WO2013051721A1 - Thermally conductive composition for low outgassing - Google Patents

Thermally conductive composition for low outgassing Download PDF

Info

Publication number
WO2013051721A1
WO2013051721A1 PCT/JP2012/076040 JP2012076040W WO2013051721A1 WO 2013051721 A1 WO2013051721 A1 WO 2013051721A1 JP 2012076040 W JP2012076040 W JP 2012076040W WO 2013051721 A1 WO2013051721 A1 WO 2013051721A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
conductive composition
thermally conductive
heat conductive
heat
Prior art date
Application number
PCT/JP2012/076040
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 宮崎
健司 深尾
慶次 後藤
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48043874&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013051721(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to KR1020147007524A priority Critical patent/KR101917338B1/en
Priority to JP2013537579A priority patent/JP5970462B2/en
Priority to CN201280048468.7A priority patent/CN103890094B/en
Publication of WO2013051721A1 publication Critical patent/WO2013051721A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm

Definitions

  • the present invention relates to a composition having thermal conductivity.
  • the present invention relates to a heat dissipation method for dissipating generated heat to the outside, for example.
  • heat dissipation material is introduced between the heat generating electronic component and the heatsink, or between the heat generating electronic component and the metal heat transfer plate, and the heat generated from the electronic component is transmitted to other members. Therefore, a method that does not accumulate in electronic components is common.
  • heat radiating material heat radiating grease, a heat conductive sheet, a heat conductive adhesive, or the like is used.
  • a composition for a heat-dissipating sheet containing a vinyl polymer having at least one crosslinkable silyl group on average and a heat conductive filler is described (Patent Document 6).
  • organic tin-based catalysts are widely used as materials used for curing catalysts for these high thermal conductive adhesives. Recently, however, the toxicity of organic tin-based compounds has been pointed out. There is a demand for material design using a catalyst.
  • JP-A-3-162493 Japanese Patent Laid-Open No. 2005-60594 JP 2000-273426 A JP 2002-363429 A JP 2002-36312 A JP 2006-274094 A JP 2010-543331 A JP 2005-325314 A
  • the present invention provides a non-organic tin-based curable composition having high workability, fast curability, high thermal conductivity, and low outgassing properties.
  • the component (A) includes (A-1) a filler component having an average particle size of 0.1 ⁇ m or more and less than 2 ⁇ m, (A-2) a filler component having an average particle size of 2 ⁇ m or more and less than 20 ⁇ m, and (A-3) an average particle size.
  • a thermally conductive composition containing a filler component of 20 ⁇ m or more and 100 ⁇ m or less is provided.
  • the component (B) is a polyalkylene glycol having a hydrolyzable silyl group having a viscosity of 300 to 3,000 mPa ⁇ s and a weight average molecular weight of 3,000 to 25,000.
  • the component (B) is (B-1) polyalkylene glycol having hydrolyzable silyl groups at both ends of the molecular chain.
  • the component (B) is (B-2) polyalkylene glycol having a hydrolyzable silyl group at one end of the molecular chain.
  • the component (B) comprises (B-1) a polyalkylene glycol having hydrolyzable silyl groups at both ends of the molecular chain and (B-2) a polyalkylene having hydrolyzable silyl groups at one end of the molecular chain. It contains glycol.
  • the component (A) is in an amount of 60 to 95% by mass with respect to the entire thermally conductive composition, and the component (C) is 0.01 to 10% by mass with respect to the component (B).
  • the component (D) is an amount of 0.01 to 10% by mass relative to the component (B).
  • the hardening body obtained from the said heat conductive composition shows a flexible physical property.
  • the heat conductive composition is moisture curable.
  • the heat conductive composition is for low outgassing.
  • the heat conductive composition is for an optical pickup module.
  • a heat radiating material comprising the above heat conductive composition.
  • the adhesive agent containing the said heat conductive composition is provided.
  • the coating agent formed by containing the said heat conductive composition is provided.
  • produced from the electronic component to the exterior is provided by apply
  • composition of the present invention has high workability, fast curability, high thermal conductivity, and low outgassing properties.
  • a filler having high thermal conductivity and insulating properties such as alumina such as aluminum oxide, zinc oxide, aluminum nitride, and boron nitride is preferable.
  • the heat conductive filler may have a shape such as a spherical shape or a crushed shape.
  • the filler of component (A) used in this embodiment is (A-1) a filler component having an average particle size of 0.1 ⁇ m or more and less than 2 ⁇ m, (A-2) a filler component having an average particle size of 2 ⁇ m or more and less than 20 ⁇ m, (A -3) Three types of fillers such as a filler component having an average particle size of 20 ⁇ m to 100 ⁇ m may be used in combination.
  • the average particle size of the component (A-1) is preferably 0.1 ⁇ m or more and less than 2 ⁇ m, and preferably 0.2 ⁇ m or more and 1 ⁇ m or less from the viewpoint of high workability, fast curability, high thermal conductivity, and low outgassing properties. More preferably, it is 0.3 ⁇ m or more and 0.8 ⁇ m or less.
  • This average particle size may be, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, or 1.99 ⁇ m, any two of them It may be within the range.
  • the average particle size of the component (A-2) is preferably 2 ⁇ m or more and less than 20 ⁇ m, more preferably 2 ⁇ m or more and 10 ⁇ m or less, from the viewpoints of high workability, fast curability, high thermal conductivity, and low outgassing properties. It is most preferably 5 ⁇ m or more and 8 ⁇ m or less. This average particle size may be, for example, 2, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 13, 15, 18, or 19.9 ⁇ m, and in any two of these ranges It may be.
  • the average particle diameter of the component (A-3) is preferably 20 ⁇ m or more and 100 ⁇ m or less, more preferably 30 ⁇ m or more and 80 ⁇ m or less, and 35 ⁇ m from the viewpoint of high workability, fast curability, high thermal conductivity, and low outgassing properties.
  • the thickness is most preferably 60 ⁇ m or less.
  • This average particle size may be, for example, 20, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, or 100 ⁇ m, and may be in any two of these ranges. .
  • a volume average particle diameter may be adopted as the “average particle diameter”.
  • the mixing ratio of the above three types of component (A) is 5 to 25 masses of component (A-1) in a total of 100 mass% of (A-1), (A-2) and (A-3). %,
  • the component (A-2) is preferably 20 to 40% by mass, and the component (A-3) is preferably 45 to 65% by mass.
  • the component (A-1) is more preferably 10 to 20% by mass
  • the component (A-2) is more preferably 25 to 35% by mass
  • the component (A-3) is more preferably 50 to 60% by mass.
  • the component (A-1) may be, for example, 5, 10, 15, 20, 25, or 30% by mass, and may be in any two of these ranges.
  • the component (A-2) may be, for example, 15, 20, 25, 30, 35, 40, or 45% by mass, and may be in any two of these ranges.
  • the component (A-3) may be, for example, 40, 45, 50, 55, 60, 65, or 70% by mass, and may be in any two of these ranges.
  • the mixing ratio (mass%) of the components (A-1), (A-2) and (A-3) in the component (A) is (A-1) ⁇ (A-2) ⁇ (A-3) It is preferable to satisfy the relationship.
  • a thermally conductive filler is preferable.
  • the component (A) a thermally conductive filler having insulating properties is preferable from the viewpoint of application in the vicinity of an electronic component.
  • the electric resistance value is preferably 10 8 ⁇ m or more, and the electric resistance value is more preferably 10 10 ⁇ m or more. This electrical resistance value may be, for example, 10 8 , 10 9 , 10 10 , 10 11 , or 10 12 ⁇ m, and may be greater than or equal to any of these values, or within any two of these ranges. .
  • the electric resistance value means a 20 ° C. volume specific resistance measured according to JIS R 2141.
  • the content of the filler of the component (A) is preferably 60 to 98% by mass, more preferably 70 to 97% by mass with respect to the entire heat conductive composition of the present embodiment. If it is 60% by mass or more, the heat conduction performance is sufficient, and if it is 70% by mass or more, the heat conduction performance is particularly excellent. Moreover, if it is 98 mass% or less, the adhesiveness of an electronic component and a thermal radiation material will become large.
  • the content of the filler of the component (A) may be, for example, 60, 63, 65, 70, 75, 80, 85, 90, 94, 95, 97, or 98% by mass, and any two of them It may be within the range.
  • the polyalkylene glycol (B) having a hydrolyzable silyl group used in this embodiment refers to a polyalkylene glycol having a hydrolyzable group bonded to a silicon atom.
  • bonded with the both ends or one end of the molecular chain of polyalkylene glycol are mentioned.
  • the polyalkylene glycol include polyethylene glycol, polypropylene glycol, polybutylene glycol and the like. Of these, polypropylene glycol is preferred.
  • hydrolyzable group examples include those having a carboxyl group, a ketoxime group, an alkoxy group, an alkenoxy group, an amino group, an aminoxy group, an amide group, etc. (for example, “S-1000N” manufactured by Asahi Glass Co., Ltd.) “SAT-010” and “SAT-115” manufactured by Kaneka Corporation).
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • the viscosity of the component (B) is preferably from 300 to 3,000 mPa ⁇ s, more preferably from 500 to 1,500 mPa ⁇ s from the viewpoint of handling properties.
  • This viscosity may be, for example, 300, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 2000, 2500, or 3000 mPa ⁇ s, any two of these ranges It may be within.
  • the weight average molecular weight of the component (B) is preferably 3,000 to 20,000, more preferably 4,000 to 15,000.
  • the weight average molecular weight may be, for example, 3000, 4000, 4500, 5000, 5500, 6000, 7000, 10000, 12000, 15000, 17000, 17500, 18000, 18500, 19000, or 20000 mPa ⁇ s, either Or within two ranges.
  • a weight average molecular weight means the value measured by GPC (polystyrene conversion). Specifically, under the following conditions, tetrahydrofuran was used as a solvent, a GPC system (SC-8010 manufactured by Tosoh Corporation) was used, a calibration curve was prepared with commercially available standard polystyrene, and a weight average molecular weight was determined. . Flow rate: 1.0 ml / min Set temperature: 40 ° C Column configuration: “TSK guardcolumn MP ( ⁇ L)” manufactured by Tosoh Corp.
  • (B-1) polyalkylene glycol having hydrolyzable silyl groups at both ends of the molecular chain, or (B-2) polyalkylene glycol having hydrolyzable silyl groups at one end of the molecular chain is preferred.
  • vibration isolation it is preferable to use the component (B-1) and the component (B-2) in combination.
  • 5 to 40:60 to 95 is more preferable, and 10 to 30:70 to 90 is most preferable.
  • the mass ratio represented by (B-1) / (B-2) may be, for example, 0, 0.1, 1.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1. , Any two of them may be within the range.
  • the organic titanium-based curing catalyst of component (C) used in the present embodiment is preferably a compound that promotes the condensation reaction of the polyalkylene glycol having the hydrolyzable silyl group. Moreover, it is preferable to limit the ligand of a curing catalyst from a low outgassing viewpoint.
  • Organic titanium-based curing catalysts include tetra-i-propoxy titanium, tetra-n-butoxy titanium, titanium butoxide dimer, titanium tetra-2-ethylhexoxide, and other alkoxides, di-i-propoxy bis Ketoesters such as (acetylacetonato) titanium, titanium diisopropoxybis (acetylacetonate), titanium acetylacetonate, titanium tetraacetylacetonate, titanium diisopropoxybis (ethylacetoacetate), titanium di-2-ethyl Diolates such as hexoxybis (2-ethyl-3-hydroxyhexoxide), titanium-tetrakis (2-ethyl-3-hydroxyhexoxide), tetrakis-2-ethylhexoxytitanium, titanium diisopropoxybis (Triethanolamine Over G) such as hydroxyethyl aminate system, hydroxy acylate such as titanium lactate,
  • di-i-propoxy bis (acetylacetonato) titanium titanium tetra-2-ethylhexoxide, tetra-i-propoxytitanium, tetra-n-butoxytitanium, titanium Butoxide dimer, titanium tetra-2-ethylhexoxide, titanium di-2-ethylhexoxybis (2-ethyl-3-hydroxyhexoxide), titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide)
  • titanium butoxide dimer titanium tetra-2-
  • the content of the curing catalyst of the component (C) is preferably 0.01 to 10% by mass and more preferably 0.1 to 5% by weight with respect to the component (B) from the viewpoint of low outgas. If it is 0.1% by mass or more, the effect of promoting curing can be obtained with certainty, and if it is 10% by mass or less, a sufficient curing rate can be obtained.
  • This content may be, for example, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1, 1.5, 2, 2.5, 2.8, 3, 3.2, 3.5, 4, 5, 8, or 10% by weight. , Any two of them may be within the range.
  • the (D) component silane coupling agent used in this embodiment is used to improve curability and stability, and a known silane coupling agent can be used.
  • Silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilyltriethoxysilane N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyltri Methoxysilane, N-2- (aminoethyl) -3-aminopropylmethyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-
  • a silane coupling agent can be used 1 type or in combination of 2 or more types.
  • vinyltrimethoxysilane is preferable from the viewpoint of stability.
  • 3-glycidoxypropylmethyltrimethoxysilane and / or 3- (meth) acryloxypropyltrimethoxysilane are preferable, and 3- (meth) acryloxypropyltrimethoxysilane is preferable. More preferred.
  • the content of the silane coupling agent as the component (D) is preferably 0.1 to 20% by mass and more preferably 1 to 15% by mass with respect to the component (B). If it is 0.1% by mass or more, the storage stability is sufficient, and if it is 20% by mass or less, curability and adhesiveness are increased.
  • the content is preferably 0.1 to 5% by mass with respect to component (B).
  • the content is preferably 7 to 15% by mass with respect to the component (B).
  • the content may be, for example, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 20% by mass, It may be within any two of these ranges.
  • an organic solvent an antioxidant, a flame retardant, a plasticizer, a thixotropic agent, and the like can be used as necessary as additives.
  • the composition of the present embodiment is, for example, a heat conductive moisture curable resin composition.
  • the heat conductive moisture curable resin composition of the present embodiment can be cured by moisture in the air.
  • the composition of the present embodiment is preferably such that the cured body exhibits flexible physical properties in that it is applied to a member fixed with high precision.
  • the hardness measured by a durometer Asker hardness meter “CSC2 type” is preferably 90 or less, and more preferably 50 or less. It is preferable that the hardness is 90 or less from the viewpoint that distortion due to the cured product does not occur at all.
  • composition of the present embodiment is applied to, for example, a laser diode using a precision device such as an arithmetic circuit such as a CPU or MPU, or an optical pickup module.
  • a precision device such as an arithmetic circuit such as a CPU or MPU, or an optical pickup module.
  • the composition of this embodiment is used as a heat dissipation material such as a metal heat transfer plate, for example.
  • the composition of the present embodiment is used for the precision instrument and the like, it is preferable to suppress contamination to electronic components.
  • One guideline for measuring the contamination of electronic components is to measure the outgas component of the cured product of the composition of the present embodiment. If the total amount of outgas components from the cured body is small, the contamination of electronic components can be reduced.
  • the cured product was collected in a vial, replaced and sealed with nitrogen gas, the vial was heated at 70 ° C.
  • the component with m / z value 50 to 500 is preferably 15% or less, preferably 10% or less It is more preferable that In this mass spectrometry,% means% of the peak area of m / z value.
  • One embodiment of the present invention is a cured product obtained by curing the thermal conductive composition. This cured body is excellent in flexibility and low outgassing properties. Moreover, one Embodiment of this invention is the suppression method of the outgas in an electronic component using the said hardening body.
  • Example 1 Polypropylene glycol having a methoxysilyl group at both ends (base polymer A, viscosity 800 mPa ⁇ s, weight average molecular weight 5,000, Kaneka “SAT115”) 30 g, polypropylene glycol having a methoxysilyl group at one end (base polymer B, Viscosity 1,300 mPa ⁇ s, weight average molecular weight 18,000, Asahi Glass Co., Ltd. “S-1000N”) 70 g, titanium-based curing catalyst A (di-i-propoxy bis (acetylacetonato) titanium, Nippon Soda Co., Ltd.
  • base polymer A viscosity 800 mPa ⁇ s, weight average molecular weight 5,000, Kaneka “SAT115”
  • base polymer B Viscosity 1,300 mPa ⁇ s, weight average molecular weight 18,000, Asahi Glass Co., Ltd.
  • S-1000N titanium-based
  • thermal conductive filler A-1 (aluminum oxide having an average particle size of 0.5 ⁇ m, electrical resistance of 10 11 ⁇ m or more," AA-05 “manufactured by Sumitomo Chemical Co., Ltd.) 240 g, thermal conductive filler A- 2 (aluminum oxide having an average particle diameter of 5 [mu] m, the electric resistance value is 10 11 [Omega] m or more, manufactured by Denki Kagaku Kogyo Kabushiki Kaisha "D W-05 ") 480 g, the thermally conductive filler A-3 (aluminum oxide having an average particle diameter of 45 [mu] m, the electric resistance value is 10 11 [Omega] m or more, manufactured by Denki Kagaku Kogyo Kabushiki Kaisha" DAW-45S ”) 880 g, vinyltrimethoxysilane 3g Were mixed to prepare a heat conductive resin composition.
  • Example 2 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium curing catalyst A3 g, 240 g of heat conductive filler A-1, 480 g of heat conductive filler A-2, heat conduction
  • the heat conductive resin composition was prepared by mixing 880 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
  • Example 3 10 g of polypropylene glycol having methoxysilyl groups at both ends, 90 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst A3 g, 240 g of heat conductive filler A-1, 480 g of heat conductive filler A-2, heat conduction
  • the heat conductive resin composition was prepared by mixing 880 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
  • Example 4 100 g of polypropylene glycol having a methoxysilyl group at one end, 3 g of titanium-based curing catalyst A, 240 g of heat conductive filler A-1, 480 g of heat conductive filler A-2, 880 g of heat conductive filler A-3, 3 g of vinyltrimethoxysilane Were mixed to prepare a heat conductive resin composition.
  • Example 5 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst A3 g, 160 g of heat conductive filler A-1, 480 g of heat conductive filler A-2, heat conduction 960 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane were mixed to prepare a heat conductive resin composition.
  • Example 6 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, 3 g of titanium-based curing catalyst, 320 g of heat conductive filler A-1, 480 g of heat conductive filler A-2, heat conduction 800 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane were mixed to prepare a heat conductive resin composition.
  • Example 7 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, 3 g of titanium-based curing catalyst A, 400 g of thermal conductive filler A-1, 480 g of thermal conductive filler A-2, thermal conductivity A heat conductive resin composition was prepared by mixing 720 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
  • Example 8 20 g of polypropylene glycol having a methoxysilyl group at both ends, 80 g of polypropylene glycol having a methoxysilyl group at one end, 3 g of titanium-based curing catalyst A, 160 g of heat conductive filler A-1, 560 g of heat conductive filler A-2, heat conduction
  • the heat conductive resin composition was prepared by mixing 880 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
  • Example 9 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst A3 g, 320 g of heat conductive filler A-1, 400 g of heat conductive filler A-2, heat conduction
  • the heat conductive resin composition was prepared by mixing 880 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
  • Example 10 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium curing catalyst A3 g, 240 g of heat conductive filler A-1, 320 g of heat conductive filler A-2, heat conduction Thermally conductive resin composition was prepared by mixing 1040 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane.
  • Example 11 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium curing catalyst A3 g, 240 g of heat conductive filler A-1, 400 g of heat conductive filler A-2, heat conduction 960 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane were mixed to prepare a heat conductive resin composition.
  • Example 12 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst A3 g, 240 g of heat conductive filler A-1, 560 g of heat conductive filler A-2, heat conduction 800 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane were mixed to prepare a heat conductive resin composition.
  • Example 13 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium curing catalyst A3 g, 240 g of heat conductive filler A-1, 640 g of heat conductive filler A-2, heat conduction A heat conductive resin composition was prepared by mixing 720 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
  • Example 14 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst A3 g, 264 g of heat conductive filler A-1, 530 g of heat conductive filler A-2, heat conduction 968 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane were mixed to prepare a heat conductive resin composition.
  • Example 15 20 g of polypropylene glycol having a methoxysilyl group at both ends, 80 g of polypropylene glycol having a methoxysilyl group at one end, titanium-based curing catalyst B (titanium tetra-2-ethylhexoxide, “Orgatechs TA-30” manufactured by Matsumoto Fine Chemical Co., Ltd. )) 0.5 g, heat conductive filler A-1 264 g, heat conductive filler A-2 530 g, heat conductive filler A-3 968 g, 3-methacryloxypropyltrimethoxysilane 13 g A resin composition was prepared.
  • Example 16 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst C (titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), Matsumoto "Orgatics TC-200" manufactured by Fine Chemical Co., Ltd.) 0.5g, Thermal Conductive Filler A-1 264g, Thermal Conductive Filler A-2 530g, Thermal Conductive Filler A-3 968g, 3-Methacryloxypropyltrimethoxysilane 13 g was mixed to prepare a heat conductive resin composition.
  • titanium-based curing catalyst C titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), Matsumoto "Orgatics TC-200" manufactured by Fine Chemical Co., Ltd.
  • Example 17 20 g of polypropylene glycol having a methoxysilyl group at both ends, 80 g of polypropylene glycol having a methoxysilyl group at one end, 0.5 g of titanium-based curing catalyst D (tetraisopropyl titanate, “Orgatics TA-10” manufactured by Matsumoto Fine Chemicals), A heat conductive resin composition was prepared by mixing 264 g of heat conductive filler A-1, 530 g of heat conductive filler A-2, 968 g of heat conductive filler A-3, and 13 g of 3-methacryloxypropyltrimethoxysilane. .
  • Example 18 20 g of polypropylene glycol having a methoxysilyl group at both ends, 80 g of polypropylene glycol having a methoxysilyl group at one end, 0.5 g of titanium-based curing catalyst E (titanium acetylacetonate, “Orgatechs TC-100” manufactured by Matsumoto Fine Chemical Co., Ltd.) , 264 g of heat conductive filler A-1, 530 g of heat conductive filler A-2, 968 g of heat conductive filler A-3, 13 g of 3-methacryloxypropyltrimethoxysilane were mixed to prepare a heat conductive resin composition. did.
  • titanium-based curing catalyst E titanium acetylacetonate, “Orgatechs TC-100” manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Example 19 20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst E (titanium acetylacetonate, “Orgatechs TC-100” manufactured by Matsumoto Fine Chemical Co., Ltd.), heat A heat conductive resin composition was prepared by mixing 264 g of conductive filler A-1, 530 g of heat conductive filler A-2, 968 g of heat conductive filler A-3, and 13 g of 3-methacryloxypropyltrimethoxysilane.
  • titanium-based curing catalyst E titanium acetylacetonate, “Orgatechs TC-100” manufactured by Matsumoto Fine Chemical Co., Ltd.
  • thermoly conductive filler A-1 aluminum oxide having an average particle size of 0.5 ⁇ m, electrical resistance 10 11 [Omega] m or more
  • heat conductive filler a-2 average particle size 5 ⁇ m aluminum oxide, the electric resistance value is 10 11 [Omega] m or more
  • thermally conductive filler a-3 average particle size 45 ⁇ m
  • a heat conductive resin composition was prepared by mixing 720 g of aluminum oxide having an electric resistance value of 10 11 ⁇ m or more, 3 g of vinyltrimethoxysilane, and 2 g of 3-glycidoxypropyltrimethoxysilane.
  • thermoly conductive resin composition 100 g of polypropylene glycol having methoxysilyl groups at both ends, 3 g of bismuth-based curing catalyst, 80 g of thermally conductive filler A-1, 1520 g of thermally conductive filler A-2, 3 g of vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxy
  • a thermally conductive resin composition was prepared by mixing 2 g of silane.
  • thermoly conductive resin composition 100 g of polypropylene glycol having methoxysilyl groups at both ends, 3 g of bismuth-based curing catalyst, 10 g of thermal conductive filler A-1, 1590 g of thermal conductive filler A-2, 3 g of vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxy
  • a thermally conductive resin composition was prepared by mixing 2 g of silane.
  • thermoly conductive resin composition 100 g of polypropylene glycol having methoxysilyl groups at both ends, 3 g of bismuth-based curing catalyst, 480 g of thermally conductive filler A-1, 1120 g of thermally conductive filler A-3, 3 g of vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxy
  • a thermally conductive resin composition was prepared by mixing 2 g of silane.
  • thermoly conductive resin composition 100 g of polypropylene glycol having methoxysilyl groups at both ends, 3 g of bismuth-based curing catalyst, 480 g of thermally conductive filler A-2, 1120 g of thermally conductive filler A-3, 3 g of vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxy
  • a thermally conductive resin composition was prepared by mixing 2 g of silane.
  • Example 20 to 22 It implemented like Example 1 except having prepared the heat conductive resin composition of the composition shown in Table 6.
  • Example 8-12 The same procedure as in Example 1 was performed except that a heat conductive resin composition having the composition shown in Table 7 was prepared.
  • Average particle size evaluation The average particle size was measured by a laser diffraction / scattering method using “SALD-2200 manufactured by Shimadzu Corporation”.
  • thermal conductivity evaluation Each composition obtained above was used to evaluate thermal conductivity. Evaluation of thermal conductivity was measured at 25 ° C. by the laser flash method using “LFA447 manufactured by NETZSCH”. The thermal conductivity is a value representing the ease of heat transfer in the material, and a higher thermal conductivity is preferred.
  • Tack-free evaluation The composition obtained above was poured into a mold having a width of 20 mm, a length of 20 mm, and a thickness of 5 mm under an atmosphere of 23 ° C. and 50% RH, and exposed to the finger. The time from pouring until it did not adhere to the finger was defined as a tack-free time and evaluated.
  • the tack-free time is one guideline for workability and curability, and if the tack-free time is too long, the productivity is lowered, and if the tack-free time is too short, curing starts during the work and causes defects.
  • the range of tack-free time required depending on the work situation varies, but from the viewpoint of good workability, 10 to 70 minutes is preferable, and 40 to 60 minutes is more preferable.
  • Viscosity measurement It is preferable that the viscosity shows an appropriate value.
  • the evaluation of the viscosity was performed using “Anton Paar Rheometer (model number: MCR301)”. Viscosity measurement is one guideline for handling properties. If the viscosity is too high, the coating property is poor and the work cannot be performed. In order to improve the thermal conductivity, it is preferable to increase the filler filling amount. However, since the handling property is deteriorated, the viscosity is preferably small. In order to prevent the liquid component from flowing or contaminating the electronic component, the viscosity is preferably large.
  • Outgas measurement 0.2 g of each composition was collected in a 20 mL vial and replaced with nitrogen gas and sealed. 70 ° C. ⁇ 4 Hrs. The heated gas layer was measured by headspace-gas chromatograph-mass spectrometry (HS-GC-MS). Outgassing properties were not a problem when components with an m / z value of 50 to 500 in the total amount of ions detected were 15% or less, and there were no particular problems when components were 10% or less. % Is the% of the peak area of the detected m / z value. The reason why the outgassing property is not a problem when it is 15% or less is that it was a reference value that does not cause a problem when the contamination property to the electronic component was confirmed.
  • the present invention exhibits excellent effects.
  • Examples 1 to 3 and Examples 5 to 21 show more excellent effects because the mixing ratio of the three types of component (A) and the two types of component (B) is within a more preferable range.
  • the present heat conductive composition is, for example, a heat conductive moisture curable resin composition.
  • This thermal conductive composition has high workability and high thermal conductivity, and has excellent flexibility and fast curing after curing, and is ideal as a heat dissipation medium for electronic components fixed with high precision. It is.
  • the heat conductive composition has high productivity because the curing speed is improved.
  • This heat conductive composition shows the softness
  • An optical pickup module for example, guides outgoing light from a light emitting element such as a laser diode to an objective lens through various lenses, prisms, mirrors, etc. Light is received by a photodiode or the like via a lens, prism, mirror, or the like, and converted into a photoelectric signal.
  • the optical pickup module is used for recording / reproducing of an optical disc.
  • this heat conductive composition is used as a heat dissipation material in an optical pickup module (for example, an application agent for an electronic component for fixing an objective lens or an adhesive for bonding an electronic component), it adheres to various lenses. Since the amount of outgas decreases, the optical characteristics of various lenses are unlikely to deteriorate.
  • This heat conductive composition can be used as, for example, a heat dissipation material, an adhesive, or a coating agent.
  • This thermally conductive composition can be used as, for example, a one-component room temperature moisture-curing heat dissipation material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a composition that is highly workable, fast-curing, highly thermally conductive, and low-outgassing. A thermally conductive composition containing: (A) an insulating thermally conductive filler; (B) a polyalkylene glycol having a hydrolysable silyl group; (C) an organotitanium-based curing catalyst; and (D) a silane coupling agent; the (A) component containing: (A-1) a filler component having a mean particle diameter of 0.1 μm to less than 2 μm; (A-2) a filler component having a mean particle diameter of 2 μm to less than 20 μm; and (A-3) a filler component having a mean particle diameter of 20 μm to 100 μm. Preferably, the (B) component is (B-1) a polyalkylene glycol having a hydrolysable silyl group at both ends of a molecular chain or (B-2) a polyalkylene glycol having a hydrolysable silyl group at one end of a molecular chain. This composition can be used as a heat dissipation material, an adhesive agent, or a coating agent.

Description

低アウトガス用熱伝導性組成物Thermally conductive composition for low outgas
 本発明は、熱伝導性を有する組成物に関する。本発明は、例えば、発熱した熱を外部へ放熱させる放熱方法に関する。 The present invention relates to a composition having thermal conductivity. The present invention relates to a heat dissipation method for dissipating generated heat to the outside, for example.
 近年、電子部品の集積化、高密度化、高性能化に伴い、電子部品自身の発熱量が大きくなってきている。熱によって、電子部品は、その性能が著しく低下、もしくは故障し得ることから、電子部品の効率的な放熱が重要な技術になってきている。 In recent years, with the integration, density, and performance of electronic components, the amount of heat generated by the electronic components themselves has increased. Since the performance of electronic components can be significantly degraded or broken by heat, efficient heat dissipation of electronic components has become an important technology.
 電子部品の放熱方法として、発熱する電子部品と放熱器の間や、発熱する電子部品と金属製伝熱板との間に放熱材を導入し、電子部品から発生する熱を他の部材に伝えることにより、電子部品に蓄積させない方法が一般的である。この種の放熱材として放熱グリース、熱伝導性シート、熱伝導性接着剤等が用いられている。 As a heat dissipation method for electronic components, heat dissipation material is introduced between the heat generating electronic component and the heatsink, or between the heat generating electronic component and the metal heat transfer plate, and the heat generated from the electronic component is transmitted to other members. Therefore, a method that does not accumulate in electronic components is common. As this type of heat radiating material, heat radiating grease, a heat conductive sheet, a heat conductive adhesive, or the like is used.
 放熱グリースを用いた場合は、発熱量が多量であるため、グリース成分が蒸発してしまったり、グリース油と熱伝導性フィラーが分離してしまったりする。蒸発成分は、電子部品に悪影響を及ぼす可能性があるため好ましくない。フィラーと分離したグリース油は、電子部品から流出して電子部品を汚染する恐れがある(特許文献1参照)。 When heat-release grease is used, the amount of heat generated is large, which causes the grease components to evaporate or the grease oil and thermally conductive filler to separate. The evaporation component is not preferable because it may adversely affect electronic components. The grease oil separated from the filler may flow out of the electronic component and contaminate the electronic component (see Patent Document 1).
 熱伝導性シートを用いると、成分の流出の問題は解決するが、電子部品と放熱器等が、固体のシート状の物に押し付けられるため、両間の密着性に不安が残り、電子部品がずれてしまう恐れがある(特許文献2参照)。 The use of a heat conductive sheet solves the problem of component spillage, but the electronic parts and heatsink are pressed against a solid sheet of material, so there is concern about the adhesion between them, There is a risk of shifting (see Patent Document 2).
 熱伝導性接着剤を用いると、その硬化性により、蒸発したり、液状成分が流れたり、電子部品を汚染したりすることはない。しかし、硬化の際に電子部品に応力がかかり、電子部品がずれてしまう恐れがある。接着した物を取り外す作業は困難であり、更に電子部品を破壊してしまう恐れがある(特許文献3参照)。 If a heat conductive adhesive is used, it will not evaporate, liquid components will flow, or electronic parts will not be contaminated due to its curability. However, stress is applied to the electronic component during curing, and the electronic component may be displaced. The operation of removing the bonded object is difficult, and there is a risk of destroying the electronic component (see Patent Document 3).
 それらに対して、電子部品と放熱材の間の表面部分のみが硬化し、内部には未硬化部分が残る熱伝導性接着剤が提案された。この熱伝導性接着剤は、電子部品と放熱材との密着性に優れ、内部に未硬化部分があるので、電子部品と放熱材との間の応力を取り除くことができ、取り外し作業を簡便にできる(特許文献4,5)。 In contrast, a heat conductive adhesive has been proposed in which only the surface portion between the electronic component and the heat dissipation material is cured and the uncured portion remains inside. This heat conductive adhesive has excellent adhesion between the electronic component and the heat dissipation material, and since there is an uncured part inside, it can remove the stress between the electronic component and the heat dissipation material, making the removal work easy Yes (Patent Documents 4 and 5).
 架橋性シリル基を平均して少なくとも一個有するビニル系重合体、及び、熱伝導性充填材を含有することを特徴とする放熱シート用組成物が記載されている(特許文献6)。
 架橋性シリル基を平均して少なくとも一個有するビニル系重合体、及び、熱伝導性充填材を含有し、硬化前の粘度が3000Pa・s以下の、流動性を有する室温にて硬化可能な組成物を発熱体と放熱体との間に塗布した後、発熱体と放熱体との間にて硬化させてなる、硬化後の厚みが0.5mm未満の熱伝導材料が記載されている(特許文献7)。
 シロキサン結合を形成することにより架橋し得るケイ素含有基を有するポリオキシアルキレン系重合体および/ またはシロキサン結合を形成することにより架橋し得るケイ素含有基を有する( メタ) アクリル酸エステル系重合体、α 位に置換基を有するβ - ジカルボニル化合物でキレート化したチタニウムキレート、窒素置換基と加水分解性ケイ素基を有する化合物、を含有することを特徴とする硬化性組成物が記載されている(特許文献8)。
A composition for a heat-dissipating sheet containing a vinyl polymer having at least one crosslinkable silyl group on average and a heat conductive filler is described (Patent Document 6).
A composition containing a vinyl polymer having an average of at least one crosslinkable silyl group, and a thermally conductive filler, and having a viscosity before curing of 3000 Pa · s or less and having a fluidity at room temperature. Is applied between the heat generating body and the heat radiating body, and then cured between the heat generating body and the heat radiating body, and a heat conductive material having a thickness after curing of less than 0.5 mm is described (Patent Document) 7).
A polyoxyalkylene polymer having a silicon-containing group that can be crosslinked by forming a siloxane bond and / or a (meth) acrylate polymer having a silicon-containing group that can be crosslinked by forming a siloxane bond, α A curable composition characterized in that it contains a titanium chelate chelated with a β-dicarbonyl compound having a substituent at the position, and a compound having a nitrogen substituent and a hydrolyzable silicon group (patent) Reference 8).
 最近では、更なる高熱伝導性に加えて絶縁性が要求され、用い得る熱伝導性フィラーが制限され、フィラーの高充填化が必要となってきている。 Recently, insulation is required in addition to further high thermal conductivity, and the heat conductive filler that can be used is limited, and it is necessary to increase the filling of the filler.
 更に、これら高熱伝導性接着剤の硬化触媒に使用されている材料として、主に有機錫系触媒が広く使用されているが、最近では有機錫系化合物の毒性が指摘されており、非有機錫系触媒を用いた材料設計が求められている。 Furthermore, organic tin-based catalysts are widely used as materials used for curing catalysts for these high thermal conductive adhesives. Recently, however, the toxicity of organic tin-based compounds has been pointed out. There is a demand for material design using a catalyst.
特開平3-162493号公報JP-A-3-162493 特開2005-60594号公報Japanese Patent Laid-Open No. 2005-60594 特開2000-273426号公報JP 2000-273426 A 特開2002-363429号公報JP 2002-363429 A 特開2002-363412号公報JP 2002-36312 A 特開2006-274094号公報JP 2006-274094 A 特開2010-543331号公報JP 2010-543331 A 特開2005-325314号公報JP 2005-325314 A
 しかし、従来の熱伝導性接着剤は、未硬化成分が存在するため接着性に不安が残る、内部が未硬化であるために硬化時間が遅い、といった課題があった。更に絶縁性を付与した放熱材では、得られる熱伝導率に限りがあった。又、電子部品の小型化や製品の細部での使用のため、熱伝導性接着剤成分からのアウトガスによる、電子部品への汚染が指摘されてきている。アウトガスとは、例えば、ガス状汚染物質等の揮発成分をいう。加えて、環境上の問題で、非有機錫系触媒を使用しない材料設計が必要とされてきている。 However, conventional heat conductive adhesives have problems such as the uncured component present and uneasy adhesion, and the curing time is slow because the interior is uncured. Furthermore, in the heat radiating material which provided insulation, the heat conductivity obtained was limited. In addition, due to downsizing of electronic parts and use in product details, it has been pointed out that the electronic parts are contaminated by outgas from the heat conductive adhesive component. Outgas refers to, for example, volatile components such as gaseous pollutants. In addition, due to environmental problems, a material design that does not use a non-organotin catalyst has been required.
 本発明は、上記課題を解決するため、高い作業性、速い硬化性、高い熱伝導性、低アウトガス性を有する非有機錫系硬化型の組成物を提供するものである。 In order to solve the above-mentioned problems, the present invention provides a non-organic tin-based curable composition having high workability, fast curability, high thermal conductivity, and low outgassing properties.
 本発明者らは熱伝導性接着剤に関する研究する中で、下記(A')~(D')成分を含有する樹脂組成物を調整し、その物性を評価した。
  (A')フィラー
  (B')加水分解性シリル基を有するポリアルキレングリコール
  (C')硬化触媒
  (D')シランカップリング剤
 しかしながら、単純にこれらの成分を混合しただけでは、高い作業性、速い硬化性、高い熱伝導性、及び低アウトガス性を有する樹脂組成物が得られないことに気がついた。
During the study on the heat conductive adhesive, the present inventors prepared resin compositions containing the following components (A ′) to (D ′) and evaluated the physical properties.
(A ′) Filler (B ′) Polyalkylene glycol having a hydrolyzable silyl group (C ′) Curing catalyst (D ′) Silane coupling agent However, by simply mixing these components, high workability, It was noticed that a resin composition having fast curability, high thermal conductivity, and low outgassing properties could not be obtained.
 その後、本発明者らはさらなる研究を行う過程で、上記の(A)~(D)成分を含有する樹脂組成物が、「有機チタン系硬化触媒」及び「平均粒径の異なる3種類の絶縁性を有する熱伝導性フィラー成分」を含有しているときにのみ、高い作業性、速い硬化性、高い熱伝導性、及び低アウトガス性を達成できることを発見した。このような「有機チタン系硬化触媒」及び「平均粒径の異なる3種類のフィラー成分」を併用すること、及びそれによって得られる効果は、上記の特許文献1-8には記載されておらず、本願発明者らが初めて明らかにしたことである。 Thereafter, in the course of further research, the present inventors have developed a resin composition containing the above components (A) to (D) into “organic titanium-based curing catalyst” and “three types of insulation having different average particle diameters”. It has been discovered that high workability, fast curability, high thermal conductivity, and low outgassing property can be achieved only when the heat conductive filler component having the property "is contained. The combined use of such “organic titanium-based curing catalyst” and “three types of filler components having different average particle diameters” and the effects obtained thereby are not described in the above Patent Documents 1-8. This is what the inventors of the present application have made clear for the first time.
 即ち本発明によれば、下記(A)~(D)成分、
  (A)絶縁性を有する熱伝導性フィラー、
  (B)加水分解性シリル基を有するポリアルキレングリコール、
  (C)有機チタン系硬化触媒、
  (D)シランカップリング剤、
 を含有し、
 前記(A)成分は、(A-1)平均粒径0.1μm以上2μm未満のフィラー成分、(A-2)平均粒径2μm以上20μm未満のフィラー成分、及び(A-3)平均粒径20μm以上100μm以下のフィラー成分を含有する、熱伝導性組成物が提供される。
That is, according to the present invention, the following components (A) to (D):
(A) a thermally conductive filler having insulating properties;
(B) a polyalkylene glycol having a hydrolyzable silyl group,
(C) an organic titanium-based curing catalyst,
(D) a silane coupling agent,
Containing
The component (A) includes (A-1) a filler component having an average particle size of 0.1 μm or more and less than 2 μm, (A-2) a filler component having an average particle size of 2 μm or more and less than 20 μm, and (A-3) an average particle size. A thermally conductive composition containing a filler component of 20 μm or more and 100 μm or less is provided.
 なお好ましくは、上記(B)成分は、粘度300~3,000mPa・s、重量平均分子量3,000~25,000の加水分解性シリル基を有するポリアルキレングリコールである。好ましくは、上記(B)成分は、(B-1)分子鎖両末端に加水分解性シリル基を有するポリアルキレングリコールである。好ましくは、上記(B)成分は、(B-2)分子鎖片末端に加水分解性シリル基を有するポリアルキレングリコールである。好ましくは、上記(B)成分は、(B-1)分子鎖両末端に加水分解性シリル基を有するポリアルキレングリコール及び(B-2)分子鎖片末端に加水分解性シリル基を有するポリアルキレングリコールを含有してなる。好ましくは、上記(A)成分は、熱伝導性組成物全体に対して60~95質量%の量であり、上記(C)成分は(B)成分に対して0.01~10質量%の量であり、上記(D)成分は(B)成分に対して0.01~10質量%の量である。好ましくは、上記熱伝導性組成物から得られる硬化体は、柔軟な物性を示す。好ましくは、上記熱伝導性組成物は、湿気硬化型である。好ましくは、上記熱伝導性組成物は、低アウトガス用である。好ましくは、上記熱伝導性組成物は、光ピックアップモジュール用である。 More preferably, the component (B) is a polyalkylene glycol having a hydrolyzable silyl group having a viscosity of 300 to 3,000 mPa · s and a weight average molecular weight of 3,000 to 25,000. Preferably, the component (B) is (B-1) polyalkylene glycol having hydrolyzable silyl groups at both ends of the molecular chain. Preferably, the component (B) is (B-2) polyalkylene glycol having a hydrolyzable silyl group at one end of the molecular chain. Preferably, the component (B) comprises (B-1) a polyalkylene glycol having hydrolyzable silyl groups at both ends of the molecular chain and (B-2) a polyalkylene having hydrolyzable silyl groups at one end of the molecular chain. It contains glycol. Preferably, the component (A) is in an amount of 60 to 95% by mass with respect to the entire thermally conductive composition, and the component (C) is 0.01 to 10% by mass with respect to the component (B). The component (D) is an amount of 0.01 to 10% by mass relative to the component (B). Preferably, the hardening body obtained from the said heat conductive composition shows a flexible physical property. Preferably, the heat conductive composition is moisture curable. Preferably, the heat conductive composition is for low outgassing. Preferably, the heat conductive composition is for an optical pickup module.
 また本発明によれば、上記熱伝導性組成物を含有してなる、放熱材が提供される。また本発明によれば、上記熱伝導性組成物を含有してなる、接着剤が提供される。また本発明によれば、上記熱伝導性組成物を含有してなる、塗布剤が提供される。また本発明によれば、上記熱伝導性組成物を電子部品に塗布することにより、電子部品から発生した熱を外部へ放熱させる放熱方法が提供される。 Further, according to the present invention, there is provided a heat radiating material comprising the above heat conductive composition. Moreover, according to this invention, the adhesive agent containing the said heat conductive composition is provided. Moreover, according to this invention, the coating agent formed by containing the said heat conductive composition is provided. Moreover, according to this invention, the thermal radiation method which thermally radiates the heat generate | occur | produced from the electronic component to the exterior is provided by apply | coating the said heat conductive composition to an electronic component.
 本発明の組成物は、高い作業性、速硬化性、高熱伝導性、低アウトガス性を有する。 The composition of the present invention has high workability, fast curability, high thermal conductivity, and low outgassing properties.
 以下、本発明の実施の形態について詳細に説明する。なお、同様な内容については繰り返しの煩雑を避けるために、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail. In addition, in order to avoid the repetition complexity about the same content, description is abbreviate | omitted suitably.
 本実施形態で使用する(A)成分のフィラーとしては、酸化アルミニウム等のアルミナ、酸化亜鉛、窒化アルミ、窒化ホウ素等、熱伝導性が高く、絶縁性を有するフィラーが好ましい。熱伝導性フィラーは、球状、破砕状等の形状のものであってよい。 As the filler of the component (A) used in this embodiment, a filler having high thermal conductivity and insulating properties such as alumina such as aluminum oxide, zinc oxide, aluminum nitride, and boron nitride is preferable. The heat conductive filler may have a shape such as a spherical shape or a crushed shape.
 本実施形態で使用する(A)成分のフィラーは、(A-1)平均粒径0.1μm以上2μm未満のフィラー成分、(A-2)平均粒径2μm以上20μm未満のフィラー成分、(A-3)平均粒径20μm以上100μm以下のフィラー成分といった、3種類のフィラーを併用してもよい。 The filler of component (A) used in this embodiment is (A-1) a filler component having an average particle size of 0.1 μm or more and less than 2 μm, (A-2) a filler component having an average particle size of 2 μm or more and less than 20 μm, (A -3) Three types of fillers such as a filler component having an average particle size of 20 μm to 100 μm may be used in combination.
 (A-1)成分の平均粒径は、高い作業性、速い硬化性、高い熱伝導性、及び低アウトガス性の観点からは、0.1μm以上2μm未満が好ましく、0.2μm以上1μm以下がより好ましく、0.3μm以上0.8μm以下が最も好ましい。この平均粒径は、例えば、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.2、1.4、1.6、1.8、又は1.99μmであってもよく、それらいずれか2つの範囲内であってもよい。(A-2)成分の平均粒径は、高い作業性、速い硬化性、高い熱伝導性、及び低アウトガス性の観点からは、2μm以上20μm未満が好ましく、2μm以上10μm以下がより好ましく、3.5μm以上8μm以下が最も好ましい。この平均粒径は、例えば、2、3、3.5、4、5、6、7、8、9、10、13、15、18、又は19.9μmであってもよく、それらいずれか2つの範囲内であってもよい。(A-3)成分の平均粒径は、高い作業性、速い硬化性、高い熱伝導性、及び低アウトガス性の観点からは、20μm以上100μm以下が好ましく、30μm以上80μm以下がより好ましく、35μm以上60μm以下が最も好ましい。この平均粒径は、例えば、20、30、35、40、45、50、55、60、70、80、90、又は100μmであってもよく、それらいずれか2つの範囲内であってもよい。なお本実施形態において「平均粒子径」には、体積平均粒子径を採用してもよい。また平均粒子径は、例えば、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径として求めてもよい。 The average particle size of the component (A-1) is preferably 0.1 μm or more and less than 2 μm, and preferably 0.2 μm or more and 1 μm or less from the viewpoint of high workability, fast curability, high thermal conductivity, and low outgassing properties. More preferably, it is 0.3 μm or more and 0.8 μm or less. This average particle size may be, for example, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, or 1.99 μm, any two of them It may be within the range. The average particle size of the component (A-2) is preferably 2 μm or more and less than 20 μm, more preferably 2 μm or more and 10 μm or less, from the viewpoints of high workability, fast curability, high thermal conductivity, and low outgassing properties. It is most preferably 5 μm or more and 8 μm or less. This average particle size may be, for example, 2, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 13, 15, 18, or 19.9 μm, and in any two of these ranges It may be. The average particle diameter of the component (A-3) is preferably 20 μm or more and 100 μm or less, more preferably 30 μm or more and 80 μm or less, and 35 μm from the viewpoint of high workability, fast curability, high thermal conductivity, and low outgassing properties. The thickness is most preferably 60 μm or less. This average particle size may be, for example, 20, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, or 100 μm, and may be in any two of these ranges. . In this embodiment, a volume average particle diameter may be adopted as the “average particle diameter”. Moreover, you may obtain | require an average particle diameter as a particle size in the integrated value 50% in the particle size distribution calculated | required by the laser diffraction / scattering method, for example.
 上記の3種類の(A)成分の混合割合としては、(A-1)、(A-2)及び(A-3)の合計100質量%中、(A-1)成分は5~25質量%、(A-2)成分は20~40質量%、(A-3)成分は45~65質量%が好ましい。最密充填を考慮する観点から、(A-1)成分は10~20質量%、(A-2)成分は25~35質量%、(A-3)成分は50~60質量%がより好ましい。なお、(A-1)成分は、例えば、5、10、15、20、25、又は30質量%であってもよく、それらいずれか2つの範囲内であってもよい。(A-2)成分は、例えば、15、20、25、30、35、40、又は45質量%であってもよく、それらいずれか2つの範囲内であってもよい。(A-3)成分は、例えば、40、45、50、55、60、65、又は70質量%であってもよく、それらいずれか2つの範囲内であってもよい。(A)成分中の(A-1)、(A-2)及び(A-3)成分の混合割合(質量%)は、(A-1)<(A-2)<(A-3)の関係を満たすことが好ましい。 The mixing ratio of the above three types of component (A) is 5 to 25 masses of component (A-1) in a total of 100 mass% of (A-1), (A-2) and (A-3). %, The component (A-2) is preferably 20 to 40% by mass, and the component (A-3) is preferably 45 to 65% by mass. From the viewpoint of considering the closest packing, the component (A-1) is more preferably 10 to 20% by mass, the component (A-2) is more preferably 25 to 35% by mass, and the component (A-3) is more preferably 50 to 60% by mass. . The component (A-1) may be, for example, 5, 10, 15, 20, 25, or 30% by mass, and may be in any two of these ranges. The component (A-2) may be, for example, 15, 20, 25, 30, 35, 40, or 45% by mass, and may be in any two of these ranges. The component (A-3) may be, for example, 40, 45, 50, 55, 60, 65, or 70% by mass, and may be in any two of these ranges. The mixing ratio (mass%) of the components (A-1), (A-2) and (A-3) in the component (A) is (A-1) <(A-2) <(A-3) It is preferable to satisfy the relationship.
 フィラーとしては、熱伝導性フィラーが好ましい。(A)成分としては、電子部品近辺に塗布する観点から、絶縁性を有する熱伝導性フィラーが好ましい。熱伝導性フィラーの絶縁性としては、電気抵抗値が10Ωm以上であることが好ましく、電気抵抗値が1010Ωm以上であることがより好ましい。この電気抵抗値は、例えば、10、10、1010、1011、又は1012Ωmであってもよく、それらいずれかの値以上、又はそれらいずれか2つの範囲内であってもよい。電気抵抗値とは、JIS R 2141に従って測定した、20℃体積固有抵抗をいう。 As the filler, a thermally conductive filler is preferable. As the component (A), a thermally conductive filler having insulating properties is preferable from the viewpoint of application in the vicinity of an electronic component. As the insulating property of the thermally conductive filler, the electric resistance value is preferably 10 8 Ωm or more, and the electric resistance value is more preferably 10 10 Ωm or more. This electrical resistance value may be, for example, 10 8 , 10 9 , 10 10 , 10 11 , or 10 12 Ωm, and may be greater than or equal to any of these values, or within any two of these ranges. . The electric resistance value means a 20 ° C. volume specific resistance measured according to JIS R 2141.
 (A)成分のフィラーの含有量は、本実施形態の熱伝導性組成物全体に対して60~98質量%が好ましく、70~97質量%がより好ましい。60質量%以上であれば熱伝導性能が十分であり、70質量%以上であれば特に熱伝導性能が優れている。また、98質量%以下であれば電子部品と放熱材との接着性が大きくなる。(A)成分のフィラーの含有量は、例えば、60、63、65、70、75、80、85、90、94、95、97、又は98質量%であってもよく、それらいずれか2つの範囲内であってもよい。 The content of the filler of the component (A) is preferably 60 to 98% by mass, more preferably 70 to 97% by mass with respect to the entire heat conductive composition of the present embodiment. If it is 60% by mass or more, the heat conduction performance is sufficient, and if it is 70% by mass or more, the heat conduction performance is particularly excellent. Moreover, if it is 98 mass% or less, the adhesiveness of an electronic component and a thermal radiation material will become large. The content of the filler of the component (A) may be, for example, 60, 63, 65, 70, 75, 80, 85, 90, 94, 95, 97, or 98% by mass, and any two of them It may be within the range.
 本実施形態で使用する(B)加水分解性シリル基を有するポリアルキレングリコールは、ケイ素原子に加水分解性基が結合したポリアルキレングリコールをいう。例えば、ポリアルキレングリコールの分子鎖の両末端又は片末端に、加水分解性シリル基が結合した化合物等が挙げられる。ポリアルキレングリコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等が挙げられる。これらの中では、ポリプロピレングリコールが好ましい。加水分解性基としては、例えば、カルボキシル基、ケトオキシム基、アルコキシ基、アルケノキシ基、アミノ基、アミノキシ基、アミド基等が結合したもの等が挙げられる(例えば、旭硝子社製「S-1000N」、カネカ社製「SAT-010」、「SAT-115」)。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。(B)成分の粘度は、ハンドリング性の観点からは、300~3,000mPa・sであることが好ましく、500~1,500mPa・sがより好ましい。この粘度は、例えば、300、500、600、700、800、900、1000、1100、1200、1300、1400、1500、2000、2500、又は3000mPa・sであってもよく、それらいずれか2つの範囲内であってもよい。(B)成分の重量平均分子量は、3,000~20,000であることが好ましく、4,000~15,000がより好ましい。この重量平均分子量は、例えば、3000、4000、4500、5000、5500、6000、7000、10000、12000、15000、17000、17500、18000、18500、19000、又は20000mPa・sであってもよく、それらいずれか2つの範囲内であってもよい。重量平均分子量とは、GPC(ポリスチレン換算)により測定した値をいう。具体的には、下記の条件にて、溶剤としてテトラヒドロフランを用い、GPCシステム(東ソ-社製SC-8010)を使用し、市販の標準ポリスチレンで検量線を作成して重量平均分子量を求めた。
 流速:1.0ml/min
 設定温度:40℃
 カラム構成:東ソー社製「TSK guardcolumn MP(×L)」6.0mmID×4.0cm1本、および東ソー社製「TSK-GELMULTIPOREHXL-M」7.8mmID×30.0cm(理論段数16,000段)2本、計3本(全体として理論段数32,000段)
 サンプル注入量:100μl(試料液濃度1mg/ml)
 送液圧力:39kg/cm2
 検出器:RI検出器
The polyalkylene glycol (B) having a hydrolyzable silyl group used in this embodiment refers to a polyalkylene glycol having a hydrolyzable group bonded to a silicon atom. For example, the compound etc. which the hydrolyzable silyl group couple | bonded with the both ends or one end of the molecular chain of polyalkylene glycol are mentioned. Examples of the polyalkylene glycol include polyethylene glycol, polypropylene glycol, polybutylene glycol and the like. Of these, polypropylene glycol is preferred. Examples of the hydrolyzable group include those having a carboxyl group, a ketoxime group, an alkoxy group, an alkenoxy group, an amino group, an aminoxy group, an amide group, etc. (for example, “S-1000N” manufactured by Asahi Glass Co., Ltd.) “SAT-010” and “SAT-115” manufactured by Kaneka Corporation). Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group. The viscosity of the component (B) is preferably from 300 to 3,000 mPa · s, more preferably from 500 to 1,500 mPa · s from the viewpoint of handling properties. This viscosity may be, for example, 300, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 2000, 2500, or 3000 mPa · s, any two of these ranges It may be within. The weight average molecular weight of the component (B) is preferably 3,000 to 20,000, more preferably 4,000 to 15,000. The weight average molecular weight may be, for example, 3000, 4000, 4500, 5000, 5500, 6000, 7000, 10000, 12000, 15000, 17000, 17500, 18000, 18500, 19000, or 20000 mPa · s, either Or within two ranges. A weight average molecular weight means the value measured by GPC (polystyrene conversion). Specifically, under the following conditions, tetrahydrofuran was used as a solvent, a GPC system (SC-8010 manufactured by Tosoh Corporation) was used, a calibration curve was prepared with commercially available standard polystyrene, and a weight average molecular weight was determined. .
Flow rate: 1.0 ml / min
Set temperature: 40 ° C
Column configuration: “TSK guardcolumn MP (× L)” manufactured by Tosoh Corp. 6.0 mm ID × 4.0 cm 1 and “TSK-GELMULTIPOREHXL-M” 7.8 mm ID × 30.0 cm (16,000 theoretical plates) manufactured by Tosoh Corp. 2 in total, 3 in total (32,000 theoretical plates as a whole)
Sample injection volume: 100 μl (sample solution concentration 1 mg / ml)
Liquid feeding pressure: 39 kg / cm 2
Detector: RI detector
 (B)成分の中では、(B-1)分子鎖両末端に加水分解性シリル基を有するポリアルキレングリコール、又は(B-2)分子鎖片末端に加水分解性シリル基を有するポリアルキレングリコールが好ましい。防振性が必要な場合、(B-1)成分と、(B-2)成分とを併用することが好ましい。(B-1)成分と、(B-2)成分とを併用する場合、それらの混合比は、質量比で、(B-1):(B-2)=2~50:50~98が好ましく、5~40:60~95がより好ましく、10~30:70~90が最も好ましい。また、(B-1)÷(B-2)で表される質量比率は、例えば、0、0.1、1.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、又は1であってもよく、それらいずれか2つの範囲内であってもよい。 Among the components (B), (B-1) polyalkylene glycol having hydrolyzable silyl groups at both ends of the molecular chain, or (B-2) polyalkylene glycol having hydrolyzable silyl groups at one end of the molecular chain Is preferred. When vibration isolation is required, it is preferable to use the component (B-1) and the component (B-2) in combination. When the component (B-1) and the component (B-2) are used in combination, the mixing ratio thereof is (B-1) :( B-2) = 2 to 50:50 to 98 in terms of mass ratio. Preferably, 5 to 40:60 to 95 is more preferable, and 10 to 30:70 to 90 is most preferable. The mass ratio represented by (B-1) / (B-2) may be, for example, 0, 0.1, 1.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1. , Any two of them may be within the range.
 本実施形態で使用する(C)成分の有機チタン系硬化触媒は、前記加水分解性シリル基を有するポリアルキレングリコールの縮合反応を促進する化合物であることが好ましい。又、低アウトガス性の観点から、硬化触媒の配位子を限定させることが好ましい。(C)有機チタン系硬化触媒としては、テトラ-i-プロポキシチタン、テトラ-n-ブトキシチタン、チタンブトキシドダイマー、チタンテトラ-2-エチルヘキソキシド等のアルコキシド系、ジ-i-プロポキシ・ビス(アセチルアセトナト)チタン、チタンジイソプロポキシビス(アセチルアセトネート)、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンジイソプロポキシビス(エチルアセトアセテート)等のケトエステル系、チタニウムジ-2-エチルヘキソキシビス(2-エチル-3-ヒドロキシヘキソキシド)、チタニウム-テトラキス(2-エチル-3-ヒドロキシヘキソキシド)、テトラキス-2-エチルヘキソキシチタン等のジオレート系、チタンジイソプロポキシビス(トリエタノールアミネート)等のヒドロキシアミネート系、チタンラクテート等のヒドロキシアシレート系、テトライソプロピルチタネートが挙げられる。これらの中では、低アウトガスの観点より、ジ-i-プロポキシ・ビス(アセチルアセトナト)チタン、チタンテトラ-2-エチルヘキソキシド、テトラ-i-プロポキシチタン、テトラ-n-ブトキシチタン、チタンブトキシドダイマー、チタンテトラ-2-エチルヘキソキシド、チタニウムジ-2-エチルヘキソキシビス(2-エチル-3-ヒドロキシヘキソキシド)、チタニウムビス(エチルヘキソキシ)ビス(2-エチル-3-ヒドロキシヘキソキシド)、チタニウム-テトラキス(2-エチル-3-ヒドロキシヘキソキシド)、テトラキス-2-エチルヘキソキシチタンテトライソプロピルチタネート、チタンアセチルアセトネートからなる群のうちの1種以上が好ましく、ジ-i-プロポキシ・ビス(アセチルアセトナト)チタン、チタンテトラ-2-エチルヘキソキシド、チタニウムビス(エチルヘキソキシ)ビス(2-エチル-3-ヒドロキシヘキソキシド)、テトライソプロピルチタネート、チタンアセチルアセトネートからなる群のうちの1種以上が最も好ましい。 The organic titanium-based curing catalyst of component (C) used in the present embodiment is preferably a compound that promotes the condensation reaction of the polyalkylene glycol having the hydrolyzable silyl group. Moreover, it is preferable to limit the ligand of a curing catalyst from a low outgassing viewpoint. (C) Organic titanium-based curing catalysts include tetra-i-propoxy titanium, tetra-n-butoxy titanium, titanium butoxide dimer, titanium tetra-2-ethylhexoxide, and other alkoxides, di-i-propoxy bis Ketoesters such as (acetylacetonato) titanium, titanium diisopropoxybis (acetylacetonate), titanium acetylacetonate, titanium tetraacetylacetonate, titanium diisopropoxybis (ethylacetoacetate), titanium di-2-ethyl Diolates such as hexoxybis (2-ethyl-3-hydroxyhexoxide), titanium-tetrakis (2-ethyl-3-hydroxyhexoxide), tetrakis-2-ethylhexoxytitanium, titanium diisopropoxybis (Triethanolamine Over G) such as hydroxyethyl aminate system, hydroxy acylate such as titanium lactate, include tetraisopropyl titanate. Among these, from the viewpoint of low outgassing, di-i-propoxy bis (acetylacetonato) titanium, titanium tetra-2-ethylhexoxide, tetra-i-propoxytitanium, tetra-n-butoxytitanium, titanium Butoxide dimer, titanium tetra-2-ethylhexoxide, titanium di-2-ethylhexoxybis (2-ethyl-3-hydroxyhexoxide), titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide) One or more members selected from the group consisting of (soxide), titanium-tetrakis (2-ethyl-3-hydroxyhexoxide), tetrakis-2-ethylhexoxytitanium tetraisopropyl titanate, titanium acetylacetonate, and di- i-propoxy bis (acetylacetonato) tita And most preferably one or more of the group consisting of titanium tetra-2-ethylhexoxide, titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), tetraisopropyl titanate, titanium acetylacetonate .
 (C)成分の硬化触媒の含有量は、低アウトガスの観点より、(B)成分に対して0.01~10質量%が好ましく、0.1~5重量%がより好ましい。0.1質量%以上であれば硬化促進の効果が確実に得られるし、10質量%以下であれば充分な硬化速度を得ることができる。この含有量は、例えば、0.01、0.05、0.1、0.3、0.5、0.7、1、1.5、2、2.5、2.8、3、3.2、3.5、4、5、8、又は10質量%であってもよく、それらいずれか2つの範囲内であってもよい。 The content of the curing catalyst of the component (C) is preferably 0.01 to 10% by mass and more preferably 0.1 to 5% by weight with respect to the component (B) from the viewpoint of low outgas. If it is 0.1% by mass or more, the effect of promoting curing can be obtained with certainty, and if it is 10% by mass or less, a sufficient curing rate can be obtained. This content may be, for example, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1, 1.5, 2, 2.5, 2.8, 3, 3.2, 3.5, 4, 5, 8, or 10% by weight. , Any two of them may be within the range.
 本実施形態で使用する(D)成分のシランカップリング剤は、硬化性、安定性を向上させるために使用するものであり、公知のシランカップリング剤が使用可能である。シランカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリクロロシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシシリルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、テトラメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン等が挙げられる。シランカップリング剤は1種又は2種以上を組み合わせて用いることができる。これらの中では、安定性の観点から、ビニルトリメトキシシランが好ましい。これらの中では、硬化性の観点から、3-グリシドキシプロピルメチルトリメトキシシラン及び/又は3-(メタ)アクリロキシプロピルトリメトキシシランが好ましく、3-(メタ)アクリロキシプロピルトリメトキシシランがより好ましい。 The (D) component silane coupling agent used in this embodiment is used to improve curability and stability, and a known silane coupling agent can be used. Silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltrichlorosilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxysilyltriethoxysilane N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyltri Methoxysilane, N-2- (aminoethyl) -3-aminopropylmethyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3 -Chloropropyltrimeth Sisilane, tetramethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, 3- (meth) acryloxy Examples thereof include propylmethyldimethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, and 3- (meth) acryloxypropyltriethoxysilane. A silane coupling agent can be used 1 type or in combination of 2 or more types. Among these, vinyltrimethoxysilane is preferable from the viewpoint of stability. Among these, from the viewpoint of curability, 3-glycidoxypropylmethyltrimethoxysilane and / or 3- (meth) acryloxypropyltrimethoxysilane are preferable, and 3- (meth) acryloxypropyltrimethoxysilane is preferable. More preferred.
 (D)成分のシランカップリング剤の含有量は、(B)成分に対して0.1~20質量%が好ましく、1~15質量%がより好ましい。0.1質量%以上であれば保存安定性が十分であり、20質量%以下であれば硬化性と接着性が大きくなる。ビニルトリメトキシシランの場合は、(B)成分に対して0.1~5質量%が好ましい。3-(メタ)アクリロキシプロピルトリメトキシシランの場合は、(B)成分に対して7~15質量%が好ましい。なおこの含有量は、例えば、0.1、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、又は20質量%であってもよく、それらいずれか2つの範囲内であってもよい。 The content of the silane coupling agent as the component (D) is preferably 0.1 to 20% by mass and more preferably 1 to 15% by mass with respect to the component (B). If it is 0.1% by mass or more, the storage stability is sufficient, and if it is 20% by mass or less, curability and adhesiveness are increased. In the case of vinyltrimethoxysilane, the content is preferably 0.1 to 5% by mass with respect to component (B). In the case of 3- (meth) acryloxypropyltrimethoxysilane, the content is preferably 7 to 15% by mass with respect to the component (B). The content may be, for example, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 20% by mass, It may be within any two of these ranges.
 本実施形態では、更に添加剤として、有機溶剤、酸化防止剤、難燃剤、可塑剤、チクソ性付与剤等も必要により使用することができる。 In this embodiment, an organic solvent, an antioxidant, a flame retardant, a plasticizer, a thixotropic agent, and the like can be used as necessary as additives.
 本実施形態の組成物は、例えば、熱伝導性湿気硬化型樹脂組成物である。本実施形態の熱伝導性湿気硬化型樹脂組成物は空気中の湿分により硬化することができる。 The composition of the present embodiment is, for example, a heat conductive moisture curable resin composition. The heat conductive moisture curable resin composition of the present embodiment can be cured by moisture in the air.
 本実施形態の組成物は、高精度固定した部材に塗布する点で、その硬化体が柔軟な物性を示すものであることが好ましい。硬化体の柔軟性としては、デュロメーターアスカー硬度計「CSC2型」による硬度が90以下であることが好ましく、50以下であることがより好ましい。硬度が90以下であることが、硬化物による歪みが全く発生しない観点から、好ましい。 The composition of the present embodiment is preferably such that the cured body exhibits flexible physical properties in that it is applied to a member fixed with high precision. As for the flexibility of the cured body, the hardness measured by a durometer Asker hardness meter “CSC2 type” is preferably 90 or less, and more preferably 50 or less. It is preferable that the hardness is 90 or less from the viewpoint that distortion due to the cured product does not occur at all.
 本実施形態の組成物は、例えば、CPUやMPU等の演算回路、光ピックアップモジュール等の精密機器を使用したレーザーダイオードに適用される。本実施形態の組成物は、例えば、金属製伝熱板等の放熱材として使用される。 The composition of the present embodiment is applied to, for example, a laser diode using a precision device such as an arithmetic circuit such as a CPU or MPU, or an optical pickup module. The composition of this embodiment is used as a heat dissipation material such as a metal heat transfer plate, for example.
 本実施形態の組成物は、上記精密機器等に使用されるため、電子部品への汚染を抑えることが好ましい。電子部品への汚染を測定する一つの指針として、本実施形態の組成物の硬化体のアウトガス成分を測定することが挙げられる。硬化体からのアウトガス成分の全体量が少なければ電子部品への汚染性も低減できる。アウトガス成分の測定としては、硬化体をバイアル瓶に採取し、窒素ガスにて置換・封入し、バイアル瓶を70℃×4hrs加熱後、気層部をヘッドスペースガラガスクロマトグラフ-質量分析(Combi-PAL Agilent 6890GC-5973N HS-GC-MS システム)により測定し、検出された総イオン量のうち検出されるm/z値が50~500の成分が15%以下であることが好ましく、10%以下であることがより好ましい。この質量分析において、%とは、m/z値のピーク面積の%をいう。 Since the composition of the present embodiment is used for the precision instrument and the like, it is preferable to suppress contamination to electronic components. One guideline for measuring the contamination of electronic components is to measure the outgas component of the cured product of the composition of the present embodiment. If the total amount of outgas components from the cured body is small, the contamination of electronic components can be reduced. For measurement of the outgas component, the cured product was collected in a vial, replaced and sealed with nitrogen gas, the vial was heated at 70 ° C. for 4 hrs, and the gas layer was then subjected to headspace glass gas chromatography-mass spectrometry (Combi- PAL Agilent 6890GC-5873N HS-GC-MS system), of the total amount of ions detected, the component with m / z value 50 to 500 is preferably 15% or less, preferably 10% or less It is more preferable that In this mass spectrometry,% means% of the peak area of m / z value.
 本発明の一実施形態は、上記熱伝導性組成物を硬化して得られる硬化体である。この硬化体は、柔軟性と低アウトガス性に優れている。また、本発明の一実施形態は、上記硬化体を用いた、電子部品におけるアウトガスの抑制方法である。 One embodiment of the present invention is a cured product obtained by curing the thermal conductive composition. This cured body is excellent in flexibility and low outgassing properties. Moreover, one Embodiment of this invention is the suppression method of the outgas in an electronic component using the said hardening body.
 なお、本明細書において「又は」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。 In this specification, “or” is used when “at least one” of the items listed in the text can be adopted.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、上記実施形態に記載の構成を組み合わせて採用することもできる。 As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above can also be employ | adopted. Moreover, it is also possible to adopt a combination of the configurations described in the above embodiments.
 以下に実施例及び比較例をあげて本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。結果を表1~7に示した。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. The results are shown in Tables 1-7.
 (実施例1)
 メトキシシリル基を両末端に有するポリプロピレングリコール(ベースポリマーA、粘度800mPa・s、重量平均分子量5,000、カネカ社「SAT115」)30g、メトキシシリル基を片末端に有するポリプロピレングリコール(ベースポリマーB、粘度1,300mPa・s、重量平均分子量18,000、旭硝子社「S-1000N」)70g、チタン系硬化触媒A(ジ-i-プロポキシ・ビス(アセチルアセトナト)チタン、日本曹達社「T-50」)3g、熱伝導性フィラーA-1(平均粒径0.5μmの酸化アルミニウム、電気抵抗値が1011Ωm以上、住友化学社製「AA-05」)240g、熱伝導性フィラーA-2(平均粒径5μmの酸化アルミニウム、電気抵抗値が1011Ωm以上、電気化学工業社製「DAW-05」)480g、熱伝導性フィラーA-3(平均粒径45μmの酸化アルミニウム、電気抵抗値が1011Ωm以上、電気化学工業社製「DAW-45S」)880g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
Example 1
Polypropylene glycol having a methoxysilyl group at both ends (base polymer A, viscosity 800 mPa · s, weight average molecular weight 5,000, Kaneka “SAT115”) 30 g, polypropylene glycol having a methoxysilyl group at one end (base polymer B, Viscosity 1,300 mPa · s, weight average molecular weight 18,000, Asahi Glass Co., Ltd. “S-1000N”) 70 g, titanium-based curing catalyst A (di-i-propoxy bis (acetylacetonato) titanium, Nippon Soda Co., Ltd. “T- 3 ", thermal conductive filler A-1 (aluminum oxide having an average particle size of 0.5 µm, electrical resistance of 10 11 Ωm or more," AA-05 "manufactured by Sumitomo Chemical Co., Ltd.) 240 g, thermal conductive filler A- 2 (aluminum oxide having an average particle diameter of 5 [mu] m, the electric resistance value is 10 11 [Omega] m or more, manufactured by Denki Kagaku Kogyo Kabushiki Kaisha "D W-05 ") 480 g, the thermally conductive filler A-3 (aluminum oxide having an average particle diameter of 45 [mu] m, the electric resistance value is 10 11 [Omega] m or more, manufactured by Denki Kagaku Kogyo Kabushiki Kaisha" DAW-45S ") 880 g, vinyltrimethoxysilane 3g Were mixed to prepare a heat conductive resin composition.
 (実施例2)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 240g、熱伝導性フィラーA-2 480g、熱伝導性フィラーA-3 880g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 2)
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium curing catalyst A3 g, 240 g of heat conductive filler A-1, 480 g of heat conductive filler A-2, heat conduction The heat conductive resin composition was prepared by mixing 880 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
 (実施例3)
 メトキシシリル基を両末端に有するポリプロピレングリコール10g、メトキシシリル基を片末端に有するポリプロピレングリコール90g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 240g、熱伝導性フィラーA-2 480g、熱伝導性フィラーA-3 880g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 3)
10 g of polypropylene glycol having methoxysilyl groups at both ends, 90 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst A3 g, 240 g of heat conductive filler A-1, 480 g of heat conductive filler A-2, heat conduction The heat conductive resin composition was prepared by mixing 880 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
 (実施例4)
 メトキシシリル基を片末端に有するポリプロピレングリコール100g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 240g、熱伝導性フィラーA-2 480g、熱伝導性フィラーA-3 880g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 4)
100 g of polypropylene glycol having a methoxysilyl group at one end, 3 g of titanium-based curing catalyst A, 240 g of heat conductive filler A-1, 480 g of heat conductive filler A-2, 880 g of heat conductive filler A-3, 3 g of vinyltrimethoxysilane Were mixed to prepare a heat conductive resin composition.
 (実施例5)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 160g、熱伝導性フィラーA-2 480g、熱伝導性フィラーA-3 960g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 5)
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst A3 g, 160 g of heat conductive filler A-1, 480 g of heat conductive filler A-2, heat conduction 960 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane were mixed to prepare a heat conductive resin composition.
 (実施例6)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 320g、熱伝導性フィラーA-2 480g、熱伝導性フィラーA-3 800g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 6)
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, 3 g of titanium-based curing catalyst, 320 g of heat conductive filler A-1, 480 g of heat conductive filler A-2, heat conduction 800 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane were mixed to prepare a heat conductive resin composition.
 (実施例7)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 400g、熱伝導性フィラーA-2 480g、熱伝導性フィラーA-3 720g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 7)
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, 3 g of titanium-based curing catalyst A, 400 g of thermal conductive filler A-1, 480 g of thermal conductive filler A-2, thermal conductivity A heat conductive resin composition was prepared by mixing 720 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
 (実施例8)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 160g、熱伝導性フィラーA-2 560g、熱伝導性フィラーA-3 880g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 8)
20 g of polypropylene glycol having a methoxysilyl group at both ends, 80 g of polypropylene glycol having a methoxysilyl group at one end, 3 g of titanium-based curing catalyst A, 160 g of heat conductive filler A-1, 560 g of heat conductive filler A-2, heat conduction The heat conductive resin composition was prepared by mixing 880 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
 (実施例9)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 320g、熱伝導性フィラーA-2 400g、熱伝導性フィラーA-3 880g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
Example 9
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst A3 g, 320 g of heat conductive filler A-1, 400 g of heat conductive filler A-2, heat conduction The heat conductive resin composition was prepared by mixing 880 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
 (実施例10)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 240g、熱伝導性フィラーA-2 320g、熱伝導性フィラーA-3 1040g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 10)
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium curing catalyst A3 g, 240 g of heat conductive filler A-1, 320 g of heat conductive filler A-2, heat conduction Thermally conductive resin composition was prepared by mixing 1040 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane.
 (実施例11)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 240g、熱伝導性フィラーA-2 400g、熱伝導性フィラーA-3 960g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 11)
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium curing catalyst A3 g, 240 g of heat conductive filler A-1, 400 g of heat conductive filler A-2, heat conduction 960 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane were mixed to prepare a heat conductive resin composition.
 (実施例12)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 240g、熱伝導性フィラーA-2 560g、熱伝導性フィラーA-3 800g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
Example 12
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst A3 g, 240 g of heat conductive filler A-1, 560 g of heat conductive filler A-2, heat conduction 800 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane were mixed to prepare a heat conductive resin composition.
 (実施例13)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 240g、熱伝導性フィラーA-2 640g、熱伝導性フィラーA-3 720g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 13)
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium curing catalyst A3 g, 240 g of heat conductive filler A-1, 640 g of heat conductive filler A-2, heat conduction A heat conductive resin composition was prepared by mixing 720 g of the conductive filler A-3 and 3 g of vinyltrimethoxysilane.
 (実施例14)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒A3g、熱伝導性フィラーA-1 264g、熱伝導性フィラーA-2 530g、熱伝導性フィラーA-3 968g、ビニルトリメトキシシラン3g、を混合して熱伝導性樹脂組成物を調製した。
(Example 14)
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst A3 g, 264 g of heat conductive filler A-1, 530 g of heat conductive filler A-2, heat conduction 968 g of conductive filler A-3 and 3 g of vinyltrimethoxysilane were mixed to prepare a heat conductive resin composition.
 (実施例15)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒B(チタンテトラ-2-エチルヘキソキシド、マツモトファインケミカル社製「オルガチックスTA-30」)0.5g、熱伝導性フィラーA-1 264g、熱伝導性フィラーA-2 530g、熱伝導性フィラーA-3 968g、3-メタクリロキシプロピルトリメトキシシラン13g、を混合して熱伝導性樹脂組成物を調製した。
(Example 15)
20 g of polypropylene glycol having a methoxysilyl group at both ends, 80 g of polypropylene glycol having a methoxysilyl group at one end, titanium-based curing catalyst B (titanium tetra-2-ethylhexoxide, “Orgatechs TA-30” manufactured by Matsumoto Fine Chemical Co., Ltd. )) 0.5 g, heat conductive filler A-1 264 g, heat conductive filler A-2 530 g, heat conductive filler A-3 968 g, 3-methacryloxypropyltrimethoxysilane 13 g A resin composition was prepared.
 (実施例16)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒C(チタニウムビス(エチルヘキソキシ)ビス(2-エチル-3-ヒドロキシヘキソキシド)、マツモトファインケミカル社製「オルガチックスTC-200」)0.5g、熱伝導性フィラーA-1 264g、熱伝導性フィラーA-2 530g、熱伝導性フィラーA-3 968g、3-メタクリロキシプロピルトリメトキシシラン13g、を混合して熱伝導性樹脂組成物を調製した。
(Example 16)
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst C (titanium bis (ethylhexoxy) bis (2-ethyl-3-hydroxyhexoxide), Matsumoto "Orgatics TC-200" manufactured by Fine Chemical Co., Ltd.) 0.5g, Thermal Conductive Filler A-1 264g, Thermal Conductive Filler A-2 530g, Thermal Conductive Filler A-3 968g, 3-Methacryloxypropyltrimethoxysilane 13 g was mixed to prepare a heat conductive resin composition.
 (実施例17)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒D(テトライソプロピルチタネート、マツモトファインケミカル社製「オルガチックスTA-10」)0.5g、熱伝導性フィラーA-1 264g、熱伝導性フィラーA-2 530g、熱伝導性フィラーA-3 968g、3-メタクリロキシプロピルトリメトキシシラン13g、を混合して熱伝導性樹脂組成物を調製した。
(Example 17)
20 g of polypropylene glycol having a methoxysilyl group at both ends, 80 g of polypropylene glycol having a methoxysilyl group at one end, 0.5 g of titanium-based curing catalyst D (tetraisopropyl titanate, “Orgatics TA-10” manufactured by Matsumoto Fine Chemicals), A heat conductive resin composition was prepared by mixing 264 g of heat conductive filler A-1, 530 g of heat conductive filler A-2, 968 g of heat conductive filler A-3, and 13 g of 3-methacryloxypropyltrimethoxysilane. .
 (実施例18)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒E(チタンアセチルアセトネート、マツモトファインケミカル社製「オルガチックスTC-100」)0.5g、熱伝導性フィラーA-1 264g、熱伝導性フィラーA-2 530g、熱伝導性フィラーA-3 968g、3-メタクリロキシプロピルトリメトキシシラン13g、を混合して熱伝導性樹脂組成物を調製した。
(Example 18)
20 g of polypropylene glycol having a methoxysilyl group at both ends, 80 g of polypropylene glycol having a methoxysilyl group at one end, 0.5 g of titanium-based curing catalyst E (titanium acetylacetonate, “Orgatechs TC-100” manufactured by Matsumoto Fine Chemical Co., Ltd.) , 264 g of heat conductive filler A-1, 530 g of heat conductive filler A-2, 968 g of heat conductive filler A-3, 13 g of 3-methacryloxypropyltrimethoxysilane were mixed to prepare a heat conductive resin composition. did.
 (実施例19)
 メトキシシリル基を両末端に有するポリプロピレングリコール20g、メトキシシリル基を片末端に有するポリプロピレングリコール80g、チタン系硬化触媒E(チタンアセチルアセトネート、マツモトファインケミカル社製「オルガチックスTC-100」)3g、熱伝導性フィラーA-1 264g、熱伝導性フィラーA-2 530g、熱伝導性フィラーA-3 968g、3-メタクリロキシプロピルトリメトキシシラン13g、を混合して熱伝導性樹脂組成物を調製した。
(Example 19)
20 g of polypropylene glycol having methoxysilyl groups at both ends, 80 g of polypropylene glycol having methoxysilyl groups at one end, titanium-based curing catalyst E (titanium acetylacetonate, “Orgatechs TC-100” manufactured by Matsumoto Fine Chemical Co., Ltd.), heat A heat conductive resin composition was prepared by mixing 264 g of conductive filler A-1, 530 g of heat conductive filler A-2, 968 g of heat conductive filler A-3, and 13 g of 3-methacryloxypropyltrimethoxysilane.
 (比較例1)
 メトキシシリル基を両末端に有するポリプロピレングリコール100g、ビスマス系硬化触媒(有機金属化合物、日本化学産業製「プキャットB7」)3g、熱伝導性フィラーA-1(平均粒径0.5μmの酸化アルミニウム、電気抵抗値が1011Ωm以上)400g、熱伝導性フィラーA-2(平均粒径5μmの酸化アルミニウム、電気抵抗値が1011Ωm以上)480g、熱伝導性フィラーA-3(平均粒径45μmの酸化アルミニウム、電気抵抗値が1011Ωm以上)720g、ビニルトリメトキシシラン3g、3-グリシドキシプロピルトリメトキシシラン2gを混合して熱伝導性樹脂組成物を調製した。
(Comparative Example 1)
100 g of polypropylene glycol having methoxysilyl groups at both ends, 3 g of a bismuth-based curing catalyst (organometallic compound, “Pucat B7” manufactured by Nippon Kagaku Sangyo), thermally conductive filler A-1 (aluminum oxide having an average particle size of 0.5 μm, electrical resistance 10 11 [Omega] m or more) 400 g, heat conductive filler a-2 (average particle size 5μm aluminum oxide, the electric resistance value is 10 11 [Omega] m or more) 480 g, the thermally conductive filler a-3 (average particle size 45μm A heat conductive resin composition was prepared by mixing 720 g of aluminum oxide having an electric resistance value of 10 11 Ωm or more, 3 g of vinyltrimethoxysilane, and 2 g of 3-glycidoxypropyltrimethoxysilane.
 (比較例2)
 メトキシシリル基を両末端に有するポリプロピレングリコール100g、ビスマス系硬化触媒3g、熱伝導性フィラーA-1 240g、熱伝導性フィラーA-2 480g、熱伝導性フィラーA-3 880g、ビニルトリメトキシシラン3g、3-グリシドキシプロピルトリメトキシシラン2gを混合して熱伝導性樹脂組成物を調製した。
(Comparative Example 2)
100 g of polypropylene glycol having methoxysilyl groups at both ends, 3 g of bismuth-based curing catalyst, 240 g of thermal conductive filler A-1, 480 g of thermal conductive filler A-2, 880 g of thermal conductive filler A-3, 3 g of vinyltrimethoxysilane Then, 2 g of 3-glycidoxypropyltrimethoxysilane was mixed to prepare a heat conductive resin composition.
 (比較例3)
 メトキシシリル基を両末端に有するポリプロピレングリコール100g、ビスマス系硬化触媒3g、熱伝導性フィラーA-1 80g、熱伝導性フィラーA-2 1520g、ビニルトリメトキシシラン3g、3-グリシドキシプロピルトリメトキシシラン2gを混合して熱伝導性樹脂組成物を調製した。
(Comparative Example 3)
100 g of polypropylene glycol having methoxysilyl groups at both ends, 3 g of bismuth-based curing catalyst, 80 g of thermally conductive filler A-1, 1520 g of thermally conductive filler A-2, 3 g of vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxy A thermally conductive resin composition was prepared by mixing 2 g of silane.
 (比較例4)
 メトキシシリル基を両末端に有するポリプロピレングリコール100g、ビスマス系硬化触媒3g、熱伝導性フィラーA-1 10g、熱伝導性フィラーA-2 1590g、ビニルトリメトキシシラン3g、3-グリシドキシプロピルトリメトキシシラン2gを混合して熱伝導性樹脂組成物を調製した。
(Comparative Example 4)
100 g of polypropylene glycol having methoxysilyl groups at both ends, 3 g of bismuth-based curing catalyst, 10 g of thermal conductive filler A-1, 1590 g of thermal conductive filler A-2, 3 g of vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxy A thermally conductive resin composition was prepared by mixing 2 g of silane.
 (比較例5)
 メトキシシリル基を両末端に有するポリプロピレングリコール100g、ビスマス系硬化触媒3g、熱伝導性フィラーA-1 480g、熱伝導性フィラーA-3 1120g、ビニルトリメトキシシラン3g、3-グリシドキシプロピルトリメトキシシラン2gを混合して熱伝導性樹脂組成物を調製した。
(Comparative Example 5)
100 g of polypropylene glycol having methoxysilyl groups at both ends, 3 g of bismuth-based curing catalyst, 480 g of thermally conductive filler A-1, 1120 g of thermally conductive filler A-3, 3 g of vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxy A thermally conductive resin composition was prepared by mixing 2 g of silane.
 (比較例6)
 メトキシシリル基を両末端に有するポリプロピレングリコール100g、ビスマス系硬化触媒3g、熱伝導性フィラーA-2 480g、熱伝導性フィラーA-3 1120g、ビニルトリメトキシシラン3g、3-グリシドキシプロピルトリメトキシシラン2gを混合して熱伝導性樹脂組成物を調製した。
(Comparative Example 6)
100 g of polypropylene glycol having methoxysilyl groups at both ends, 3 g of bismuth-based curing catalyst, 480 g of thermally conductive filler A-2, 1120 g of thermally conductive filler A-3, 3 g of vinyltrimethoxysilane, 3-glycidoxypropyltrimethoxy A thermally conductive resin composition was prepared by mixing 2 g of silane.
 (比較例7)
 比較として市販されている湿気硬化型放熱樹脂「製品名:ThreeBond 2955(スリーボンド社製)」を評価した。
(Comparative Example 7)
As a comparison, a commercially available moisture-curing heat dissipation resin “Product Name: ThreeBond 2955 (manufactured by ThreeBond)” was evaluated.
 (実施例20~22)
 表6に示す組成の熱伝導性樹脂組成物を調製したこと以外は、実施例1と同様に実施した。
(Examples 20 to 22)
It implemented like Example 1 except having prepared the heat conductive resin composition of the composition shown in Table 6.
 (比較例8~12)
 表7に示す組成の熱伝導性樹脂組成物を調製したこと以外は、実施例1と同様に実施した。
(Comparative Examples 8-12)
The same procedure as in Example 1 was performed except that a heat conductive resin composition having the composition shown in Table 7 was prepared.
 (平均粒径評価)
 平均粒径評価は「島津製作所製 SALD-2200」を用い、レーザー回析・散乱法にて測定した。
(Average particle size evaluation)
The average particle size was measured by a laser diffraction / scattering method using “SALD-2200 manufactured by Shimadzu Corporation”.
 (熱伝導率評価)
 上記で得られた各組成物を使用して熱伝導率の評価を行った。熱伝導率の評価は、「NETZSCH社製 LFA447」を用い、レーザーフラッシュ法にて、25℃で測定した。熱伝導率は物質中の熱の伝わり易さを表す値であり、熱伝導率は大きいほうが好まれる。
(Thermal conductivity evaluation)
Each composition obtained above was used to evaluate thermal conductivity. Evaluation of thermal conductivity was measured at 25 ° C. by the laser flash method using “LFA447 manufactured by NETZSCH”. The thermal conductivity is a value representing the ease of heat transfer in the material, and a higher thermal conductivity is preferred.
 (タックフリー評価)
 23℃・50%RH雰囲気下にて上記で得られた組成物を幅20mm×長さ20mm×厚さ5mmの型枠に流し込んで暴露させ、触指した。流し込んでから指に付着しなくなるまでの時間をタックフリー時間と定義し評価を行った。タックフリー時間は作業性や硬化性の一つの指針であり、タックフリー時間が長すぎると生産性が落ち、タックフリー時間が短すぎると作業途中で硬化が始まり、不良の発生原因となる。作業状況により求められるタックフリー時間の範囲は変わってくるが、作業性が良い観点から、10~70分が好ましく、40~60分がより好ましい。
(Tack-free evaluation)
The composition obtained above was poured into a mold having a width of 20 mm, a length of 20 mm, and a thickness of 5 mm under an atmosphere of 23 ° C. and 50% RH, and exposed to the finger. The time from pouring until it did not adhere to the finger was defined as a tack-free time and evaluated. The tack-free time is one guideline for workability and curability, and if the tack-free time is too long, the productivity is lowered, and if the tack-free time is too short, curing starts during the work and causes defects. The range of tack-free time required depending on the work situation varies, but from the viewpoint of good workability, 10 to 70 minutes is preferable, and 40 to 60 minutes is more preferable.
 (硬度評価)
 幅60mm×長さ40mm×厚さ5mmの各組成物を23℃・50%RH雰囲気下で10日間養生した試験片について、アスカー高分子計器社製、デュロメーターアスカー硬度計「CSC2型」により硬度の測定を行った。測定値が小さい場合、柔軟性を有する。
(Hardness evaluation)
A test piece obtained by curing each composition having a width of 60 mm, a length of 40 mm, and a thickness of 5 mm under an atmosphere of 23 ° C. and 50% RH for 10 days was measured with a durometer Asker hardness meter “CSC2 type” manufactured by Asker Polymer Instruments Co., Ltd. Measurements were made. When the measured value is small, it has flexibility.
 (粘度測定)
 粘度は、適切な値を示すことが好ましい。粘度の評価は「Anton Paar社製 レオメーター(型番:MCR301)」を用いて測定した。粘度測定はハンドリング性の一つの指針であり、粘度が高すぎると塗布性が悪く作業できなくなる。熱伝導性を向上させたい場合にはフィラー充填量を多くすると良いがハンドリング性が悪くなるため、粘度は、小さいことが好ましい。液状成分が流れたり、電子部品を汚染したりするのを防ぐためには、粘度は、大きいことが好ましい。
(Viscosity measurement)
It is preferable that the viscosity shows an appropriate value. The evaluation of the viscosity was performed using “Anton Paar Rheometer (model number: MCR301)”. Viscosity measurement is one guideline for handling properties. If the viscosity is too high, the coating property is poor and the work cannot be performed. In order to improve the thermal conductivity, it is preferable to increase the filler filling amount. However, since the handling property is deteriorated, the viscosity is preferably small. In order to prevent the liquid component from flowing or contaminating the electronic component, the viscosity is preferably large.
 (アウトガス測定)
各組成物の0.2gを20mLのバイアル瓶に採取し窒素ガスにて置換・封入した。70℃×4Hrs.加熱後の気層部をヘッドスペース-ガスクロマトグラフ-質量分析(HS-GC-MS)にて測定した。検出される総イオン量のうち検出されるm/z値50~500の成分が全体の15%以下であればアウトガス性は問題なしとし、10%以下であれば特に問題なしとした。%は、検出されるm/z値のピーク面積の%である。15%以下であればアウトガス性は問題なしとする理由は、電子部品への汚染性を確認したところ、問題とならない基準値であったためである。
(Outgas measurement)
0.2 g of each composition was collected in a 20 mL vial and replaced with nitrogen gas and sealed. 70 ° C. × 4 Hrs. The heated gas layer was measured by headspace-gas chromatograph-mass spectrometry (HS-GC-MS). Outgassing properties were not a problem when components with an m / z value of 50 to 500 in the total amount of ions detected were 15% or less, and there were no particular problems when components were 10% or less. % Is the% of the peak area of the detected m / z value. The reason why the outgassing property is not a problem when it is 15% or less is that it was a reference value that does not cause a problem when the contamination property to the electronic component was confirmed.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 以上の結果によると、本発明は優れた効果を示すことが分かる。実施例1~6、実施例8~9、実施例11~12、実施例14~22は、3種類の(A)成分の混合割合が、より好ましい範囲内にあるため、より優れた効果を示す。また、(B-1)分子鎖両末端に加水分解性シリル基を有するポリアルキレングリコール、及び(B-2)分子鎖片末端に加水分解性シリル基を有するポリアルキレングリコールを併用した場合、実施例1~3、実施例5~21は、3種類の(A)成分と2種類の(B)成分の混合割合が、より好ましい範囲内にあるため、より優れた効果を示す。 From the above results, it can be seen that the present invention exhibits excellent effects. In Examples 1 to 6, Examples 8 to 9, Examples 11 to 12, and Examples 14 to 22, the mixing ratio of the three types of component (A) is within a more preferable range, so that a more excellent effect can be obtained. Show. Further, when (B-1) polyalkylene glycol having hydrolyzable silyl groups at both ends of the molecular chain and (B-2) polyalkylene glycol having hydrolyzable silyl groups at one end of the molecular chain are used in combination, Examples 1 to 3 and Examples 5 to 21 show more excellent effects because the mixing ratio of the three types of component (A) and the two types of component (B) is within a more preferable range.
 本熱伝導性組成物は、例えば、熱伝導性湿気硬化型樹脂組成物である。本熱伝導性組成物は、高い作業性と高い熱伝導性を有し、硬化後の柔軟性と速硬化性が非常に良好であり、高精度に固定化された電子部品の放熱媒体として最適である。本熱伝導性組成物は、硬化速度が向上するため、高い生産性を有する。本熱伝導性組成物は、硬化の際に電子部品に応力をかけないほど軟らかい柔軟性を示す。本熱伝導性組成物は低アウトガス性を示すため、電子部品への汚染が低減されており、高い耐久性を有する電子部品を得ることができる。特に、光ピックアップモジュール等の精密機器に使用した場合、レーザーダイオードへの汚染が無く、レーザーダイオードは長期耐久性を有する。光ピックアップモジュールは、例えば、レーザーダイオード等の発光素子からの出射光を各種レンズ、プリズム、ミラー等を介して対物レンズに導き、光ディスク上で集光させた後に、光ディスクからの戻り光を、各種レンズ、プリズム、ミラー等を介してフォトダイオード等で受光し、光電気信号に変換する構成になっている。光ピックアップモジュールは、光ディスクの記録・再生に用いられる。本熱伝導性組成物を光ピックアップモジュールにおける放熱材(例えば、対物レンズを固定する電子部品への塗布剤や、電子部品を接着するための接着剤)に使用した場合、各種レンズ等に付着するアウトガスの量が少なくなるので、各種レンズ等の光学特性が低下し難い。 The present heat conductive composition is, for example, a heat conductive moisture curable resin composition. This thermal conductive composition has high workability and high thermal conductivity, and has excellent flexibility and fast curing after curing, and is ideal as a heat dissipation medium for electronic components fixed with high precision. It is. The heat conductive composition has high productivity because the curing speed is improved. This heat conductive composition shows the softness | flexibility so soft that it does not apply a stress to an electronic component in the case of hardening. Since this heat conductive composition shows low outgassing property, the contamination to an electronic component is reduced and the electronic component which has high durability can be obtained. In particular, when used in precision equipment such as an optical pickup module, there is no contamination of the laser diode, and the laser diode has long-term durability. An optical pickup module, for example, guides outgoing light from a light emitting element such as a laser diode to an objective lens through various lenses, prisms, mirrors, etc. Light is received by a photodiode or the like via a lens, prism, mirror, or the like, and converted into a photoelectric signal. The optical pickup module is used for recording / reproducing of an optical disc. When this heat conductive composition is used as a heat dissipation material in an optical pickup module (for example, an application agent for an electronic component for fixing an objective lens or an adhesive for bonding an electronic component), it adheres to various lenses. Since the amount of outgas decreases, the optical characteristics of various lenses are unlikely to deteriorate.
 本熱伝導性組成物は、例えば、放熱材、接着剤、塗布剤として使用できる。本熱伝導性組成物は、例えば、1剤常温湿気硬化型放熱材として使用できる。本熱伝導性組成物を発熱する電子部品に塗布することにより、電子部品から発生した熱を外部へ放熱させることができる。 This heat conductive composition can be used as, for example, a heat dissipation material, an adhesive, or a coating agent. This thermally conductive composition can be used as, for example, a one-component room temperature moisture-curing heat dissipation material. By applying the thermally conductive composition to an electronic component that generates heat, heat generated from the electronic component can be dissipated to the outside.

Claims (14)

  1.  下記(A)~(D)成分、
      (A)絶縁性を有する熱伝導性フィラー、
      (B)加水分解性シリル基を有するポリアルキレングリコール、
      (C)有機チタン系硬化触媒、
      (D)シランカップリング剤、
     を含有し、
     前記(A)成分は(A-1)平均粒径0.1μm以上2μm未満のフィラー成分、(A-2)平均粒径2μm以上20μm未満のフィラー成分、及び(A-3)平均粒径20μm以上100μm以下のフィラー成分を含有する、
     熱伝導性組成物。
    The following components (A) to (D)
    (A) a thermally conductive filler having insulating properties;
    (B) a polyalkylene glycol having a hydrolyzable silyl group,
    (C) an organic titanium-based curing catalyst,
    (D) a silane coupling agent,
    Containing
    The component (A) is (A-1) a filler component having an average particle size of 0.1 μm or more and less than 2 μm, (A-2) a filler component having an average particle size of 2 μm or more and less than 20 μm, and (A-3) an average particle size of 20 μm. Contains a filler component of 100 μm or less,
    Thermally conductive composition.
  2.  (B)成分が、粘度300~3,000mPa・s、重量平均分子量3,000~25,000の加水分解性シリル基を有するポリアルキレングリコールである請求項1記載の熱伝導性組成物。 The heat conductive composition according to claim 1, wherein the component (B) is a polyalkylene glycol having a hydrolyzable silyl group having a viscosity of 300 to 3,000 mPa · s and a weight average molecular weight of 3,000 to 25,000.
  3.  (B)成分が、(B-1)分子鎖両末端に加水分解性シリル基を有するポリアルキレングリコールである請求項1~2のうちの1項に記載の熱伝導性組成物。 The heat conductive composition according to claim 1, wherein the component (B) is (B-1) a polyalkylene glycol having hydrolyzable silyl groups at both ends of the molecular chain.
  4.  (B)成分が、(B-2)分子鎖片末端に加水分解性シリル基を有するポリアルキレングリコールである請求項1~2のうちの1項に記載の熱伝導性組成物。 The heat conductive composition according to claim 1, wherein the component (B) is (B-2) a polyalkylene glycol having a hydrolyzable silyl group at one end of the molecular chain.
  5.  (B)成分が、(B-1)分子鎖両末端に加水分解性シリル基を有するポリアルキレングリコール、及び(B-2)分子鎖片末端に加水分解性シリル基を有するポリアルキレングリコールを含有してなる請求項1~2のうちの1項に記載の熱伝導性組成物。 Component (B) contains (B-1) polyalkylene glycol having hydrolyzable silyl groups at both ends of the molecular chain, and (B-2) polyalkylene glycol having hydrolyzable silyl groups at one end of the molecular chain. The heat conductive composition according to claim 1, wherein the heat conductive composition is formed as described above.
  6.  (A)成分は熱伝導性組成物全体に対して60~95質量%の量であり、(C)成分は(B)成分に対して0.01~10質量%の量であり、(D)成分は(B)成分に対して0.01~10質量%の量である請求項1~5のうちの1項に記載の熱伝導性組成物。 The component (A) is in an amount of 60 to 95% by mass with respect to the entire thermally conductive composition, the component (C) is in an amount of 0.01 to 10% by mass with respect to the component (B), and (D 6. The thermally conductive composition according to claim 1, wherein the component is in an amount of 0.01 to 10% by mass relative to the component (B).
  7.  前記熱伝導性組成物から得られる硬化体が、柔軟な物性を示す、請求項1~6のうちの1項に記載の熱伝導性組成物。 The heat conductive composition according to any one of claims 1 to 6, wherein the cured product obtained from the heat conductive composition exhibits flexible physical properties.
  8.  湿気硬化型である請求項1~7のうちの1項に記載の熱伝導性組成物。 The thermally conductive composition according to claim 1, which is a moisture curable type.
  9.  低アウトガス用である請求項1~8のうちの1項に記載の熱伝導性組成物。 9. The thermally conductive composition according to claim 1, which is for low outgassing.
  10.  光ピックアップモジュール用である請求項1~9のうちの1項に記載の熱伝導性組成物。 10. The thermally conductive composition according to claim 1, which is used for an optical pickup module.
  11.  請求項1~10のうちの1項に記載の熱伝導性組成物を含有してなる放熱材。 A heat dissipating material comprising the heat conductive composition according to any one of claims 1 to 10.
  12.  請求項1~10のうちの1項に記載の熱伝導性組成物を含有してなる接着剤。 An adhesive comprising the thermally conductive composition according to any one of claims 1 to 10.
  13.  請求項1~10のうちの1項に記載の熱伝導性組成物を含有してなる塗布剤。 A coating agent comprising the thermally conductive composition according to any one of claims 1 to 10.
  14.  請求項1~10のうちの1項に記載の熱伝導性組成物を電子部品に塗布することにより、電子部品から発生した熱を外部へ放熱させる放熱方法。 A heat dissipation method for dissipating heat generated from an electronic component to the outside by applying the thermally conductive composition according to one of claims 1 to 10 to the electronic component.
PCT/JP2012/076040 2011-10-06 2012-10-05 Thermally conductive composition for low outgassing WO2013051721A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147007524A KR101917338B1 (en) 2011-10-06 2012-10-05 Thermally conductive composition for low outgassing
JP2013537579A JP5970462B2 (en) 2011-10-06 2012-10-05 Thermally conductive composition for low outgas
CN201280048468.7A CN103890094B (en) 2011-10-06 2012-10-05 Low exhaust heat-conductive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011221850 2011-10-06
JP2011-221850 2011-10-06

Publications (1)

Publication Number Publication Date
WO2013051721A1 true WO2013051721A1 (en) 2013-04-11

Family

ID=48043874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076040 WO2013051721A1 (en) 2011-10-06 2012-10-05 Thermally conductive composition for low outgassing

Country Status (5)

Country Link
JP (1) JP5970462B2 (en)
KR (1) KR101917338B1 (en)
CN (1) CN103890094B (en)
TW (1) TWI553110B (en)
WO (1) WO2013051721A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141746A1 (en) * 2014-03-21 2015-09-24 ナミックス株式会社 Insulating film and semiconductor device
WO2020176612A1 (en) * 2019-02-27 2020-09-03 Henkel IP & Holding GmbH Thermal interface materials
WO2021095515A1 (en) * 2019-11-15 2021-05-20 タツタ電線株式会社 Heat dissipation sheet
WO2022260919A1 (en) * 2021-06-09 2022-12-15 Henkel IP & Holding GmbH Non-silicone thermal interface material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314873A (en) * 1989-02-08 1991-01-23 Dow Corning Corp Thermally conductive organo- siloxane compounds
JP2000063873A (en) * 1998-08-21 2000-02-29 Shin Etsu Chem Co Ltd Heat conductive grease composition and semiconductor device using same
JP2001302936A (en) * 2000-02-15 2001-10-31 Sekisui Chem Co Ltd Heat-conductive resin composition
JP2006274094A (en) * 2005-03-30 2006-10-12 Kaneka Corp Composition for heat dissipation sheet and heat dissipation sheet obtained by curing the same
WO2010041708A1 (en) * 2008-10-08 2010-04-15 電気化学工業株式会社 Heat-conductive moisture-curable resin composition
WO2011125636A1 (en) * 2010-04-08 2011-10-13 電気化学工業株式会社 Thermally conductive moisture curable resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314873A (en) * 1989-02-08 1991-01-23 Dow Corning Corp Thermally conductive organo- siloxane compounds
JP2000063873A (en) * 1998-08-21 2000-02-29 Shin Etsu Chem Co Ltd Heat conductive grease composition and semiconductor device using same
JP2001302936A (en) * 2000-02-15 2001-10-31 Sekisui Chem Co Ltd Heat-conductive resin composition
JP2006274094A (en) * 2005-03-30 2006-10-12 Kaneka Corp Composition for heat dissipation sheet and heat dissipation sheet obtained by curing the same
WO2010041708A1 (en) * 2008-10-08 2010-04-15 電気化学工業株式会社 Heat-conductive moisture-curable resin composition
WO2011125636A1 (en) * 2010-04-08 2011-10-13 電気化学工業株式会社 Thermally conductive moisture curable resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141746A1 (en) * 2014-03-21 2015-09-24 ナミックス株式会社 Insulating film and semiconductor device
JP2015183050A (en) * 2014-03-21 2015-10-22 ナミックス株式会社 Insulation film and semiconductor device
WO2020176612A1 (en) * 2019-02-27 2020-09-03 Henkel IP & Holding GmbH Thermal interface materials
WO2021095515A1 (en) * 2019-11-15 2021-05-20 タツタ電線株式会社 Heat dissipation sheet
JPWO2021095515A1 (en) * 2019-11-15 2021-05-20
KR20220101082A (en) * 2019-11-15 2022-07-19 타츠타 전선 주식회사 heat dissipation sheet
JP7410171B2 (en) 2019-11-15 2024-01-09 タツタ電線株式会社 heat dissipation sheet
KR102653614B1 (en) 2019-11-15 2024-04-01 타츠타 전선 주식회사 heat dissipation sheet
WO2022260919A1 (en) * 2021-06-09 2022-12-15 Henkel IP & Holding GmbH Non-silicone thermal interface material

Also Published As

Publication number Publication date
KR101917338B1 (en) 2018-11-09
CN103890094B (en) 2016-08-17
KR20140069008A (en) 2014-06-09
JP5970462B2 (en) 2016-08-17
TW201333178A (en) 2013-08-16
CN103890094A (en) 2014-06-25
TWI553110B (en) 2016-10-11
JPWO2013051721A1 (en) 2015-03-30

Similar Documents

Publication Publication Date Title
JP5828835B2 (en) Thermally conductive moisture curable resin composition
TWI635169B (en) Thermally conductive composite sheet
US8754165B2 (en) Heat-conductive silicone grease composition
JP5970462B2 (en) Thermally conductive composition for low outgas
US20100124657A1 (en) Thermally conductive sheet and method of producing the same
TWI743227B (en) Thermally conductive composite polysilicone rubber sheet and manufacturing method thereof
WO2010041708A1 (en) Heat-conductive moisture-curable resin composition
KR20160084808A (en) Thermal conductive silicone composition and cured product, and composite sheet
TW201808626A (en) Thermally conductive silicone rubber composite sheet
JP2013234245A (en) Room temperature-curable organopolysiloxane composition for sealing radiation shielding structure and radiation shielding structure
KR101898757B1 (en) Thermally conductive, moisture-curable resin composition
JP2010070767A (en) Hybrid composition and method for preparing the same
JP2008280367A (en) Polyorganosiloxane composition having low moisture permeability
WO2019159753A1 (en) Thermally conductive moisture-curable resin composition and cured product thereof
JP2020026492A (en) Room temperature curable polyorganosiloxane composition and cured product thereof
JP5482702B2 (en) Two-component mixed organopolysiloxane composition and method for curing the composition
TW201833295A (en) Thermally conductive sheet
WO2021059936A1 (en) Thermally conductive silicone composition, production method thereof, and semiconductor device
JP2017101171A (en) Thermal conductive room temperature curable organopolysiloxane composition and member
JP5644800B2 (en) Two-component mixed organopolysiloxane composition
US20230183483A1 (en) Thermally conductive silicone composition, production method for same, and semiconductor device
JP2014001254A (en) Heat conductive material
JP6706818B2 (en) Semiconductor device
US20240084138A1 (en) Addition curable silicone resin composition and die attachment material for semiconductor device
JP2023100224A (en) Addition reaction-curable silicone resin composition, and die attach material for semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147007524

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013537579

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838287

Country of ref document: EP

Kind code of ref document: A1