WO2013057348A1 - Procedimiento de produccion de biomasa y aparato utilizado en dicho procedimiento - Google Patents

Procedimiento de produccion de biomasa y aparato utilizado en dicho procedimiento Download PDF

Info

Publication number
WO2013057348A1
WO2013057348A1 PCT/ES2012/070718 ES2012070718W WO2013057348A1 WO 2013057348 A1 WO2013057348 A1 WO 2013057348A1 ES 2012070718 W ES2012070718 W ES 2012070718W WO 2013057348 A1 WO2013057348 A1 WO 2013057348A1
Authority
WO
WIPO (PCT)
Prior art keywords
bioreactor
water
biomass production
production procedure
apparatus used
Prior art date
Application number
PCT/ES2012/070718
Other languages
English (en)
French (fr)
Inventor
Antonio HERMS GAVALDÁ
Original Assignee
Normacon 21, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201131695A external-priority patent/ES2402494B1/es
Priority claimed from ES201230915A external-priority patent/ES2438392B1/es
Application filed by Normacon 21, S.L. filed Critical Normacon 21, S.L.
Priority to EP12841149.3A priority Critical patent/EP2770049A4/en
Priority to US14/353,282 priority patent/US20140256023A1/en
Publication of WO2013057348A1 publication Critical patent/WO2013057348A1/es
Priority to IL232075A priority patent/IL232075A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves

Definitions

  • the invention relates to a process for accelerating the production of biomass from microalgae culture, using for the implementation of said process a reactor specifically designed for the same, in which a water culture is introduced with microalgae, with nutrients and C02, and through which a continuous current is passed.
  • Another object of the invention is a variant of the invention comprising the addition of an oxygenation means of the microalgae culture object of the process, with the same introduction of a closed circuit for the use of the water used by said apparatus, and the filter correspondent .
  • Another example of alternative energy is the one based on the cultivation of microalgae for the production and obtaining of biofuels, due to its innumerable advantages that are many aspects complementary to the rest of the renewable energies, since it addresses one of the most difficult aspects of resolution with other technologies; a fuel for transportation in a sustainable and cheap way.
  • microalgae are organisms that live in water, both sweet and salty, in terrestrial environments of high humidity.
  • the nature of microalgae in nature is of utmost importance, because thanks to photosynthesis, they are able to transform inorganic matter into organic matter using for this the energy of the sun, which is stored in their biological structures and is used later by beings that feed on it.
  • Microalgae have a very high multiplication rate, which are capable of absorbing and storing a large amount of energy from the sun, there being three types of cultivation of algae, cultivation in outdoor ponds and ponds, growing in greenhouses and finally growing in photobioreactors.
  • photobioreactor culture is the one that enjoys greater acceptance for its productivity, and consists of transparent conduits isolated from the outside in which the microalgae develop. These tubes are placed outside to better capture the amount of solar radiation.
  • a computer controlled system is responsible for supplying the C02 microalgae and nutrients to optimize their productivity to the maximum.
  • microalgae culture therefore presents a series of important advantages with respect to the use of other agricultural products that are currently used; first, they have a much higher productivity than that used in any other type of organic matter, secondly, they do not emit C02 into the atmosphere; thirdly, the production of biofuel from microalgae, does not affect the food market at all, and finally it does not require wood from the trees and therefore does not go against the forests.
  • the products derived from the cultivation of microalgae with the most relevant energy purposes are biodiesel, bioethanol, biomass, and biopetroleum.
  • the purpose of the invention is to provide a novel process for the industrial production of biomass with almost zero energy input, and without repercussions on the environment.
  • Another purpose of the invention is to design a bioreactor used in said process, specifically designed for the implementation thereof.
  • a final purpose of the invention is the incorporation into the apparatus used in the process of production of biomass, of a system for the use of the water used by the bioreactor.
  • One of the objects of the invention is a method to increase the rate of multiplication of the algae, in fresh water, with the contribution of C02, nutrients, and the application of a low voltage electric field.
  • the application of a low voltage electric field according to the process object of the invention has been revealed as a factor that significantly increases the multiplication of the microalgae and consequently the volume of biomass generated.
  • Another object of the invention is the design of a new type of bioreactor that is physically suitable for the implementation of said procedure, which is formed by two covers, each of which emerges perpendicularly a mouthpiece, between said covers and surrounding the mouthpieces a transparent cover of polyethylene for the use of solar energy or similar material, braced to the embouchure by means of the corresponding clamps.
  • the C02 gas inlet is provided by means of the corresponding check valve, that of the water through a check valve. interruption, that of nutrients with an interruption valve and a level for the control of the water inside the bioreactor.
  • a cathode Inside the bioreactor there is a cathode in the shape of a spiral, with an electric connection and entrance through one of the covers with a direct current source, and communicating with the exterior an aeration tube is provided, which can optionally be equipped with an extractor fan to avoid that the interior temperature of the bioreactor can exceed an acceptable value, and produce the death of microalgae.
  • the voltage of the continuous current flowing through the cathode is between 0.5 and 1.5 volts.
  • the bioreactor can work in series with other bioreactors, for which a bioreactor is communicated with the following one, by means of a simple conduit equipped with an interruption valve.
  • another object of the present invention is a bioreactor, as indicated in 5 claim, comprising between two fitted caps one present in one side opening, an internal volume delimited by a cover transparent material whose ends include said mouthpieces by means of the corresponding clamps, inside which a cathode connected to a source of direct current is placed, providing in one of the covers the entrance and exit of water, the entrance of nutrients, the entrance of gas C02 , and the internal level control of the liquid present inside the body of the reactor through the corresponding level.
  • the implementation of the previous bioreactor, as well as further investigations, have revealed the goodness of a breathing system directly directed to the cultivation of the microalgae that is carried out inside the bioreactor, with means external to it.
  • one of the objects of the invention is the modification of the complementary elements to the bioreactor, so that it can operate in a closed circuit, taking advantage of the water that is used among others for the cultivation and growth of said microalgae, for which an electric pump and a filter are incorporated, connected to the inlet and outlet of the body of the bioreactor.
  • Another of the objects of the invention is the inclusion in this closed circuit of a Venturi, which allows the intake of air from the outside and its contribution to the water circulating in a closed circuit in a programmed and discontinuous manner, and an air outlet with the corresponding chimney in the body of the bioreactor, with which the temperature in its interior will remain in the suitable values.
  • the closed circuit takes advantage of the corresponding electronic control unit already existing in the object of the main patent by introducing a CPU that governs all the internal and external elements of the bioreactor, with the essential and main characteristic that the air intake through the Venturi will be discontinuous , so that the growth of microalgae is not altered as a result of a continuous injection of air, for this purpose the electric pump governed by the CPU will introduce a current Intermittent recirculating water in combination with the Venturi, leaving all the elements of the bioreactor such as the water inlets and outlets, C02 inlet, valves and fan directly connected to the corresponding CPU control unit through the respective conductors.
  • Figure 1 is a front elevational view of a first embodiment of the bioreactor (10), by one of its covers (11), in which (11) the gas inlet (20) C02, the inlet of H20 (21), the entry of nutrients (27), the output of H20 (23) and the level (26).
  • Fig. 2 is a top plan view of the bioreactor (10) of Fig. 1, when working in series with a second bioreactor (22), connected by the conduit (29), and the interruption valve (30). ).
  • Figure 3 is a side elevation view of a cover (13) of the bioreactor (10) of Figure 1, provided with said cap (13) with a cylindrical mouth (28).
  • FIG 4 is a side elevational view of the bioreactor (10) of the previous figures but with improvements, including an electric pump (32), a filter (33), a venturi (34), a CPU (35) , and conductors (36) for bidirectional connection of the above elements with the CPU (35), which will also include the corresponding computer, forming an electronic switchboard.
  • a first embodiment of the bioreactor (10) comprises a body formed by lids (11-12), whose mouths (28) are surrounded by the ends with a polyethylene sheath or similar transparent material for the passage of sunlight (15), in whose inner volume (25) of (10), there is a cathode (16) in spiral shape, although other configurations of it are possible. Thanks to the spiral configuration, the cathode (16) acts as a support means for the sheath (15) of the bioreactor (10).
  • the material chosen for the cathode (16) is stainless steel, although manufacture in iron wire is possible, although the use of the latter has revealed disadvantages, as a result of the oxide generated by said wire can end up killing the microalgae, for all of which the stainless steel has been chosen as the most suitable for the passage of current.
  • the corresponding holes have been machined, for the inlet (20) of the gas C02, for which in said inlet (10) the corresponding check valve not shown in the figures will be placed.
  • the water inlet (21) is provided with an interruption valve not shown in the figures, and finally a water outlet (23) of H20, for emptying the bioreactor (10).
  • the nutrients can be incorporated into the bioreactor, taking advantage of the water inlet and its interruption valve.
  • the multiplication of the microalgae thanks to the photo synthesis requires a control of the interior temperature of the bioreactor, for which it has been foreseen that the interior volume (25) can be aerated by means of a ventilation tube (17) and in its interior an electric fan (18), which is fed by a solar cell (19), as can be seen in figure n ° 1.
  • the procedure according to is one of the objects of. ' invention comprises at least the following operations
  • the procedure by which the bioreactor (10) works consists of the filling of (10) by water with microalgae through the inlet (21), it can be automatic using electro valves by remote control, as well as the emptying by the outlet ( 2. 3) .
  • the input of C02 and nutrients (20) and (27) respectively, can be automated and programmed with the corresponding electronic control unit, without changing the essentiality of the procedure.
  • the method can be implemented in an industrial plan by means of the series connection of several bioreactors (10), joining them by means of a conduit (29) and an interruption valve (30) as can be seen in figure 2, and automating the whole by means of an electronic control unit that governs the respective water inlets and outlets, nutrient inputs, C02 gas inlets, without practically needing energy since it can be obtained from solar cells such as (19).
  • the bioreactor (10 ') incorporates ducts (31) that communicate the water inlet (21) with the water outlet (23), which takes advantage of the water used to feed the bioreactor (10'). ), proceeding to having introduced in series in said ducts (31), a filter (33) and an electric pump (32) that allows continuous water flow through said ducts (31) and inside the bioreactor (10 ') .
  • Venturi (34) mounted in series in the ducts (31), provided in the body of the bioreactor (10 ').
  • the operation of the Venturi (34) must be programmed at times governed by the CPU (35) that will allow variation depending on the nature of the microalgae used, and their concentration.
  • all other internal and external organs of the bioreactor (10 ') will be connected to said CPU (35) by the conductors (36), since it is not necessary for example the continuous operation of the electric pump (32) or the fan (38), whereby the energy input to the bioreactor (10 ') is minimal, since the low power of the electric pump (32) and the fan (18) are ensured by the generation of solar energy achieved through the solar cell (19), achieving with the described improvements an increase of the yield of 300% with respect to the bioreactor (10) described in figures 1 to 3.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

La invención se refiere a un procedimiento para acelerar la producción de biomasa a partir de cultivo de microalgas, utilizando para la puesta en práctica de dicho procedimiento un reactor específicamente diseñado para el mismo, en el que se introduce un cultivo de agua con microalgas, con nutrientes y C02 y por cuyo interior se hace pasar una corriente continua. La invención también se refiere a una segunda variante, que comprenden la adición de unos medios de oxigenación del cultivo de microalgas objeto del procedimiento, con la introducción asi mismo de un circuito cerrado para el aprovechamiento del agua utilizada por dicho aparato, y el filtro correspondiente.

Description

PROCEDIMIENTO DE PRODUCCION DE BIOMASA Y APARATO UTILIZADO EN DICHO PROCEDIMIENTO"
- Memoria Descriptiva -
Objeto de la Invención.
Más concretamente, la invención se refiere a un procedimiento para acelerar la producción de biomasa a partir de cultivo de microalgas, utilizando para la puesta en práctica de dicho procedimiento un reactor específicamente diseñado para el mismo, en el que se introduce un cultivo de agua con microalgas, con nutrientes y C02, y por cuyo interior se hace pasar una corriente continua.
Otro objeto de la invención es una variante de la invención que comprenden la adición de unos medios de oxigenación del cultivo de microalgas objeto del procedimiento, con la introducción así mismo de un circuito cerrado para el aprovechamiento del agua utilizada por dicho aparato, y el filtro correspondiente .
Estado de la Técnica.
Como consecuencia del agotamiento del modelo energético actual, basado en el petróleo y sus derivados, ha proliferado una pluralidad de nuevos procesos para la obtención de energía a partir de otras materias primas, preferentemente las renovables, buscando además de alternativas, el minimizar el impacto ambiental de manera que su utilización y consumo no afecte al ecosistema como consecuencia de la generación de residuos consecuencia de su utilización. Ejemplo de lo anterior es la energía eólica junto con la energía solar, en sus vertientes térmicas, termoeléctrica, y fotovoltaica que han registrado continuos y prometedores avances, que permiten augurar nuevas posibilidades de abastecimiento de energía. Otro ejemplo de energía alternativa es la que se basa en el cultivo de microalgas para la producción y obtención de biocombustibles, por sus innumerables ventajas que es muchos aspectos complementaria del resto de las energías renovables, ya que aborda uno de los aspectos de más difícil resolución con otras tecnologías; un combustible para el transporte de forma sostenible y barata.
Tal y como ya se conoce, las microalgas son organismos que viven en el agua tanto la dulce como la salada en ambientes terrestres de elevada humedad. La naturaleza de las microalgas en la naturaleza, es de suma importancia, ya que gracias a la fotosíntesis, son capaces de transformar la materia inorgánica en materia orgánica utilizando para esto la energía del sol, la cual queda almacenada en sus estructuras biológicas y es aprovechada posteriormente por seres que se alimentan de ella.
En el proceso de fotosíntesis utilizando la energía del sol, se combina el C02 atmosférico con el agua, y como resultado se produce oxígeno que libera a la atmósfera azucares, que las microalgas emplearán para la producción diferentes sustancias como la celulosa que configura su estructura, aceites y otras.
Las microalgas tienen una tasa de multiplicación muy elevada, las cuales son capaces de absorber y almacenar una gran cantidad de energía del sol, existiendo tres modalidades de cultivo de algas, cultivo en estanques y balsas al aire libre, el cultivo en invernaderos y finalmente el cultivo en fotobioreactores .
Desde el punto de vista industrial el cultivo en fotobioreactores es el que goza de mayor aceptación por su productividad, y consiste en conductos transparentes aislados del exterior en los cuales se desarrollan las microalgas. Estos tubos se colocan en el exterior para captar mejor la cantidad de radiación solar. Un sistema controlado informáticamente se encarga de suministrar a las microalgas C02 y nutrientes para optimizar al máximo su productividad.
El cultivo microalgas presenta por tanto una serie de ventajas importantes respecto a la utilización de otros productos agrícolas que se emplean en la actualidad; en primer lugar presentan una productividad mucho mayor que el empleado en cualquier otro tipo de materia orgánica, en segundo lugar no emite C02 a la atmósfera, en tercer lugar la producción de biocombustible a partir de microalgas, no afecta en absoluto al mercado de alimentos, y finalmente no precisa de madera de los árboles y por tanto no va en contra de los bosques.
Los productos derivados del cultivo de las microalgas con fines energéticos más relevantes son el biodiesel, el bioetanol, la biomasa, y el biopetróleo.
Finalidad de la Invención .
La finalidad de la invención es la de proveer un procedimiento novedoso para la producción industrial de biomasa con un aporte energético prácticamente nulo, y sin repercusiones en el medio ambiente. Otra finalidad de la invención es diseñar un bioreactor utilizado en dicho procedimiento, diseñado específicamente para la puesta en práctica del mismo.
Una última finalidad de la invención es la incorporación al aparato utilizado en el procedimiento de producción de biomasa, de un sistema para el aprovechamiento del agua utilizada por el bioreactor.
Descripción de la Invención.
Uno de los objetos de la invención es un procedimiento para incrementar el ritmo de multiplicación de las algas, en agua dulce, con la aportación de C02, nutrientes, y la aplicación de un campo eléctrico de bajo voltaje. La aplicación de un campo eléctrico de bajo voltaje según el procedimiento objeto de la invención, se ha revelado como un factor que incrementa notablemente la multiplicación de las microalgas y consecuentemente el volumen de biomasa generado .
Otro de los objetos de la invención es el diseño de un nuevo tipo de bioreactor que físicamente sea el adecuado para la puesta en práctica de dicho procedimiento, el cual está formado por dos tapas, de cada una de las cuales emerge perpendicularmente una embocadura, entre dichas tapas y rodeando las embocaduras una funda transparente de polietileno para el aprovechamiento de la energía solar o material similar, arriostradas a la embocadura mediante las correspondientes abrazaderas.
En una de las tapas se ha previsto la entrada de gas C02 mediante la correspondiente válvula de retención, la del agua mediante una válvula de interrupción, la de nutrientes con una válvula de interrupción y un nivel para el control del agua en el interior del bioreactor.
En el interior del bioreactor se dispone de un cátodo en forma de espiral, con entrada y conexión eléctrica por una de las tapas con una fuente de corriente continua, y comunicando con el exterior se ha previsto de un tubo de aireación, que opcionalmente puede equiparse con un ventilador extractor para evitar que la temperatura interior del bioreactor pueda exceder de un valor aceptable, y producir la muerte de las microalgas .
La tensión de la corriente continúa que circula por el cátodo está comprendida entre 0,5 y 1,5 voltios.
Opcionalmente el bioreactor puede trabajar en serie con otros bioreactores , para lo cual se comunica un bioreactor con el siguiente, mediante un simple conducto dotado de una válvula de interrupción.
Por otro lado, otro de los objetos de la presente invención es un bioreactor que, tal como se indica en la 5a reivindicación, comprende entre dos tapas provistas de una embocadura presente en una de sus caras, un volumen interior delimitado por una funda de material transparente cuyos extremos abarcan dichas embocaduras mediante las correspondientes abrazaderas, en cuyo interior se dispone un cátodo conectado a una fuente de corriente continua, proveyéndose en una de las tapas la entrada y salida de agua, la entrada de nutrientes, la entrada de gas C02, y el control de nivel interior del liquido presente en el interior del cuerpo del reactor mediante el correspondiente nivel. La puesta en práctica del anterior bioreactor, asi como investigaciones ulteriores, han revelado la bondad de un sistema de respiración directamente dirigido al cultivo del microalgas que se lleva a cabo en el interior del bioreactor, con unos medios exteriores al mismo .
Por lo tanto, uno de los objetos de la invención, es la modificación de los elementos complementarios al bioreactor, de manera que el mismo pueda funcionar en circuito cerrado, aprovechando el agua que se utiliza entre otros para el cultivo y crecimiento de dichas microalgas, para lo cual se incorpora una electrobomba y un filtro, conectados a la entrada y salida del cuerpo del bioreactor.
Asimismo es otro de los objetos de la invención la inclusión en este circuito cerrado de un Venturi, que permite la toma de aire del exterior y su aportación al agua que circula en circuito cerrado de forma programada y discontinua, y una salida de aire con la correspondiente chimenea en el cuerpo del bioreactor, con lo cual la temperatura en su interior permanecerá en los valores adecuados.
El circuito cerrado aprovecha la correspondiente centralita electrónica ya existente en el objeto de la patente principal introduciendo una CPU que gobierne todos lo elementos tanto interiores como exteriores del bioreactor, con la característica esencial y principal de que la entrada de aire a través del Venturi será discontinua, de manera que el crecimiento de las microalgas no se altere como consecuencia de una inyección continua de aire, a tal fin la electrobomba gobernada por la CPU introducirá un corriente intermitente de agua de recirculación en combinación con el Venturi, quedando todos lo elementos del bioreactor como las entradas y salidas de agua, entrada de C02, válvulas y ventilador directamente conectados a la correspondiente centralita CPU mediante los respectivos conductores .
Otros detalles y características se irán poniendo de manifiesto en el transcurso de la descripción que a continuación se da, en los que se hace referencia a los dibujos que a esta memoria se acompañan, en los que se muestra a título ilustrativo pero no limitativo una representación gráfica de la invención.
Descripción de las figuras .
Sigue a continuación una relación de las distintas partes de la invención que se identifican en las figuras anteriores mediante los números correspondientes; (10, 10') bioreactor, (11,12) tapas de (10), (13,14) tapas de (22), (15) funda transparente, (16) cátodo, (17) tubo, (18) ventilador, (19) célula solar, (20) entrada C02, (21) entrada H20, (22) bioreactor secundario, (23) salida de H20, (24) volumen interior del bioreactor (10), (25) volumen interior, (26) control de nivel, (27) entrada nutrientes, (28) embocadura, (29) conducto, (30) válvula de interrupción, (31) conducto de recirculación del agua, (32) electrobomba, (33) filtro, (34) Venturi, (35) CPU, (36) conductores, (37) salida de aire, (38) chimenea .
La figura n° 1 es una vista frontal en alzado de una primera realización del bioreactor (10), por una de sus tapas (11), en la cual (11) se dispone la entrada (20) de gas C02, la entrada de H20 (21), la entrada de nutrientes (27), la salida de H20 (23) y el nivel (26).
La figura n° 2 es una vista en planta superior del bioreactor (10) de la figura n° 1, cuando trabaja en serie con un segundo bioreactor (22), unidos mediante el conducto (29), y la válvula de interrupción (30).
La figura n° 3 es una vista lateral en alzado de una tapa (13) del bioreactor (10) de la figura n° 1, dotada dicha tapa (13) de una embocadura cilindrica (28) .
La figura n° 4 es una vista lateral en alzado del bioreactor (10) de las figuras anteriores pero con unas mejoras, que incluyen una electrobomba (32), un filtro (33), un Venturi (34), una CPU (35), y unos conductores (36) para la conexión bidireccional de los elementos anteriores con la CPU (35) , que incluirá también el correspondiente ordenador, formando una centralita electrónica .
Para facilitar la interpretación de la invención la numeración de las distintas partes de la realización del bioreactor de la figura n° 4, dichas referencias son idénticas a las de la primera realización del bioreactor de las figura n° 1 a 3.
Descripción de la Invención.
En una de las realizaciones preferidas, y tal y como puede verse en la figura n° 1, una primera realización del bioreactor (10) según la invención comprende un cuerpo formado por unas tapas (11-12), cuyas embocaduras (28) son rodeadas por los extremos con una funda de polietileno o material similar transparente para el paso de la luz solar (15), en cuyo volumen interior (25) de (10), se dispone de un cátodo (16) en forma de espiral, aunque son posibles otras configuraciones del mismo. Merced a la configuración en forma de espiral el cátodo (16) hace las veces de medio de sustentación de la funda (15) del bioreactor (10) .
El material elegido para el cátodo (16) es el acero inoxidable, aunque es posible la fabricación en hilo de hierro, aunque la utilización de éste último ha revelado inconvenientes, como consecuencia de que el oxido generado por dicho hilo puede acabar matando las microalgas, por todo lo cual el acero inoxidable se ha elegido como más adecuado para el paso de corriente.
En una de las tapas por ejemplo la (13), se ha mecanizado los correspondientes orificios, para la entrada (20) del gas C02, para lo cual en dicha entrada (10) se colocará la correspondiente válvula de retención no representada en las figuras, también en la misma tapa (13) se dispone la entrada de agua (21) con una válvula de interrupción no representada en las figuras, y finalmente una salida de agua (23) de H20, para el vaciado del bioreactor (10), los nutrientes pueden incorporarse al interior del bioreactor aprovechando la entrada del agua y su válvula de interrupción. Para el control del nivel de liquido en el interior del bioreactor (10) se ha previsto también en la tapa (11) de un nivel (26) .
La multiplicación de las microalgas merced a la foto síntesis requiere un control de la temperatura interior del bioreactor, para lo cual se ha previsto que el volumen interior (25) pueda airearse mediante un tubo de ventilación (17) y en su interior un electro ventilador (18), que se alimenta mediante una célula solar (19), tal y como puede verse en la figura n° 1. El procedimiento según es uno de los objetos de .' invención comprende al menos las siguientes operaciones
Llenado del bioreactor (10) con agua y micro-algas. - Suministro de nutrientes al interior del bioreactor
(10) .
Suministro de C02 al interior del bioreactor (10). Creación de un campo eléctrico para el paso de una corriente continúa por el interior del cátodo (16), a partir de una fuente de corriente continua.
El procedimiento por el cual trabaja el bioreactor (10) consiste en el llenado de (10) mediante agua con microalgas por la entrada (21), la misma puede ser automática utilizando electro válvulas por control remoto, asi como el vaciado por la salida (23) . Asi mismo la entrada de C02 y de nutrientes (20) y (27) respectivamente, puede automatizarse y programarse con la correspondiente centralita electrónica, sin que varié la esencialidad del procedimiento.
Alternativamente el procedimiento puede llevarse a la práctica en plan industrial mediante la conexión en serie de varios bioreactores (10), uniéndolos mediante un conducto (29) y una válvula de interrupción (30) tal y como puede verse en la figura n° 2, y automatizando el conjunto mediante una central electrónica que gobierne la respectivas entradas y salidas de agua, entradas de nutrientes, entradas de gas C02, sin prácticamente precisar energía ya que la misma se puede obtener de células solares tales como la (19) .
En la segunda de las realizaciones preferidas de la presente invención y tal y como puede verse en la figura n° 4, el bioreactor (10' ) incorpora unos conductos (31) que comunican la entrada de agua (21) con la salida de agua (23) , con lo cual se aprovecha el agua utilizada para la alimentación del bioreactor (10'), procediéndose al haber introducido en serie en dichos conductos (31) , un filtro (33) y una electrobomba (32) que permite la corriente de agua en continuo por dichos conductos (31) y por el interior del bioreactor (10').
Asimismo con el fin de oxigenar el baño de agua nutrientes C02 y microalgas de forma discontinua, se introduce aire consecuentemente oxigeno, valiéndose de un Venturi (34) montado en serie en los conductos (31), previéndose en el cuerpo del bioreactor (10') una salida de aire (37) y una chimenea (38) .
Por las experimentaciones realizadas el funcionamiento del Venturi (34) debe programarse en unos tiempos gobernadas por la CPU (35) que admitirán variación en función de la naturaleza de las microalgas utilizadas, y a su concentración.
Adicionalmente, tal y como se describe en la primera realización de la invención, todos los demás órganos internos y externos del bioreactor (10') quedarán conectado a dicha CPU (35) mediante los conductores (36), ya que no es preciso por ejemplo el funcionamiento continuo de la electrobomba (32) ni del ventilador (38), con lo cual el aporte energético al bioreactor (10') es mínimo, ya que la escasa potencia del electrobomba (32) y el ventilador (18) quedan aseguradas por la generación de energía solar conseguida a través de la célula solar (19), consiguiéndose con las mejoras descritas un aumento del rendimiento del 300% respecto al bioreactor (10) descrito en las figuras n° 1 a 3.
Consecuentemente el procedimiento de producción de biomasa y aparato utilizado en dicho procedimiento de las figuras n° 1 a 3 queda ampliado con una nueva operación consistente en la circulación discontinua en circuito cerrado del agua.
Descrita suficientemente la presente invención en correspondencia con las figuras anexas, fácil es comprender que podrán realizarse en la misma, cualesquiera modificaciones de detalle que se estimen convenientes, siempre y cuando no se altere la esencia de la invención que queda resumida en las siguientes reivindicaciones .

Claims

R E I V I N D I C A C I O N E S:
Ia- "PROCEDIMIENTO DE PRODUCCION DE BIOMASA" , de los que utilizan las microalgas , las cuales se multiplican mediante la fotosíntesis a través de la irradiación solar en un medio acuoso tal como el agua, caracterizado en que dicho procedimiento comprende al menos las siguientes operaciones:
Llenado del bioreactor con agua y micro-algas.
Suministro de nutrientes al interior del bioreactor .
Suministro de C02 al interior del bioreactor.
Creación de un campo eléctrico para el paso de una corriente continúa por el interior de un cátodo, a partir de una fuente de corriente continua.
2a - "PROCEDIMIENTO DE PRODUCCION DE BIOMASA" según la Ia reivindicación, caracterizado en que la tensión de la corriente continúa que circula por el cátodo está comprendida entre 0,5 y 1,5 voltios.
3a - "PROCEDIMIENTO DE PRODUCCION DE BIOMASA" según la Ia reivindicación, caracterizado en que la apertura y cierre de entradas y salidas de agua, nutrientes, gas C02, está gobernada por una centralita electrónica.
4 a _ "PROCEDIMIENTO DE PRODUCCION DE BIOMASA" según la 2 a reivindicación, caracterizado en que el cátodo presenta forma de espiral y se coloca por debajo de la funda de material transparente del bioreactor. 5a- "PROCEDIMIENTO DE PRODUCCION DE BIOMASA", según la Ia reivindicación, caracterizado en que adicionalmente el procedimiento comprende además de las citadas operaciones la circulación en circuito cerrado del agua con su filtrado y adición de aire.
6a - "APARATO UTILIZADO EN EL PROCEDIMIENTO DE PRODUCCION DE BIOMASA" de cualquiera de las reivindicaciones Ia a 5a, caracterizado en que el cuerpo bioreactor comprende entre dos tapas provistas de una embocadura presente en una de sus caras un volumen interior delimitado por una funda de material transparente cuyos extremos abarcan dichas embocaduras mediante las correspondientes abrazaderas, en cuyo interior se dispone un cátodo conectado a una fuente de corriente continua, proveyéndose en una de las tapas la entrada y salida de agua, la entrada de nutrientes, la entrada de gas C02, y el control del nivel interior del liquido presente en el interior del cuerpo del reactor mediante el correspondiente nivel.
7 a _ "APARATO UTILIZADO EN EL PROCEDIMIENTO DE PRODUCCION DE BIOMASA" según la anterior reivindicación, caracterizado en que el cuerpo del bioreactor incorpora un conducto de ventilación provisto de un electro- ventilador en su parte superior, alimentado el mismo por la energía generado por una célula solar.
8 a - "APARATO UTILIZADO EN EL PROCEDIMIENTO DE PRODUCCION DE BIOMASA" según la 6a reivindicación, caracterizado en que alternativamente en plan industrial el aparato utilizado comprenderá la conexión en serie de varios bioreactores , uniéndolos mediante un conducto y una válvula de interrupción, y automatizando el conjunto mediante una central electrónica que gobierne la respectivas entradas y salidas de agua, entradas de nutrientes, entradas de gas C02, sin prácticamente precisar energía ya que la misma se puede obtener de células solares.
9a- "APARATO UTILIZADO EN EL PROCEDIMIENTO DE PRODUCCION DE BIOMASA", según cualquiera de las reivindicaciones 6a a 8a caracterizado en que adicionalmente el bioreactor comprende como elemento exterior al mismo unos conductos entre la entrada y la salida del en agua, entre los que se intercala una electrobomba para la circulación del agua, un filtro Venturi para inyección de aire en el agua, una CPU gobernando el bioreactor y sus elemento exteriores y en el cuerpo del bioreactor una salida de aire con su correspondiente chimenea.
10 a- "APARATO UTILIZADO EN EL PROCEDIMIENTO DE PRODUCCION DE BIOMASA", según la 9a reivindicación caracterizado en que el funcionamiento del electrobomba es discontinuo y los tiempos de funcionamiento, el resultado de las órdenes recibidas de la CPU.
11a- "APARATO UTILIZADO EN EL PROCEDIMIENTO DE PRODUCCION DE BIOMASA", según la 9a reivindicación caracterizado en que el tipo de funcionamiento del bioreactor es discontinuo y los tiempos de funcionamiento del Venturi el resultado de las ordenes recibidas de la CPU.
PCT/ES2012/070718 2011-10-21 2012-10-17 Procedimiento de produccion de biomasa y aparato utilizado en dicho procedimiento WO2013057348A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12841149.3A EP2770049A4 (en) 2011-10-21 2012-10-17 METHOD FOR PRODUCING BIOMASS AND APPARATUS USED IN SAID METHOD
US14/353,282 US20140256023A1 (en) 2011-10-21 2012-10-17 Biomass-production method and apparatus used in said method
IL232075A IL232075A0 (en) 2011-10-21 2014-04-10 Biomass production method and devices used in the method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES201131695A ES2402494B1 (es) 2011-10-21 2011-10-21 Procedimiento de producción de biomasa y aparato utilizado en dicho procedimiento.
ESP201131695 2011-10-21
ESP201230915 2012-06-12
ES201230915A ES2438392B1 (es) 2012-06-12 2012-06-12 Procedimiento de producción de biomasa y aparato utilizado en dicho procedimiento, mejorado

Publications (1)

Publication Number Publication Date
WO2013057348A1 true WO2013057348A1 (es) 2013-04-25

Family

ID=48140398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070718 WO2013057348A1 (es) 2011-10-21 2012-10-17 Procedimiento de produccion de biomasa y aparato utilizado en dicho procedimiento

Country Status (5)

Country Link
US (1) US20140256023A1 (es)
EP (1) EP2770049A4 (es)
CR (1) CR20140167A (es)
IL (1) IL232075A0 (es)
WO (1) WO2013057348A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004300A1 (es) * 2013-07-09 2015-01-15 Green Sea Bio System, S.L. Instalación para la obtención de biomasa mediante el cultivo de algas y la obtención de biorefino para la producción de bioaceite y bioproductos y procedimiento para su obtención

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060058B (zh) * 2017-12-25 2021-01-29 西安建筑科技大学 一种用于高密度养殖微藻的光生物反应器
WO2023234767A1 (en) * 2022-05-31 2023-12-07 Algae International Bhd A compact manner of growing microalgae suitable for carbon sequestration and creating a circular economy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2052548B1 (de) * 1970-10-27 1972-03-23 Brauß, Friedr. WiIh., Prof. Dr.med.; Varga, Andreas, DipL-Ing.; 6900 Heidelberg Gerät zur Wachstumsbeschleunigung von Mikroorganismen
EP0041373A1 (en) * 1980-05-30 1981-12-09 Ppg Industries, Inc. Electrostimulation of microbial reactions
WO2008079724A2 (en) * 2006-12-28 2008-07-03 Solix Biofuels, Inc. Improved diffuse light extended surface area water-supported photobioreactor
WO2008098298A1 (en) * 2007-02-16 2008-08-21 Iogenyx Pty Ltd Methods for improving the cultivation of aquatic organisms
ES2307407A1 (es) * 2006-12-18 2008-11-16 Biofuel Systems, S.L. Bioacelerador electromagnetico.
US20110003331A1 (en) * 2009-05-02 2011-01-06 Thomas Clayton Pavia Method for enhanced production of biofuels and other chemicals using biological organisms
WO2011154886A1 (en) * 2010-06-07 2011-12-15 Jean-Louis Roux Dit Buisson Continuous or semi-continuous flow photobioreactor and method of use
WO2012000057A1 (en) * 2010-07-01 2012-01-05 Mbd Energy Limited Method and apparatus for growing photosynthetic organisms

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2308912B2 (es) * 2007-01-16 2009-09-16 Bernard A.J. Stroiazzo-Mougin Procedimiento acelerado de conversion energetica del dioxido de carbono.
IL184941A0 (en) * 2007-07-31 2008-12-29 Slavin Vladimir Method and device for producing biomass of photosynthesizing microorganisms mainly halobacteria halobacterium as well as biomass of the said microorganisms pigments bacteriorhodopsin in particular
DE102010007168A1 (de) * 2010-02-08 2011-08-11 Siemens Aktiengesellschaft, 80333 Bioreaktor zur Vermehrung von Mikroorganismen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2052548B1 (de) * 1970-10-27 1972-03-23 Brauß, Friedr. WiIh., Prof. Dr.med.; Varga, Andreas, DipL-Ing.; 6900 Heidelberg Gerät zur Wachstumsbeschleunigung von Mikroorganismen
EP0041373A1 (en) * 1980-05-30 1981-12-09 Ppg Industries, Inc. Electrostimulation of microbial reactions
ES2307407A1 (es) * 2006-12-18 2008-11-16 Biofuel Systems, S.L. Bioacelerador electromagnetico.
WO2008079724A2 (en) * 2006-12-28 2008-07-03 Solix Biofuels, Inc. Improved diffuse light extended surface area water-supported photobioreactor
WO2008098298A1 (en) * 2007-02-16 2008-08-21 Iogenyx Pty Ltd Methods for improving the cultivation of aquatic organisms
US20110003331A1 (en) * 2009-05-02 2011-01-06 Thomas Clayton Pavia Method for enhanced production of biofuels and other chemicals using biological organisms
WO2011154886A1 (en) * 2010-06-07 2011-12-15 Jean-Louis Roux Dit Buisson Continuous or semi-continuous flow photobioreactor and method of use
WO2012000057A1 (en) * 2010-07-01 2012-01-05 Mbd Energy Limited Method and apparatus for growing photosynthetic organisms

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770049A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004300A1 (es) * 2013-07-09 2015-01-15 Green Sea Bio System, S.L. Instalación para la obtención de biomasa mediante el cultivo de algas y la obtención de biorefino para la producción de bioaceite y bioproductos y procedimiento para su obtención

Also Published As

Publication number Publication date
EP2770049A4 (en) 2015-10-07
US20140256023A1 (en) 2014-09-11
EP2770049A1 (en) 2014-08-27
CR20140167A (es) 2014-07-23
IL232075A0 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
ES2326296B1 (es) Fotobiorreactor vertical sumergible para la obtencion de biocombustibles.
US10160941B2 (en) Photobioreactor
ES2307407B2 (es) Fotobiorreactor electromagnetico.
US8476067B2 (en) Photobioreactor and method for processing polluted air
KR102043623B1 (ko) 조류 양식용 광생물반응기 및 조류 양식 시스템
ES2892320T3 (es) Sistema modular de fotobiorreactores para el cultivo de algas
CN102899239B (zh) ***螺旋纽带的弥散光纤式光生物反应器
WO2013057348A1 (es) Procedimiento de produccion de biomasa y aparato utilizado en dicho procedimiento
ES2288132B1 (es) Fotoconvertidor de energia para la obtencion de biocombustibles.
ES2319376B1 (es) "fotobiorreactor".
JP2012023990A (ja) 光合性微細藻類の循環式培養方法
CN106957790A (zh) 一种微藻藻种光生物反应半封闭式培养管道及其使用方法
ES2402494B1 (es) Procedimiento de producción de biomasa y aparato utilizado en dicho procedimiento.
CN217265714U (zh) 一种藻类培养***
JP5324532B2 (ja) 循環型の光生物反応器
ES2395947B1 (es) Fotobiorreactor para cultivar microorganismos fotoautótrofos
CN105087374A (zh) 池养螺旋藻碳源供给***
CN214735788U (zh) 一种利用电厂供暖供碳补光的微藻养殖***
CN114292731A (zh) 一种藻类培养***
CN211522201U (zh) 一种光热质耦合的微藻养殖装置
ES2528388B1 (es) Procedimiento de obtención de biomasa y productos derivados a partir de algas unicelulares, e instalación para la ejecución del mismo
CN101897274B (zh) 用于食用菌生产的干热式菇房或菇棚装置
ES2438392A1 (es) Procedimiento de producción de biomasa y aparato utilizado en dicho procedimiento, mejorado
CN203597176U (zh) 地能温度调节维护装置
CN203269944U (zh) 提高微藻光合效率的基于藻类全密闭气体循环维生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841149

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: CR2014-000167

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 232075

Country of ref document: IL

REEP Request for entry into the european phase

Ref document number: 2012841149

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012841149

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14353282

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE