WO2013053312A1 - 贴膜式花岗岩镜体大口径光学反射镜 - Google Patents

贴膜式花岗岩镜体大口径光学反射镜 Download PDF

Info

Publication number
WO2013053312A1
WO2013053312A1 PCT/CN2012/082665 CN2012082665W WO2013053312A1 WO 2013053312 A1 WO2013053312 A1 WO 2013053312A1 CN 2012082665 W CN2012082665 W CN 2012082665W WO 2013053312 A1 WO2013053312 A1 WO 2013053312A1
Authority
WO
WIPO (PCT)
Prior art keywords
granite
mirror body
optical
optical mirror
mirror
Prior art date
Application number
PCT/CN2012/082665
Other languages
English (en)
French (fr)
Inventor
廖廷俤
李新南
王新桥
Original Assignee
厦门市三安光电科技有限公司
中国科学院国家天文台南京天文光学技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司, 中国科学院国家天文台南京天文光学技术研究所 filed Critical 厦门市三安光电科技有限公司
Publication of WO2013053312A1 publication Critical patent/WO2013053312A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators

Definitions

  • the invention belongs to the field of applied optics, and in particular relates to a large-diameter optical mirror of a film-type granite mirror body.
  • the solar simulator is the key device used in testing the performance of high power concentrating power generation components on the production line.
  • a flash solar simulator is usually used.
  • the solar simulator is a light source device for generating simulated sunlight.
  • the spectral matching, transient stability, uniformity, collimation and illuminance of the simulated sunlight produced by the simulated sunlight are close to the performance of natural sunlight and comply with relevant international standards.
  • a simulated solar beam of sufficient diameter (eg beam diameter 2000MM) is required.
  • Producing large diameter parallel beams requires a large aperture collimating optics.
  • a large-diameter spherical or aspheric mirror is used as the collimating objective. Due to the difficulty in obtaining large-sized optical glass and its high cost, it is difficult to adopt.
  • metal aluminum castings as materials, to manufacture such mirror bodies by using large-scale numerical control precision lathes, and to attach high-reflection films on the reflective surface to improve the reflectivity of the mirror surface.
  • the surface processing property of aluminum is not good, the expansion coefficient of aluminum is high, the thermal stability is worse than that of glass, and the cost of aluminum castings is high.
  • the optical properties of mirrors made of aluminum have certain limitations.
  • the object of the present invention is to provide a large-diameter optical mirror of a granite-coated mirror body with better surface processing performance, high surface precision, low cost and high stability.
  • the invention relates to a film-type granite mirror body large-caliber optical mirror, which comprises an optical mirror body; the optical mirror body is made of granite with a low expansion coefficient.
  • the reflective surface of the optical mirror body is physically or chemically treated to form a reflective layer having a high reflectivity.
  • the physically treated reflective layer of the reflective surface of the optical mirror body is a high reflectivity aluminum or other metal thin film adhered to the reflective surface.
  • the physically treated reflective layer of the reflective surface of the optical mirror body is a metal film system that is vacuum plated with a high reflectivity on the reflective surface.
  • the chemically treated reflective layer of the reflective surface of the optical mirror body is a metal film system that is plated with a high reflectivity on the reflective surface.
  • the invention adopts a granite mirror body, a spherical surface and an aspheric collimating mirror body, the granite has a low expansion coefficient, the mechanical stability is close to the optical glass, the surface processing performance is good, and the surface precision is good. Higher, it can be produced by processing equipment and technology of optical glass, and large-sized granite materials are easy to obtain, which can greatly reduce the manufacturing cost.
  • Figure 1 is a front elevational view of the present invention.
  • Figure 2 is a side elevational view of the reflective surface of the mirror body of the present invention physically treated.
  • Figure 3 is a side elevational view of the reflective surface of the mirror body of the present invention chemically treated.
  • Fig. 4 is a view showing an application example of the present invention.
  • the present invention is a film-type granite mirror body large-diameter optical mirror, which comprises an optical mirror body 1, which can be a plane mirror body or a spherical collimating mirror body. Or aspherical collimating mirror body.
  • the optical mirror body 1 is made of granite having a low expansion coefficient.
  • the reflective surface of the optical mirror body 1 is physically treated, that is, a high-reflectivity aluminum thin film 11 is pasted on the reflective surface, thereby forming a reflective layer with high reflectivity on the reflective surface. 11.
  • the reflective surface of the mirror body 1 is physically treated, that is, a highly reflective metal film system is plated on the reflective surface to form a reflective layer with high reflectivity on the reflective surface. 11.
  • the invention provides a granite flat mirror body, a spherical surface and an aspherical mirror body by using granite instead of optical glass and metal aluminum material, and using precision processing technology of optical glass.
  • it is also necessary to physically process the granite plane mirror body, the spherical surface and the aspherical mirror body (such as sticking high reflectivity aluminum or other metal film, vacuum plating high reflectivity metal).
  • Membrane system or chemical treatment such as plating a high reflectivity metal film system
  • the granite optical mirror body 1 of the present invention can be applied to the following occasions:
  • the main point of the present invention is that the optical mirror body is made of granite having a low expansion coefficient.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • Sustainable Development (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种贴膜式花岗岩镜体大口径光学反射镜,包括一光学反射镜体(1)。光学反射镜体采用膨胀系数低的花岗岩制成。由于花岗岩膨胀系数低,机械稳定性与光学玻璃接近,采用花岗岩制成平面反射镜体、球面与非球面准直反射镜体时,表面加工性能好,面型精度高,可采用光学玻璃的加工设备与技术来生产。而且,大尺寸花岗岩材料易获取,可降低制造成本。

Description

贴膜式花岗岩镜体大口径光学反射镜
本申请要求于 2011 年10 月 14 日 提交中国专利局、申请号为201110311669.9、发明名称为“ 贴膜式花岗岩基底大口径光学反射镜 ”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于应用光学领域,特别是涉及一种贴膜式花岗岩镜体大口径光学反射镜。
背景技术
太阳模拟器是在生产线上测试高倍聚光发电组件性能中使用的关键设备。通常是采用闪光式太阳模拟器。该太阳模拟器是用来产生模拟太阳光的光源设备。其产生的模拟太阳光的光谱匹配性,瞬态稳定性,均匀性,准直性及光照度等与自然太阳光的性能接近的程度需要符合相关的国际标准。
为了测试大尺寸模组(如1400x1400mm),需要直径足够大的模拟太阳光束(如光束直径2000MM)。产生大口径的平行光束需要大口径的准直光学***。通常是采用大口径球面或非球面反射镜做准直物镜。由于大尺寸光学玻璃的不易获得及其高成本,故难以得到采用。目前国外提出采用金属铝铸造品为材料,利用大型数控精密车床来加工制造这种反射镜体,并在反射表面上贴高反射膜来提高镜面的反射率。但铝材的表面加工性能欠佳,铝的膨胀系数较高,热稳定性比玻璃差,且铝铸造品的成本较高。用铝材制造的反射镜的光学性能有一定的限制。
发明内容
本发明的目的在于提供一种表面加工性能较好、面型精度较高、成本较低、稳定性高的贴膜式花岗岩镜体大口径光学反射镜。
为实现上述目的,本发明的技术解决方案是:
本发明是一种贴膜式花岗岩镜体大口径光学反射镜,它包括一光学反射镜体;所述的光学反射镜体采用膨胀系数较低的花岗岩制成。
所述的光学反射镜体的反射面经物理或化学处理形成一层反射率高的反射层。
所述的光学反射镜体反射面的经物理处理的反射层为在反射面上粘贴高反射率的铝或其它金属薄膜。
所述的光学反射镜体反射面的经物理处理的反射层为在反射面上真空镀上高反射率的金属膜系。
所述的光学反射镜体反射面的经化学处理的反射层为在反射面上电镀上高反射率的金属膜系。
采用上述方案后,由于本发明采用花岗岩制成平面反射镜体、球面与非球面准直反射镜体,花岗岩膨胀系数较低,机械稳定性与光学玻璃接近,表面加工性能较好,面型精度较高,可采用光学玻璃的加工设备与技术来生产,而且大尺寸花岗岩材料易获取,可大大降低制造成本。
下面结合附图和具体实施例对本发明作进一步的说明。
附图说明
图1是本发明的正视图。
图2是本发明反射镜体的反射面经物理处理的侧视图。
图3是本发明反射镜体的反射面经化学处理的侧视图。
图4是本发明的应用实例图。
具体实施方式
如图1所示,本发明是一种贴膜式花岗岩镜体大口径光学反射镜,它包括一光学反射镜体1,该反射镜体1可以是平面反射镜体、或球面准直反射镜体、或非球面准直反射镜体。
所述的光学反射镜体1采用膨胀系数低的花岗岩制成。
如图2所示,所述的光学反射镜体1的反射面经物理处理,即,在反射面上粘贴高反射率的铝薄膜11,从而在反射面上形成一层反射率高的反射层11。
如图3所示,所述的反射镜体1的反射面经物理处理,即,在反射面上镀上高反射率的金属膜系,从而在反射面上形成一层反射率高的反射层11。
本发明提出一种使用花岗岩取代光学玻璃及金属铝材,用光学玻璃的精密加工技术来制造花岗岩平面反射镜体,球面与非球面反射镜体。为了有效地提高光的反射率,还需要在花岗岩平面反射镜体,球面与非球面反射镜体上进行物理处理(如粘贴高反射率的铝或其它金属薄膜、真空镀上高反射率的金属膜系)或化学处理(如电镀上高反射率的金属膜系),从而获得用作光学反射镜的技术途径 。
本发明的花岗岩光学反射镜体1可应用于以下场合:
1 )使用花岗岩平面反射镜作光束转向及其在光学仪器中的应用;
2 )使用花岗岩球面反射镜来产生光束聚焦或准直 (光路图如图4所示) 及其在光学仪器中的应用;
3 )使用花岗岩非球面反射镜来产生光束聚焦或准直及其在光学仪器中的应用;
4 )使用花岗岩球面反射镜在太阳模拟器中用作大口径光学准直反射镜;
5 )使用花岗岩非球面反射镜在太阳模拟器中用作大口径光学准直反射镜;
6 )使用花岗岩平面反射镜在以太阳模拟器为光源的高倍聚光太阳能发电模组组件性能测试光学***中用作大口径光束的转向。
本发明的重点就在于:所述的光学反射镜体采用膨胀系数较低的花岗岩制成。
以上所述,仅为本发明较佳实施例而已,故不能以此限定本发明实施的范围,即依本发明申请专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明专利涵盖的范围内。

Claims (6)

  1. 一种贴膜式花岗岩镜体大口径光学反射镜,它包括一光学反射镜体;其特征在于:所述的反射镜体采用膨胀系数较低的花岗岩制成。
  2. 根据权利要求1所述的贴膜式花岗岩镜体大口径光学反射镜,其特征在于:所述的光学反射镜体的反射面经物理或化学处理形成一层反射率高的反射层。
  3. 根据权利要求2所述的贴膜式花岗岩镜体大口径光学反射镜,其特征在于:所述的光学反射镜体反射面的经物理处理的反射层为在反射面上粘贴高反射率的铝薄膜或其它金属薄膜。
  4. 根据权利要求2所述的贴膜式花岗岩镜体大口径光学反射镜,其特征在于:所述的光学反射镜体反射面的经物理处理的反射层为在反射面上真空镀上高反射率的金属膜系。
  5. 根据权利要求2所述的贴膜式花岗岩镜体大口径光学反射镜,其特征在于:所述的光学反射镜体反射面的经化学处理的反射层为在反射面上电镀上高反射率的金属膜系。
  6. 根据权利要求1所述的贴膜式花岗岩镜体大口径光学反射镜,其特征在于:所述的光学反射镜体为平面反射镜体、或球面准直反射镜体、或非球面准直反射镜体。
PCT/CN2012/082665 2011-10-14 2012-10-10 贴膜式花岗岩镜体大口径光学反射镜 WO2013053312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110311669.9 2011-10-14
CN201110311669A CN102323631A (zh) 2011-10-14 2011-10-14 贴膜式花岗岩基底大口径光学反射镜

Publications (1)

Publication Number Publication Date
WO2013053312A1 true WO2013053312A1 (zh) 2013-04-18

Family

ID=45451409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082665 WO2013053312A1 (zh) 2011-10-14 2012-10-10 贴膜式花岗岩镜体大口径光学反射镜

Country Status (2)

Country Link
CN (1) CN102323631A (zh)
WO (1) WO2013053312A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323631A (zh) * 2011-10-14 2012-01-18 日芯光伏科技有限公司 贴膜式花岗岩基底大口径光学反射镜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456332A (en) * 1980-04-07 1984-06-26 Atlantic Richfield Company Method of forming structural heliostat
CN86211077U (zh) * 1986-12-31 1987-12-16 长春光学精密机械研究所 石基底反射镜
CN1842728A (zh) * 2003-08-26 2006-10-04 日立比亚机械股份有限公司 用于激光***中偏转单元的包括金刚石基底的反射镜、用于制造该反射镜的方法及用于激光***的偏转单元
CN201444210U (zh) * 2009-02-20 2010-04-28 徐光乾 太阳能反射镜
CN102323631A (zh) * 2011-10-14 2012-01-18 日芯光伏科技有限公司 贴膜式花岗岩基底大口径光学反射镜
CN102360089A (zh) * 2011-10-14 2012-02-22 日芯光伏科技有限公司 大口径花岗岩玻璃复合式球面与非球面反射镜及其制造方法
CN202305857U (zh) * 2011-10-14 2012-07-04 日芯光伏科技有限公司 大口径花岗岩玻璃复合式球面与非球面反射镜
CN202305854U (zh) * 2011-10-14 2012-07-04 日芯光伏科技有限公司 贴膜式花岗岩基底大口径光学反射镜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456332A (en) * 1980-04-07 1984-06-26 Atlantic Richfield Company Method of forming structural heliostat
CN86211077U (zh) * 1986-12-31 1987-12-16 长春光学精密机械研究所 石基底反射镜
CN1842728A (zh) * 2003-08-26 2006-10-04 日立比亚机械股份有限公司 用于激光***中偏转单元的包括金刚石基底的反射镜、用于制造该反射镜的方法及用于激光***的偏转单元
CN201444210U (zh) * 2009-02-20 2010-04-28 徐光乾 太阳能反射镜
CN102323631A (zh) * 2011-10-14 2012-01-18 日芯光伏科技有限公司 贴膜式花岗岩基底大口径光学反射镜
CN102360089A (zh) * 2011-10-14 2012-02-22 日芯光伏科技有限公司 大口径花岗岩玻璃复合式球面与非球面反射镜及其制造方法
CN202305857U (zh) * 2011-10-14 2012-07-04 日芯光伏科技有限公司 大口径花岗岩玻璃复合式球面与非球面反射镜
CN202305854U (zh) * 2011-10-14 2012-07-04 日芯光伏科技有限公司 贴膜式花岗岩基底大口径光学反射镜

Also Published As

Publication number Publication date
CN102323631A (zh) 2012-01-18

Similar Documents

Publication Publication Date Title
US20090122429A1 (en) Self-correcting optical elements for high-thermal-load optical systems
EP3917717A1 (en) Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same
Zhang et al. Next generation astronomical x-ray optics: high angular resolution, light weight, and low production cost
JP2001343576A (ja) 光学要素の支持構造、それを用いた露光装置及び半導体デバイスの製造方法
US9287016B2 (en) Reflective surface shape controllable mirror device, and method for manufacturing reflective surface shape controllable mirror
US20200103771A1 (en) Optical assembly having a thermally conductive component
US10345548B2 (en) Anodically bonded cells with optical elements
WO2013053313A1 (zh) 大口径反射镜及其制造方法
WO2013053312A1 (zh) 贴膜式花岗岩镜体大口径光学反射镜
JP5709865B2 (ja) Euvまたはuvリソグラフィ装置の部材及びその製造方法
CN111766675B (zh) 大口径光学改正镜的支撑结构
Riveros et al. Fabrication of high resolution and lightweight monocrystalline silicon x-ray mirrors
Smith et al. Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings
JP2021501353A (ja) 半導体フォトリソグラフィで使用するためのアセンブリ及び同一のものを製造する方法
US8807767B2 (en) Corner cube retroreflector device, method, and apparatus
US20060033984A1 (en) Optical mount with UV adhesive and protective layer
TWI266943B (en) A fabrication method for hollow integration rod suitable for high temperature operation
Awaki et al. Current status of development of lightweight x-ray mirror with carbon fiber reinforced plastic (CFRP)
CN202305854U (zh) 贴膜式花岗岩基底大口径光学反射镜
Foerster et al. Mirror development for CTA
Mende et al. Ion Beam Sputtering for plane and curved optics on 2-meter scale
Zhao et al. Forward kinematics of 3-RRR flexure parallel mechanism used in lens micro-adjustment
Canestrari et al. An overview on mirrors for Cherenkov telescopes manufactured by glass cold-shaping technology
CN109343213A (zh) 一种基于纳米多层膜的变形反射镜***
Zhang et al. Constellation-X mirror technology development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12840282

Country of ref document: EP

Kind code of ref document: A1