-chain alkoxy group having 1 to 6 carbon atoms or a branched alkoxy group, and includes a methoxy group, ethoxy group Group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, 2-methylbutoxy group, 1-methylpentyloxy group, neopentyloxy group Specific examples include 1-ethylpropoxy group, hexyloxy group, 3,3-dimethylbutoxy group and the like.
  • the alkoxy group having 1 to 6 carbon atoms is more preferably an alkoxy group having 1 to 3 carbon atoms.
  • the benzyl group may be unsubstituted or may have a substituent.
  • substituents that can be introduced into the benzyl group include a halogen atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms.
  • halogen atom alkyl group having 1 to 6 carbon atoms
  • haloalkyl group having 1 to 6 carbon atoms haloalkyl group having 1 to 6 carbon atoms
  • alkoxy group having 1 to 6 carbon atoms are synonymous with “base”.
  • an alkyl group having 1 to 6 carbon atoms “phenyl group”, and “benzyl group” are the same as the above-mentioned “alkyl group having 1 to 6 carbon atoms”, “phenyl group”, and “ Each is synonymous with “benzyl”.
  • n represents an integer of 1 to 6 as described above, but is preferably an integer of 1 to 2.
  • the phosphonosulfonic acid compound represented by the general formula (I) is particularly preferably a phosphonosulfonic acid compound represented by the following general formula (III).
  • R 4 and R 5 each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms
  • R 6 , R 7 and R 8 are each independently An alkyl group having 1 to 6 carbon atoms, a phenyl group, or a benzyl group is represented, and n represents an integer of 1 to 6.
  • halogen atom alkyl group having 1 to 6 carbon atoms
  • phenyl group phenyl group
  • benzyl group are the same as the “halogen atom”, “carbon” in the general formula (I). It is synonymous with “alkyl group of 1-6”, “phenyl group”, and “benzyl group”, respectively.
  • n represents an integer of 1 to 6, but is preferably an integer of 1 to 2.
  • trimethylsilyl bis (trimethylsilyl) phosphonomethanesulfonate trimethylsilylmethyl bis (trimethylsilylmethyl) phosphonomethanesulfonate
  • phosphonomethanesulfonic acid is particularly preferable.
  • the phosphonosulfonic acid compound represented by the general formula (I) is an additive for a lithium secondary battery (preferably an additive for a non-aqueous electrolyte solution of a lithium secondary battery) as described later. Useful as.
  • Specific examples [Exemplary Compound 1 to Exemplified Compound 118] of the phosphonosulfonic acid compound represented by the general formula (I) in the present invention will be described below by specifying each substituent in the general formula (I). The present invention is not limited to these compounds.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Pr represents an n-propyl group
  • iPr represents an isopropyl group
  • Bu represents an n-butyl group.
  • T-Bu represents a tertiary butyl group
  • Pent represents a pentyl group
  • Hex represents a hexyl group
  • Ph represents a phenyl group
  • Bn represents a benzyl group.
  • trimethylsilyl bis (trimethylsilyl) phosphonomethanesulfonate trimethylsilylmethyl bis (trimethylsilylmethyl) phosphonomethanesulfonate
  • Preferable examples include phosphonomethanesulfonic acid, methyl diethylphosphonomethanesulfonate, phenyl 2- (diethoxyphosphoryl) ethanesulfonate, phenyl 2- (hydroxy (trimethylsilyloxy) phosphoryl) ethanesulfonate.
  • Bis (trimethylsilyl) phosphonomethanesulfonate trimethylsilyl which is an example of the phosphonosulfonic acid compound represented by the general formula (I) in the present invention, can be produced by, for example, the steps described below. It is not limited to.
  • n 1, a known method, for example, Tetrahedron, 1987, 43, 5125-5134 Organic and Biomolecular Chemistry, 2007, 5, 160-168 Chemische Berichte, 1980, 113, 142-151 Tetrahedron Letters, 1987, 28, 1101-1104 Manufactured according to the method described in 1. above.
  • the compound represented by the following general formula (Ia) can be produced by the method described below using a compound represented by the following general formula (Ia) as a starting material, but is not limited to this production method.
  • R 1a , R 2a and R 3a are a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 4 , R 5 , R 6 , R 7 and R 8 are R 4 , R 5 , R 6 in general formula (III). , R 7 and R 8 are synonymous with each other.
  • the production method according to the above scheme will be described in detail.
  • the phosphonosulfonic acid compound represented by the general formula (XIII) reacts the compound represented by the general formula (Ia) with the silyl compound represented by the general formula (XIV) in the absence of a solvent or in the presence of a solvent. Can be manufactured.
  • X in the silyl compound represented by the general formula (XIV) used represents a chlorine atom, a bromine atom or an iodine atom, preferably a bromine atom or an iodine atom.
  • the solvent used in the reaction is not particularly limited as long as it does not inhibit the reaction and dissolves the starting materials to some extent.
  • halogenated hydrocarbons such as dichloromethane, dichloroethane and chloroform
  • benzene, toluene, xylene And aromatic hydrocarbons such as chlorobenzene
  • aliphatic hydrocarbons such as hexane, cyclohexane and heptane
  • a mixed solvent thereof preferably halogenated hydrocarbons or aromatic hydrocarbons. More preferably, it is dichloromethane or toluene.
  • the amount of the solvent is usually 0.1 liter to 10 liters, preferably 0.1 liter to 5 liters, per 1 mol of the compound represented by the general formula (Ia).
  • the reaction temperature varies depending on the raw material compound, the reaction reagent, the solvent and the like, it can usually be carried out in the range of 0 ° C. to the reflux temperature in the reaction system, preferably 10 ° C. to 40 ° C.
  • the reaction time varies depending on the raw material compound, reaction reagent, solvent, reaction temperature and the like, it can usually be carried out in the range of 0.5 to 48 hours, preferably 1 to 24 hours.
  • the compound represented by the general formula (Ia) used in this step is available as a commercial product or is produced by a known method. Specifically, it is manufactured by the method described in Tetrahedron, 1987, 43, 5125-5134, for example.
  • the phosphonosulfonic acid compound represented by the general formula (I) is useful as an additive for a lithium secondary battery, particularly as an additive for a non-aqueous electrolyte solution of a lithium secondary battery described later.
  • a lithium secondary battery having excellent low-temperature discharge characteristics and excellent storage characteristics can be realized.
  • the reason why the phosphonosulfonic acid compound represented by the general formula (I) has the above effect will be described.
  • the phosphonosulfonic acid compound represented by the general formula (I) having this skeleton is formed when the film is formed on the negative electrode side by initial charging.
  • the phosphonosulfonic acid compound represented by the above general formula (I) has both a phosphonic acid structure and a sulfonic acid structure on the same molecule, so that it is active on the positive electrode side. Effectively suppresses resistance increase and capacity decrease due to structural change of substances and elution of contained transition metals, and effective increase in resistance and capacity decrease due to excessive formation of coating and precipitation of transition metals on the negative electrode side. Can be suppressed.
  • This action is the main action, and it is presumed that a battery having excellent storage characteristics can be provided.
  • the present invention is not limited by the above estimation.
  • the phosphonosulfonic acid compound represented by the following general formula (XIII) in the present invention is a novel compound.
  • the phosphonosulfonic acid compound represented by the following general formula (XIII) is a compound in which n in the general formula (III) is 1 among the phosphonosulfonic acid compounds represented by the general formula (III). is there.
  • R 4, R 5, R 6, R 7 and R 8 are the same meanings as R 4, R 5, R 6 , R 7 and R 8 in the general formula (III).
  • R 4 and R 5 are each independently preferably a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms
  • R 6 , R 7 and R 8 are each independently Further, a methyl group, an ethyl group, a t-butyl group, a phenyl group, or a benzyl group is preferable.
  • the phosphonosulfonic acid compound represented by the general formula (XIII) is also useful as an additive for a nonaqueous electrolytic solution.
  • the nonaqueous electrolytic solution of the present invention includes the phosphonosulfonic acid compound represented by the general formula (I) described above (the phosphonosulfonic acid compound represented by the general formula (III) or the general formula (XIII)). Yes; the same shall apply hereinafter) may be contained alone or in combination of two or more.
  • the content of the phosphonosulfonic acid compound represented by the general formula (I) in the nonaqueous electrolytic solution of the present invention is 0.001% by mass to 10% by mass with respect to the total mass of the nonaqueous electrolytic solution.
  • the range of 0.05% by mass to 5% by mass is more preferable. In this range, a lithium secondary battery having excellent low-temperature discharge characteristics and excellent battery storage characteristics can be realized more effectively.
  • the nonaqueous electrolytic solution of the present invention may contain other components in addition to the phosphonosulfonic acid compound represented by the general formula (1) as necessary.
  • the other components include a compound represented by the following general formula (IV), a compound represented by the following general formula (V), and a later described, from the viewpoint of more effectively obtaining the effects of the present invention.
  • examples of the other components include an electrolyte and a nonaqueous solvent described later.
  • the additive for lithium secondary batteries of this invention contains the phosphonosulfonic acid compound represented by the said general formula (I).
  • the additive for lithium secondary batteries of the present invention may contain other components in addition to the phosphonosulfonic acid compound represented by the general formula (1) as necessary. Examples of the other components include a compound represented by general formula (IV) described later, a compound represented by general formula (V) described below, and a general formula (described later) from the viewpoint of further improving the above effect.
  • the nonaqueous electrolytic solution of the present invention is characterized by containing the phosphonosulfonic acid compound represented by the general formula (I), and optionally contains other known components. Can do.
  • the nonaqueous electrolytic solution generally contains a nonaqueous solvent and an electrolyte.
  • Nonaqueous solvent Various known solvents can be appropriately selected as the non-aqueous solvent in the present invention, but it is preferable to use a cyclic aprotic solvent and / or a chain aprotic solvent. In order to improve the safety of the battery, when aiming to improve the flash point of the solvent, it is preferable to use a cyclic aprotic solvent as the non-aqueous solvent.
  • Cyclic aprotic solvent As the cyclic aprotic solvent, cyclic carbonate, cyclic carboxylic acid ester, cyclic sulfone, and cyclic ether can be used.
  • the cyclic aprotic solvent may be used alone or in combination of two or more.
  • the mixing ratio of the cyclic aprotic solvent in the non-aqueous solvent is preferably 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. By setting it as such a ratio, the electroconductivity related to the charge / discharge characteristics of the battery can be further increased.
  • cyclic carbonate examples include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and the like.
  • ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used.
  • ethylene carbonate is more preferable.
  • cyclic carboxylic acid ester examples include ⁇ -butyrolactone, ⁇ -valerolactone, alkyl substitution products such as methyl ⁇ -butyrolactone, ethyl ⁇ -butyrolactone, and ethyl ⁇ -valerolactone.
  • the cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, a high dielectric constant, and can lower the viscosity of the electrolytic solution without lowering the degree of dissociation between the flash point of the electrolytic solution and the electrolyte.
  • a cyclic carboxylic acid ester as the cyclic aprotic solvent.
  • a cyclic carboxylic acid ester ⁇ -butyrolactone is most preferred.
  • the cyclic carboxylic acid ester is preferably used by mixing with another cyclic aprotic solvent. For example, a mixture of a cyclic carboxylic acid ester and a cyclic carbonate and / or a chain carbonate can be mentioned.
  • cyclic sulfone examples include sulfolane, 2-methyl sulfolane, 3-methyl sulfolane, dimethyl sulfone, diethyl sulfone, dipropyl sulfone, methyl ethyl sulfone, methyl propyl sulfone and the like.
  • An example of a cyclic ether is dioxolane.
  • Chain aprotic solvent As the chain aprotic solvent of the present invention, a chain carbonate, a chain carboxylic acid ester, a chain ether, a chain phosphate, or the like can be used.
  • the mixing ratio of the chain aprotic solvent in the non-aqueous solvent is preferably 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. .
  • chain carbonate examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, Examples include ethyl pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, dioctyl carbonate, and methyltrifluoroethyl carbonate.
  • These chain carbonates may be used as a mixture of two or more.
  • chain carboxylic acid ester examples include methyl pivalate.
  • chain ether examples include dimethoxyethane.
  • chain phosphate ester examples include trimethyl phosphate.
  • the nonaqueous solvent used in the nonaqueous electrolytic solution of the present invention may be used alone or in combination. Further, only one or more types of cyclic aprotic solvents may be used, or only one or more types of chain aprotic solvents may be used, or cyclic aprotic solvents and chain proticity may be used. You may mix and use a solvent. When the load characteristics and low temperature characteristics of the battery are particularly intended to be improved, it is preferable to use a combination of a cyclic aprotic solvent and a chain aprotic solvent as the nonaqueous solvent.
  • the conductivity of the electrolytic solution related to the charge / discharge characteristics of the battery can be increased by a combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or the chain carbonate.
  • cyclic carbonate and chain carbonate specifically, ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, propylene carbonate and Diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate Diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate Diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and die
  • the mixing ratio of the cyclic carbonate and the chain carbonate is represented by mass ratio, and the cyclic carbonate: chain carbonate is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, and particularly preferably 15 : 85 to 55:45.
  • the cyclic carbonate: chain carbonate is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, and particularly preferably 15 : 85 to 55:45.
  • cyclic carboxylic acid esters and cyclic carbonates and / or chain carbonates include ⁇ -butyrolactone and ethylene carbonate, ⁇ -butyrolactone and ethylene carbonate and dimethyl carbonate, and ⁇ -butyrolactone and ethylene carbonate and methylethyl.
  • the nonaqueous electrolytic solution of the present invention may contain a solvent other than the above as a nonaqueous solvent.
  • solvents include amides such as dimethylformamide, chain carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, N, N-dimethylimidazolidinone, and the like.
  • boron compounds such as cyclic urea, trimethyl borate, triethyl borate, tributyl borate, trioctyl borate, trimethylsilyl borate, and polyethylene glycol derivatives represented by the following general formula.
  • electrolytes can be used for the nonaqueous electrolytic solution of the present invention, and any of them can be used as long as it is normally used as an electrolyte for a nonaqueous electrolytic solution.
  • the electrolyte in the present invention is usually preferably contained in the nonaqueous electrolyte at a concentration of 0.1 mol / L to 3 mol / L, preferably 0.5 mol / L to 2 mol / L.
  • the nonaqueous electrolytic solution of the present invention desirably contains LiPF 6 in particular. Since LiPF 6 has a high degree of dissociation, the conductivity of the electrolytic solution can be increased, and the reductive decomposition reaction of the electrolytic solution on the negative electrode can be suppressed.
  • LiPF 6 may be used alone, or LiPF 6 and other electrolytes may be used. Any other electrolyte can be used as long as it is normally used as an electrolyte for a non-aqueous electrolyte, but lithium salts other than LiPF 6 are preferred among the specific examples of the lithium salts described above. .
  • the ratio of LiPF 6 in the lithium salt is preferably 1% by mass to 100% by mass, more preferably 10% by mass to 100% by mass, and still more preferably 50% by mass to 100% by mass.
  • Such an electrolyte is preferably contained in the non-aqueous electrolyte at a concentration of 0.1 mol / L to 3 mol / L, preferably 0.5 mol / L to 2 mol / L.
  • the nonaqueous electrolytic solution of the present invention can contain a compound represented by the general formula (IV).
  • the form in which the nonaqueous electrolytic solution of the present invention contains a compound represented by the general formula (IV) is preferable in terms of forming a surface film on the negative electrode.
  • Y 1 and Y 2 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • Examples of the compound represented by the general formula (IV) include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, dimethyl vinylene carbonate, diethyl vinylene carbonate, and dipropyl vinylene carbonate. Of these, vinylene carbonate is most preferred.
  • the nonaqueous electrolytic solution of the present invention contains a compound represented by the general formula (IV)
  • the compound represented by the general formula (IV) may be contained alone or in two kinds. It may be the above.
  • the content of the compound represented by the general formula (IV) can be appropriately selected according to the purpose, The amount is preferably 0.001% by mass to 10% by mass and more preferably 0.05% by mass to 5% by mass with respect to the total mass of the liquid.
  • the content of the phosphonosulfonic acid compound represented by the above general formula (I) is nonaqueous.
  • the content is preferably 0.001% by mass to 10% by mass and more preferably 0.05% by mass to 5% by mass with respect to the total mass of the electrolytic solution. Within this range, it is possible to more effectively improve the low-temperature discharge characteristics of the battery and the storage characteristics of the battery.
  • the nonaqueous electrolytic solution of the present invention can contain a compound represented by the general formula (V).
  • the form in which the nonaqueous electrolytic solution of the present invention contains the compound represented by the general formula (V) is preferable in terms of forming a surface film on the negative electrode.
  • X 1 , X 2 , X 3 and X 4 are each independently a vinyl group, an alkyl group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, a hydrogen atom or a fluorine atom. Or a chlorine atom. However, X 1 , X 2 , X 3 and X 4 are not simultaneously hydrogen atoms.
  • X 1 , X 2 , X 3 and X 4 represent an alkyl group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, carbon which may be substituted with a fluorine atom
  • alkyl group having 1 to 3 include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group, and a heptafluoropropyl group.
  • vinyl ethylene carbonate, 4,5-difluoroethylene carbonate, and 4-fluoroethylene carbonate are most desirable.
  • the nonaqueous electrolytic solution of the present invention contains the compound represented by the general formula (V)
  • the compound represented by the general formula (V) contained may be only one kind or two kinds. It may be the above.
  • the content of the compound represented by the general formula (V) can be appropriately selected according to the purpose.
  • the amount is preferably 0.001% by mass to 10% by mass and more preferably 0.05% by mass to 5% by mass with respect to the total mass of the liquid.
  • the nonaqueous electrolytic solution of the present invention may contain both the compound represented by the general formula (IV) and the compound represented by the general formula (V). The same as the preferable content described above.
  • the content of the phosphonosulfonic acid compound represented by the general formula (I) is nonaqueous.
  • the content is preferably 0.001% by mass to 10% by mass and more preferably 0.05% by mass to 5% by mass with respect to the total mass of the electrolytic solution. Within this range, it is possible to more effectively improve the low-temperature discharge characteristics of the battery and the storage characteristics of the battery.
  • the nonaqueous electrolytic solution of the present invention can contain a compound represented by the general formula (VI).
  • the form in which the nonaqueous electrolytic solution of the present invention contains a compound represented by the general formula (VI) is preferable in terms of forming a surface film on the negative electrode.
  • the compound represented by the general formula (VI) is a cyclic sulfate compound.
  • the compound represented by the general formula (VI) is also referred to as “a cyclic sulfate compound represented by the general formula (VI)”.
  • R 9 and R 10 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a group represented by general formula (VII), or a formula (VIII). Represents a group.
  • R 11 is represented by a halogen atom, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or formula (IX). Represents a group.
  • * In General Formula (VII), Formula (VIII), and Formula (IX) represents a bonding position. When two groups represented by the general formula (VII) are included in the compound represented by the general formula (VI), the two groups represented by the general formula (VII) May be different.
  • halogen atom in the general formula (VI) (specifically in the general formula (VII)) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a fluorine atom is preferable.
  • the “alkyl group having 1 to 6 carbon atoms” has the same meaning as the “alkyl group having 1 to 6 carbon atoms” in the general formula (I), and specific examples thereof are also the same. .
  • the alkyl group having 1 to 6 carbon atoms in the general formula (VI) is more preferably an alkyl group having 1 to 3 carbon atoms.
  • the “haloalkyl group having 1 to 6 carbon atoms” has the same meaning as the “haloalkyl group having 1 to 6 carbon atoms” in the general formula (I), and specific examples thereof are also the same.
  • the haloalkyl group having 1 to 6 carbon atoms in the general formula (VI) is more preferably a haloalkyl group having 1 to 3 carbon atoms.
  • the “C 1-6 alkoxy group” is a linear alkoxy group having 1 to 6 carbon atoms or a branched alkoxy group, and includes a methoxy group, an ethoxy group, and a propoxy group.
  • the alkoxy group having 1 to 6 carbon atoms is more preferably an alkoxy group having 1 to 3 carbon atoms.
  • R 9 in the general formula (VI) is preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a group represented by the general formula (VII) (in the general formula (VII), R 11 is It is preferably a fluorine atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IX). It is a group represented by the formula (VIII).
  • R 10 in the general formula (VI) is preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a group represented by the general formula (VII) (in the general formula (VII), R 11 is A fluorine atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IX)), or
  • the group represented by the formula (VIII) is more preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
  • R 11 in the general formula (VII) is a halogen atom, having 1 to 6 carbon atoms as described above.
  • R 11 is more preferably a fluorine atom, a carbon number of 1 to 3
  • a fluorine atom a methyl group, an ethyl group, a methoxy group A group, an ethoxy group, or a group represented by the formula (IX).
  • R 10 in the general formula (VI) is a group represented by the general formula (VII)
  • the preferred range of R 11 in the general formula (VII) is the R in the general formula (VI). This is the same as the preferred range of R 11 when 9 is a group represented by the general formula (VII).
  • R 9 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the general formula (VII) (the general formula ( VII), R 11 is a fluorine atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IX).
  • R 10 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the general formula (VII) (the general formula In (VII), R 11 is a fluorine atom, an alkyl group having 1 to 3 carbon atoms, a haloalkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a group represented by the formula (IX). Or a combination which is a group represented by the formula (VIII).
  • R 9 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the general formula (VII) (the general formula In (VII), R 11 is preferably a fluorine atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a group represented by the above formula (IX)) or represented by the above formula (VIII).
  • R 10 is a hydrogen atom or a methyl group.
  • R 9 and R 10 in the general formula (VI) are a group represented by the formula (VIII), and R 10 is a hydrogen atom.
  • a combination (most preferably 1,2: 3,4-di-O-sulfanyl-meso-erythritol).
  • the compound in which R 9 is a group represented by the general formula (VII) is a compound represented by the following general formula (XV).
  • R 10 and R 11 are the same meanings as R 10 and R 11 in the general formula (VI) and the general formula (VII).
  • R 10 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 11 is a halogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon number.
  • a compound having a haloalkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a group represented by the formula (IX) is preferable.
  • R 10 is a hydrogen atom or a methyl group
  • R 11 is a fluorine atom, a methyl group, an ethyl group, a methoxy group, an ethoxy group, or the above formula.
  • a compound which is a group represented by (IX) is particularly preferred.
  • the nonaqueous electrolytic solution of the present invention contains a compound represented by the general formula (VI)
  • the compound represented by the general formula (VI) contained may be only one kind or two kinds. It may be the above.
  • the content of the compound represented by the general formula (VI) can be appropriately selected according to the purpose, The amount is preferably 0.001% by mass to 10% by mass and more preferably 0.05% by mass to 5% by mass with respect to the total mass of the liquid.
  • the content of the phosphonosulfonic acid compound represented by the general formula (I) is nonaqueous.
  • the content is preferably 0.001% by mass to 10% by mass and more preferably 0.05% by mass to 5% by mass with respect to the total mass of the electrolytic solution. Within this range, it is possible to more effectively improve the low-temperature discharge characteristics of the battery and the storage characteristics of the battery.
  • the nonaqueous electrolytic solution of the present invention is further composed of lithium difluorophosphate (LiOP (O) F 2 ), a compound represented by the following general formula (X), It is preferable to contain at least one compound selected from the group consisting of a compound represented by the general formula (XI) and a compound represented by the following general formula (XII). At least one compound selected from this group is an electrolyte compound. Hereinafter, at least one compound selected from this group may be referred to as a “specific electrolyte compound”.
  • the electrolyte in the nonaqueous electrolytic solution of the present invention only an electrolyte other than the specific electrolyte compound (for example, the general electrolyte described above) may be used, or only the specific electrolyte compound may be used, or the specific electrolyte compound may be used.
  • An electrolyte other than the above and a specific electrolyte compound may be used in combination.
  • the non-aqueous electrolyte of the present invention includes, as an electrolyte, a specific electrolyte compound and an electrolyte other than the specific electrolyte compound, the electrical conductivity that is the basic performance of an electrolyte for a normal non-aqueous electrolyte is obtained.
  • the battery performance (particularly the low-temperature discharge characteristics of the battery during initial storage and charging) is further improved. Furthermore, when at least one of the specific electrolyte compound and the electrolyte other than the specific electrolyte compound contains lithium ions, it becomes a stable supply source of lithium ions.
  • M is an alkali metal.
  • the M is preferably lithium, sodium, or potassium, and more preferably lithium.
  • the non-aqueous electrolyte of the present invention comprises lithium difluorophosphate, a compound represented by general formula (X), a compound represented by general formula (XI), and a compound represented by general formula (XII).
  • a compound represented by general formula (X) When containing at least one compound selected from the group, it is represented by lithium difluorophosphate, a compound represented by the general formula (X), a compound represented by the general formula (XI), and a general formula (XII).
  • the total content of the compound to be formed is preferably 0.001% by mass to 10% by mass, more preferably 0.05% by mass to 5% by mass with respect to the total mass of the non-aqueous electrolyte. . In this range, it is possible to achieve both the improvement of the low temperature characteristics of the battery and the improvement of the storage characteristics of the battery more effectively.
  • the nonaqueous electrolytic solution of the present invention includes lithium difluorophosphate, a compound represented by the general formula (X), a compound represented by the general formula (XI), and a compound represented by the general formula (XII)
  • the content of the phosphonosulfonic acid compound represented by the general formula (I) is 0.001 with respect to the total mass of the non-aqueous electrolyte.
  • the mass is preferably from 10% by mass to 10% by mass, and more preferably from 0.05% by mass to 5% by mass. Within this range, it is possible to more effectively improve the low-temperature discharge characteristics of the battery and the storage characteristics of the battery.
  • the non-aqueous electrolyte of the present invention is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, and an electric double layer capacitor. It can also be used as an electrolytic solution for aluminum electrolytic capacitors.
  • the lithium secondary battery of the present invention basically comprises a negative electrode, a positive electrode, and the non-aqueous electrolyte of the present invention, and a separator is usually provided between the negative electrode and the positive electrode. .
  • the negative electrode active material constituting the negative electrode is metal lithium, a lithium-containing alloy, a metal or alloy that can be alloyed with lithium, an oxide that can be doped / undoped with lithium ions, and a lithium ion doped / undoped
  • At least one selected from possible transition metal nitrides and carbon materials capable of doping and dedoping lithium ions may be used alone or a mixture containing two or more of these may be used.
  • metals or alloys that can be alloyed with lithium (or lithium ions) include silicon, silicon alloys, tin, and tin alloys. Further, lithium titanate may be used.
  • carbon materials that can be doped / undoped with lithium ions are preferable.
  • examples of such carbon materials include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), amorphous carbon materials, and the like.
  • the form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.
  • amorphous carbon material examples include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or less, and mesopause bitch carbon fiber (MCF).
  • the graphite material examples include natural graphite and artificial graphite. As artificial graphite, graphitized MCMB, graphitized MCF, and the like are used. Further, as the graphite material, a material containing boron can be used. As the graphite material, those coated with a metal such as gold, platinum, silver, copper and tin, those coated with amorphous carbon, and those obtained by mixing amorphous carbon and graphite can be used.
  • carbon materials may be used alone or in combination of two or more.
  • a carbon material having a (002) plane distance d (002) of 0.340 nm or less measured by X-ray analysis is particularly preferable.
  • graphite having a true density of 1.70 g / cm 3 or more or a highly crystalline carbon material having properties close thereto is also preferable.
  • the energy density of the battery can be further increased.
  • transition metal oxides or transition metal sulfides such as MoS 2 , TiS 2 , MnO 2 , V 2 O 5 , LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi X Co (1-X) O 2 [0 ⁇ X ⁇ 1]
  • composite oxide composed of lithium and transition metal such as LiFePO 4 , polyaniline, polythiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiadiazole, polyaniline complex
  • a composite oxide composed of lithium and a transition metal is particularly preferable.
  • a carbon material can be used as the positive electrode.
  • a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
  • Said positive electrode active material may be used by 1 type, and may mix and use 2 or more types.
  • the positive electrode active material has insufficient conductivity, it can be used together with a conductive auxiliary agent to constitute a positive electrode.
  • the conductive assistant include carbon materials such as carbon black, amorphous whiskers, and graphite.
  • the separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte.
  • a microporous polymer film is preferably used as the porous film, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, and polyester.
  • porous polyolefin is preferable.
  • a porous polyethylene film, a porous polypropylene film, or a multilayer film of a porous polyethylene film and a polypropylene film can be exemplified.
  • other resin excellent in thermal stability may be coated.
  • Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swollen with an electrolytic solution, and the like.
  • the nonaqueous electrolytic solution of the present invention may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.
  • the lithium secondary battery of this invention contains the said negative electrode active material, a positive electrode active material, and a separator.
  • the lithium secondary battery of the present invention can take various known shapes, and can be formed into a cylindrical shape, a coin shape, a square shape, a film shape, or any other shape.
  • the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.
  • An example of the non-aqueous electrolyte secondary battery of the present invention is a coin-type battery shown in FIG. In the coin-type battery shown in FIG.
  • a disc-shaped negative electrode 2 a separator 5 into which a non-aqueous electrolyte solution obtained by dissolving an electrolyte in a non-aqueous solvent, a disc-shaped positive electrode 1, stainless steel, or aluminum as necessary
  • Spacer plates 7 and 8 are stacked in this order and accommodated between positive electrode can 3 (hereinafter also referred to as “battery can”) and sealing plate 4 (hereinafter also referred to as “battery can lid”).
  • the positive electrode can 3 and the sealing plate 4 are caulked and sealed via a gasket 6.
  • the lithium secondary battery of the present invention is obtained by charging / discharging a lithium secondary battery (lithium secondary battery before charge / discharge) including a negative electrode, a positive electrode, and the non-aqueous electrolyte of the present invention.
  • a lithium secondary battery may also be used. That is, the lithium secondary battery of the present invention is prepared by first preparing a lithium secondary battery before charge / discharge including a negative electrode, a positive electrode, and the non-aqueous electrolyte of the present invention, and then before the charge / discharge. It may be a lithium secondary battery (charged / discharged lithium secondary battery) produced by charging / discharging the lithium secondary battery one or more times.
  • non-aqueous electrolyte of the present invention and the lithium secondary battery using the non-aqueous electrolyte is not particularly limited, and can be used for various known uses.
  • Methyl methanesulfonate (5.00 g, 45.4 mmol) was dissolved in tetrahydrofuran (100 ml), and n-butyllithium (1.6 M hexane solution, 31 ml, 49.9 mmol) was added dropwise while cooling to -78 ° C. Stir at temperature for 30 minutes. Subsequently, diethyl phosphoric acid chloride (3.9 ml, 27.2 mmol) was added dropwise, and the mixture was stirred at ⁇ 78 ° C. for 1 hour and at ⁇ 50 ° C. for 30 minutes.
  • a lithium secondary battery was produced by the following procedure. ⁇ Production of negative electrode> 20 parts by mass of artificial graphite, 80 parts by mass of natural graphite, 1 part by mass of carboxymethyl cellulose and 2 parts by mass of SBR latex were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied to a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m, dried, and then compressed by a roll press to form a sheet-like material comprising a negative electrode current collector and a negative electrode active material layer. A negative electrode was obtained. The coating density of the negative electrode active material layer at this time was 10 mg / cm 2 , and the packing density was 1.5 g / ml.
  • the coating density of the positive electrode active material layer at this time was 30 mg / cm 2 , and the packing density was 2.5 g / ml.
  • the above-mentioned negative electrode was 14 mm in diameter and the above-mentioned positive electrode was 13 mm in diameter, and each was punched into a disk shape to obtain coin-shaped electrodes (negative electrode and positive electrode). Further, a microporous polyethylene film having a thickness of 20 ⁇ m was punched into a disk shape having a diameter of 17 mm to obtain a separator.
  • the obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode are stacked in this order in a battery can (2032 size) made of stainless steel, and 20 ⁇ l of non-aqueous electrolyte is injected to impregnate the separator, the positive electrode, and the negative electrode. I let you.
  • a coin-type lithium secondary battery (hereinafter, also referred to as “coin-type battery” or “test battery”) having the configuration shown in FIG. Each measurement was implemented about the obtained coin-type battery (battery for a test).
  • the capacity maintenance rate [%] was calculated in the same manner for the coin type battery of Comparative Example 1 described later. From these results, the capacity retention ratio (relative value;%) in Example 1 when the capacity retention ratio in Comparative Example 1 was taken as 100% was determined. The obtained capacity retention ratio (relative value;%) is shown in Table 1.
  • resistance value (-20 °C) [%] (Resistance value after high-temperature storage test in Example 1 [ ⁇ ] ( ⁇ 20 ° C.) / Resistance value after high-temperature storage test in Comparative Example 1 [ ⁇ ] ( ⁇ 20 ° C.)) ⁇ 100 [%]
  • Example 2 In the preparation of the nonaqueous electrolytic solution in Example 1, the exemplary compound 71 was added in place of the exemplary compound 23 so that the content with respect to the total mass of the finally obtained nonaqueous electrolytic solution was 0.5 wt%.
  • a coin-type battery was obtained in the same manner as Example 1 except for the above. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 3 In the preparation of the nonaqueous electrolytic solution in Example 1, the exemplary compound 10 was added in place of the exemplary compound 23 so that the content with respect to the total mass of the finally obtained nonaqueous electrolytic solution was 0.5 wt%.
  • a coin-type battery was obtained in the same manner as Example 1 except for the above. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 4 In the preparation of the nonaqueous electrolytic solution in Example 1, Example Compound 1 was added in place of Exemplary Compound 23 so that the content with respect to the total mass of the finally obtained nonaqueous electrolytic solution was 0.5 wt%.
  • a coin-type battery was obtained in the same manner as in Example 1 except for the above. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 5 In the preparation of the nonaqueous electrolytic solution in Example 1, the exemplary compound 43 was added in place of the exemplary compound 23 so that the content with respect to the total mass of the finally obtained nonaqueous electrolytic solution was 0.5 wt%.
  • a coin-type battery was obtained in the same manner as Example 1 except for the above. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 6 In the preparation of the nonaqueous electrolyte solution in Example 1, instead of the exemplified compound 23, the exemplified compound 81 was added so that the content with respect to the total mass of the finally obtained nonaqueous electrolyte solution was 0.5 wt%.
  • a coin-type battery was obtained in the same manner as in Example 1 except that. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • Example 1 A coin-type battery was obtained in the same manner as in Example 1 except that the additive (Exemplary Compound 23) was not added in the preparation of the nonaqueous electrolytic solution in Example 1. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 1.
  • the addition amount of the additive for non-aqueous electrolyte in Table 1 and Tables 2 and 3 described below means mass% (wt%) with respect to the total mass of the non-aqueous electrolyte finally obtained.
  • the “general formula (I) compound” means a phosphonosulfonic acid compound represented by the general formula (1).
  • the structures of exemplary compounds used in Examples and Comparative Examples are shown below.
  • Examples 1 to 6 can significantly reduce the low-temperature resistance value while maintaining the capacity retention rate as the storage characteristics. Further, in Examples 1 to 6, compared with Comparative Example 1, the low-temperature resistance value as an initial characteristic can be significantly reduced. On the other hand, in Comparative Example 2 to which Comparative Compound 1 was added, there was an adverse effect due to the addition of Comparative Compound 1 with respect to storage characteristics, and the low-temperature resistance value as an initial characteristic tended to increase.
  • Example 7 In the preparation of the non-aqueous electrolyte in Example 1, vinylene carbonate (Compound A) was further added as an additive so that the content with respect to the total mass of the finally obtained non-aqueous electrolyte was 0.5 wt%.
  • a coin-type battery was obtained in the same manner as in Example 1 except that. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 8 to 13 In the preparation of the non-aqueous electrolyte in Example 7, instead of vinylene carbonate (Compound A), the compounds B to G were each 0.5 wt% based on the total mass of the non-aqueous electrolyte finally obtained.
  • a coin-type battery was obtained in the same manner as in Example 7 except that it was added as described above. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 14 In the preparation of the non-aqueous electrolyte in Example 3, vinylene carbonate (Compound A) was further added as an additive so that the content with respect to the total mass of the finally obtained non-aqueous electrolyte was 0.5 wt%.
  • a coin-type battery was obtained in the same manner as in Example 3 except that. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 15 to 20 In the preparation of the non-aqueous electrolyte in Example 14, each of compounds B to G instead of vinylene carbonate (compound A) and the content with respect to the total mass of the finally obtained non-aqueous electrolyte are 0.5 wt%, respectively.
  • a coin-type battery was obtained in the same manner as in Example 14 except for the addition. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 21 In the preparation of the nonaqueous electrolytic solution in Example 4, the compound G was further added as an additive so that the content with respect to the total mass of the finally obtained nonaqueous electrolytic solution was 0.5 wt%.
  • a coin-type battery was obtained in the same manner as in Example 4. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 22 In the preparation of the nonaqueous electrolytic solution in Example 5, the compound G was further added as an additive so that the content with respect to the total mass of the finally obtained nonaqueous electrolytic solution was 0.5 wt%.
  • a coin-type battery was obtained in the same manner as in Example 5. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 23 In the preparation of the nonaqueous electrolytic solution in Example 6, the compound G was further added as an additive so that the content with respect to the total mass of the finally obtained nonaqueous electrolytic solution was 0.5 wt%.
  • a coin-type battery was obtained in the same manner as in Example 6. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Example 7 in which the compound represented by the general formula (1) and any one of Compounds A to G were used as an additive was used as an additive.
  • the low-temperature resistance value can be significantly reduced while maintaining the capacity retention rate. Further, in Examples 7 to 23, compared to Comparative Example 1, the low-temperature resistance value as the initial characteristic can be significantly reduced.
  • Examples 24 to 31 In Examples 7 to 9, 13 to 16, and 20, the content of the compound represented by the general formula (1) is 1.5 wt% with respect to the total mass of the nonaqueous electrolyte finally obtained.
  • a coin-type battery was obtained in the same manner as in Examples 7 to 9, 13 to 16, and 20 except that the amount was increased. Each measurement was carried out on the obtained coin-type battery in the same manner as in Example 1. The evaluation results are shown in Table 3.
  • Example 7 As shown in Table 3, in Examples 24 to 31 in which the amount of the compound represented by the general formula (1) was increased with respect to Examples 7 to 9, 13 to 16, and 20, Example 7 The same effects as in -9, 13-16, and 20 were confirmed.

Abstract

 本発明では、下記一般式(I)で表されるホスホノスルホン酸化合物を含有する非水電解液が提供される〔一般式(I)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、フェニル基、ベンジル基、又は一般式(II)で表される基を表し、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表し、nは、1~6の整数を表す。一般式(II)中、R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、フェニル基、又はベンジル基を表し、mは、0~2の整数を表し、*は、一般式(I)における酸素原子との結合位置を表す〕。

Description

ホスホノスルホン酸化合物を含有する非水電解液、及びリチウム二次電池
 本発明は、ホスホノスルホン酸化合物を含有する非水電解液、この非水電解液を用いたリチウム二次電池、ホスホノスルホン酸化合物を含有するリチウム二次電池用添加剤、及び、ホスホノスルホン酸化合物に関する。
 近年、リチウム二次電池は、携帯電話やノート型パソコンなどの電子機器、或いは電気自動車や電力貯蔵用の電源として広く使用されている。特に最近では、ハイブリッド自動車や電気自動車に搭載可能な、高容量で高出力かつエネルギー密度の高い電池の要望が急拡大している。
 リチウム二次電池は、主に、リチウムを吸蔵放出可能な材料を含む正極及び負極、並びに、リチウム塩及び非水溶媒を含む非水電解液から構成される。
 正極に用いられる正極活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiFePOのようなリチウム金属酸化物が用いられる。
 また、非水電解液としては、エチレンカーボネート、プロピレンカーボネート、エチレンカーボネート、メチルカーボネートなどカーボネート類の混合溶媒(非水溶媒)に、LiPF、LiBF、LiN(SOCF)、LiN(SOCFCF)のようなLi電解質を混合した溶液が用いられている。
 一方、負極に用いられる負極活物質としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金など)や炭素材料が知られており、特にリチウムを吸蔵及び放出が可能な、コークス、人造黒鉛、天然黒鉛を採用したリチウム二次電池が実用化されている。
 電池性能の中で、特に自動車用途のリチウム二次電池に関しては、高出力化及び長寿命化が必要とされている。このため、電池の抵抗をいろいろな条件にわたって小さくすることと、電池の寿命性能を向上することと、の両立が大きな課題となっている。
 電池の抵抗が上昇する要因のひとつとして、負極表面に形成される、溶媒の分解物や無機塩による皮膜が知られている。一般的に負極表面は、充電条件で負極活物質中にリチウム金属が存在することから、電解液の還元分解反応が起こることが知られている。このような還元分解が継続的に起これば、電池の抵抗が上昇し、充放電効率が低下し、電池のエネルギー密度が低下することになる。また一方で正極においても、経時的な劣化反応が起こり、抵抗が持続的に上昇して電池性能の低下をまねくことが知られている。これらの課題を克服するため、種々の化合物を電解液に添加する試みがなされてきた。
 その試みとして、例えば、非水電解液に特定のリン酸シリルエステル化合物を含有させて電池の保存性能を改善する技術が提案されている(例えば、特許第4538886号公参照)。
 また、特定のスルホン酸エステル化合物を含有させて、電池のセパレータに対する含侵性を改善し、電池容量と電池電圧とを改善する技術(例えば、特開平9-27328号公報参照)、特定のスルホン酸エステルとして環状スルホン酸エステル誘導体である1,3-プロパンスルトンを含有させてサイクル特性を改善させる技術(例えば、特許第3658506号公報参照)、或いは、特定のホスホノカルボン酸を含有させて電解液の難燃性と電池の充放電特性とを改良する技術(例えば、特開平10-189039号公報参照)などが検討されている。
 さらには、特定のホスホノカルボン酸を含有させて、電解液の保存特性、特に連続充電後の発生ガス量及び残存容量並びに高温保存後の残存容量等の改良が検討されている(例えば、特開2008-262908号公報、及び特開2009-70615号公報参照)。
 しかし、従来技術のみでは、電池の高出力化及び長寿命化が必要とされている状況において、電池の低温放電特性の改善と電池の保存特性の改善との両立について十分な効果が得られないという問題を有している。
 本発明は前記課題に応えるためになされたものであり、本発明の目的は、電池の低温放電特性の改善と電池の保存特性の改善とを両立できる非水電解液、及び、該非水電解液を用いたリチウム二次電池を提供することである。
 本発明のさらなる目的は、前記非水電解液に有用なリチウム二次電池用添加剤、および、該リチウム二次電池用添加剤として有用なホスホノスルホン酸化合物を提供することである。
 本発明者は、上記課題に対し、鋭意検討した結果、リチウム二次電池の非水電解液に対し、特定のホスホノスルホン酸化合物を含有させることにより、電池の低温放電特性の改善と電池の保存特性の改善との両立が可能なことを見出し、本発明を完成した。
 すなわち上記課題を解決するための具体的手段は以下のとおりである。
<1> 下記一般式(I)で表されるホスホノスルホン酸化合物を含有する非水電解液。
Figure JPOXMLDOC01-appb-C000009
 一般式(I)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、フェニル基、ベンジル基、又は一般式(II)で表される基を表し、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表し、nは、1~6の整数を表す。
 一般式(II)中、R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、フェニル基、又はベンジル基を表し、mは、0~2の整数を表す。*は、一般式(I)における酸素原子との結合位置を表す。
<2> 前記一般式(I)で表されるホスホノスルホン酸化合物が、下記一般式(III)で表されるホスホノスルホン酸化合物である<1>に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000010
 一般式(III)中、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表し、R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、フェニル基、又はベンジル基を表し、nは、1~6の整数を表す。
<3> さらに、下記一般式(IV)で表される化合物を含有する<1>又は<2>に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000011
 一般式(IV)中、Y及びYは、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。
<4> さらに、下記一般式(V)で表される化合物を含有する<1>~<3>のいずれか1項に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000012
 一般式(V)中、X、X、X及びXは、それぞれ独立に、ビニル基、フッ素原子により置換されてもよい炭素数1~3のアルキル基、水素原子、フッ素原子、又は塩素原子を示す。ただし、X、X、X及びXが同時に水素原子であることはない。
<5> さらに、下記一般式(VI)で表される化合物を含有する<1>~<4>のいずれか1項に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000013
 一般式(VI)中、R及びR10は、それぞれ独立に、水素原子、炭素数1~6のアルキル基、一般式(VII)で表される基、又は式(VIII)で表される基を表す。
 一般式(VII)中、R11は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、又は式(IX)で表される基を表す。
 一般式(VII)、式(VIII)、および式(IX)における*は、結合位置を表す。
<6> さらに、ジフルオロリン酸リチウム(LiOP(O)F)、下記一般式(X)で表される化合物、下記一般式(XI)で表される化合物、及び、下記一般式(XII)で表される化合物からなる群から選ばれる少なくとも1種の化合物を含有する<1>~<5>のいずれか1項に記載の非水電解液。
Figure JPOXMLDOC01-appb-C000014
 一般式(X)、一般式(XI)、及び一般式(XII)中、Mは、アルカリ金属を表す。
<7> 前記一般式(I)で表されるホスホノスルホン酸化合物の含有量が、非水電解液全質量に対して0.001質量%~10質量%である<1>~<6>のいずれか1項に記載の非水電解液。
<8> 前記一般式(IV)で表される化合物の含有量が、非水電解液全質量に対して0.001質量%~10質量%である<3>に記載の非水電解液。
<9> 前記一般式(V)で表される化合物の含有量が、非水電解液全質量に対して0.001質量%~10質量%である<4>に記載の非水電解液。
<10> 前記一般式(VI)で表される化合物の含有量が、非水電解液全質量に対して0.001質量%~10質量%である<5>に記載の非水電解液。
<11> ジフルオロリン酸リチウム(LiOP(O)F)、前記一般式(X)で表される化合物、前記一般式(XI)で表される化合物、及び前記一般式(XII)で表される化合物の総含有量が、非水電解液全質量に対して0.001質量%~10質量%である<6>に記載の非水電解液。
<12> 下記一般式(I)で表されるホスホノスルホン酸化合物を含有するリチウム二次電池用添加剤。
Figure JPOXMLDOC01-appb-C000015
 一般式(I)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、フェニル基、ベンジル基、又は一般式(II)で表される基を表し、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表し、nは、1~6の整数を表す。
 一般式(II)中、R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、フェニル基、又はベンジル基を表し、mは、0~2の整数を表す。*は、一般式(I)における酸素原子との結合位置を表す。
<13> 下記一般式(XIII)で表されるホスホノスルホン酸化合物。
Figure JPOXMLDOC01-appb-C000016
 一般式(XIII)中、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基を表し、R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、フェニル基、又はベンジル基を表す。
<14> 正極と、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種を負極活物質として含む負極と、<1>~<11>のいずれか1項に記載の非水電解液と、を含むリチウム二次電池。
<15> 正極と、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種を負極活物質として含む負極と、<1>~<11>のいずれか1項に記載の非水電解液と、を含むリチウム二次電池を、充放電させて得られたリチウム二次電池。
 本発明によれば、電池の低温放電特性の改善と電池の保存特性の改善とを両立できる非水電解液、及び、該非水電解液を用いたリチウム二次電池を提供することができる。
 また、本発明によれば、前記非水電解液に有用なリチウム二次電池用添加剤、および、該リチウム二次電池用添加剤として有用なホスホノスルホン酸化合物を提供することができる。
本発明のリチウム二次電池の一例を示すコイン型電池の模式的断面図である。
 本発明のホスホノスルホン酸化合物を用いた非水電解液、及びその非水電解液を用いたリチウム二次電池、前記非水電解液に有用なリチウム二次電池用添加剤について具体的に説明する。
<非水電解液>
 本発明の非水電解液は、下記一般式(I)で表されるホスホノスルホン酸化合物を含有する。本発明の非水電解液は、所望によりその他の成分を含有してもよい。
 本発明の非水電解液は、かかる構成により、電池に用いたときに、電池の低温放電特性の改善と電池の保存特性の改善とを両立できる。
 従って、本発明の非水電解液をリチウム二次電池に用いた場合には、低温放電特性に優れ、かつ、保存特性に優れたリチウム二次電池を実現し得る。
〔ホスホノスルホン酸化合物〕
 本発明におけるホスホノスルホン化合物は、下記一般式(I)で表されるホスホノスルホン酸化合物(以下、単に「一般式(I)で表される化合物」ともいう)である。
Figure JPOXMLDOC01-appb-C000017
 前記一般式(I)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、フェニル基、ベンジル基、又は一般式(II)で表される基を表し、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表し、nは、1~6の整数を表す。
 nが2~6の整数を表す場合、複数存在するR及びRは、それぞれ同じであっても、異なっていてもよい。
 また、一般式(II)中、R、R及びRは、炭素数1~6のアルキル基、フェニル基、又はベンジル基を表し、mは、0~2の整数を表す。*は、一般式(I)における酸素原子との結合位置を表す。
 一般式(I)で表される化合物中に一般式(II)で表される基が2つ以上含まれる場合、2つ以上の一般式(II)で表される基は、同一であっても異なっていてもよい。
 なお、本明細書において、「アルキル基」は、特に断らない限りにおいて、直鎖状のアルキル基(直鎖アルキル基)、分岐鎖を有するアルキル基、環状のアルキル基を包含する。
 また、本明細書において、「ハロアルキル基」は、ハロゲン化アルキル基を意味する。
 前記一般式(I)中、「炭素数1~6のアルキル基」は、炭素数が1ないし6個である直鎖アルキル基又は分岐鎖を有するアルキル基であることが好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、2-メチルブチル基、1-メチルペンチル基、ネオペンチル基、1-エチルプロピル基、ヘキシル基、3,3-ジメチルブチル基等が具体例として挙げられる。前記アルキル基としては、炭素数が1ないし4個である直鎖アルキル基又は分岐鎖を有するアルキル基が好ましい。
 前記一般式(I)中、「炭素数1~6のハロアルキル基」は、炭素数が1ないし6個である直鎖アルキル基又は分岐鎖を有するアルキル基における水素原子の少なくとも1つがハロゲン原子に置き換わった構造のハロアルキル基を表し、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロイソプロピル基、パーフルオロイソブチル基、クロロメチル基、クロロエチル基、クロロプロピル基、ブロモメチル基、ブロモエチル基、ブロモプロピル基、ヨウ化メチル基、ヨウ化エチル基、ヨウ化プロピル基が具体例として挙げられる。
 炭素数1~6のハロアルキル基としては、炭素数1~3のハロアルキル基がより好ましい。
 前記一般式(I)中、「ハロゲン原子」は、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が具体例として挙げられる。
 ハロゲン原子としては、フッ素原子が好ましい。
 前記一般式(I)中、フェニル基は、無置換であっても、置換基を有していてもよい。 このフェニル基に導入可能な置換基としては、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基等が挙げられる。
 前記フェニル基に導入可能な置換基中、「ハロゲン原子」は、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が具体例として挙げられる。
 ハロゲン原子としては、フッ素原子が好ましい。
 前記フェニル基に導入可能な置換基中、「炭素数1~6のアルキル基」は、前述の「炭素数1~6のアルキル基」と同義であり、好ましい態様も同様である。
 前記フェニル基に導入可能な置換基中、「炭素数1~6のハロアルキル基」は、前述の「炭素数1~6のハロアルキル基」と同義であり、好ましい態様も同様である。
 前記フェニル基に導入可能な置換基中、「炭素数1~6のアルコキシ基」は、炭素数が1ないし6個である直鎖アルコキシ基又は分岐鎖を有するアルコキシ基であり、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、2-メチルブトキシ基、1-メチルペンチルオキシ基、ネオペンチルオキシ基、1-エチルプロポキシ基、ヘキシルオキシ基、3,3-ジメチルブトキシ基などが具体例として挙げられる。
 炭素数1~6のアルコキシ基としては、炭素数1~3のアルコキシ基がより好ましい。
 前記一般式(I)中、ベンジル基は無置換であっても、置換基を有していてもよい。
 このベンジル基に導入可能な置換基としては、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、及び炭素数1~6のアルコキシ基等が挙げられる。
 前記のベンジル基に導入可能な置換基中の、「ハロゲン原子」、「炭素数1~6のアルキル基」、「炭素数1~6のハロアルキル基」、「炭素数1~6のアルコキシ基」は、前記のフェニル基に導入可能な置換基中の、「ハロゲン原子」、「炭素数1~6のアルキル基」、「炭素数1~6のハロアルキル基」、「炭素数1~6のアルコキシ基」とそれぞれ同義である。
 前記一般式(II)における、「炭素数1~6のアルキル基」、「フェニル基」、「ベンジル基」は、前述した「炭素数1~6のアルキル基」、「フェニル基」、及び「ベンジル基」とそれぞれ同義である。
 前記一般式(I)中、nは、前述のとおり1~6の整数を表すが、1~2の整数であることが好ましい。
 また、前記一般式(I)で表されるホスホノスルホン酸化合物としては、下記一般式(III)で表されるホスホノスルホン酸化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(III)中、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表し、R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、フェニル基、ベンジル基を表し、nは、1~6の整数を表す。
 前記一般式(III)における、「ハロゲン原子」、「炭素数1~6のアルキル基」、「フェニル基」、「ベンジル基」は、前記一般式(I)における、「ハロゲン原子」、「炭素数1~6のアルキル基」、「フェニル基」、及び「ベンジル基」とそれぞれ同義である。
 また、前記一般式(III)中、nは、1~6の整数を表すが、1~2の整数であることが好ましい。
 前記一般式(I)で表されるホスホノスルホン酸化合物として、特に好ましくは、ビス(トリメチルシリル)ホスホノメタンスルホン酸トリメチルシリル、ビス(トリメチルシリルメチル)ホスホノメタンスルホン酸トリメチルシリルメチル、ホスホノメタンスルホン酸、ジエチルホスホノメタンスルホン酸メチル、2-(ジエトキシホスホリル)エタンスルホン酸フェニル、2-(ヒドロキシ(トリメチルシリルオキシ)ホスホリル)エタンスルホン酸フェニルが挙げられる。
 なお、前記一般式(I)で表されるホスホノスルホン酸化合物は、後述するように、リチウム二次電池用の添加剤(好ましくは、リチウム二次電池の非水電解液用の添加剤)として有用である。
 本発明における一般式(I)で表されるホスホノスルホン酸化合物の具体例〔例示化合物1~例示化合物118〕を、一般式(I)における各置換基を明示することで以下に記載するが、本発明はこれらの化合物に限定されるものではない。
 下記例示化合物の構造中、「Me」はメチル基を、「Et」はエチル基を、「Pr」はn-プロピル基を、「iPr」はイソプロピル基を、「Bu」はn-ブチル基を、「t-Bu」はターシャリブチル基を、「Pent」はペンチル基を、「Hex」はヘキシル基を、「Ph」はフェニル基を、「Bn」はベンジル基を、それぞれ表す。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 上記例示化合物のなかでも、電池の低温放電特性の改善及び電池の保存特性の改善の観点からは、ビス(トリメチルシリル)ホスホノメタンスルホン酸トリメチルシリル、ビス(トリメチルシリルメチル)ホスホノメタンスルホン酸トリメチルシリルメチル、ホスホノメタンスルホン酸、ジエチルホスホノメタンスルホン酸メチル、2-(ジエトキシホスホリル)エタンスルホン酸フェニル、2-(ヒドロキシ(トリメチルシリルオキシ)ホスホリル)エタンスルホン酸フェニルなどが好ましく挙げられる。
 本発明における一般式(I)で表されるホスホノスルホン酸化合物の一例であるビス(トリメチルシリル)ホスホノメタンスルホン酸トリメチルシリルは、例えば、以下に記載する工程によって製造することができるが、本製法に限定されるものではない。
 本発明における一般式(I)で表されるホスホノスルホン酸化合物のうち、n=1の場合は、公知の方法、例えば、
Tetrahedron, 1987, 43, 5125-5134
Organic and Biomolecular Chemistry, 2007, 5, 160-168
Chemische Berichte, 1980, 113, 142-151
Tetrahedron Letters, 1987, 28, 1101-1104
に記載の方法に準じることにより製造される。
 なお、本発明における一般式(III)で表されるホスホノスルホン酸化合物であってn=1である化合物(即ち、下記一般式(XIII)で表されるホスホノスルホン酸化合物)は、例えば、下記一般式(Ia)で表される化合物を出発物質とし、以下に記載する方法によって製造することができるが、本製法に限定されるものではない。
Figure JPOXMLDOC01-appb-C000022
 前記一般式(Ia)中、R1a,R2a及びR3aは、水素原子又は炭素数1~6のアルキル基である。一般式(Ia)、一般式(XIV)、及び一般式(XIII)中、R、R、R、R及びRは、一般式(III)におけるR、R、R、R及びRとそれぞれ同義である。
 上記スキームに従った製造方法について、詳細に説明する。
 前記一般式(XIII)で表されるホスホノスルホン酸化合物は、一般式(Ia)で表される化合物を、無溶媒下或いは溶媒存在下、一般式(XIV)で表されるシリル化合物と反応させることにより製造することができる。
 用いられる一般式(XIV)で表されるシリル化合物におけるXは、塩素原子、臭素原子又はヨウ素原子を表すが、好ましくは、臭素原子或いはヨウ素原子である。
 反応に用いられる溶媒としては、反応を阻害せず、出発物質をある程度溶解するものであれば特に限定はなく、例えば、ジクロロメタン、ジクロロエタン及びクロロホルムのようなハロゲン化炭化水素類;ベンゼン、トルエン、キシレン及びクロロベンゼンのような芳香族炭化水素類;ヘキサン、シクロヘキサン及びヘプタンのような脂肪族炭化水素類;又は、これらの混合溶媒が挙げられ、好適には、ハロゲン化炭化水素類又は芳香族炭化水素類であり、より好適には、ジクロロメタン又はトルエンである。
 溶媒の量は、一般式(Ia)で表される化合物1molに対し、通常、0.1リットル~10リットルを用いることができ、好適には、0.1リットル~5リットルである。
 反応温度は、原料化合物、反応試薬及び溶媒等により異なるが、通常、0℃~反応系における還流温度の範囲で行うことができ、好適には、10℃~40℃である。
 反応時間は、原料化合物、反応試薬、溶媒及び反応温度等により異なるが、通常、0.5時間~48時間の範囲で行うことができ、好適には、1時間~24時間である。
 本工程に使用される一般式(Ia)で表される化合物は、市販品としても入手可能であるか、既知の方法によって製造される。具体的には、例えば、Tetrahedron, 1987, 43, 5125-5134に記載の方法によって製造される。
 本発明における一般式(I)で表されるホスホノスルホン酸化合物のうち、n=2である化合物は、公知の方法、例えば、
Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 56, 111-115
Russian Journal of General Chemistry, 2004, 74, 1820-1821
Heteroatom Chemistry, 208, 19, 470-473
に記載の方法に準じる方法により製造される。
 本発明における一般式(I)で表されるホスホノスルホン酸化合物のうち、n=3~6である化合物は、公知の方法、例えば、US206614635、DE938186に記載の方法に準じることより製造することができる。
 上記一般式(I)で表されるホスホノスルホン酸化合物は、リチウム二次電池用添加剤、特に、後述するリチウム二次電池の非水電解液用の添加剤として有用であり、この添加剤を非水電解液に添加することで、低温放電特性に優れ、かつ、保存特性に優れたリチウム二次電池を実現し得る。
 以下、上記一般式(I)で表されるホスホノスルホン酸化合物が上記効果を奏する理由について、推測される理由を説明する。
 一般式(I)で表されるホスホノスルホン酸化合物を用いることにより、初期充電による負極側への皮膜形成の際、本骨格を有する一般式(I)で表されるホスホノスルホン酸化合物が、負極側において低温状態でもリチウムイオン伝導性に富み、しかも負極表面での継続的な溶媒分解などを抑えることができるように働くため、初期の低温放電特性に優れた電池を提供できるものと推測される。
 加えて、電池の保存特性に対しては、上記一般式(I)で表されるホスホノスルホン酸化合物がホスホン酸構造とスルホン酸構造とを同一分子上に併せ持つことにより、正極側においては活物質の構造変化や含有する遷移金属の溶出などによる抵抗上昇や容量低下を効果的に抑制できるとともに、負極側においては皮膜の必要以上の形成や遷移金属の析出による抵抗上昇や容量低下を効果的に抑制できる。本作用が主作用となり、保存特性に優れた電池を提供できるものと推測される。
 但し、本発明は上記の推測によって限定されることはない。
<新規ホスホノスルホン酸化合物>
 なお、本発明における下記一般式(XIII)で表されるホスホノスルホン酸化合物は新規化合物である。
 下記一般式(XIII)で表されるホスホノスルホン酸化合物は、前記一般式(III)で表されるホスホノスルホン酸化合物のうち、前記一般式(III)中のnが1である化合物である。
Figure JPOXMLDOC01-appb-C000023
 前記一般式(XIII)中、R、R、R、R及びRは、一般式(III)におけるR、R、R、R及びRとそれぞれ同義である。
 一般式(XIII)中、R及びRは、それぞれ独立に、水素原子、フッ素原子、又は炭素数1~3のアルキル基であることが好ましく、R、R及びRはそれぞれ独立に、メチル基、エチル基、t-ブチル基、フェニル基、又はベンジル基であることが好ましい。この一般式(XIII)で表されるホスホノスルホン酸化合物もまた、非水系電解液の添加剤として有用である。
 本発明の非水電解液は、以上で説明した一般式(I)で表されるホスホノスルホン酸化合物(一般式(III)又は一般式(XIII)で表されるホスホノスルホン酸化合物を包含する;以下同じ)を、1種のみ含有していてもよいし、2種以上を含有していてもよい。
 本発明の非水電解液中における一般式(I)で表されるホスホノスルホン酸化合物の含有量は、非水電解液全質量に対して0.001質量%~10質量%であることが好ましく、0.05質量%~5質量%の範囲であることがより好ましい。この範囲において、低温放電特性に優れ、かつ、電池の保存特性に優れたリチウム二次電池をより効果的に実現し得る。
 本発明の非水電解液は、必要に応じ、一般式(1)で表されるホスホノスルホン酸化合物に加え、その他の成分を含んでいてもよい。
 前記その他の成分としては、本発明の効果をより効果的に得る観点より、例えば、後述の一般式(IV)で表される化合物、後述の一般式(V)で表される化合物、後述の一般式(VI)で表される化合物、ジフルオロリン酸リチウム(LiOP(O)F)、後述の一般式(X)で表される化合物、後述の一般式(XI)で表される化合物、及び後述の一般式(XII)で表される化合物からなる群から選択される少なくとも1種が挙げられる。
 また、前記その他の成分としては、後述の電解質及び非水溶媒も挙げられる。
 また、本発明のリチウム二次電池用添加剤は、前記一般式(I)で表されるホスホノスルホン酸化合物を含有する。
 本発明のリチウム二次電池用添加剤をリチウム二次電池の非水電解液に添加することにより、記述のとおり、低温放電特性に優れ、かつ、保存特性に優れたリチウム二次電池を実現し得る。
 本発明のリチウム二次電池用添加剤は、必要に応じ、一般式(1)で表されるホスホノスルホン酸化合物に加え、その他の成分を含有していてもよい。
 前記その他の成分としては、上記効果をより向上させるという観点より、例えば、後述の一般式(IV)で表される化合物、後述の一般式(V)で表される化合物、後述の一般式(VI)で表される化合物、ジフルオロリン酸リチウム(LiOP(O)F)、後述の一般式(X)で表される化合物、後述の一般式(XI)で表される化合物、及び後述の一般式(XII)で表される化合物からなる群から選択される少なくとも1種が挙げられる。
 本発明の非水電解液は、前述のとおり、一般式(I)で表されるホスホノスルホン酸化合物を含有することを特徴とするが、その他の成分として、公知のものを任意に含むことができる。
 以下、非水電解液のその他の成分について説明する。
 非水電解液は、一般的には、非水溶媒及び電解質を含有する。
〔非水溶媒〕
 本発明における非水溶媒は、種々公知のものを適宜選択することができるが、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を用いることが好ましい。
 電池の安全性の向上のために、溶媒の引火点の向上を志向する場合は、非水溶媒として環状の非プロトン性溶媒を使用することが好ましい。
〔環状の非プロトン性溶媒〕
 環状の非プロトン性溶媒としては、環状カーボネート、環状カルボン酸エステル、環状スルホン、環状エーテルを用いることができる。
 環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。
 環状の非プロトン性溶媒の非水溶媒中の混合割合は、好ましくは10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を更に高めることができる。
 環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネートなどが挙げられる。これらのうち、誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、エチレンカーボネートがより好ましい。また、これら環状カーボネートは2種類以上を混合して使用してもよい。
 環状カルボン酸エステルとして、具体的にはγ-ブチロラクトン、δ-バレロラクトン、あるいはメチルγ-ブチロラクトン、エチルγ-ブチロラクトン、エチルδ-バレロラクトンなどのアルキル置換体などを例示することができる。
 環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高く、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、前記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。環状カルボン酸エステルの中でも、γ-ブチロラクトンが最も好ましい。
 また、環状カルボン酸エステルは、他の環状の非プロトン性溶媒と混合して使用することが好ましい。例えば、環状カルボン酸エステルと、環状カーボネート及び/又は鎖状カーボネートとの混合物が挙げられる。
 環状スルホンの例としては、スルホラン、2-メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。
 環状エーテルの例としてジオキソランを挙げることができる。
〔鎖状の非プロトン性溶媒〕
 本発明の鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、鎖状リン酸エステルなどを用いることができる。
 鎖状の非プロトン性溶媒の非水溶媒中の混合割合は、好ましくは10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。
 鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネートなどが挙げられる。これら鎖状カーボネートは2種類以上を混合して使用してもよい。
 鎖状カルボン酸エステルとして具体的には、ピバリン酸メチルなどが挙げられる。
 鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。
 鎖状リン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
〔溶媒の組み合わせ〕
 本発明の非水電解液で使用する非水溶媒は、1種類でも複数種類を混合して用いてもよい。また、環状の非プロトン性溶媒のみを1種類又は複数種類用いても、鎖状の非プロトン性溶媒のみを1種類又は複数種類用いても、又は環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を混合して用いてもよい。電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒として環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を組み合わせて使用することが好ましい。
 さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒には環状カーボネートを、鎖状の非プロトン性溶媒には鎖状カーボネートを適用することが最も好ましい。また、環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。
 環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。
 環状カーボネートと鎖状カーボネートの混合割合は、質量比で表して、環状カーボネート:鎖状カーボネートが、好ましくは5:95~80:20、さらに好ましくは10:90~70:30、特に好ましくは15:85~55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温又は低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。
 環状カルボン酸エステルと環状カーボネート及び/又は鎖状カーボネートの組み合わせの例として、具体的には、γ-ブチロラクトンとエチレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとスルホラン、γ-ブチロラクトンとエチレンカーボネートとスルホラン、γ-ブチロラクトンとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとスルホランとジメチルカーボネートなどが挙げられる。
〔その他の溶媒〕
 本発明の非水電解液は、非水溶媒として、上記以外の他の溶媒を含んでいてもよい。他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル-N,N-ジメチルカーバメートなどの鎖状カーバメート、N-メチルピロリドンなどの環状アミド、N,N-ジメチルイミダゾリジノンなどの環状ウレア、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリブチル、ほう酸トリオクチル、ほう酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
 HO(CHCHO)
 HO[CHCH(CH)O]
 CHO(CHCHO)
 CHO[CHCH(CH)O]
 CHO(CHCHO)CH
 CHO[CHCH(CH)O]CH
 C19PhO(CHCHO)[CH(CH)O]CH
 (Phはフェニル基)
 CHO[CHCH(CH)O]CO[OCH(CH)CHOCH
 前記式中、a~fは、5~250の整数、g~jは2~249の整数、5≦g+h≦250、5≦i+j≦250である。
〔電解質〕
 本発明の非水電解液は、種々公知の電解質を使用することができ、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。
 電解質の具体例としては、(CNPF、(CNBF、(CNClO、(CNAsF、(CSiF、(CNOSO(2k+1)(k=1~8の整数)、(CNPF[C(2k+1)(6-n)(n=1~5の整数、k=1~8の整数)などのテトラアルキルアンモニウム塩、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1~8の整数)、LiPF[C(2k+1)(6-n)(n=1~5の整数、k=1~8の整数)などのリチウム塩が挙げられる。また、次の一般式で表されるリチウム塩も使用することができる。
 LiC(SO)(SO)(SO)、LiN(SOOR)(SOOR)、LiN(SO)(SO)(ここで、R、R、R、R、R、R、及びRは、互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基である)。これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。
 これらのうち、特にリチウム塩が望ましく、さらには、LiPF、LiBF、LiOSO(2k+1)(k=1~8の整数)、LiClO、LiAsF、LiNSO[C(2k+1)(k=1~8の整数)、LiPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)が好ましい。
 本発明における電解質は、通常は、非水電解質中に0.1mol/L~3mol/L、好ましくは0.5mol/L~2mol/Lの濃度で含まれることが好ましい。
 本発明の非水電解液は、特にLiPFを含有することが望ましい。LiPFは、解離度が高いため、電解液の伝導度を高めることができ、さらに負極上での電解液の還元分解反応を抑制する作用がある。LiPFは単独で使用してもよいし、LiPFとそれ以外の電解質を使用してもよい。それ以外の電解質としては、通常、非水電解液用電解質として使用されるものであれば、いずれも使用することができるが、前述のリチウム塩の具体例のうちLiPF以外のリチウム塩が好ましい。
 具体例としては、LiPFとLiBF、LiPFとLiN[SO(2k+1)(k=1~8の整数)、LiPFとLiBFとLiN[SO(2k+1)](k=1~8の整数)などが例示される。
 リチウム塩中に占めるLiPFの比率は、好ましくは1質量%~100質量%、より好ましくは10質量%~100質量%、さらに好ましくは50質量%~100質量%が望ましい。このような電解質は、0.1mol/L~3mol/L、好ましくは0.5mol/L~2mol/Lの濃度で非水電解液中に含まれることが好ましい。
〔一般式(IV)で表される化合物〕
 本発明の非水電解液は、一般式(IV)で表される化合物を含有することができる。本発明の非水電解液が一般式(IV)で表される化合物を含有する形態は、負極の表面皮膜形成の点で好ましい。
Figure JPOXMLDOC01-appb-C000024
 前記一般式(IV)中、Y及びYは、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。
 一般式(IV)で表される化合物としては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、プロピルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネートなどが例示される。これらのうちでビニレンカーボネートが最も好ましい。
 本発明の非水電解液が一般式(IV)で表される化合物を含有する場合、含有される一般式(IV)で表される化合物は、1種のみであってもよいし、2種以上であってもよい。 本発明の非水電解液が一般式(IV)で表される化合物を含有する場合、一般式(IV)で表される化合物の含有量は、目的に応じて適宜選択できるが、非水電解液全質量に対して、0.001質量%~10質量%が好ましく、0.05質量%~5質量%であることが更に好ましい。
 また、本発明の非水電解液が、一般式(IV)で表される化合物を含有する場合において、前述の一般式(I)で表されるホスホノスルホン酸化合物の含有量は、非水電解液全質量に対して0.001質量%~10質量%であることが好ましく、0.05質量%~5質量%の範囲であることがより好ましい。この範囲において、より効果的に、電池の低温放電特性の改善と、電池の保存特性の改善と、を両立することができる。
〔一般式(V)で表される化合物〕
 本発明の非水電解液は、一般式(V)で表される化合物を含有することができる。本発明の非水電解液が一般式(V)で表される化合物を含有する形態は、負極の表面皮膜形成の点で好ましい。
Figure JPOXMLDOC01-appb-C000025
 前記一般式(V)中、X、X、X及びXは、それぞれ独立に、ビニル基、フッ素原子により置換されてもよい炭素数1~3のアルキル基、水素原子、フッ素原子、又は塩素原子を示す。ただし、X、X、X及びXが同時に水素原子であることはない。
 一般式(V)中、X、X、X及びXがフッ素原子により置換されてもよい炭素数1~3のアルキル基を表す場合の、フッ素原子により置換されていてもよい炭素数1~3のアルキル基としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基などが挙げられる。
 一般式(V)で表される化合物としては公知のものを使用でき、たとえば、ビニルエチレンカーボネート、4-フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4,4,5-トリフルオロエチレンカーボネート、4,4,5,5-テトラフルオロエチレンカーボネートなどの、エチレンカーボネートにおいて1~4個の水素がフッ素により置換されたフッ素化エチレンカーボネートが挙げられる。これらの中でも、ビニルエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4-フルオロエチレンカーボネートが最も望ましい。
 本発明の非水電解液が一般式(V)で表される化合物を含有する場合、含有される一般式(V)で表される化合物は、1種のみであってもよいし、2種以上であってもよい。
 本発明の非水電解液が一般式(V)で表される化合物を含有する場合、一般式(V)で表される化合物の含有量は、目的に応じて適宜選択できるが、非水電解液全質量に対して、0.001質量%~10質量%が好ましく、0.05質量%~5質量%であることが更に好ましい。
 本発明の非水電解液は、前記一般式(IV)で表される化合物及び前記一般式(V)で表される化合物の双方を含んでいてもよく、双方を含む場合の好ましい含有量は、前記した好ましい含有量と同様である。
 また、本発明の非水電解液が、一般式(V)で表される化合物を含有する場合において、前述の一般式(I)で表されるホスホノスルホン酸化合物の含有量は、非水電解液全質量に対して0.001質量%~10質量%であることが好ましく、0.05質量%~5質量%の範囲であることがより好ましい。この範囲において、より効果的に、電池の低温放電特性の改善と、電池の保存特性の改善と、を両立することができる。
〔一般式(VI)で表される化合物〕
 本発明の非水電解液は、一般式(VI)で表される化合物を含有することができる。本発明の非水電解液が一般式(VI)で表される化合物を含有する形態は、負極の表面皮膜形成の点で好ましい。一般式(VI)で表される化合物は、環状硫酸エステル化合物である。以下、一般式(VI)で表される化合物を、「一般式(VI)で表される環状硫酸エステル化合物」ともいう。
Figure JPOXMLDOC01-appb-C000026
 一般式(VI)中、R及びR10は、それぞれ独立に、水素原子、炭素数1~6のアルキル基、一般式(VII)で表される基、又は式(VIII)で表される基を表す。
 一般式(VII)中、R11は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、又は式(IX)で表される基を表す。
 一般式(VII)、式(VIII)、および式(IX)における*は、結合位置を表す。
 一般式(VI)で表される化合物中に、一般式(VII)で表される基が2つ含まれる場合、2つの一般式(VII)で表される基は、同一であっても互いに異なっていてもよい。
 前記一般式(VI)中(詳細には前記一般式(VII)中)、「ハロゲン原子」は、フッ素原子、塩素原子、臭素原子、ヨウ素原子が具体例として挙げられる。
 前記一般式(VI)中(詳細には前記一般式(VII)中)におけるハロゲン原子としては、フッ素原子が好ましい。
 前記一般式(VI)中、「炭素数1~6のアルキル基」は、前述の一般式(I)中の「炭素数1~6のアルキル基」と同義であり、具体例も同様である。
 前記一般式(VI)中における炭素数1~6のアルキル基としては、炭素数1~3のアルキル基がより好ましい。
 一般式(VI)中、「炭素数1~6のハロアルキル基」は、前述の一般式(I)中の「炭素数1~6のハロアルキル基」と同義であり、具体例も同様である。
 前記一般式(VI)中における炭素数1~6のハロアルキル基としては、炭素数1~3のハロアルキル基がより好ましい。
 前記一般式(VI)中、「炭素数1~6のアルコキシ基」は、炭素数が1~6個である直鎖アルコキシ基又は分岐鎖を有するアルコキシ基であり、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、2-メチルブトキシ基、1-メチルペンチルオキシ基、ネオペンチルオキシ基、1-エチルプロポキシ基、ヘキシルオキシ基、3,3-ジメチルブトキシ基などが具体例として挙げられる。
 炭素数1~6のアルコキシ基としては、炭素数1~3のアルコキシ基がより好ましい。
 前記一般式(VI)中のRとして、好ましくは、水素原子、炭素数1~3のアルキル基、前記一般式(VII)で表される基(一般式(VII)において、R11は、フッ素原子、炭素数1~3のアルキル基、炭素数1~3のハロアルキル基、炭素数1~3のアルコキシ基、又は式(IX)で表される基であることが好ましい。)、又は前記式(VIII)で表される基である。
 前記一般式(VI)中のR10として、好ましくは、水素原子、炭素数1~3のアルキル基、前記一般式(VII)で表される基(一般式(VII)において、R11は、フッ素原子、炭素数1~3のアルキル基、炭素数1~3のハロアルキル基、炭素数1~3のアルコキシ基、又は、式(IX)で表される基であることが好ましい。)、又は前記式(VIII)で表される基であり、より好ましくは水素原子又はメチル基であり、特に好ましくは水素原子である。
 前記一般式(VI)中のRが前記一般式(VII)で表される基である場合、前記一般式(VII)中のR11は前述のとおり、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、又は式(IX)で表される基であるが、R11としてより好ましくは、フッ素原子、炭素数1~3のアルキル基、炭素数1~3のハロアルキル基、炭素数1~3のアルコキシ基、又は、式(IX)で表される基であり、更に好ましくは、フッ素原子、メチル基、エチル基、メトキシ基、エトキシ基、又は、式(IX)で表される基である。
 前記一般式(VI)中のR10が前記一般式(VII)で表される基である場合、一般式(VII)中のR11の好ましい範囲については、前記一般式(VI)中のRが前記一般式(VII)で表される基である場合におけるR11の好ましい範囲と同様である。
 前記一般式(VI)におけるR及びR10の好ましい組み合わせとしては、Rが、水素原子、炭素数1~3のアルキル基、前記一般式(VII)で表される基(前記一般式(VII)中、R11はフッ素原子、炭素数1~3のアルキル基、炭素数1~3のハロアルキル基、炭素数1~3のアルコキシ基、又は前記式(IX)で表される基であることが好ましい)、又は前記式(VIII)で表される基であり、R10が、水素原子、炭素数1~3のアルキル基、前記一般式(VII)で表される基(前記一般式(VII)中、R11はフッ素原子、炭素数1~3のアルキル基、炭素数1~3のハロアルキル基、炭素数1~3のアルコキシ基、又は前記式(IX)で表される基であることが好ましい。)、又は前記式(VIII)で表される基である組み合わせである。
 前記一般式(VI)におけるR及びR10のより好ましい組み合わせとしては、Rが、水素原子、炭素数1~3のアルキル基、前記一般式(VII)で表される基(前記一般式(VII)中、R11はフッ素原子、メチル基、エチル基、メトキシ基、エトキシ基、又は前記式(IX)で表される基であることが好ましい)又は前記式(VIII)で表される基であり、R10が水素原子又はメチル基である組み合わせである。
 前記一般式(VI)におけるR及びR10の特に好ましい組み合わせとしては、前記一般式(VI)において、Rが前記式(VIII)で表される基であり、R10が水素原子である組み合わせ(最も好ましくは1,2:3,4-ジ-O-スルファニル-メゾ-エリスリトール)である。
 前記一般式(VI)において、Rが前記一般式(VII)で表される基である化合物は、下記一般式(XV)で表される化合物である。
Figure JPOXMLDOC01-appb-C000027
 一般式(XV)中、R10及びR11は、一般式(VI)及び一般式(VII)におけるR10及びR11とそれぞれ同義である。
 一般式(XV)で表される化合物としては、R10が、水素原子、又は炭素数1~6のアルキル基であり、R11が、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、又は前記式(IX)で表される基である化合物が好ましい。
 更に、一般式(XV)で表される化合物としては、R10が、水素原子又はメチル基であって、R11が、フッ素原子、メチル基、エチル基、メトキシ基、エトキシ基、又は前記式(IX)で表される基である化合物が特に好ましい。
 前記一般式(VI)で表される化合物として、好ましくは、2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-エチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-プロピル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-エチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、ビス((2,2-ジオキソ-1,3,2-ジオキサチオラン-4-イル)メチル)サルフェート、1,2:3,4-ジ-O-スルファニル-メゾ-エリスリトール、又は1,2:3,4-ジ-O-スルファニル-D,L-スレイトールであり、更に好ましくは、2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-エチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-プロピル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-エチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、ビス((2,2-ジオキソ-1,3,2-ジオキサチオラン-4-イル)メチル)サルフェート、又は1,2:3,4-ジ-O-スルファニル-メゾ-エリスリトールであり、特に好ましくは、2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-エチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-プロピル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4-エチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、又はビス((2,2-ジオキソ-1,3,2-ジオキサチオラン-4-イル)メチル)サルフェートである。
 本発明の非水電解液が一般式(VI)で表される化合物を含有する場合、含有される一般式(VI)で表される化合物は、1種のみであってもよいし、2種以上であってもよい。
 本発明の非水電解液が一般式(VI)で表される化合物を含有する場合、一般式(VI)で表される化合物の含有量は、目的に応じて適宜選択できるが、非水電解液全質量に対して、0.001質量%~10質量%が好ましく、0.05質量%~5質量%であることが更に好ましい。
 また、本発明の非水電解液が、一般式(VI)で表される化合物を含有する場合において、前述の一般式(I)で表されるホスホノスルホン酸化合物の含有量は、非水電解液全質量に対して0.001質量%~10質量%であることが好ましく、0.05質量%~5質量%の範囲であることがより好ましい。この範囲において、より効果的に、電池の低温放電特性の改善と、電池の保存特性の改善と、を両立することができる。
〔ジフルオロリン酸リチウム、一般式(X)、一般式(XI)、又は一般式(XII)で表される化合物〕
 本発明の非水電解液は、本発明の効果をより効果的に得る観点から、更に、ジフルオロリン酸リチウム(LiOP(O)F)、下記一般式(X)で表される化合物、下記一般式(XI)で表される化合物、及び、下記一般式(XII)で表される化合物からなる群から選ばれる少なくとも1種の化合物を含有することが好ましい。
 この群から選ばれる少なくとも1種の化合物は、電解質化合物である。
 以下、この群から選ばれる少なくとも1種の化合物を、「特定電解質化合物」ということがある。
 本発明の非水電解液における電解質としては、特定電解質化合物以外の電解質(例えば、前述した一般的な電解質)のみを用いてもよいし、特定電解質化合物のみを用いてもよいし、特定電解質化合物以外の電解質と特定電解質化合物とを併用してもよい。
 特に、本発明の非水電解液が、電解質として、特定電解質化合物と特定電解質化合物以外の電解質とを含む場合には、通常の非水電解液用の電解質の基本的性能である電気伝導性が保持されることに加え、電池性能(特に初期及び充電保存時における電池の低温放電特性)も更に向上する。更に、特定電解質化合物及び特定電解質化合物以外の電解質の少なくとも一方がリチウムイオンを含む場合には、リチウムイオンの安定的な供給源となる。
Figure JPOXMLDOC01-appb-C000028
 一般式(X)、一般式(XI)及び一般式(XII)中、Mは、アルカリ金属である。
 前記Mは、リチウム、ナトリウム、又はカリウムであることが好ましく、リチウムであることがより好ましい。
 一般式(X)、一般式(XI)、又は一般式(XII)で表される化合物の合成方法としては、たとえば、一般式(X)で表される化合物の場合には、非水溶媒中でLiPFとこのLiPFに対して1倍モルのシュウ酸とを反応させて、リンに結合しているフッ素原子をシュウ酸で置換する方法等がある。
 また、一般式(XI)で表される化合物の場合には、非水溶媒中でLiPFとこのLiPFに対して2倍モルのシュウ酸とを反応させて、リンに結合しているフッ素原子をシュウ酸で置換する方法等がある。
 また、一般式(XII)で表される化合物の場合には、非水溶媒中でLiPFとこのLiPFに対して3倍モルのシュウ酸とを反応させて、リンに結合しているフッ素原子をシュウ酸で置換する方法等がある。
 これらの場合には、アニオン化合物のリチウム塩を得ることができる。
 本発明の非水電解液が、ジフルオロリン酸リチウム、一般式(X)で表される化合物、一般式(XI)で表される化合物、及び、一般式(XII)で表される化合物からなる群から選ばれる少なくとも1種の化合物を含有する場合、ジフルオロリン酸リチウム、一般式(X)で表される化合物、一般式(XI)で表される化合物、及び、一般式(XII)で表される化合物の総含有量は、非水電解液全質量に対して0.001質量%~10質量%であることが好ましく、0.05質量%~5質量%の範囲であることがより好ましい。この範囲において、より効果的に、電池の低温特性の改善と、電池の保存特性の改善と、を両立することができる。
 また、本発明の非水電解液が、ジフルオロリン酸リチウム、一般式(X)で表される化合物、一般式(XI)で表される化合物、及び、一般式(XII)で表される化合物からなる群から選ばれる少なくとも1種の化合物を含有する場合において、前述の一般式(I)で表されるホスホノスルホン酸化合物の含有量は、非水電解液全質量に対して0.001質量%~10質量%であることが好ましく、0.05質量%~5質量%の範囲であることがより好ましい。この範囲において、より効果的に、電池の低温放電特性の改善と、電池の保存特性の改善と、を両立することができる。
 本発明の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。
<リチウム二次電池>
 本発明のリチウム二次電池は、負極と、正極と、前記本発明の非水電解液とを基本的に含んで構成されており、通常、負極と正極との間にセパレータが設けられている。
(負極)
 前記負極を構成する負極活物質は、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
 リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでも良い。
 これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。前記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
 前記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソペーズビッチカーボンファイバー(MCF)などが例示される。
 前記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
 これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
前記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
(正極)
 前記正極を構成する正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物又は遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1-X)〔0<X<1〕、LiFePOなどのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
 上記の正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
(セパレータ)
 前記セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
 前記多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
 特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
 前記高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
 本発明の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
(電池の構成)
 本発明のリチウム二次電池は、前記の負極活物質、正極活物質及びセパレータを含む。 本発明のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
 本発明の非水電解質二次電池の例として、図1に示すコイン型電池が挙げられる。
 図1に示すコイン型電池では、円盤状負極2、電解質を非水溶媒に溶解してなる非水電解液を注入したセパレータ5、円盤状正極1、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板7、8が、この順序に積層された状態で、正極缶3(以下、「電池缶」ともいう)と封口板4(以下、「電池缶蓋」ともいう)との間に収納される。正極缶3と封口板4とはガスケット6を介してかしめ密封する。
 なお、本発明のリチウム二次電池は、負極と、正極と、前記本発明の非水電解液とを含むリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
 即ち、本発明のリチウム二次電池は、まず、負極と、正極と、前記本発明の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、該充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
 本発明の非水電解液及びその非水電解液を用いたリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノートパソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。
 以下に実施例によって本発明をより具体的に説明するが、本発明はこれら実施例によって制限されるものではない。なお、以下の実施例において、「%」又は「wt%」は質量%を表す。
 以下、一般式(I)で表されるホスホノスルホン酸化合物の合成例を示す。
〔合成例1〕
<ジエチルホスホノメタンスルホン酸メチル(例示化合物10)の合成>
 メタンスルホン酸メチル(5.00g,45.4mmol)をテトラヒドロフラン(100ml)に溶かし、-78℃に冷却下、n-ブチルリチウム(1.6Mヘキサン溶液、31ml、49.9mmol)を滴下し、同温度で30分撹拌した。続いて、ジエチル燐酸クロライド(3.9ml,27.2mmol)を滴下し、-78℃で1時間、-50℃で30分撹拌した。反応液に飽和塩化アンモニウム水溶液を加え撹拌後、更に水で薄めた混合物から、酢酸エチルで2回抽出した。合わせた抽出液(有機層)を、水及び飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥後、濃縮した。得られた油状物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン系)で精製し、ジエチルホスホノメタンスルホン酸メチル(例示化合物10)を5.04g(収率75%)得た。得られた化合物のNMR測定結果は以下の通りであった。
 H-NMR(270MHz,CDCl)δ(ppm):4.31-4.20(4H,m),3.73(2H,d,J=17.5Hz),1.42-1.35(6H,m).
〔合成例2〕
<ビス(トリメチルシリル)ホスホノメタンスルホン酸トリメチルシリル(例示化合物23)の合成>
 ジエチルホスホノメタンスルホン酸メチル(例示化合物10)(5.04g、20.5mmol)を塩化メチレン(25ml)に溶かし、室温で、トリメチルシリルブロミド(10.8ml,80.9mmol)を加えた。室温で6時間撹拌後、反応液を減圧下濃縮し、ビス(トリメチルシリル)ホスホノメタンスルホン酸トリメチルシリル(例示化合物23)(7.67g,収率95%)を得た。得られた化合物のNMR測定結果は以下の通りであった。
 H-NMR(270MHz,CDCl)δ(ppm):3.90(2H,d,J=18.4Hz),0.36(18H,s),0.07(9H,s).
〔合成例3〕
<ビス(トリメチルシリルメチル)ホスホノメタンスルホン酸トリメチルシリルメチル(例示化合物71)の合成>
(工程1)
 Chemische Berichte, 1980, vol.113, (1), 142-151に記載の方法に従い、ホスホノ酢酸(16.8g)より、(ジクロロホスホリル)メタンスルホニルクロライドを13.08g(47%)得た。
(工程2)
 トリメチルシリルメタノール(0.9ml,7.13mmol)及びトリエチルアミン(1.5ml,10.8mmol)を塩化メチレン(20ml)に溶かした溶液に、氷冷下、上記(ジクロロホスホリル)メタンスルホニルクロリド(0.50g, 2.16mmol)を塩化メチレン(2ml)に溶かした溶液を滴下した。氷冷下、2時間撹拌後、反応液を水中に注ぎ込んだ。その混合物から塩化メチレンで抽出した。あわせた抽出液(有機層)を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。得られた粗生成物をシリカゲルクロマトグラフィーにて精製し、ビス(トリメチルシリルメチル)ホスホノメタンスルホン酸トリメチルシリルメチル(例示化合物71)(58.1mg,収率6%)を得た。得られた化合物のNMR測定結果は以下の通りであった。
 H-NMR(270MHz,CDCl)δ(ppm):3.99(2H,s),3.85(2H,d,J=6.3Hz),3.67(2H,d,J=16.8Hz),0.15(9H,s),0.12(18H,s).
〔合成例4〕
<ホスホノメタンスルホン酸(例示化合物1)の合成>
 合成例2で得たビス(トリメチルシリル)ホスホノメタンスルホン酸トリメチルシリル(例示化合物23)(236.5mg,0.602mmol)を、メタノール(5ml)に溶かし、室温で、2日間撹拌した。反応液を減圧下濃縮後、真空ポンプにて更に乾燥し、ホスホノメタンスルホン酸(例示化合物1)(104.9mg,収率99%)を得た。得られた化合物のNMR測定結果は以下の通りであった。
 H-NMR(270MHz,acetone-d)δ(ppm):3.75(2H, d,J=17.5Hz).
〔合成例5〕
<2-(ジエトキシホスホリル)エタンスルホン酸フェニル(例示化合物43)の合成>
 亜リン酸ジエチル(0.90g,6.50mmol)及びジアザビシクロウンデセン(0.99g,6.50mmol)をテトラヒドロフラン(20ml)に溶かした溶液に、氷冷下、フェニル ビニルスルホネート(1.14g,6.19mmol)をテトラヒドロフラン(3ml)に溶かした溶液を滴下した。氷冷下、4時間撹拌後、反応液を水中に注ぎ込んだ。その混合物から酢酸エチルで2回抽出した。あわせた抽出液(有機層)を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。得られた粗生成物をシリカゲルクロマトグラフィーにて精製し、2-(ジエトキシホスホリル)エタンスルホン酸フェニル(例示化合物43)(0.97g,収率49%)を得た。得られた化合物のNMR測定結果は以下の通りであった。
 H-NMR(270MHz,CDCl)δ(ppm):7.46-7.25(5H,m),4.21-4.09(4H,m),3.52-3.43(2H,m),2.45-2.31(2H,m),1.39-1.32(6H,m).
〔合成例6〕
<2-(ヒドロキシ(トリメチルシリルオキシ)ホスホリル)エタンスルホン酸フェニル(例示化合物81)の合成>
 合成例5で得た2-(ジエトキシホスホリル)エタンスルホン酸フェニル(例示化合物43)(726.3mg、2.25mmol)を塩化メチレン(14.5ml)に溶かし、室温で、トリメチルシリルブロミド(0.71ml,5.4mmol)を加えた。室温で16時間撹拌後、反応液を減圧下濃縮し、2-(ヒドロキシ(トリメチルシリルオキシ)ホスホリル)エタンスルホン酸フェニル(例示化合物81)(750.2mg,収率98%)を得た。得られた化合物のNMR測定結果は以下の通りであった。
 H-NMR(270MHz,CDCl)δ(ppm):7.46-7.24(5H,m),3.52-3.40(2H,m),2.47-2.30(2H,m),0.32(9H,s).
 以上、一般式(I)で表されるホスホノスルホン酸化合物の合成例として、例示化合物10、例示化合物23、例示化合物71、例示化合物1、例示化合物43、例示化合物81の合成例を説明したが、その他の一般式(I)で表されるホスホノスルホン酸化合物についても上記合成例と類似の方法により合成できる。
〔実施例1〕
 以下の手順にて、リチウム二次電池を作製した。
<負極の作製>
 人造黒鉛20質量部、天然黒鉛系黒鉛80質量部、カルボキシメチルセルロース1質量部及びSBRラテックス2質量部を水溶媒で混錬してペースト状の負極合剤スラリーを調製した。
 次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層とからなるシート状の負極を得た。このときの負極活物質層の塗布密度は10mg/cmであり、充填密度は1.5g/mlであった。
<正極の作製>
 LiCoOを90質量部、アセチレンブラック5質量部及びポリフッ化ビニリデン5質量部を、N-メチルピロリジノンを溶媒として混錬してペースト状の正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質層とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は30mg/cmであり、充填密度は2.5g/mlであった。
<非水電解液の調製>
 非水溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ34:33:33(質量比)の割合で混合した中に、電解質であるLiPFを、最終的に得られる非水電解液中の電解質濃度が1モル/リットルとなるように添加し、溶解させた。
 得られた溶液に対して、添加剤として、前記合成例2で得られたビス(トリメチルシリル)ホスホノメタンスルホン酸トリメチルシリル(例示化合物23)を、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加し、非水電解液を得た。
<コイン型電池の作製>
 上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜いて、コイン状の電極(負極及び正極)を得た。また厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜きセパレータを得た。
 得られたコイン状の負極、セパレータ及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、非水電解液20μlを注入してセパレータと正極と負極に含漬させた。
 更に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封し、直径20mm、高さ3.2mmの図1で示す構成を有するコイン型のリチウム二次電池(以下、「コイン型電池」又は「試験用電池」と称することがある)を作製した。
 得られたコイン型電池(試験用電池)について、各測定を実施した。
[評価方法]
<電池の初期特性、抵抗値(-20℃)測定>
 上記コイン型電池を定電圧4.0Vで充電し、次いで、該充電後のコイン型電池を恒温槽内で-20℃に冷却し、-20℃において0.2mA定電流で放電し、放電開始から10秒間における電位低下を測定することにより、コイン型電池の直流抵抗[Ω]を測定し、得られた値を初期抵抗値[Ω](-20℃)とした。後述の比較例1のコイン型電池についても同様にして、初期抵抗値[Ω](-20℃)を測定した。
 これらの結果から、下記式により、比較例1での初期抵抗値[Ω](-20℃)を100%としたときの実施例1での初期抵抗値(相対値;%)として、「初期特性、抵抗値(-20℃)[%]」を求めた。
 得られた結果を表1に示す。
 初期特性、抵抗値(-20℃)[%]
=(実施例1での初期抵抗値[Ω](-20℃)/比較例1での初期抵抗値[Ω](-20℃))×100[%]
<電池の保存特性、容量維持率測定>
 上記で得られたコイン型電池について、25℃の恒温槽中で定電流1mAかつ定電圧4.2Vで充電し、この25℃の恒温槽中で1mA定電流で2.85Vまで放電し、1サイクル目の放電容量[mAh]を測定した。
 次に、このコイン型電池を定電圧4.2V充電し、充電したコイン型電池を80℃の恒温槽内に2日間保存(以下、この操作を「高温保存試験」とする)した後、1サイクル目の放電容量と同様の方法で高温保存試験後の放電容量[mAh]を測定し、下記式にて電池の保存特性である容量維持率[%]を計算した。
 得られた結果を表1に示す。
 保存特性、容量維持率[%]
=(高温保存試験後の放電容量[mAh]/1サイクル目の放電容量[mAh])×100[%]
 後述の比較例1のコイン型電池についても同様にして、容量維持率[%]を計算した。
 これらの結果から、比較例1での容量維持率を100%としたときの実施例1での容量維持率(相対値;%)を求めた。
 得られた容量維持率(相対値;%)を表1に示す。
<電池の保存特性、抵抗値(-20℃)測定>
 初期抵抗値測定後のコイン型電池を定電圧4.2V充電し、充電したコイン型電池を80℃の恒温槽内に2日間保存した(高温保存試験)。次に、この高温保存試験後のコイン型電池の抵抗値(-20℃)を前述の初期抵抗値(-20℃)と同様の方法で測定した。後述の[比較例1]のコイン型電池についても同様にして、高温保存試験後の抵抗値(-20℃)を測定した。
 これらの結果から、下記式により、比較例1での高温保存試験後の抵抗値[Ω](-20℃)を100%としたときの実施例1での高温保存試験後の抵抗値(相対値%)として、実施例1での「保存特性、抵抗値(-20℃)[%]」を求めた。
 得られた結果を表1に示す。
 保存特性、抵抗値(-20℃)[%]
=(実施例1での高温保存試験後の抵抗値[Ω](-20℃)/比較例1での高温保存試験後の抵抗値[Ω](-20℃))×100[%]
〔実施例2〕
 実施例1中の非水電解液の調製において、例示化合物23に代えて例示化合物71を、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表1に示す。
〔実施例3〕
 実施例1中の非水電解液の調製において、例示化合物23に代えて例示化合物10を、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表1に示す。
〔実施例4〕
 実施例1中の非水電解液の調製において、例示化合物23に代えて例示化合物1を、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を
表1に示す。
〔実施例5〕
 実施例1中の非水電解液の調製において、例示化合物23に代えて例示化合物43を、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表1に示す。
〔実施例6〕
 実施例1中の非水電解液の調製において、前記例示化合物23に代えて例示化合物81を、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表1に示す。
〔比較例1〕
 実施例1中の非水電解液の調製において、添加剤(例示化合物23)を添加しなかったこと以外は実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表1に示す。
〔比較例2〕
 実施例1中の非水電解液の調製において、前記例示化合物23に代えてジエチルホスホノメタンカルボン酸エチル(比較化合物1)を、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000029
 上記表1並びに後述の表2及び表3における非水電解液用添加剤の添加量は、最終的に得られる非水電解液全質量に対しての質量%(wt%)を意味する。
 また、上記表1並びに後述の表2及び表3中、「一般式(I)化合物」は、一般式(1)で表されるホスホノスルホン酸化合物を意味する。
 実施例及び比較例に用いた例示化合物の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000030
 表1に示すように、添加剤を含有しない比較例1と比べ、実施例1~6では、保存特性として、容量維持率を維持したまま低温抵抗値を有意に低減することができている。更に、実施例1~6では、比較例1と比べ、初期特性としての低温抵抗値も有意に低減することができている。
 一方、比較化合物1を添加した比較例2では、保存特性に関して比較化合物1の添加による悪影響が見られ、また初期特性としての低温抵抗値も増加傾向にあった。
〔実施例7〕
 実施例1中の非水電解液の調製において、更に、添加剤としてビニレンカーボネート(化合物A)を、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例1と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表2に示す。
〔実施例8~13〕
 実施例7中の非水電解液の調製において、ビニレンカーボネート(化合物A)に代えてそれぞれ化合物B~Gを、最終的に得られる非水電解液全質量に対する含有量がそれぞれ0.5wt%となるように添加したこと以外は実施例7と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表2に示す。
〔実施例14〕
 実施例3中の非水電解液の調製において、更に、添加剤としてビニレンカーボネート(化合物A)を、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例3と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表2に示す。
〔実施例15~20〕
 実施例14中の非水電解液の調製において、ビニレンカーボネート(化合物A)に代えてそれぞれ化合物B~G、最終的に得られる非水電解液全質量に対する含有量がそれぞれ0.5wt%となるように添加したこと以外は実施例14と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表2に示す。
〔実施例21〕
 実施例4中の非水電解液の調製において、更に、添加剤として化合物Gを、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例4と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表2に示す。
〔実施例22〕
 実施例5中の非水電解液の調製において、更に、添加剤として化合物Gを、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例5と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表2に示す。
〔実施例23〕
 実施例6中の非水電解液の調製において、更に、添加剤として化合物Gを、最終的に得られる非水電解液全質量に対する含有量が0.5wt%となるように添加したこと以外は実施例6と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000031
 表2では、対比のため、表1における比較例1の結果も記載した。
 実施例に用いた化合物A~Gの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000032
 表2に示すように、添加剤を含有しない比較例1と比べ、添加剤として、一般式(1)で表される化合物と化合物A~Gのいずれか1つとを組み合わせて使用した実施例7~23では、保存特性として、容量維持率を維持したまま低温抵抗値を有意に低減することができている。更に、実施例7~23では、比較例1と比べ、初期特性としての低温抵抗値も有意に低減することができている。
〔実施例24~31〕
 実施例7~9、13~16、及び20において、一般式(1)で表される化合物の添加量を、最終的に得られる非水電解液全質量に対する含有量が1.5wt%となるように増加させたこと以外は実施例7~9、13~16、及び20と同様にしてコイン型電池を得た。
 得られたコイン型電池について、実施例1と同様にして各測定を実施した。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000033
 表3中では、対比のため、表2中における比較例1の結果も記載した。
 表3に示すように、実施例7~9、13~16、及び20に対し、一般式(1)で表される化合物の添加量を増加させた実施例24~31においても、実施例7~9、13~16、及び20と同様の効果が確認された。
 日本出願2011-231618の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (15)

  1.  下記一般式(I)で表されるホスホノスルホン酸化合物を含有する非水電解液。
    Figure JPOXMLDOC01-appb-C000001
    〔一般式(I)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、フェニル基、ベンジル基、又は一般式(II)で表される基を表し、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表し、nは、1~6の整数を表す。
     一般式(II)中、R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、フェニル基、又はベンジル基を表し、mは、0~2の整数を表す。*は、一般式(I)における酸素原子との結合位置を表す。〕
  2.  前記一般式(I)で表されるホスホノスルホン酸化合物が、下記一般式(III)で表されるホスホノスルホン酸化合物である請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000002
    〔一般式(III)中、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表し、R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、フェニル基、又はベンジル基を表し、nは、1~6の整数を表す。〕
  3.  さらに、下記一般式(IV)で表される化合物を含有する請求項1又は請求項2に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000003
    〔一般式(IV)中、Y及びYは、それぞれ独立に、水素原子、メチル基、エチル基、又はプロピル基を示す。〕
  4.  さらに、下記一般式(V)で表される化合物を含有する請求項1~請求項3のいずれか1項に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000004
    〔一般式(V)中、X、X、X及びXは、それぞれ独立に、ビニル基、フッ素原子により置換されてもよい炭素数1~3のアルキル基、水素原子、フッ素原子、又は塩素原子を示す。ただし、X、X、X及びXが同時に水素原子であることはない。〕
  5.  さらに、下記一般式(VI)で表される化合物を含有する請求項1~請求項4のいずれか1項に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000005
    〔一般式(VI)中、R及びR10は、それぞれ独立に、水素原子、炭素数1~6のアルキル基、一般式(VII)で表される基、又は式(VIII)で表される基を表す。
     一般式(VII)中、R11は、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、炭素数1~6のアルコキシ基、又は式(IX)で表される基を表す。
     一般式(VII)、式(VIII)、および式(IX)における*は、結合位置を表す。
  6.  さらに、ジフルオロリン酸リチウム(LiOP(O)F)、下記一般式(X)で表される化合物、下記一般式(XI)で表される化合物、及び、下記一般式(XII)で表される化合物からなる群から選ばれる少なくとも1種の化合物を含有する請求項1~請求項5のいずれか1項に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000006
    〔一般式(X)、一般式(XI)、及び一般式(XII)中、Mは、アルカリ金属を表す。〕
  7.  前記一般式(I)で表されるホスホノスルホン酸化合物の含有量が、非水電解液全質量に対して0.001質量%~10質量%である請求項1~請求項6のいずれか1項に記載の非水電解液。
  8.  前記一般式(IV)で表される化合物の含有量が、非水電解液全質量に対して0.001質量%~10質量%である請求項3に記載の非水電解液。
  9.  前記一般式(V)で表される化合物の含有量が、非水電解液全質量に対して0.001質量%~10質量%である請求項4に記載の非水電解液。
  10.  前記一般式(VI)で表される化合物の含有量が、非水電解液全質量に対して0.001質量%~10質量%である請求項5に記載の非水電解液。
  11.  ジフルオロリン酸リチウム(LiOP(O)F)、前記一般式(X)で表される化合物、前記一般式(XI)で表される化合物、及び前記一般式(XII)で表される化合物の総含有量が、非水電解液全質量に対して0.001質量%~10質量%である請求項6に記載の非水電解液。
  12.  下記一般式(I)で表されるホスホノスルホン酸化合物を含有するリチウム二次電池用添加剤。
    Figure JPOXMLDOC01-appb-C000007
    〔一般式(I)中、R、R及びRは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のハロアルキル基、フェニル基、ベンジル基、又は一般式(II)で表される基を表し、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表し、nは、1~6の整数を表す。
     一般式(II)中、R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、フェニル基、又はベンジル基を表し、mは、0~2の整数を表す。*は、一般式(I)における酸素原子との結合位置を表す。〕
  13.  下記一般式(XIII)で表されるホスホノスルホン酸化合物。
    Figure JPOXMLDOC01-appb-C000008
    〔一般式(XIII)中、R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基を表し、R、R及びRは、それぞれ独立に、炭素数1~6のアルキル基、フェニル基、又はベンジル基を表す。〕
  14.  正極と、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種を負極活物質として含む負極と、請求項1~請求項11のいずれか1項に記載の非水電解液と、を含むリチウム二次電池。
  15.  正極と、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種を負極活物質として含む負極と、請求項1~請求項11のいずれか1項に記載の非水電解液と、を含むリチウム二次電池を、充放電させて得られたリチウム二次電池。
PCT/JP2012/077162 2011-10-21 2012-10-19 ホスホノスルホン酸化合物を含有する非水電解液、及びリチウム二次電池 WO2013058387A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013539716A JP5695209B2 (ja) 2011-10-21 2012-10-19 ホスホノスルホン酸化合物を含有する非水電解液、及びリチウム二次電池
US14/350,415 US9425484B2 (en) 2011-10-21 2012-10-19 Non-aqueous electrolyte solution containing phosphonosulfonic acid compound, and lithium secondary battery
CN201280049604.4A CN103875117B (zh) 2011-10-21 2012-10-19 含有膦酰基磺酸化合物的非水电解液及锂二次电池
EP12842359.7A EP2770573B1 (en) 2011-10-21 2012-10-19 Nonaqueous electrolyte solution containing phosphonosulfonic acid compound, and lithium secondary battery
KR1020147009453A KR101562754B1 (ko) 2011-10-21 2012-10-19 포스포노술폰산 화합물을 함유하는 비수 전해액, 및 리튬 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-231618 2011-10-21
JP2011231618 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013058387A1 true WO2013058387A1 (ja) 2013-04-25

Family

ID=48141030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077162 WO2013058387A1 (ja) 2011-10-21 2012-10-19 ホスホノスルホン酸化合物を含有する非水電解液、及びリチウム二次電池

Country Status (6)

Country Link
US (1) US9425484B2 (ja)
EP (1) EP2770573B1 (ja)
JP (1) JP5695209B2 (ja)
KR (1) KR101562754B1 (ja)
CN (1) CN103875117B (ja)
WO (1) WO2013058387A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109924A (ja) * 2011-11-18 2013-06-06 Mitsui Chemicals Inc ホスホノ酢酸化合物を含有する非水電解液、及びリチウム二次電池
WO2014196177A1 (ja) * 2013-06-06 2014-12-11 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法
JP2015162289A (ja) * 2014-02-26 2015-09-07 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
JP2015176760A (ja) * 2014-03-14 2015-10-05 三井化学株式会社 リチウム二次電池
EP3051619A4 (en) * 2013-09-25 2017-04-19 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution for batteries and lithium secondary battery
JP2017208322A (ja) * 2016-05-16 2017-11-24 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2018133284A (ja) * 2017-02-17 2018-08-23 Tdk株式会社 非水電解液およびそれを用いた非水電解液電池
JP2020527840A (ja) * 2017-11-21 2020-09-10 エルジー・ケム・リミテッド 添加剤、これを含むリチウム二次電池用非水電解液、及びこれを含むリチウム二次電池
WO2021044859A1 (ja) * 2019-09-04 2021-03-11 株式会社村田製作所 二次電池用電解液および二次電池

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105940544B (zh) * 2014-08-11 2019-12-10 关东电化工业株式会社 包含一氟磷酸酯盐的非水电解液和使用了其的非水电解液电池
WO2017138452A1 (ja) 2016-02-08 2017-08-17 セントラル硝子株式会社 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN107293776A (zh) * 2016-04-12 2017-10-24 宁德时代新能源科技股份有限公司 电解液及锂离子电池
WO2018220997A1 (ja) * 2017-06-01 2018-12-06 日立化成株式会社 電解液及び電気化学デバイス
CN109004273A (zh) * 2017-06-07 2018-12-14 宁德时代新能源科技股份有限公司 电解液及二次电池
EP3724943B1 (en) * 2017-12-13 2023-05-10 Basf Se Electrolyte composition comprising oligomeric silyl ester phosphonates
CN108484668A (zh) * 2018-04-25 2018-09-04 中山大学 具有磺酰基官能团的有机膦化合物及其制备方法和应用
WO2019206166A1 (zh) * 2018-04-25 2019-10-31 中山大学 具有磺酰基官能团的有机膦化合物及其制备方法和应用
CN108467409A (zh) * 2018-04-25 2018-08-31 中山大学 具有磺酰基官能团的五价膦化合物及其制备方法和应用
WO2019245325A1 (ko) * 2018-06-21 2019-12-26 파낙스 이텍(주) 이차전지용 전해액 및 이를 포함하는 이차전지
JP7216805B2 (ja) * 2019-03-29 2023-02-01 三井化学株式会社 電池用非水電解液及びリチウム二次電池
EP3866246A4 (en) * 2019-04-29 2022-01-19 Lg Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTE FOR SECONDARY LITHIUM BATTERY AND SECONDARY LITHIUM BATTERY COMPRISING THEM
CN111864262A (zh) * 2019-04-29 2020-10-30 诺莱特电池材料(苏州)有限公司 一种锂离子电池非水电解液及锂离子电池
CN110265716B (zh) * 2019-06-13 2021-12-10 东莞维科电池有限公司 一种锂离子电池电解液及锂离子电池
CN110336076B (zh) * 2019-06-19 2021-08-06 东莞东阳光科研发有限公司 锂离子电池电解液及锂离子电池
KR102473144B1 (ko) * 2019-10-25 2022-11-30 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
CN111490294B (zh) * 2020-04-21 2022-04-29 东莞东阳光科研发有限公司 非水电解液功能添加剂、非水电解液及锂离子电池
CN113745658B (zh) * 2020-05-28 2023-09-08 深圳新宙邦科技股份有限公司 一种非水电解液及锂离子电池
CN112290094B (zh) * 2020-10-20 2022-03-11 合肥国轩高科动力能源有限公司 一种高浸润高安全性电解液添加剂、电解液、制备方法及电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE938186C (de) 1953-06-11 1956-01-26 Boehme Fettchemie G M B H Verfahren zur Herstellung von Phosphor und Schwefel enthaltenden organischen Verbindungen
JPH02184693A (ja) * 1989-01-03 1990-07-19 Gas Res Inst 弗素化ホスホンスルホン酸及びその製法
JPH0927328A (ja) 1995-07-10 1997-01-28 Asahi Denka Kogyo Kk 非水電池
JPH10189039A (ja) 1996-12-25 1998-07-21 Mitsui Chem Inc 非水電解液及び非水電解液二次電池
JP3658506B2 (ja) 1997-09-19 2005-06-08 三菱化学株式会社 非水系電解液電池
US20060014635A1 (en) 2000-05-25 2006-01-19 Alain Forestiere Materials comprising organic groups containing sulphur and phosphorous bonded to a mineral oxide via oxygen atoms
JP2008262908A (ja) 2007-03-19 2008-10-30 Mitsubishi Chemicals Corp 非水系電解液および非水系電解液電池
JP2009070615A (ja) 2007-09-11 2009-04-02 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池
JP4538886B2 (ja) 1999-03-16 2010-09-08 住友化学株式会社 非水電解液およびこれを用いたリチウム二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803984B2 (ja) * 2004-09-22 2011-10-26 帝人株式会社 リチウムイオン二次電池用セパレータおよびその製造方法とリチウムイオン二次電池
JP4241815B2 (ja) * 2006-12-07 2009-03-18 ソニー株式会社 電解液および電池
JP4379743B2 (ja) * 2006-12-08 2009-12-09 ソニー株式会社 電解液および二次電池
EP2883867B1 (en) 2010-02-03 2017-06-28 Ube Industries, Ltd. Non-aqueous electrolytic solution and electrochemical element using the same
KR101423415B1 (ko) * 2010-05-21 2014-07-24 미쓰이 가가쿠 가부시키가이샤 실릴에스테르기 함유 포스폰산 유도체를 함유하는 비수 전해액 및 리튬 2차 전지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE938186C (de) 1953-06-11 1956-01-26 Boehme Fettchemie G M B H Verfahren zur Herstellung von Phosphor und Schwefel enthaltenden organischen Verbindungen
JPH02184693A (ja) * 1989-01-03 1990-07-19 Gas Res Inst 弗素化ホスホンスルホン酸及びその製法
JPH0927328A (ja) 1995-07-10 1997-01-28 Asahi Denka Kogyo Kk 非水電池
JPH10189039A (ja) 1996-12-25 1998-07-21 Mitsui Chem Inc 非水電解液及び非水電解液二次電池
JP3658506B2 (ja) 1997-09-19 2005-06-08 三菱化学株式会社 非水系電解液電池
JP4538886B2 (ja) 1999-03-16 2010-09-08 住友化学株式会社 非水電解液およびこれを用いたリチウム二次電池
US20060014635A1 (en) 2000-05-25 2006-01-19 Alain Forestiere Materials comprising organic groups containing sulphur and phosphorous bonded to a mineral oxide via oxygen atoms
JP2008262908A (ja) 2007-03-19 2008-10-30 Mitsubishi Chemicals Corp 非水系電解液および非水系電解液電池
JP2009070615A (ja) 2007-09-11 2009-04-02 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液電池

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHEMISCHE BERICHTE, vol. 113, 1980, pages 142 - 151
CHEMISCHE BERICHTE, vol. 113, no. 1, 1980, pages 142 - 151
HETEROATOM CHEMISTRY, vol. 208, no. 19, pages 470 - 473
ORGANIC AND BIOMOLECULAR CHEMISTRY, vol. 5, 2007, pages 160 - 168
PHOSPHORUS, SULFUR AND SILICON AND THE RELATED ELEMENTS, vol. 56, 1991, pages 111 - 115
PRISHCHENKO A: "Synthesis of 2-P-Substituted Derivatives of Ethanesulfonic Acid", RUSSIAN JOURNAL OF GENERAL CHEMISTRY, vol. 74, no. 11, 2004, pages 1820 - 21, XP019300736 *
RUSSIAN JOURNAL OF GENERAL CHEMISTRY, vol. 74, 2004, pages 1820 - 1821
TETRAHEDRON LETTERS, vol. 28, 1987, pages 1101 - 1104
TETRAHEDRON, vol. 43, 1987, pages 5125 - 5134

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109924A (ja) * 2011-11-18 2013-06-06 Mitsui Chemicals Inc ホスホノ酢酸化合物を含有する非水電解液、及びリチウム二次電池
WO2014196177A1 (ja) * 2013-06-06 2014-12-11 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法
JPWO2014196177A1 (ja) * 2013-06-06 2017-02-23 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法
EP3051619A4 (en) * 2013-09-25 2017-04-19 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution for batteries and lithium secondary battery
US9899704B2 (en) 2013-09-25 2018-02-20 Mitsui Chemicals, Inc. Non-aqueous electrolyte solution for battery and lithium secondary battery
JP2015162289A (ja) * 2014-02-26 2015-09-07 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
JP2015176760A (ja) * 2014-03-14 2015-10-05 三井化学株式会社 リチウム二次電池
JP2017208322A (ja) * 2016-05-16 2017-11-24 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2018133284A (ja) * 2017-02-17 2018-08-23 Tdk株式会社 非水電解液およびそれを用いた非水電解液電池
JP2020527840A (ja) * 2017-11-21 2020-09-10 エルジー・ケム・リミテッド 添加剤、これを含むリチウム二次電池用非水電解液、及びこれを含むリチウム二次電池
JP7139005B2 (ja) 2017-11-21 2022-09-20 エルジー エナジー ソリューション リミテッド 添加剤、これを含むリチウム二次電池用非水電解液、及びこれを含むリチウム二次電池
US11682794B2 (en) 2017-11-21 2023-06-20 Lg Energy Solution, Ltd. Additive, non-aqueous electrolyte for lithium secondary battery including the same, and lithium secondary battery including the non-aqueous electrolyte
WO2021044859A1 (ja) * 2019-09-04 2021-03-11 株式会社村田製作所 二次電池用電解液および二次電池
JPWO2021044859A1 (ja) * 2019-09-04 2021-03-11
CN114342144A (zh) * 2019-09-04 2022-04-12 株式会社村田制作所 二次电池用电解液及二次电池
JP7207555B2 (ja) 2019-09-04 2023-01-18 株式会社村田製作所 二次電池用電解液および二次電池
CN114342144B (zh) * 2019-09-04 2024-04-30 株式会社村田制作所 二次电池用电解液及二次电池

Also Published As

Publication number Publication date
KR101562754B1 (ko) 2015-10-22
US9425484B2 (en) 2016-08-23
US20140272556A1 (en) 2014-09-18
KR20140067109A (ko) 2014-06-03
CN103875117A (zh) 2014-06-18
EP2770573A1 (en) 2014-08-27
JPWO2013058387A1 (ja) 2015-04-02
EP2770573B1 (en) 2017-07-26
EP2770573A4 (en) 2015-07-01
JP5695209B2 (ja) 2015-04-01
CN103875117B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5695209B2 (ja) ホスホノスルホン酸化合物を含有する非水電解液、及びリチウム二次電池
JP5524347B2 (ja) 環状硫酸エステル化合物、それを含有する非水電解液、及びリチウム二次電池
JP5399559B2 (ja) シリルエステル基含有ホスホン酸誘導体を含有する非水電解液及びリチウム二次電池
KR101947068B1 (ko) 이온성 착체, 비수전해액 전지용 전해액, 비수전해액 전지 및 이온성 착체의 합성법
KR101422383B1 (ko) 환상 설폰 화합물을 함유하는 비수전해액, 및 리튬 2차 전지
JP5956680B2 (ja) 電池用非水電解液、新規化合物、高分子電解質、及びリチウム二次電池
JP2014170689A (ja) 非水電解液及びリチウム二次電池
JP6487147B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP5542827B2 (ja) 不飽和スルトン化合物を含有するリチウム二次電池用非水電解液、リチウム二次電池用添加剤、及びリチウム二次電池
WO2018181369A1 (ja) 電池用非水電解液及びリチウム二次電池
JP5552088B2 (ja) ベンゾジオキサジチエピン誘導体を含有する非水電解液及びリチウム二次電池
JP5674600B2 (ja) 環状スルホン化合物を含有するリチウム二次電池用非水電解液、及びそのリチウム二次電池
JP5785064B2 (ja) ホスホノ酢酸化合物を含有する非水電解液、及びリチウム二次電池
WO2020025499A1 (en) New components for electrolyte compositions
WO2024034522A1 (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539716

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350415

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147009453

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012842359

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012842359

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE