WO2013058121A1 - ε-カプロラクタムの製造方法 - Google Patents

ε-カプロラクタムの製造方法 Download PDF

Info

Publication number
WO2013058121A1
WO2013058121A1 PCT/JP2012/075812 JP2012075812W WO2013058121A1 WO 2013058121 A1 WO2013058121 A1 WO 2013058121A1 JP 2012075812 W JP2012075812 W JP 2012075812W WO 2013058121 A1 WO2013058121 A1 WO 2013058121A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower alcohol
caprolactam
moles
gas
reaction
Prior art date
Application number
PCT/JP2012/075812
Other languages
English (en)
French (fr)
Inventor
杉田 啓介
哲也 横田
尚己 武田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020147010521A priority Critical patent/KR101925168B1/ko
Priority to SG11201401106PA priority patent/SG11201401106PA/en
Priority to IN2909CHN2014 priority patent/IN2014CN02909A/en
Priority to CN201280050518.5A priority patent/CN103889950A/zh
Publication of WO2013058121A1 publication Critical patent/WO2013058121A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/02Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D223/06Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D223/08Oxygen atoms
    • C07D223/10Oxygen atoms attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a process for producing ⁇ -caprolactam in which ⁇ -caprolactam is produced from cyclohexanone oxime by a gas phase reaction using a solid catalyst.
  • ⁇ -Caprolactam is an important basic chemical raw material used as a raw material for nylon and the like, and a method for producing ⁇ -caprolactam includes a step of rearranging cyclohexanone oxime (Beckmann rearrangement) by a gas phase reaction using a solid catalyst.
  • a method for improving the reaction rate of cyclohexanone oxime, the selectivity of ⁇ -caprolactam and the catalyst life by carrying out the rearrangement reaction in the presence of a lower alcohol is disclosed (see Patent Document 1). According to this method, even when the reaction rate of cyclohexanone oxime is substantially near 100%, ⁇ -caprolactam can be obtained with extremely high selectivity, and the life of the catalyst is remarkably improved.
  • the lower alcohol used in the rearrangement reaction can be recovered after the reaction and reused, which is an important process for producing ⁇ -caprolactam at low cost. Become.
  • the lower alcohol that is recovered and reused can be a major cause of contamination of the reaction system. Therefore, it is necessary to reduce such impurities.
  • ⁇ -caprolactam can be further improved in yield by reducing the amount of impurities.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing ⁇ -caprolactam having excellent reaction rate and selectivity in the rearrangement reaction of cyclohexanone oxime.
  • the present invention provides a method for producing ⁇ -caprolactam, which produces ⁇ -caprolactam from cyclohexanone oxime by a gas phase reaction using a solid catalyst in the presence of a lower alcohol.
  • a method for producing ⁇ -caprolactam comprising, as alcohol, lower alcohol recovered from the reaction mixture of the gas phase reaction, and adjusting the amounts of water, ammonia and amines to the following values during the gas phase reaction: I will provide a.
  • a gas mainly composed of a lower alcohol is distilled and separated from the reaction mixture, and a part thereof is cooled and condensed, and then further distilled. Is preferably at least part of the recovered lower alcohol.
  • the solid catalyst is preferably a zeolite.
  • the manufacturing method of the epsilon caprolactam excellent in the reaction rate and selectivity in the rearrangement reaction of cyclohexanone oxime can be provided. Further, by reusing the recovered lower alcohol, the amount of industrial waste can be reduced, and the burden on the environment can be reduced.
  • FIG. 3 is a flowchart showing manufacturing steps in a method for manufacturing ⁇ -caprolactam according to an embodiment of the present invention.
  • the method for producing ⁇ -caprolactam according to the present invention is a method for producing ⁇ -caprolactam in which ⁇ -caprolactam is produced from cyclohexanone oxime by a gas phase reaction using a solid catalyst in the presence of a lower alcohol.
  • the lower alcohol to be coexisted includes a lower alcohol recovered from the reaction mixture of the gas phase reaction (hereinafter sometimes referred to as “recovered lower alcohol”), and the amount of water, ammonia and amines during the gas phase reaction. Is adjusted to the following value.
  • the present invention relates to the following.
  • a gas phase reaction in which cyclohexanone oxime is brought into contact with a solid catalyst in the presence of a lower alcohol to convert cyclohexanone oxime to ⁇ -caprolactam, and water, ammonia and amines coexisting in the gas phase reaction system. Adjusting the amount to the following values (1) to (3), wherein the lower alcohol includes a recovered lower alcohol recovered from a reaction mixture obtained by a gas phase reaction: , ⁇ -caprolactam production method.
  • FIG. 1 is a flowchart showing a production process in a method for producing ⁇ -caprolactam according to an embodiment of the present invention.
  • the first distillation step (3) in which the reaction gas 12 is cooled, the high-boiling component 13 is separated from the reaction solution, and a mixed gas 14 of ⁇ -caprolactam, lower alcohol and inert gas is obtained as the distillate,
  • a lower alcohol separation step (4) in which a lower alcohol and an inert gas are separated from the gas 14 to obtain a crude lower alcohol 15 containing an inert gas and a crude ⁇ -caprolactam mixture 18 mainly composed of crude ⁇ -caprolactam.
  • cyclohexanone oxime is evaporated in the presence of inert gas 8, lower alcohol 9 and water 10 to obtain a raw material gas containing cyclohexanone oxime 7, inert gas 8, lower alcohol 9 and water 10.
  • Evaporation step (1) A gas phase reaction in which the raw material gas is brought into contact with a solid catalyst is performed to convert the cyclohexanone oxime 7 into ⁇ -caprolactam, thereby obtaining a reaction gas 12 containing ⁇ -caprolactam, a lower alcohol and an inert gas.
  • Reaction step (2) The reaction gas 12 is cooled, the high-boiling component 13 as an impurity is separated from the reaction solution obtained by cooling, and a mixed gas 14 containing ⁇ -caprolactam, a lower alcohol and an inert gas is obtained.
  • the 2nd distillation process (5) may be comprised from the some distillation process. More specifically, it is as follows.
  • cyclohexanone oxime 7, inert gas 8, lower alcohol 9 and water 10 are supplied to the evaporator 1, and cyclohexanone oxime 7 is heated and evaporated in the presence of the lower alcohol 9 and water 10, A raw material gas 11 containing cyclohexanone oxime 7 and lower alcohol 9 and water 10 is obtained. At this time, water can be mixed with cyclohexanone oxime in advance.
  • the raw material gas 11 obtained in the evaporation step (1) is supplied to the reactor 2, the raw material gas 11 is brought into contact with the solid catalyst, and cyclohexanone oxime is subjected to a Beckmann rearrangement reaction for gas phase reaction.
  • a reaction gas 12 (hereinafter also referred to as a reaction mixture).
  • the reaction gas 12 includes ⁇ -caprolactam, a lower alcohol, and an inert gas.
  • the gas phase reaction means that cyclohexanone oxime 7 is reacted with a raw material gas containing lower alcohol 9 and water 10 in contact with a solid catalyst, and is a concept different from a liquid phase reaction.
  • the reaction gas 12 obtained in the reaction step (2) is supplied to the first distillation column 3 for cooling, and the reaction solution obtained by cooling is used as a high impurity as an impurity.
  • the boiling point component 13 is separated to obtain a mixed gas 14 containing ⁇ -caprolactam, a lower alcohol and an inert gas.
  • the inert gas includes nitrogen, argon, carbon dioxide and the like.
  • the mixed gas 14 obtained in the first distillation step (3) is supplied to the lower alcohol recovery tower 4, and the crude gas containing the lower alcohol and the inert gas is supplied from the mixed gas 14. Separate the alcohol 15 and the crude ⁇ -caprolactam mixture 18 containing ⁇ -caprolactam.
  • the amount of water contained in the crude lower alcohol 15 containing an inert gas can be adjusted by distillation conditions.
  • the crude ⁇ -caprolactam mixture 18 obtained in the lower alcohol separation step (4) is supplied to the second distillation column 5, and the crude ⁇ -caprolactam mixture 18 is reduced as impurities as impurities.
  • the boiling component 20 and the high boiling component 19 are separated to obtain crude ⁇ -caprolactam 21.
  • the low boiling point component means a component having a boiling point lower than that of ⁇ -caprolactam.
  • the high boiling point component means a component having a boiling point higher than that of ⁇ -caprolactam.
  • a part or the whole amount of the crude lower alcohol 15 obtained in the lower alcohol separation step (4) is supplied to the lower alcohol purification device 6 to remove impurities 16 such as ammonia and amines.
  • impurities 16 such as ammonia and amines.
  • a recovered lower alcohol (purified lower alcohol) 17 containing an inert gas is obtained.
  • the recovered lower alcohol 17 is supplied to the evaporator 1 and reused after the evaporation step (1).
  • FIG. 1 is an example, and this invention is not limited to what is shown in FIG.
  • the present invention will be described focusing on a gas phase reaction using a recovered lower alcohol and a solid catalyst in the presence of the lower alcohol.
  • the solid catalyst is a solid catalyst for producing ⁇ -caprolactam used when cyclohexanone oxime is converted into ⁇ -caprolactam by Beckmann rearrangement reaction in the gas phase.
  • a solid catalyst various types have been conventionally proposed. Among them, zeolite is preferable, pentasil type zeolite is more preferable, and MFI zeolite is particularly preferable.
  • the zeolite may be crystalline silica whose skeleton is substantially composed of silicon and oxygen, or a crystalline metallo that further contains elements other than silicon and oxygen, such as metal elements, as elements constituting the skeleton. It may be a silicate or the like.
  • elements other than silicon and oxygen include Be, B, Al, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Sb, La, Hf, and Bi. Etc., and two or more of these may be included as necessary.
  • the atomic ratio of silicon to these elements is preferably 50 or more, more preferably 500 or more.
  • the zeolite is subjected to hydrothermal synthesis using, for example, a silicon compound, a quaternary ammonium compound, water and, if necessary, a metal compound as a raw material, and the obtained crystals are dried and calcined, and then contacted with ammonia or an ammonium salt. It can be suitably prepared by treating and then drying.
  • the particle size of the solid catalyst is preferably 0.0001 to 5 mm, and more preferably 0.001 to 3 mm.
  • the solid catalyst may be, for example, a molded body substantially consisting of only the catalyst component, or may be one in which the catalyst component is supported on a carrier.
  • the lower alcohol preferably has 6 or less carbon atoms, specifically, methanol, ethanol, 1-propanol (n-propyl alcohol), 2-propanol (isopropyl alcohol), 1-butanol (n-butyl). Alcohol), 2-butanol (sec-butyl alcohol), 2-methyl-1-propanol (isobutyl alcohol), 1-pentanol (n-pentyl alcohol), 1-hexanol (n-hexyl alcohol), and 2,2 , 2-trifluoroethanol.
  • methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol are preferable, and methanol and ethanol are more preferable because they are particularly excellent in improving selectivity of ⁇ -caprolactam and catalyst life.
  • Methanol and ethanol are most preferable from an industrial viewpoint.
  • the selectivity means the production rate of ⁇ -caprolactam in the reaction product.
  • the lower alcohol to be coexistent may be one kind or two or more kinds. In the case of two or more kinds, the combination and ratio can be arbitrarily selected. However, in consideration of handling properties, the lower alcohol is preferably one kind.
  • the gas phase reaction is carried out, lower alcohol is recovered from the reaction mixture (for example, reaction gas 12 in FIG. 1) obtained thereby, and this recovered lower alcohol (for example, recovered lower alcohol 17 in FIG. ) Is newly used in the gas phase reaction and reused. That is, the lower alcohol that coexists in the gas phase reaction includes recovered lower alcohol.
  • Various kinds of recovered lower alcohols can be used depending on the recovery method, and one kind may be used alone, or two or more kinds may be used in combination. When using 2 or more types together, the combination and ratio can be selected arbitrarily.
  • the recovered lower alcohol may be used, or the recovered lower alcohol and the lower alcohol that is not recovered (for example, the lower alcohol 9 in FIG. 1, hereinafter referred to as “non-recovered lower alcohol”). May be used in combination.
  • the amount of impurities can be easily reduced to the target amount with only the recovered lower alcohol.
  • recovered lower alcohols usually have a higher impurity content than non-recovered lower alcohols, and depending on their purity, more purification operations may be required to reduce these impurities.
  • the amount of impurities during the gas phase reaction can be easily reduced even if the purification operation is omitted or reduced.
  • the recovered lower alcohol can be obtained, for example, by separating a gas mainly containing the lower alcohol (for example, the crude lower alcohol 15 in FIG. 1) from the reaction mixture of the gas phase reaction.
  • the gas mainly composed of lower alcohol can be separated from the reaction mixture by distillation, for example.
  • the lower alcohol obtained by distillation is also referred to as distilled lower alcohol 15.
  • the recovered lower alcohol or the recovered lower alcohol is previously contained using the same reactor.
  • a separate reaction vessel is used to lower alcohol.
  • a gas phase reaction in which cyclohexanone oxime is contacted with a solid catalyst to convert cyclohexanone oxime into ⁇ -caprolactam.
  • the separated gas gas containing a lower alcohol as a main component
  • the gas 15 containing lower alcohol as a main component can be purified by reducing impurities by distillation after being introduced into a gas absorption tower or the like and condensed by cooling, for example.
  • Condensing means that a gas mainly composed of lower alcohol is made into a liquid mixture mainly composed of lower alcohol.
  • the recovered lower alcohol is preferably used by mixing the crude lower alcohol 15 and the purified lower alcohol 17 obtained by condensation and distillation as described above.
  • the purified lower alcohol is obtained by distilling a reaction mixture obtained by a gas phase reaction, separating a gas containing the lower alcohol as a main component, cooling and condensing a part of the gas, After obtaining the liquid mixture which has a main component, it is preferable to manufacture by the method further including distilling the said liquid mixture and obtaining distilled lower alcohol.
  • a gas mainly composed of a lower alcohol is separated from the reaction mixture of the gas phase reaction by distillation, and after cooling and condensing a part thereof, the gas obtained by further distillation is obtained. It is preferable to use at least a part of the recovered lower alcohol.
  • the lower alcohol has a mass ratio to the cyclohexanone oxime (the amount of lower alcohol (mass) / the amount of cyclohexanone oxime (mass)) in the gas phase reaction, preferably 0.1 to 20, more preferably 0.1 to 10. In particular, it is preferable to coexist in the reaction system so as to be 0.3 to 8.
  • the molar percentage of ammonia (a) ([ammonia (number of moles) / lower alcohol (number of moles)] ⁇ 100) in the reaction system during the gas phase reaction is 0 or more and less than 14, and 13 or less. Is preferred.
  • the mole percentage (b) of water ([water (number of moles) / lower alcohol (number of moles)] ⁇ 100) in the reaction system during the gas phase reaction is greater than 0 and less than 11, and 10 or less. It is preferable. Further, water is a necessary component for smoothly proceeding the rearrangement reaction. From such a viewpoint, the amount of water in the reaction system during the gas phase reaction is preferably 0.06 mol or more with respect to 1 mol of cyclohexanone oxime.
  • the amines are those in which a hydrogen atom of ammonia (NH 3 ) is substituted with a hydrocarbon group, and may be any of primary amines, secondary amines and tertiary amines, and any of monoamines and polyamines. Good. Representative amines include monomethylamine for primary amines, dimethylamine for secondary amines, and trimethylamine for tertiary amines.
  • ammonia is produced at the time of hydrolysis of cyclohexanone oxime, and amines are expected to react with ammonia and lower alcohols.
  • the mole percentage (c) of amines ([amines (number of moles) / lower alcohol (number of moles)] ⁇ 100) in the reaction system during the gas phase reaction is 0 or more and less than 7.5, 7 The following is preferable.
  • the amount of water, ammonia and amines in the reaction system can be easily adjusted by adjusting the amount or purity of the recovered lower alcohol.
  • the mixing ratio of recovered lower alcohol and non-recovered lower alcohol is preferably 10: 0 to 10:10, and 10: 0 to 10: 2 is more preferable.
  • the gas of non-recovered lower alcohol is appropriately supplied into the reaction system while detecting the amounts of water, ammonia and amines.
  • the method of adjusting the quantity of water, ammonia, and amines etc. is mentioned.
  • the amount of water can be measured by a known method such as the Karl Fischer method, and the amounts of ammonia and amines can be measured by an ion chromatography method.
  • a molecular oxygen-containing gas may coexist in the reaction system. It is economical and preferable to use air as the molecular oxygen-containing gas.
  • the molecular oxygen concentration is preferably outside the explosion composition range.
  • the amount of molecular oxygen in the reaction system during the gas phase reaction is preferably 0.1 to 10 mol, more preferably 0.3 to 5 mol, per 1 mol of cyclohexanone oxime.
  • the gas phase reaction can be carried out by a normal fixed bed type, fluidized bed type or moving bed type gas phase contact reaction.
  • the raw material cyclohexanone oxime reacts when brought into contact with the catalyst layer in a gaseous state, but the lower alcohol may be preliminarily mixed with cyclohexanone oxime in the gaseous state, or the cyclohexanone oxime is supplied separately to the reactor. May be.
  • the molecular oxygen-containing gas can be supplied by mixing with a lower alcohol and cyclohexanone oxime, or mixed with a lower alcohol, and more reactive than cyclohexanone oxime. It may be supplied upstream.
  • the gas phase reaction may be performed in the presence of a vapor of a compound inert to the reaction, such as benzene, cyclohexane, or toluene, as a diluent gas, or in the presence of an inert gas such as nitrogen or carbon dioxide. May be.
  • a compound inert to the reaction such as benzene, cyclohexane, or toluene
  • an inert gas such as nitrogen or carbon dioxide. May be.
  • the gas phase reaction is preferably performed under atmospheric pressure or under reduced pressure below atmospheric pressure.
  • the reaction temperature during the gas phase reaction is preferably 250 to 500 ° C., more preferably 300 to 450 ° C., and particularly preferably 300 to 400 ° C.
  • the reaction rate is improved, and the selectivity for ⁇ -caprolactam is further improved.
  • the amount lower than the upper limit value thermal decomposition of cyclohexanone oxime is suppressed, and the selectivity of ⁇ -caprolactam is further improved.
  • the space velocity (WHSV) of cyclohexanone oxime during the gas phase reaction is preferably 0.1 to 40 h ⁇ 1 (that is, the supply rate of cyclohexanone oxime per kg of catalyst is 0.1 to 40 kg / h), More preferably, it is 2 to 20 h ⁇ 1 , and particularly preferably 0.5 to 10 h ⁇ 1 .
  • the ⁇ -caprolactam produced by the gas phase reaction can be separated from the reaction mixture by a known method.
  • the reaction product gas is cooled and condensed, and then separated by extraction, distillation, crystallization, or the like, whereby purified ⁇ -caprolactam is obtained.
  • the solid catalyst can remove and burn (burn) the carbonaceous material adhering in the gas phase reaction at a temperature of 200 to 600 ° C. with an oxygen-containing gas. it can.
  • the carbonaceous material may be removed in the presence of alcohol in an oxygen-containing gas.
  • the combustion treatment with the oxygen-containing gas may be performed at a temperature of 200 to 600 ° C. under a constant temperature condition or a condition where the temperature is raised in multiple stages.
  • oxygen-containing gas air is usually preferable, but air or oxygen diluted with an inert gas such as nitrogen, argon or carbon dioxide may be used.
  • the oxygen concentration in the oxygen-containing gas is preferably 1 to 30% by volume, more preferably 5 to 25% by volume.
  • the present invention is premised on the reuse of the recovered product from the reaction product of the rearrangement reaction as a raw material for the rearrangement reaction of cyclohexanone oxime. Then, paying attention to the impurities that can occur in the rearrangement reaction of cyclohexanone oxime, ammonia, water, and amines are identified as impurities that can inhibit this rearrangement reaction when they are excessively present, and the amount mixed in these reaction systems Are all limited to a limited range.
  • the conventional method for producing ⁇ -caprolactam in which the rearrangement reaction of cyclohexanone oxime is carried out is industrially excellent in terms of high yield.
  • the space velocity WHSV (h ⁇ 1 ) was calculated by dividing the cyclohexanone oxime supply rate (g / h) by the catalyst weight (g).
  • analysis of cyclohexanone oxime and ⁇ -caprolactam was performed by gas chromatography.
  • the reaction rate of cyclohexanone oxime and the selectivity of ⁇ -caprolactam were the number of moles of cyclohexanone oxime supplied, and the number of moles of unreacted cyclohexanone oxime.
  • Example 1 0.75 g of a silica glass reaction tube having an inner diameter of 1 cm is packed as a solid catalyst with particles having a particle size of 0.3 mm or less mainly composed of crystalline silica MFI zeolite (Si / Al atomic ratio: 147000). Then, a catalyst layer was formed and pre-heated at 340 ° C. for 1 hour under a nitrogen gas flow of 0.72 L / h.
  • Example 2 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the molar percentage (a) of ammonia was changed to 5.9 instead of 0. The yield of ⁇ -caprolactam was 95.0%.
  • Example 3 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 1 except that the molar percentage (a) of ammonia was changed to 8.7 instead of 0. The yield of ⁇ -caprolactam was 95.1%.
  • Example 5 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 4 except that the molar percentage (b) of water was changed to 8.3 instead of 6.4. The yield of ⁇ -caprolactam was 95.3%.
  • Example 7 As shown in Table 1, ⁇ -caprolactam was produced in the same manner as in Example 6 except that trimethylamine was used as the amine and the molar percentage (c) was 3.6 instead of 0. did. The yield of ⁇ -caprolactam was 95.6%.
  • ammonia, water and amines are selected as impurities that define the amount of contamination in the reaction system, and by limiting these amounts to a limited range, the reaction in the cyclohexanone oxime rearrangement reaction It was confirmed that the rate and selectivity can be maintained at a very high level.
  • the present invention can be used for the production of ⁇ -caprolactam by a gas phase reaction using a solid catalyst.
  • ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the epsilon caprolactam excellent in the selectivity in the rearrangement reaction of cyclohexanone oxime can be provided. Further, by reusing the recovered lower alcohol, the amount of industrial waste can be reduced, and the burden on the environment can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Catalysts (AREA)

Abstract

低級アルコールの共存下、シクロヘキサノンオキシムを固体触媒に接触させる気相反応を行い、シクロヘキサノンオキシムをε-カプロラクタムに変換すること、および気相反応系内に共存する水、アンモニア及びアミン類の量を下記(1)~(3)の値に調節すること、を含むε-カプロラクタムの製造方法であって、前記低級アルコールは、気相反応で得られる反応混合物から回収した回収低級アルコールを含む、ε-カプロラクタムの製造方法。 (1)0≦{[アンモニア(モル数)/低級アルコール(モル数)]×100}<14 (2)0<{[水(モル数)/低級アルコール(モル数)]×100}<11 (3)0≦{[アミン類(モル数)/低級アルコール(モル数)]×100}<7.5

Description

ε-カプロラクタムの製造方法
 本発明は、固体触媒を用いた気相反応により、シクロヘキサノンオキシムからε-カプロラクタムを生成させるε-カプロラクタムの製造方法に関する。
 本願は、2011年10月17日に、日本に出願された特願2011-228142号に基づき優先権を主張し、その内容をここに援用する。
 ε-カプロラクタムは、ナイロン等の原料となる重要な基幹化学原料であり、その製造方法としては、固体触媒を用いた気相反応で、シクロヘキサノンオキシムを転位反応(ベックマン転位)させる工程を有する方法が知られている。そして、転位反応を低級アルコール共存下で行うことにより、シクロヘキサノンオキシムの反応率、ε-カプロラクタムの選択率及び触媒寿命を向上させる方法が開示されている(特許文献1参照)。この方法によれば、シクロヘキサノンオキシムの反応率が実質的に100%付近の条件においても、極めて高い選択率でε-カプロラクタムが得られ、且つ触媒の寿命も著しく向上する。
特許第2616088号公報
 特許文献1に記載の製造方法においては、転位反応で用いる低級アルコールを、反応後に回収して再利用することが可能であり、これはε-カプロラクタムを低コストで製造する上で重要な工程となる。
 一方で、ε-カプロラクタムの収率を向上させるためには、転位反応において混入する不純物の量を低減して、反応率及び選択率を向上させることが重要となる。例えば、回収して再利用する低級アルコールは、反応系への不純物混入の主たる一因となり得る。そのため、かかる不純物を低減させる必要がある。このように、不純物量を低減することにより、ε-カプロラクタムはさらなる収率の向上が可能である。
 本発明は、上記事情に鑑みてなされたものであり、シクロヘキサノンオキシムの転位反応における反応率及び選択率に優れたε-カプロラクタムの製造方法を提供することを課題とする。
 上記課題を解決するため、本発明は、低級アルコールの共存下、固体触媒を用いた気相反応により、シクロヘキサノンオキシムからε-カプロラクタムを生成させるε-カプロラクタムの製造方法であって、共存させる前記低級アルコールとして、前記気相反応の反応混合物から回収した低級アルコールを含み、前記気相反応時に、水、アンモニア及びアミン類の量を下記の値に調節することを特徴とするε-カプロラクタムの製造方法を提供する。
 (1)0≦{[アンモニア(モル数)/低級アルコール(モル数)]×100}<14
 (2)0<{[水(モル数)/低級アルコール(モル数)]×100}<11
 (3)0≦{[アミン類(モル数)/低級アルコール(モル数)]×100}<7.5
 本発明のε-カプロラクタムの製造方法においては、前記反応混合物から、低級アルコールを主成分とするガスを蒸留分離し、その一部を冷却して凝縮させた後、さらに蒸留して得られたものを、回収した前記低級アルコールの少なくとも一部とすることが好ましい。
 本発明のε-カプロラクタムの製造方法においては、前記固体触媒がゼオライトであることが好ましい。
 本発明によれば、シクロヘキサノンオキシムの転位反応における反応率及び選択率に優れたε-カプロラクタムの製造方法を提供できる。
また、回収した低級アルコールを再利用することにより産業廃棄物の量を削減することができ、環境への負荷を低減することができる。
本発明の一実施形態に係るε-カプロラクタムの製造方法における製造工程を示すフロー図である。
 本発明に係るε-カプロラクタムの製造方法は、低級アルコールの共存下、固体触媒を用いた気相反応により、シクロヘキサノンオキシムからε-カプロラクタムを生成させるε-カプロラクタムの製造方法である。共存させる前記低級アルコールとして、前記気相反応の反応混合物から回収した低級アルコール(以下、「回収低級アルコール」ということがある。)を含み、前記気相反応時に、水、アンモニア及びアミン類の量を下記の値に調節することを特徴とする。
 (1)0≦{[アンモニア(モル数)/低級アルコール(モル数)]×100}(以下、「モル百分率(a)」ということがある。)<14
 (2)0<{[水(モル数)/低級アルコール(モル数)]×100}(以下、「モル百分率(b)」ということがある。)<11
 (3)0≦{[アミン類(モル数)/低級アルコール(モル数)]×100}以下、「モル百分率(c)」ということがある。)<7.5
 前記気相反応では、シクロヘキサノンオキシムの転位(ベックマン転位)反応が進行する。
すなわち、本発明は以下に関する。
[1]低級アルコールの共存下、シクロヘキサノンオキシムを固体触媒に接触させる気相反応を行い、シクロヘキサノンオキシムをε-カプロラクタムに変換すること、および気相反応系内に共存する水、アンモニア及びアミン類の量を下記(1)~(3)の値に調節すること、を含むε-カプロラクタムの製造方法であって、前記低級アルコールは、気相反応で得られる反応混合物から回収した回収低級アルコールを含む、ε-カプロラクタムの製造方法。
(1)0≦{[アンモニア(モル数)/低級アルコール(モル数)]×100}<14
 (2)0<{[水(モル数)/低級アルコール(モル数)]×100}<11
 (3)0≦{[アミン類(モル数)/低級アルコール(モル数)]×100}<7.5
[2]前記回収低級アルコールが、蒸留低級アルコールを含み、前記蒸留低級アルコールは以下の方法で得られる、[1]に記載のε-カプロラクタムの製造方法であって、前記方法は、前記気相反応で得られる反応混合物を蒸留し、低級アルコールを主成分とするガスを分離すること、そのガスの一部を冷却して凝縮させ、低級アルコールを主成分とする液体混合物を得た後、さらに前記液体混合物を蒸留して蒸留低級アルコールを得ることを含む。
[3]前記固体触媒がゼオライトである、[1]又は[2]に記載のε-カプロラクタムの製造方法。
[4]シクロヘキサノンオキシムを不活性ガス及び低級アルコールの共存下で蒸発させて、シクロヘキサノンオキシム、不活性ガス及び低級アルコールを含む原料ガスを得る蒸発工程、前記原料ガスを固体触媒に接触させる気相反応を行い、前記シクロヘキサノンオキシムをε-カプロラクタムに変換させ、ε-カプロラクタム、低級アルコール及び不活性ガスを含む反応ガスを得る反応工程、前記反応ガスを冷却し、冷却して得られた反応液から不純物としての高沸点成分を分離し、ε-カプロラクタム、低級アルコール及び不活性ガスを含む混合ガスを得る第一蒸留工程、前記混合ガスから、低級アルコール及び不活性ガスを含む粗製低級アルコールと、ε-カプロラクタムを含む粗製ε-カプロラクタム混合物とを分離する低級アルコール分離工程、前記粗製ε-カプロラクタム混合物から、不純物としての低沸点成分及び高沸点成分を分離し、ε-カプロラクタムを得る第二蒸留工程、及び前記粗製低級アルコールの一部又は全量を精製して回収低級アルコールを得る低級アルコール回収工程を含むε-カプロラクタムの製造方法であって、前記ε-カプロラクタムの製造方法は、気相反応系内に共存する水、アンモニア及びアミン類の量を下記(1)~(3)の値に調節することをさらに含む、ε-カプロラクタムの製造方法。
 (1)0≦{[アンモニア(モル数)/低級アルコール(モル数)]×100}<14
 (2)0<{[水(モル数)/低級アルコール(モル数)]×100}<11
 (3)0≦{[アミン類(モル数)/低級アルコール(モル数)]×100}<7.5
[5]前記固体触媒がゼオライトであることを特徴とする[4]に記載のε-カプロラクタムの製造方法。
 以下、図面を参照しながら、本発明に係るε-カプロラクタムの製造方法について説明する。図1は、本発明の一実施形態に係るε-カプロラクタムの製造方法における製造工程を示すフロー図である。
 本実施形態は、シクロヘキサノンオキシム7を不活性ガス8、低級アルコール9及び水10の共存下で蒸発させる蒸発工程(1)、固体触媒の存在下でシクロヘキサノンオキシム7をベックマン転位反応させる反応工程(2)、反応ガス12を冷却し、反応液から高沸点成分13を分離し、留出ガスとしてε-カプロラクタム、低級アルコール及び不活性ガスの混合ガス14を得る第一蒸留工程(3)、前記混合ガス14から低級アルコール及び不活性ガスを分離し、不活性ガスを含む粗製低級アルコール15、及び粗製ε-カプロラクタムを主成分とする粗製ε-カプロラクタム混合物18を得る低級アルコール分離工程(4)、粗製ε-カプロラクタム混合物18から低沸点成分20及び高沸点成分19を分離する第二蒸留工程(5)、粗製低級アルコール15の一部又は全量を精製する低級アルコール回収工程(6)を有する。
 すなわち、本実施形態は、シクロヘキサノンオキシムを不活性ガス8、低級アルコール9及び水10の共存下で蒸発させて、シクロヘキサノンオキシム7、不活性ガス8、低級アルコール9及び水10を含む原料ガスを得る蒸発工程(1);前記原料ガスを固体触媒に接触させる気相反応を行い、前記シクロヘキサノンオキシム7をε-カプロラクタムに変換させ、ε-カプロラクタム、低級アルコール及び不活性ガスを含む反応ガス12を得る反応工程(2);前記反応ガス12を冷却し、冷却して得られた反応液から不純物としての高沸点成分13を分離し、ε-カプロラクタム、低級アルコール及び不活性ガスを含む混合ガス14を得る第一蒸留工程(3);前記混合ガス14から、低級アルコール及び不活性ガスを含む粗製低級アルコール15と、ε-カプロラクタムを含む粗製ε-カプロラクタム混合物18とを分離する低級アルコール分離工程(4);前記粗製ε-カプロラクタム混合物18から、不純物としての低沸点成分20及び高沸点成分19を分離する第二蒸留工程(5);及び前記粗製低級アルコール15の一部又は全量を精製して回収低級アルコールを得る低級アルコール回収工程(6)を含む。
なお、第二蒸留工程(5)は複数の蒸留工程から構成されていてもよい。より具体的には、以下の通りである。
 蒸発工程(1)では、蒸発器1にシクロヘキサノンオキシム7、不活性ガス8、低級アルコール9及び水10を供給し、シクロヘキサノンオキシム7を低級アルコール9及び水10の共存下で加熱して蒸発させ、シクロヘキサノンオキシム7を低級アルコール9及び水10を含む原料ガス11を得る。このとき、水は予めシクロヘキサノンオキシムに混合することもできる。
 次いで、反応工程(2)では、蒸発工程(1)で得られた原料ガス11を反応器2に供給し、原料ガス11を固体触媒に接触させ、シクロヘキサノンオキシムをベックマン転位反応させて気相反応を行い、ε-カプロラクタムに変換し、反応ガス12(以下、反応混合物ともいう)を得る。反応ガス12には、ε-カプロラクタム、低級アルコール及び不活性ガスが含まれる。
本明細書において、気相反応とは、シクロヘキサノンオキシム7を低級アルコール9及び水10を含む原料ガスを固体触媒に接触させて反応させることを意味し、液相反応とは異なる概念である。
 次いで、第一蒸留工程(3)では、反応工程(2)で得られた反応ガス12を、第一蒸留塔3に供給して冷却し、冷却して得られた反応液から不純物としての高沸点成分13を分離し、ε-カプロラクタム、低級アルコール及び不活性ガスを含む混合ガス14を得る。
ここで、不活性ガスとは、窒素、アルゴン及び二酸化炭素等が挙げられる。 
次いで、低級アルコール分離工程(4)では、第一蒸留工程(3)で得られた混合ガス14を低級アルコール回収塔4に供給し、混合ガス14から、低級アルコール及び不活性ガスを含む粗製低級アルコール15と、及びε-カプロラクタムを含む粗製ε-カプロラクタム混合物18とを分離する。ここで、不活性ガスを含む粗製低級アルコール15に含まれる水分の量を、蒸留条件により調整することができる。
 そして、第二蒸留工程(5)では、低級アルコール分離工程(4)で得られた粗製ε-カプロラクタム混合物18を第二蒸留塔5に供給し、粗製ε-カプロラクタム混合物18から、不純物としての低沸点成分20及び高沸点成分19を分離し、粗製ε-カプロラクタム21を得る。
ここで、低沸点成分とは、沸点がε-カプロラクタムよりも低い成分を意味する。
また、高沸点成分とは、沸点がε-カプロラクタムよりも高い成分を意味する。
 さらに、低級アルコール回収工程(6)では、低級アルコール分離工程(4)で得られた粗製低級アルコール15の一部又は全量を低級アルコール精製装置6に供給し、アンモニア及びアミン類等の不純物16を除去して精製することで、不活性ガスを含む回収低級アルコール(精製低級アルコール)17を得る。回収低級アルコール17は、蒸発器1に供給され、蒸発工程(1)以降で再利用される。
 なお、図1に示すものは一例であり、本発明は図1に示すものに何ら限定されるものではない。以下、本発明について、回収低級アルコールと、低級アルコール共存下での固体触媒を用いた気相反応を中心に説明する。
 前記固体触媒は、シクロヘキサノンオキシムを気相にてベックマン転位反応させてε-カプロラクタムに変換する際に用いるε-カプロラクタム製造用の固体触媒である。このような固体触媒としては、従来、種々のものが提案されているが、中でもゼオライトが好ましく、より好ましくはペンタシル型ゼオライト、特に好ましくはMFIゼオライトである。
 前記ゼオライトとしては、その骨格が実質的にケイ素及び酸素から構成される結晶性シリカであってもよいし、骨格を構成する元素としてさらに金属元素等、ケイ素及び酸素以外の元素を含む結晶性メタロシリケート等であってもよい。このケイ素及び酸素以外の元素としては、例えば、Be、B、Al、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Sb、La、Hf、及びBi等が挙げられ、必要に応じてこれらの二種以上が含まれていてもよい。また、これら元素に対するケイ素の原子比は、好ましくは50以上であり、より好ましくは500以上である。
 前記ゼオライトは、例えば、ケイ素化合物、4級アンモニウム化合物、水及び必要に応じて金属化合物等を原料として水熱合成に付し、得られた結晶を乾燥、焼成した後、アンモニアやアンモニウム塩で接触処理し、次いで乾燥することにより、好適に調製することができる。
 前記固体触媒の粒径は、0.0001~5mmであることが好ましく、0.001~3mmであることがより好ましい。また、前記固体触媒は、例えば、実質的に触媒成分のみからなる成形体であってもよいし、触媒成分を担体に担持したものであってもよい。 
 前記低級アルコールは、炭素数が6以下であるものが好ましく、具体的には、メタノール、エタノール、1-プロパノール(n-プロピルアルコール)、2-プロパノール(イソプロピルアルコール)、1-ブタノール(n-ブチルアルコール)、2-ブタノール(sec-ブチルアルコール)、2-メチル-1-プロパノール(イソブチルアルコール)、1-ペンタノール(n-ペンチルアルコール)、1-ヘキサノール(n-ヘキシルアルコール)、及び2,2,2-トリフルオロエタノールが例示できる。これらの中でも、ε-カプロラクタムの選択率及び触媒寿命の向上に特に優れる点から、メタノール、エタノール、1-プロパノール、2-プロパノール、及び1-ブタノールが好ましく、メタノール、及びエタノールがより好ましい。メタノール、及びエタノールは、工業的観点から最も好ましいものである。
ここで選択率とは、反応生成物中のε-カプロラクタムの生成率を意味する。
 共存させる前記低級アルコールは、一種でもよいし、二種以上でもよく、二種以上の場合、その組み合わせ及び比率は任意に選択できる。ただし、取り扱い性等を考慮すると、前記低級アルコールは一種であることが好ましい。
 本発明においては、前記気相反応を行い、これにより得られた反応混合物(例えば、図1における反応ガス12)から低級アルコールを回収し、この回収低級アルコール(例えば、図1における回収低級アルコール17)を新たに気相反応で用い、再利用する。
 すなわち、気相反応で共存させる低級アルコールは、回収低級アルコールを含む。
 回収低級アルコールとしては、その回収方法に応じて種々のものを用いることができ、一種を単独で用いてもよいし、二種以上を併用してもよい。二種以上併用する場合、その組み合わせ及び比率は任意に選択できる。
 共存させる低級アルコールとしては、回収低級アルコールのみを用いてもよいし、回収低級アルコールと、回収したものではない低級アルコール(例えば、図1における低級アルコール9、以下、「非回収低級アルコール」ということがある。)とを併用してもよい。回収低級アルコールの純度にもよるが、通常は、少なくとも一部の回収低級アルコールを精製して用いることで、回収低級アルコールのみでも、不純物量を目的とする量に容易に低減できる。一方、回収低級アルコールは、通常、非回収低級アルコールよりも不純物含有量が多いために、その純度によっては、これら不純物の低減のためにより多くの精製操作が必要になることがあるが、非回収低級アルコールを併用することで、精製操作を省略又は軽減しても、気相反応時の不純物量を容易に低減できることがある。
 回収低級アルコールは、例えば、気相反応の反応混合物から、低級アルコールを主成分とするガス(例えば、図1における粗製低級アルコール15)を分離することで得られる。低級アルコールを主成分とするガスは、例えば、蒸留により反応混合物から分離できる。蒸留により得られた低級アルコールを以下、蒸留低級アルコール15ともいう。
気相反応とは、原料ガス11を連続的に供給しながら反応液12を連続的に抜出す運転形式においては、同じ反応器を使用して、先に、回収低級アルコールあるいは回収低級アルコールを含む低級アルコールの共存下、シクロヘキサノンオキシムを固体触媒に接触させ、シクロヘキサノンオキシムをε-カプロラクタムに変換する気相反応、又はε-カプロラクタムの別の製造工程において、別の反応容器を使用して、低級アルコール共存下、シクロヘキサノンオキシムを固体触媒に接触させ、シクロヘキサノンオキシムをε-カプロラクタムに変換する気相反応を意味する。分離したガス(低級アルコールを主成分とするガス)は、そのまま用いてもよいし、一部又は全量を公知の方法で精製してから用いてもよい。通常は、一部を精製してから用いることが好ましい。
 低級アルコールを主成分とするガス15は、例えば、ガス吸収塔等に導入して冷却することで凝縮させた後、蒸留により不純物を低減することで精製できる。凝縮させるとは、低級アルコールを主成分とするガスを、低級アルコールを主成分とする液体混合物にすることを意味する。
回収低級アルコールとしては、粗製低級アルコール15と上記のように凝縮し、蒸留して得られた精製低級アルコール17を混合して使用することが好ましい。
精製低級アルコールは、具体的には、気相反応で得られる反応混合物を蒸留し、低級アルコールを主成分とするガスを分離すること、そのガスの一部を冷却して凝縮させ、低級アルコールを主成分とする液体混合物を得た後、さらに前記液体混合物を蒸留して蒸留低級アルコールを得ることを含む方法で製造することが好ましい。 
 本発明においては、低級アルコールを主成分とするガスを、前記気相反応の反応混合物から蒸留分離し、その一部を冷却して凝縮させた後、さらに蒸留することで得られたものを、回収低級アルコールの少なくとも一部とすることが好ましい。
 前記低級アルコールは、気相反応時に、シクロヘキサノンオキシムに対する質量比(低級アルコールの量(質量)/シクロヘキサノンオキシムの量(質量))が、好ましくは0.1~20、より好ましくは0.1~10、特に好ましくは0.3~8となるように反応系内に共存させるとよい。
 気相反応時の反応系内における、アンモニアの前記モル百分率(a)([アンモニア(モル数)/低級アルコール(モル数)]×100)は、0以上14未満であり、13以下であることが好ましい。
 気相反応時の反応系内における、水の前記モル百分率(b)([水(モル数)/低級アルコール(モル数)]×100)は、0より大きく11未満であり、10以下であることが好ましい。
 また、水は転位反応を円滑に進行させるために、必要な成分である。このような観点から、気相反応時の反応系内における水の量は、シクロヘキサノンオキシム1モルに対して、0.06モル以上であることが好ましい。
 前記アミン類は、アンモニア(NH)の水素原子が炭化水素基で置換されたものであり、第1級アミン、第2級アミン及び第3級アミンのいずれでもよく、モノアミン及びポリアミンのいずれでもよい。代表的な前記アミン類としては、第1級アミンであればモノメチルアミンが、第2級アミンであればジメチルアミンが、第3級アミンであればトリメチルアミンが、それぞれ例示できる。
ここで、アンモニアはシクロヘキサノンオキシムの加水分解時に生成したものであり、アミン類はアンモニアと低級アルコールが反応したものと予想される。
 気相反応時の反応系内における、アミン類の前記モル百分率(c)([アミン類(モル数)/低級アルコール(モル数)]×100)は、0以上7.5未満であり、7以下であることが好ましい。
 水、アンモニア及びアミン類の主たる混入源としては、回収低級アルコールが例示できる。したがって、回収低級アルコールの使用量又は純度を調節することで、容易に反応系内の水、アンモニア及びアミン類の量を調節できる。
例えば回収低級アルコールと非回収低級アルコールの混合比(回収低級アルコール(質量%):非回収低級アルコール(質量%))を10:0~10:10とすることが好ましく、10:0~10:2とすることがより好ましい。
その他、水、アンモニア及びアミン類の量を調節する方法としては、気相反応において、水、アンモニア及びアミン類の量を検出しながら、適宜非回収低級アルコールのガスを反応系内に供給することにより、水、アンモニア及びアミン類の量を調節する方法等が挙げられる。
 なお、水の量はカールフィッシャー法、アンモニア及びアミン類の量はイオンクロマトグラフィー法等、公知の手法で測定できる。
 本発明においては、反応系内に分子状酸素含有ガスを共存させてもよい。分子状酸素含有ガスとしては、空気を使用するのが経済的で好ましい。分子状酸素の濃度は、爆発組成範囲外とすることが好ましい。
 気相反応時の反応系内における、分子状酸素の量は、シクロヘキサノンオキシム1モルに対して、0.1~10モルであることが好ましく、0.3~5モルであることがより好ましい。
 気相反応は、通常の固定床方式、流動床方式又は移動層方式の気相接触反応で行なうことができる。原料のシクロヘキサノンオキシムは、気体状態で触媒層と接触させることにより反応するが、低級アルコールは気体状態でシクロヘキサノンオキシムと予め混合しておいてもよいし、シクロヘキサノンオキシムとは別々に反応器に供給してもよい。固定床方式の場合には、シクロヘキサノンオキシム及び低級アルコールが十分混合された状態で触媒層を通過させることが好ましい。これに対して、流動床方式の場合には、必ずしもシクロヘキサノンオキシム及び低級アルコールが予め混合されている必要性はなく、これらを別々に反応器に供給してもよく、さらに低級アルコールを分割して供給してもよい。また、流動床方式の場合には、低級アルコールをシクロヘキサノンオキシムよりも上流側に供給してもよい。
 分子状酸素含有ガスを用いる場合には、分子状酸素含有ガスを低級アルコール及びシクロヘキサノンオキシムと混合して、又は低級アルコールと混合して、供給することができ、また、シクロヘキサノンオキシムよりも反応系の上流側に供給してもよい。
 気相反応は、ベンゼン、シクロヘキサン、トルエン等の、反応に対して不活性な化合物の蒸気を希釈ガスとして共存させて行ってもよいし、窒素、二酸化炭素等の不活性ガスを共存させて行ってもよい。
 気相反応は、大気圧下又は大気圧以下の減圧下で行うことが好ましい。
 気相反応時の反応温度は、250~500℃であることが好ましく、300~450℃であることがより好ましく、300~400℃であることが特に好ましい。下限値以上とすることで、反応速度が向上し、さらに、ε-カプロラクタムの選択率がより向上する。
 また、上限値以下とすることで、シクロヘキサノンオキシムの熱分解が抑制され、ε-カプロラクタムの選択率がより向上する。 
 気相反応時のシクロヘキサノンオキシムの空間速度(WHSV)は、0.1~40h-1(すなわち、触媒1kgあたりのシクロヘキサノンオキシムの供給速度が0.1~40kg/h)であることが好ましく、0.2~20h-1であることがより好ましく、0.5~10h-1であることが特に好ましい。
 気相反応(転位反応)により生成したε-カプロラクタムは、反応混合物から公知の方法で分離できる。例えば、反応生成ガスを冷却して凝縮させ、次いで抽出、蒸留又は晶析等により分離することで、精製されたε-カプロラクタムが得られる。
 前記固体触媒は、気相反応で付着した炭素質物質を、酸素含有ガスにより、200~600℃の温度で燃焼除去(焼成)することができ、容易に元の性能に賦活でき、繰り返し再利用できる。前記炭素質物質の除去は、酸素含有ガスにアルコールを共存させて行ってもよい。
 酸素含有ガスによる燃焼処理は、200~600℃において、一定温度条件下、及び多段階で昇温させる条件下のいずれで行ってもよい。
 前記酸素含有ガスとしては、通常、空気が好適であるが、空気若しくは酸素を窒素、アルゴン又は二酸化炭素等の不活性ガスで希釈したものでもよい。
 酸素含有ガス中の酸素濃度は、好ましくは1~30容量%、より好ましくは5~25容量%である。
 本発明は、シクロヘキサノンオキシムの転位反応の原料として、この転位反応の反応生成物からの回収品を再利用することを前提としている。そして、シクロヘキサノンオキシムの転位反応において生じ得る不純物に着目し、過度に存在した場合にこの転位反応を阻害し得る不純物として、アンモニア、水及びアミン類を特定し、これらの反応系内での混入量をすべて限られた範囲に限定するものである。シクロヘキサノンオキシムの転位反応を行う、従来のε-カプロラクタムの製造方法は、収率が高い点で工業的に極めて優れた方法であるが、本発明によれば、シクロヘキサノンオキシムの転位反応における反応率及び選択率を極めて高水準に維持できると共に、触媒の再利用も可能なので、ε-カプロラクタムのさらなる収率向上と低コスト化が可能である。
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。
 なお、以下において、空間速度WHSV(h-1)は、シクロヘキサノンオキシムの供給速度(g/h)を触媒重量(g)で除することにより算出した。また、シクロヘキサノンオキシム及びε-カプロラクタムの分析は、ガスクロマトグラフィーにより行い、シクロヘキサノンオキシムの反応率及びε-カプロラクタムの選択率は、供給したシクロヘキサノンオキシムのモル数をX、未反応のシクロヘキサノンオキシムのモル数をY、生成したε-カプロラクタムのモル数をZとして、それぞれ以下の式により算出した。
 シクロヘキサノンオキシムの反応率(%)=[(X-Y)/X]×100
 ε-カプロラクタムの選択率(%)=[Z/(X-Y)]×100
[実施例1]
 結晶性シリカからなるMFIゼオライト(Si/Al原子比が147000)を主成分とする粒径0.3mm以下の粒子を固体触媒として、内径1cmの石英ガラス製反応管中に、0.75g充填して触媒層を形成させ、0.72L/hでの窒素ガス流通下、340℃にて1時間予熱処理した。次いで、0.72L/hでの窒素ガス流通下、メタノール/シクロヘキサノンオキシム=1.3/1(質量比)の混合物を、6.9g/h(シクロヘキサノンオキシムのWHSVが4h-1)の供給速度で前記反応管に供給し、触媒層の温度を380℃に保持しながら、10時間反応を行った。そして、このときの反応系内の不純物量を、以下の関係を満たすようにした。
 (a)[アンモニア(モル数)/メタノール(モル数)]×100=0
 (b)[水(モル数)/メタノール(モル数)]×100=6.4
 (c)[アミン類(モル数)/メタノール(モル数)]×100=0
 反応開始から10時間までの反応液を捕集し、その反応液におけるシクロヘキサノンオキシムの反応率とε-カプロラクタムの選択率を算出した。結果を表1に示す。
 本実施例のε-カプロラクタムの収率は94.9%であった。
[実施例2]
 表1に示すように、アンモニアの前記モル百分率(a)の値を、0に代えて5.9としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。
 ε-カプロラクタムの収率は95.0%であった。
[実施例3]
 表1に示すように、アンモニアの前記モル百分率(a)の値を、0に代えて8.7としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。
 ε-カプロラクタムの収率は95.1%であった。
[比較例1]
 表1に示すように、アンモニアの前記モル百分率(a)の値を、0に代えて18としたこと以外は、実施例1と同様にε-カプロラクタムを製造した。
 ε-カプロラクタムの収率は93.2%であった。
[実施例4]
 実施例1と同様に、内径1cmの石英ガラス製反応管中に、固体触媒0.75gを充填して触媒層を形成させ、0.72L/hでの窒素ガス流通下、340℃にて1時間予熱処理した。次いで、0.72L/hでの窒素ガス流通下、メタノール/シクロヘキサノンオキシム=1.3/1(質量比)の混合物を、6.9g/h(シクロヘキサノンオキシムのWHSVが4h-1)の供給速度で前記反応管に供給し、触媒層の温度を380℃に保持しながら、2時間反応を行った。そして、このときの反応系内の不純物量を、以下の関係を満たすようにした。
 (a)[アンモニア(モル数)/メタノール(モル数)]×100=0
 (b)[水(モル数)/メタノール(モル数)]×100=6.4
 (c)[アミン類(モル数)/メタノール(モル数)]×100=0
 反応開始から2時間経過時において、実施例1の場合と同様に、シクロヘキサノンオキシムの反応率、及びε-カプロラクタムの選択率を算出した。
 ε-カプロラクタムの収率は95.6%であった。
[実施例5]
 表1に示すように、水の前記モル百分率(b)の値を、6.4に代えて8.3としたこと以外は、実施例4と同様にε-カプロラクタムを製造した。
 ε-カプロラクタムの収率は95.3%であった。
[比較例2]
 表1に示すように、水の前記モル百分率(b)の値を、6.4に代えて14としたこと以外は、実施例4と同様にε-カプロラクタムを製造した。
 ε-カプロラクタムの収率は94.6%であった。
[実施例6]
 実施例1と同様に、内径1cmの石英ガラス製反応管中に、固体触媒0.75gを充填して触媒層を形成させ、0.72L/hでの窒素ガス流通下、340℃にて1時間予熱処理した。次いで、0.72L/hでの窒素ガス流通下、メタノール/シクロヘキサノンオキシム=1.3/1(質量比)の混合物を、6.9g/h(シクロヘキサノンオキシムのWHSVが4h-1)の供給速度で前記反応管に供給し、触媒層の温度を380℃に保持しながら、2時間反応を行った。そして、このときの反応系内の不純物量を、以下の関係を満たすようにした。
 (a)[アンモニア(モル数)/メタノール(モル数)]×100=0
 (b)[水(モル数)/メタノール(モル数)]×100=6.4
 (c)[アミン類(モル数)/メタノール(モル数)]×100=0
 反応開始から6時間経過時において、実施例1の場合と同様に、シクロヘキサノンオキシムの反応率、及びε-カプロラクタムの選択率を算出した。
 ε-カプロラクタムの収率は95.8%であった。
[実施例7]
 表1に示すように、アミン類としてトリメチルアミンを使用し、その前記モル百分率(c)の値を、0に代えて3.6としたこと以外は、実施例6と同様にε-カプロラクタムを製造した。
 ε-カプロラクタムの収率は95.6%であった。
[比較例3]
 表1に示すように、アミン類としてトリメチルアミンを使用し、その前記モル百分率(c)の値を、0に代えて7.5としたこと以外は、実施例6と同様にε-カプロラクタムを製造した。
 ε-カプロラクタムの収率は95.5%であった。
[参考例1]
低級アルコール分離工程(4)で得られた蒸留低級アルコールの一部または全量を7~30℃に冷却し液化した。液化した低級アルコールは80℃、175kPaAの条件で蒸留を行い回収低級アルコール17を得た。
このようにして得られたメタノール中には、水が0.49%,アンモニアが0.01%,トリメチルアミンが1.4%含まれており、これに水を加えて、含水率を4.0%にした。これをシクロヘキサノンオキシムと1.3/1(質量比)で混合して、反応に使用した。
[実施例8]
実施例1と同様に、内径1cmの石英ガラス製反応管中に、固体触媒0.75gを充填して触媒層を形成させ、0.72L/hでの窒素ガス流通下、340℃にて1時間予熱処理した。次いで、0.72L/hでの窒素ガス流通下、参考例1で調製したメタノール/シクロヘキサノンオキシム=1.3/1(質量比)の混合物を、6.9g/h(シクロヘキサノンオキシムのWHSVが4h-1)の供給速度で前記反応管に供給し、触媒層の温度を380℃に保持しながら、10時間反応を行った。そして、このときの反応系内の不純物量を、以下の関係を満たした。
 (a)[アンモニア(モル数)/メタノール(モル数)]×100=0.02
 (b)[水(モル数)/メタノール(モル数)]×100=7.2
 (c)[アミン類(モル数)/メタノール(モル数)]×100=0.77
 反応開始から10時間までの反応液を捕集し、実施例1の場合と同様に、シクロヘキサノンオキシムの反応率、及びε-カプロラクタムの選択率を算出した。
 ε-カプロラクタムの収率は95.3%であった。

Figure JPOXMLDOC01-appb-T000001

 上記結果から以下の点が確認できた。
 実施例1~7では、選択率及び反応率がいずれも高水準であり、触媒活性も良好であった。
 一方、アンモニアの前記モル百分率(a)の値が上昇することで、比較例1では、反応率は良好であるものの、選択率が実施例1~3よりも低く、収率が低下した。
 また、水の前記モル百分率(b)の値が上昇することで、比較例2では、反応率は良好であるものの、選択率が実施例4~5よりも低下した。
 また、アミン類の前記モル百分率(c)の値が上昇することで、比較例3では、反応率は良好であるものの、選択率が実施例6~7よりも低下した。
 以上のように、反応系内での混入量を規定する不純物として、アンモニア、水及びアミン類を選択し、これらの量をすべて限られた範囲に限定することで、シクロヘキサノンオキシムの転位反応における反応率及び選択率を極めて高水準に維持できることを確認できた。
 本発明は、固体触媒を用いた気相反応によるε-カプロラクタムの製造に利用可能である。
本発明によれば、シクロヘキサノンオキシムの転位反応における選択率に優れたε-カプロラクタムの製造方法を提供できる。
また、回収した低級アルコールを再利用することにより産業廃棄物の量を削減することができ、環境への負荷を低減することができる。
 1・・・蒸発器、2・・・反応器、3・・・第一蒸留塔、4・・・低級アルコール回収塔、5・・・第二蒸留塔、6・・・低級アルコール精製装置、7・・・シクロヘキサノンオキシム、8・・・不活性ガス、9・・・低級アルコール、10・・・水、11・・・原料ガス、12・・・反応ガス、13・・・高沸点成分、14・・・ε-カプロラクタム、低級アルコール及び不活性ガスの混合ガス、15・・・粗製低級アルコール(不活性ガスを含む)、16・・・アンモニア及びアミン類等の不純物、17・・・精製低級アルコール(回収低級アルコール、不活性ガスを含む)、18・・・粗製ε-カプロラクタム混合物、19・・・高沸点成分、20・・・低沸点成分、21・・・粗製ε-カプロラクタム

Claims (5)

  1. 低級アルコールの共存下、シクロヘキサノンオキシムを固体触媒に接触させる気相反応を行い、シクロヘキサノンオキシムをε-カプロラクタムに変換すること、および、
    気相反応系内に共存する水、アンモニア及びアミン類の量を下記(1)~(3)の値に調節すること、を含むε-カプロラクタムの製造方法であって、
     前記低級アルコールは、気相反応で得られる反応混合物から回収した回収低級アルコールを含む、ε-カプロラクタムの製造方法。
    (1)0≦{[アンモニア(モル数)/低級アルコール(モル数)]×100}<14
     (2)0<{[水(モル数)/低級アルコール(モル数)]×100}<11
     (3)0≦{[アミン類(モル数)/低級アルコール(モル数)]×100}<7.5
  2.  前記回収低級アルコールが、蒸留低級アルコールを含み、
    前記蒸留低級アルコールは以下の方法で得られる、請求項1に記載のε-カプロラクタムの製造方法であって、
    前記方法は、前記気相反応で得られる反応混合物を蒸留し、低級アルコールを主成分とするガスを分離すること、そのガスの一部を冷却して凝縮させ、低級アルコールを主成分とする液体混合物を得た後、さらに前記液体混合物を蒸留して蒸留低級アルコールを得ることを含む。
  3.  前記固体触媒がゼオライトである、請求項1又は2に記載のε-カプロラクタムの製造方法。
  4. シクロヘキサノンオキシムを不活性ガス及び低級アルコールの共存下で蒸発させて、シクロヘキサノンオキシム、不活性ガス及び低級アルコールを含む原料ガスを得る蒸発工程、
    前記原料ガスを固体触媒に接触させる気相反応を行い、前記シクロヘキサノンオキシムをε-カプロラクタムに変換させ、ε-カプロラクタム、低級アルコール及び不活性ガスを含む反応ガスを得る反応工程、
    前記反応ガスを冷却し、冷却して得られた反応液から不純物としての高沸点成分を分離し、ε-カプロラクタム、低級アルコール及び不活性ガスを含む混合ガスを得る第一蒸留工程、
    前記混合ガスから、低級アルコール及び不活性ガスを含む粗製低級アルコールと、ε-カプロラクタムを含む粗製ε-カプロラクタム混合物とを分離する低級アルコール分離工程、
    前記粗製ε-カプロラクタム混合物から、不純物としての低沸点成分及び高沸点成分を分離し、ε-カプロラクタムを得る第二蒸留工程、及び
    前記粗製低級アルコールの一部又は全量を精製して回収低級アルコールを得る低級アルコール回収工程を含むε-カプロラクタムの製造方法であって、
     前記ε-カプロラクタムの製造方法は、気相反応系内に共存する水、アンモニア及びアミン類の量を下記(1)~(3)の値に調節することをさらに含む、ε-カプロラクタムの製造方法。
     (1)0≦{[アンモニア(モル数)/低級アルコール(モル数)]×100}<14
     (2)0<{[水(モル数)/低級アルコール(モル数)]×100}<11
     (3)0≦{[アミン類(モル数)/低級アルコール(モル数)]×100}<7.5
  5.  前記固体触媒がゼオライトであることを特徴とする請求項4に記載のε-カプロラクタムの製造方法。
PCT/JP2012/075812 2011-10-17 2012-10-04 ε-カプロラクタムの製造方法 WO2013058121A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147010521A KR101925168B1 (ko) 2011-10-17 2012-10-04 ε-카프로락탐의 제조 방법
SG11201401106PA SG11201401106PA (en) 2011-10-17 2012-10-04 PRODUCTION METHOD FOR e-CAPROLACTAM
IN2909CHN2014 IN2014CN02909A (ja) 2011-10-17 2012-10-04
CN201280050518.5A CN103889950A (zh) 2011-10-17 2012-10-04 ε-己内酰胺的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-228142 2011-10-17
JP2011228142 2011-10-17

Publications (1)

Publication Number Publication Date
WO2013058121A1 true WO2013058121A1 (ja) 2013-04-25

Family

ID=48140773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075812 WO2013058121A1 (ja) 2011-10-17 2012-10-04 ε-カプロラクタムの製造方法

Country Status (6)

Country Link
JP (1) JP6004884B2 (ja)
KR (1) KR101925168B1 (ja)
CN (1) CN103889950A (ja)
IN (1) IN2014CN02909A (ja)
SG (1) SG11201401106PA (ja)
WO (1) WO2013058121A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478310B (zh) * 2022-02-24 2024-07-30 江苏扬农化工集团有限公司 一种环己酮肟的气化方法及己内酰胺的制备方法
CN114507170B (zh) * 2022-02-24 2024-06-04 江苏扬农化工集团有限公司 制备己内酰胺的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275850A (ja) * 1989-01-26 1990-11-09 Sumitomo Chem Co Ltd ε―カプロラクタムの製法
JPH05201966A (ja) * 1991-11-27 1993-08-10 Sumitomo Chem Co Ltd ε−カプロラクタムの製造法
JPH05201965A (ja) * 1991-11-27 1993-08-10 Sumitomo Chem Co Ltd ε−カプロラクタムの製法
JPH06107627A (ja) * 1992-10-01 1994-04-19 Sumitomo Chem Co Ltd ε−カプロラクタムの製造法及び触媒寿命向上方法
JP2002105039A (ja) * 2000-09-29 2002-04-10 Sumitomo Chem Co Ltd シクロヘキサノンオキシムの蒸発方法とこれに使用する蒸発器、ならびにε−カプロラクタムの製造方法とその製造装置
JP2002284752A (ja) * 2001-03-28 2002-10-03 Sumitomo Chem Co Ltd シクロヘキサノンオキシムの蒸発方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968793A (en) * 1989-01-26 1990-11-06 Sumitomo Chemical Company, Limited Process for producing ε-caprolactam
KR100224333B1 (ko) * 1991-11-27 1999-10-15 고오사이 아끼오 ε-카프로락탐의 제조방법
TW213896B (ja) * 1991-11-27 1993-10-01 Sumitomo Chemical Co
JP2010047499A (ja) * 2008-08-20 2010-03-04 Univ Of Tokyo ε−カプロラクタムの製造方法及びペンタシル型ゼオライトの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275850A (ja) * 1989-01-26 1990-11-09 Sumitomo Chem Co Ltd ε―カプロラクタムの製法
JPH05201966A (ja) * 1991-11-27 1993-08-10 Sumitomo Chem Co Ltd ε−カプロラクタムの製造法
JPH05201965A (ja) * 1991-11-27 1993-08-10 Sumitomo Chem Co Ltd ε−カプロラクタムの製法
JPH06107627A (ja) * 1992-10-01 1994-04-19 Sumitomo Chem Co Ltd ε−カプロラクタムの製造法及び触媒寿命向上方法
JP2002105039A (ja) * 2000-09-29 2002-04-10 Sumitomo Chem Co Ltd シクロヘキサノンオキシムの蒸発方法とこれに使用する蒸発器、ならびにε−カプロラクタムの製造方法とその製造装置
JP2002284752A (ja) * 2001-03-28 2002-10-03 Sumitomo Chem Co Ltd シクロヘキサノンオキシムの蒸発方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARUZEN CO., LTD.: "5 Process System no Kosei", KAGAKU PROCESS KOGAKU, 1969, pages 84 - 119 *

Also Published As

Publication number Publication date
KR101925168B1 (ko) 2018-12-04
IN2014CN02909A (ja) 2015-07-03
JP6004884B2 (ja) 2016-10-12
CN103889950A (zh) 2014-06-25
KR20140090605A (ko) 2014-07-17
JP2013100274A (ja) 2013-05-23
SG11201401106PA (en) 2014-10-30

Similar Documents

Publication Publication Date Title
US7449600B2 (en) Process for producing cyclohexanone oxime
US6433166B2 (en) Process for producing ε-caprolactam
WO2016148200A1 (ja) ε-カプロラクタムの製造方法
US5354859A (en) ε-caprolactam
JP6004884B2 (ja) ε−カプロラクタムの製造方法
JP2616088B2 (ja) ε―カプロラクタムの製法
JP3254753B2 (ja) ε−カプロラクタムの製造法
JP2676895B2 (ja) ε―カプロラクタムの製造法
WO2016068061A1 (ja) アセトニトリルの製造方法
WO1997003956A1 (fr) PROCEDE DE PREPARATION DE ε-CAPROLACTAME
JP2002097177A (ja) イソフタロニトリルの製造方法
EP2617680B1 (en) Method for manufacturing zeolite and method for manufacturing epsilon-caprolactam
KR100287085B1 (ko) E-카프로락탐의 제조방법
CN100369895C (zh) ε-己内酰胺的制造方法
JP3221021B2 (ja) ε−カプロラクタムの製造方法
JP4239288B2 (ja) ε−カプロラクタムの製造方法
JPH09100258A (ja) エチルアミン類の製造方法
JP2971428B2 (ja) アルキルビニルエーテルの回収方法
JP3968802B2 (ja) ε−カプロラクタムの製造法
JP2008229403A (ja) ε−カプロラクタム製造用触媒の再生方法及びε−カプロラクタムの製造方法
WO1994021594A1 (en) Process for producing n,n-disubstituted aminophenol
TW200418802A (en) Purification of caprolactam
JPH09241236A (ja) ε−カプロラクタムの製造法
JPH0940640A (ja) ε−カプロラクタムの製造方法
JP2007296437A (ja) ε−カプロラクタム製造用触媒の再生方法及びε−カプロラクタムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147010521

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12841474

Country of ref document: EP

Kind code of ref document: A1