WO2013054738A1 - Electrically insulated wire having multi-layered coating - Google Patents

Electrically insulated wire having multi-layered coating Download PDF

Info

Publication number
WO2013054738A1
WO2013054738A1 PCT/JP2012/075840 JP2012075840W WO2013054738A1 WO 2013054738 A1 WO2013054738 A1 WO 2013054738A1 JP 2012075840 W JP2012075840 W JP 2012075840W WO 2013054738 A1 WO2013054738 A1 WO 2013054738A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
resistant resin
layer
paint layer
resistant
Prior art date
Application number
PCT/JP2012/075840
Other languages
French (fr)
Japanese (ja)
Inventor
敏美 甲賀
貴智 渡辺
福田 克彦
Original Assignee
東特塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東特塗料株式会社 filed Critical 東特塗料株式会社
Publication of WO2013054738A1 publication Critical patent/WO2013054738A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2806Protection against damage caused by corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat

Definitions

  • the present invention relates to an electrically insulated wire having a multilayer coat.
  • a solar car which is an automobile powered by a solar cell and runs on an electric motor, converts light energy from the sun into electric energy by the solar cell and converts it into an electric motor.
  • the vehicle is driven by turning it into-and runs with the tires rotated.
  • An electric motor (motor) of a solar car of the electric vehicle is required to have a lightweight and highly efficient electric motor in order to make maximum use of the electric power of the solar cell.
  • An electric motor is a power device that converts electrical energy into mechanical energy, and is a rotor, a stator that interacts with the rotor to generate a rotational moment, and a rotor.
  • the rotating shaft that transmits the rotation of the motor to the outside, the bearing that supports the rotating shaft, the cooling device that cools the heat generated by the loss, and the like.
  • electric motors There are various types of electric motors, but there are electric motors that generate a varying magnetic field by winding an insulating coil around a stator and supplying a changing current to the coil. Since it has heat, it needs to dissipate heat and is required to have good motor efficiency (power factor).
  • the power factor indicates the ratio between the apparent power and the active power, and indicates the difference in the phase difference between the voltage and current.
  • Etc. are mostly made up of coil components, so they are in a “delayed power factor” state in which the current is delayed from the voltage.
  • the “active power” used for the power supply and the “reactive power” that is not consumed simply by reciprocating between the load and the power source are generated.
  • the power that includes the power lost due to this delay power factor is called apparent power. Apparent power indicates the apparent power including active power and reactive power. If the power factor is known, it is effective. Thus, it is possible to know the active power consumed and the reactive power not consumed.
  • Silicone grease has been used for a long time for heat dissipation of electrical equipment. Silicone silicone is made by mixing metal components such as organopolysiloxane with metal oxide or heat conductive filler. Have been used.
  • Insulation coils made of electrical insulated wires for electrical equipment are used to prevent the deterioration of the service life of electrical equipment due to corona discharge between windings, in addition to the above heat dissipation and motor efficiency.
  • corona resistance is required, and it is required to have excellent flexibility, which is its basic characteristic, without causing winding deterioration in use of the winding. Since the work is performed at a high speed and the winding is easily damaged, it is necessary to provide lubricity and reduce the friction coefficient.
  • motors and reactors (inductors) in the above-described solar car are used for high voltage due to large currents, etc., and self-bonding work by heating is performed at high temperatures.
  • the insulating layer in the coil is a multilayer of two layers, etc. It is required to use an insulated wire with a low degree of softening, or to increase the insulation resistance to keep the insulation performance higher.
  • JP-B-52-33272 JP-A-10-110179, JP-A-2004-91743, JP-A-2008-255275, JP-A-11-246885, JP-A-2002-201483, JP-A JP 2008-174597 A, JP 2008-303263 A, JP 2008-026699 A
  • the object of the present invention is to provide a technique capable of solving the above-described drawbacks of the prior art and responding to the above-mentioned requests.
  • Other objects and novel features of the present invention will become apparent from the description of the present specification and the drawings.
  • (Claim 1) A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire.
  • a second heat-dissipating electrical insulating paint layer obtained by adding one or more selected from the group consisting of aluminum nitride, boron nitride, silicon carbide and metal oxides to a heat-resistant resin layer
  • (Claim 2) 2.
  • (Claim 3) The multilayer insulated electric wire according to claim 2, wherein 5 to 30 parts by weight of graphite is added to 100 parts by weight of heat-resistant resin.
  • (Claim 4) The electrically insulated electric wire with a multilayer coat according to claim 1, 2 or 3, wherein aluminum nitride is added.
  • the multilayer insulated electric insulated wire according to claim 4 wherein 5 to 50 parts by weight of aluminum nitride is added to 100 parts by weight of heat resistant resin.
  • Electric insulated wire (Claim 9) A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire.
  • a second heat-dissipating electrical insulating paint layer formed by adding one or more selected from the group consisting of silicon and metal oxides, and an electrical insulating paint layer of a heat-resistant resin are sequentially applied to the inner and outer layers. 10.
  • the heat resistant resin is a polyimide synthetic resin.
  • the present invention has the following advantages.
  • the first heat dissipating electrically insulating paint layer and the second heat dissipating electrically insulating paint layer formed by adding different types of fillers to the outer periphery of the conducting wire. Is applied to the inner and outer layers one after the other, so heat dissipation is excellent, heat dissipation performance can be kept higher, motor efficiency is excellent, heat dissipation is excellent without heat, and motor Because of its high efficiency, its insulation coil (electrically insulated wire) can extend the service life of various electric devices such as electric motors (motors) such as solar cars and reactors (inductances). .
  • the filler constituting the first heat dissipating electrically insulating paint layer and the filler constituting the second heat dissipating electrically insulating paint layer are different, and the first heat dissipating electrically insulating paint layer is different.
  • the filler constituting the conductive electrically insulating coating layer is made of a carbon allotrope selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene.
  • the graphite filler has good bead-like (whisker) thin graphite, and has good adhesion to the lead wire, and also has good heat resistance.
  • the filler constituting the second heat-dissipating electrically insulating paint layer is made of aluminum nitride, boron nitride, silicon carbide and / or metal oxide.
  • the aluminum nitride, boron nitride, silicon carbide, and metal oxide remarkably improve the heat dissipation and the motor efficiency by the cooperative action with the carbon allotrope such as graphite.
  • the graphite of the filler constituting the first heat-dissipating electrically insulating paint layer has a heat-resistant resin 100 because of its adhesion to the conductive wire and the beard effect.
  • the use of 5 to 30 parts by weight with respect to parts by weight is preferred.
  • the filler constituting the second heat-dissipating electrically insulating paint layer is related to the filler constituting the first heat-dissipating electrically insulating paint layer.
  • silicon dioxide is added to the heat-resistant resin between the first heat dissipating electrical insulating paint layer and the second heat dissipating electrically insulating paint layer. It is preferable to form a triple layer coat (coating, layer) by interposing a corona-resistant electrically insulating coating layer imparted with corona resistance.
  • the basic structure of the double layer coat comprising the first heat dissipating electrical insulating paint layer and the second heat dissipating electrically insulating paint layer according to claim 1 is excellent in terms of heat dissipation,
  • a corona-resistant electrically insulating coating layer that has been provided with corona resistance by adding silicon dioxide to the heat-resistant resin in order to satisfy the corona resistance requirements. It is preferable to interpose a triple layer coat.
  • silicon dioxide silicon carbide, silicon nitride, molybdenum disulfide, etc. can be used, but the corona resistance can be improved without deteriorating the flexibility that is a fundamental characteristic of the winding. Therefore, silicon dioxide (SiO 2 ) is preferable.
  • silicon dioxide is added to the heat-resistant resin between the first heat dissipating electrical insulating paint layer and the second heat dissipating electrically insulating paint layer.
  • the silicon dioxide can improve the corona resistance without deteriorating the flexibility that is a basic characteristic of the winding.
  • an electrically insulating paint layer of a heat resistant resin is provided between the first heat dissipating electrically insulating paint layer and the second heat dissipating electrically insulating paint layer. It is preferable to intervene to form a triple layer coat (coating, layer).
  • the basic structure of the double layer coat comprising the first heat-dissipating electrical insulating paint layer and the second heat-dissipating electrically insulating paint layer according to claim 1 is excellent in terms of heat dissipation, but is a filler.
  • corona resistance provided with corona resistance between the first heat dissipating electrical insulating paint layer and the second heat dissipating electrical insulating paint layer. It is preferable to provide a four-layer coating by interposing an electrically insulating paint layer and an electrically insulating paint layer of a heat resistant resin, since both functions of flexibility and corona resistance can be improved.
  • corona resistance provided with corona resistance between the first heat dissipating electrical insulating paint layer and the second heat dissipating electrically insulating paint layer When an electric insulating paint layer is interposed, an electric insulating paint layer of a heat resistant resin is interposed, and further, an electric insulating paint layer of a heat resistant resin is also interposed in the uppermost layer to form a five-layer coat.
  • both the functions of flexibility and corona resistance can be improved, and the second heat dissipating electric insulating paint layer of the electric insulated wire is covered and protected by the electric insulating paint layer of the heat resistant resin, and the coil In this winding process, the work is performed at a high speed and the winding is easily damaged. Therefore, it is possible to impart a lubricity to the electrically insulating paint layer of the heat-resistant resin and reduce the friction coefficient.
  • a heat-resistant resin is used as the resin constituting the electrically insulated wire.
  • Coils incorporated in electrical equipment include motors and reactors (inductances) in the above-mentioned solar car, high voltage due to large currents, etc., and self-bonding of windings by heating Is required to have excellent heat resistance (thermal softening temperature) even at high temperatures from the standpoint of being performed at high temperatures.
  • the insulated wire is made of a heat-resistant resin and has a low degree of softening of the coating at high temperatures.
  • As the heat-resistant resin a polyimide-based synthetic resin is preferable from the request / viewpoint.
  • the heat-resistant resin made of the polyimide-based synthetic resin is excellent in heat resistance, flexibility, fusing property, etc.
  • a large current such as a motor and a reactor (inductance) in-, polyamideimide or polyesterimide is preferable.
  • the carbon allotrope used for the first heat-dissipating electrically insulating coating layer in the present invention includes carbon black, amorphous carbon, diamond and fullerene in addition to graphite.
  • the carbon allotrope one or more selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene can be used.
  • the carbon allotrope can be used in any shape such as a granular shape, a plate shape, or a short fiber shape, but it is preferable to use it as a powder in terms of heat dissipation and motor efficiency.
  • Fullerene is a generic name for clusters whose minimum structure is composed of a large number of carbon atoms.
  • the structure starts from tens of atoms. It is a carbon element allotrope that begins.
  • the carbon allotrope includes a material in which a six-membered ring network (graphene sheet) made of carbon such as a carbon nanotube is formed into a single-layer or multilayer coaxial tube. Carbon nanotubes are allotropes of carbon and may be classified as a kind of fullerene. As the carbon allotrope, it is preferable to use graphite because a thin bearded (whisker) graphite having regularity grows, adhesion to a lead wire is good, and heat resistance is good.
  • the graphite is 5 to 30 parts by weight, more preferably 10 to 20 parts by weight with respect to 100 parts by weight of the heat resistant resin (resin content and nonvolatile content). If the amount of graphite is less than 5 parts by weight, the whisker effect is reduced, and if it exceeds 30 parts by weight, the adhesion to the conductive wire is deteriorated.
  • Examples of the filler used for the second heat-dissipating electrically insulating paint layer in the present invention include aluminum nitride, boron nitride, silicon carbide, and metal oxide.
  • the filler is selected from the group consisting of aluminum nitride, boron nitride, silicon carbide, and metal oxide.
  • the aluminum nitride, boron nitride, silicon carbide, and metal oxide remarkably improve the heat dissipation and the motor efficiency by the cooperative action with the carbon allotrope such as graphite.
  • the thermal conductivity of aluminum nitride (AlN) is about 170 (W / m ⁇ K), the thermal conductivity of boron nitride (BN) is about 210 (W / m ⁇ K), and the thermal conductivity of silicon carbide (SiC) is 270 (W / m ⁇ K).
  • the metal oxide include aluminum oxide, zinc oxide, and titanium oxide. Metal nanoparticles may also be used.
  • the filler constituting the second heat-dissipating electrically insulating paint layer the relation with the filler constituting the first heat-dissipating electrically insulating paint layer, the heat dissipating property and the motor efficiency are good. It is preferable to add aluminum nitride (AlN).
  • the filler constituting the second heat-dissipating electrically insulating coating layer when aluminum nitride is used as the filler constituting the second heat-dissipating electrically insulating coating layer, 5 to 50 aluminum nitride per 100 parts by weight of heat-resistant resin (resin content and nonvolatile content). Part by weight, more preferably 10 to 30 parts by weight. If the amount of aluminum nitride is less than 5 parts by weight, heat dissipation and motor efficiency are inferior. On the other hand, if it exceeds 50 parts by weight, it becomes difficult to form a paint.
  • heat-resistant resin resin content and nonvolatile content
  • a corona-resistant electrically insulating coating layer provided with corona resistance by adding silicon dioxide to a heat-resistant resin is interposed, but the corona resistance can be improved.
  • the inorganic compound that can be used include silicon carbide, silicon nitride, and molybdenum disulfide.
  • the corona resistance can be improved without deteriorating the flexibility that is a basic characteristic of the winding.
  • silicon dioxide (SiO 2 ) is preferred.
  • the silicon dioxide (SiO 2 ) preferably has a particle diameter of 20 ⁇ m or less because the corona resistance can be improved without deteriorating the flexibility that is a basic characteristic of the winding.
  • the particle diameter is 20 ⁇ m or less, preferably 10 to 20 ⁇ m.
  • the silicon dioxide (SiO 2 ) can be used in the form of an organosilica sol (silica sol dispersed in an organic solvent).
  • organosilica sol silicon sol dispersed in an organic solvent.
  • a commercially available organosilica sol can be used. Examples include DMAC-ST, IPA-ST, EG-ST, NPC-ST-30 (manufactured by Nissan Chemical Industries, Ltd.), and these organosilica sols have the following physical properties.
  • DMAC-ST has a SiO 2 content of 20 to 21%, a H 2 O content of 3 or less, a dispersion medium of N, N-dimethylacetamide, a particle size of 10 to 20 ⁇ m, and a viscosity of 1 to 10 cp (20 ° C) organosilica sol.
  • IPA-ST has an SiO 2 content of 30 to 31%, an H 2 O content of 2 or less, a dispersion medium of isopropanol, a particle size of 10 to 20 ⁇ m, and a viscosity of 3 to 20 cp (20 ° C.).
  • Organosilica sol Organosilica sol.
  • EG-ST has an SiO 2 content of 20 to 21%, an H 2 O content of 2 or less, a dispersion medium of ethylene glycol, a particle size of 10 to 20 ⁇ m, and a viscosity of 20 to 100 cp (20 ° C.).
  • This is an organosilica sol.
  • NPC-ST-30 has an SiO 2 content of 30 to 31%, an H 2 O content of 1.5 or less, a dispersion medium of ethylene glycol monopropyl ether, a particle size of 10 to 15 ⁇ m, and a viscosity of 25 cp or less. (20 ° C.) organosilica sol.
  • DMAC-ST is particularly preferred.
  • Degussa / Aero series can be used.
  • the inorganic compound is added at a ratio of 5 to 50 parts by weight with respect to 100 parts by weight of the heat resistant resin (resin content and nonvolatile content). If the addition amount is less than 5 parts by weight, the effect of corona resistance (corona discharge destruction resistance) cannot be achieved. On the other hand, if it exceeds 50 parts by weight, even if the corona resistance is excellent, it is flexible. In particular, when the coating film becomes thinner, the flexibility becomes worse, and even if added in an amount exceeding 50 parts by weight, the effect of corona resistance is saturated and it is not economical.
  • polyester or the like can be used, but it is excellent in heat resistance, flexibility, fusing property, and the like.
  • a polyimide resin is preferable, and as the polyimide resin, for example, polyamide imide and polyester imide are preferable.
  • a common heat resistant resin can be used for the heat resistant resin constituting the outer periphery of the conducting wire.
  • the coating layer can be made of an electrically insulating coating by dissolving a heat-resistant resin or a resin composition obtained by adding various additives to a heat-resistant resin in an organic solvent.
  • the organic solvent include cresol, phenol, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, xylene, and solvent naphtha.
  • additives examples include a crosslinking agent and the like in addition to the above-described filler, and examples of the crosslinking agent include silane coupling.
  • crosslinking agent examples include silane coupling.
  • layered viscosity minerals, colorants, antioxidants such as phenolic antioxidants (weathering agents), flame retardants, reaction catalysts, and the like may be added as necessary.
  • a lubricant to the electrically insulating paint layer of the heat-resistant resin as the uppermost layer (coating layer) of the insulating layer. You may do it.
  • the lubricant include fatty acid esters, low molecular weight polyethylene, and wax.
  • the illustrated electric insulated wire (magnet wire) M has a basic structure of a first heat dissipating electrically insulating paint layer 1 and a second heat dissipating electrically insulating paint layer 4 on the outer periphery of a conducting wire R such as a copper wire.
  • Corona-resistant electrical insulation in which silicon dioxide is added to a heat-resistant resin to provide corona resistance between the first heat-dissipating electrically insulating paint layer 1 and the second heat-dissipating electrically insulating paint layer 4.
  • a coating layer 3 or (and) an electrically insulating coating layer 2 of a heat-resistant resin is interposed to form a three-layer coating or a four-layer coating, and the surface of the second heat-dissipating electrical insulating coating layer 4 is further formed.
  • a five-layer coating is applied with an electrically insulating coating layer 5 of heat-resistant resin.
  • the illustrated example shows a structure example of the electrically insulated wire of the five-layer coat.
  • (G) reciprocating wear test The average value of the number of reciprocating wears at max / min was measured.
  • H Softening resistance test; Measured with a load of 2000 gf / N. Calculate the average value (° C).
  • the insulated wire of the present invention shows that the temperature difference is higher than that of the Comparative Examples and that heat dissipation is good, while the Comparative Example shows the temperature The difference is low, indicating that the heat dissipation is inferior to that of the present invention.
  • Table 1 in motor efficiency, there is not much difference in the efficiency at 1 to 5 minutes from the start of the test. It is shown that the efficiency is 0.6% higher than that of the comparative example, and the efficiency of 0.6% is the power efficiency considering that the highest power factor is 1. It can be seen that the rate is excellent.
  • this invention is excellent also in heat resistance, flexibility, corona resistance, and lubricity from the result of the said Example and comparative example.
  • the present invention can be applied to various electric insulated wires and electric insulating paints.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Insulating Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

[Configuration] An electrically insulated wire having a corona-resistant electrically-insulated coating material layer and a heat-resistant resin electrically-insulated coating material layer layered therein, and the basic structure of which is a two-layered coating, the coating being formed by a first heat-radiating electrically-insulating coating material layer, made by adding, to heat-resistant resin, at least one carbon allotrope selected from the group consisting of graphite, carbon black, amorphous carbon, diamond, and fullerene, and a second heat-radiating electrically-insulating coating material layer, made by adding, to heat-resistant resin, at least one kind selected from the group consisting of aluminum nitride, boron nitride, silicon carbide, and a metallic oxide, being formed in order as an inner and an outer layer on the outer peripheral surface of a conductive wire. [Effect] Excellent heat radiation properties, excellent motor efficiency, being useful in electric motors such as those in solar cars, and also excellent properties such as lubricating properties, corona-resistance, flexibility, heat-resistance, and adhesion to a conductive wire.

Description

重層コ-トの電気絶縁電線Multi-layered electrically insulated wire
 本発明は、重層コ-トの電気絶縁電線に関するものである。 The present invention relates to an electrically insulated wire having a multilayer coat.
 太陽電池を電源とし電気モ-タ-で走る自動車であるソ-ラ-カ-(solar car)は、太陽からの光エネルギ-を太陽電池によって電気エネルギ-に変換し、それを電気モ-タ-に投入することで動力とし、タイヤを回転させて走行する。その電気自動車のソ-ラ-カ-の電気モ-タ-(電動機)には、太陽電池の電力を最大限に利用するために、軽量で高効率な電動機が要求される。
 電動機は、電気エネルギ-を機械エネルギ-に変換する電力機器で、回転子(ロ-タ)と、回転子と相互作用して回転モ-メントを発生させる固定子(ステ-タ)、回転子の回転を外部に伝える回転軸、回転軸を支える軸受、損失により発生した熱を冷却する冷却装置などから構成されている。
 電動機にはいろいろな種類があるが、固定子に絶縁コイルが巻回され、当該コイルに変化する電流を供給することによって、変動する磁界を発生させる電動機があり、当該コイルは、その使用により、熱を持つので放熱が必要であり、又、モ-タ-効率(力率)の良いことが要求される。
 当該力率とは、皮相電力と有効電力の割合を示しており、電圧と電流の位相差の違いを比率で示したもので、上記のソ-ラ-カ-の電気モ-タ-(電動機)を初めとして、コイル(巻線)を利用した受動素子のリアクトル(コンデンサから発生する高調波を緩和する為、又、進相コンデンサを投入したときの突入電流を緩和するために設置される。)等の電気機器は、殆どがコイル成分で出来ているため、電圧よりも電流が遅れている「遅れ力率」状態となっていて、電圧よりも電流が遅れている状態では、負荷で実際に使用される「有効電力」と、負荷と電源間を往復するだけで消費されない「無効電力」が発生している。この遅れ力率によってロスする電力を含んだ電力は、皮相電力と呼ばれ、皮相電力は、有効電力と無効電力を含んだ見掛けの電力を示しており、力率が判明していれば、有効に消費した有効電力と、消費されない無効電力を知ることが出来る。
 電熱器などの電気機器の場合、電力はすべて熱に変換されているため、無効電力は存在せず、力率は1になり、力率の遅れはまったく発生しないことになる。このように、電力が全て有効に消化されている場合、力率(モ-タ-効率)は1となり、最も高効率と言える。
 電気機器の放熱に付いては、古くからシリコ-ングリ-スが使用されてきて、オルガノポリシロキサンなどのシリコ-ン成分に金属酸化物や熱伝導性充填剤などが混入されたシリコ-ングリ-スが使用されてきた。当該熱伝導により電子機器の熱を効率よく放熱させる金属酸化物や熱伝導性充填剤等には、酸化亜鉛、酸化ベリリウム、酸化アルミニウム、窒化アルミニウム、窒化硼素、酸化珪素、アルミニウム粉、カ-ボンブラック、微粉末シリカ、ベントナイト、ダイヤモンド等が使用されている(特公昭52-33272号公報、特開平10-110179号公報、特開2004-91743号公報、特開2008-255275号公報)。
 一方、当該グリ-ス様ではなく、エマルジョンやオイルや絶縁塗料などの形態にしたものもあり、スチレンブロック共重合体と粘着性付与樹脂と溶剤とからなる絶縁塗料等がある。窒化硼素(BN)、炭化珪素(SiC)、窒化アルミニウム(AlN)、酸化アルミニウム(Al)、窒化珪素(SiN)、酸化珪素(SiO2)、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)、酸化チタン(TiO)等の放熱用フィラ-を含有させ放熱性を向上させてなる絶縁塗料も従来から提供されている(特開平11-246885号公報、特開2002-201483号公報、特開2008-174697号公報、特開2008-303263号公報、特開2008-026699号公報)。
 電気機器の電気絶縁電線からなる絶縁コイルは、上記のような放熱性やモ-タ-効率の良さ等の他に、巻線間のコロナ放電による電気機器の使用寿命の低下などを防止する為に、耐コロナ性が要求され、又、巻線の使用上巻線劣化を引き起こさず、その基本的な特性である可撓性に優れていることが要求され、更に、コイルの巻線加工では、高速でその作業が行われ巻線が損傷を受け易くなるので、滑性を付与し、摩擦係数を低下させる必要がある。
 電気機器に組み込まれるコイルは、上記したソ-ラ-カ-におけるモ-タ-やリアクトル(インダクタンス)では、大電流による高電圧化などにより、又、加熱による自己融着作業は高温下で行われること等の観点から、高温時でも優れた耐熱性(熱軟化温度)を有することも、コイルとして基本的なことで、当該コイルにおける絶縁層は、2層等の重層として、高温における被膜の軟化の度合いが少ない絶縁電線としたり、絶縁抵抗を増大させて絶縁性能を一段と高く保持させることが要求される。
A solar car, which is an automobile powered by a solar cell and runs on an electric motor, converts light energy from the sun into electric energy by the solar cell and converts it into an electric motor. The vehicle is driven by turning it into-and runs with the tires rotated. An electric motor (motor) of a solar car of the electric vehicle is required to have a lightweight and highly efficient electric motor in order to make maximum use of the electric power of the solar cell.
An electric motor is a power device that converts electrical energy into mechanical energy, and is a rotor, a stator that interacts with the rotor to generate a rotational moment, and a rotor. The rotating shaft that transmits the rotation of the motor to the outside, the bearing that supports the rotating shaft, the cooling device that cools the heat generated by the loss, and the like.
There are various types of electric motors, but there are electric motors that generate a varying magnetic field by winding an insulating coil around a stator and supplying a changing current to the coil. Since it has heat, it needs to dissipate heat and is required to have good motor efficiency (power factor).
The power factor indicates the ratio between the apparent power and the active power, and indicates the difference in the phase difference between the voltage and current. The electric motor (motor) of the above solar car ) And other passive element reactors using coils (windings) (to reduce harmonics generated from the capacitor, and to reduce inrush current when a phase advance capacitor is inserted). ) Etc. are mostly made up of coil components, so they are in a “delayed power factor” state in which the current is delayed from the voltage. The “active power” used for the power supply and the “reactive power” that is not consumed simply by reciprocating between the load and the power source are generated. The power that includes the power lost due to this delay power factor is called apparent power. Apparent power indicates the apparent power including active power and reactive power. If the power factor is known, it is effective. Thus, it is possible to know the active power consumed and the reactive power not consumed.
In the case of an electric device such as an electric heater, since all the electric power is converted into heat, there is no reactive power, the power factor is 1, and no power factor delay occurs. Thus, when all the electric power is effectively digested, the power factor (motor efficiency) is 1, which is the highest efficiency.
Silicone grease has been used for a long time for heat dissipation of electrical equipment. Silicone silicone is made by mixing metal components such as organopolysiloxane with metal oxide or heat conductive filler. Have been used. Examples of metal oxides and thermally conductive fillers that efficiently dissipate heat from electronic devices by the heat conduction include zinc oxide, beryllium oxide, aluminum oxide, aluminum nitride, boron nitride, silicon oxide, aluminum powder, carbon Black, fine powder silica, bentonite, diamond and the like are used (Japanese Patent Publication No. 52-33272, Japanese Patent Laid-Open Nos. 10-110179, 2004-91743, 2008-255275).
On the other hand, there are some which are not in the form of the grease but in the form of emulsion, oil, insulating paint, etc., and there are insulating paints composed of a styrene block copolymer, a tackifying resin and a solvent. Boron nitride (BN), silicon carbide (SiC), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon nitride (SiN), silicon oxide (SiO 2), magnesium oxide (MgO), zinc oxide (ZnO) Insulating paints containing a heat-dissipating filler such as titanium oxide (TiO 2 ) to improve heat dissipation have also been conventionally provided (Japanese Patent Laid-Open Nos. 11-246885 and 2002-201483, JP 2008-174697, JP 2008-303263, JP 2008026669).
Insulation coils made of electrical insulated wires for electrical equipment are used to prevent the deterioration of the service life of electrical equipment due to corona discharge between windings, in addition to the above heat dissipation and motor efficiency. In addition, corona resistance is required, and it is required to have excellent flexibility, which is its basic characteristic, without causing winding deterioration in use of the winding. Since the work is performed at a high speed and the winding is easily damaged, it is necessary to provide lubricity and reduce the friction coefficient.
As for the coils incorporated in electrical equipment, motors and reactors (inductors) in the above-described solar car are used for high voltage due to large currents, etc., and self-bonding work by heating is performed at high temperatures. From the standpoint of being damaged, it is also fundamental as a coil that it has excellent heat resistance (thermal softening temperature) even at high temperatures. The insulating layer in the coil is a multilayer of two layers, etc. It is required to use an insulated wire with a low degree of softening, or to increase the insulation resistance to keep the insulation performance higher.
特公昭52-33272号公報、特開平10-110179号公報、特開2004-91743号公報、特開2008-255275号公報、特開平11-246885号公報、特開2002-201483号公報、特開2008-174697号公報、特開2008-303263号公報、特開2008-026699号公報JP-B-52-33272, JP-A-10-110179, JP-A-2004-91743, JP-A-2008-255275, JP-A-11-246885, JP-A-2002-201483, JP-A JP 2008-174597 A, JP 2008-303263 A, JP 2008-026699 A
  本発明は、上記従来技術の有する欠点を解消し、又、前記要請に答えることの出来る技術を提供することを目的としたものである。
 本発明の他の目的や新規な特徴については本件明細書及び図面の記載からも明らかになるであろう。
The object of the present invention is to provide a technique capable of solving the above-described drawbacks of the prior art and responding to the above-mentioned requests.
Other objects and novel features of the present invention will become apparent from the description of the present specification and the drawings.
 本発明の特許請求の範囲は、次の通りである。
(請求項1)
 導線の外周に、耐熱性樹脂に黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上の炭素同素体を添加してなる第1の放熱性電気絶縁塗料層、及び、耐熱性樹脂に窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれた1種又は2種以上を添加してなる第2の放熱性電気絶縁塗料層を、順次内外層に施してなる2重層コ-トを有してなることを特徴とする重層コ-トの電気絶縁電線。
(請求項2)
 炭素同素体が、黒鉛であることを特徴とする、請求項1に記載の重層コ-トの電気絶縁電線。
(請求項3)
 耐熱性樹脂100重量部に対して黒鉛5~30重量部を添加してなることを特徴とする、請求項2に記載の重層コ-トの電気絶縁電線。
(請求項4)
 窒化アルミニウムを添加してなることを特徴とする、請求項1、2又は3に記載の重層コ-トの電気絶縁電線。
(請求項5)
 耐熱性樹脂100重量部に対して窒化アルミニウム5~50重量部を添加してなることを特徴とする、請求項4に記載の重層コ-トの電気絶縁電線。
(請求項6)
 導線の外周に、耐熱性樹脂に黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上の炭素同素体を添加してなる第1の放熱性電気絶縁塗料層、耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層、及び、耐熱性樹脂に窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれた1種又は2種以上を添加してなる第2の放熱性電気絶縁塗料層を、順次内外層に施してなる3重層コ-トよりなることを特徴とする、請求項1、2、3、4又は5に記載の重層コ-トの電気絶縁電線。
(請求項7)
 耐熱性樹脂100重量部に対して二酸化珪素5~50重量部を添加してなることを特徴とする、請求項6に記載の重層コ-トの電気絶縁電線。
(請求項8)
 導線の外周に、耐熱性樹脂に黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上の炭素同素体を添加してなる第1の放熱性電気絶縁塗料層、耐熱性樹脂の電気絶縁塗料層、及び、耐熱性樹脂に窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれた1種又は2種以上を添加してなる第2の放熱性電気絶縁塗料層を、順次内外層に施してなる3重層コ-トよりなることを特徴とする、請求項1、2、3、4又は5に記載の重層コ-トの電気絶縁電線。
(請求項9)
 導線の外周に、耐熱性樹脂に黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上の炭素同素体を添加してなる第1の放熱性電気絶縁塗料層、耐熱性樹脂の電気絶縁塗料層、耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層、及び、耐熱性樹脂に窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれた1種又は2種以上を添加してなる第2の放熱性電気絶縁塗料層を、順次内外層に施してなる4重層コ-トよりなることを特徴とする、請求項1、2、3、4、5、6又は7に記載の重層コ-トの電気絶縁電線。
(請求項10)
 導線の外周に、耐熱性樹脂に黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上の炭素同素体を添加してなる第1の放熱性電気絶縁塗料層、耐熱性樹脂の電気絶縁塗料層、耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層、耐熱性樹脂に窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれた1種又は2種以上を添加してなる第2の放熱性電気絶縁塗料層、及び、耐熱性樹脂の電気絶縁塗料層を、順次内外層に施してなる5重層コ-トよりなることを特徴とする、請求項1、2、3、4、5、6、7、8又は9に記載の重層コ-トの電気絶縁電線。
(請求項11)
 耐熱性樹脂が、ポリイミド系合成樹脂であることを特徴とする、請求項1~10のいずれか一項に記載の重層コ-トの電気絶縁電線。
(請求項12)
 耐熱性樹脂が、ポリアミドイミド又はポリエステルイミドであることを特徴とする、請求項11に記載の耐コロナ性電気絶縁電線。
The claims of the present invention are as follows.
(Claim 1)
A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire. And a second heat-dissipating electrical insulating paint layer obtained by adding one or more selected from the group consisting of aluminum nitride, boron nitride, silicon carbide and metal oxides to a heat-resistant resin layer An electrically insulated electric wire having a multilayer coat characterized by comprising a double-layer coat in which layers are sequentially applied to an inner layer and an outer layer.
(Claim 2)
2. The electrically insulated electric wire of multilayer coating according to claim 1, wherein the carbon allotrope is graphite.
(Claim 3)
The multilayer insulated electric wire according to claim 2, wherein 5 to 30 parts by weight of graphite is added to 100 parts by weight of heat-resistant resin.
(Claim 4)
The electrically insulated electric wire with a multilayer coat according to claim 1, 2 or 3, wherein aluminum nitride is added.
(Claim 5)
5. The multilayer insulated electric insulated wire according to claim 4, wherein 5 to 50 parts by weight of aluminum nitride is added to 100 parts by weight of heat resistant resin.
(Claim 6)
A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire. An electrically insulating paint layer, a corona-resistant electrically insulating paint layer obtained by adding silicon dioxide to a heat-resistant resin to provide corona resistance, and a heat-resistant resin comprising aluminum nitride, boron nitride, silicon carbide and a metal oxide. 2. A triple layer coat formed by sequentially applying a second heat dissipating electrical insulating paint layer selected from the group to the inner and outer layers. An electrically insulated electric wire having a multilayered coating as set forth in 2, 3, 4 or 5.
(Claim 7)
The electrically insulated electric wire of a multilayer coat according to claim 6, wherein 5 to 50 parts by weight of silicon dioxide is added to 100 parts by weight of the heat-resistant resin.
(Claim 8)
A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire. 1 type or 2 types or more selected from the group consisting of aluminum nitride, boron nitride, silicon carbide and metal oxide are added to the electrically insulating paint layer, the electrically insulating paint layer of the heat resistant resin, and the heat resistant resin. The multi-layer coating according to claim 1, 2, 3, 4 or 5, characterized in that it comprises a multi-layer coating in which the second heat-dissipating electrically insulating paint layer is applied to the inner and outer layers sequentially. Electric insulated wire.
(Claim 9)
A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire. -Resistant electrical insulation paint layer, electrical insulation paint layer of heat-resistant resin, corona-resistant electrical insulation paint layer in which silicon dioxide is added to the heat-resistant resin to give corona resistance, and heat-resistant resin is made of aluminum nitride or boron nitride And a four-layer coating in which a second heat-dissipating electrically insulating coating layer formed by adding one or more selected from the group consisting of silicon carbide and metal oxide is sequentially applied to the inner and outer layers. 8. The electrically insulated electric wire of multi-layered coat according to claim 1, 2, 3, 4, 5, 6 or 7.
(Claim 10)
A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire. -Resistant electrical insulation paint layer, electrical insulation paint layer of heat-resistant resin, corona-resistant electrical insulation paint layer with silicon dioxide added to heat-resistant resin to give corona resistance, heat-resistant resin with aluminum nitride, boron nitride, carbonized A second heat-dissipating electrical insulating paint layer formed by adding one or more selected from the group consisting of silicon and metal oxides, and an electrical insulating paint layer of a heat-resistant resin are sequentially applied to the inner and outer layers. 10. The electrically insulated electric wire having a multi-layered coat according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9, characterized by comprising the following five-layered coat.
(Claim 11)
11. The multilayer insulated electric insulated wire according to claim 1, wherein the heat resistant resin is a polyimide synthetic resin.
(Claim 12)
The corona-resistant electrically insulated electric wire according to claim 11, wherein the heat-resistant resin is polyamide-imide or polyester-imide.
 本発明によれば、次のような利点がある。
 本発明によれば、請求項1に記載のように、導線の外周に、異なった種類のフイラ-を添加してなる第1の放熱性電気絶縁塗料層及び第2の放熱性電気絶縁塗料層を順次内外層に施してなるので、放熱性に優れ、放熱性能を一段と高く保持させることができ、又、モ-タ-効率に優れ、熱を持たず放熱に優れ、又、モ-タ-効率が良いので、その絶縁コイル(電気絶縁電線)は、ソ-ラ-カ-等の電気モ-タ-(電動機)やリアクトル(インダクタンス)のような各種電気機器の使用寿命を延ばすことができる。
 本発明によれば、第1の放熱性電気絶縁塗料層を構成するフイラ-と、第2の放熱性電気絶縁塗料層を構成するフイラ-とを別異のものとしており、当該第1の放熱性電気絶縁塗料層を構成するフイラ-は、黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた炭素同素体によるものとしている。当該黒鉛なりのフイラ-は、規則性を持つヒゲ状(ウィスカ-,whisker)の薄い黒鉛が成長したりして、導線との密着性を良好にし、又、耐熱性も良い。
 第2の放熱性電気絶縁塗料層を構成するフイラ-には、窒化アルミニウム、窒化硼素、炭化珪素及び(又は)金属酸化物を使用してなる。当該窒化アルミニウム、窒化硼素、炭化珪素、金属酸化物は、上記の黒鉛等の炭素同素体との共同作用で放熱性を著しく向上させ、又、モ-タ-効率を高める。
The present invention has the following advantages.
According to the present invention, as described in claim 1, the first heat dissipating electrically insulating paint layer and the second heat dissipating electrically insulating paint layer formed by adding different types of fillers to the outer periphery of the conducting wire. Is applied to the inner and outer layers one after the other, so heat dissipation is excellent, heat dissipation performance can be kept higher, motor efficiency is excellent, heat dissipation is excellent without heat, and motor Because of its high efficiency, its insulation coil (electrically insulated wire) can extend the service life of various electric devices such as electric motors (motors) such as solar cars and reactors (inductances). .
According to the present invention, the filler constituting the first heat dissipating electrically insulating paint layer and the filler constituting the second heat dissipating electrically insulating paint layer are different, and the first heat dissipating electrically insulating paint layer is different. The filler constituting the conductive electrically insulating coating layer is made of a carbon allotrope selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene. The graphite filler has good bead-like (whisker) thin graphite, and has good adhesion to the lead wire, and also has good heat resistance.
The filler constituting the second heat-dissipating electrically insulating paint layer is made of aluminum nitride, boron nitride, silicon carbide and / or metal oxide. The aluminum nitride, boron nitride, silicon carbide, and metal oxide remarkably improve the heat dissipation and the motor efficiency by the cooperative action with the carbon allotrope such as graphite.
 本発明によれば、請求項2に記載のように、当該第1の放熱性電気絶縁塗料層を構成するフイラ-としては、上記観点からも、黒鉛の使用が好ましい。 According to the present invention, as described in claim 2, it is preferable to use graphite as the filler constituting the first heat dissipating electrically insulating paint layer from the above viewpoint.
 本発明によれば、請求項3に記載のように、当該第1の放熱性電気絶縁塗料層を構成するフイラ-の黒鉛は、導線との密着性や上記ヒゲ効果からは、耐熱性樹脂100重量部に対して5~30重量部の使用が好ましい。 According to the present invention, as described in claim 3, the graphite of the filler constituting the first heat-dissipating electrically insulating paint layer has a heat-resistant resin 100 because of its adhesion to the conductive wire and the beard effect. The use of 5 to 30 parts by weight with respect to parts by weight is preferred.
 本発明によれば、請求項4に記載のように、当該第2の放熱性電気絶縁塗料層を構成するフイラ-としては、第1の放熱性電気絶縁塗料層を構成するフイラ-との関係や放熱性やモ-タ-効率が良いこと等からは、窒化アルミニウムを添加することが好ましい。 According to the present invention, as described in claim 4, the filler constituting the second heat-dissipating electrically insulating paint layer is related to the filler constituting the first heat-dissipating electrically insulating paint layer. In view of heat dissipation and motor efficiency, it is preferable to add aluminum nitride.
 本発明によれば、請求項5に記載のように、当該第2の放熱性電気絶縁塗料層を構成するフイラ-として窒化アルミニウムを使用する場合、放熱性やモ-タ-効率の点で、耐熱性樹脂100重量部に対して窒化アルミニウム5~50重量部を添加することが好ましい。 According to the present invention, as described in claim 5, when aluminum nitride is used as a filler constituting the second heat dissipating electrically insulating paint layer, in terms of heat dissipating property and motor efficiency, It is preferable to add 5 to 50 parts by weight of aluminum nitride with respect to 100 parts by weight of the heat resistant resin.
 本発明によれば、請求項6に記載のように、当該第1の放熱性電気絶縁塗料層と当該第2の放熱性電気絶縁塗料層との間に、耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層を介在させて3重層コ-ト(被膜、層)とすることが好ましい。請求項1に記載の当該第1の放熱性電気絶縁塗料層と当該第2の放熱性電気絶縁塗料層とからなる2重層コ-トの基本構造は、放熱性の点で優れているが、耐コロナ性をも要求されるような場合には、耐コロナ性の要求をも充足すべく、当該耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層を介在させて3重層コ-トとすることが好ましい。二酸化珪素の他にも、炭化珪素、窒化珪素、二硫化モリブテンなども使用できるが、巻線の基本的な特性である可撓性を悪化させることなく、耐コロナ性を向上させることができる点で、二酸化珪素(SiO)が好ましい。 According to the present invention, as described in claim 6, silicon dioxide is added to the heat-resistant resin between the first heat dissipating electrical insulating paint layer and the second heat dissipating electrically insulating paint layer. It is preferable to form a triple layer coat (coating, layer) by interposing a corona-resistant electrically insulating coating layer imparted with corona resistance. The basic structure of the double layer coat comprising the first heat dissipating electrical insulating paint layer and the second heat dissipating electrically insulating paint layer according to claim 1 is excellent in terms of heat dissipation, In cases where corona resistance is also required, a corona-resistant electrically insulating coating layer that has been provided with corona resistance by adding silicon dioxide to the heat-resistant resin in order to satisfy the corona resistance requirements. It is preferable to interpose a triple layer coat. In addition to silicon dioxide, silicon carbide, silicon nitride, molybdenum disulfide, etc. can be used, but the corona resistance can be improved without deteriorating the flexibility that is a fundamental characteristic of the winding. Therefore, silicon dioxide (SiO 2 ) is preferable.
 本発明によれば、請求項7に記載のように、当該第1の放熱性電気絶縁塗料層と当該第2の放熱性電気絶縁塗料層との間に、耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層を介在させる場合、当該二酸化珪素は、巻線の基本的な特性である可撓性を悪化させることなく、耐コロナ性を向上させることができるなどから、耐熱性樹脂100重量部に対して5~50重量部を添加することが好ましい。 According to the present invention, as described in claim 7, silicon dioxide is added to the heat-resistant resin between the first heat dissipating electrical insulating paint layer and the second heat dissipating electrically insulating paint layer. In the case of interposing a corona-resistant electrical insulating paint layer imparted with corona resistance, the silicon dioxide can improve the corona resistance without deteriorating the flexibility that is a basic characteristic of the winding. In view of the above, it is preferable to add 5 to 50 parts by weight with respect to 100 parts by weight of the heat resistant resin.
 本発明によれば、請求項8に記載のように、当該第1の放熱性電気絶縁塗料層と当該第2の放熱性電気絶縁塗料層との間に、耐熱性樹脂の電気絶縁塗料層を介在させて、3重層コ-ト(被膜、層)とすることが好ましい。請求項1に記載の当該第1の放熱性電気絶縁塗料層と当該第2の放熱性電気絶縁塗料層とからなる2重層コ-トの基本構造は、放熱性の点で優れているがフイラ-が混合され、硬くなり、巻線の使用上の基本的な特性である可撓性に優れていないと、巻線劣化を引き起こし易いので、その点をカバ-する為に、耐熱性樹脂の電気絶縁塗料層を介在させることが好ましい。 According to the present invention, as described in claim 8, an electrically insulating paint layer of a heat resistant resin is provided between the first heat dissipating electrically insulating paint layer and the second heat dissipating electrically insulating paint layer. It is preferable to intervene to form a triple layer coat (coating, layer). The basic structure of the double layer coat comprising the first heat-dissipating electrical insulating paint layer and the second heat-dissipating electrically insulating paint layer according to claim 1 is excellent in terms of heat dissipation, but is a filler. -Is mixed and hardened, and if it is not excellent in flexibility, which is a basic characteristic of the use of the winding, it is easy to cause winding deterioration, so in order to cover this point, It is preferable to interpose an electrically insulating paint layer.
 本発明によれば、請求項9に記載のように、当該第1の放熱性電気絶縁塗料層と当該第2の放熱性電気絶縁塗料層との間に、耐コロナ性を付与した耐コロナ性電気絶縁塗料層を介在させると共に、耐熱性樹脂の電気絶縁塗料層を介在させて、4重層コ-トとすれば、可撓性や耐コロナ性の両機能を向上させることができるので好ましい。 According to the present invention, as described in claim 9, corona resistance provided with corona resistance between the first heat dissipating electrical insulating paint layer and the second heat dissipating electrical insulating paint layer. It is preferable to provide a four-layer coating by interposing an electrically insulating paint layer and an electrically insulating paint layer of a heat resistant resin, since both functions of flexibility and corona resistance can be improved.
 本発明によれば、請求項10に記載のように、当該第1の放熱性電気絶縁塗料層と当該第2の放熱性電気絶縁塗料層との間に、耐コロナ性を付与した耐コロナ性電気絶縁塗料層を介在させると共に、耐熱性樹脂の電気絶縁塗料層を介在させ、更には、最上層にも、耐熱性樹脂の電気絶縁塗料層を介在させて5重層コ-トとすれば、可撓性や耐コロナ性の両機能を向上させることができると共に、電気絶縁電線の当該第2の放熱性電気絶縁塗料層が当該耐熱性樹脂の電気絶縁塗料層で被覆されて保護され、コイルの巻線加工では、高速でその作業が行われ巻線が損傷を受け易くなるので、当該耐熱性樹脂の電気絶縁塗料層に滑性を付与して、摩擦係数を低下させることができる。 According to the present invention, as described in claim 10, corona resistance provided with corona resistance between the first heat dissipating electrical insulating paint layer and the second heat dissipating electrically insulating paint layer. When an electric insulating paint layer is interposed, an electric insulating paint layer of a heat resistant resin is interposed, and further, an electric insulating paint layer of a heat resistant resin is also interposed in the uppermost layer to form a five-layer coat. Both the functions of flexibility and corona resistance can be improved, and the second heat dissipating electric insulating paint layer of the electric insulated wire is covered and protected by the electric insulating paint layer of the heat resistant resin, and the coil In this winding process, the work is performed at a high speed and the winding is easily damaged. Therefore, it is possible to impart a lubricity to the electrically insulating paint layer of the heat-resistant resin and reduce the friction coefficient.
 本発明によれば、請求項11に記載のように、電気絶縁電線を構成する樹脂としては、耐熱性樹脂が使用される。電気機器に組み込まれるコイルは、上記したソ-ラ-カ-におけるモ-タ-やリアクトル(インダクタンス)を初めとして、大電流による高電圧化などにより、又、加熱による巻線の自己融着作業は高温下で行われること等の観点から、高温時でも優れた耐熱性(熱軟化温度)を有することが要求され、当該コイルにおける2層等による重層コ-トの絶縁層は、いずれも、耐熱性樹脂で構成して、高温における被膜の軟化の度合いが少ない絶縁電線としている。当該耐熱性樹脂としては、当該要求・観点からは、ポリイミド系合成樹脂が好ましい。 According to the present invention, as described in claim 11, a heat-resistant resin is used as the resin constituting the electrically insulated wire. Coils incorporated in electrical equipment include motors and reactors (inductances) in the above-mentioned solar car, high voltage due to large currents, etc., and self-bonding of windings by heating Is required to have excellent heat resistance (thermal softening temperature) even at high temperatures from the standpoint of being performed at high temperatures. The insulated wire is made of a heat-resistant resin and has a low degree of softening of the coating at high temperatures. As the heat-resistant resin, a polyimide-based synthetic resin is preferable from the request / viewpoint.
 本発明によれば、請求項12に記載のように、当該ポリイミド系合成樹脂よりなる耐熱性樹脂としては、耐熱性や可撓性や融着性などに優れていて、前記ソ-ラ-カ-におけるモ-タ-やリアクトル(インダクタンス)等の大電流による高電圧化仕様に対する耐性などを考慮して、ポリアミドイミド又はポリエステルイミドであることが好ましい。 According to the present invention, as described in claim 12, the heat-resistant resin made of the polyimide-based synthetic resin is excellent in heat resistance, flexibility, fusing property, etc. In consideration of resistance to high voltage specifications due to a large current such as a motor and a reactor (inductance) in-, polyamideimide or polyesterimide is preferable.
 本発明で第1の放熱性電気絶縁塗料層に使用される炭素同素体は、黒鉛(グラファイト)の他、カ-ボンブラック、不定形炭素、ダイヤモンド、フラ-レンを包含する。炭素同素体は、黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上が使用できる。
 当該炭素同素体は、粒状、板状、短繊維状などの任意の形状で使用できるが、粉末として使用することが、放熱性やモ-タ-効率などの点で好ましい。
 フラ-レン(fullerene)は、最小の構造が多数の炭素原子で構成されるクラスタ-の総称で、構造の始まりが14個のダイヤモンドおよび6個のグラファイトと異なり、数十個の数の原子から始まる炭素元素同素体である。
 当該炭素同素体には、カ-ボンナノチュ-ブのような炭素によって作られる六員環ネットワ-ク(グラフェンシ-ト)が単層あるいは多層の同軸管状になった物質をも包含する。カ-ボンナノチュ-ブは、炭素の同素体で、前記フラ-レンの一種に分類されることもある。
 当該炭素同素体としては、規則性を持つヒゲ状(ウィスカ-)の薄い黒鉛が成長したり、導線との密着性を良好にし、又、耐熱性も良い等から、黒鉛の使用が好ましい。
The carbon allotrope used for the first heat-dissipating electrically insulating coating layer in the present invention includes carbon black, amorphous carbon, diamond and fullerene in addition to graphite. As the carbon allotrope, one or more selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene can be used.
The carbon allotrope can be used in any shape such as a granular shape, a plate shape, or a short fiber shape, but it is preferable to use it as a powder in terms of heat dissipation and motor efficiency.
Fullerene is a generic name for clusters whose minimum structure is composed of a large number of carbon atoms. Unlike 14 diamonds and 6 graphites, the structure starts from tens of atoms. It is a carbon element allotrope that begins.
The carbon allotrope includes a material in which a six-membered ring network (graphene sheet) made of carbon such as a carbon nanotube is formed into a single-layer or multilayer coaxial tube. Carbon nanotubes are allotropes of carbon and may be classified as a kind of fullerene.
As the carbon allotrope, it is preferable to use graphite because a thin bearded (whisker) graphite having regularity grows, adhesion to a lead wire is good, and heat resistance is good.
 当該黒鉛は、耐熱性樹脂(樹脂分、不揮発分)100重量部に対して5~30重量部、より好ましくは、10~20重量部である。
 黒鉛が、5重量部未満では、ヒゲ効果が少なくなり、又、30重量部を超えると、導線との密着性が悪くなる。
The graphite is 5 to 30 parts by weight, more preferably 10 to 20 parts by weight with respect to 100 parts by weight of the heat resistant resin (resin content and nonvolatile content).
If the amount of graphite is less than 5 parts by weight, the whisker effect is reduced, and if it exceeds 30 parts by weight, the adhesion to the conductive wire is deteriorated.
 本発明で第2の放熱性電気絶縁塗料層に使用されるフイラ-としては、窒化アルミニウム、窒化硼素、炭化珪素、金属酸化物が挙げられる。
 当該フイラ-は、窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれる。
 当該窒化アルミニウム、窒化硼素、炭化珪素、金属酸化物は、上記の黒鉛等の炭素同素体との共同作用で放熱性を著しく向上させ、又、モ-タ-効率を高める。
 窒化アルミニウム(AlN)の熱伝導率は約170(W/m・K)、窒化硼素(BN)の熱伝導率は約210(W/m・K)、炭化珪素(SiC)の熱伝導率は270(W/m・K)である。
 当該金属酸化物としては、酸化アルミニウム、酸化亜鉛、酸化チタンなどが挙げられる。金属製ナノ粒子でもよい。
 当該第2の放熱性電気絶縁塗料層を構成するフイラ-としては、第1の放熱性電気絶縁塗料層を構成するフイラ-との関係や放熱性やモ-タ-効率が良いこと等からは、窒化アルミニウム(AlN)を添加することが好ましい。
Examples of the filler used for the second heat-dissipating electrically insulating paint layer in the present invention include aluminum nitride, boron nitride, silicon carbide, and metal oxide.
The filler is selected from the group consisting of aluminum nitride, boron nitride, silicon carbide, and metal oxide.
The aluminum nitride, boron nitride, silicon carbide, and metal oxide remarkably improve the heat dissipation and the motor efficiency by the cooperative action with the carbon allotrope such as graphite.
The thermal conductivity of aluminum nitride (AlN) is about 170 (W / m · K), the thermal conductivity of boron nitride (BN) is about 210 (W / m · K), and the thermal conductivity of silicon carbide (SiC) is 270 (W / m · K).
Examples of the metal oxide include aluminum oxide, zinc oxide, and titanium oxide. Metal nanoparticles may also be used.
As the filler constituting the second heat-dissipating electrically insulating paint layer, the relation with the filler constituting the first heat-dissipating electrically insulating paint layer, the heat dissipating property and the motor efficiency are good. It is preferable to add aluminum nitride (AlN).
 本発明によれば、当該第2の放熱性電気絶縁塗料層を構成するフイラ-として窒化アルミニウムを使用する場合、耐熱性樹脂(樹脂分、不揮発分)100重量部に対して窒化アルミニウム5~50重量部、より好ましくは、10~30重量部である。
 窒化アルミニウムが5重量部未満では、放熱性やモ-タ-効率の点で劣り、一方、50重量を超えると、塗料化し難くなる。
According to the present invention, when aluminum nitride is used as the filler constituting the second heat-dissipating electrically insulating coating layer, 5 to 50 aluminum nitride per 100 parts by weight of heat-resistant resin (resin content and nonvolatile content). Part by weight, more preferably 10 to 30 parts by weight.
If the amount of aluminum nitride is less than 5 parts by weight, heat dissipation and motor efficiency are inferior. On the other hand, if it exceeds 50 parts by weight, it becomes difficult to form a paint.
 本発明において耐コロナ性の要求を充足すべく、耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層を介在させるが、当該耐コロナ性を向上させることができる無機化合物としては、炭化珪素、窒化珪素、二硫化モリブテンなどであってもよいが、巻線の基本的な特性である可撓性を悪化させることなく、耐コロナ性を向上させることができる点で、二酸化珪素(SiO)が好ましい。
 当該二酸化珪素(SiO)は、その粒子径が20μm以下であることが、巻線の基本的な特性である可撓性を悪化させることなく、耐コロナ性を向上させることができので好ましい。粒子径は、20μm以下好ましくは、10~20μmである。
 当該二酸化珪素(SiO)は、オルガノシリカゾル(有機溶媒に分散したシリカゾル)の形態で使用することができる。当該オルガノシリカゾルは、市販のものを使用することができる。例えば、DMAC-ST、IPA-ST、EG-ST、NPC-ST-30(日産化学工業株式会社製)が挙げられ、これらオルガノシリカゾルは次のような物性を持つ。
 DMAC-STは、そのSiOの含有量が20~21%、HO含有量が3以下、分散媒がN,N-ジメチルアセトアミド、粒子径が10~20μm、粘度が1~10cp(20℃)のオルガノシリカゾルである。
 IPA-STは、そのSiOの含有量が30~31%、HO含有量が2以下、分散媒がイソプロパノ-ル、粒子径が10~20μm、粘度が3~20cp(20℃)のオルガノシリカゾルである。
 EG-STは、そのSiOの含有量が20~21%、HO含有量が2以下、分散媒がエチレングリコ-ル、粒子径が10~20μm、粘度が20~100cp(20℃)のオルガノシリカゾルである。
 NPC-ST-30は、そのSiOの含有量が30~31%、HO含有量が1.5以下、分散媒がエチレングリコールモノプロピルエーテル、粒子径が10~15μm、粘度が25cp以下(20℃)のオルガノシリカゾルである。
 上記のオルガノシリカゾルの中で、DMAC-STが特に好ましい。
 他に、デグサ/アエロシリーズ(東新化成社製)等も使用できる。
In the present invention, in order to satisfy the requirements for corona resistance, a corona-resistant electrically insulating coating layer provided with corona resistance by adding silicon dioxide to a heat-resistant resin is interposed, but the corona resistance can be improved. Examples of the inorganic compound that can be used include silicon carbide, silicon nitride, and molybdenum disulfide. However, the corona resistance can be improved without deteriorating the flexibility that is a basic characteristic of the winding. In terms, silicon dioxide (SiO 2 ) is preferred.
The silicon dioxide (SiO 2 ) preferably has a particle diameter of 20 μm or less because the corona resistance can be improved without deteriorating the flexibility that is a basic characteristic of the winding. The particle diameter is 20 μm or less, preferably 10 to 20 μm.
The silicon dioxide (SiO 2 ) can be used in the form of an organosilica sol (silica sol dispersed in an organic solvent). A commercially available organosilica sol can be used. Examples include DMAC-ST, IPA-ST, EG-ST, NPC-ST-30 (manufactured by Nissan Chemical Industries, Ltd.), and these organosilica sols have the following physical properties.
DMAC-ST has a SiO 2 content of 20 to 21%, a H 2 O content of 3 or less, a dispersion medium of N, N-dimethylacetamide, a particle size of 10 to 20 μm, and a viscosity of 1 to 10 cp (20 ° C) organosilica sol.
IPA-ST has an SiO 2 content of 30 to 31%, an H 2 O content of 2 or less, a dispersion medium of isopropanol, a particle size of 10 to 20 μm, and a viscosity of 3 to 20 cp (20 ° C.). Organosilica sol.
EG-ST has an SiO 2 content of 20 to 21%, an H 2 O content of 2 or less, a dispersion medium of ethylene glycol, a particle size of 10 to 20 μm, and a viscosity of 20 to 100 cp (20 ° C.). This is an organosilica sol.
NPC-ST-30 has an SiO 2 content of 30 to 31%, an H 2 O content of 1.5 or less, a dispersion medium of ethylene glycol monopropyl ether, a particle size of 10 to 15 μm, and a viscosity of 25 cp or less. (20 ° C.) organosilica sol.
Of the above organosilica sols, DMAC-ST is particularly preferred.
In addition, Degussa / Aero series (Toshin Kasei Co., Ltd.) can be used.
 当該無機化合物は、耐熱性樹脂(樹脂分、不揮発分)100重量部に対して5~50重量部の割合で添加する。
 当該添加量が、5重量部未満では、耐コロナ性(耐コロナ放電破壊性)の効果を奏することができないし、一方、50重量部を超えると、耐コロナ性に優れていても、可撓性を悪化させ、特に、塗料被膜が薄くなると可撓性が悪くなり、又、50重量部を超えて添加しても耐コロナ性の効果が飽和し経済的ではない。
The inorganic compound is added at a ratio of 5 to 50 parts by weight with respect to 100 parts by weight of the heat resistant resin (resin content and nonvolatile content).
If the addition amount is less than 5 parts by weight, the effect of corona resistance (corona discharge destruction resistance) cannot be achieved. On the other hand, if it exceeds 50 parts by weight, even if the corona resistance is excellent, it is flexible. In particular, when the coating film becomes thinner, the flexibility becomes worse, and even if added in an amount exceeding 50 parts by weight, the effect of corona resistance is saturated and it is not economical.
 本発明で使用される耐熱性樹脂としては、ポリエステルなども使用できるが、耐熱性や可撓性や融着性などに優れていて、前記ソ-ラ-カ-におけるモ-タ-やリアクトル(インダクタンス)等の大電流による高電圧化仕様に対する耐性などを考慮すると、ポリイミド系樹脂が好ましく、更に、当該ポリイミド系樹脂としては、例えば、ポリアミドイミド、ポリエステルイミドが好ましい。
 導線の外周を構成する耐熱性樹脂には、共通の耐熱性樹脂が使用できる。
As the heat-resistant resin used in the present invention, polyester or the like can be used, but it is excellent in heat resistance, flexibility, fusing property, and the like. In view of resistance to high voltage specifications due to a large current such as (inductance), a polyimide resin is preferable, and as the polyimide resin, for example, polyamide imide and polyester imide are preferable.
A common heat resistant resin can be used for the heat resistant resin constituting the outer periphery of the conducting wire.
 本発明で第1の放熱性電気絶縁塗料層と当該第2の放熱性電気絶縁塗料層との間に介在させたり、又は、絶縁層の上層(被覆層)としたりする耐熱性樹脂の電気絶縁塗料層は、例えば、耐熱性樹脂或いは耐熱性樹脂に各種添加剤を添加してなる樹脂組成物を有機溶剤に溶解させて電気絶縁塗料を構成することができる。
 当該有機溶剤としては、例えば、クレゾ-ル、フェノ-ル、Nメチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、キシレン、ソルベントナフサが挙げられる。
 当該添加剤には、上記のフイラ-等の他に、架橋剤などが挙げられ、当該架橋剤の例としては、シランカップリングなどが挙げられる。
 当該添加剤としては、他に必要に応じて、層状粘度鉱物や着色剤やフェノ-ル系酸化防止剤等の酸化防止剤(耐候剤)や難燃剤や反応触媒などを添加してもよい。
Electrical insulation of a heat-resistant resin that is interposed between the first heat-dissipating electrically insulating paint layer and the second heat-dissipating electrically insulating paint layer in the present invention, or is used as an upper layer (coating layer) of the insulating layer For example, the coating layer can be made of an electrically insulating coating by dissolving a heat-resistant resin or a resin composition obtained by adding various additives to a heat-resistant resin in an organic solvent.
Examples of the organic solvent include cresol, phenol, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, xylene, and solvent naphtha.
Examples of the additive include a crosslinking agent and the like in addition to the above-described filler, and examples of the crosslinking agent include silane coupling.
As other additives, layered viscosity minerals, colorants, antioxidants such as phenolic antioxidants (weathering agents), flame retardants, reaction catalysts, and the like may be added as necessary.
 本発明において絶縁層の最上層(被覆層)の耐熱性樹脂の電気絶縁塗料層には、滑剤の添加が有効であり、滑性の付与により、電線の劣化が低減し、自己滑性を有するようにしてもよい。
 当該滑剤としては、脂肪酸エステル、低分子ポリエチレン、ワックスなどが例示できる。
In the present invention, it is effective to add a lubricant to the electrically insulating paint layer of the heat-resistant resin as the uppermost layer (coating layer) of the insulating layer. You may do it.
Examples of the lubricant include fatty acid esters, low molecular weight polyethylene, and wax.
 本発明の電気絶縁電線の構造例を、図1に例示する。
 図示の電気絶縁電線(マグネットワイヤ-)Mは、銅線などの導線Rの外周に、第1の放熱性電気絶縁塗料層1と第2の放熱性電気絶縁塗料層4との基本構造を有し、当該第1の放熱性電気絶縁塗料層1と第2の放熱性電気絶縁塗料層4との間に、耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層3又は(及び)耐熱性樹脂の電気絶縁塗料層2を介在させて3重層コ-ト又は4重層コ-トとし、又、更に、第2の放熱性電気絶縁塗料層4の表面を耐熱性樹脂の電気絶縁塗料層5で被覆する5重層コ-トとする。当該図示例は、当該5重層コ-トの電気絶縁電線の構造例を示す。
An example of the structure of the electrically insulated wire of the present invention is illustrated in FIG.
The illustrated electric insulated wire (magnet wire) M has a basic structure of a first heat dissipating electrically insulating paint layer 1 and a second heat dissipating electrically insulating paint layer 4 on the outer periphery of a conducting wire R such as a copper wire. Corona-resistant electrical insulation in which silicon dioxide is added to a heat-resistant resin to provide corona resistance between the first heat-dissipating electrically insulating paint layer 1 and the second heat-dissipating electrically insulating paint layer 4. A coating layer 3 or (and) an electrically insulating coating layer 2 of a heat-resistant resin is interposed to form a three-layer coating or a four-layer coating, and the surface of the second heat-dissipating electrical insulating coating layer 4 is further formed. A five-layer coating is applied with an electrically insulating coating layer 5 of heat-resistant resin. The illustrated example shows a structure example of the electrically insulated wire of the five-layer coat.
 以下に実施例を挙げ本発明のより詳細な理解に供する。当然のことながら本発明は以下の実施例のみに限定されるものではない。 The following examples are provided for a more detailed understanding of the present invention. Of course, the present invention is not limited to the following examples.
絶縁電線の構造及び仕様
 (a)次の構造の5重層コ-トの絶縁電線を作製した。
  下地 Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
      +黒鉛(上記樹脂分、不揮発分100重量部に対して20重量部を添加)
  中層 Neoheat AI-602
      ポリアミドイミド系塗料(東特塗料株式会社製)
     Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
     +SiO(上記樹脂分、不揮発分100重量部に対して20重量部を添加)
     Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
     +AlN(上記樹脂分、不揮発分100重量部に対して20重量部を添加)
  上地 Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
 (b)次の仕様により、絶縁電線を作製した。
   (イ)絞り方法(ダイス)及び回数
       D11(1+3+2+2+3)
         (1.05/1.06,1.07,1.08/1.09,1.10/          1.11,1.12/1.13、1.14,1,15)
    (ロ)焼付温度(℃)
       370-450-500℃、アニ-ラ550-580℃
    (ハ)線速; 20m/min
    (ニ)導体径;1.0mm
    (ホ)皮膜厚;0.042mm
電線特性の評価
(A)放熱及びモ-タ-効率
  (1)試験方法
     上記で作成された絶縁電線を、ワイヤ-を巻回するコアスロットと磁石とケ-シングを備えてなるソ-ラ-カ-における実験装置のモ-タ-の当該コアスロットに巻回し、時間(S)の経過に伴う巻線温度と室温との差(℃)を測定した。尚、当該温度測定は、10Aにて巻線温度50℃まで上昇させた後、定格4Aにて30分間運転し、1分毎の温度を測定した。モ-タ-効率は、始めの5分と終わりの5分間測定した。
 その結果を図2のグラフに示した。又、その結果を表1に示した。
(B)電線特性の測定
  次の電線特性の評価方法にて電線特性の測定を行った。
   (a)破壊電圧;
     JIS C 3216-4に準拠して、絶縁破壊電圧(kV)を測定した。
   (b)B.D.V.残存率;
     260℃X168Hr加熱処理後の絶縁破壊電圧(kV)を測定し、上記
     (a)の絶縁破壊電圧(kV)に対する残存率(%)を測定した。
   (c)グリセリン耐圧;
      グリセリン中での絶縁破壊電圧(kV)を測定した。
   (d)ヒ-トショック(1);
      NEMA法により、220℃X0.5Hr加熱処理後のキレツ数を
      測定した。
   (e)ヒ-トショック(2);
       240℃X1Hr加熱処理後のキレツ数を測定した。
   (f)可撓性;
      10%、20%、30%伸張巻付時のピンホ-ルのキレツ数を測定した。
      1d(自己径)で測定。
   (g)往復摩耗試験;
      max/minでの往復摩耗の回数の平均値を測定した。
   (h)耐軟化試験;
      荷重2000gf/Nで測定。平均値(℃)を算出。
   (i)ガラス転移温度(Tg);
      ヒ-タ-法及びメタルバス法に準拠して、Tg(Tanδ)(℃)を
      測定した。
  その結果を表2に示した。
Structure and specification of insulated wire (a) A 5-layer coated insulated wire having the following structure was prepared.
Base Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
+ Graphite (20 parts by weight added to 100 parts by weight of the above resin and non-volatile components)
Middle layer Neoheat AI-602
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
+ SiO 2 (20 parts by weight is added to 100 parts by weight of the above-mentioned resin content and non-volatile content)
Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
+ AlN (added 20 parts by weight with respect to 100 parts by weight of the above resin and non-volatile parts)
Uechi Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
(B) An insulated wire was produced according to the following specifications.
(A) Drawing method (die) and number of times D11 (1 + 3 + 2 + 2 + 3)
(1.05 / 1.06, 1.07, 1.08 / 1.09, 1.10 / 1.11, 1.12 / 1.13, 1.14, 1,15)
(B) Baking temperature (° C)
370-450-500 ° C, Annealer 550-580 ° C
(C) Line speed: 20 m / min
(D) Conductor diameter: 1.0 mm
(E) Film thickness: 0.042 mm
Evaluation of electric wire characteristics (A) Heat dissipation and motor efficiency (1) Test method Solar cable comprising a core slot, magnet and casing for winding the insulated wire created above. It was wound around the core slot of the motor of the experimental apparatus in the car, and the difference (° C.) between the winding temperature and room temperature with the passage of time (S) was measured. The temperature was measured by raising the winding temperature to 50 ° C. at 10 A and then operating at a rating of 4 A for 30 minutes and measuring the temperature every minute. Motor efficiency was measured for the first 5 minutes and the last 5 minutes.
The results are shown in the graph of FIG. The results are shown in Table 1.
(B) Measurement of electric wire characteristics The electric wire characteristics were measured by the following evaluation method of electric wire characteristics.
(A) breakdown voltage;
The dielectric breakdown voltage (kV) was measured according to JIS C 3216-4.
(B) B. D. V. Survival rate;
The dielectric breakdown voltage (kV) after the heat treatment at 260 ° C. X168Hr was measured, and the residual ratio (%) with respect to the dielectric breakdown voltage (kV) in the above (a) was measured.
(C) glycerin pressure resistance;
The dielectric breakdown voltage (kV) in glycerin was measured.
(D) heat shock (1);
The number of cracks after 220 ° C. × 0.5 Hr heat treatment was measured by the NEMA method.
(E) Heat shock (2);
The number of cracks after the heat treatment at 240 ° C. for 1 hour was measured.
(F) flexibility;
The number of pinhole cracks at the time of 10%, 20% and 30% stretch winding was measured.
Measured at 1d (self diameter).
(G) reciprocating wear test;
The average value of the number of reciprocating wears at max / min was measured.
(H) Softening resistance test;
Measured with a load of 2000 gf / N. Calculate the average value (° C).
(I) Glass transition temperature (Tg);
Tg (Tanδ) (° C.) was measured according to the heater method and the metal bath method.
The results are shown in Table 2.
  次の構造の4重層コ-トの絶縁電線を作製した以外は、実施例1と同様にして、電線特性の測定を行った。その結果を表2に示した。
  下地 Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
      +黒鉛(上記樹脂分、不揮発分100重量部に対して20重量部を添加)
  中層 Neoheat AI-602
      ポリアミドイミド系塗料(東特塗料株式会社製)
     Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
      +AlN(上記樹脂分、不揮発分100重量部に対して20重量部を添加)
  上地 Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
 上記の4重層コ-トの絶縁電線について、実施例1と同様の試験方法にて放熱及びモ-タ-効率を測定した所、実施例1と同様の結果を得た。
The wire characteristics were measured in the same manner as in Example 1 except that a four-layer coated insulated wire having the following structure was produced. The results are shown in Table 2.
Base Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
+ Graphite (20 parts by weight added to 100 parts by weight of the above resin and non-volatile components)
Middle layer Neoheat AI-602
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
+ AlN (added 20 parts by weight with respect to 100 parts by weight of the above resin and non-volatile parts)
Uechi Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
With respect to the insulated wire having the above four-layered coat, heat dissipation and motor efficiency were measured by the same test method as in Example 1, and the same result as in Example 1 was obtained.
比較例Comparative example
比較例1
  次の構造の5重層コ-トの絶縁電線を作製した以外は、実施例1と同様にして、放熱及びモ-タ-効率を測定し、又、電線特性の測定を行った。
  下地 Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
  中層 Neoheat AI-602
      ポリアミドイミド系塗料(東特塗料株式会社製)
     Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
     Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
  上地 Neoheat AI-26M 
      ポリアミドイミド系塗料(東特塗料株式会社製)
 その結果を、図2、表1及び表2に示した。




















Comparative Example 1
Except that a 5-layer coated insulated wire having the following structure was produced, the heat dissipation and motor efficiency were measured and the wire characteristics were measured in the same manner as in Example 1.
Base Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
Middle layer Neoheat AI-602
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
Uechi Neoheat AI-26M
Polyamideimide paint (manufactured by Tohoku Paint Co., Ltd.)
The results are shown in FIG. 2, Table 1 and Table 2.




















Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
















































Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002











 結果
 実施例及び比較例の結果から、図2に示すように、本発明の絶縁電線は、温度差が比較例に比べて高く、放熱が良いことを示しており、一方、比較例は、温度差が低く、放熱性において本発明に比べて劣ることが示されている。
 又、モ-タ-効率において、表1に示すように、試験開始1~5分での効率に余り差は認められないが、開始26~30分と経過した時点では、本発明の実施例の方が、比較例に比して0.6%効率が高いことが示されており、当該0.6%の効率は、最も高効率の力率が1であることを考慮すると、その力率において優れていることが判る。
 又、上記実施例及び比較例の結果から、本発明は、耐熱性、可撓性、耐コロナ性、滑性にも優れていることが判る。
Results From the results of Examples and Comparative Examples, as shown in FIG. 2, the insulated wire of the present invention shows that the temperature difference is higher than that of the Comparative Examples and that heat dissipation is good, while the Comparative Example shows the temperature The difference is low, indicating that the heat dissipation is inferior to that of the present invention.
In addition, as shown in Table 1, in motor efficiency, there is not much difference in the efficiency at 1 to 5 minutes from the start of the test. It is shown that the efficiency is 0.6% higher than that of the comparative example, and the efficiency of 0.6% is the power efficiency considering that the highest power factor is 1. It can be seen that the rate is excellent.
Moreover, it turns out that this invention is excellent also in heat resistance, flexibility, corona resistance, and lubricity from the result of the said Example and comparative example.
 本発明は、各種電気絶縁電線や電気絶縁塗料に適用できる。 The present invention can be applied to various electric insulated wires and electric insulating paints.
本発明の電気絶縁電線の一例構成図である。It is an example block diagram of the electrically insulated wire of this invention. 本発明と比較例との放熱効果の差を示すグラフ図である。It is a graph which shows the difference of the thermal radiation effect of this invention and a comparative example.
 1  実施例1
 2  比較例1
1 Example 1
2 Comparative Example 1

Claims (12)

  1.  導線の外周に、耐熱性樹脂に黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上の炭素同素体を添加してなる第1の放熱性電気絶縁塗料層、及び、耐熱性樹脂に窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれた1種又は2種以上を添加してなる第2の放熱性電気絶縁塗料層を、順次内外層に施してなる2重層コ-トを有してなることを特徴とする重層コ-トの電気絶縁電線。 A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire. And a second heat-dissipating electrical insulating paint layer obtained by adding one or more selected from the group consisting of aluminum nitride, boron nitride, silicon carbide and metal oxides to a heat-resistant resin layer An electrically insulated electric wire having a multilayer coat characterized by comprising a double-layer coat in which layers are sequentially applied to an inner layer and an outer layer.
  2.  炭素同素体が、黒鉛であることを特徴とする、請求項1に記載の重層コ-トの電気絶縁電線。 2. The electrically insulated electric wire of multi-layered coat according to claim 1, wherein the carbon allotrope is graphite.
  3.  耐熱性樹脂100重量部に対して黒鉛5~30重量部を添加してなることを特徴とする、請求項2に記載の重層コ-トの電気絶縁電線。 The electrically insulated electric wire with a multilayer coat according to claim 2, wherein 5 to 30 parts by weight of graphite are added to 100 parts by weight of heat-resistant resin.
  4.  窒化アルミニウムを添加してなることを特徴とする、請求項1、2又は3に記載の重層コ-トの電気絶縁電線。 The electrically insulated electric wire with a multi-layered coat according to claim 1, 2 or 3, wherein aluminum nitride is added.
  5.  耐熱性樹脂100重量部に対して窒化アルミニウム5~50重量部を添加してなることを特徴とする、請求項4に記載の重層コ-トの電気絶縁電線。 The electrically insulated electric wire with a multilayer coat according to claim 4, wherein 5 to 50 parts by weight of aluminum nitride is added to 100 parts by weight of heat-resistant resin.
  6.  導線の外周に、耐熱性樹脂に黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上の炭素同素体を添加してなる第1の放熱性電気絶縁塗料層、耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層、及び、耐熱性樹脂に窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれた1種又は2種以上を添加してなる第2の放熱性電気絶縁塗料層を、順次内外層に施してなる3重層コ-トよりなることを特徴とする、請求項1、2、3、4又は5に記載の重層コ-トの電気絶縁電線。 A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire. An electrically insulating paint layer, a corona-resistant electrically insulating paint layer obtained by adding silicon dioxide to a heat-resistant resin to provide corona resistance, and a heat-resistant resin comprising aluminum nitride, boron nitride, silicon carbide and a metal oxide. 2. A triple layer coat formed by sequentially applying a second heat dissipating electrical insulating paint layer selected from the group to the inner and outer layers. An electrically insulated electric wire having a multilayered coating as set forth in 2, 3, 4 or 5.
  7.  耐熱性樹脂100重量部に対して二酸化珪素5~50重量部を添加してなることを特徴とする、請求項6に記載の重層コ-トの電気絶縁電線。 The electrically insulated electric wire having a multilayer coat according to claim 6, wherein 5 to 50 parts by weight of silicon dioxide is added to 100 parts by weight of heat-resistant resin.
  8.  導線の外周に、耐熱性樹脂に黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上の炭素同素体を添加してなる第1の放熱性電気絶縁塗料層、耐熱性樹脂の電気絶縁塗料層、及び、耐熱性樹脂に窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれた1種又は2種以上を添加してなる第2の放熱性電気絶縁塗料層を、順次内外層に施してなる3重層コ-トよりなることを特徴とする、請求項1、2、3、4又は5に記載の重層コ-トの電気絶縁電線。 A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire. 1 type or 2 types or more selected from the group consisting of aluminum nitride, boron nitride, silicon carbide and metal oxide are added to the electrically insulating paint layer, the electrically insulating paint layer of the heat resistant resin, and the heat resistant resin. The multi-layer coating according to claim 1, 2, 3, 4 or 5, characterized in that it comprises a multi-layer coating in which the second heat-dissipating electrically insulating paint layer is applied to the inner and outer layers sequentially. Electric insulated wire.
  9.  導線の外周に、耐熱性樹脂に黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上の炭素同素体を添加してなる第1の放熱性電気絶縁塗料層、耐熱性樹脂の電気絶縁塗料層、耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層、及び、耐熱性樹脂に窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれた1種又は2種以上を添加してなる第2の放熱性電気絶縁塗料層を、順次内外層に施してなる4重層コ-トよりなることを特徴とする、請求項1、2、3、4、5、6又は7に記載の重層コ-トの電気絶縁電線。 A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire. -Resistant electrical insulation paint layer, electrical insulation paint layer of heat-resistant resin, corona-resistant electrical insulation paint layer in which silicon dioxide is added to the heat-resistant resin to give corona resistance, and heat-resistant resin is made of aluminum nitride or boron nitride And a four-layer coating in which a second heat-dissipating electrically insulating coating layer formed by adding one or more selected from the group consisting of silicon carbide and metal oxide is sequentially applied to the inner and outer layers. 8. The electrically insulated electric wire of multi-layered coat according to claim 1, 2, 3, 4, 5, 6 or 7.
  10.  導線の外周に、耐熱性樹脂に黒鉛、カ-ボンブラック、不定形炭素、ダイヤモンド及びフラ-レンからなる群から選ばれた1種又は2種以上の炭素同素体を添加してなる第1の放熱性電気絶縁塗料層、耐熱性樹脂の電気絶縁塗料層、耐熱性樹脂に二酸化珪素を添加して耐コロナ性を付与した耐コロナ性電気絶縁塗料層、耐熱性樹脂に窒化アルミニウム、窒化硼素、炭化珪素及び金属酸化物からなる群から選ばれた1種又は2種以上を添加してなる第2の放熱性電気絶縁塗料層、及び、耐熱性樹脂の電気絶縁塗料層を、順次内外層に施してなる5重層コ-トよりなることを特徴とする、請求項1、2、3、4、5、6、7、8又は9に記載の重層コ-トの電気絶縁電線。 A first heat release formed by adding one or more carbon allotropes selected from the group consisting of graphite, carbon black, amorphous carbon, diamond and fullerene to the outer periphery of the conductive wire. -Resistant electrical insulation paint layer, electrical insulation paint layer of heat-resistant resin, corona-resistant electrical insulation paint layer with silicon dioxide added to heat-resistant resin to give corona resistance, heat-resistant resin with aluminum nitride, boron nitride, carbonized A second heat-dissipating electrical insulating paint layer formed by adding one or more selected from the group consisting of silicon and metal oxides, and an electrical insulating paint layer of a heat-resistant resin are sequentially applied to the inner and outer layers. 10. The electrically insulated electric wire having a multi-layered coat according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9, characterized by comprising the following five-layered coat.
  11.  耐熱性樹脂が、ポリイミド系合成樹脂であることを特徴とする、請求項1~10のいずれか一項に記載の重層コ-トの電気絶縁電線。 11. The multilayer insulated electric insulated wire according to claim 1, wherein the heat resistant resin is a polyimide-based synthetic resin.
  12.  耐熱性樹脂が、ポリアミドイミド又はポリエステルイミドであることを特徴とする、請求項11に記載の耐コロナ性電気絶縁電線。 The corona-resistant electrically insulated wire according to claim 11, wherein the heat-resistant resin is polyamide-imide or polyester-imide.
PCT/JP2012/075840 2011-10-11 2012-10-04 Electrically insulated wire having multi-layered coating WO2013054738A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011223640 2011-10-11
JP2011-223640 2011-10-11
JP2012222252A JP6072489B2 (en) 2011-10-11 2012-10-04 Multi-layered electrically insulated wire
JP2012-222252 2012-10-04

Publications (1)

Publication Number Publication Date
WO2013054738A1 true WO2013054738A1 (en) 2013-04-18

Family

ID=48081794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075840 WO2013054738A1 (en) 2011-10-11 2012-10-04 Electrically insulated wire having multi-layered coating

Country Status (2)

Country Link
JP (1) JP6072489B2 (en)
WO (1) WO2013054738A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047284A1 (en) * 2016-09-09 2018-03-15 株式会社京楽産業ホールディングス Electric wire and method for manufacturing same
WO2018047285A1 (en) * 2016-09-09 2018-03-15 株式会社京楽産業ホールディングス Solar power amplifier and solar power generation system
EP3511950A1 (en) * 2018-01-16 2019-07-17 Schwering & Hasse Elektrodraht GmbH Enamelled wire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869713B (en) * 2016-04-03 2018-05-15 昆仑电线电缆有限公司 A kind of aluminium alloy photovoltaic cable and preparation method thereof
JP2019175679A (en) * 2018-03-28 2019-10-10 東特塗料株式会社 Electrical insulation material, electrical insulation paint and electrical insulated wire made of stilbene-based polyesterimide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788619A (en) * 1980-11-25 1982-06-02 Fujikura Ltd Heat resistant insulated wire
JPH05290644A (en) * 1992-04-10 1993-11-05 Furukawa Electric Co Ltd:The Super heat resistant insulated electric wire
JPH0817261A (en) * 1994-06-28 1996-01-19 Nippon Petrochem Co Ltd Electric wire/cable
JP2001291437A (en) * 2000-04-06 2001-10-19 Yazaki Corp Fire-proof cable
JP2004231754A (en) * 2003-01-29 2004-08-19 Fujikura Ltd Silicone resin composition and low voltage fire-resistant cable using the same
JP2004253233A (en) * 2003-02-20 2004-09-09 Daikin Ind Ltd Inorganic powder-containing resin coated electric wire, two-layer coated electric wire, inorganic powder-containing resin coated coil, two-layer coated electric wire coil, inorganic material coated insulating coil and its manufacturing method, and electrical apparatus having inorganic material coated insulating coil and its manufacturing method
JP2007294312A (en) * 2006-04-26 2007-11-08 Sumitomo Electric Ind Ltd Insulation wire and electric coil using this
JP2010097881A (en) * 2008-10-17 2010-04-30 Hitachi Cable Ltd Insulation wire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788619A (en) * 1980-11-25 1982-06-02 Fujikura Ltd Heat resistant insulated wire
JPH05290644A (en) * 1992-04-10 1993-11-05 Furukawa Electric Co Ltd:The Super heat resistant insulated electric wire
JPH0817261A (en) * 1994-06-28 1996-01-19 Nippon Petrochem Co Ltd Electric wire/cable
JP2001291437A (en) * 2000-04-06 2001-10-19 Yazaki Corp Fire-proof cable
JP2004231754A (en) * 2003-01-29 2004-08-19 Fujikura Ltd Silicone resin composition and low voltage fire-resistant cable using the same
JP2004253233A (en) * 2003-02-20 2004-09-09 Daikin Ind Ltd Inorganic powder-containing resin coated electric wire, two-layer coated electric wire, inorganic powder-containing resin coated coil, two-layer coated electric wire coil, inorganic material coated insulating coil and its manufacturing method, and electrical apparatus having inorganic material coated insulating coil and its manufacturing method
JP2007294312A (en) * 2006-04-26 2007-11-08 Sumitomo Electric Ind Ltd Insulation wire and electric coil using this
JP2010097881A (en) * 2008-10-17 2010-04-30 Hitachi Cable Ltd Insulation wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047284A1 (en) * 2016-09-09 2018-03-15 株式会社京楽産業ホールディングス Electric wire and method for manufacturing same
WO2018047285A1 (en) * 2016-09-09 2018-03-15 株式会社京楽産業ホールディングス Solar power amplifier and solar power generation system
EP3511950A1 (en) * 2018-01-16 2019-07-17 Schwering & Hasse Elektrodraht GmbH Enamelled wire

Also Published As

Publication number Publication date
JP2013101917A (en) 2013-05-23
JP6072489B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
TWI529749B (en) A electric insulating wire of a multilayer coating layers
JP6072489B2 (en) Multi-layered electrically insulated wire
EP2808981B1 (en) Electrical insulation system
JP5521121B2 (en) Insulated wire, electrical equipment, and method of manufacturing insulated wire
JP6030832B2 (en) High temperature high frequency magnet wire and manufacturing method
US20140220343A1 (en) Insulating wire having partial discharge resistance and high partial discharge inception voltage
BRPI0905406A2 (en) MAGNETO YARN WITH ADDED COATING WITH FULLERENOUS NANOSTRUCTURES
CN102708953B (en) Insulated electric conductor
JP2008220095A (en) Coil insulator of rotating electrical machine
KR20130032826A (en) Electrical machine with winding conductor having ceramic insulation
JP2013122003A (en) Heat conductive filler and manufacturing method thereof
US20020041960A1 (en) Varnishing composition, a method of manufacturing the composition, a coated winding wire, and a resulting coil
JP2007141507A (en) Insulated wire and electric coil using this
JP2012106888A (en) Highly insulating silicon carbide powder and composition containing the same
WO2009150463A1 (en) Electrically insulating coating and method of formation thereof
WO2007010988A1 (en) High heat resistant conductor and high heat resistant electromagnetic device
KR102661175B1 (en) Laminates of conductors and insulating films, coils, rotating electrics, insulating paints, and insulating films
CN109300618B (en) Production process of enameled wire for new energy automobile hub motor
JP2005239765A (en) Inorganic filler-dispersed insulating paint and insulated wire
JP5159812B2 (en) Rotating electric machine
KR102290141B1 (en) Producing method of rectangular winding coil with electrically insulated and heat radiation
JP2009146753A (en) Corona resistant electric insulating wire
WO2016106398A1 (en) Thermally conductive wire enamel and varnish formulations
JPH10172354A (en) Insulating wire and electrical machinery and apparatus using thereof
CN104851480A (en) Corona-resistant insulating winding wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840118

Country of ref document: EP

Kind code of ref document: A1