WO2013054479A1 - Resin-molded motor and apparatus provided with same - Google Patents

Resin-molded motor and apparatus provided with same Download PDF

Info

Publication number
WO2013054479A1
WO2013054479A1 PCT/JP2012/006115 JP2012006115W WO2013054479A1 WO 2013054479 A1 WO2013054479 A1 WO 2013054479A1 JP 2012006115 W JP2012006115 W JP 2012006115W WO 2013054479 A1 WO2013054479 A1 WO 2013054479A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mold
stator
thermal conductivity
winding
Prior art date
Application number
PCT/JP2012/006115
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 憲司
暢謙 森田
誠治 黒住
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013054479A1 publication Critical patent/WO2013054479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings

Definitions

  • the present invention relates to a resin mold motor that molds a stator winding wound around a stator core via a winding frame with a mold resin, and an apparatus including the resin mold motor.
  • motors for home appliances having a structure in which a stator winding wound around a stator iron core is molded with a mold resin have been proposed.
  • a typical stator of a motor for home appliances is such that a stator winding is wound around a stator core via a winding frame, and is surrounded by a mold resin except for the inner peripheral surface of the stator core. It has a molded configuration. At this time, the drive circuit disposed between the stator winding and the bearing is also integrally formed with the stator by being surrounded by the mold resin.
  • a space for accommodating the rotor is formed inside the inner peripheral surface of the stator core of the stator.
  • a permanent magnet is disposed on the outer periphery of the rotor, and a shaft is press-fitted into the rotor.
  • the press-fitted shaft is rotatably supported on the stator by two bearings.
  • one of the bearings is housed in a bearing housing that is integrally formed with a mold resin.
  • the other end face of the stator has an opening, and after the rotor is inserted into the space of the stator, the opening is covered with a bracket having a bearing housing that houses the other bearing. .
  • the motor for home appliances having the above configuration can suppress vibration generated in the stator iron core and the stator winding by the mold resin. Therefore, it is possible to realize a motor with less vibration and excellent quietness.
  • Patent Document 1 discloses a configuration of an electric motor that fills the gap between the winding frame and the stator core with a heat dissipating filler and increases the thermal conductivity of the winding frame.
  • Patent Document 2 discloses a configuration of a resin mold motor that is molded with a mold resin having a higher thermal conductivity than the winding frame.
  • Patent Document 3 discloses a configuration in which helium gas having high thermal conductivity is filled between the mold resin and the bracket to cool the motor.
  • the electric motor described in Patent Document 1 has only a configuration in which the gap between the winding frame and the stator iron core is filled with the heat dissipating filler. Therefore, the work man-hour is increased and the heat dissipating filler is used at a high cost. Even so, the effect of reducing the winding temperature is low. Further, increasing the thermal conductivity of the winding frame has a certain effect on the reduction of the winding temperature, but increases the man-hours and costs for using the heat dissipating filler.
  • the resin mold motor described in Patent Document 2 exhibits the effect of reducing the winding temperature even when the thermal conductivity of the winding frame is higher than the thermal conductivity of the mold resin.
  • no consideration is given to the generation of a gap between the winding frame and the stator winding and the winding frame and the stator core during molding, which hinders heat dissipation due to heat conduction at the winding temperature.
  • the motor described in Patent Document 3 uses about 0.15 W / m ⁇ K, even if helium gas having high thermal conductivity among general gases is used, or helium gas has high thermal conductivity. It is. Therefore, it is more effective to reduce the winding temperature by increasing the thermal conductivity of the winding frame and the mold resin than to reduce the winding temperature using helium gas. However, there is no particular disclosure about increasing the thermal conductivity of the winding frame or the mold resin. Further, since the helium gas is sealed, the structure of the motor becomes complicated.
  • the present invention provides a stator iron core, a winding frame disposed on a teeth portion of the stator iron core, and a stator winding wound around the stator iron core via the winding frame.
  • a resin mold motor including a stator composed of wires and a mold structure that integrally molds the stator with a mold resin.
  • the mold resin When the main component of the reel is composed of a thermoplastic resin, and the thermoplastic resin of the reel has a thermal conductivity in the range of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K, the mold resin is It has a thermal conductivity in the range of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K, and the thermoplastic resin of the reel is in the range of 0.3 W / m ⁇ K to less than 1.0 W / m ⁇ K.
  • the mold resin has a thermal conductivity in the range of 1.3 W / m ⁇ K to 5.0 W / m ⁇ K.
  • the apparatus of the present invention includes the resin mold motor.
  • FIG. 1 is a half cross-sectional view illustrating the configuration of a resin mold motor according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the thermal conductivity of the winding frame of the resin mold motor and the temperature rise of the stator winding in the same embodiment.
  • FIG. 3 is a diagram showing the relationship between the thermal conductivity of the mold resin of the resin mold motor and the temperature rise of the stator winding in the same embodiment.
  • FIG. 4 is a cross-sectional view for explaining another example of the stator of the resin mold motor in the same embodiment.
  • FIG. 5 is a cross-sectional view illustrating still another example of the stator of the resin mold motor in the same embodiment.
  • the resin mold motor of the present embodiment increases the temperature of the stator winding to 100 K or less (outside air temperature 30) in order to satisfy the class B insulation (130 ° C. or less), which is the standard for the winding temperature of home appliance motors. At the same time, and at the same time, miniaturization and higher output density are realized.
  • FIG. 1 is a half cross-sectional view for explaining the configuration of a resin mold motor according to an embodiment of the present invention.
  • the resin molded motor of the present embodiment includes at least a stator 20, a rotor 6 into which a shaft 8 is press-fitted, bearings 5a and 5b that rotatably support the rotor 6, a drive circuit 4, It is comprised from the mold structure 3 comprised from the mold resin 3 which accommodates them, and the bracket 9 which covers the opening part of the mold structure 3.
  • FIG. 1 the resin molded motor of the present embodiment includes at least a stator 20, a rotor 6 into which a shaft 8 is press-fitted, bearings 5a and 5b that rotatably support the rotor 6, a drive circuit 4, It is comprised from the mold structure 3 comprised from the mold resin 3 which accommodates them, and the bracket 9 which covers the opening part of the mold structure 3.
  • the stator 20 of the resin mold motor is wound with a stator winding 2 via a winding frame 10 made of, for example, a thermoplastic resin, which is disposed on a tooth portion of the stator core 1. It is integrally formed so as to be surrounded by the mold resin 3 except for the inner peripheral surface. Further, the drive circuit 4 disposed between the stator winding 2 and the bearing 5a is also integrally molded with the stator 20 together with the mold resin 3, thereby forming the mold structure 3 including the bearing housing. ing. At this time, the reel 10 is made of a thermoplastic resin having a thermal conductivity of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K.
  • the mold resin 3 has a thermal conductivity of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K, preferably 1.0 W / m ⁇ K to 3.0 W / m ⁇ K. It is comprised from the material which has.
  • the reel 10 is made of a thermoplastic resin having a thermal conductivity in the range of 0.3 W / m ⁇ K to less than 1.0 W / m ⁇ K
  • the mold resin is 1.3 W / m ⁇ K.
  • the thermoplastic resin constituting the winding frame 10 is made of a material having a glass transition temperature of the thermoplastic resin lower than the molding temperature of the mold resin 3.
  • the thermal conductivity of the thermoplastic resin and the mold resin 3 constituting the winding frame 10 is substantially equal (including equal). This is because, when the thermal conductivity of the winding frame 10 made of the mold resin 3 and the thermoplastic resin is different, the heat transfer is usually rate-limited on the low thermal conductivity side. Further, in order to increase the thermal conductivity, it is necessary to increase the filling amount of a filler or the like having a high thermal conductivity, which causes problems such as an increase in cost and a decrease in workability and strength. Therefore, it is because it is not necessary to forcibly increase the thermal conductivity of one resin.
  • a space for accommodating the rotor 6 is formed inside the inner peripheral surface of the stator core 1 of the stator 20 of the mold structure 3.
  • a permanent magnet 7 is disposed on the outer periphery of the rotor 6 inserted into the space, and a shaft 8 is press-fitted into the rotor 6.
  • the press-fitted shaft 8 is rotatably supported with respect to the stator 20 by a bearing 5a and a bearing 5b.
  • the bearing 5 b is accommodated in a bearing housing of the mold structure 3 that is integrally formed with the mold resin 3.
  • one end surface of the mold structure 3 integrally formed with the stator 20 has an opening, and after the rotor 6 is inserted into the space of the stator 20, a bearing storage portion that stores the bearing 5 a is provided.
  • the opening of the mold structure 3 is covered with a bracket 9 made of, for example, a galvanized steel plate.
  • the resin mold motor of the present embodiment is configured.
  • a washing machine, an air conditioner or the like equipped with the resin mold motor of the present embodiment is realized.
  • the reel 10 made of a thermoplastic resin having a thermal conductivity of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K, and 1.0 W / m ⁇ K to 5.0 W
  • a resin mold motor having a mold structure 3 made of a mold resin 3 having a thermal conductivity of / m ⁇ K is formed. Further, when the reel 10 is made of a thermoplastic resin having a thermal conductivity of 0.3 W / m ⁇ K to less than 1.0 W / m ⁇ K, the mold resin is changed from 1.3 W / m ⁇ K to 5.
  • a resin mold motor is composed of a mold structure having a thermal conductivity of 0 W / m ⁇ K.
  • the heat generated in the stator winding 2 is effectively radiated from the winding frame 10 through the mold resin 3, and the net temperature rise of the stator winding 2 after subtracting the outside air temperature is reduced. It can be suppressed to 100K or less that satisfies the B-type insulation, which is a standard for the line temperature. As a result, it is possible to realize a resin molded motor that is excellent in safety and reliability as well as being reduced in size, thickness, and output density.
  • the mold structure 3 is formed by molding the mold resin 3 at a temperature equal to or higher than the glass transition temperature of the thermoplastic resin constituting the winding frame 10.
  • the reel 10 is softened and pressed by the molding pressure to be in close contact with the stator core 1, and the softened reel 10 is filled with the mold resin 3.
  • production of the clearance gap between the winding frame 10, the mold resin 3, and the winding frame 10 and the stator iron core 1 is prevented, and the adhesiveness of the winding frame 10, the mold resin 3, the winding frame 10, and the stator iron core 1 is prevented.
  • the heat generated by the stator winding 2 and the stator core 1 can be effectively discharged out of the resin mold motor through the mold structure 3 made of the mold resin 3.
  • thermoplastic resin made of, for example, polybutylene terephthalate resin (hereinafter referred to as “PBT resin”) is filled with, for example, 50% by weight of a filler such as aluminum oxide or silicon nitride, and the thermal conductivity is 2.0 W.
  • the reel 10 is formed of a material whose glass transition temperature is adjusted to 60 ° C. at / m ⁇ K.
  • the thermal conductivity of the thermoplastic resin is not limited to 2.0 W / m ⁇ K, and the filler is filled in an amount of 5 to 70% by weight, and 0.3 W / m ⁇ K to 5.0 W. Any thermoplastic resin adjusted to a range of / m ⁇ K may be used.
  • the glass transition temperature of the thermoplastic resin may not be 60 ° C. as long as it is equal to or lower than the molding temperature of the mold resin 3.
  • stator winding 2 having a diameter of 0.3 mm in which an insulating film composed of polyester as a lower layer and polyamide as an upper layer is formed is prepared.
  • the winding frame 10 is disposed on the teeth portion of the stator core 1 made of, for example, an electromagnetic steel plate, and the stator winding 2 is wound around the winding frame 10 to produce the stator 20.
  • the stator 20 is arranged at a predetermined position of the mold, and the mold resin 3 is extruded and molded at a molding temperature of 150 ° C., for example, to produce a mold structure 3 having a bearing housing.
  • the mold resin 3 includes, for example, an unsaturated polyester resin (D-Material Co., Ltd., Sandoma (registered trademark) PB210) and a polyester resin (D-H Material Co., Ltd., Sandoma (registered trademark) PB987). Glass fiber, t-butyl peroxybenzoate (polymerization initiator), zinc stearate, polymerization inhibitor, aluminum hydroxide and the like.
  • the mold resin 3 has, for example, a thermal conductivity of 1.5 W / m ⁇ K and characteristics such as flame retardancy of UL standard 94V-0.
  • the thermal conductivity of the mold resin is not limited to 1.5 W / m ⁇ K, but the mixing ratio (% by weight) of the above constituent materials is adjusted to 1.0 W / m ⁇ K to 5.0 W / m ⁇ K. Any mold resin 3 in the range of K may be used.
  • the molding temperature of the mold resin 3 is not limited to 150 ° C. as long as the molding resin 3 is at or above the glass transition temperature of the thermoplastic resin and can be molded.
  • the winding frame 10 is softened at the molding temperature of the mold resin 3, and the stator core 1 and the winding frame 10 are brought into close contact with each other by the pressure at the time of molding, thereby preventing the generation of a gap. Similarly, the adhesion between the interface of the winding frame 10 and the mold resin 3 is improved.
  • the bearing 5 b is press-fitted into the bearing housing of the mold structure 3. Then, the rotor 6 including the shaft 8 is inserted into the bearing 5 b so as to face the stator 20 in the space formed in the mold structure 3.
  • the drive circuit 4 is mounted at a predetermined position of the mold structure 3.
  • the shaft 8 of the rotor 6 is inserted into the bearing 5a of the bracket 9 having a bearing housing portion for housing the bearing 5a, and the bracket 9 and the mold structure 3 are fixed.
  • thermoplastic resin constituting the reel 10 for example, a thermoplastic resin made of PBT resin is filled with, for example, aluminum oxide or silicon nitride, and the thermal conductivity is changed from 1.0 W / m ⁇ K to 5.
  • the mold resin 3 constituting the mold structure 3 for example, unsaturated polyester resin, polyester resin, glass fiber, t-butyl peroxybenzoate (polymerization initiator), stearic acid exemplified in the above production method Consists of zinc, polymerization inhibitor, aluminum hydroxide, etc., with a thermal conductivity of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K, and the molding temperature is adjusted to be equal to or higher than the glass transition temperature of the thermoplastic resin. Materials were used.
  • a 700 W class resin mold motor manufactured by the above manufacturing method by combining each winding frame having the above thermal conductivity and each molding resin was driven at a load torque of 3 N ⁇ m and a rotational speed of 1600 rpm. And the temperature rise of the stator winding
  • the temperature rise of the stator windings is shown in (Table 1) as a value obtained by subtracting the outside air temperature from the actual measured temperature in order to eliminate the influence of the outside air temperature. That is, for example, when the outside air temperature is 30 ° C., the temperature obtained by adding 30 ° C. to each value of (Table 1) is the actual temperature of the stator winding 2.
  • FIG. 2 is a diagram showing the relationship between the thermal conductivity of the winding frame of the resin mold motor and the temperature rise of the stator winding in the present embodiment.
  • FIG. 3 is a diagram showing the relationship between the thermal conductivity of the mold resin of the resin mold motor and the temperature rise of the stator winding in the same embodiment. 2 shows the thermal conductivity of the mold resin as a parameter, and FIG. 3 shows the thermal conductivity of the thermoplastic resin constituting the winding frame as a parameter.
  • the mold resin 3 has a thermal conductivity of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K. If the thermal conductivity of the coil is within the range of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K, the temperature rise of the stator winding 2 is 100 K or less of the class B insulation, which is the standard for the winding temperature. It was found that it can be suppressed.
  • the thermal conductivity of the mold resin 3 is 0.3 W / m ⁇ K and 0.5 W / m ⁇ K
  • the thermal conductivity of the reel 10 is 5.0 W / m.
  • the thermal conductivity of the mold resin 3 is preferably in the range of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K.
  • the thermal conductivity of the thermoplastic resin constituting the reel 10 and the thermal conductivity of the mold resin 3 are set to 1.0 W / m ⁇ K or more, and in particular, the thermal conductivity of the mold resin 3 is increased. It can be seen that the temperature rise of the stator winding 2 can be more effectively reduced by setting the power to 3.0 W / m ⁇ K or less.
  • the temperature rise of the stator winding 2 is suppressed to 100 K or less of the class B insulation, which is the standard of the winding temperature, and 10% or more than the conventional one. It is possible to realize a resin mold motor that is smaller, thinner and has a higher output density. That is, in the case of the same output, a smaller and thinner resin mold motor can be realized, and in the case of the same size, a higher output resin mold motor can be realized.
  • FIG. 4 is a cross-sectional view for explaining another example of the stator of the resin mold motor in the present embodiment.
  • a resin mold motor in another example of the present embodiment is formed of an elastic member such as a rubber elastic body having elasticity on the inner surface around which the stator winding 2 of the winding frame 10 is wound. It differs from the stator 20 of the resin mold motor of the above embodiment in that the stator 30 is configured by providing the heat conductor 11.
  • a sheet-like and electrically insulating heat conductor 11 such as silicone rubber is installed on the inner surface of the winding frame 10, the stator winding 2 is wound on the heat conductor 11, and the stator 30 is Constitute.
  • the heat conductor 11 is elastically deformed when the stator winding 2 is wound, the contact area between the stator winding 2 and the heat conductor 11 increases.
  • the interface between the heat conductor 11 and the reel 10 is in close contact with the gap.
  • the heat conductor 11 is comprised so that it may have a thermal conductivity comparable as the thermal conductivity of a winding frame or mold resin, for example, by blending a filler such as aluminum nitride with silicone rubber.
  • the sheet-like heat conductor 11 is described as an example, but the present invention is not limited thereto.
  • the silicone rubber is taken as an example of the heat conductor 11, but is not limited thereto.
  • the same effect can be obtained even if it is made of acrylic rubber or the like.
  • FIG. 5 is a cross-sectional view illustrating still another example of the stator of the resin mold motor according to the embodiment.
  • the resin mold motor in yet another example of the present embodiment fills the stator 40 by filling the stator winding 2 of the winding frame 10 with the heat conductive resin 14 as a filler. In the point which comprised, it differs from the stator 20 of the resin mold motor of the said embodiment.
  • a heat conductor resin 14 having a fluidity higher than that of the mold resin 3, for example, a thermosetting resin such as an unsaturated polyester resin, as a main component is filled with a gap 12 (filled in FIG. 5).
  • the stator 40 is configured.
  • the heat conductor resin 14 is blended with an unsaturated polyester resin, for example, a filler such as silicon nitride or aluminum nitride, for example, 30 wt% to 85 wt%, and the thermal conductivity of the reel or the mold resin, It is configured to have the same degree of thermal conductivity.
  • an unsaturated polyester resin is described as an example of the thermal conductor resin 14, but the present invention is not limited to this.
  • a thermosetting resin such as epoxy
  • the heat conductor resin 14 is applied to the surface of the stator winding 2.
  • the applied heat conductive resin 14 is heated and cured at 130 ° C. for 2 hours, for example.
  • the heat conductive resin 14 once heated and melted flows into the gap 12 between the stator windings 2 and fills the gap 12.
  • the space between the stator windings 2 is fixed with the heat conductive resin 14.
  • the clearance 12 between the stator windings 2 of the stator 40 is reliably filled with the heat conductor resin 14, and the contact area between the stator winding 2 and the winding frame 10 via the heat conductor resin 14.
  • the heat generated in the stator winding 2 is effectively radiated through the mold structure 3 composed of the thermal conductor resin 14, the winding frame 10, and the mold resin 3, and the temperature of the stator winding 2. The rise can be reduced more.
  • a heat conductor 11 may be further provided between the winding frame 10 and the stator winding 2.
  • the thermal conductivity of the winding frame 10 and the thermal conductivity of the mold resin 3 have been described by taking typical numerical values as shown in (Table 1).
  • the present invention is not limited to this. .
  • the thermal conductivity is in the range of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K, the intermediate value or a nearby value may be used. Thereby, similarly, the temperature rise of the stator winding
  • the surface treatment of the bracket 9 is not specifically described.
  • the surface of the material base of the bracket 9 may be plated, anodized, painted, or the like.
  • the heat dissipation effect of the resin mold motor can be further enhanced.
  • the material of the bracket 9 should just have mechanical strength and heat dissipation, and can be suitably selected from a metal material, a resin material, etc. other than a galvanized steel plate, for example. Thereby, versatility can be improved.
  • the rubber 13a and the anti-vibration rubber 13b may be disposed in the vicinity of the bearing 5a and the bearing 5b on both end sides of the shaft 8. Thereby, it can reduce that the vibration which arises at the time of a driving
  • the present invention relates to a stator iron core, a winding frame disposed on a teeth portion of the stator iron core, and a stator winding wound around the stator iron core via the winding frame.
  • the resin mold motor which comprises the stator which consists of these, and the mold structure which shape
  • the mold resin When the main component of the reel is composed of a thermoplastic resin, and the thermoplastic resin of the reel has a thermal conductivity in the range of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K, the mold resin is It has a thermal conductivity in the range of 1.0 W / m ⁇ K to 5.0 W / m ⁇ K, and the thermoplastic resin of the reel is in the range of 0.3 W / m ⁇ K to less than 1.0 W / m ⁇ K.
  • the mold resin has a thermal conductivity in the range of 1.3 W / m ⁇ K to 5.0 W / m ⁇ K.
  • the heat generated in the stator winding can be effectively dissipated through the mold resin from the winding frame made of a material having high thermal conductivity.
  • thermoplastic resin has a glass transition temperature lower than the molding temperature of the mold resin.
  • thermoplastic resin is used as the material of the reel, and at the time of molding, the molding resin is molded at a temperature equal to or higher than the glass transition temperature of the reel.
  • the winding frame is softened at the molding temperature at the time of molding, and the winding frame is pressed against the stator iron core by the molding pressure at the time of molding.
  • the mold resin is filled in the softened reel.
  • production of the clearance gap between a winding frame, mold resin, and a winding frame and a stator iron core can be prevented.
  • the adhesiveness of a winding frame and mold resin and the adhesiveness of a winding frame and a stator iron core can be improved. As a result, the heat generated by the stator windings and the stator iron core can be effectively discharged out of the resin mold motor via the mold resin.
  • the thermal conductivity value of the mold resin and the thermal conductivity of the thermoplastic resin of the reel are substantially equal.
  • the heat generated in the stator winding can be efficiently transferred from the winding frame to the mold structure by making the thermal conductivities of the mold resin and the thermoplastic resin substantially equal.
  • the mold resin and the thermoplastic resin have different thermal conductivities, heat transfer is usually controlled on the low thermal conductivity side, so there is no need to forcibly increase the thermal conductivity of one resin.
  • it is possible to suppress an increase in cost and a decrease in workability and strength due to an increase in thermal conductivity.
  • the thermal conductivity of the mold resin is 3.0 W / m ⁇ K or less.
  • the stator winding is molded using a mold resin having a high heat dissipation effect and a thermal conductivity of 1.0 W / m ⁇ K to 3.0 W / m ⁇ K.
  • a heat conductor is disposed on the surface of the reel.
  • the heat conductor is composed of an elastic member having elasticity.
  • the elastic member is silicone rubber.
  • the winding is performed by fitting the heat conductor to the electrically insulating sheet-like shape or the winding frame having rubber elasticity on the surface of the winding frame.
  • the stator winding is in close contact with the heat conductor having rubber elasticity. Therefore, it is possible to eliminate a gap between the stator winding and the winding frame that is generated when the mold resin does not enter between the winding frame and the stator winding during molding. This increases the contact area between the stator winding and the winding frame, reduces heat transfer loss caused by the gap, and effectively generates heat from the stator winding and the stator core. It is possible to dissipate heat. As a result, it is possible to reduce the temperature rise of the stator windings and parts, and to realize a small resin mold motor with high power density that is highly safe and reliable.
  • the gap between the winding frame and the stator winding was filled with a heat conductive resin having a higher electrical conductivity than the mold resin.
  • the heat conductive resin is an unsaturated polyester resin.
  • the thermal conductive material having higher electrical conductivity than the mold resin is filled between the winding frame and the stator winding, and then molded. Accordingly, it is possible to eliminate a gap that occurs when the mold resin does not enter between the winding frame and the stator winding during molding, and a gap that occurs without the mold resin entering between the stator windings. Therefore, the heat transfer loss generated by the gap can be reduced, and the heat generated by the stator winding and the stator iron core can be effectively radiated to the outside of the resin mold motor via the mold resin. As a result, it is possible to reduce the temperature rise of the stator windings and parts, and to realize a small resin mold motor with high power density that is highly safe and reliable.
  • the apparatus of the present invention includes the resin mold motor. Accordingly, it is possible to realize a device including a resin mold motor with excellent reliability as well as downsizing, thinning, and high output density.
  • the present invention is useful in technical fields such as motors that are desired to be reduced in size and increased in output density, and devices composed of household appliances such as washing machines and air conditioners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

The present invention is a resin-molded motor equipped with a stator iron core, a spool, a stator and a molded structure. A main component of the spool is formed from a thermoplastic resin; when the thermoplastic resin of the spool has a thermal conductivity in a range from 1.0 to 5.0 W/m∙K, the mold resin has a thermal conductivity in a range from 1.0 to 5.0 W/m∙K; and when the thermoplastic resin of the spool has a thermal conductivity in a range from 0.3 W/m∙K to below 1.0 W/m∙K, the molding resin has a thermal conductivity in a range from 1.3 to 5.0 W/m∙K. Consequently, temperature rise in a stator winding and components is reduced, and a high-reliability, high output density, compact resin-molded motor is obtained.

Description

レジンモールドモータおよびそれを備えた装置Resin mold motor and apparatus equipped with the same
 本発明は、固定子鉄芯に巻枠を介して巻装された固定子巻線をモールド樹脂によりモールド成形するレジンモールドモータおよびそれを備えた装置に関する。 The present invention relates to a resin mold motor that molds a stator winding wound around a stator core via a winding frame with a mold resin, and an apparatus including the resin mold motor.
 近年、洗濯機やエアコンなどの家電機器用モータやトランスなどは、省エネルギーや省資源の観点から、製品の小型化、薄型化および高出力密度化への要望が強くなってきている。また、機器の使用環境を考慮して、低騒音かつ低振動の機器が要望されている。 In recent years, motors and transformers for home appliances such as washing machines and air conditioners have been increasingly demanded for product miniaturization, thinning, and high output density from the viewpoint of energy saving and resource saving. In addition, in consideration of the usage environment of the equipment, there is a demand for equipment with low noise and low vibration.
 上記要望に応えるため、固定子鉄芯に巻かれた固定子巻線をモールド樹脂でモールド成形した構造の家電機器用モータが提案されている。 In order to meet the above requirements, motors for home appliances having a structure in which a stator winding wound around a stator iron core is molded with a mold resin have been proposed.
 以下に、代表的なモールド成形された家電機器用モータの構成について、説明する。 Hereinafter, the configuration of a typical molded motor for home appliances will be described.
 代表的な家電機器用モータの固定子は、固定子鉄芯に巻枠を介して固定子巻線が巻装され、固定子鉄芯の内周面を除いてモールド樹脂で包囲するように一体成形した構成を有している。このとき、固定子巻線と軸受との間に配置された駆動回路も、固定子とともにモールド樹脂で包囲して一体成形されている。 A typical stator of a motor for home appliances is such that a stator winding is wound around a stator core via a winding frame, and is surrounded by a mold resin except for the inner peripheral surface of the stator core. It has a molded configuration. At this time, the drive circuit disposed between the stator winding and the bearing is also integrally formed with the stator by being surrounded by the mold resin.
 そして、固定子の固定子鉄芯の内周面よりも内側には、ロータを収納するための空間が形成されている。 A space for accommodating the rotor is formed inside the inner peripheral surface of the stator core of the stator.
 また、ロータの外周には永久磁石が配置され、ロータにはシャフトが圧入されている。そして、圧入されたシャフトは、2つの軸受により固定子に回転自在に支持されている。このとき、一方の軸受は、モールド樹脂により一体成形される軸受ハウジングに収納されている。一方、固定子のもう一方の端面は開口部を有し、ロータを固定子の空間内に挿入した後、他方の軸受を収納した軸受収納部を有するブラケットで、開口部が蓋をされている。 Also, a permanent magnet is disposed on the outer periphery of the rotor, and a shaft is press-fitted into the rotor. The press-fitted shaft is rotatably supported on the stator by two bearings. At this time, one of the bearings is housed in a bearing housing that is integrally formed with a mold resin. On the other hand, the other end face of the stator has an opening, and after the rotor is inserted into the space of the stator, the opening is covered with a bracket having a bearing housing that houses the other bearing. .
 上記構成の家電機器用モータは、モールド樹脂により、固定子鉄芯および固定子巻線に発生する振動を抑制することができる。そのため、振動が少なく、静音性に優れたモータを実現できる。 The motor for home appliances having the above configuration can suppress vibration generated in the stator iron core and the stator winding by the mold resin. Therefore, it is possible to realize a motor with less vibration and excellent quietness.
 しかし、近年、環境意識が高まり、モータに対して、さらなる小型化・薄型化・高出力密度化などにより、省エネルギー、省資源への要望が強くなっている。 However, in recent years, environmental awareness has increased, and demands for energy saving and resource saving have increased due to further miniaturization, thinning, and higher output density of motors.
 そのため、製品の小型化、薄型化および高出力密度化に対する要望を満たすには、増加する固定子巻線の発熱への対策が重要となる。そこで、製品の安全性および周辺部品の熱劣化を防止するために、モータの固定子巻線の温度の低減が検討されている(例えば、特許文献1から特許文献3参照)。 Therefore, in order to satisfy the demands for product miniaturization, thickness reduction, and high output density, it is important to take measures against increasing heat generation of the stator windings. Therefore, in order to prevent product safety and thermal deterioration of peripheral components, reduction of the temperature of the stator winding of the motor has been studied (for example, see Patent Document 1 to Patent Document 3).
 特許文献1には、巻枠と固定子鉄芯との隙間を放熱充填剤で満たすとともに、巻枠の熱伝導度を上げる電動機の構成が開示されている。 Patent Document 1 discloses a configuration of an electric motor that fills the gap between the winding frame and the stator core with a heat dissipating filler and increases the thermal conductivity of the winding frame.
 また、特許文献2には、巻枠より熱伝導度の高いモールド樹脂によりモールド成形する樹脂モールドモータの構成が開示されている。 Further, Patent Document 2 discloses a configuration of a resin mold motor that is molded with a mold resin having a higher thermal conductivity than the winding frame.
 また、特許文献3には、モールド樹脂とブラケットとの間に熱伝導度の高いヘリウムガスを充填してモータを冷却する構成が開示されている。 Patent Document 3 discloses a configuration in which helium gas having high thermal conductivity is filled between the mold resin and the bracket to cool the motor.
 しかしながら、特許文献1に記載の電動機は、巻枠と固定子鉄芯の隙間を放熱充填剤で埋める構成のみである、そのため、作業工数の増加を招くとともに、コストをかけて放熱充填剤を使用しても、巻線温度の低減効果が低い。また、巻枠の熱伝導度を上げると、巻線温度の低減に、ある程度の効果を発揮するが、放熱充填剤を使用する工数の増加およびコストの増加が課題となる。 However, the electric motor described in Patent Document 1 has only a configuration in which the gap between the winding frame and the stator iron core is filled with the heat dissipating filler. Therefore, the work man-hour is increased and the heat dissipating filler is used at a high cost. Even so, the effect of reducing the winding temperature is low. Further, increasing the thermal conductivity of the winding frame has a certain effect on the reduction of the winding temperature, but increases the man-hours and costs for using the heat dissipating filler.
 また、特許文献2に記載の樹脂モールドモータは、例え、巻枠の熱伝導度がモールド樹脂の熱伝導度より高い場合でも、巻線温度の低減効果は発揮される。しかし、巻線温度の熱伝導による放熱を阻害する、モールド成形時の巻枠と固定子巻線および巻枠と固定子鉄芯の隙間の発生については考慮されていない。さらに、効果的に固定子巻線の温度上昇を低減させる方法については、特に開示されていない。 Further, the resin mold motor described in Patent Document 2 exhibits the effect of reducing the winding temperature even when the thermal conductivity of the winding frame is higher than the thermal conductivity of the mold resin. However, no consideration is given to the generation of a gap between the winding frame and the stator winding and the winding frame and the stator core during molding, which hinders heat dissipation due to heat conduction at the winding temperature. Further, there is no particular disclosure about a method for effectively reducing the temperature rise of the stator winding.
 また、特許文献3に記載のモータは、例え、一般的なガスの中では熱伝導度が高いヘリウムガスを用いても、ヘリウムガスの熱伝導度は高くても0.15W/m・K程度である。そのため、ヘリウムガスを用いて巻線温度を低減するよりも、巻枠やモールド樹脂の熱伝導度を上げて巻線温度を低減する方が、効果的である。しかし、巻枠やモールド樹脂の高熱伝導化については、特に開示されていない。さらに、ヘリウムガスを密閉するために、モータの構造が複雑になる。 Further, the motor described in Patent Document 3 uses about 0.15 W / m · K, even if helium gas having high thermal conductivity among general gases is used, or helium gas has high thermal conductivity. It is. Therefore, it is more effective to reduce the winding temperature by increasing the thermal conductivity of the winding frame and the mold resin than to reduce the winding temperature using helium gas. However, there is no particular disclosure about increasing the thermal conductivity of the winding frame or the mold resin. Further, since the helium gas is sealed, the structure of the motor becomes complicated.
 また、最近では、さらなるモールドモータの高出力密度化・小型化や低コスト化に対応して、モータ内部の駆動回路に実装されている部品の温度上昇による不具合を防止するために、フィンなどによる放熱面積の拡大や送風冷却構造が検討されている。これは、高耐熱性の部品の使用を避けて、低コスト化を実現しようとするものである。 Recently, in order to prevent problems caused by temperature rise of components mounted on the drive circuit inside the motor in response to further increase in output density / miniaturization and cost reduction of the molded motor, a fin motor is used. Expansion of heat dissipation area and air cooling structure are being studied. This is intended to reduce the cost by avoiding the use of high heat-resistant components.
 しかし、加工工数の増加、部品点数の増加、モータ効率の低下などの課題とともに、効果的に部品の温度を低減できないという課題がある。 However, there is a problem that the temperature of the part cannot be effectively reduced along with problems such as an increase in the number of processing steps, an increase in the number of parts, and a reduction in motor efficiency.
 一方、単に、モールド樹脂や巻枠に使用される材料の熱伝導度を向上させても、効果的に部品の温度を低減する効果が得られないという課題があった。 On the other hand, simply improving the thermal conductivity of the material used for the mold resin and the winding frame has a problem that the effect of effectively reducing the temperature of the component cannot be obtained.
特開2010-119191号公報JP 2010-119191 A 特開2004-112961号公報JP 2004-112961 A 特開平4-359652号公報Japanese Patent Laid-Open No. 4-35952
 上記課題を解決するために、本発明は、固定子鉄芯と、固定子鉄芯のティース部に配置される巻枠と、固定子鉄芯に巻枠を介して巻装される固定子巻線とからなる固定子と、固定子をモールド樹脂で一体に成形するモールド構造体を具備するレジンモールドモータである。そして、巻枠は主成分が熱可塑性樹脂により構成され、巻枠の熱可塑性樹脂が1.0W/m・Kから5.0W/m・Kの範囲の熱伝導度を有する場合、モールド樹脂は1.0W/m・Kから5.0W/m・Kの範囲の熱伝導度を有し、巻枠の熱可塑性樹脂が0.3W/m・Kから1.0W/m・K未満の範囲の熱伝導度を有する場合、モールド樹脂は1.3W/m・Kから5.0W/m・Kの範囲の熱伝導度をする。 In order to solve the above-described problems, the present invention provides a stator iron core, a winding frame disposed on a teeth portion of the stator iron core, and a stator winding wound around the stator iron core via the winding frame. A resin mold motor including a stator composed of wires and a mold structure that integrally molds the stator with a mold resin. When the main component of the reel is composed of a thermoplastic resin, and the thermoplastic resin of the reel has a thermal conductivity in the range of 1.0 W / m · K to 5.0 W / m · K, the mold resin is It has a thermal conductivity in the range of 1.0 W / m · K to 5.0 W / m · K, and the thermoplastic resin of the reel is in the range of 0.3 W / m · K to less than 1.0 W / m · K. The mold resin has a thermal conductivity in the range of 1.3 W / m · K to 5.0 W / m · K.
 これにより、固定子巻線で発生する熱を、熱伝導度の高い材料で構成した巻枠からモールド樹脂を介して、効果的に放熱できる。その結果、小型化、薄型化および高出力密度化とともに、安全性や信頼性に優れたレジンモールドモータを実現できる。 This makes it possible to effectively dissipate the heat generated in the stator winding through the mold resin from the winding frame made of a material having high thermal conductivity. As a result, it is possible to realize a resin molded motor that is excellent in safety and reliability as well as being reduced in size, thickness, and output density.
 また、本発明の装置は、上記レジンモールドモータを具備する。 The apparatus of the present invention includes the resin mold motor.
 これにより、小型化、薄型化および高出力密度化とともに、信頼性に優れたレジンモールドモータを備えた装置を実現できる。 As a result, it is possible to realize a device equipped with a resin mold motor with excellent reliability as well as downsizing, thinning and high output density.
図1は、本発明の実施の形態におけるレジンモールドモータの構成を説明する半断面図である。FIG. 1 is a half cross-sectional view illustrating the configuration of a resin mold motor according to an embodiment of the present invention. 図2は、同実施の形態におけるレジンモールドモータの巻枠の熱伝導度と固定子巻線の温度上昇との関係を示す図である。FIG. 2 is a diagram showing the relationship between the thermal conductivity of the winding frame of the resin mold motor and the temperature rise of the stator winding in the same embodiment. 図3は、同実施の形態におけるレジンモールドモータのモールド樹脂の熱伝導度と固定子巻線の温度上昇との関係を示す図である。FIG. 3 is a diagram showing the relationship between the thermal conductivity of the mold resin of the resin mold motor and the temperature rise of the stator winding in the same embodiment. 図4は、同実施の形態におけるレジンモールドモータの固定子の別の例を説明する断面図である。FIG. 4 is a cross-sectional view for explaining another example of the stator of the resin mold motor in the same embodiment. 図5は、同実施の形態におけるレジンモールドモータの固定子のさらに別の例を説明する断面図である。FIG. 5 is a cross-sectional view illustrating still another example of the stator of the resin mold motor in the same embodiment.
 以下、本発明の実施の形態のレジンモールドモータおよびそれを用いた装置について、図面および表を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。また、本実施の形態のレジンモールドモータは、家電用モータの巻線温度の規格であるB種絶縁(130℃以下)を満たすために、固定子巻線の温度上昇を100K以下(外気温度30℃時)に抑制するとともに、小型化、高出力密度化を同時に実現するものである。 Hereinafter, a resin mold motor and an apparatus using the same according to an embodiment of the present invention will be described with reference to the drawings and tables. Note that the present invention is not limited to the present embodiment. In addition, the resin mold motor of the present embodiment increases the temperature of the stator winding to 100 K or less (outside air temperature 30) in order to satisfy the class B insulation (130 ° C. or less), which is the standard for the winding temperature of home appliance motors. At the same time, and at the same time, miniaturization and higher output density are realized.
 (実施の形態)
 以下、本発明の実施の形態のレジンモールドモータについて、図1を用いて、説明する。
(Embodiment)
Hereinafter, a resin molded motor according to an embodiment of the present invention will be described with reference to FIG.
 図1は、本発明の実施の形態におけるレジンモールドモータの構成を説明する半断面図である。 FIG. 1 is a half cross-sectional view for explaining the configuration of a resin mold motor according to an embodiment of the present invention.
 図1に示すように、本実施の形態のレジンモールドモータは、少なくとも固定子20と、シャフト8が圧入されたロータ6と、ロータ6を回転支持する軸受5a、5bと、駆動回路4と、それらを収納するモールド樹脂3から構成されるモールド構造体3と、モールド構造体3の開口部に蓋をするブラケット9と、から構成される。 As shown in FIG. 1, the resin molded motor of the present embodiment includes at least a stator 20, a rotor 6 into which a shaft 8 is press-fitted, bearings 5a and 5b that rotatably support the rotor 6, a drive circuit 4, It is comprised from the mold structure 3 comprised from the mold resin 3 which accommodates them, and the bracket 9 which covers the opening part of the mold structure 3. FIG.
 レジンモールドモータの固定子20は、固定子鉄芯1のティース部に配置された、例えば熱可塑性樹脂からなる巻枠10を介して固定子巻線2が巻装され、固定子鉄芯1の内周面を除いてモールド樹脂3で包囲するように一体成形して構成されている。さらに、固定子巻線2と軸受5aとの間に配置された駆動回路4も、固定子20とともにモールド樹脂3で包囲を一体成形することにより、軸受ハウジングを備えたモールド構造体3が形成されている。このとき、巻枠10は、1.0W/m・Kから5.0W/m・Kの熱伝導度を有する熱可塑性樹脂から構成される。また、モールド樹脂3は、1.0W/m・Kから5.0W/m・Kの熱伝導度を有する、好ましくは1.0W/m・Kから3.0W/m・Kの熱伝導度を有する材料から構成される。同様に、巻枠10が0.3W/m・Kから1.0W/m・K未満の範囲の熱伝導度を有する熱可塑性樹脂から構成される場合、モールド樹脂は1.3W/m・Kから5.0W/m・Kの範囲の熱伝導度を有する材料から構成される。さらに、巻枠10を構成する熱可塑性樹脂は、熱可塑性樹脂のガラス転移温度が、モールド樹脂3の成形温度よりも低い材料から構成される。 The stator 20 of the resin mold motor is wound with a stator winding 2 via a winding frame 10 made of, for example, a thermoplastic resin, which is disposed on a tooth portion of the stator core 1. It is integrally formed so as to be surrounded by the mold resin 3 except for the inner peripheral surface. Further, the drive circuit 4 disposed between the stator winding 2 and the bearing 5a is also integrally molded with the stator 20 together with the mold resin 3, thereby forming the mold structure 3 including the bearing housing. ing. At this time, the reel 10 is made of a thermoplastic resin having a thermal conductivity of 1.0 W / m · K to 5.0 W / m · K. Further, the mold resin 3 has a thermal conductivity of 1.0 W / m · K to 5.0 W / m · K, preferably 1.0 W / m · K to 3.0 W / m · K. It is comprised from the material which has. Similarly, when the reel 10 is made of a thermoplastic resin having a thermal conductivity in the range of 0.3 W / m · K to less than 1.0 W / m · K, the mold resin is 1.3 W / m · K. To 5.0 W / m · K. Furthermore, the thermoplastic resin constituting the winding frame 10 is made of a material having a glass transition temperature of the thermoplastic resin lower than the molding temperature of the mold resin 3.
 なお、巻枠10を構成する熱可塑性樹脂とモールド樹脂3との熱伝導度は、略等しい(等しいを含む)ことが、特に好ましい。この理由は、モールド樹脂3と熱可塑性樹脂からなる巻枠10の熱伝導度が異なる場合、通常、低い熱伝導度側で熱伝達が律速される。また、熱伝導度を高めるためには、高い熱伝導度を有するフィラーなどの充填量を増加しなければならないので、高コスト化、加工性や強度の低下などの弊害が発生する。そのため、一方の樹脂の熱伝導度を無理に高める必要がないことによるものである。 Note that it is particularly preferable that the thermal conductivity of the thermoplastic resin and the mold resin 3 constituting the winding frame 10 is substantially equal (including equal). This is because, when the thermal conductivity of the winding frame 10 made of the mold resin 3 and the thermoplastic resin is different, the heat transfer is usually rate-limited on the low thermal conductivity side. Further, in order to increase the thermal conductivity, it is necessary to increase the filling amount of a filler or the like having a high thermal conductivity, which causes problems such as an increase in cost and a decrease in workability and strength. Therefore, it is because it is not necessary to forcibly increase the thermal conductivity of one resin.
 また、モールド構造体3の固定子20の固定子鉄芯1の内周面よりも内側には、ロータ6を収納するための空間が形成されている。 Further, a space for accommodating the rotor 6 is formed inside the inner peripheral surface of the stator core 1 of the stator 20 of the mold structure 3.
 そして、空間に挿入されるロータ6の外周には永久磁石7が配置され、ロータ6にはシャフト8が圧入されている。圧入されたシャフト8は、軸受5aと軸受5bとにより固定子20に対して回転自在に支持されている。このとき、軸受5bは、モールド樹脂3により一体成形されるモールド構造体3の軸受ハウジングに収納されている。一方、固定子20と一体成形されたモールド構造体3の一方の端面には開口部を有し、ロータ6を固定子20の空間内に挿入した後、軸受5aを収納した軸受収納部を有する、例えば亜鉛めっき鋼板からなるブラケット9で、モールド構造体3の開口部が蓋をされる。 Further, a permanent magnet 7 is disposed on the outer periphery of the rotor 6 inserted into the space, and a shaft 8 is press-fitted into the rotor 6. The press-fitted shaft 8 is rotatably supported with respect to the stator 20 by a bearing 5a and a bearing 5b. At this time, the bearing 5 b is accommodated in a bearing housing of the mold structure 3 that is integrally formed with the mold resin 3. On the other hand, one end surface of the mold structure 3 integrally formed with the stator 20 has an opening, and after the rotor 6 is inserted into the space of the stator 20, a bearing storage portion that stores the bearing 5 a is provided. The opening of the mold structure 3 is covered with a bracket 9 made of, for example, a galvanized steel plate.
 以上により、本実施の形態のレジンモールドモータが構成されている。 Thus, the resin mold motor of the present embodiment is configured.
 そして、本実施の形態のレジンモールドモータを備えた、例えば洗濯機やエアコンなどの装置が実現される。 Then, for example, a washing machine, an air conditioner or the like equipped with the resin mold motor of the present embodiment is realized.
 本実施の形態によれば、1.0W/m・Kから5.0W/m・Kの熱伝導度を有する熱可塑性樹脂からなる巻枠10および、1.0W/m・Kから5.0W/m・Kの熱伝導度を有するモールド樹脂3からなるモールド構造体3を有するレジンモールドモータが構成される。また、巻枠10が0.3W/m・Kから1.0W/m・K未満の熱伝導度を有する熱可塑性樹脂から構成される場合、モールド樹脂は1.3W/m・Kから5.0W/m・Kの熱伝導度を有するモールド構造体でレジンモールドモータが構成される。 According to the present embodiment, the reel 10 made of a thermoplastic resin having a thermal conductivity of 1.0 W / m · K to 5.0 W / m · K, and 1.0 W / m · K to 5.0 W A resin mold motor having a mold structure 3 made of a mold resin 3 having a thermal conductivity of / m · K is formed. Further, when the reel 10 is made of a thermoplastic resin having a thermal conductivity of 0.3 W / m · K to less than 1.0 W / m · K, the mold resin is changed from 1.3 W / m · K to 5. A resin mold motor is composed of a mold structure having a thermal conductivity of 0 W / m · K.
 これにより、固定子巻線2で発生する熱を、巻枠10からモールド樹脂3を介して、効果的に放熱して、外気温度を差し引いた固定子巻線2の正味の温度上昇を、巻線温度の規格であるB種絶縁を満たす100K以下に抑制できる。その結果、小型化、薄型化および高出力密度化とともに、安全性や信頼性に優れたレジンモールドモータを実現できる。 As a result, the heat generated in the stator winding 2 is effectively radiated from the winding frame 10 through the mold resin 3, and the net temperature rise of the stator winding 2 after subtracting the outside air temperature is reduced. It can be suppressed to 100K or less that satisfies the B-type insulation, which is a standard for the line temperature. As a result, it is possible to realize a resin molded motor that is excellent in safety and reliability as well as being reduced in size, thickness, and output density.
 また、本実施の形態によれば、巻枠10を構成する熱可塑性樹脂のガラス転移温度以上の温度で、モールド樹脂3を成形してモールド構造体3を作製する。このとき、巻枠10が軟化して成形圧力により、巻枠10が固定子鉄芯1に押し付けられて密着するとともに、軟化した状態の巻枠10にモールド樹脂3が充填される。これにより、巻枠10とモールド樹脂3および巻枠10と固定子鉄芯1との隙間の発生が防止され、巻枠10とモールド樹脂3および巻枠10と固定子鉄芯1との密着性を高めることができる。その結果、効果的に固定子巻線2および固定子鉄芯1の発熱を、モールド樹脂3からなるモールド構造体3を介して、レジンモールドモータの外に放出することができる。 Further, according to the present embodiment, the mold structure 3 is formed by molding the mold resin 3 at a temperature equal to or higher than the glass transition temperature of the thermoplastic resin constituting the winding frame 10. At this time, the reel 10 is softened and pressed by the molding pressure to be in close contact with the stator core 1, and the softened reel 10 is filled with the mold resin 3. Thereby, the generation | occurrence | production of the clearance gap between the winding frame 10, the mold resin 3, and the winding frame 10 and the stator iron core 1 is prevented, and the adhesiveness of the winding frame 10, the mold resin 3, the winding frame 10, and the stator iron core 1 is prevented. Can be increased. As a result, the heat generated by the stator winding 2 and the stator core 1 can be effectively discharged out of the resin mold motor through the mold structure 3 made of the mold resin 3.
 以下に、本実施の形態のレジンモールドモータの製造方法の一例について、図1を参照しながら、簡単に説明する。 Hereinafter, an example of a method for manufacturing the resin mold motor of the present embodiment will be briefly described with reference to FIG.
 まず、例えばポリブチレンテレフタレート樹脂(以下、「PBT樹脂」と記す)からなる熱可塑性樹脂に、例えば酸化アルミニウムや窒化ケイ素などのフィラーを、例えば50重量%充填して、熱伝導度が2.0W/m・Kで、ガラス転移温度が60℃に調整された材料で、巻枠10を形成する。なお、熱可塑性樹脂の熱伝導度は、2.0W/m・Kに限られず、フィラーなどの充填量を5重量%から70重量%充填して、0.3W/m・Kから5.0W/m・Kの範囲に調整した熱可塑性樹脂であればよい。また、熱可塑性樹脂のガラス転移温度は、モールド樹脂3の成形温度以下であれば、60℃でなくてもよい。 First, a thermoplastic resin made of, for example, polybutylene terephthalate resin (hereinafter referred to as “PBT resin”) is filled with, for example, 50% by weight of a filler such as aluminum oxide or silicon nitride, and the thermal conductivity is 2.0 W. The reel 10 is formed of a material whose glass transition temperature is adjusted to 60 ° C. at / m · K. The thermal conductivity of the thermoplastic resin is not limited to 2.0 W / m · K, and the filler is filled in an amount of 5 to 70% by weight, and 0.3 W / m · K to 5.0 W. Any thermoplastic resin adjusted to a range of / m · K may be used. Further, the glass transition temperature of the thermoplastic resin may not be 60 ° C. as long as it is equal to or lower than the molding temperature of the mold resin 3.
 つぎに、例えば下層がポリエステル、上層がポリアミドから構成される絶縁被膜が形成された、φ0.3mmの固定子巻線2を準備する。 Next, for example, a stator winding 2 having a diameter of 0.3 mm in which an insulating film composed of polyester as a lower layer and polyamide as an upper layer is formed is prepared.
 つぎに、例えば電磁鋼板からなる固定子鉄芯1のティース部に巻枠10を配置し、固定子巻線2を巻枠10に巻装して固定子20を作製する。 Next, the winding frame 10 is disposed on the teeth portion of the stator core 1 made of, for example, an electromagnetic steel plate, and the stator winding 2 is wound around the winding frame 10 to produce the stator 20.
 つぎに、金型の所定の位置に固定子20を配置して、例えば150℃の成形温度でモールド樹脂3を押し出してモールド成形し、軸受ハウジングを有するモールド構造体3を作製する。このとき、モールド樹脂3は、例えば不飽和ポリエステル樹脂(ディーエイチ・マテリアル株式会社製、サンドーマ(登録商標)PB210)と、ポリエステル樹脂(ディーエイチ・マテリアル株式会社製、サンドーマ(登録商標)PB987)と、ガラス繊維、t-ブチルパーオキシベンゾエート(重合開始剤)、ステアリン酸亜鉛、重合禁止剤、水酸化アルミニウムなどで構成されている。これにより、モールド樹脂3は、例えば熱伝導度が1.5W/m・Kで、UL規格94V-0の難燃性などの特性を有する。なお、モールド樹脂の熱伝導度は、1.5W/m・Kに限られず、上記構成材料の配合比(重量%)を調整して、1.0W/m・Kから5.0W/m・Kの範囲のモールド樹脂3であればよい。また、モールド樹脂3の成形温度は、熱可塑性樹脂のガラス転移温度以上で、モールド成形できる温度であれば、150℃でなくてもよい。 Next, the stator 20 is arranged at a predetermined position of the mold, and the mold resin 3 is extruded and molded at a molding temperature of 150 ° C., for example, to produce a mold structure 3 having a bearing housing. At this time, the mold resin 3 includes, for example, an unsaturated polyester resin (D-Material Co., Ltd., Sandoma (registered trademark) PB210) and a polyester resin (D-H Material Co., Ltd., Sandoma (registered trademark) PB987). Glass fiber, t-butyl peroxybenzoate (polymerization initiator), zinc stearate, polymerization inhibitor, aluminum hydroxide and the like. Accordingly, the mold resin 3 has, for example, a thermal conductivity of 1.5 W / m · K and characteristics such as flame retardancy of UL standard 94V-0. The thermal conductivity of the mold resin is not limited to 1.5 W / m · K, but the mixing ratio (% by weight) of the above constituent materials is adjusted to 1.0 W / m · K to 5.0 W / m · K. Any mold resin 3 in the range of K may be used. Further, the molding temperature of the mold resin 3 is not limited to 150 ° C. as long as the molding resin 3 is at or above the glass transition temperature of the thermoplastic resin and can be molded.
 これにより、巻枠10は、モールド樹脂3の成形温度で軟化するとともに、モールド成形時の圧力により固定子鉄芯1と巻枠10とが密着して隙間の発生が防止される。同様に、巻枠10の界面とモールド樹脂3との密着性が向上する。 Thereby, the winding frame 10 is softened at the molding temperature of the mold resin 3, and the stator core 1 and the winding frame 10 are brought into close contact with each other by the pressure at the time of molding, thereby preventing the generation of a gap. Similarly, the adhesion between the interface of the winding frame 10 and the mold resin 3 is improved.
 つぎに、モールド構造体3の軸受ハウジングに軸受5bを圧入する。そして、シャフト8を備えるロータ6を、モールド構造体3に形成された空間で固定子20と対向するように、軸受5bに挿入する。 Next, the bearing 5 b is press-fitted into the bearing housing of the mold structure 3. Then, the rotor 6 including the shaft 8 is inserted into the bearing 5 b so as to face the stator 20 in the space formed in the mold structure 3.
 つぎに、駆動回路4をモールド構造体3の所定の位置に実装する。 Next, the drive circuit 4 is mounted at a predetermined position of the mold structure 3.
 つぎに、軸受5aを収納する軸受収納部を有するブラケット9の軸受5aにロータ6のシャフト8を挿入して、ブラケット9とモールド構造体3を固定する。 Next, the shaft 8 of the rotor 6 is inserted into the bearing 5a of the bracket 9 having a bearing housing portion for housing the bearing 5a, and the bracket 9 and the mold structure 3 are fixed.
 上記により、本実施の形態のレジンモールドモータが作製される。 In this way, the resin mold motor of this embodiment is manufactured.
 以下に、本実施の形態の特徴であるレジンモールドモータを構成する熱可塑性樹脂からなる巻枠の熱伝導度と、モールド樹脂の熱伝導度との関係について、固定子巻線の温度上昇の観点から、(表1)および図2と図3を用いて説明する。 Hereinafter, regarding the relationship between the thermal conductivity of the winding frame made of the thermoplastic resin constituting the resin mold motor and the thermal conductivity of the mold resin, which is a feature of the present embodiment, the viewpoint of the temperature rise of the stator winding Will be described with reference to Table 1 and FIGS. 2 and 3.
 このとき、巻枠10を構成する熱可塑性樹脂として、例えばPBT樹脂からなる熱可塑性樹脂に、例えば酸化アルミニウムや窒化ケイ素などを充填して、熱伝導度が1.0W/m・Kから5.0W/m・Kで、ガラス転移温度が成形温度以下に調整した材料を用いた。具体的には、0.3W/m・K、0.5W/m・K、1.0W/m・K、1.3W/m・K、1.5W/m・K、2.0W/m・K、2.5W/m・K、3.0W/m・K、5.0W/m・Kの各熱伝導度を有する巻枠10を用いた。なお、5.0W/m・Kを超える熱伝導度を有する熱可塑性樹脂は、加工性、機械的強度および電気絶縁性の低下が著しいため、実用性がなく作製しなかった。 At this time, as the thermoplastic resin constituting the reel 10, for example, a thermoplastic resin made of PBT resin is filled with, for example, aluminum oxide or silicon nitride, and the thermal conductivity is changed from 1.0 W / m · K to 5. A material having a glass transition temperature adjusted to a molding temperature or lower at 0 W / m · K was used. Specifically, 0.3 W / m · K, 0.5 W / m · K, 1.0 W / m · K, 1.3 W / m · K, 1.5 W / m · K, 2.0 W / m -The reel 10 which has each thermal conductivity of K, 2.5 W / m * K, 3.0 W / m * K, and 5.0 W / m * K was used. Note that a thermoplastic resin having a thermal conductivity exceeding 5.0 W / m · K was not practically produced because of a significant decrease in processability, mechanical strength, and electrical insulation.
 一方、モールド構造体3を構成するモールド樹脂3として、上記の製造方法で例示した、例えば不飽和ポリエステル樹脂と、ポリエステル樹脂と、ガラス繊維、t-ブチルパーオキシベンゾエート(重合開始剤)、ステアリン酸亜鉛、重合禁止剤、水酸化アルミニウムなどで構成され、熱伝導度が1.0W/m・Kから5.0W/m・Kで、成形温度が、熱可塑性樹脂のガラス転移温度以上に調整した材料を用いた。具体的には、0.3W/m・K、0.5W/m・K、1.0W/m・K、1.3W/m・K、1.5W/m・K、2.0W/m・K、2.5W/m・K、3.0W/m・K、5.0W/m・Kの熱伝導度を有するモールド樹脂3を用いた。なお、上記熱可塑性樹脂の場合と同様に、5.0W/m・Kを超える熱伝導度を有するモールド樹脂は、成形性や機械的強度の劣化が著しいため、実用性がなく作製しなかった。 On the other hand, as the mold resin 3 constituting the mold structure 3, for example, unsaturated polyester resin, polyester resin, glass fiber, t-butyl peroxybenzoate (polymerization initiator), stearic acid exemplified in the above production method Consists of zinc, polymerization inhibitor, aluminum hydroxide, etc., with a thermal conductivity of 1.0 W / m · K to 5.0 W / m · K, and the molding temperature is adjusted to be equal to or higher than the glass transition temperature of the thermoplastic resin. Materials were used. Specifically, 0.3 W / m · K, 0.5 W / m · K, 1.0 W / m · K, 1.3 W / m · K, 1.5 W / m · K, 2.0 W / m Mold resin 3 having thermal conductivity of K, 2.5 W / m · K, 3.0 W / m · K, 5.0 W / m · K was used. As in the case of the thermoplastic resin, a mold resin having a thermal conductivity of more than 5.0 W / m · K was not practically produced because its moldability and mechanical strength deteriorated remarkably. .
 そして、上記熱伝導度を有する各巻枠と各モールド樹脂とを組み合わせて、上記製造方法で作製した、例えば700Wクラスのレジンモールドモータを、負荷トルク3N・m、回転数1600rpmで駆動した。そして、そのときの固定子巻線の温度上昇を測定して評価した。 Then, for example, a 700 W class resin mold motor manufactured by the above manufacturing method by combining each winding frame having the above thermal conductivity and each molding resin was driven at a load torque of 3 N · m and a rotational speed of 1600 rpm. And the temperature rise of the stator winding | coil at that time was measured and evaluated.
 その結果を、(表1)と図2および図3に示す。 The results are shown in Table 1 and FIGS. 2 and 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、固定子巻線の温度上昇は、外気温度の影響を除くために、実際の測定温度から外気温度を引いた値で、(表1)に示している。つまり、例えば外気温度が30℃の場合、(表1)のそれぞれの値に30℃を加算した温度が、実際の固定子巻線2の温度となる。 The temperature rise of the stator windings is shown in (Table 1) as a value obtained by subtracting the outside air temperature from the actual measured temperature in order to eliminate the influence of the outside air temperature. That is, for example, when the outside air temperature is 30 ° C., the temperature obtained by adding 30 ° C. to each value of (Table 1) is the actual temperature of the stator winding 2.
 図2は、本実施の形態におけるレジンモールドモータの巻枠の熱伝導度と、固定子巻線の温度上昇との関係を示す図である。図3は、同実施の形態におけるレジンモールドモータのモールド樹脂の熱伝導度と、固定子巻線の温度上昇との関係を示す図である。なお、図2はモールド樹脂の熱伝導度をパラメータとし、図3は巻枠を構成する熱可塑性樹脂の熱伝導度をパラメータとして図示している。 FIG. 2 is a diagram showing the relationship between the thermal conductivity of the winding frame of the resin mold motor and the temperature rise of the stator winding in the present embodiment. FIG. 3 is a diagram showing the relationship between the thermal conductivity of the mold resin of the resin mold motor and the temperature rise of the stator winding in the same embodiment. 2 shows the thermal conductivity of the mold resin as a parameter, and FIG. 3 shows the thermal conductivity of the thermoplastic resin constituting the winding frame as a parameter.
 (表1)と図2および図3に示すように、巻枠10の熱可塑性樹脂の熱伝導度が1.0W/m・Kから5.0W/m・Kの範囲内で、モールド樹脂3の熱伝導度が1.0W/m・Kから5.0W/m・Kの範囲内であれば、固定子巻線2の温度上昇を、巻線温度の規格であるB種絶縁の100K以下に抑制できることがわかった。 As shown in Table 1 and FIGS. 2 and 3, the mold resin 3 has a thermal conductivity of 1.0 W / m · K to 5.0 W / m · K. If the thermal conductivity of the coil is within the range of 1.0 W / m · K to 5.0 W / m · K, the temperature rise of the stator winding 2 is 100 K or less of the class B insulation, which is the standard for the winding temperature. It was found that it can be suppressed.
 また、図2に示すように、モールド樹脂3の熱伝導度が、0.3W/m・K、0.5W/m・Kの場合、巻枠10の熱伝導度を、5.0W/m・Kまで高めても、レジンモールドモータの固定子巻線2の温度上昇を、100K以下にできないことがわかった。つまり、モールド樹脂3の熱伝導度は、1.0W/m・Kから5.0W/m・Kの範囲であることが好ましい。 As shown in FIG. 2, when the thermal conductivity of the mold resin 3 is 0.3 W / m · K and 0.5 W / m · K, the thermal conductivity of the reel 10 is 5.0 W / m. -It was found that even if the temperature was increased to K, the temperature rise of the stator winding 2 of the resin mold motor could not be reduced to 100K or less. That is, the thermal conductivity of the mold resin 3 is preferably in the range of 1.0 W / m · K to 5.0 W / m · K.
 また、図3に示すように、巻枠10の熱伝導度が、1.0W/m・K未満である、0.3W/m・K、0.5W/m・Kの場合、モールド樹脂3の熱伝導度が1.3W/m・K以上においては、レジンモールドモータの固定子巻線2の温度上昇を、100K以下にできることがわかった。 As shown in FIG. 3, when the thermal conductivity of the reel 10 is less than 1.0 W / m · K, 0.3 W / m · K, 0.5 W / m · K, the mold resin 3 It was found that the temperature increase of the stator winding 2 of the resin mold motor can be reduced to 100K or less when the thermal conductivity of is 1.3 W / m · K or more.
 さらに、図3に示すように、モールド樹脂3の熱伝導度が、巻枠10の熱伝導度に関わらず、1.0W/m・K以上で固定子巻線2の温度上昇の低減効果が大きいことがわかる。このとき、モールド樹脂3の熱伝導度が3.0W/m・K以上になると、固定子巻線2の温度上昇が飽和する傾向が顕著となり、低減効果が小さくなる。そのため、モールド樹脂3としては、1.0W/m・Kから3.0W/m・Kの範囲の熱伝導度が、成形性や強度および低コスト化の観点から、特に好ましいことがわかる。 Further, as shown in FIG. 3, when the thermal conductivity of the mold resin 3 is 1.0 W / m · K or more regardless of the thermal conductivity of the winding frame 10, the temperature rise of the stator winding 2 is reduced. You can see that it ’s big. At this time, if the thermal conductivity of the mold resin 3 is 3.0 W / m · K or more, the temperature rise of the stator winding 2 tends to be saturated, and the reduction effect is reduced. Therefore, it can be seen that as the mold resin 3, a thermal conductivity in the range of 1.0 W / m · K to 3.0 W / m · K is particularly preferable from the viewpoints of moldability, strength, and cost reduction.
 つまり、図2と図3から、巻枠10を構成する熱可塑性樹脂の熱伝導度およびモールド樹脂3の熱伝導度を1.0W/m・K以上にし、特にモールド樹脂3の熱伝導度を3.0W/m・K以下とすることにより、より効果的に固定子巻線2の温度上昇を低減できることがわかる。 That is, from FIGS. 2 and 3, the thermal conductivity of the thermoplastic resin constituting the reel 10 and the thermal conductivity of the mold resin 3 are set to 1.0 W / m · K or more, and in particular, the thermal conductivity of the mold resin 3 is increased. It can be seen that the temperature rise of the stator winding 2 can be more effectively reduced by setting the power to 3.0 W / m · K or less.
 以上で説明したように、本実施に形態によれば、固定子巻線2の温度上昇を、巻線温度の規格であるB種絶縁の100K以下に抑制するとともに、従来よりも10%以上の小型化、薄型化や高出力密度のレジンモールドモータを実現できる。つまり、同じ出力の場合、より小型、薄型のレジンモールドモータを実現でき、同じ大きさの場合、より高い出力のレジンモールドモータを実現できる。 As described above, according to the present embodiment, the temperature rise of the stator winding 2 is suppressed to 100 K or less of the class B insulation, which is the standard of the winding temperature, and 10% or more than the conventional one. It is possible to realize a resin mold motor that is smaller, thinner and has a higher output density. That is, in the case of the same output, a smaller and thinner resin mold motor can be realized, and in the case of the same size, a higher output resin mold motor can be realized.
 また、本実施の形態によれば、レジンモールドモータ内に配置される駆動回路4に実装される部品として、高耐熱性の部品を使用する必要がない。その結果、信頼性を低下させずに、低コストのレジンモールドモータを実現できる。 Further, according to the present embodiment, it is not necessary to use a high heat-resistant component as a component mounted on the drive circuit 4 arranged in the resin mold motor. As a result, a low-cost resin molded motor can be realized without reducing reliability.
 以下に、本実施の形態のレジンモールドモータの別の例について、図4を用いて説明する。 Hereinafter, another example of the resin mold motor of the present embodiment will be described with reference to FIG.
 図4は、本実施の形態におけるレジンモールドモータの固定子の別の例を説明する断面図である。 FIG. 4 is a cross-sectional view for explaining another example of the stator of the resin mold motor in the present embodiment.
 図4に示すように、本実施の形態の別の例におけるレジンモールドモータは、巻枠10の固定子巻線2が巻装される内面に、弾性を有するゴム弾性体などの弾性部材からなる熱伝導体11を設けて固定子30を構成した点で、上記実施の形態のレジンモールドモータの固定子20とは異なる。 As shown in FIG. 4, a resin mold motor in another example of the present embodiment is formed of an elastic member such as a rubber elastic body having elasticity on the inner surface around which the stator winding 2 of the winding frame 10 is wound. It differs from the stator 20 of the resin mold motor of the above embodiment in that the stator 30 is configured by providing the heat conductor 11.
 つまり、例えばシリコーンゴムなどのシート状で電気絶縁性の熱伝導体11を、巻枠10の内面に設置し、熱伝導体11上に固定子巻線2を巻装して、固定子30を構成する。このとき、固定子巻線2の巻装時に、熱伝導体11が弾性変形するため、固定子巻線2と熱伝導体11との接触面積が増加する。同時に、熱伝導体11の弾性変形により、熱伝導体11と巻枠10との界面は隙間なく密着する。なお、熱伝導体11は、シリコーンゴムに、例えば窒化アルミニウムなどのフィラーを、配合して、巻枠やモールド樹脂の熱伝導度と、同程度の熱伝導度を有するように構成される。 That is, for example, a sheet-like and electrically insulating heat conductor 11 such as silicone rubber is installed on the inner surface of the winding frame 10, the stator winding 2 is wound on the heat conductor 11, and the stator 30 is Constitute. At this time, since the heat conductor 11 is elastically deformed when the stator winding 2 is wound, the contact area between the stator winding 2 and the heat conductor 11 increases. At the same time, due to the elastic deformation of the heat conductor 11, the interface between the heat conductor 11 and the reel 10 is in close contact with the gap. In addition, the heat conductor 11 is comprised so that it may have a thermal conductivity comparable as the thermal conductivity of a winding frame or mold resin, for example, by blending a filler such as aluminum nitride with silicone rubber.
 これにより、固定子30の巻枠10と固定子巻線2との間の隙間の発生を確実に防止できる。その結果、固定子巻線2で発生する熱を、熱伝導体11、巻枠10およびモールド樹脂3からなるモールド構造体3を介して、効果的に放熱し、固定子巻線2の温度上昇をより低減できる。 Thereby, the occurrence of a gap between the winding frame 10 of the stator 30 and the stator winding 2 can be reliably prevented. As a result, the heat generated in the stator winding 2 is effectively dissipated through the mold structure 3 including the heat conductor 11, the winding frame 10, and the mold resin 3, and the temperature of the stator winding 2 is increased. Can be further reduced.
 なお、上記では、シート状の熱伝導体11を例に説明したが、これに限られない。例えば、巻枠10に嵌め合わすことができる形状の成形体で熱伝導体11を構成してもよく、同様の効果を得ることができる。 In the above description, the sheet-like heat conductor 11 is described as an example, but the present invention is not limited thereto. For example, you may comprise the heat conductor 11 with the molded object of the shape which can be fitted to the winding frame 10, and the same effect can be acquired.
 また、上記では、熱伝導体11として、シリコーンゴムを例に説明したが、これに限られない。例えば、アクリルゴムなどで構成しても、同様の効果が得られる。 In the above description, the silicone rubber is taken as an example of the heat conductor 11, but is not limited thereto. For example, the same effect can be obtained even if it is made of acrylic rubber or the like.
 以下に、本実施の形態のレジンモールドモータのさらに別の例について、図5を用いて説明する。 Hereinafter, still another example of the resin mold motor of the present embodiment will be described with reference to FIG.
 図5は、同実施の形態におけるレジンモールドモータの固定子のさらに別の例を説明する断面図である。 FIG. 5 is a cross-sectional view illustrating still another example of the stator of the resin mold motor according to the embodiment.
 図5に示すように、本実施の形態のさらに別の例におけるレジンモールドモータは、巻枠10の固定子巻線2間に充填剤である熱伝導体樹脂14を充填して固定子40を構成した点で、上記実施の形態のレジンモールドモータの固定子20とは異なる。 As shown in FIG. 5, the resin mold motor in yet another example of the present embodiment fills the stator 40 by filling the stator winding 2 of the winding frame 10 with the heat conductive resin 14 as a filler. In the point which comprised, it differs from the stator 20 of the resin mold motor of the said embodiment.
 つまり、モールド樹脂3よりも流動性が高い、例えば不飽和ポリエステル樹脂などの熱硬化性樹脂を主成分とする熱伝導体樹脂14を、固定子巻線2間の隙間12(図5では充填された後を図示している)に充填して固定子40を構成している。なお、熱伝導体樹脂14は、不飽和ポリエステル樹脂に、例えば窒化ケイ素や窒化アルミニウムなどのフィラーを、例えば30重量%から85重量%を配合して、巻枠やモールド樹脂の熱伝導度と、同程度の熱伝導度を有するように構成される。 That is, a heat conductor resin 14 having a fluidity higher than that of the mold resin 3, for example, a thermosetting resin such as an unsaturated polyester resin, as a main component is filled with a gap 12 (filled in FIG. 5). After that, the stator 40 is configured. In addition, the heat conductor resin 14 is blended with an unsaturated polyester resin, for example, a filler such as silicon nitride or aluminum nitride, for example, 30 wt% to 85 wt%, and the thermal conductivity of the reel or the mold resin, It is configured to have the same degree of thermal conductivity.
 また、上記では、熱伝導体樹脂14として、不飽和ポリエステル樹脂を例に説明したが、これに限られない。例えば、エポキシなどの熱硬化性樹脂でも、同様の効果が得られる。 In the above description, an unsaturated polyester resin is described as an example of the thermal conductor resin 14, but the present invention is not limited to this. For example, the same effect can be obtained with a thermosetting resin such as epoxy.
 以下に、具体的な形成方法について、説明する。 Hereinafter, a specific forming method will be described.
 まず、固定子40をモールド樹脂3で、モールド成形する前に、固定子巻線2の表面に、熱伝導体樹脂14を塗布する。 First, before the stator 40 is molded with the mold resin 3, the heat conductor resin 14 is applied to the surface of the stator winding 2.
 つぎに、塗布した熱伝導体樹脂14を、例えば130℃、2時間、加熱硬化する。 Next, the applied heat conductive resin 14 is heated and cured at 130 ° C. for 2 hours, for example.
 このとき、一旦、加熱溶融した熱伝導体樹脂14は、固定子巻線2間の隙間12に流れ込んで、隙間12を埋める。 At this time, the heat conductive resin 14 once heated and melted flows into the gap 12 between the stator windings 2 and fills the gap 12.
 そして、固定子巻線2間が、熱伝導体樹脂14で固定される。 The space between the stator windings 2 is fixed with the heat conductive resin 14.
 これにより、固定子40の固定子巻線2間の隙間12を、熱伝導体樹脂14で確実に埋め合わせて、固定子巻線2と熱伝導体樹脂14を介して巻枠10との接触面積を増すことができる。その結果、固定子巻線2で発生する熱を、熱伝導体樹脂14、巻枠10およびモールド樹脂3からなるモールド構造体3を介して、効果的に放熱し、固定子巻線2の温度上昇を、より低減できる。 Thereby, the clearance 12 between the stator windings 2 of the stator 40 is reliably filled with the heat conductor resin 14, and the contact area between the stator winding 2 and the winding frame 10 via the heat conductor resin 14. Can be increased. As a result, the heat generated in the stator winding 2 is effectively radiated through the mold structure 3 composed of the thermal conductor resin 14, the winding frame 10, and the mold resin 3, and the temperature of the stator winding 2. The rise can be reduced more.
 この場合、巻枠10と固定子巻線2との間に、さらに熱伝導体11を設けてもよいことは、いうまでもない。 In this case, it goes without saying that a heat conductor 11 may be further provided between the winding frame 10 and the stator winding 2.
 なお、本実施の形態では、巻枠10の熱伝導度とモールド樹脂3の熱伝導度として、(表1)に示すように、代表的な数値を例に説明したが、これに限られない。例えば、各々熱伝導度が1.0W/m・Kから5.0W/m・Kの範囲内であれば、その中間値や近傍の値でもよい。これにより、同様に、レジンモールドモータの固定子巻線2の温度上昇を低減できる。 In the present embodiment, the thermal conductivity of the winding frame 10 and the thermal conductivity of the mold resin 3 have been described by taking typical numerical values as shown in (Table 1). However, the present invention is not limited to this. . For example, if the thermal conductivity is in the range of 1.0 W / m · K to 5.0 W / m · K, the intermediate value or a nearby value may be used. Thereby, similarly, the temperature rise of the stator winding | coil 2 of a resin mold motor can be reduced.
 また、本実施の形態では、ブラケット9の表面処理に関しては、具体的に説明していないが、例えばブラケット9の材質素地の表面にめっき、アルマイト、塗装などを施してもよい。これにより、レジンモールドモータの放熱効果をさらに高めることができる。また、ブラケット9の材質は、機械的強度と、放熱性とを兼ね備えたものであればよく、亜鉛めっき鋼板以外に、例えば金属材料や樹脂材料などから適宜選択することができる。これにより、汎用性を高めることができる。 In the present embodiment, the surface treatment of the bracket 9 is not specifically described. For example, the surface of the material base of the bracket 9 may be plated, anodized, painted, or the like. Thereby, the heat dissipation effect of the resin mold motor can be further enhanced. Moreover, the material of the bracket 9 should just have mechanical strength and heat dissipation, and can be suitably selected from a metal material, a resin material, etc. other than a galvanized steel plate, for example. Thereby, versatility can be improved.
 また、本実施の形態において、レジンモールドモータの運転時に生じる振動がレジンモールドモータを取り付ける、例えば洗濯機やエアコンなどの装置側へ伝播することを低減するために、図1に示すように防振ゴム13a、防振ゴム13bを、シャフト8の両端部側である軸受5a、軸受5bの付近に配置してもよい。これにより、レジンモールドモータの運転時に生じる振動が、レジンモールドモータを取り付ける装置側へ伝播することを低減できる。その結果、信頼性に優れ、さらに静音性を向上させたレジンモールドモータおよびそれを備えた装置を実現できる。 Further, in the present embodiment, in order to reduce the vibration generated during the operation of the resin mold motor from being transmitted to the apparatus side such as a washing machine or an air conditioner to which the resin mold motor is attached, as shown in FIG. The rubber 13a and the anti-vibration rubber 13b may be disposed in the vicinity of the bearing 5a and the bearing 5b on both end sides of the shaft 8. Thereby, it can reduce that the vibration which arises at the time of a driving | operation of a resin mold motor propagates to the apparatus side which attaches a resin mold motor. As a result, it is possible to realize a resin mold motor that is excellent in reliability and improved in quietness and a device including the same.
 以上で説明したように、本発明は、固定子鉄芯と、固定子鉄芯のティース部に配置される巻枠と、固定子鉄芯に巻枠を介して巻装される固定子巻線とからなる固定子と、固定子をモールド樹脂で一体に成形するモールド構造体を具備するレジンモールドモータである。そして、巻枠は主成分が熱可塑性樹脂により構成され、巻枠の熱可塑性樹脂が1.0W/m・Kから5.0W/m・Kの範囲の熱伝導度を有する場合、モールド樹脂は1.0W/m・Kから5.0W/m・Kの範囲の熱伝導度を有し、巻枠の熱可塑性樹脂が0.3W/m・Kから1.0W/m・K未満の範囲の熱伝導度を有する場合、モールド樹脂は1.3W/m・Kから5.0W/m・Kの範囲の熱伝導度をする。 As described above, the present invention relates to a stator iron core, a winding frame disposed on a teeth portion of the stator iron core, and a stator winding wound around the stator iron core via the winding frame. The resin mold motor which comprises the stator which consists of these, and the mold structure which shape | molds a stator integrally with mold resin. When the main component of the reel is composed of a thermoplastic resin, and the thermoplastic resin of the reel has a thermal conductivity in the range of 1.0 W / m · K to 5.0 W / m · K, the mold resin is It has a thermal conductivity in the range of 1.0 W / m · K to 5.0 W / m · K, and the thermoplastic resin of the reel is in the range of 0.3 W / m · K to less than 1.0 W / m · K. The mold resin has a thermal conductivity in the range of 1.3 W / m · K to 5.0 W / m · K.
 この構成によれば、1.0W/m・Kから5.0W/m・Kの熱伝導度を有する、熱可塑性樹脂で成形された巻枠とモールド樹脂、および0.3W/m・Kから1.0W/m・K未満の熱伝導度を有する巻枠と、1.3W/m・Kから5.0W/m・Kの熱伝導度を有するモールド樹脂とを用いて、固定子巻線をモールド成形する。これにより、固定子巻線で発生する熱を、熱伝導度の高い材料で構成した巻枠からモールド樹脂を介して、効果的に放熱できる。その結果、小型化、薄型化および高出力密度化とともに、安全性や信頼性に優れたレジンモールドモータを実現できる。 According to this configuration, the reel and mold resin molded with a thermoplastic resin having a thermal conductivity of 1.0 W / m · K to 5.0 W / m · K, and 0.3 W / m · K A stator winding using a reel having a thermal conductivity of less than 1.0 W / m · K and a mold resin having a thermal conductivity of 1.3 W / m · K to 5.0 W / m · K Is molded. Thereby, the heat generated in the stator winding can be effectively dissipated through the mold resin from the winding frame made of a material having high thermal conductivity. As a result, it is possible to realize a resin molded motor that is excellent in safety and reliability as well as being reduced in size, thickness, and output density.
 また、本発明のレジンモールドモータは、熱可塑性樹脂が、モールド樹脂の成形温度よりも低いガラス転移温度を有する。 In the resin mold motor of the present invention, the thermoplastic resin has a glass transition temperature lower than the molding temperature of the mold resin.
 この構成によれば、巻枠の材料に熱可塑性樹脂を用い、モールド成形時において、モールド樹脂の成形温度が巻枠のガラス転移温度以上の温度で成形する。このとき、モールド成形時の成形温度で巻枠が軟化するとともに、モールド成形時の成形圧力により巻枠が固定子鉄芯に押し付けられて密着する。さらに、軟化した状態の巻枠にモールド樹脂が充填される。これにより、巻枠とモールド樹脂および巻枠と固定子鉄芯との隙間の発生を防止できる。そして、巻枠とモールド樹脂との密着性および巻枠と固定子鉄芯の密着性を高めることができる。その結果、効果的に固定子巻線および固定子鉄芯の発熱を、モールド樹脂を介して、レジンモールドモータの外に放出することができる。 According to this configuration, a thermoplastic resin is used as the material of the reel, and at the time of molding, the molding resin is molded at a temperature equal to or higher than the glass transition temperature of the reel. At this time, the winding frame is softened at the molding temperature at the time of molding, and the winding frame is pressed against the stator iron core by the molding pressure at the time of molding. Further, the mold resin is filled in the softened reel. Thereby, generation | occurrence | production of the clearance gap between a winding frame, mold resin, and a winding frame and a stator iron core can be prevented. And the adhesiveness of a winding frame and mold resin and the adhesiveness of a winding frame and a stator iron core can be improved. As a result, the heat generated by the stator windings and the stator iron core can be effectively discharged out of the resin mold motor via the mold resin.
 また、本発明のレジンモールドモータは、モールド樹脂の熱伝導度の値と、巻枠の熱可塑性樹脂の熱伝導度が略等しい。 In the resin mold motor of the present invention, the thermal conductivity value of the mold resin and the thermal conductivity of the thermoplastic resin of the reel are substantially equal.
 この構成によれば、モールド樹脂と熱可塑性樹脂の熱伝導度を略等しくすることにより、固定子巻線で発生する熱を、効率的に巻枠からモールド構造体へ熱伝達できる。つまり、モールド樹脂と熱可塑性樹脂の熱伝導度が異なる場合、通常、低い熱伝導度側で熱伝達が律速されるので、一方の樹脂の熱伝導度を無理に高める必要がない。これにより、熱伝導度を高めることによる、高コスト化、加工性や強度の低下を抑制できる。その結果、小型化、薄型化および高出力密度化とともに、低コストで安全性や信頼性に優れたレジンモールドモータを実現できる。 According to this configuration, the heat generated in the stator winding can be efficiently transferred from the winding frame to the mold structure by making the thermal conductivities of the mold resin and the thermoplastic resin substantially equal. In other words, when the mold resin and the thermoplastic resin have different thermal conductivities, heat transfer is usually controlled on the low thermal conductivity side, so there is no need to forcibly increase the thermal conductivity of one resin. Thereby, it is possible to suppress an increase in cost and a decrease in workability and strength due to an increase in thermal conductivity. As a result, it is possible to realize a resin molded motor that is low in cost and excellent in safety and reliability, as well as being reduced in size, thickness, and output density.
 また、本発明のレジンモールドモータは、モールド樹脂の熱伝導度が3.0W/m・K以下である。 Further, in the resin mold motor of the present invention, the thermal conductivity of the mold resin is 3.0 W / m · K or less.
 この構成によれば、放熱効果が高い1.0W/m・Kから3.0W/m・Kの熱伝導度を有するモールド樹脂を用いて、固定子巻線をモールド成形する。これにより、熱伝導度を高めることによる、高コスト化、加工性や強度の低下を抑制して、効果的に放熱できる。その結果、小型化、薄型化および高出力密度化とともに、低コストのレジンモールドモータを実現できる。 According to this configuration, the stator winding is molded using a mold resin having a high heat dissipation effect and a thermal conductivity of 1.0 W / m · K to 3.0 W / m · K. Thereby, it is possible to effectively dissipate heat by suppressing the increase in cost and the decrease in workability and strength caused by increasing the thermal conductivity. As a result, it is possible to realize a low-cost resin mold motor as well as downsizing, thinning, and high output density.
 また、本発明のレジンモールドモータは、巻枠の表面に熱伝導体を配置した。 In the resin mold motor of the present invention, a heat conductor is disposed on the surface of the reel.
 そして、本発明のレジンモールドモータは、熱伝導体は、弾性を有する弾性部材から構成される。 In the resin mold motor of the present invention, the heat conductor is composed of an elastic member having elasticity.
 さらに、本発明のレジンモールドモータは、弾性部材が、シリコーンゴムである。 Furthermore, in the resin mold motor of the present invention, the elastic member is silicone rubber.
 これらの構成によれば、巻枠の表面にゴム弾性を有する電気絶縁性のシート状もしくは巻枠に、熱伝導体を嵌め合わせて、巻線を行う。このとき、巻線時に固定子巻線がゴム弾性を有する熱伝導体と密着する。そのため、モールド成形時にモールド樹脂が巻枠と固定子巻線との間に入り込まないことにより発生する固定子巻線と巻枠との間の隙間を無くすことができる。これにより、固定子巻線と巻枠との接触面積を拡大させて、隙間により発生する熱伝達の損失を減少させ、効果的に固定子巻線および固定子鉄芯の発熱を、モールド樹脂を介して放熱することができる。その結果、固定子巻線および部品の温度上昇を低減させて、安全性や信頼性の高い高出力密度で小型のレジンモールドモータを実現できる。 According to these configurations, the winding is performed by fitting the heat conductor to the electrically insulating sheet-like shape or the winding frame having rubber elasticity on the surface of the winding frame. At this time, at the time of winding, the stator winding is in close contact with the heat conductor having rubber elasticity. Therefore, it is possible to eliminate a gap between the stator winding and the winding frame that is generated when the mold resin does not enter between the winding frame and the stator winding during molding. This increases the contact area between the stator winding and the winding frame, reduces heat transfer loss caused by the gap, and effectively generates heat from the stator winding and the stator core. It is possible to dissipate heat. As a result, it is possible to reduce the temperature rise of the stator windings and parts, and to realize a small resin mold motor with high power density that is highly safe and reliable.
 また、本発明のレジンモールドモータは、巻枠と固定子巻線の隙間に、モールド樹脂より流動性の高い電気絶縁性を有する熱伝導体樹脂を充填した。 Further, in the resin mold motor of the present invention, the gap between the winding frame and the stator winding was filled with a heat conductive resin having a higher electrical conductivity than the mold resin.
 さらに、本発明のレジンモールドモータは、熱伝導体樹脂が、不飽和ポリエステル樹脂である。 Furthermore, in the resin mold motor of the present invention, the heat conductive resin is an unsaturated polyester resin.
 これらの構成によれば、巻枠と固定子巻線との間に、モールド樹脂より流動性の高い電気絶縁性を有する熱伝導体を充填した後、モールド成形する。これにより、モールド成形時にモールド樹脂が巻枠と固定子巻線との間に入り込まずに発生する隙間や、モールド樹脂が固定子巻線間に入り込まずに発生する隙間を無くすことができる。そのため、隙間により発生する熱伝達の損失を減少させ、効果的に固定子巻線および固定子鉄芯の発熱を、モールド樹脂を介して、レジンモールドモータ外に放熱することができる。その結果、固定子巻線および部品の温度上昇を低減させて、安全性や信頼性の高い高出力密度で小型のレジンモールドモータを実現できる。 According to these configurations, the thermal conductive material having higher electrical conductivity than the mold resin is filled between the winding frame and the stator winding, and then molded. Accordingly, it is possible to eliminate a gap that occurs when the mold resin does not enter between the winding frame and the stator winding during molding, and a gap that occurs without the mold resin entering between the stator windings. Therefore, the heat transfer loss generated by the gap can be reduced, and the heat generated by the stator winding and the stator iron core can be effectively radiated to the outside of the resin mold motor via the mold resin. As a result, it is possible to reduce the temperature rise of the stator windings and parts, and to realize a small resin mold motor with high power density that is highly safe and reliable.
 また、本発明の装置は、上記レジンモールドモータを具備する。これにより、小型化、薄型化および高出力密度化とともに、信頼性に優れたレジンモールドモータを備えた装置を実現できる。 The apparatus of the present invention includes the resin mold motor. Accordingly, it is possible to realize a device including a resin mold motor with excellent reliability as well as downsizing, thinning, and high output density.
 本発明は、小型化、高出力密度化が望まれるモータやそれを備える洗濯機やエアコンなどの家電用機器からなる装置などの技術分野に有用である。 The present invention is useful in technical fields such as motors that are desired to be reduced in size and increased in output density, and devices composed of household appliances such as washing machines and air conditioners.
 1  固定子鉄芯
 2  固定子巻線
 3  モールド樹脂(モールド構造体)
 4  駆動回路
 5a,5b  軸受
 6  ロータ
 7  永久磁石
 8  シャフト
 9  ブラケット
 10  巻枠
 11  熱伝導体
 12  隙間
 13a,13b  防振ゴム
 14  熱伝導体樹脂
 20,30,40  固定子
1 Stator Iron Core 2 Stator Winding 3 Mold Resin (Mold Structure)
4 Drive circuit 5a, 5b Bearing 6 Rotor 7 Permanent magnet 8 Shaft 9 Bracket 10 Winding frame 11 Thermal conductor 12 Gap 13a, 13b Anti-vibration rubber 14 Thermal conductor resin 20, 30, 40 Stator

Claims (11)

  1. 固定子鉄芯と、前記固定子鉄芯のティース部に配置される巻枠と、前記固定子鉄芯に前記巻枠を介して巻装される固定子巻線とからなる固定子と、前記固定子をモールド樹脂で一体に成形するモールド構造体を具備するレジンモールドモータであって、
    前記巻枠は主成分が熱可塑性樹脂により構成され、
    前記巻枠の前記熱可塑性樹脂が1.0W/m・Kから5.0W/m・Kの範囲の熱伝導度を有する場合、前記モールド樹脂は1.0W/m・Kから5.0W/m・Kの範囲の熱伝導度を有し、
    前記巻枠の前記熱可塑性樹脂が0.3W/m・Kから1.0W/m・K未満の範囲の熱伝導度を有する場合、前記モールド樹脂は1.3W/m・Kから5.0W/m・Kの範囲の熱伝導度をするレジンモールドモータ。
    A stator comprising a stator iron core, a winding frame disposed on a teeth portion of the stator iron core, and a stator winding wound around the stator iron core via the winding frame; A resin mold motor comprising a mold structure for integrally molding a stator with a mold resin,
    The reel is mainly composed of a thermoplastic resin,
    When the thermoplastic resin of the reel has a thermal conductivity in the range of 1.0 W / m · K to 5.0 W / m · K, the mold resin is 1.0 W / m · K to 5.0 W / having a thermal conductivity in the range of m · K,
    When the thermoplastic resin of the reel has a thermal conductivity in the range of 0.3 W / m · K to less than 1.0 W / m · K, the mold resin is 1.3 W / m · K to 5.0 W. Resin mold motor with thermal conductivity in the range of / m · K.
  2. 前記熱可塑性樹脂は、前記モールド樹脂の成形温度よりも低いガラス転移温度を有する請求項1に記載のレジンモールドモータ。 The resin mold motor according to claim 1, wherein the thermoplastic resin has a glass transition temperature lower than a molding temperature of the mold resin.
  3. 前記モールド樹脂の前記熱伝導度の値と、前記巻枠の前記熱可塑性樹脂の前記熱伝導度が略等しい請求項1に記載のレジンモールドモータ。 The resin mold motor according to claim 1, wherein the thermal conductivity value of the mold resin and the thermal conductivity of the thermoplastic resin of the winding frame are substantially equal.
  4. 前記モールド樹脂の熱伝導度が3.0W/m・K以下である請求項1に記載のレジンモールドモータ。 The resin mold motor according to claim 1, wherein the thermal conductivity of the mold resin is 3.0 W / m · K or less.
  5. 前記巻枠の表面に熱伝導体を配置した請求項1に記載のレジンモールドモータ。 The resin mold motor according to claim 1, wherein a heat conductor is disposed on a surface of the winding frame.
  6. 前記熱伝導体は、弾性を有する弾性部材から構成される請求項5に記載のレジンモールドモータ。 The resin mold motor according to claim 5, wherein the heat conductor is formed of an elastic member having elasticity.
  7. 前記弾性部材が、シリコーンゴムである請求項6に記載のレジンモールドモータ。 The resin molded motor according to claim 6, wherein the elastic member is silicone rubber.
  8. 前記熱伝導体は、電気絶縁性を有する請求項5に記載のレジンモールドモータ。 The resin mold motor according to claim 5, wherein the heat conductor has electrical insulation.
  9. 前記巻枠と前記固定子巻線の隙間に、前記モールド樹脂より流動性の高い電気絶縁性を有する熱伝導体樹脂を充填した請求項1に記載のレジンモールドモータ。 The resin mold motor according to claim 1, wherein a gap between the winding frame and the stator winding is filled with a heat conductive resin having a higher fluidity than the mold resin.
  10. 前記熱伝導体樹脂は、主成分が不飽和ポリエステル樹脂である請求項9に記載のレジンモールドモータ。 The resin mold motor according to claim 9, wherein the thermal conductive resin is an unsaturated polyester resin as a main component.
  11. 請求項1に記載のレジンモールドモータを具備する装置。 An apparatus comprising the resin mold motor according to claim 1.
PCT/JP2012/006115 2011-10-12 2012-09-26 Resin-molded motor and apparatus provided with same WO2013054479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011224656 2011-10-12
JP2011-224656 2011-10-12

Publications (1)

Publication Number Publication Date
WO2013054479A1 true WO2013054479A1 (en) 2013-04-18

Family

ID=48081550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006115 WO2013054479A1 (en) 2011-10-12 2012-09-26 Resin-molded motor and apparatus provided with same

Country Status (1)

Country Link
WO (1) WO2013054479A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197966A (en) * 2015-04-06 2016-11-24 パナソニックIpマネジメント株式会社 Stator formation, electric motor and device
WO2019002289A1 (en) * 2017-06-27 2019-01-03 Mahle International Gmbh Electrical machine, in particular for a vehicle
WO2019002291A1 (en) * 2017-06-27 2019-01-03 Mahle International Gmbh Electrical machine, in particular for a vehicle
WO2019121327A1 (en) * 2017-12-18 2019-06-27 Lsp Innovative Automotive Systems Gmbh Stator tooth and stator having good electrical insulation and, at the same time, very high thermal conductivity for increasing the performance of electric motors
CN109997294A (en) * 2016-11-28 2019-07-09 松下知识产权经营株式会社 Motor
CN111434007A (en) * 2017-12-04 2020-07-17 马勒国际有限公司 Electric machine, in particular for a vehicle
EP4047789A1 (en) * 2021-02-18 2022-08-24 Hilti Aktiengesellschaft Thermally enhanced electric motor
US11728703B2 (en) * 2017-12-04 2023-08-15 Mahle International Gmbh Electric machine for a vehicle
EP4300794A4 (en) * 2021-02-25 2024-04-24 Mitsubishi Electric Corp Electric motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012542A (en) * 2007-07-03 2009-01-22 Panasonic Corp Electric hub device and motor-driven vehicle
JP2010119191A (en) * 2008-11-12 2010-05-27 Yaskawa Electric Corp Stator for electric motors and electric motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012542A (en) * 2007-07-03 2009-01-22 Panasonic Corp Electric hub device and motor-driven vehicle
JP2010119191A (en) * 2008-11-12 2010-05-27 Yaskawa Electric Corp Stator for electric motors and electric motor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197966A (en) * 2015-04-06 2016-11-24 パナソニックIpマネジメント株式会社 Stator formation, electric motor and device
CN109997294B (en) * 2016-11-28 2021-09-28 松下知识产权经营株式会社 Motor
CN109997294A (en) * 2016-11-28 2019-07-09 松下知识产权经营株式会社 Motor
EP3547506A4 (en) * 2016-11-28 2019-11-20 Panasonic Intellectual Property Management Co., Ltd. Motor
EP3734805A1 (en) * 2016-11-28 2020-11-04 Panasonic Intellectual Property Management Co., Ltd. Motor
EP3734806A1 (en) * 2016-11-28 2020-11-04 Panasonic Intellectual Property Management Co., Ltd. Motor
WO2019002289A1 (en) * 2017-06-27 2019-01-03 Mahle International Gmbh Electrical machine, in particular for a vehicle
WO2019002291A1 (en) * 2017-06-27 2019-01-03 Mahle International Gmbh Electrical machine, in particular for a vehicle
US11190064B2 (en) 2017-06-27 2021-11-30 Mahle International Gmbh Electrical machine, in particular for a vehicle
CN111434007A (en) * 2017-12-04 2020-07-17 马勒国际有限公司 Electric machine, in particular for a vehicle
US11728703B2 (en) * 2017-12-04 2023-08-15 Mahle International Gmbh Electric machine for a vehicle
WO2019121327A1 (en) * 2017-12-18 2019-06-27 Lsp Innovative Automotive Systems Gmbh Stator tooth and stator having good electrical insulation and, at the same time, very high thermal conductivity for increasing the performance of electric motors
EP4047789A1 (en) * 2021-02-18 2022-08-24 Hilti Aktiengesellschaft Thermally enhanced electric motor
EP4300794A4 (en) * 2021-02-25 2024-04-24 Mitsubishi Electric Corp Electric motor

Similar Documents

Publication Publication Date Title
WO2013054479A1 (en) Resin-molded motor and apparatus provided with same
JP6664505B2 (en) Electric motor, blower, air conditioner, and method for manufacturing electric motor
JP5649728B2 (en) Rotating electric machine
JP2009131127A (en) Brushless motor
WO2012101976A1 (en) Molded structure and motor
KR101051440B1 (en) BLC motor
WO2012081151A1 (en) Molded structural body and motor having same
JP4675268B2 (en) Molded motor and air conditioner
WO2013128881A1 (en) Molded motor
KR102222961B1 (en) Electric motor and air conditioner and manufacturing method of electric motor
JP2013125857A (en) Reactor and electric power conversion apparatus
US11962229B2 (en) Motor, fan, air conditioner, and manufacturing method of motor
WO2012017646A1 (en) Molded structure and motor comprising same
JP2011166977A (en) Molded motor
JPWO2018235157A1 (en) Electric motor, compressor, air conditioner, and electric motor manufacturing method
JPWO2012101977A1 (en) Mold structure and motor
JP2021118624A (en) motor
JP7327462B2 (en) Electric motor
WO2022180708A1 (en) Stator, electric motor, and air conditioner
JPWO2011092928A1 (en) Rotating electric machine
WO2023127632A1 (en) Electric motor
JP7255623B2 (en) Electric motor
WO2023095316A1 (en) Electric motor and air conditioner
JP2014019779A (en) Mold structure and motor
KR20070092817A (en) Stator of a motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP